

UNIVERSITY OF TARTU

FACULTY OF MATHEMATICS AND COMPUTER SCIENCE

Institute of Computer Science

 Software Engineering

Wajid Ali Khilji

Evaluation Framework for Software

Security Requirements Engineering Tools

Master’s Thesis (30 ECTS)

Supervisor: Dr. Raimundas Matulevičius

Tartu 2014

II

ABSTRACT

Evaluation Framework for Software Security Requirements Engineering Tools

In software development requirements are considered as building blocks of software system,

which also are considered to be responsible in event of failure. Bad requirements can lead to

software features that are not to the specifications. For that reason requirement gathering process

is considered as the most sensitive and complicated process among all software engineering

lifecycle processes. In current age where cyber-attacks are common security requirements also

comes into place and plays a very important role in software development process. In order to

elicit security requirements new type of tools are begin to form a shape called security

engineering tools which help in eliciting security requirements. That considered being the most

efficient way of eliciting security requirements. Moreover these tools empower users with

artifacts specifically to cater security needs, which save time and efforts for engineers in return.

Nevertheless these tools are still at their infantry and are lacking mass adoption by software

security engineers. Reason because these tools have steep learning curve which can add-up to

development time and end up pushing more cost to the project. In order to decide which tool to

select for a particular project require engineers to use these tools which in return will consume

tremendous amount of time. Moreover using unstructured tool selection process can also leads to

wrong tool selection which will be the waste of time and efforts. In this research work we are

going to construct structured approach which will help engineers in security engineering tool

selection process. In order to aid this process analysts and architects will be able to rate the

features they want the most in a particular security engineering tool. In return from this process

they will be able to choose between security engineering tools and select the best one. Finally

using approach constructed in this research work will save time, efforts, and costs. In our

approach we will analyze security engineering processes, methods and tools, to construct a

framework that will help aid engineers in security engineering tool evaluation process.

Key Words: Security, requirements, engineering, tools

Hindamisraamistik tarkvara turvalisusnõuete tööriistade jaoks

Tarkvaraarenduses on nõuded kui süsteemi vundament, mis vastutavad ka ebaõnnestumiste

eest. Valed nõuded võivad viia tarkvara eripäradeni, mis tegelikult ei vasta spetsifikatsioonidele.

Sel põhjusel peetakse nõuete koostamist kõige keerulisemaks ja olulisemaks sammuks

tarkvaraarenduse elutsükli kõikide protsesside jooksul. Tänapäeval, kus küberrünnakud on

tavalised, mängivad turvalisuse nõuded väga olulist rolli tarkvaraarenduse protsessis. On levimas

uut tüüpi tööriistad, mille kasutamist peetakse kõige efektiivsemaks meetodiks turvalisusnõuete

väljatöötamisel. Lisaks võimaldavad need tööriistad lahendada turvalisusega seotud

küsimusi kasutajal endal, hoides märgatavalt kokku inseneride aega. Siiski on nende tööriistade

areng alles algstaadiumis ning neid ei ole tarkvarainseneride poolt massiliselt kasutusele võetud.

III

Põhjus on väga pikas uue tarkvara õppimise ja sellega kohanemise protsessis, mis põhjustab

ajakadu arendusprotsessis ning lisab projektile kulusid. Projekti jaoks konkreetse tööriista

valimisel võib tutvumine ja katsetamine võtta inseneridel hulgaliselt aega. Lisaks sellele võib

struktureerimata valikuprotsess viia vale tööriista kasutuselevõtmisele, mis raiskab omakorda

kõigi aega ja pingutusi. Selles uurimuses kavatseme me koostada struktureeritud lähenemise, mis

aitab insenere turvalisusnõuete tööriistade valimisel. Protsessile kaasaaitamiseks saavad

analüütikud ja arhitektid hinnata tarkvara omadusi, mida nad enda seisukohast olulisimateks

peavad. Sellest lähtuvalt saavad nad valida kindlate tööriistade vahel ning teha parima valiku.

Antud uurimustöös kontstrueeritud lähenemisega on võimalik säästa aega, vaeva ja kulutusi.

Uurimuse koostamise käigus uurime me tarkvaraarenduse turvaprotsesse, meetodeid ja tööriistu

ning püüame luua raamistikku, mis oleks inseneridele turvalisusnõuete tööriistade hindamisel

abiks

Võtmesõnad:

Turvalisus, nõuded, masinaehitus, töövahendid

IV

Table of Contents

1. Introduction ... 1

1.1. Motivation .. 1

1.2. Scope ... 2

1.3. Research Problem .. 2

1.4. Structure of Work ... 3

1.5. Contribution ... 5

2. Security Engineering and Security Requirements Elicitation .. 7

2.1. Security ... 8

2.2. Requirements and Security Requirements .. 9

2.3. Security Engineering Approaches .. 10

2.4. Information Security Standards ... 11

2.5. Chapter Summary ... 12

3. Security Development Lifecycles .. 13

3.1. Stages of Software Development Lifecycle (SDLC) .. 14

3.2. Optimization Model ... 14

3.3. Example on Security Engineering Process .. 14

3.4. Security Engineering Assurance Processes ... 15

3.4.1. Security Development Lifecycle (SDL) .. 15

3.4.2. Software Security (7 Touch points) ... 17

3.4.3. OWASP CLASP .. 18

3.5. Chapter Summary ... 22

4. Security Engineering Methods and Tools .. 23

4.1. Security Engineering Methods ... 23

4.1.1. CORAS .. 24

4.1.2. SQUARE ... 24

4.1.3. Secure TROPOS .. 26

4.2. Security Engineering Tools ... 27

4.2.1. Capabilities of CORAS Tool ... 27

4.2.2. Capabilities of SQUARE Tool... 32

4.2.3. Capabilities of SecTro2 Tool ... 37

4.3. Chapter Summary ... 44

5. Framework for security requirements engineering tool .. 45

V

5.1. Derived Software Security Requirements ... 45

5.2. Means to fulfill the requirements ... 50

5.3. Measurement Scale for tool Analysis ... 56

5.4. Use of Evaluation Framework .. 59

5.5. Chapter Summary ... 61

6. Tool Assessment .. 62

6.1. Design of Experiment .. 62

6.2. Assessment of the tools using R-TEA approach ... 63

6.2.1. Preparation of requirement specification ... 63

6.2.2. Selection of business parties .. 63

6.2.3. Investigation of the tools .. 63

6.2.4. Decision ... 63

6.3. Assessment of the tools using SETEF .. 63

6.3.1. Requirements Initialization .. 63

6.3.2. Search for Tools ... 63

6.3.3. Tool Evaluation ... 64

6.3.3.1. STS Tool .. 64

6.3.3.2. CORAS Tool .. 64

6.3.3.3. SQUARE Tool ... 64

6.3.3.4. SecTro2 Tool .. 64

6.3.3.5. Magic Draw Tool ... 65

6.3.4. Select the Best Tool ... 65

6.4. Comparison of R-TEA and SETEF ... 65

6.5. Threats to Validity ... 66

6.6. Summary .. 66

7. Conclusion and Future Work ... 68

7.1. Limitations ... 69

7.2. Future Work .. 69

8. BIBLIOGRAPHY.. 70

9. APPENDIX-A ... 74

10. APPENDIX-B ... 78

11. APPENDIX-C ... 105

12. LICENSE .. 121

VI

List of Figures

Figure 2-1 Security Engineering Analysis Framework > Adapted from (Anderson, 2001) 8

Figure 2-2 The ISO/IEC 2700X series of standards > Adapted from (Mayer, 2009) 11

Figure 3-1 General Life Cycle Model > Adapted from (Ragunath, et al., 2010) 14

Figure 3-2 SDL Optimization Model with Capability and Maturity Levels > Adapted from

(Microsoft, 2010) .. 15

Figure 3-3 Security Development Lifecycle > Adapted from (Microsoft.., 2010) 16

Figure 3-4 Software Security 7 Touch Points > Adapted from (Addison-Wesley Software

Security Series, 2006) ... 18

Figure 3-5 CLASP Views and their interactions > Adapted from .. 20

Figure 4-1 CORAS > Adapted from (CORAS, 2014) .. 24

Figure 4-2 Deliberate Threat > Adapted from (Lund, et al., 2011) .. 28

Figure 4-3 Accidental Threat > Adapted from (Lund, et al., 2011) ... 28

Figure 4-4 Telemedicine Assets > Adapted from (Lund, et al., 2011) ... 29

Figure 4-5 Telemedicine Risks > Adapted from (Lund, et al., 2011) ... 30

Figure 4-6 Telemedicine Treatment > Adapted from (Lund, et al., 2011) 30

Figure 4-7 Requirements fulfillment from CORAS ... 32

Figure 4-8 Steps in SQUARE tool > Adapted from (Ganguly, 2011) .. 33

Figure 4-9 Step 1 SQUARE tool > Adapted from (Ganguly, 2011) .. 33

Figure 4-10 Elicitation Techniques SQUARE tool > Adapted from (Ganguly, 2011) 34

Figure 4-11 Elicit Requirements SQUARE tool > Adapted from (Ganguly, 2011) 35

Figure 4-12 Categorize Requirements SQUARE tool > Adapted from (Ganguly, 2011) 35

Figure 4-13 Requirements fulfillment from SQUARE tool ... 37

Figure 4-14 Organization View .. 38

Figure 4-15 Security Requirements View – Accidental threat ... 39

Figure 4-16 Security Attacks View - Health records sent to unauthorized people 39

Figure 4-17 Security Attacks View - Health records copies stored on local computer 40

Figure 4-18 Security Attacks View - Wrong input in health records ... 40

Figure 4-19 Security Attacks View - Misconfiguration of system ... 41

Figure 4-20 Security Requirements View – Deliberate Threat .. 41

Figure 4-21 Security Attacks View - System Break-in .. 42

Figure 4-22 Security Attacks View - Eavesdropping on dedicated connection 42

Figure 4-23 Requirements fulfillment from SECTRO2 tool .. 44

Figure 5-1 Evaluation Framework .. 51

Figure 5-2 Use of Evaluation Framework .. 60

Figure 6-1 Design of Experiment ... 62

file:///C:/Users/Wajid/Google%20Drive/Thesis/EVALUATION%20FRAMEWORK%20FOR%20SOFTWARE%20SECURITY%20REQUIREMETNS.docx%23_Toc403434834
file:///C:/Users/Wajid/Google%20Drive/Thesis/EVALUATION%20FRAMEWORK%20FOR%20SOFTWARE%20SECURITY%20REQUIREMETNS.docx%23_Toc403434835
file:///C:/Users/Wajid/Google%20Drive/Thesis/EVALUATION%20FRAMEWORK%20FOR%20SOFTWARE%20SECURITY%20REQUIREMETNS.docx%23_Toc403434836
file:///C:/Users/Wajid/Google%20Drive/Thesis/EVALUATION%20FRAMEWORK%20FOR%20SOFTWARE%20SECURITY%20REQUIREMETNS.docx%23_Toc403434837
file:///C:/Users/Wajid/Google%20Drive/Thesis/EVALUATION%20FRAMEWORK%20FOR%20SOFTWARE%20SECURITY%20REQUIREMETNS.docx%23_Toc403434837
file:///C:/Users/Wajid/Google%20Drive/Thesis/EVALUATION%20FRAMEWORK%20FOR%20SOFTWARE%20SECURITY%20REQUIREMETNS.docx%23_Toc403434839
file:///C:/Users/Wajid/Google%20Drive/Thesis/EVALUATION%20FRAMEWORK%20FOR%20SOFTWARE%20SECURITY%20REQUIREMETNS.docx%23_Toc403434839

VII

List of Tables

Table 1-1 Thesis Structure .. 4

Table 2-1 Summary of software and security engineering state of the art > Adapted from (Mayer,

2009) ... 10

Table 3-1 Requirements from SDL ... 16

Table 3-2 Requirements from 7 Touch Points .. 18

Table 3-3 Requirements from OWASP .. 19

Table 3-4 OWASP Top 10 > Adapted from (OWASP, 2013) ... 21

Table 4-1 Steps in SQUARE Process > Adapted from (Mead, et al., 2005) 25

Table 4-2 TROPOS Phases > Adapted from (Mouratidis, et al., 2008) 27

Table 4-3 Requirements from CORAS tool .. 31

Table 4-4 Steps in SQUARE tool ... 32

Table 4-5 Assets and goals SQUARE tool ... 34

Table 4-6 Perform risk assessment SQUARE tool ... 34

Table 4-7 Requirements from SQUARE tool ... 36

Table 4-8 Requirements from SecTro2 ... 43

Table 5-1 Derived Requirements from SSAP ... 45

Table 5-2 Measurement Legend ... 56

Table 5-3 Likert Scale for SR001-Making Awareness ... 57

Table 5-4 Likert Scale for SR002-Understand Context and Assets ... 57

Table 5-5 Likert Scale for SR003-Security Requirements ... 57

Table 5-6 Likert Scale for SR004-Risk Analysis ... 58

Table 5-7 Likert Scale for SR005-Secure Design Practices ... 58

Table 5-8 Likert Scale for SR006-Justify Design Solution .. 58

Table 5-9 Likert Scale for SR007-Response .. 59

Table 6-1 R-TEA and SETEF Steps ... 65

Table 6-2 Activities of R-TEA > Adapted from (Matulevičius, 2005) .. 66

Table 6-3 Framework Results Comparison .. 67

Table 6-4 Tool Evaluation Summary .. 67

Table 11-1 CORAS Tool Artifacts ... 74

Table 11-2 SecTro2 Tool Artifacts ... 76

Table 12-1 Calculated Results from STS-TOOL .. 78

Table 12-2 Calculated Results from CORAS Tool... 84

Table 12-3 Calculated Results from SQUARE Tool .. 89

Table 12-4 Calculated Results from SecTro2 Tool .. 94

Table 12-5 Calculated Results from Magic Draw Tool .. 99

Table 13-1 Calculated Results for STS-TOOL ... 105

Table 13-2 Calculated Results for CORAS TOOL... 108

VIII

Table 13-3 Calculated Results for SQUARE TOOL .. 111

Table 13-4 Calculated Results for SecTro2 TOOL .. 114

Table 13-5 Calculated Results for Magic Draw TOOL .. 117

IX

List of Abbreviations

B

BPMN: Business Process Management Notation · 23

C

CLASP: Comprehensive, Lightweight, Application

Security Process · 19

CORAS: Coducting Security Risk Analysis · 24

I

ID: Identification · 16

IEC: International Electrotechnical Commission · 11

ISMS: Information Security Management System · 11

ISO: International Organization for Standardization · 11

IWA: Interational Workshop Agreement · 11

O

OSS: Open Source Software · 56

P

PH: Phase · 16

R

RE: Requirement Engineering · 4

REQ: Requirement · 16

RM: Risk Management · 11

R-TEA: RE Tool Evaluation Approach · 62

S

SDL: Security Development Lifecycle · 15

SDLC: Software Development Lifecycle · 14

SE: Security Engineering · 2

SecTro: Secure Tropos · 37

SETEF: Security Engineering Tool Evaluation Framework

· 62

SRE: Security Requirements Engineering · 14

SRS: Security Requirement SDL · 16

SRT: Sequrity Requirement STP · 18

SSAP: Software Security Assurance Process · 14

STP: Seven Touch Points · 17

T

TS: Technical Specification · 11

U

UML: Unified Modeling Language · 23

1

Introduction
Software requirements are the foundation of any software system. As such similar to the building

and construction requires a base, requirements play same utmost importance in developing

software systems. Unlike developers of 80’s now a day’s software architects are more aware of

this phenomenon that, success of any software project relies on complete, concrete and concise

requirements. One of the major factors contributing to the requirements is security engineering.

In current age of cyber warfare, discussing about requirements without discussing security

constraints may lead to loss of valuable assets like information, methodology, and business

workflow. In some critical cases may lead to loss of human life, such of the examples can be

learnt from the fact that software systems are now part of human society. Power, healthcare,

education, governments, military and telecommunications almost all social sectors are now

becoming part of a giant cloud (internet).

These elements take software architects and analysts attention to the methods, tools, and

languages available for security requirements which can help illustrate the software system in

terms of possible vulnerabilities. However available tools for security requirements are already

on their infantry. And there is no customary procedure that provides standard framework support

for deciding which security requirements elicitation tool to choose. In this research we will

analyze some processes and tools to construct a framework that will support and accelerate SRE

tool decision making process.

1.1. Motivation

“The role of security requirements is to provide information about the actual needs of a system or

application with respect to security in order to accomplish its business goals” (Braz, et al., 2008).

Common agenda of eliciting security requirements in early stages of lifecycle is to reduce

increasing costs for the later stages. Although fixing bug from a developed software system will

be more costly, than avoiding vulnerabilities at the beginning of development lifecycle. So the

relevant question to ask at this point is: how to reduce these vulnerabilities? There could be

several solutions towards addressing vulnerabilities, but in most cases assessing vulnerabilities

could be a difficult task, and keeping track of risks and threats could also be a challenging task.

1

 Chapter 1: Introduction

2

This can be achieved by using requirements engineering tools, but the fact that these are software

requirements specific and does not provide security requirements artifacts can lead to missing or

inappropriate security requirements. The appropriate solution for eliciting security requirements

will be to use security requirements elicitation tools.

Security engineering tools are the software tools that help accelerate security requirements

elicitation process. One similar definition in this context is of requirements engineering tools as

discussed: “Requirements engineering (RE) tools are software tools which provide automated

assistance during the RE process and support the RE activities” (Matulevičius, 2005). Similar to

RE tools SE tools also provide the functionality of documenting, validating, and analyzing the

security requirements.

One of the benefit of using SE tools is it reduces the possibility of eliciting unclear or ambiguous

security requirements. Moreover the use of RE tool for eliciting security requirements is not that

inferior as well. While SE tools were not readily available a decade ago, analysts and architects

were forced to follow traditional approach in eliciting security requirements, i.e. use of RE tools.

However not using standard SE tool can create possibility of capturing unwanted, unclear, or

ambiguous security requirement, which in result will leave vulnerabilities into the software

system.

1.2. Scope

Among several security engineering tools, deciding on which tool to choose can be time

consuming and efforts adding process. Also all the available tools use variant approaches that

can add to the learning curve as well. In this research work we will construct a method that will

address the issue of choosing security requirements engineering tool. We keep our scope limited

to analyzing security assurance processes (discussed in chapter 3) and security engineering tools

(discussed in chapter 4). First will be to analyze the security assurance processes that will give us

our core requirements, these will be used to test the security engineering tools, and provide us

with the means or functionality that has been fulfilled from a particular requirement. On the basis

of means we will construct a security requirements engineering tools selection framework.

1.3. Research Problem

One aspect of the security requirement is they address the needs of software in terms of security,

and try to provide as much solutions as possible to cater security needs. The common way of

investigating security is to define assets, roles, threats, vulnerabilities, risks, treatment and

mitigations in a particular system. That in result will deliver unstructured and variant security

requirements that can lead to misunderstanding and difficulties while implementation. And the

quality of security requirements will not be of high standards. Moreover security requirements

have the same changing nature of normal requirements which makes it complicated to jot down

security requirements in concrete form.

 Chapter 1: Introduction

3

As a consequence the solution for this problem is to follow a structured approach that in result

will create high quality security requirements. Security engineering tools deliver a way to

improve security requirement by providing several artifacts to address security related problems,

and limit the user with security related artifacts. The function of these tools is to follow standards

and procedures to construct security needs. These security needs finally will create standardized

security requirements of high quality. There are several security engineering tools available, as

the security needs are increasing day by day; these tools are becoming mature to capture

requirements beyond common imagination of human mind. However these tools are still lacking

the mass adoption because of acceptable maturity level. And which tool to choose from may take

time and efforts. In order to achieve tool selection process we have to define research problem

mentioned below.

 Research Problem

How to evaluate security requirements engineering tools?

In this research work we will analyze the SE processes and tools that will provide us with the

requirements for security requirements engineering tools selection process? Our focus will be

limited to popular tools and processes because of limited amount of time available for this

research work. Before analyzing SE tools it is important to ask what should be the

characteristics of SE tools. In order to simplify the problem, we divide it into two questions.

 Research Question1

What are the requirements when selecting security engineering tools that offer better

means to support security requirement process and maintain high quality security

requirements?

In order to achieve verified results it is important that we evaluate the outcomes:

 Research Question 2

What are the means that fulfill security engineering tool requirements that provide

improved security requirements artifact?

That gives us our two questions that will be discussed and resolved in this thesis. These

questions are derived from research problem and will be addressed resolving actual problem.

However we only have divided this into two questions for simplicity.

1.4. Structure of Work

This thesis is structured into chapters, mentioned in Table 1-1 are the number, name and

description of the chapter. The initial two chapters are for introducing the research work, and

applications are in chapter 3 and 4. The findings can be visited in chapter 5, and results in

chapter 6. Finally chapter 7 is for conclusion.

 Chapter 1: Introduction

4

Table 1-1 Thesis Structure

CH: ID Chapter Name Description

1 Introduction Introducing the Thesis, research question

2 Security engineering and

security requirements

elicitation

Security engineering definition, requirements elicitation

techniques, and information security standards.

3 Security development

lifecycles

Software security assurance processes.

4 Security engineering methods

& tools

Security engineering methodologies, analysis of tools.

5 Framework for security

requirements engineering

tools

Security requirements, framework construction, and use of

evaluation framework.

6 Tool Assessment How this method was evaluated comparing one additional

method and the results were given.

7 Conclusion The conclusion and future work, related to this thesis work.

In this thesis our approach will be straight forward, flowing with the tools and SSAP’s, which is

quite a challenging task because of various differences in both. For the sake of simplicity we will

eliminate some sub-processes in SSAP’s and take only the once that are relevant to our research.

In this chapter we will introduce some of the common definitions that are used in this research

work. This will give us a basic understanding of the terms used, and also will be a kick-starter for

the upcoming chapters. And finally we will define the expected outcomes of this research.

 Framework Definition

In research work of Matulevičius about process support for requirements engineering, the

framework definition is given as follows: The purpose of the frameworks is to provide a

skeleton structure for the RE- tool evaluation and comparison (Matulevičius, 2005). A

framework also works as a template guiding on how to proceed with the current process.

 Process Definition

The process is defined as “A systematic series of actions directed to some end”

(Dictionary.com, 2014). This describes the process as a series of (tasks, events and activities)

that combined together gives a complete set of process that will lead to a single outcome.

Term process is commonly used while defining the lifecycle of a software development, as

software lifecycle is mainly composed of series of different correlated or individual

processes.

 Chapter 1: Introduction

5

 Lifecycle Definition

Lifecycle is defined as “A series of stages through which something (as an individual,

culture, or manufactured product) passes during its lifetime” (Merriam-Webster, 2014).

While the word itself is taken from the evaluation of lifecycle, but also this has more

resemblance to software lifecycle. Because software engineering is not only about

developing software, it also includes security constraint, support and maintenance which can

last for many years. Moreover the word lifecycle is used in other wide range of fields like

(enterprise, product development, software release and more). Lifecycle can also be consist

of several sub-sections delivering artifacts, or sub-objects.

 Artifact Definition

Artifact is defined as “An object made by a human being, typically an item of cultural or

historical interest” by (Oxford Dictionaries, 2014). While artifact in this research is referred

to the sub-elements like (activities, tasks or events) involved during the lifecycle of the

software development.

1.5. Contribution

In this research work our main focus is to analyze security engineering process and tools that will

be used to form a framework that will help in choosing between SRE tools, i.e. what is the best

available, well suited and well developed SRE tool? In chapter 5 we will discuss about the tools

and processes that will help us in producing SRE tool selection method based on available

functionality, and that will be our basis to introduce a framework. This thesis will produce some

features, characteristics and validated requirements for SRE tools.

 Features

There will be two main features in this research work: 1. Analysis of security engineering

lifecycles. 2. Requirements elicitation from SRE tools. As mentioned the motive will be to

collect these requirements as precise as possible to avoid variation between processes and

SRE tools. The elicited requirements from processes will then be merged and tested against

the SRE tools.

 Characteristic

We will develop a Framework that will help leverage the SRE tool selection processes.

Moreover there are several frameworks addressing in different aspects of software

engineering field. This framework will be different in sense that this will be addressed to

security aspects of the software development.

 Chapter 1: Introduction

6

 Requirements validated for SRE-tool

Finally after achieving the goal “having a SRE tool selection framework” at place we can

define validation method. Questions like how to validate tools using constructed framework

will be addressed in chapter 6 of this thesis.

7

Security Engineering and Security Requirements

Elicitation
Security engineering is a field of software engineering, which includes safety, security,

vulnerabilities and their treatment mechanisms. In a whole it is a big field to deal with, because

more and more security vulnerabilities are on their way since the invention of internet and cloud

based software. Modeling security requirements mainly tends our focus towards Use-cases. As

mentioned by (Sindre, et al., 2005) “Use cases have become popular for determining,

communicating, specifying, and documenting requirements”. In this research they also mention

that most of the stakeholders are comfortable with descriptions of operational action sequences

than declarative specifications.

There are also problems with use-case-based approaches to requirements engineering, says

(Sindre, et al., 2005), such as over simplified assumptions about the problem domain and

premature design decisions. But with slight modification use-cases can provide functionality of

security requirements. As though there are several methods and approaches to elicit security

requirements. Our task will be to demonstrate, what these methods are and how these help

engineers elicit the security requirements in this chapter.

Talking about the security requirements elicitation, we will introduce security engineering along

with security engineering analysis framework depicted in Figure 2-1, then we will discuss about

requirements elicitation techniques as our main goal in this chapter will be to cover as much

about the elicitation techniques most preferably adapted and used in the software industry. Most

of the requirements in this research will be elicited by analyzing the SSAP’s and SRE tools.

Where main method of gathering requirements consists of brainstorming and reading the SSAP’s

and tools itself. Moreover when it comes to requirements gathering there are 10 most common

approaches defined in (Mochal, 2008). Also in this chapter we have introduced security

engineering approaches, mentioned in Table 2-1, and information security standards, which

resolves different problem than our focus approach depicted in Figure 2-2.

2

 Chapter 2: Security Engineering and Security Requirements Elicitation

8

2.1. Security

One of the well-known authors of the book security engineering Ross Anderson describes the

security as: “Security engineering is about building systems to remain dependable in the face of

malice, error, or mischance” (Anderson, 2001).

The software should be dependable in the face of Malice: Desire to inflict injury, harm, or

suffering on another, either because of a hostile impulse or out of deep-seated meanness

(Dictionary.com, 2014). The software should be dependable in the face of Error: a deviation

from accuracy or correctness; a mistake, as in action or speech (Dictionary.com, 2014). The

software should be dependable in the face of Mischance: a mishap or misfortune

(Dictionary.com, 2014).

Security engineering is a discipline which requires expertise from many different domains i.e.

software cryptography and hardware temper-resistance. Moreover it involves the tools,

processes, and methods (Anderson, 2001). According to Anderson a good security requires four

things to come together: Policy, Incentives, Mechanism and Assurance. See the framework

diagram depicted in Figure 2-1.

Security engineering analysis framework is an abstract declaration of security engineering

process, which provides all necessary attributes associated with the security engineering. Almost

all companies have policy defined where security constraints are declared. Either physical

tangible assets or non-tangible information related objects, in this framework both can fit very

well. However our priority is information security that comes with the software security. For

example: In almost all companies security policy is defined in some sense. And applying a

security mechanism will provide with an incentive i.e. secure software. And finally assurance

will give satisfaction of achievement of the objective security policy.

Some more definitions of security are:

Policy Incentives

Mechanism Assurance

Figure 2-1 Security Engineering Analysis Framework > Adapted from (Anderson, 2001)

 Chapter 2: Security Engineering and Security Requirements Elicitation

9

 Software security is the idea of engineering software so that it continues to function

correctly under malicious attack (McGraw, 2003).

 Security engineering is the field of engineering dealing with the security and integrity of

real-world systems (Science Daily, 2014).

2.2. Requirements and Security Requirements

Most of the authors agree on the requirement definition that it is the specification of stakeholders

needs. IEEE defines requirement as (Institute of Electrical and Electronic Engineers, 1990).

1. A condition or capability needed by a user to solve a problem or achieve an objective.

2. A condition or capability that must be met or possessed by a system or system component

to satisfy a contract, standard, specification, or other formally imposed document.

3. A document representation of a condition or capability as in definition 1 or 2.

Our motive is to make a clear distinction between requirements and security requirements. As

both comes under one heading, and has the same objective of “demonstrating specifications”.

They are lot more different in sense that security requirements in it can have large amount

documentations stating the software specifications on security perspective. After defining few

more requirements definition from the different authors we will discuss about security

requirements.

“Requirements definition includes, but is not limited to, the problem analysis that yields a

functional specification. It is much more than that. Requirements definition must encompass

everything necessary to lay the ground work for subsequent stages in system development” (T.

Ross, et al., 1977).

One of the definitions of software requirement specification is: a software requirement

specification is a comprehensive description of the intended purpose and environment for

software under development (TechTarget, 2014).

In software requirements, most commonly three types of requirements are categorized in general

(Sommerville, 2004).

 Functional Requirements:

“Statements of services the system should provide how the system should react to

particular inputs and how the system should behave in particular situations.”

(Sommerville, 2004).

 Non-Functional Requirements:

“Constraints on the services or functions offered by the system such as timing constraints,

constrains on the developments process, standards, etc.” (Sommerville, 2004).

 Domain Requirements:

“Requirements that come from the application domain of the system and that reflect

characteristics of that domain.” (Sommerville, 2004).

 Chapter 2: Security Engineering and Security Requirements Elicitation

10

Now let’s define security requirements, “security requirements have traditionally been

considered to be” non-functional requirements” or “quality” requirements. Like other quality

requirements (e.g., performance, usability, cost to run), they do not have simple yes/no

satisfaction criteria. Instead, one must somehow determine whether a quality requirement has

been satisfied”.

Like a requirements expert who try to elicit the requirements via questioning from the customer

and user. A security requirements expert may gather security requirements via questioning the

attackers and malicious users’ perspective. Getting from the fact that security requirements don’t

always have yes/no answer to the problem, these however in a whole are extended to overall

lifecycle of the software development, e.g. from requirements gathering to response.

2.3. Security Engineering Approaches

Nicolas Mayer has defined four types of approaches that are most common among the security

engineering institutes, Security Oriented, Risk-based, Requirement Engineering, and Model-

based approach (Mayer, 2009). Different security engineering methodologies however follow

different approach in sense that their focus varies. While all of these methodologies follow

Requirements engineering approach and varies in other aspects. See Table 2-1 that shows the

methodology and approach adapted by the security engineering methods.

Table 2-1 Summary of software and security engineering state of the art > Adapted from

(Mayer, 2009)

S
o

ft
w

a
re

 a
n

d
 S

ec
u

ri
ty

 E
n

g
in

ee
ri

n
g

References Security

Oriented

Risk-based

approach

RE

approach

Model-based

approach

Firesmith ++ + ++ -

Haley et al. and Moffet and

Nuseibeh

++ + ++ -

DITSCAP automation

framework

++ ++ ++ -

SQUARE ++ ++ ++ -

KAOS extended to security ++ - ++ ++

Misuse cases ++ - ++ ++

Abuse cases ++ - ++ ++

Mal-activity diagrams ++ - ++ ++

Abuse frames ++ - ++ ++

Secure Tropos ++ - ++ ++

Tropos Goal-Risk framework - ++ ++ ++

Legend:

++: Completely covered and at the core of the document

+: Partially covered or not playing a central role

-: Not covered

 Chapter 2: Security Engineering and Security Requirements Elicitation

11

2.4. Information Security Standards

In thesis work of Nicolas Mayer (Mayer, 2009) the overview of “ISO/IEC 2700X series of

standards” is provided. Figure 2-2 is showing standard ISO/IEC 2700X series at the core of the

diagram, from where other standards are derived. These standards are focused on risk

management (RM). These are also known as ISMS information security management system

standards. “The ISO standards providing requirements and guidance about best management

practices are part of the most well-known standards. The most popular management system

series of standards are the ISO 900X series about quality management systems” (Mayer, 2009).

In his work Mayer mentions several standards, i.e. international organization of

standardization/international electro-technical commission (ISO/IEC), technical specification

(ISO/TS) and international workshop agreement (IWA) standards. From these our main focus is

ISO/IEC 2700X series which as mentioned is dealing with information security.

“An ISMS is a systematic approach to managing sensitive company information so that it

remains secure. It includes people, processes and IT systems by applying a risk management

ISO/IEC 2700X

series

Other pending

standards... ISO/IEC 27007

Auditor guidelines

ISO/IEC 27006

Accreditation bodies

ISO/IEC 27004

Measurements

ISO/IEC 27003

Implementation

guidance

ISO/IEC 27002

Code of Practice

ISO/IEC 27006

ISMS Requirements

ISO/IEC 27005

Risk Management

ISO/IEC 27000

Overview and

vocabulary

Legend

Published

Unpublished

Figure 2-2 The ISO/IEC 2700X series of standards > Adapted from (Mayer, 2009)

 Chapter 2: Security Engineering and Security Requirements Elicitation

12

process” (ISO, 2014). Security standards however are there for assuring the information security,

unlike security engineering processes which are addressed towards producing secure software.

2.5. Chapter Summary

In this chapter we have introduced security engineering definition, which is an abstract to our

topic, requirements and security requirements definition, to give reader understanding of security

requirements elicitation approaches. Finally we have introduced with information security

management standards (ISMS) to illustrate that ISMS resolves different problem adopting

different approach than software security assurance processes (discussed in later chapters).

Coming up next we will introduce SSAP’s and some additional definitions that will help us in

understanding the chapter context. Our task will be to elicit requirements from SSAP’s i.e. what

a particular SSAP require in order fulfill the criteria of being able to develop secure software.

This will help us in testing the security engineering tools.

13

Security Development Lifecycles
The need for stable and non-redundant Security development lifecycle is crucial, because

“almost every software controlled system faces threats from potential adversaries”, as mentioned

in (T. Devanbu, et al., 2000). Almost all of the software security assurance processes agree that

software security is inbuilt feature in the software through whole lifecycle of the software

development process. That’s why it is essential to mention that security can also be more

difficult to implement in the later software development process or in already developed

software.

As a matter of fact, requirements are the major part of any software system, and chances are

these requirements will evolve in later development process. To register these requirements in

early stage of lifecycle model, engineers try to surface with the solutions. In most of the software

development processes requirements part is initiated in the beginning of the lifecycle, however

each development phase has its own levels and standards to follow. In order to enable security

into the software in stages security engineers at Microsoft have developed optimization model

shown in Figure 3-2 where phases can be seen divided into types known as (Basic, Standardized,

Advanced and Dynamic). The emphasis of this chapter will be to analyze the available well

developed security engineering processes that focus on developing secure software. It will lead

our focus to primary outcome from this chapter “derived requirements” by analyzing the core

requirements and implementation from security development lifecycles.

Notice the fact that security requirements are non-functional requirements. It is worthy to

mention that it increases development costs, and more, its time consuming as well. Placing

security concern in early stages of software development lifecycle will reduce development costs

(Microsoft., 2014).

To start with we introduce the general lifecycle model depicted in Figure 3-1 which will be the

basis for software security assurance processes (SSAP), than we will introduce optimization

model which is a good example on showing how security can be divided into levels depicted in

Figure 3-2. Next we will go through all available or commonly used SSAP’s, and try to elicit

3

 Chapter 3: Security Development Lifecycles

14

requirements as precise as possible. And finally we will try to merge these elicited requirements

and form a single table mentioned in Table 5-1. These elicited requirements will be used to

analyze the SRE tools that are discussed in later chapter. Moreover there will be an example on

how software security is enabled into the software under heading 3.3.

3.1. Stages of Software Development Lifecycle (SDLC)

SDLC is commonly referred to software development lifecycle that consist of four lifecycle

stages suggested in General Lifecycle Model (Ragunath, et al., 2010). In Figure 3-1 the major

steps involved in lifecycle are depicted along with one addition of release process. This

framework is often taken as framework for introducing any software development lifecycle

process (including SSAP Software security assurance processes) discussed later in this chapter.

 Introducing additional process of release is vital here because all SSAP’s include response plan

which is needed during response from the field. In SSAP’s as mentioned all sub-processes have

separate security requirements, in case of release there will be a response plan e.g. how to

address critical threat after release.

3.2. Optimization Model

Figure 3-2 is showing the levels of SDLC that has been sub grouped under (Basic, Standardized,

Advanced and dynamic) it focuses on development process improvement, contrast to other

development models. It also suggests that process improvement is one of the key features of

security development lifecycle, discussed under next heading (Microsoft.., 2010).

3.3. Example on Security Engineering Process

One of the examples mentioned can be seen at (Microsoft., 2014), where three years old services

written in C++ with 11,000 LOC were using unauthenticated access in database-driven web

product. After gaining knowledge about threat modeling (See Table 4-1 Requirements from

SDL), two team members uncover vulnerability in sensitive data. “One developer elects to

address the possible SQL injection vulnerabilities identified by the threat modeling”. He uses

stored procedure in places where they were not used, modifies the access rights and also removes

the interactive user’s permissions for deleting database objects.

Design

Implementation

Testing

Figure 3-1 General Life Cycle Model > Adapted from (Ragunath, et al., 2010)

Relese

Requirements

 Chapter 3: Security Development Lifecycles

15

Example above gives the understanding that team was working on legacy system and according

to (Microsoft.., 2010) “Integration of secure development concepts into an existing development

process can be intimidating and costly if done improperly”. So the most important part for them

was to uncover some of the critical vulnerabilities. To do so they started reading “Threat

modeling” in book “The Security Development Lifecycle”, and try to come up with the most

appropriate solution, in this case fixing the access rights and addressing the issues with SQL

injection.

3.4. Security Engineering Assurance Processes

Software Security Assurance Processes (SSAP) are for supporting secure software development,

further more they facilitate software security at the core of the process evaluation which in turn

construct a software skeleton for developers. There are three security engineering methods

discussed in this thesis:

 SDL (Howard, et al., 2006)

 7 Touch points (Addison-Wesley Software Security Series, 2006)

 OWASP (OWASP, 2014).

3.4.1. Security Development Lifecycle (SDL)

Microsoft security development lifecycle (SDL) is a security assurance process that is focused on

secure software development (Howard, et al., 2006). It is based on traditional SDLC, in addition

to this, SDL consist of further added processes for security. Training and (Response & Release)

are now the important parts of the secure software development. All processes in this lifecycle

have been broken down under sub-processes (knows as artifacts in our research).

Basic

Advanced

Dynamic

Standardized

Training, Policy, and organizational Capabilities

Requirements and Design

Implementation

Verification

Release and Response

Figure 3-2 SDL Optimization Model with Capability and Maturity Levels >

Adapted from (Microsoft, 2010)

 Chapter 3: Security Development Lifecycles

16

Figure 3-3 Security Development Lifecycle > Adapted from (Microsoft.., 2010)

Figure 3-3 shows the processes along with artifacts, and from these artifacts we will try to extract

requirements that will be used as a base for testing the SRE tools. Table 3-1 is constructed in a

way that it gives phase-by-phase artifact heading following a requirement ID. Requirements

column is derived by analyzing the artifact description, i.e. what requirements can be gathered in

a particular artifact, and what techniques can be used. The requirements in Table 3-1 are

numbered in a way that requirement SRS004 mentioned has artifact (Perform security and

privacy risk assessment).

Table 3-1 Requirements from SDL

SDL REQ

ID

Artifact Requirements

PH1: Training

SRS001 Core Training Tool should provide basic training material that will help

understand the implementation of secure software.

PH2: Requirements

SRS002 Establish security and

privacy requirements

Tool should provide the means of establishing security and

privacy requirements, defining minimum criteria for security

and privacy for an application, and provide work item tracking

system.

SRS003 Create quality gates/bug

bars

Tool should provide bug severity threshold, with ratings e.g.

critical, important.

SRS004 Perform security and

privacy risk assessment

Tool should be able to provide means of examining software

design based on cost and regulatory requirements.

PH3: Design

SRS005 Establish design

requirements

Tool should provide means of validating design specification

against functional specification, i.e. accurate and complete

design specification, and minimal cryptographic design

requirements.

SRS007 Perform attack surface

analysis

Tool should provide through analysis of overall attack surface,

i.e. defining system privileges and employing layered

defenses.

Training

Requirements

 Design

Implimentation Verification

Release

Response

 Establish Security
Requiremetns.

Create Quality

Gates/Bug Bars.
Security & Privacy

Risk Assessment.

Establish Design

Requiremets.

Analyze Attack

Surface.

Threat Modeling

Use Approved

Tools.

Depricate Unsafe

Functions.

Static Analysis.

Core Security

Training

Dyamic Aalysis.

Fuzz Testing.

Attack Surface

Review.

Incident Response

Plan.

Final Security

Review.

Release Archive.

Execute

Incident

ResponsePlan

 Chapter 3: Security Development Lifecycles

17

SRS008 Use threat modeling Tool should be able to provide structured approach to threat

scenarios, i.e. identification of security vulnerabilities, and

determining risks from these threats, and establishing

appropriate mitigation.

PH4: Implementation

SRS009 Use approved tools Tool should provide list of approved tools and associated

security checks (such as compiler options and warning).

SRS010 Deprecate unsafe

functions

Tool should be able to provide project functions API’s

SRS011 Perform static analysis Tool should provide security code review analysis policy.

PH5: Verification

SRS012 Perform dynamic

analysis

Tool should be able to provide security code verification

functionality, i.e. run-time

SRS013 Perform fuzz testing Tool should be able to provide testing policy, i.e. deliberate

program failure by introducing malformed random data.

SRS014 Conduct attack surface

review

Tool should provide means of attack surface review.

PH6: Release

SRS015 Create incident response

plan

Tool should provide means of response plan to address new

threats.

SRS016 Conduct final security

review

Tool should provide means of reviewing all security activities

performed during lifecycle.

SRS017 Certify release and

archive

Tool should provide means of ensuring privacy and security

requirements were meat, and archiving of data essential to post

release servicing tasks.

PH7: Response

SRS018 Execute incident

response plan

Tool should be able to provide implementation of incident

response plan,

3.4.2. Software Security (7 Touch points)

7 Touch points STP is the security development process that focuses on set of best practices.

(Addison-Wesley Software Security Series, 2006) Seven touch points provide seven features

improvements in regards to the software security. This security assurance process is also follows

the traditional approach of general development model depicted in Figure 3-1 along with

additional processes, Test plans and feedback from the field.

In Figure 3-4 seven processes are depicted, and unlike SDL they have artifacts mentioned above

these processes. In this research work we will take these artifacts and try to gather the

requirements as we did for SDL previously. These requirements can be seen in Table 3-2 where

in requirements column requirements are defined as precise as possible.

 Chapter 3: Security Development Lifecycles

18

Table 3-2 Requirements from 7 Touch Points

STP REQ

ID

Artifact Requirement

SRT001 Code review tools Tool should provide the ability of static and dynamic code

review

SRT002 Risk analysis Tool should provide means of analyzing the associated risks

with the development software

SRT003 Penetration testing Tool should provide means of conducting penetration testing

(Vulnerability scanning)

SRT004 Risk based security tests Tool should provide means of producing test runs at

individual unit level.

SRT005 Abuse cases Tool should provide functionality of drawing abuse cases

(similar to misuse cases)

SRT006 Security requirements Tool should provide list of all security activities performed

during lifecycle.

SRT007 Security operations Tool should provide means of reviewing all security

operations associated with product and company

3.4.3. OWASP CLASP

One last in SSAP’s list is OWASP, which is an abbreviation for Open Web Application Security

Project. It is an open source project developed by software security community (Open software

security community, 2014). It also provides several artifacts under which general life cycle

model framework shown in Figure 3-1 considered the bases in development of OWASP. There is

no particular diagram available to depict SSAP itself; however the CLASP views can be seen in

Figure 3-5. That separates the CLASP views in different appropriate perspectives for developing

Risk-Based

Security Tests

Code Review

(Tools)

Abuse

Cases

Security

Requirements

Requirements

And Use Cases

Architecture

And Design

Test Plans

Code

Tests and

Test Results

Feedback From

The Field

Penetration

Testing

Risk

Analysis

Security

Operations
Risk

Analysis

External

Review

Figure 3-4 Software Security 7 Touch Points > Adapted from (Addison-Wesley

Software Security Series, 2006)

 Chapter 3: Security Development Lifecycles

19

secure software. Table 3-3 is showing the elicited requirements from OWASP SSAP, where the

columns are divided as, requirements ID, next artifacts definition, and finally requirements.

As OWASP provides open source platform so we can analyze extensive features of an SSAP. In

this section we have introduced the requirements shown in Table 3-3 OWASP process in Figure

 3-5 and OWASP top 10 security risks in Table 3-4.

Table 3-3 Requirements from OWASP

OCL REQ

ID

Artifact Requirement

SRC001 Institute Awareness

Program

Tool should provide basic training material and instructions

that will help understand the implementation of secure

software.

SRC002 Perform Application

Assessments

Tool should provide means of analyzing security

requirements and design, security test and Source level

security review

SRC003 Capture Security

Requirements

Tool should provide building misuse cases, security policy,

attack surface and trust boundaries illustration

SRC004 Implement Secure

Development Practices

Tool should provide guide on how to annotate classes with

security properties, secure design, resources, contracts and

interfaces.

SRC005 Build Vulnerability

Remediation Procedures

Tool should provide guide on how to address reported

security issues and security issue disclosure process.

SRC006 Define and Monitor

Metrics

Tool should provide means of creating metrics, in order to

evaluate results,

SRC007 Publish Operational

Security Guidelines

Build operational security guide, specify database security

configuration.

 The Comprehensive, Lightweight, Application Security Process (CLASP)

“The CLASP provides a well-organized and structured approach for moving security

concerns into early stages of the software development lifecycle, whenever possible”

(OWASP, 2014). There are five high level perspectives called CLASP views, these views

broken down into activities which contain process components. To understand CLASP

process Figure 3-5 illustrates the inner working of this process, as from View > Activity

> Process component.

CLAPS views are categorized in a way that engineers can see through different

perspective from each view. First there is a concept view to get through the basics of the

process. There is role-based view to help understanding the authentication management.

Activity-assessment view to understand the costs, applicability, and risk of inaction.

Activity-implementation view to analyze the security related activities. And finally there

is a vulnerability view to state risks, problems, consequences etc.

 Chapter 3: Security Development Lifecycles

20

Figure 3-5 CLASP Views and their interactions > Adapted from

 Anti-Requirements in OWASP perspective

An anti-requirement is a requirement of a malicious user that subverts an existing

requirement (Crook, et al., 2002). An anti-requirement is mainly created by a malicious

user; however it can be created by security requirement engineer by the use of

misuse/abuse cases or other modes of requirements elicitation tools. In Table 3-4

OWASP top 10 security risks are mentioned, these can be taken as the most updated

security risks because OWASP community prints “OWASP top 10” article on yearly

basis.

 Chapter 3: Security Development Lifecycles

21

Table 3-4 OWASP Top 10 > Adapted from (OWASP, 2013)
S

ec
u

ri
ty

 R
is

k
s

Security Risk Description

Injection Injection flaws, such as SQL, OS, and LDAP injection occur when

untrusted data is sent to an interpreter as part of a command or query. The

attacker’s hostile data can trick the interpreter into executing unintended

commands or accessing data without proper authorization.

Broken Authentication

and Session

Management

Application functions related to authentication and session management

are often not implemented correctly, allowing attackers to compromise

passwords, keys, or session tokens, or to exploit other implementation

flaws to assume other users’ identities.

Cross-Site Scripting

(XSS)

XSS flaws occur whenever an application takes untrusted data and sends it

to a web browser without proper validation or escaping. XSS allows

attackers to execute scripts in the victim’s browser which can hijack user

sessions, deface web sites, or redirect the user to malicious sites.

Insecure Direct object

references

A direct object reference occurs when a developer exposes a reference to

an internal implementation object, such as a file, directory, or database

key. Without an access control check or other protection, attackers can

manipulate these references to access unauthorized data.

Security

Misconfiguration

Good security requires having a secure configuration defined and deployed

for the application, frameworks, application server, web server, database

server, and platform. Secure settings should be defined, implemented, and

maintained, as defaults are often insecure. Additionally, software should be

kept up to date.

Sensitive Data

Exposure

Many web applications do not properly protect sensitive data, such as

credit cards, tax IDs, and authentication credentials. Attackers may steal or

modify such weakly protected data to conduct credit card fraud, identity

theft, or other crimes. Sensitive data deserves extra protection such as

encryption at rest or in transit, as well as special precautions when

exchanged with the browser.

Missing Function

level Access Control

Most web applications verify function level access rights before making

that functionality visible in the UI. However, applications need to perform

the same access control checks on the server when each function is

accessed. If requests are not verified, attackers will be able to forge

requests in order to access functionality without proper authorization.

Cross-Site Request

Forgery (CSRF)

A CSRF attack forces a logged-on victim’s browser to send a forged HTTP

request, including the victim’s session cookie and any other automatically

included authentication information, to a vulnerable web application. This

allows the attacker to force the victim’s browser to generate requests the

vulnerable application thinks are legitimate requests from the victim.

Using Components

with known

vulnerabilities

Components, such as libraries, frameworks, and other software modules,

almost always run with full privileges. If a vulnerable component is

exploited, such an attack can facilitate serious data loss or server takeover.

Applications using components with known vulnerabilities may undermine

application defenses and enable a range of possible attacks and impacts.

Un-validated

Redirects and

forwards

Web applications frequently redirect and forward users to other pages and

websites, and use untrusted data to determine the destination pages.

Without proper validation, attackers can redirect victims to phishing or

malware sites, or use forwards to access unauthorized pages.

 Chapter 3: Security Development Lifecycles

22

3.5. Chapter Summary

In this chapter we have introduced SSAP’s and elicit requirements that will be testing against

tools in the next chapter. We have discussed aspects of software development lifecycle, and how

secure software development processes are related to general lifecycle model. We fulfilled the

task of eliciting requirements from SSAP’s which in return gave us seven requirements

mentioned in Table 5-1 to test on SRE tools.

Coming up next security engineering tools description and their evaluation, we will introduce the

methodologies which have been adapted by SRE tools. After describing the methodologies we

will start testing the tools against requirements depicted in Table 5-1.

23

Security Engineering Methods and Tools
Security engineering tools are well known for describing threats, vulnerabilities, risks and

mitigations most of which is done by defining the model via use-case, misuse-case, and abuse-

case diagrams. With time and seeing the desperate need towards security, requirements gathering

has been evolved to elicit security requirements using similar approach but with variant artifact.

These artifacts are defined and used in software security engineering tools. In this chapter we

will introduce CORAS methodology (CORAS, 2014) which is depicted in Figure 4-1, SQUARE

methodology (Mead, et al., 2005) can be visited in Table 4-1, and TROPOS methodology

(Mouratidis, et al., 2008) in Table 4-2. Next we will introduce the security engineering tools that

have adapted these methodologies, and test our proposed requirements from previous chapter

against tools.

Apart from use-case, misuse-case and abuse-cases there are several other techniques available in

eliciting software security requirements, some of which are:

1. Security Risk oriented BPMN (Altuhhova, et al., 2013)

2. Secure UML (Basin, et al., 2009)

3. UML SEC (Jürjens, 2001)

4. Misuse Cases (Sindre, et al., 2005)

5. Mal-Activity Diagram (Sindre, 2006)

However each tool that we are going to test in this chapter adapts different approach in eliciting

security requirements, and their approach is mostly based on unified modeling languages.

4.1. Security Engineering Methods

In security engineering methods we have chosen CORAS, SQUARE, and TROPOS because

these methods have been adapted by well-developed software security requirements engineering

tools, named CORAS, SQUARE, and SecTro2 tools. We will introduce the methodologies first

and then we will analyze the tools one by one.

4

 Chapter 4: Security Engineering Methods and Tools

24

4.1.1. CORAS

CORAS is a method for conducting security risk analysis, it provides a customized language for

threat and risk modeling and comes with detailed guidelines explaining how the language should

be used to capture and model relevant information during the various stages of the security

analysis. (CORAS, 2014). CORAS also includes with the tool that follows CORAS method

depicted in Figure 4-1.

There are eight steps involved in CORAS method that are considered as steps to conduct security

risk analysis. Figure 4-1 represents basis for this methodology that includes asset, threat, risk,

and treatment diagrams. (CORAS, 2014). While analyzing the tool we will be able to see the

CORAS method in action under heading security engineering tools analysis.

Figure 4-1 CORAS > Adapted from (CORAS, 2014)

4.1.2. SQUARE

The SQUARE is the short form for Security Quality Requirements Engineering. It is the process

that provides means for eliciting, categorizing, and prioritizing security requirements for

 Chapter 4: Security Engineering Methods and Tools

25

information technology systems and applications (Mead, et al., 2005). Announced four years ago

SQUARE tool is also available to download which we will be analyzed in this chapter.

In SQUARE method there are nine discrete steps that surrounds over all method. Table 4-1 is

divided into five columns which gives an overview of the inner workings of the SQUARE

method. Each step identifies the inputs, major participants, suggested techniques and output,

where output from each step severs as an input for the next step.

Table 4-1 Steps in SQUARE Process > Adapted from (Mead, et al., 2005)

 Step

Step Input Techniques Participants Output

S
Q

U
A

R
E

 S
T

E
P

S

1 Agree on

definitions

Candidate

definitions from

IEEE and other

standards

Structured

interviews,

focus group

Stakeholders,

requirements

team

Agreed-to

definitions

2 Identify

security goals

Definitions,

candidate goals,

business drivers,

policies and

procedures,

examples

Facilitated work

session, surveys

interviews

Stakeholders,

requirements

engineer

Goals

3 Develop

artifacts to

support

security

requirements

definition

Potential

artifacts (e.g.,

scenarios,

misuse cases,

templates,

forms)

Work session Requirements

engineer

 Needed

artifacts:

scenarios,

misuse

cases,

models,

templates,

forms

4 Perform risk

assessment

Misuse cases,

scenarios,

security goals

Risk assessment

method, analysis

of anticipated

risk against

organizational

risk tolerance,

including threat

analysis

Requirements

engineer, risk

expert,

stakeholders

Risk

assessment

results

5 Select

elicitation

techniques

Goals,

definitions,

candidate

techniques,

expertise of

stakeholders,

organizational

style, culture,

level of security

needed, cost

benefit analysis,

Work session Requirements

engineer

Selected

elicitation

techniques

 Chapter 4: Security Engineering Methods and Tools

26

etc.

6 Elicit security

requirements

Artifacts, risk

assessment

results, selected

techniques

Joint application

development

(JAD),

interviews,

surveys, model-

based analysis,

checklists, lists

of reusable

requirements

types, document

reviews

Stakeholders

facilitated

requirements

engineer

Initial cut at

security

requirement

7 Categorize

requirements

as to level

(system,

software, etc.)

and whether

they are

requirements

or other kinds

of constraints

Initial

requirements,

architecture

Work session

using a standard

set of categories

Requirements

engineer, other

specialists as

needed

Categorized

requirement

s

8 Prioritize

requirements

Categorized

requirements

and risk

assessment

results

Prioritization

methods such as

Triage, Win-

Win

Stakeholders

facilitated by

requirements

engineer

Prioritized

requirement

s

9 Requirements

inspection

Prioritized

requirements,

candidate formal

inspection

technique

Inspection

method such as

Fagan, peer

reviews

Inspection

team

Initial

selected

requirement

s,

documentati

on of

decision

making

process and

rationale

4.1.3. Secure TROPOS

In TROPOS methodology there are five main development phases: Early requirements, late

requirements, architectural design, detailed design and implementation (Bresciani, et al., 2004).

The major difference mentioned in this research paper is the notion of early requirements, as

most of the developers can work well with later four phases. In Table 4-2 available phases of

Tropos can be seen.

TROPOS also comes with certain stages that are required in the secure software development

lifecycle. There are 6 stages in TROPS methodology (Mouratidis, et al., 2008) which states

similar stages as of secure software development lifecycle. The main artifacts discussed in

 Chapter 4: Security Engineering Methods and Tools

27

TROPOS are Actor, Goal, Plan, Resource, Dependency, Capability and Belief, which are used to

model the requirements in security domain.

Table 4-2 TROPOS Phases > Adapted from (Mouratidis, et al., 2008)

 Stage ID TROPS Stage

T
R

O
P

O
S

P
H

A
S

E
S

1 Context and Asset Identification

2 Security objective determination

3 Risk analysis and assessment

4 Risk treatment

5 Security requirement definition

6 Control selection and implementation

4.2. Security Engineering Tools

Security engineering tools are for aiding the requirements gathering process for secure software

development at smooth pace. These tools are mostly based on unified modeling language (UML)

however they do follow various approaches to address the same problem of eliciting security

requirements. As we have already chosen methodologies CORAS, SQUARE, and TROPOS we

will analyze the tools that have adapt these three methodologies.

1. CORAS (CORAS methodology) (CORAS, 2014)

2. SQUARE (SQUARE methodology) (Mead, et al., 2005)

3. SecTro2 (TROPOS methodology) (Mouratidis, et al., 2008)

4.2.1. Capabilities of CORAS Tool

CORAS is UML based security requirements gathering tool, which emphasis on generating risk

and threat scenarios with the help of associated diagrams. It provides from basic diagram

artifacts to advance artifacts. CORAS tool includes various artifacts to help understand the

security constraint and requirements. In order to well organize the elicited security requirements

CORAS tool separate these artifacts into categories i.e. connections, basic CORAS, high level

CORAS, dependent CORAS, and legal CORAS. In appendix-A these artifacts can be seen.

To help understand the available features of the tools we introduce one scenario based on

Telemedicine Company (Clinical health care at distance). That is available in CORAS tutorial

slides from (Lund, et al., 2011), which initiates a scenario where a hacker tries to break-into the

system and steals the health records. In Figure 4-2 a deliberate threat diagram has been depicted

where hacker/eavesdropper is on the most left and health records (assets) are on the most right.

The lock (insufficient security) is vulnerability, (system break-in) is threat scenario, and finally

(health records theft) is unwanted incident.

 Chapter 4: Security Engineering Methods and Tools

28

Figure 4-2 Deliberate Threat > Adapted from (Lund, et al., 2011)

Figure 4-2 is depicting a scenario of deliberate threat, in the face of a hacker/eavesdropper who

tries to break-in to the system taking advantage of insufficient security and eventually staling

health records.

Figure 4-3 Accidental Threat > Adapted from (Lund, et al., 2011)

 Chapter 4: Security Engineering Methods and Tools

29

In Figure 4-3 the same threat diagram is depicting an accidental threat, with additional assets,

vulnerabilities, unwanted incident, and threat scenario. In this case the diagram shows most of

the possibilities of accidental threats, unlike previous diagram of deliberate threat.

Figure 4-4 Telemedicine Assets > Adapted from (Lund, et al., 2011)

Figure 4-4 shows the asset diagram for telemedicine scenario, where all the assets are liable to

compliance of telemedicine company. In case of any unwanted incident shown in Figure 4-4

telemedicine will equally contribute in compromise of compliance.

Figure 4-5 defines the risks associated with the telemedicine system, and their severity inside the

brackets. Risk diagram’s incident likelihood calculation formulas are also the key for calculating

the severity mentioned in (Refsdal, 2014).

And finally in Figure 4-6 the treatment diagram is depicting most of the treatment scenarios in

the box with the green spanner. All vulnerabilities cannot be addressed so most of them are

treated accordingly.

As we have already depicted most of the available feature diagrams in CORAS now we can test

the tool against requirements collected in previous chapter. Table 4-3 shows the requirement ID,

requirement name, requirement fulfillment description, and means to fulfill requirement in

CORAS tool. The requirements fulfillment from CORAS tool can also be seen in Figure 4-7.

 Chapter 4: Security Engineering Methods and Tools

30

Figure 4-5 Telemedicine Risks > Adapted from (Lund, et al., 2011)

Figure 4-6 Telemedicine Treatment > Adapted from (Lund, et al., 2011)

 Chapter 4: Security Engineering Methods and Tools

31

Table 4-3 Requirements from CORAS tool

REQ

ID

Requirement

Name

Requirement fulfillment description Means to fulfill requirement

(Status)

SR001 Making

awareness

CORAS tool includes the methodology and

tutorials which in an instance give a glimpse

that the method/tool is trying to achieve the

first requirements. Also CORAS website

http://coras.sourceforge.net/ provides

seminars sometimes which will be helpful for

the software development team. In this case

CORAS fulfills this requirement

1. Resources available at

http://coras.sourceforge.n

et/

2. Methodology

3. Tutorial at:

http://coras.sourceforge.n

et/newsarchive.html

4. Publications at:

http://coras.sourceforge.n

et/online_documentation.

html

SR002 Understandin

g context and

assets

In correspondence to Figure 4-4 CORAS

provides a way to demonstrate the assets

along with the compliance in case of

unwanted incident, so clearly CORAS also

fulfills this requirement also

1. Asset diagram

SR003 Security

requirements
In Figure 4-6 CORAS tries to fulfill the

security requirements in the face of

mitigations. The diagram itself shows the

threats, vulnerabilities and unwanted incidents

which are been addressed with the use of

treatment diagram

1. Treatment diagram

SR004 Risk analysis In Figure 4-5 CORAS Risk diagram shows

the risks in the face of unwanted incidents, so

it proves that CORAS also fulfill this

requirement

1. Risk diagram

2. Threat diagram

SR005 Secure design

practices

Tool does not address anything related to

software architecture, and or implementation

of secure design, which leads us to fail this

requirement in CORAS tool

-NA

SR006 Justify design

solution

CORAS method and tool provides some

manual techniques to calculate the severity

and likelihood of the incident. But it does not

provide anything in the tool itself that can

automate this calculation process. As there is

some technique to calculate we make this

requirements as fulfilled

1. Calculus for likelihood

reasoning, available at

http://coras.sourceforge.n

et/documents/tutorials/pa

rt1_CCS2011_CORAS.p

df

SR007 Response CORAS does not provide any thing in

correspondence to the response plan.

However the tool has capability to

demonstrate the response plan by using the

available artifacts. For example Response

diagram can be drawn using the artifacts used

in Figure 4-6 treatment diagram. So we take

this requirement as fulfilled

1. Means to create response

plan diagram

http://coras.sourceforge.net/
http://coras.sourceforge.net/
http://coras.sourceforge.net/
http://coras.sourceforge.net/newsarchive.html
http://coras.sourceforge.net/newsarchive.html
http://coras.sourceforge.net/documents/tutorials/part1_CCS2011_CORAS.pdf
http://coras.sourceforge.net/documents/tutorials/part1_CCS2011_CORAS.pdf
http://coras.sourceforge.net/documents/tutorials/part1_CCS2011_CORAS.pdf
http://coras.sourceforge.net/documents/tutorials/part1_CCS2011_CORAS.pdf

 Chapter 4: Security Engineering Methods and Tools

32

Figure 4-7 Requirements fulfillment from CORAS

4.2.2. Capabilities of SQUARE Tool

The SQUARE tool is developed in Google web tool kit, which allows users to create projects

from the perspective of security, and privacy or both. After creating a project in SQUARE tool

user can see three categorize or stages: Determine context, Gather security requirements, and

Analyze requirements. Table 4-4 shows these categories along with internal steps which cover all

the aspects of software security requirements that can also be seen in Figure 4-8.

Table 4-4 Steps in SQUARE tool

 Step ID: Category Step

S
T

E
P

S
 I

N
 S

Q
U

A
R

E
 T

O
O

L

1 Determine context Agree on definition

2 Identify assets and goals

3 Collect artifacts

4 Gather security requirements Perform risk assessment

5 Select elicitation techniques

6 Elicit requirements

7 Analyze requirements Categorize requirements

8 Prioritize requirements

9 Impact requirements

In order to simplify the tool analysis process we will take the same example that we have used in

CORAS tool about Telemedicine. The example was of securing the health records in

telemedicine system that includes two core actors i.e. IT personnel and general practitioner

 Chapter 4: Security Engineering Methods and Tools

33

(technician). SQUARE tool however provides with a generic template for requirement

elicitation, which can be useful for several projects but does not provide the artifacts or diagrams

that we need for this example. So to fulfill the requirement we will try to generate the closest

results possible to test this tool.

Figure 4-8 Steps in SQUARE tool > Adapted from (Ganguly, 2011)

In step 1 of SQUARE tool we try to gather all the terms for the current project. For our example

of telemedicine we use almost same terms as in example demonstrated in (Ganguly, 2011) video.

In step 2 of SQUARE tool we gather assets and goals mentioned in Table 4-5

Figure 4-9 Step 1 SQUARE tool > Adapted from (Ganguly, 2011)

 Chapter 4: Security Engineering Methods and Tools

34

Table 4-5 Assets and goals SQUARE tool

 Priority Goals Assets

A
S

S
E

T
S

 A
N

D

G
O

A
L

S

1 Apply input validation; Encrypt data; Improve

training; Set code of conduct.

Health records

2 Apply input validation to avoid wrong

prescription

Patients health

3 Revise access control list Provision of tele-cardiology

service

In step 3 of SQUARE tool we gather artifacts which in comparison with SSAP’s is the

awareness. The literature can be for report on telemedicine code of conduct, or case study for

telemedicine current security specifications.

In step 4 of SQUARE tool perform risk assessment the risks are been associated with artifacts

and goals. Table 4-6 adds in one additional column for risks associated with goals and assets

mentioned in Table 4-5.

Table 4-6 Perform risk assessment SQUARE tool

 Prior

ity

Goals Assets Risks

P
E

R
F

O
R

M
 R

IS
K

A
S

S
E

S
S

M
E

N
T

1 Apply input validation; Encrypt

data; Improve training; Set code of

conduct.

Health records Theft of health

records

2 Apply input validation to avoid

wrong prescription

Patients health Risk associated

with patients life

3 Revise access control list Provision of tele-

cardiology service

Tele-cardiology

service

unavailability

In step 5 of SQUARE tool elicitation techniques the tool provides a mechanism to choose

elicitation technique by asking ten standardize questions to which answers provide privacy

requirements generated. That then can be associated with risks and goals. The Figure 4-10 shows

an example of associating requirement that has been generated by the SQUARE tool.

Figure 4-10 Elicitation Techniques SQUARE tool > Adapted from (Ganguly, 2011)

 Chapter 4: Security Engineering Methods and Tools

35

In step 6 elicit requirements SQUARE tool uses the same generated requirements elicited in

elicitation technique, for the further uses. See Figure 4-11 that depicts elicited security

requirements. The step 7 is about categorizing these elicited requirements, in Figure 4-12 a

requirement with an example can be seen needs to be categorized.

Figure 4-11 Elicit Requirements SQUARE tool > Adapted from (Ganguly, 2011)

Figure 4-12 Categorize Requirements SQUARE tool > Adapted from (Ganguly, 2011)

In step 8 prioritize requirements we use to prioritize these requirements, in terms of severity or

criticality. And finally in step 9 inspect requirements, SQUARE implements a mechanism for

inspection.

Getting close to the available results, we can assume that most the requirements were been

fulfilled with some exceptions Table 4-7 shows the requirement ID, requirement name,

fulfillment description and means to fulfill requirements from this tool. Requirements fulfillment

from SQUARE tool can also be seen in Figure 4-13.

 Chapter 4: Security Engineering Methods and Tools

36

Table 4-7 Requirements from SQUARE tool

REQ

ID

Requirement

Name

Requirement fulfillment description Means to fulfill requirement

(Status)

SR001 Making

awareness

SQUARE tool in step 3 provides with the

“collect artifact” which can be used to

store information for making awareness or

available case-studies. So we make this

requirement to be fulfilled.

1. Resources available at

http://www.cert.org/cyber

security-

engineering/products-

services/square.cfm?

2. Methodology (SQUARE)

3. Agree on definitions

(gather terms)

4. Collect artifact (Check

list)

SR002 Understanding

context and

assets

In step 2 and 4 SQUARE tool provides

means to declare assets and goals that

gives understanding that this tool fulfills

this requirement.

1. Identify assets and goals

(check list of assets &

goals)

2. Template to document

assets & goals

SR003 Security

requirements

During step 5 to 8 SQUARE tool uses

questions to analyze the security needs.

Based on the answers tool provides with a

standard template that can be customized

according to the needs. We can make this

requirement to be fulfilled also

1. Select elicitation

technique

2. Template for security

requirements

SR004 Risk analysis In step 4 of SQUARE tool “perform risk

assessment” we have defined few risks

based on assets and goals. That leads us to

fulfill this requirement also

1. Check list of

vulnerabilities

2. Check list of security

threats

3. Check list of risks

4. Template to define risks

SR005 Secure design

practices

SQUARE tool does not provide any thing

about design practices, which leads us to

fail this requirement

-NA

SR006 Justify design

solution

SQUARE tool in steps 7 & 8 provides with

the concept of categorizing and prioritizing

security requirements. That could be the

part of justified design solution. In this

case tool fulfills this requirement.

1. Security requirements

categorization and

prioritization

SR007 Response In step 9 of SQUARE tool called inspect

requirement, gives a possibility for

inspection which can be used as a response

plan. That makes us to fulfill this

requirement.

1. Inspect requirement (can

be used as a response plan

also)

http://www.cert.org/cybersecurity-engineering/products-services/square.cfm
http://www.cert.org/cybersecurity-engineering/products-services/square.cfm
http://www.cert.org/cybersecurity-engineering/products-services/square.cfm
http://www.cert.org/cybersecurity-engineering/products-services/square.cfm

 Chapter 4: Security Engineering Methods and Tools

37

Figure 4-13 Requirements fulfillment from SQUARE tool

4.2.3. Capabilities of SecTro2 Tool

“Secure Tropos is a security-aware software systems development methodology, which

combines requirements engineering concepts, such as actor, goal, plan together with security

engineering concepts such as threat, security constraint and security mechanism, under a unified

process to support the analysis and development of secure and trustworthy software systems”

(Secure Tropos, 2014). SecTro2 tool is a security requirements elicitation tool that is based on

Tropos methodology.

SecTro2 enables software analysts to gather requirements providing various artifacts available in

tool. These artifacts are categorized under organizational view, security requirements view,

security components view, security attacks view, and cloud analysis view. In appendix-A

SecTro2’s artifacts are depicted.

To make it simpler we will introduce the same example of telemedicine available in (Lund, et al.,

2011) to demonstrate the capabilities of SecTro2 tool. As the tool adapts different approach, the

results may vary from the original. At first we have tried to create the organizational view which

can be seen in Figure 4-14 where in organization (telemedicine) a general practitioner is

dedicated to store the health records and IT personnel is dedicated to keep these records safe.

In Figure 4-15 security requirements view is depicted in comparison to CORAS tool this diagram

represents accidental threats. Where two actors’ general practitioner and IT personnel are

responsible for keeping health records, patient’s health, and provision of tele-cardiology service

safe. In regards to keep system running they need to implement some security constraints, which

are “keep health records safe”, “implement input validation” and “proper configuration of the

 Chapter 4: Security Engineering Methods and Tools

38

system”. Moreover both tools CORAS and SecTro2 have some differences so we only can depict

the deliberate and accidental threat in one “security attacks view”. However the security attacks

view is only for defining the attack scenario.

Figure 4-14 Organization View

When expending the threats mentioned in Figure 4-15 security attacks view can be seen, which

then allows to introduce vulnerabilities, attack method, and attack scenario. We have security

attacks view for all four threats mentioned in Figure 4-15 that can be seen from Figure 4-16 to

Figure 4-19.

In Figure 4-16 scenario is depicted where improper handling of health records leads to health

records been sent to unauthorized personnel. Two vulnerabilities mentioned “insufficient

training” and “possibility of irregular handling of health records” are responsible for this

incident. Figure 4-17 is similar to Figure 4-16 in regards with they both mention the improper

handling of health record.

 Chapter 4: Security Engineering Methods and Tools

39

Figure 4-15 Security Requirements View – Accidental threat

Figure 4-16 Security Attacks View - Health records sent to unauthorized people

 Chapter 4: Security Engineering Methods and Tools

40

Figure 4-17 Security Attacks View - Health records copies stored on local computer

Figure 4-18 Security Attacks View - Wrong input in health records

In Figure 4-18 scenario is depicted where a practitioner inputs the wrong information in health

records, making unreliable health records, two vulnerabilities are responsible for this a no input

validation, and pros-based health records.

 Chapter 4: Security Engineering Methods and Tools

41

Figure 4-19 Security Attacks View - Misconfiguration of system

Misconfiguration of system can make tele-cardiology service unavailable in Figure 4-19 scenario

where a brute force attack and insufficient access control can lead to service unavailability.

Figure 4-20 Security Requirements View – Deliberate Threat

In comparison to CORAS deliberate threat diagram, Figure 4-20 presents a view which includes

an eavesdropper and hacker, that can be seen in Figure 4-21 and Figure 4-22. Telemedicine

system has two soft goals, keep health records safe and restrict unauthorized connection. These

are linked to security constraint “data privacy” and “secure connection”.

 Chapter 4: Security Engineering Methods and Tools

42

Figure 4-21 Security Attacks View - System Break-in

In Figure 4-21 system break-in is depicted which provides a view on how insufficient security

can lead to loss of valuable information, where hacker tries to break-in to the system by using

brute-force method.

Figure 4-22 Security Attacks View - Eavesdropping on dedicated connection

In Figure 4-22 an eavesdropper tries to listen to unprotected connection of telemedicine which

can lead to loss of health records.

In example we have learned how SecTro2 provide users with different views that can be useful

in demonstrating and eliciting security requirements. Our motive of “means to fulfill

 Chapter 4: Security Engineering Methods and Tools

43

requirements” from SSAP’s to security engineering tools can now be seen in Table 4-8 for

SecTro2 tool. Requirements fulfillment from SecTro2 can also be seen in Figure 4-23.

Table 4-8 Requirements from SecTro2

REQ

ID

Requirement

Name

Requirement fulfillment description Means to fulfill requirement

(Status)

SR001 Making

awareness

SecTro2 is adapting Tropos methodology,

which means the tool follows security

engineering methodology. Also offers

online leaning resources at

http://securetropos.org/

1. Resources available at

http://securetropos.org/

2. Methodology (Secure

Tropos)

3. User manual

4. Publications

http://securetropos.org/pu

blications/

SR002 Understanding

context and

assets

In most diagrams the resource artifact is

used which itself shows that tool provides

the understanding of Assets. See Figure

 4-15 for e.g. In this case SecTro2 fulfills

this requirement.

1. Context diagram (security

requirements view)

2. Asset diagram (security

requirements view)

SR003 Security

requirements
In Figure 4-15 and Figure 4-20 security

constraint artifact is used which can

represent the security requirements. So

SecTro2 also fulfill this requirement.

1. Security requirements

view

SR004 Risk analysis Figure 4-21 and Figure 4-22 shows the

threat and vulnerability artifact, which in

Figure 4-15 is only depicts the risk

associated “health records have been sent

to unauthorized person”. Mitigations can

be seen when expended. SecTro2 fulfill

this requirement also.

1. Threat diagram (security

attacks view)

SR005 Secure design

practices

SecTro2 does not include anything related

to secure software architecture, but as it

includes security components view that

can be useful in terms of defining security

mechanism which in return will suggest

secure design mechanism. That leads us to

consider this requirement as fulfilled.

1. Security components

diagram (security

components view)

SR006 Justify design

solution

SecTro2 does not contain anything related

to trade-off analysis, likelihood of certain

event or anything related to justification of

design. That means SecTro2 fails this

requirement.

-NA

SR007 Response If we consider artifact security constraint

and using security mechanism artifact, one

can create a response plan. We can

consider this requirement as fulfilled.

1. Security response

diagram (security

requirements view)

http://securetropos.org/
http://securetropos.org/

 Chapter 4: Security Engineering Methods and Tools

44

Figure 4-23 Requirements fulfillment from SECTRO2 tool

4.3. Chapter Summary

In this chapter we have introduced three software security requirements elicitation tools, and

tested against requirements gathered from software security assurance processes (SSAP’s), and

came up with the means to fulfill those requirements. In conclusion we have gathered all the

required instruments to construct a framework. That will help in choosing the right security

requirements elicitation tool. Coming up next we will define a method to choose between

security requirements elicitation tools.

45

Framework for security requirements engineering tool
In the previous chapter we have finalized analyzing the tools against SSAP’s which gave us

understanding on how the tools elicit security requirements. Based on these findings we can now

develop a method which will enable us to construct a framework to choose security engineering

tools based on these requirements. In Figure 5-2 the framework can be visited that is constructed

with the help of tool analysis against requirements available in Table 5-1. In the last part of this

chapter we have discussed about the usage of this framework that can be visited in Figure 5-2.

5.1. Derived Software Security Requirements

In chapter 3 we have analyzed SSAP’s and gather the requirements for security engineering

tools. In this chapter we have combined all these requirements to form one table. Requirements

shown in Table 5-1 are based on SDL, 7 Touch points and OWASP, where original requirements

are mentioned along with base artifact. Requirements for security engineering processes are

divided into phases of software development, originally the phases in Microsoft SDL. This

combined outcome from SSAP’s has been enriched with means to fulfill these requirements from

previous chapter of tools analysis. The table structure is same as tables in SSAP’s, requirement

ID with additional ID from SSAP, artifact name, and finally the actual requirement with precise

description.

Table 5-1 Derived Requirements from SSAP

REQ

ID

PREQ ID Artifact Requirement

PH1: Training

SR001 *SRS001 Core Training (Making Awareness)

Tool should provide basic training material that will help

understand the implementation of security solution.

#SRC001

Institute

Awareness

program

PH2: Requirements and use cases

SR002

*SRS002

Establish security

and privacy
(Understand context and assets)

Tool should provide the means of establishing security

5

 Chapter 5: Framework for Security Requirements Engineering Tools

46

 requirements requirements, defining minimum criteria for security in the

developed application.

+SRT005 Abuse cases

#SRC002

Perform

Application

Assessment

SR003 *SRS004

Perform security

and privacy risk

assessment

(Security Requirements)

Tool should be able to provide means of examining software

design based on cost and regulatory requirements.

+SRT002 Risk analysis,

#SRC003 Capture Security

Requirements

SR004 *SRS008 Use threat

modeling
(Risk Analysis)

Tool should be able to provide structured approach to threat

scenarios, i.e. identification of security vulnerabilities, and

determining risks from these threats, and establishing

appropriate mitigation.

+SRT002 Risk analysis

#SRC005 Build

Vulnerability

Remediation

Procedures

PH3: Architecture and design

SR005 *SRS005

Establish design

requirements
(Secure design practices)

Tool should provide means of adopting and implementing

secure design (architecture) techniques.

#SRC004

Implement Secure

Development

Practices

PH4: Test and test results (Verification)

SR006 *SRS014 Conduct attack

surface review
(Justify design solution)

Tool should provide means for risk measurement and trade-

off analysis. +SRT002 Risk analysis

#SRC006

Define and

monitor metrics

PH5: Release

SR007 *SRS015

Create incident

response plan
(Response)

Tool should provide means of response plan to address new

threats. #SRC007 Publish

Operational

Security

Guidelines

Legend: Requirement ID lookup

*: SDL

+: Seven Touch Points

#: OWASP

 Chapter 5: Framework for Security Requirements Engineering Tools

47

1. SR001: Making awareness

Security requirement “making awareness” plays very important role in security

requirements elicitation. It is at the beginning of our means to fulfill requirements also

the part of most SSAP’s. This step not only gives involved actors, knowledge about

security but also provides with basic information like terms, artifacts and methodology.

One can learn from the fact that this requirement should be performed at all times, to

reduce the chances of mistakes, while following standards and code of conduct will lead

to development of secure software.

In cases when this step is missing or not performed very well, it is possible that different

mindset of a team can come-up with different solutions and may not be on the same

mindset. That will lead to delays in development cycle and also adds up to the threat of

implementing vulnerabilities into software unintentionally. Making awareness can

provide team with an opportunity to learn about various forms of vulnerabilities, risks,

threats, mitigations, and treatments. Moreover it will also provide an opportunity to

update the team with newer risks etc. for example if a team is outdated with the threat of

writing vulnerable code by using old technique of encrypted MD5 authentication, and

not using salt technique of encryption can compromise privacy. As MD5 encrypted hash

can easily be transformed into the static text with online engines available. For reference

see (MD5ONLINE, 2014).

2. SR002: Understand context and assets

Security requirement “understand context and assets” is the basic part for security

requirement elicitation. It provides with the understanding of assets involved or at stake

during in a particular situation. Understanding context is important because from the

context one can start analyzing the scenario, and will be able to perform actions

accordingly. In this step goals for the security concerns are mainly jot down, that will be

kept until the end of development cycle.

Loosely implementation of this step can cause several problems, as this step will be the

basis for the future steps in these requirements, where the basic concept of security will

be defined. In simple words a solid abstract of complete system will be based on context

and assets. The context actually is an idea that provides the basis for an event i.e. more

the concrete form of idea is, the clear form of details can extracted from it. In some cases

the assets are been overlooked because of not been considered as vulnerable to outside

world. One example in this can be of dumpster diving as the cases related to this were

more often overlooked and/or not considered as threat. A code of conduct should be

followed to better understand assets as oppose to assumptions.

 Chapter 5: Framework for Security Requirements Engineering Tools

48

3. SR003: Security requirements

This step “security requirement” involves with the function of identifying elicitation

technique, which is important because there are several elicitation techniques available. If

in case elicitation technique has not been defined it will always confuse analyst and they

will be using various techniques which in end will add up to efforts. Security

requirements also include treatment for the particular security requirement. Treatment of

these threats will provide with the basic understanding of how the system should be

secured in terms of malice activities.

First and foremost in order to elicit security requirements one needs an elicitation

method. Among all available methods which one to choose from? This can be a difficult

question. It is wise to ask several questions before choosing an elicitation method.

Questions like: what are the actors involved? Who is the user? And what kind of security

treatment stakeholders want to achieve? Answers to these questions can provide with the

basic understanding of elicitation method. For example if stakeholders need is to achieve

secure database, the method of eliciting security requirement could be a structured

interviews with stakeholders: see following for reference and more (SQUARE Method,

2014). On the other hand not having an elicitation method can have several side effects

like: recording unclear or incomplete security requirement.

4. SR004: Risk analysis

Security requirement “risk assessment” in this step risks are been specified in details.

While risk is the combination of asset, threat, and vulnerability one missing component

of vulnerabilities analysis can be performed to fulfill risk assessment. One risk can be

composed of several threats and vulnerabilities. So the best way to analyze risk is to point

out as much vulnerabilities as possible, and also threats. This will lead to a concrete risk

that can be understood very well in the later stages.

There are three components contributing to the construction of the risk: value of related

assets, number of threats possible and number of vulnerabilities. The more detailed these

three components are the more concrete risks can be defined. The basic concept of

defining concrete risk is to provide with an opportunity to define appropriate treatment. A

badly or wrongly stated risk can cause to construct inappropriate treatment or solution

that in result will not be able to resolve the actual issue. Moreover it will also add up to

time and efforts spent on treatment that actually didn’t resolve the problem.

5. SR005: Secure design practices

In step “secure design practices” architecture identification should be performed

according to the treatment needs. For example if the software requires a database then

architectural suggestions will be to implement stored procedures. In this step coding

standards can also be fixed, as different coding styles may distract developers working on

the same project. Moreover security components like defining security mechanism are the

 Chapter 5: Framework for Security Requirements Engineering Tools

49

part of secure design practices, because security mechanism actually informs in detail on

how the security requirement shall be implemented.

There are several possible ways of building software architecture, i.e. secure software

design architecture will offer the skeleton of software that will include secure database

(implementation of stored procedures, encrypted data, etc.), inheritance/encapsulation of

code, and possibility to implement input validation. Not having standard secure software

design architecture will always create possibility of writing vulnerable code that could

lead to an unwanted incident. Moreover secure architecture will always have the basic

security mechanisms already implemented. A good example in this context is of

Microsoft’s SDL process template (Microsoft, 2014) that enables basic security

requirements already implemented.

6. SR006: Justify design solution

In this step of “justify design solutions” one suggestion is to perform trade-off analysis

which will give weight to the software features. The feature with highest weight will be

developed first. This will always save time and efforts, and also give chance to decide

what features are more important. In this step risk estimations should also be performed

because this will weigh the highest risks. And the risks with the highest ranking should

be addressed first. It also includes the prioritization of security requirements that will

suggest what requirements should be taken first.

Not having categorized or prioritized security requirements can create unwanted queue of

incomplete work items, because work items are mostly related on each other i.e. not

having authentication feature in initial stages will be time consuming to implement in

later stages, as authentication is responsible to maintain user session. Another possibility

of having justified design is to perform calculus of trade-off analysis that can create

possibility to reduce unimportant features. This also creates an option of estimating risks

that can help in making high risks at the highest priority.

7. SR007: Response

Step “response” provides with the plan that can be used at times of an incident. Response

plan is important because during an incident there will be less time to react. In times of

unwanted incident, unavailability of response plan can cause delays in the fix and in

some situations can cause failure also.

Response plan will always be handy when it comes to face unwanted incident. The

reason behind is the nature of unwanted event being uncertain in most cases. For example

an event that could cause the loss of data, can have a response plan stating steps to

recover backed up data.

 Chapter 5: Framework for Security Requirements Engineering Tools

50

5.2. Means to fulfill the requirements

In previous chapter we analyzed three security requirements elicitation tools, from which we get

to construct means to fulfill those requirements. Figure 5-1 shows all the possible means that

have been fulfilled against requirements fulfillment from Table 5-1. The parent boxes shows the

actual requirements that we have collected during analysis of SSAP’s, under which several

means are depicted, we have constructed the means as close to possible functionality available in

the tools. However some additional suggestions are also mentioned for example use of secure

software architecture, and trade-off analysis etc.

Moreover there could be several other means to fulfill requirements from Table 5-1 however our

scope is limited to evaluate the tools that gave us most the requirements blocks fulfilled. The

means to fulfill are based on experiments/example done in previous chapters that could also lead

to more findings. But due to limited available time to do experiment we have collected as much

means as possible from the security engineering tools. We will discuss about the means one by

one in detail also, that will give us understanding on how the means/features actually work.

Moreover we will determine the measurement scale for these means that will be helpful in rating

the tools.

 Chapter 5: Framework for Security Requirements Engineering Tools

51

Figure 5-1 Evaluation Framework

 Chapter 5: Framework for Security Requirements Engineering Tools

52

 SR001: Making awareness

 Online Resource

In all analyzed tools one common mean is of availability of online resources, which

include the online presence of the tools, procedures related to tool, and documentations.

All of these tools are available to download for free, along with documentations which

could give security engineering tools an edge to be adapted very easily.

 Scientific Publications

All three tools have adapted a methodology, and have several publications. More related

to software security, cloud security, updates to methodology are the most common topic

of publications among these tools. Scientific publications can add up to increase in

awareness using various aspects of security engineering.

 Book on Methodology

In all three tools only CORAS provide with the book on methodology, however other two

have publications for methodology. This gives CORAS tool an edge over other tools, and

provide with simplified explanation of methodology in book itself.

 Hands on Wizards

SQUARE tool is built in a way that it provides with several guided wizards for

information. However these wizards can also be customized to upload contents related to

specific software. That can help in learning the aspects of tools as well as software build.

 User Manual

A user manual is type of dictionary for specific tool, in this case SECTRO2 provides with

the manual to support and guide users with artifacts available in tool. It includes abstract

definition on how an artifact can be used in particular context. It can be handy in

situations where one wants to experience all the available artifacts of the tool. Certainly

SECTRO2 has edge over two other tools in this feature.

 Tutorials

A tutorial is a guided plan to support a work process from beginning to the end. In most

cases there is only tutorial which kick-start the learning curve really fast. In

documentation of CORAS tool there are some tutorials available to teach users with the

basics of the tool. This can be handy in situation where stakeholders want to start

working on the tool as soon as possible. Unlike user manual tutorial in most cases can

teach faster. CORAS tool has edge over other tools in this context.

 Chapter 5: Framework for Security Requirements Engineering Tools

53

 SR002: Understand context and assets

 Asset Diagram

An asset diagram is to identify assets related to the software security. It is crucial to have

clear definitions of assets that can help in defining the concrete goals for software

security. Not having asset diagram can lead to ambiguity in valuable assets and in some

cases can lead to overlooking of some valuable assets. CORAS & SECTRO2 provide

with the asset diagram which gives these two tools edge over SQURE. But also

SQUARE tool have means to define assets that can be taken as substitute for the diagram.

 Checklist of Assets & Goals

In SQUARE tool there is way to define assets and goals, in tables. That can be handy in

cases of definitions for these two aspects of software security. As this tool does not

include any diagrams, the check lists and tables are the means to define assets and goals.

 Template to Document Assets & Goals

SQUARE tool also provide with the predefined common assets and goals in common

software that can save time via avoid writing additional assets and goals. The template

however can be customized and molded according to the current software security needs.

 SR003: Security requirements

 Treatment Diagram

A treatment diagram provide with the feature of defining treatments to the possible

vulnerabilities, unwanted incident, and risks. CORAS and SECTRO2 provide with the

functionality of depicting treatments in tools with the help of available artifacts for

treatment. One can create security requirements as treatments to the possible

vulnerabilities and risks. CORAS and SECTRO2 has an edge over SQURE tool in this

aspect of security engineering.

 Select Elicitation Technique

Choosing elicitation technique from several available techniques can sometimes be a

difficult process. SQUARE tool provide with the mechanism to overcome this difficulty

by adding a questioner that can suggest the elicitation according to the stakeholder needs.

This gives SQUARE tool and edge over two other tools.

 Template for Security Requirements

As there are no diagrams in SQUARE tool, again the way of capturing security

requirements is done using the template. The template in SQUARE tool provides with the

 Chapter 5: Framework for Security Requirements Engineering Tools

54

most common security requirements already built-in. That in return can save time and

efforts to capture many additional requirements.

 SR004: Risk analysis

 Risk Diagram

A risk diagram is to depict the associated risk with the software. This process of depicting

risks is handy because it provides with the basic understating of the common risks, which

could lead to writing concrete threats and vulnerabilities. CORAS provides with the

means to depict risks inside the tool using available artifacts. That gives this tool an

advantage over other two.

 Threat Diagram

A threat diagram is to define details of several threats that are associated with the

particular risk. It provides the understanding of the malice actors also, that are outside the

system. In case of uncertain or defining unclear threats could lead to bad description of

the risk or also can make a risk that is not concrete enough. CORAS and SECTRO2 tools

have this feature inbuilt to depict threats in diagrams, which gives these tools advantage

over SQUARE tool.

 Checklist of Vulnerabilities/Security threats/Risks

SQUARE tool also provide with the means of defining vulnerabilities, threats, and risks

in terms of checklist. That can be in some cases an easy access because a risk is

composed of vulnerabilities, threats and assets, and in SQUARE tool these all are

associated also.

 Template to Define Risks

SQUARE tool also provide with the means of pre-defined risks in expression of a

template this contains most common types of risks. A template with already available

risks can be handy because this can save time and efforts for the team.

 SR005: Secure design practices

 Security Components

A security component is a method to define security mechanism. This kind of approach

can provide with the possibility to define how to deal with the particular security

requirement. SECTRO2 provides with the possibility to create security components and

depict them in details for better understanding.

 List of Possible Architecture/Solution for Secure Software Design

 Chapter 5: Framework for Security Requirements Engineering Tools

55

A type of software architecture can be a crucial step in making secure software, because a

design of software decides the security level of the particular software. Possibility to

choose from different software architecture style can resolve several security related

problems from the beginning. However this feature is not available in any of the tool, but

the idea is to implement a questioner like in “choosing elicitation technique” feature, and

answer to those questions will suggest which type of software design architecture should

best suite with the current scenario. This will in end save time and efforts applied to

choosing one software architecture style.

 SR006: Justify design solution

 Risk Estimation Method

A risk estimation method provides with the possibility to calculate the severity of

particular risk. And based on this analysts can decide which risk should be addressed at

foremost. This can also give an opportunity to decide whether the risk is relevant in

current context or not. Having possibility to calculate risk estimation inside the tool can

be very handy, but current tools does not provide any functionality that addresses this

issue. Only CORAS methodology suggests some calculus for likelihood calculations that

can rate risks accordingly.

 Security Requirements Categorization/Prioritization

One aspect of justified design is to give clarifications for the particular security

requirements. This can be achieved by categorizing and prioritizing security requirements

based on severity or likelihood. SQAURE tool gives an opportunity to deal with this

solution by providing the table that includes categorization and prioritization of security

requirements. This gives an edge to SQUARE tool on other two.

 Trade-off Analysis

The function of trade-off analysis is to decide whether a particular feature will add up a

value to the software security. For example what features can be given up if the time

duration for the software development is limited. Trade-off analysis can also be handy in

situations where budget allotted to the project is limited and features that should be

implemented are more than the budget. This feature is not available in any of the tools

that we have analyzed, however having such functionality can help in decision making.

 SR007: Response

 Means to Construct Response Plan

A response plan is to provide solutions for unwanted incident. CORAS tool provide with

this feature to depict a response plan also using the existing artifacts. However tool does

not suggest such type of diagram but one can create a response plan using available

 Chapter 5: Framework for Security Requirements Engineering Tools

56

artifacts. This will always provide analyst with the solution or steps to do in situation of

an incident.

 Template for Inspect Requirements

Inspection of security requirements can actually provide with an opportunity to improve

future security requirements. As old security requirements will become obsolete in future,

new security requirements can be improved by learning lessons from old ones. An

inspection can also provide with the opportunity to verify if the requirement is actually

fulfilled or not. SQUARE tool has an edge over other tools in this aspect.

5.3. Measurement Scale for tool Analysis

Based on the research done in (Matulevičius, et al., 2009) that discuss about QualOSS quality

model that for developing a systematic quality model to assess robustness and scale of evolution

of the OSS (open source software). In similar way we will try to give scale to means that we

have discovered in order to provide an opportunity to measure the tool reliability. Below we have

developed scaling. However in later discoveries, the scale will be based on the importance of the

feature also.

In order to calculate the total measure of a particular tool one can answer to the sample questions

given in Table 5-3, Table 5-4, Table 5-5, Table 5-6, Table 5-7, Table 5-8, and Table 5-9. For

which we can then be able to calculate the rating of tool. The rating goes like from “no support”

possesses 0 point and “full support” possesses 3 points and all others accordingly. The rating can

also be seen in Table 5-2. The features priority is important also, as some tools support

interactive methods to create diagrams, whereas some tools provides with the similar means but

with no interactive diagrams. We prioritize features according to their importance in security

engineering tools and also according to the ease of use.

The rating will then be multiplied with the feature priority to get the score for particular question.

And then we can sum them to get the total score for the requirement. Finally sum of all the

score’s obtained from requirements will be taken as the final score for that tool.

Table 5-2 Measurement Legend

Feature satisfaction Description Rating

Full Support The feature is fully supported with no complications at all.

And results gained by using particular feature are complete,

concrete, and satisfactory.

3

Above Average Support The feature is partially supported, indicating that there could

be some additions made to enable full support.

2

Minimal Support The feature is supported to the extent that it only fulfills the

criteria of availability, which means it does not satisfies and

simplifies the process.

1

No Support The feature is not supported at all. 0

 Chapter 5: Framework for Security Requirements Engineering Tools

57

Table 5-3 Likert Scale for SR001-Making Awareness

Sample questions Priority

/Score

Full

Support

Above

Average

Support

Minimal

Support

No

Support

To which extent this tool provides online

support, e.g. downloads and

documentation?

I/6

☐

☐

☐

☐

Towhatextentthistools’bookon

methodology is explained and/or to what

extent this tool adapts the methodology?

II/5

☐

☐

☐

☐

To what extent this tool provides support

for the user manual?

III/4

☐

☐

☐

☐

To what extent this tool provides

tutorials? That will support and provide

learning opportunity.

IV/3

☐

☐

☐

☐

To what extent this tool has gained

popularity to support and provide

several publications?

V/2

☐

☐

☐

☐

To what extent this tool provides support

for hands on wizards? These will guide

engineers through several aspects of tool?

VI/1

☐

☐

☐

☐

Table 5-4 Likert Scale for SR002-Understand Context and Assets

Sample questions Priority

/Score

Full

Support

Above

Average

Support

Minimal

Support

No

Support

To which extent this tool supports the

feature to create asset diagram, or at-

least include a feature similar to declare

assets in efficient way?

I/3

☐

☐

☐

☐

To what extent this tool supports the

feature that includes a template to

document assets and goals?

II/2

☐

☐

☐

☐

To which extent this tool supports the

feature to create checklist of assets and

goals?

III/1

☐

☐

☐

☐

Table 5-5 Likert Scale for SR003-Security Requirements

Sample questions Priority

/Score

Full

Support

Above

Average

Support

Minimal

Support

No

Support

To which extent this tool supports the

feature to create treatment diagram, or

at-least include a feature similar to

declare treatments in efficient way?

I/3

☐

☐

☐

☐

To what extent this tool supports the

feature that can help selecting security

requirements elicitation techniques?

II/2

☐

☐

☐

☐

 Chapter 5: Framework for Security Requirements Engineering Tools

58

To what extent this tool supports

template to document security

requirements?

III/1

☐

☐

☐

☐

Table 5-6 Likert Scale for SR004-Risk Analysis

Sample questions Priority

/Score

Full

Support

Above

Average

Support

Minimal

Support

No

Support

To which extent this tool supports feature

to create risk diagram, or at-least include

a feature similar to declare risks in

efficient way?

I/4

☐

☐

☐

☐

To which extent this tool supports feature

to create threat diagram, or at-least

include a feature similar to declare

threats in efficient way?

II/3

☐

☐

☐

☐

To what extent this tool supports

template to document risks?

III/2

☐

☐

☐

☐

To what extent this tool supports feature

to create checklist of vulnerabilities,

security threats and risks?

IV/1

☐

☐

☐

☐

Table 5-7 Likert Scale for SR005-Secure Design Practices

Sample questions Priority

/Score

Full

Support

Above

Average

Support

Minimal

Support

No

Support

To which extent this tool supports the

feature to create security mechanism, or

at-least include a feature similar to

declare security mechanism in efficient

way?

I/2

☐

☐

☐

☐

To what extent this tool supports the

feature that can help selecting secure

software architecture and secure

software design?

II/1

☐

☐

☐

☐

Table 5-8 Likert Scale for SR006-Justify Design Solution

Sample questions Priority

/Score

Full

Support

Above

Average

Support

Minimal

Support

No

Support

To which extent this tool supports feature

that can help calculating risk

estimations?

I/3

☐

☐

☐

☐

To what extent this tool supports feature

that can help categorizing and

prioritizing security requirements?

II/2

☐

☐

☐

☐

To what extent this tool supports

mechanism to estimate trade-off

analysis?

III/1

☐

☐

☐

☐

 Chapter 5: Framework for Security Requirements Engineering Tools

59

Table 5-9 Likert Scale for SR007-Response

Sample questions Priority

/Score

Full

Support

Above

Average

Support

Minimal

Support

No

Support

To what extent this tool supports feature

that can help creating response plan?

I/2

☐

☐

☐

☐

To what extent this tool supports feature

to create templates for security

requirements inspection?

II/1

☐

☐

☐

☐

5.4. Use of Evaluation Framework

The means to fulfill requirements can be used as a framework if someone wants to evaluate

security requirements engineering tool. This can help in specifying the best tool, on the basis of

fulfillments. The audience of this framework shall be software architects and analysts, who are

responsible for making requirements elicitation based decisions. There are four steps in choosing

best SRE tool, step one is to refer to initialize requirements, step two is searching for the

available tools for SRE. In step three analysts can evaluate tool one by one and specify available

features in correspondence with the evaluation framework and rate them. In step four analysts

can choose the tool with the highest ratings.

Use of this framework is depicted in Figure 5-2 in which we have made a simple process to

evaluate security requirements engineering tool. When analyst gets instruction to decide on the

SRE tool, he will first initiate the requirements, and list down all the fulfillments that should be

available in a particular SRE tool. Then he can start searching for the available SRE tools mostly

it comes from online source i.e. internet research. The next part can be time consuming and

possess the actual value in use of the evaluation framework, in this step analyst has to use the

tool one by one and rate them according to the features listed from step one. The next step is

simple analyst only have to choose the best tool based on highest rating. Finally analyst has the

tool and decision has been made.

 Chapter 5: Framework for Security Requirements Engineering Tools

60

Figure 5-2 Use of Evaluation Framework

 STEP1: Requirements Initialization

In this step user can analyze available steps in SRE tool evaluation framework, which

will then be used as a reference for features to look for in a SRE tool. The importance of

this step is of getting startup information about security engineering tools. For example:

in order to find out the SRE tool the evaluation framework will help point out the major

processes and features involved. This can make a clear distinction in the tool from others.

One can use this step when decision to search for SRE tool has made, but properties of

SRE tool are unknown.

 STEP2: Search for SRE tools

This step is also important because searching for available tools can be a tedious process,

however by finishing the first step user will be able to get some ideas about tool

functionalities that can be useful to distinguish between SRE tools and RE tools. This

step might take lot of time because of changing trends in requirement engineering

technology. The major means for searching SRE tools include internet search, contact

and references, and previous knowledge.

 STEP3: Use the tool to evaluate how well it corresponds to features listed in

framework

This step plays as an engine for the work flow in use of evaluation framework, because in

this step user has to use tools and rate the features by answering questioners. The

 Chapter 5: Framework for Security Requirements Engineering Tools

61

example questioners can be seen from Table 5-3 to Table 5-9. After rating the available

features, it then will be multiplied by with the priority. Finally that particular tool’s

section score should be summed to get the total score. This step is regressive also because

during analysis there should be more than one tool in the list to analyze.

 STEP4: Choose the tool with highest rating

In this step user only have to choose the tool with highest ratings that were achieved from

previous step. In order to determine which tool would correspond and fulfill the features

efficiently the score should be made as precise as possible.

5.5. Chapter Summary

In this chapter we have constructed the means to fulfill SSAP’s requirements using security

engineering tools in other words evaluation framework for choosing security engineering tool

that can be visited in Figure 5-1. Along with that we have created measurement for the tool, to

evaluate the tool according to features. Finally we have discussed about the use of evaluation

framework, and discusses on how to use this framework that can be visited in Figure 5-2.

Coming up next we will test this framework using one instrument, and conclude this research

work.

62

Tool Assessment
In this chapter we will describe how tools were evaluated using two different frameworks, along

with its application, and results. Rating the tool is an essential part of this research because it will

allow users to choose between security engineering tools efficiently. The motive is to rate the

tools according to their features reliability, completeness and ease of use. In this regards we

have chosen five tools that include three previous tools that have been discussed in chapter 4.

Additional two tool that we are going to use in this experiment are STS-Tool (Arcsin, 2014) and

Magic Draw (No Magic, 2014). In this regards we will use RE-Tool evaluation approach (R-

TEA) framework (Matulevičius, 2005) and framework created in previous chapter, security

engineering tool evaluation framework (SETEF). Complete results of these tools and their score

can be visited in appendix-B and appendix-C.

6.1. Design of Experiment

The experiment is designed in order to complete the tool evaluation using two different

frameworks i.e. R-TEA (Matulevičius, 2005) and SETEF. There are four steps in this

experiment, 1. Define requirements of experiment, 2. Assess tools using R-TEA (Matulevičius,

2005), 3. Assess tools using SETEF, and 4. Compare results. See Figure 6-1

Figure 6-1 Design of Experiment

6

 Chapter 6: Tool Assessment

63

6.2. Assessment of the tools using R-TEA approach

In assessment of the tools using R-TEA approach, there are several steps however we have

chosen the most relevant/modified steps to this research work. Below are the steps involved in R-

TEA approach precisely discussed.

6.2.1. Preparation of requirement specification

This step involves gathering all the requirements according to the environmental needs,

prioritizing these requirements according to importance of the feature, and finally based on

elicitation and prioritization results team prepares the requirements specifications.

6.2.2. Selection of business parties

This step involves the investigation of the requirement engineering tool market according to

external requirements. The evaluation team requests trail and demonstration RE-Tool version

from the business parties (Matulevičius, 2005).

6.2.3. Investigation of the tools

This step involves analyzing the security engineering tools by using them. Rating is according to

the features presence, ease of use, and completeness. These tools can be rated according to their

features, and by summing all will give the total number for that particular tool.

6.2.4. Decision

Tool decision is based on their ranking, how good their score was in previous step of

investigation, and will be chosen as the best tool.

6.3. Assessment of the tools using SETEF

6.3.1. Requirements Initialization

This step is primary in analyzing tools using evaluation framework that is to collect all the

requirements for the tool, in our case using available requirements and prioritizing them

according to the need for feature. The process of prioritizing requirement is pretty simple just

using requirements backlog one can identify the needs and from that an analysts will be able to

identify what requirements for the tool should be at the highest priority.

Priority given to features in our questioners is based on the ease of use, clarity, completeness and

effectiveness of the feature. At first we start by giving score to individual feature comparing with

other features in a particular requirement. And make the high priority feature a level up, which

eventually sorted all the features according to their level of importance.

6.3.2. Search for Tools

Search for the tool is mostly based on internet search, in our case we have kept using Google

search engine to find relevant security engineering tools. As security engineering tools are still

not much popular, we were able to find 5 relevant tools. This process can be easier because of

 Chapter 6: Tool Assessment

64

less available tools currently. And also because security engineering tools are not yet widely

used, search makes it simple to find them.

6.3.3. Tool Evaluation

In this step an evaluator has to use the tools in order to rate the features available in the tool. We

have prioritized the features in step one already, which allows us to move forward to rate the

features according to their availability, ease of use, and completeness. The evaluation was based

on following an example which was provided in a tutorial by (Lund, et al., 2011) where a case of

telemedicine was provided. Based on the tutorial we have constructed diagrams to analyze the

features. And finally we have rated these features accordingly. Below are the analyses of tools

we have used to analyze different set of tools.

6.3.3.1. STS Tool

STS-tool in this list has the most importance because this tool is unique from the tools we have

analyzed so far, moreover this tool is security requirements gathering specific also. There are few

artifacts in this tool, which enables most of the diagrams, from security risk to asset diagrams.

These artifacts are agent, role, goal, document, and event. However this tool does not have

complete set of artifacts to support all the features of security engineering tools. As the tool

follows standard language for security requirements elicitation, which suggests fewer artifacts,

this also makes the tool complete according to its method. In our assessment of tools, this tool

gained 113 by R-TEA method and 80 by our method. See appendix-B and C for full results.

6.3.3.2. CORAS Tool

CORAS tool so far have the best score calculated using evaluation framework. That’s because

the tool have most of the security engineering features at its best. Risk, asset, and treatment

diagrams can easily be constructed, along with the proper naming for the artifacts. Moreover this

tool provides with the likelihood status also, which is helpful in prioritizing requirements.

However the tool does not correspond to same score via R-TEA approach. This tool has the base

score of 99 using R-TEA and 109 according to SETEF calculations. See Appendix-B and C for

full results.

6.3.3.3. SQUARE Tool

SQUARE tool follows different approach than all other tools it has forms, templates, wizards etc.

instead of diagram. The tool gained highest score of 167 using R-TEA approach, but got least

score of 75 using SETEF. According to SETEF this tool gained fewer score because we have

prioritized the interactive features at high, and SQUARE tool do not have diagrams.

6.3.3.4. SecTro2 Tool

SecTro2 tool analysis is composed of different views, and inside these views, diagrams are sub-

grouped to distinguish between threats and their treatments. A view can be created for the

organization and inside this organization, goals, assets, and threats are declared. And inside any

of these threats, treatment can be viewed. Solely well-structured tool for security engineering,

 Chapter 6: Tool Assessment

65

which gained score of 102 according to R-TEA and 80 based on evaluation framework

calculations. See Appendix-B and C for full results.

6.3.3.5. Magic Draw Tool

The purpose of Magic Draw is not for security engineering, however as the tool support UML

extensively, historically this tool have been in use for every other requirement elicitations. The

base for this tool is it allows users to create class, use case, activity diagrams which can be

transformed to cater security engineering artifacts. For example one can create misuse-case

diagram to declare threats, just by using use case diagram. Moreover this tool supports extensive

variety of diagrams which gives this tool score of 110 based on R-TEA approach and 99 based

on evaluation framework calculations. See Appendix-B and C for full results.

6.3.4. Select the Best Tool

The selection of best tool is based on the score they acquired from the analysis done using

evaluation framework. One can also change the priorities to maintain the required features for

the particular project. However one can also use priorities available in this research work,

because priorities for features in use of evaluation framework are calculated based on their ease

of use. The criteria for the best tool will always be the one with the highest score.

6.4. Comparison of R-TEA and SETEF

These two methods have similar nature in analyzing the security engineering tools. Where R-

TEA approach is addressed towards requirements engineering tools and SETEF focuses on sub-

category security requirements engineering tools. However these two methods follow different

approach to analyze the tools, which effects the results obtained in the previous evaluation. R-

TEA approach is more focused towards language and complete specification of the requirements

and SETEF declares interactive diagrams and clear specifications gathering as the primary

objective. In previous evaluation of the tools, we these two methods followed some steps that

can be seen in Table 6-1.

Table 6-1 R-TEA and SETEF Steps

Steps R-TEA SETEF

1 Preparation of the requirements specification Requirement initialization

2 Selection of the business parties Search for tools

3 Investigation of the tools Tool Evaluation

4 Decision Best tool selection

As oppose to SETEF requirements mentioned in Table 5-1 R-TEA suggests set of activities

mentioned in Table 6-2. However these two cannot be compared because of differences, but few

activities like (requirements must have a unique identifier) can be seen are common. While both

approaches are addressing different aspects of requirements engineering, most of the activities in

both are diverse. This gives us a strong reason that results obtained are oppose to each other, see

Table 6-3.

 Chapter 6: Tool Assessment

66

Table 6-2 Activities of R-TEA > Adapted from (Matulevičius,2005)

Dimensions Activities in R-TEA

Representation dimension

1.1 Specify uniquely identifiable description using informal language

1.2 Specify requirements using semi-formal language

1.3 Specify requirements using formal language

1.4 Define traceable associations between requirements and the different elements of

requirements specification

1.5 Connect seamlessly with other tools and systems, by supporting interoperable

protocols and standards

Agreement dimension

2.1 Maintain an audit trail of changes, archive baseline version; and engage a

mechanism to authenticate and approve change requests

2.2 Classify requirements into logical user defined groupings

2.3 Support secure, concurrent cooperative work between members of a

multidisciplinary team, which may be geographically distributes

2.4 Maintain a comprehensive data dictionary of all project components and

requirements in a shared repository

Specification dimension

3.1 Collect and store a common system’s and a product family’s domain requirements

3.2 Generate predefined and ad hoc reports, documents that comply with standard

industrial templates, with support for presentation-quality output and in-built

document quality controls

3.3 Generate the complete specification, expressed using formal language (informal

and semiformal languages might also be included), commonly agreed by all

stakeholders

6.5. Threats to Validity

This experiment was conducted on the basis of personal experience gained using security

engineering tool. The features were prioritized solely with the help of brainstorming and this

may differ according to difference in needs or difference in experience. Most of the features in

SETEF were derived using three security engineering tools, which compromises the future

security engineering tools that may have different features.

Additionally the tools were compared against requirements collected from SSAP’s in order to

build the SETEF, where some of the requirements were out of scope because of limitations in

capabilities in security engineering tools. For example requirements related to secure code, were

neglected because security engineering tools do not support code related to requirements.

6.6. Summary

In Table 6-3 the comparison of both approaches is showing the result opposite from each other.

The reason for this kind of behavior could be the difference in features. As R-TEA approach is

more focused towards correct documentation of requirements and SETEF approach is more

focused towards features instructiveness, the results will be opposite. Highest score is gained by

SQUARE tool using R-TEA approach, and CORAS using SETEF approach.

 Chapter 6: Tool Assessment

67

In this chapter we have explained how the experiment was conducted using evaluation

framework, and concluded that CORAS gained the highest points which make this tool to be

chosen according to SETEF approach. See Table 6-4 for full tool evaluation results. In next

chapter we will conclude this research work.

Table 6-3 Framework Results Comparison

Tool R-TEA

CORAS 99

SecTro2 102

Magic Draw 110

STS-TOOL 113

SQUARE 167

Tool SETEF

SQUARE 75

STS-TOOL 80

SecTro2 80

Magic Draw 99

CORAS 109

Table 6-4 Tool Evaluation Summary

Tool R-TEA SETEF

STS-TOOL 113 80

CORAS 99 109

SQUARE 167 75

SecTro2 102 80

Magic Draw 110 99

68

Conclusion and Future Work
This research work was done to create a method/framework, which helps in choosing best

security engineering tool. In this regards SSAP’s (SDL, 7 Touch points, and OWASP) were

analyzed to gather common requirements secure software. These requirements were then tested

against security engineering tools (CORAS, SecTro2 and SQUARE) to collect means to fulfill

these requirements. These means however can be many but our focus was to collect most of

which from the well-developed security engineering tools. These means were taken as the base

for Security engineering tool evaluation framework (SETEF). SETEF can be used to evaluate the

security engineering tools, and one can choose between tools and select the best one based on

highest score.

In conclusion if someone wants to evaluate security engineering tools using SETEF approach

they might get different result based on the priorities they give to the features. But most

appropriate results can only be obtained based on features an individual wants utmost. Moreover

the features that we have elicited using SSAP’s have a tendency to change with the changing

needs of the software security requirements. This also leaves the room for future development in

this field.

In this research work we also concluded that results using R-TEA approach were opposite to

SETEF because R-TEA framework is more focused towards documentation part of requirements

engineering. And in this research SQUARE tool is more focused towards documentation, which

gives this tool the highest score using R-TEA approach. However using SETEF approach

CORAS tool gets the highest score. Because using SETEF we have scored the features according

to their interactive diagram and visualization. One can also score the features according to their

priorities, but experiment conducted in previous chapter we have prioritized the features based

on visualization.

7

 Chapter 7: Conclusion and Future Work

69

7.1. Limitations

In this research we have evaluated the tools on the basis of priorities given by personal opinion

and judgment, however these values can differ according to different analysts. These priorities

are not concrete enough to provide actual results of the tool evaluation, which also leaves the

room for future development in this perspective. Our conclusion was based on scores obtained

by analyzing tools and calculating the base score from each activity, for which this also can be

done using different statistical methods like: calculating the mean of priority features.

One more addition to this work can be to make priorities more solid at the requirements level. As

we have prioritized these features, researchers also can priorities requirements itself. For

example how much value does the requirement SR001 contains over SR002.

7.2. Future Work

This framework contain requirements analyzed from SSAP’s, however these requirements can

also be gathered by market research and following the current trend in security requirements

gathering techniques, currently used within most of the companies. Asking questions like “what

an analyst look for if he has to identify the assets” the answer to this question can be variant and

diverse based on the expertise the market researcher has. And can provide various ides about

techniques used in identifying assets. As oppose to task done in this thesis work, one can also try

to analyze the development processes to analyze security constraints available. That can provide

with various other terms to cater in regards to analyzing security engineering tools.

70

BIBLIOGRAPHY
Addison-Wesley Software Security Series. 2006. Seven Touch Points for Software Security.

buildingsecurityin.com. [Online] Addison-Wesley, 2006. [Cited: 03 26, 2014.]

http://buildingsecurityin.com/concepts/touchpoints/.

Altuhhova,Olga,Ahmed,NaveedandMatulevičius,Raimundas.2013. An Extension of

Business Process Model and Notation for Security Risk Management. Tartu : Institute of

Computer Science, University of Tarut, 2013.

Anderson, J. Ross. 2001. Security Engieering. Cambridge : Wiley, 2001. 978-0470068526.

Arcsin. 2014. STS-TOOL. [Internet] Italy : Arcsin, 2014.

Basin, David, et al. 2009. Model-Driven Development of Security-Aware GUI's for Data-

Centric Applications. Spain : ETH Zurich, Switzerland; IMDEA Software Institute, Madrid,

Spain; Universidad Computense, Madrid, Spain, 2009.

Braz, Fabricio A., Fernandez, Eduardo B. and VanHilst, Michael. 2008. Eliciting Security

Requirements through Misuse Activities. Florida : IEEE, 2008.

Bresciani, Paolo, et al. 2004. Tropos: An Agent-Oriented Software Development. Italy : Kluwer

Academic Publishers, 2004.

CORAS. 2014. The CORAS Method. coras.sourceforge.net. [Online] CORAS, 2014. [Cited: 05

17, 2014.] http://coras.sourceforge.net/.

Crook, Robert, et al. 2002. Security Requirements Engineering: When Anti-requirements Hit

the Fan. Milton Keynes : IEEE, 2002. 1090-705X.

Dictionary.com. 2014. Definition. Dictionary.com. [Online] 2014. [Cited: 04 08, 2014.]

http://dictionary.reference.com.

Ganguly, Aroop. 2011. P-SQUARE Tool - Quick Demo. [Online] 2011. [Cited: 9 16, 2014.]

http://www.youtube.com/watch?v=zobdTHjcDjc.

Howard, Michael and Lipner, Steve. 2006. The Security Development Life Cycle. Redmond :

Microsoft Press, 2006. 978-0735622142.

Institute of Electrical and Electronic Engineers. 1990. IEEE Standard Glossary of Software

Engineering Terminology. New York : IEEE, 1990. 610.12-1990.

 Bibliography

71

ISO. 2014. ISO/IEC 27001 - Information security management. iso.org. [Online] International

Organization for Standardization, 2014. [Cited: 05 23, 2014.]

http://www.iso.org/iso/home/standards/management-standards/iso27001.htm.

Jürjens, Jan. 2001. Modelling Audit Security For Smart-Card Payment Schemes with UML-

SEC. London : Springer US, 2001. 978-0-306-46998-5.

Lund, Mass Soldal, Solhaug, Bjornar and Stolen, Ketil. 2011. Model Driven Risk Analysis

The CORAS Approach. Heidelberg : Springer Heidelberg Dordrecht, 2011.

Matulevičius,Raimundas.2005. Process Support for Requirements Engineering. Trondheim :

NTNU-trykk, 2005. 82-471-7171-6.

Matulevičius,Raimundas,Kamseu,FloraandHabra,Naji.2009. Measuring Open Source

Documentation Availablity. Namur : University of Namur, 2009.

Mayer, Nicolas. 2009. Model-based Maagement of Information System Security Risk . Namur :

Presses uniersitaires de Namur, 2009. 978‐2‐87037‐640‐9.

McGraw, Gary. 2003. Software Security. Dulles : Cigital, 2003.

MD5ONLINE. 2014. MD5 Decrypter. md5online.org. [Online] Md5online, 2014. [Cited: 08 06,

2014.] http://www.md5online.org/.

Mead, Nancy R, Hough, Eric D and Stehney II, Theodore R. 2005. Security Quality

Requiremets Engineerig (SQUARE) Methodology. Pittsburgh : Carnegie Mellon Uniersity, 2005.

PA, 15213-3890.

Merriam-Webster. 2014. Life Cycle. Merriam-Webster.com. [Online] 2014. [Cited: 04 12,

2014.] http://www.merriam-webster.com/dictionary/life%20cycle.

Microsoft. 2014. SDL Process Template. microsoft.com. [Online] 2014. [Cited: 08 06, 2014.]

http://www.microsoft.com/security/sdl/adopt/processtemplate.aspx.

Microsoft. 2014. SDL-Agile Example. msdn.microsoftcom. [Online] Microsoft, 2014. [Cited: 04

12, 2014.] http://msdn.microsoft.com/en-us/library/windows/desktop/ee790619.aspx.

Microsoft.. 2010. Simplified Implementation of the Microsoft SDL. microsoft.com. [Online] 11

04, 2010. [Cited: 03 26, 2014.] http://www.microsoft.com/en-

us/download/details.aspx?id=12379.

Mochal, Tom. 2008. 10 techniques for gathering requirements. techrepublic.com. [Online] CBS

Interactive, 01 02, 2008. [Cited: 06 01, 2014.] http://www.techrepublic.com/blog/10-things/10-

techniques-for-gathering-requirements/.

 Bibliography

72

Mouratidis, Haralambos, et al. 2008. Adapting Secure Tropos for Security Risk Management

during Early Pahses of the Information System Development. London : Springer, 2008.

10.1007/978-3-540-69534-9_40.

No Magic. 2014. Magic Draw. [Internet] Texas : No Magic, 2014.

Open software security community. 2014. CLASP Best Practice. owasp.org. [Online] open

software security community, 2014. [Cited: 04 15, 2014.]

https://www.owasp.org/index.php/Category:CLASP_Best_Practice.

OWASP. 2014. OWASP CLASP Project. owasp.org. [Online] OWASP, 2014. [Cited: 05 11,

2014.] https://www.owasp.org/index.php/Category:OWASP_CLASP_Project.

Oxford Dictionaries. 2014. Artifact. oxforddictionaries.com. [Online] 2014. [Cited: 04 12,

2014.] http://www.oxforddictionaries.com/us/definition/american_english/artifact.

Ragunath, P.K, et al. 2010. Evolving A New Model (SDLC Model-2010) For Software

Development Life Cycle (SDLC). Chennai : IJCSNS International Journal of Computer Science

and etwork Securit, 2010.

Refsdal, Atle. 2014. Analysing Risk in Practice: The CORAS Approach to Model-Driven Risk

Analysis. http://coras.sourceforge.net/. [Online] 2014. [Cited: 06 21, 2014.]

http://coras.sourceforge.net/newsarchive.html.

Science Daily. 2014. Security Engineering. sciencedaily.com. [Online] Science Daily, 2014.

[Cited: 05 17, 2014.]

Secure Tropos. 2014. Secure Tropos. securetopos.org. [Online] Secure Tropos, 2014. [Cited: 06

22, 2014.] http://securetropos.org/.

Sindre, Guttorm and L.Opdahl, Andreas. 2005. Eliciting Security Requirements with Misuse

cases. London : Springer-Verlag London Limited, 2005. DOI 10.1007/s00766-004-0194-4.

Sindre, Guttorm. 2006. Mal-Activity Diagram for Capturing Attacks on Business Processes.

Trondheim : Norwegian University of Science and Technology, 2006.

Sommerville, Ian. 2004. Software Engieering 7th Edition. Massachusetts : Addison Wesley,

2004. 0321210263.

SQUARE Method. 2014. SQUARE Method. sei.cmu.edu. [Online] 2014. [Cited: 08 06, 2014.]

http://www.sei.cmu.edu/reports/05tr009.pdf.

T. Devanbu, Premkumar and Stubblebine, Stuart. 2000. Software Engineering For Security:

A Roadmap. New York : ICSE 2000, 2000.

 Bibliography

73

T. Ross, Douglas and E. Schoman, Kenneth. 1977. Structured Analysis for Requirements

Definition. Massachusetts : IEEE, 1977.

TechTarget. 2014. Software Requirements Specificaiton . TechTarget.com. [Online] 2014.

[Cited: 05 18, 2014.] http://searchsoftwarequality.techtarget.com/definition/software-

requirements-specification.

74

APPENDIX-A

Table 9-1 CORAS Tool Artifacts

 Category Name Image

C
O

R
A

S
 T

O
O

L
 A

R
T

IF
A

C
T

S

Connections Harm

Impact

Initiates

Leads To

Threats

Vulnerability Target

Legal Norm Target

Basic CORAS Threat Scenario

Direct Asset

Indirect Asset

Human Threat

Accidental

Human Threat

Deliberate

Non-Human Threat

Risk

Treatment Scenario

 Appendix A

75

Unwanted Incident

Vulnerability

High Level CORAS Referring Risk

Referring Threat

Scenario

Referring Treatment

Scenario

Referring Unwanted

Incident

Dependent CORAS Border

Legal CORAS Legal Norm

 Appendix A

76

Table 9-2 SecTro2 Tool Artifacts

 Category Name Image

S
E

C
T

R
O

2
 T

O
O

L
 A

R
T

IF
A

C
T

S

Organizational view Organization

Actor

Goal

Dependency link

Security

Requirements view

ad

Resource

Plan

Soft Goal

Security Constraint

Security Objective

Security Mechanism

Threat

Means End
Decomposition
Contribution

 Appendix A

77

Restricts

Mitigates

Satisfies

Implement

Impacts

Creates

Requires

Protects

And

Security

Components view

Actor Lifeline

Security Mechanism

Lifeline

Component Lifeline

Activation Bar

 Message Link

 Return Message Link

Security Attacks

view

Vulnerability

Attack Method

Attacks Link

Affects Link

Cloud Analysis

view

Cloud Actor

Satisfiability Link

78

APPENDIX-B

Results using R-TEA method

Table 10-1 Calculated Results from STS-TOOL

Activities of the Representation Dimension

FEF1.1 Specify uniquely identifiable description using
informal language

Priority

Full
Support

Above
Average
Support

Minimal
Support

No
Support

Score
Total
Score

/Score

113.00

FEF1.1.1 To what extent this tool provides
natural language description for security?

II/2

4
 ☐ ☒ ☐ ☐

FEF 1.1.2 To what extent this tool allows to
specify unique identification (ID) for each

separate requirement?
I/3 ☒ ☐ ☐ ☐

9

FEF 1.1.3 To what extent this tool allows

importing of requirements and their
description from text document?

III/1

0

☐ ☐ ☐ ☒

13

FEF1.2 Specify requirements using semi-formal
language

Priority

Full
Support

Above
Average
Support

Minimal
Support

No
Support

/Score

FEF1.2.1 To what extent this tool provides
support for semi-formal language

description?
I/2

6

☒ ☐ ☐ ☐

FEF 1.2.2 To what extent this tool provides
forward/backward traceability between semi-

formal informal and formal description?
II/1 ☐ ☒ ☐ ☐

2

8

 Appendix B

79

FEF1.3 Specify requirements using formal languages

Priority

Full
Support

Above
Average
Support

Minimal
Support

No
Support

/Score

FEF1.3.1 To what extent this tool provides
support for formal language description?

I/2

2

☐ ☐ ☒ ☐

FEF1.3.2 To what extent this tool provides

forward/backward traceability between
formal and informal, semiformal description?

II/1 ☐ ☐ ☐ ☒

0

2

FEF1.4 Define traceable associations between
requirements and the different elements of
requirements specification

Priority

Full
Support

Above
Average
Support

Minimal
Support

No
Support

/Score

FEF1.4.1 To what extent this tool provide
functions for testing traceability between

informal, semiformal, and formal
requirement description?

V/1

0

☐ ☐ ☐ ☒

FEF1.4.2 To what extent this tool allows to

create parent Child traceable relations
between requirements?

I/5 ☐ ☒ ☐ ☐

10

FEF1.4.3 To what extent this tool allows to
maintain peer-to-peer traceable relations

between requirements?
II/4

8

☐ ☒ ☐ ☐

FEF1.4.4 To what extent this tool allows to
maintain traceable relations between various

related information?
III/3

6

☐ ☒ ☐ ☐

 Appendix B

80

FEF1.4.5 To what extent this tool allows to
maintain forward/backward traceability
between a source of requirements, the

requirements and design?

IV/2 ☐ ☐ ☐ ☒

0

24

FEF1.5 Connect seamlessly with other tools and
systems, by supporting interoperable protocols and
standards

Priority

Full
Support

Above
Average
Support

Minimal
Support

No
Support

/Score

FEF1.5.1 To what extent this tool allows
importing/exporting requirements
description from text document?

I/2

4

☐ ☒ ☐ ☐

FEF1.5.2 To what extent this tool allows

importing/exporting of requirements from
graphical documents?

II/1

0

☐ ☐ ☐ ☒

4
 Activities of Agreement Dimension

FEF2.1 Maintain an audit trail of changes, archive
baseline versions; and engage a mechanism to
authenticate and approve change requests.

Priority

Full
Support

Above
Average
Support

Minimal
Support

No
Support

/Score

FEF2.1.1 To what extent this tool provides

maintainability of user authentication for the
system?

I/5

10

☐ ☒ ☐ ☐

FEF2.1.2 To what extent this tool allows

grouping of different users?
II/4

0

☐ ☐ ☐ ☒

 FEF2.1.3 To what extent this tool provides
different views i.e. (documents,

requirements, attributes) for different
stakeholders?

III/3

9

☒ ☐ ☐ ☐

FEF2.1.4 To what extent this tool allows

changes/ history of requirements/
negotiation?

IV/2 ☐ ☐ ☐ ☒

0

 Appendix B

81

FEF2.1.5 To what extent this tool allows to
call earlier requirement description/versions

and register them into history context?
V/1

0

☐ ☐ ☐ ☒

19.00

FEF2.2 Classify requirements into logical user defined
groupings.

Priority

Full
Support

Above
Average
Support

Minimal
Support

No
Support

/Score

FEF2.2.1 To what extent this tool allows
specifying attributes/properties of the

requirement?
I/3

9

☒ ☐ ☐ ☐

 FEF2.2.2 To what extent this tool provides
sorting according to different

attributes/properties?
II/2 ☐ ☐ ☐ ☒

0

 FEF2.2.3 To what extent this tool provides
filtering according to different

attributes/properties?
III/1

0

☐ ☐ ☐ ☒

9

FEF2.3 Support secure, concurrent cooperative work
between members of a multidisciplinary team, which
may be geographically distributed.

Priority
Full
Support

Above
Average
Support

Minimal
Support

No
Support

/Score

FEF2.3.1 To what extent this tool provides
independent interface for geographically

distributed users?
I/3

3

☐ ☐ ☒ ☐

FEF2.3.2 To what extent this tool allow

making a copy for modification of an already
approved version of requirements description

in different abstract levels (document,
requirement)?

II/2

0

☐ ☐ ☐ ☒

FEF2.3.3 To what extent this tool provides
change approval cycle for multiple change

negotiation and approval before posting into
common repository?

III/1

0

☐ ☐ ☐ ☒

3.00

 Appendix B

82

FEF2.4 Maintain a comprehensive data dictionary of
all project components and requirements in a shared
repository

Priority

Full
Support

Above
Average
Support

Minimal
Support

No
Support

/Score

FEF2.4.1 To what extent this tool provides the
single repository or data and concept

dictionary?
II/2

2

☐ ☐ ☒ ☐

FEF2.4.2 To what extent this tool provide

separate data dictionaries for non-technical
users and technical users?

III/1

0

☐ ☐ ☐ ☒

FEF2.4.3 To what extent this tool provides the

help system to the user?
I/3

9

☒ ☐ ☐ ☐

11.00
 Activities of the specification Dimension

FEF3.1 Collect and store a common system's and a
product family's domain requirements.

Priority

Full
Support

Above
Average
Support

Minimal
Support

No
Support

/Score

FEF3.1.1 To what extent this tool enable
selection and extraction of common domain

requirements and requirements which
differentiate systems in product line?

I/4

0

☐ ☐ ☐ ☒

FEF3.1.2 To what extent this tool incorporate
requirements to a concrete project?

II/3

0

☐ ☐ ☐ ☒

 FEF3.1.3 To what extent this tool
adapt/spread changes in domain

requirements to concrete projects within
domain?

III/2

0

☐ ☐ ☐ ☒

FEF3.1.4 To what extent this tool provides

comparison of domain requirements
feasibility?

V/1

0

☐ ☐ ☐ ☒

0.00

 Appendix B

83

FEF3.2 Generate predefined and ad hoc reports,
documents that comply with standard industrial
templates, with support for presentation-quality
output and in-built document quality controls.

Priority

Full
Support

Above
Average
Support

Minimal
Support

No
Support

/Score

FEF3.2.1 To what extent this tool provides
wizards for report generation?

I/4

12

☒ ☐ ☐ ☐

 FEF3.2.2 To what extent this tool provides
possibility to print report according to views

and sorting?
II/3

0

☐ ☐ ☐ ☒

FEF3.2.3 To what extent this tool provide

possibility to print results of rationale,
brainstorm and etc.?

III/2

0

☐ ☐ ☐ ☒

FEF3.2.4 To what extent this tool provides

techniques for error checking?
IV/1

0

☐ ☐ ☐ ☒

12.00

FEF3.3 Generate the complete specification, expressed
using formal language (informal and semiformal
languages might also be included), commonly agreed
by all stakeholders.

Priority

Full
Support

Above
Average
Support

Minimal
Support

No
Support

/Score

FEF3.3.1 To what extent this tool correspond
to standards of software documentation?

I/3

6

☐ ☒ ☐ ☐

FEF3.3.2 To what extent this tool correspond
to standards defined by an organization?

II/2

0

☐ ☐ ☐ ☒

FEF3.3.3 To what extent this tool support
formal languages for complete, commonly

agreed requirements specification?
III/1

2

☐ ☒ ☐ ☐

8.00

 Appendix B

84

Table 10-2 Calculated Results from CORAS Tool

Activities of the Representation
Dimension

FEF1.1 Specify uniquely identifiable description using
informal language

Priority
Full
Support

Above
Average
Support

Minimal
Support

No
Support

Score
Total
Score

/Score

99.00

FEF1.1.1 To what extent this tool provides
natural language description for security?

II/2

6

☒ ☐ ☐ ☐

 FEF 1.1.2 To what extent this tool allows to
specify unique identification (ID) for each

separate requirement?
I/3 ☒ ☐ ☐ ☐

9

FEF 1.1.3 To what extent this tool allows

importing of requirements and their
description from text document?

III/1

0

☐ ☐ ☐ ☒

15

FEF1.2 Specify requirements using semi-formal
language

Priority
Full
Support

Above
Average
Support

Minimal
Support

No
Support

/Score

FEF1.2.1 To what extent this tool provides

support for semi-formal language
description?

I/2

6

☒ ☐ ☐ ☐

 FEF 1.2.2 To what extent this tool provides
forward/backward traceability between

semi-formal informal and formal
description?

II/1 ☐ ☒ ☐ ☐

2

8

FEF1.3 Specify requirements using formal languages

Priority
Full
Support

Above
Average
Support

Minimal
Support

No
Support

/Score

FEF1.3.1 To what extent this tool provides
support for formal language description?

I/2

2

☐ ☐ ☒ ☐

 FEF1.3.2 To what extent this tool provides
forward/backward traceability between

formal and informal, semiformal
description?

II/1 ☐ ☐ ☐ ☒

0

2

 Appendix B

85

 FEF1.4 Define traceable associations between

requirements and the different elements of
requirements specification

Priority
Full
Support

Above
Average
Support

Minimal
Support

No
Support

/Score

FEF1.4.1 To what extent this tool provide
functions for testing traceability between

informal, semiformal, and formal
requirement description?

V/1

0

☐ ☐ ☐ ☒

FEF1.4.2 To what extent this tool allows to

create parent Child traceable relations
between requirements?

I/5 ☐ ☒ ☐ ☐

10

FEF1.4.3 To what extent this tool allows to
maintain peer-to-peer traceable relations

between requirements?
II/4

8

☐ ☒ ☐ ☐

FEF1.4.4 To what extent this tool allows to

maintain traceable relations between
various related information?

III/3

6

☐ ☒ ☐ ☐

FEF1.4.5 To what extent this tool allows to

maintain forward/backward traceability
between a source of requirements, the

requirements and design?

IV/2 ☐ ☒ ☐ ☒

4

28
 FEF1.5 Connect seamlessly with other tools and

systems, by supporting interoperable protocols and
standards

Priority
Full
Support

Above
Average
Support

Minimal
Support

No
Support

/Score

FEF1.5.1 To what extent this tool allows

importing/exporting requirements
description from text document?

I/2

0

☐ ☐ ☐ ☒

FEF1.5.2 To what extent this tool allows

importing/exporting of requirements from
graphical documents?

II/1

0

☐ ☐ ☐ ☒

0
 Activities of Agreement Dimension

 FEF2.1 Maintain an audit trail of changes, archive Priority Full Above Minimal No

 Appendix B

86

baseline versions; and engage a mechanism to
authenticate and approve change requests. /Score

Support Average
Support

Support Support

 FEF2.1.1 To what extent this tool provides
maintainability of user authentication for the

system?
I/5

15

☒ ☐ ☐ ☐

 FEF2.1.2 To what extent this tool allows
grouping of different users?

II/4

0 ☐ ☐ ☐ ☒

 FEF2.1.3 To what extent this tool provides
different views i.e. (documents,

requirements, attributes) for different
stakeholders?

III/3

6

☐ ☒ ☐ ☐

 FEF2.1.4 To what extent this tool allows
changes/ history of requirements/

negotiation?
IV/2 ☐ ☐ ☐ ☒

0

FEF2.1.5 To what extent this tool allows to
call earlier requirement description/versions

and register them into history context?
V/1

0

☐ ☐ ☐ ☒

21.00

FEF2.2 Classify requirements into logical user defined
groupings.

Priority
Full
Support

Above
Average
Support

Minimal
Support

No
Support

/Score

FEF2.2.1 To what extent this tool allows
specifying attributes/properties of the

requirement?
I/3

9

☒ ☐ ☐ ☐

FEF2.2.2 To what extent this tool provides

sorting according to different
attributes/properties?

II/2 ☐ ☐ ☐ ☒

0

FEF2.2.3 To what extent this tool provides

filtering according to different
attributes/properties?

III/1

0

☐ ☐ ☐ ☒

9
 FEF2.3 Support secure, concurrent cooperative work

between members of a multidisciplinary team, which
may be geographically distributed.

Priority
Full
Support

Above
Average
Support

Minimal
Support

No
Support

/Score

FEF2.3.1 To what extent this tool provides
independent interface for geographically

distributed users?
I/3

3

☐ ☐ ☒ ☐

 FEF2.3.2 To what extent this tool allow II/2 0

 Appendix B

87

making a copy for modification of an already
approved version of requirements

description in different abstract levels
(document, requirement)?

☐ ☐ ☐ ☒

FEF2.3.3 To what extent this tool provides
change approval cycle for multiple change

negotiation and approval before posting into
common repository?

III/1

0

☐ ☐ ☐ ☒

3.00
 FEF2.4 Maintain a comprehensive data dictionary of

all project components and requirements in a shared
repository

Priority
Full
Support

Above
Average
Support

Minimal
Support

No
Support

/Score

FEF2.4.1 To what extent this tool provides
the single repository or data and concept

dictionary?
II/2

2

☐ ☐ ☒ ☐

FEF2.4.2 To what extent this tool provide

separate data dictionaries for non-technical
users and technical users?

III/1

0

☐ ☐ ☐ ☒

FEF2.4.3 To what extent this tool provides

the help system to the user?
I/3

0

☐ ☐ ☐ ☒

2.00
 Activities of the specification Dimension

FEF3.1 Collect and store a common system's and a
product family's domain requirements.

Priority
Full
Support

Above
Average
Support

Minimal
Support

No
Support

/Score

FEF3.1.1 To what extent this tool enable
selection and extraction of common domain

requirements and requirements which
differentiate systems in product line?

I/4

0

☐ ☐ ☐ ☒

FEF3.1.2 To what extent this tool

incorporate requirements to a concrete
project?

II/3

0

☐ ☐ ☐ ☒

 FEF3.1.3 To what extent this tool III/2 0

 Appendix B

88

adapt/spread changes in domain
requirements to concrete projects within

domain? ☐ ☐ ☐ ☒

FEF3.1.4 To what extent this tool provides

comparison of domain requirements
feasibility?

V/1

0

☐ ☐ ☐ ☒

0.00

FEF3.2 Generate predefined and ad hoc reports,
documents that comply with standard industrial
templates, with support for presentation-quality
output and in-built document quality controls.

Priority

Full
Support

Above
Average
Support

Minimal
Support

No
Support

/Score

FEF3.2.1 To what extent this tool provides

wizards for report generation?
I/4

0 ☐ ☐ ☐ ☒

FEF3.2.2 To what extent this tool provides

possibility to print report according to views
and sorting?

II/3

0

☐ ☐ ☐ ☒

FEF3.2.3 To what extent this tool provide

possibility to print results of rationale,
brainstorm and etc.?

III/2

0

☐ ☐ ☐ ☒

FEF3.2.4 To what extent this tool provides

techniques for error checking?
IV/1

0

☐ ☐ ☐ ☒

0.00
 FEF3.3 Generate the complete specification,

expressed using formal language (informal and
semiformal languages might also be included),
commonly agreed by all stakeholders.

Priority
Full
Support

Above
Average
Support

Minimal
Support

No
Support

/Score

FEF3.3.1 To what extent this tool correspond
to standards of software documentation?

I/3

9

☒ ☐ ☐ ☐

FEF3.3.2 To what extent this tool correspond

to standards defined by an organization?
II/2

0

☐ ☐ ☐ ☒

FEF3.3.3 To what extent this tool support
formal languages for complete, commonly

agreed requirements specification?
III/1

2

☐ ☒ ☐ ☐

11.00

 Appendix B

89

Table 10-3 Calculated Results from SQUARE Tool

Activities of the Representation Dimension

FEF1.1 Specify uniquely identifiable description using
informal language

Priority Full
Support

Above
Average
Support

Minimal
Support

No
Support

Score
Total
Score

/Score

167.00

FEF1.1.1 To what extent this tool provides
natural language description for security?

II/2

6

☒ ☐ ☐ ☐

FEF 1.1.2 To what extent this tool allows to
specify unique identification (ID) for each

separate requirement?
I/3 ☒ ☐ ☐ ☐

9

FEF 1.1.3 To what extent this tool allows

importing of requirements and their
description from text document?

III/1

3

☒ ☐ ☐ ☐

18

FEF1.2 Specify requirements using semi-formal
language

Priority
Full
Support

Above
Average
Support

Minimal
Support

No
Support

/Score

FEF1.2.1 To what extent this tool provides

support for semi-formal language
description?

I/2

0

☐ ☐ ☐ ☒

FEF 1.2.2 To what extent this tool provides

forward/backward traceability between
semi-formal informal and formal description?

II/1 ☐ ☐ ☐ ☒

0

0

FEF1.3 Specify requirements using formal languages

Priority
Full
Support

Above
Average
Support

Minimal
Support

No
Support

/Score

FEF1.3.1 To what extent this tool provides
support for formal language description?

I/2

6

☒ ☐ ☐ ☐

 FEF1.3.2 To what extent this tool provides II/1 ☐ ☒ ☐ ☐ 2

 Appendix B

90

forward/backward traceability between
formal and informal, semiformal description?

8

FEF1.4 Define traceable associations between
requirements and the different elements of
requirements specification

Priority
Full
Support

Above
Average
Support

Minimal
Support

No
Support

/Score

FEF1.4.1 To what extent this tool provide
functions for testing traceability between

informal, semiformal, and formal
requirement description?

V/1

0

☐ ☐ ☐ ☒

FEF1.4.2 To what extent this tool allows to

create parent Child traceable relations
between requirements?

I/5 ☐ ☒ ☐ ☐

10

FEF1.4.3 To what extent this tool allows to
maintain peer-to-peer traceable relations

between requirements?
II/4

8

☐ ☒ ☐ ☐

 FEF1.4.4 To what extent this tool allows to
maintain traceable relations between various

related information?
III/3

6

☐ ☒ ☐ ☐

FEF1.4.5 To what extent this tool allows to

maintain forward/backward traceability
between a source of requirements, the

requirements and design?

IV/2 ☐ ☒ ☐ ☐

4

28

FEF1.5 Connect seamlessly with other tools and
systems, by supporting interoperable protocols and
standards

Priority
Full
Support

Above
Average
Support

Minimal
Support

No
Support

/Score

FEF1.5.1 To what extent this tool allows

importing/exporting requirements
description from text document?

I/2

6

☒ ☐ ☐ ☐

 FEF1.5.2 To what extent this tool allows II/1 0

 Appendix B

91

importing/exporting of requirements from
graphical documents? ☐ ☐ ☐ ☒

6
 Activities of Agreement Dimension

FEF2.1 Maintain an audit trail of changes, archive
baseline versions; and engage a mechanism to
authenticate and approve change requests.

Priority
Full
Support

Above
Average
Support

Minimal
Support

No
Support

/Score

FEF2.1.1 To what extent this tool provides

maintainability of user authentication for the
system?

I/5

10

☐ ☒ ☐ ☐

 FEF2.1.2 To what extent this tool allows
grouping of different users?

II/4

0
 ☐ ☐ ☐ ☒

FEF2.1.3 To what extent this tool provides

different views i.e. (documents,
requirements, attributes) for different

stakeholders?

III/3

0

☐ ☐ ☐ ☒

 FEF2.1.4 To what extent this tool allows
changes/ history of requirements/

negotiation?
IV/2 ☐ ☒ ☐ ☐

4

FEF2.1.5 To what extent this tool allows to
call earlier requirement description/versions

and register them into history context?
V/1

2

☐ ☒ ☐ ☐

16.00

FEF2.2 Classify requirements into logical user defined
groupings.

Priority
Full
Support

Above
Average
Support

Minimal
Support

No
Support

/Score

 FEF2.2.1 To what extent this tool allows
specifying attributes/properties of the

requirement?
I/3

6

☐ ☒ ☐ ☐

 FEF2.2.2 To what extent this tool provides
sorting according to different

attributes/properties?
II/2 ☒ ☐ ☐ ☐

6

 FEF2.2.3 To what extent this tool provides
filtering according to different

attributes/properties?
III/1

3

☒ ☐ ☐ ☐

15

 Appendix B

92

FEF2.3 Support secure, concurrent cooperative work
between members of a multidisciplinary team, which
may be geographically distributed.

Priority
Full
Support

Above
Average
Support

Minimal
Support

No
Support

/Score

FEF2.3.1 To what extent this tool provides
independent interface for geographically

distributed users?
I/3

3

☐ ☐ ☒ ☐

FEF2.3.2 To what extent this tool allow

making a copy for modification of an already
approved version of requirements

description in different abstract levels
(document, requirement)?

II/2

0

☐ ☐ ☐ ☒

FEF2.3.3 To what extent this tool provides
change approval cycle for multiple change

negotiation and approval before posting into
common repository?

III/1

0

☐ ☐ ☐ ☒

3.00
 FEF2.4 Maintain a comprehensive data dictionary of

all project components and requirements in a shared
repository

Priority
Full
Support

Above
Average
Support

Minimal
Support

No
Support

/Score

FEF2.4.1 To what extent this tool provides
the single repository or data and concept

dictionary?
II/2

2

☐ ☐ ☒ ☐

FEF2.4.2 To what extent this tool provide

separate data dictionaries for non-technical
users and technical users?

III/1

0

☐ ☐ ☐ ☒

FEF2.4.3 To what extent this tool provides

the help system to the user?
I/3

3

☐ ☐ ☒ ☐

5.00
 Activities of the specification Dimension

FEF3.1 Collect and store a common system's and a
product family's domain requirements.

Priority Full
Support

Above
Average
Support

Minimal
Support

No
Support

/Score

 FEF3.1.1 To what extent this tool enable I/4 8

 Appendix B

93

selection and extraction of common domain
requirements and requirements which
differentiate systems in product line? ☐ ☒ ☐ ☐

FEF3.1.2 To what extent this tool incorporate

requirements to a concrete project?
II/3

3

☐ ☐ ☒ ☐

FEF3.1.3 To what extent this tool
adapt/spread changes in domain

requirements to concrete projects within
domain?

III/2

2

☐ ☐ ☒ ☐

 FEF3.1.4 To what extent this tool provides
comparison of domain requirements

feasibility?
V/1

0

☐ ☐ ☐ ☒

13.00
 FEF3.2 Generate predefined and ad hoc reports,

documents that comply with standard industrial
templates, with support for presentation-quality
output and in-built document quality controls.

Priority
Full
Support

Above
Average
Support

Minimal
Support

No
Support

/Score

FEF3.2.1 To what extent this tool provides

wizards for report generation?
I/4

12
 ☒ ☐ ☐ ☐

FEF3.2.2 To what extent this tool provides

possibility to print report according to views
and sorting?

II/3

9

☒ ☐ ☐ ☒

 FEF3.2.3 To what extent this tool provide
possibility to print results of rationale,

brainstorm and etc.?
III/2

26

☐ ☐ ☒ ☐

FEF3.2.4 To what extent this tool provides

techniques for error checking?
IV/1

0

☐ ☐ ☐ ☒

47.00
 FEF3.3 Generate the complete specification, expressed

using formal language (informal and semiformal
languages might also be included), commonly agreed
by all stakeholders.

Priority
Full
Support

Above
Average
Support

Minimal
Support

No
Support

/Score

FEF3.3.1 To what extent this tool correspond
to standards of software documentation?

I/3

6

☐ ☒ ☐ ☐

 FEF3.3.2 To what extent this tool correspond II/2 0

 Appendix B

94

to standards defined by an organization?
☐ ☐ ☐ ☒

FEF3.3.3 To what extent this tool support
formal languages for complete, commonly

agreed requirements specification?
III/1

2

☐ ☒ ☐ ☐

8.00

Table 10-4 Calculated Results from SecTro2 Tool

Activities of the Representation Dimension

FEF1.1 Specify uniquely identifiable description using
informal language

Priority Full
Support

Above
Average
Support

Minimal
Support

No
Support

Score
Total
Score

/Score

102.00

FEF1.1.1 To what extent this tool provides
natural language description for security?

II/2

6

☒ ☐ ☐ ☐

FEF 1.1.2 To what extent this tool allows to
specify unique identification (ID) for each

separate requirement?
I/3 ☒ ☐ ☐ ☐

9

FEF 1.1.3 To what extent this tool allows

importing of requirements and their
description from text document?

III/1

0

☐ ☐ ☐ ☒

15

FEF1.2 Specify requirements using semi-formal
language

Priority
Full
Support

Above
Average
Support

Minimal
Support

No
Support

/Score

FEF1.2.1 To what extent this tool provides

support for semi-formal language
description?

I/2

6

☒ ☐ ☐ ☐

FEF 1.2.2 To what extent this tool provides

forward/backward traceability between
semi-formal informal and formal description?

II/1 ☐ ☒ ☐ ☐

2

8

FEF1.3 Specify requirements using formal languages
Priority Full

Support
Above
Average

Minimal
Support

No
Support /Score

 Appendix B

95

Support

FEF1.3.1 To what extent this tool provides
support for formal language description?

I/2

2

☐ ☐ ☒ ☐

FEF1.3.2 To what extent this tool provides

forward/backward traceability between
formal and informal, semiformal description?

II/1 ☐ ☐ ☐ ☒

0

2

FEF1.4 Define traceable associations between
requirements and the different elements of
requirements specification

Priority
Full
Support

Above
Average
Support

Minimal
Support

No
Support

/Score

FEF1.4.1 To what extent this tool provide
functions for testing traceability between

informal, semiformal, and formal
requirement description?

V/1

0

☐ ☐ ☐ ☒

 FEF1.4.2 To what extent this tool allows to
create parent Child traceable relations

between requirements?
I/5 ☐ ☒ ☐ ☐

10

FEF1.4.3 To what extent this tool allows to
maintain peer-to-peer traceable relations

between requirements?
II/4

8

☐ ☒ ☐ ☐

FEF1.4.4 To what extent this tool allows to

maintain traceable relations between various
related information?

III/3

6

☐ ☒ ☐ ☐

FEF1.4.5 To what extent this tool allows to

maintain forward/backward traceability
between a source of requirements, the

requirements and design?

IV/2 ☐ ☒ ☐ ☐

4

28
 FEF1.5 Connect seamlessly with other tools and

systems, by supporting interoperable protocols and
standards

Priority
Full
Support

Above
Average
Support

Minimal
Support

No
Support

/Score

 FEF1.5.1 To what extent this tool allows I/2 0

 Appendix B

96

importing/exporting requirements
description from text document? ☐ ☐ ☐ ☒

FEF1.5.2 To what extent this tool allows

importing/exporting of requirements from
graphical documents?

II/1

0

☐ ☐ ☐ ☒

0
 Activities of Agreement Dimension

FEF2.1 Maintain an audit trail of changes, archive
baseline versions; and engage a mechanism to
authenticate and approve change requests.

Priority
Full
Support

Above
Average
Support

Minimal
Support

No
Support

/Score

FEF2.1.1 To what extent this tool provides

maintainability of user authentication for the
system?

I/5

15

☒ ☐ ☐ ☐

FEF2.1.2 To what extent this tool allows

grouping of different users?
II/4 ☐ ☐ ☐ ☒

0

FEF2.1.3 To what extent this tool provides

different views i.e. (documents,
requirements, attributes) for different

stakeholders?

III/3

6

☐ ☒ ☐ ☐

 FEF2.1.4 To what extent this tool allows
changes/ history of requirements/

negotiation?
IV/2 ☐ ☐ ☐ ☒

0

FEF2.1.5 To what extent this tool allows to
call earlier requirement description/versions

and register them into history context?
V/1

0

☐ ☐ ☐ ☒

21.00

FEF2.2 Classify requirements into logical user defined
groupings.

Priority
Full
Support

Above
Average
Support

Minimal
Support

No
Support

/Score

FEF2.2.1 To what extent this tool allows
specifying attributes/properties of the

requirement?
I/3

9

☒ ☐ ☐ ☐

 FEF2.2.2 To what extent this tool provides II/2 ☐ ☐ ☐ ☒ 0

 Appendix B

97

sorting according to different
attributes/properties?

FEF2.2.3 To what extent this tool provides

filtering according to different
attributes/properties?

III/1

0

☐ ☐ ☐ ☒

9

FEF2.3 Support secure, concurrent cooperative work
between members of a multidisciplinary team, which
may be geographically distributed.

Priority
Full
Support

Above
Average
Support

Minimal
Support

No
Support

/Score

FEF2.3.1 To what extent this tool provides
independent interface for geographically

distributed users?
I/3

3

☐ ☐ ☒ ☐

FEF2.3.2 To what extent this tool allow

making a copy for modification of an already
approved version of requirements

description in different abstract levels
(document, requirement)?

II/2

0

☐ ☐ ☐ ☒

FEF2.3.3 To what extent this tool provides
change approval cycle for multiple change

negotiation and approval before posting into
common repository?

III/1

0

☐ ☐ ☐ ☒

3.00
 FEF2.4 Maintain a comprehensive data dictionary of

all project components and requirements in a shared
repository

Priority
Full
Support

Above
Average
Support

Minimal
Support

No
Support

/Score

FEF2.4.1 To what extent this tool provides
the single repository or data and concept

dictionary?
II/2

2

☐ ☐ ☒ ☐

FEF2.4.2 To what extent this tool provide

separate data dictionaries for non-technical
users and technical users?

III/1

0

☐ ☐ ☐ ☒

 FEF2.4.3 To what extent this tool provides
the help system to the user?

I/3

6
 ☐ ☒ ☐ ☐

8.00
 Activities of the specification Dimension

 Appendix B

98

FEF3.1 Collect and store a common system's and a
product family's domain requirements.

Priority
Full
Support

Above
Average
Support

Minimal
Support

No
Support

/Score

FEF3.1.1 To what extent this tool enable
selection and extraction of common domain

requirements and requirements which
differentiate systems in product line?

I/4

0

☐ ☐ ☐ ☒

FEF3.1.2 To what extent this tool incorporate

requirements to a concrete project?
II/3

0

☐ ☐ ☐ ☒

 FEF3.1.3 To what extent this tool
adapt/spread changes in domain

requirements to concrete projects within
domain?

III/2

0

☐ ☐ ☐ ☒

FEF3.1.4 To what extent this tool provides

comparison of domain requirements
feasibility?

V/1

0

☐ ☐ ☐ ☒

0.00
 FEF3.2 Generate predefined and ad hoc reports,

documents that comply with standard industrial
templates, with support for presentation-quality
output and in-built document quality controls.

Priority
Full
Support

Above
Average
Support

Minimal
Support

No
Support

/Score

FEF3.2.1 To what extent this tool provides
wizards for report generation?

I/4

0

☐ ☐ ☐ ☒

 FEF3.2.2 To what extent this tool provides
possibility to print report according to views

and sorting?
II/3

0

☐ ☐ ☐ ☒

 FEF3.2.3 To what extent this tool provide
possibility to print results of rationale,

brainstorm and etc.?
III/2

0

☐ ☐ ☐ ☒

FEF3.2.4 To what extent this tool provides

techniques for error checking?
IV/1

0

☐ ☐ ☐ ☒

0.00
 FEF3.3 Generate the complete specification, expressed

using formal language (informal and semiformal
languages might also be included), commonly agreed
by all stakeholders.

Priority
Full
Support

Above
Average
Support

Minimal
Support

No
Support

/Score

 Appendix B

99

FEF3.3.1 To what extent this tool correspond
to standards of software documentation?

I/3

6

☐ ☒ ☐ ☐

FEF3.3.2 To what extent this tool correspond

to standards defined by an organization?
II/2

0

☐ ☐ ☐ ☒

FEF3.3.3 To what extent this tool support
formal languages for complete, commonly

agreed requirements specification?
III/1

2

☐ ☒ ☐ ☐

8.00

Table 10-5 Calculated Results from Magic Draw Tool

Activities of the Representation Dimension

FEF1.1 Specify uniquely identifiable description using
informal language

Priority Full
Support

Above
Average
Support

Minimal
Support

No
Support

Score
Total
Score

/Score

110.00

FEF1.1.1 To what extent this tool provides
natural language description for security?

II/2

6

☒ ☐ ☐ ☐

 FEF 1.1.2 To what extent this tool allows to
specify unique identification (ID) for each

separate requirement?
I/3 ☒ ☐ ☐ ☐

9

FEF 1.1.3 To what extent this tool allows

importing of requirements and their
description from text document?

III/1

0

☐ ☐ ☐ ☒

15

FEF1.2 Specify requirements using semi-formal
language

Priority
Full
Support

Above
Average
Support

Minimal
Support

No
Support

/Score

FEF1.2.1 To what extent this tool provides

support for semi-formal language
description?

I/2

6

☒ ☐ ☐ ☐

FEF 1.2.2 To what extent this tool provides

forward/backward traceability between semi-
formal informal and formal description?

II/1 ☒ ☒ ☐ ☐

3

 Appendix B

100

9

FEF1.3 Specify requirements using formal languages

Priority
Full
Support

Above
Average
Support

Minimal
Support

No
Support

/Score

FEF1.3.1 To what extent this tool provides
support for formal language description?

I/2

4

☐ ☒ ☒ ☐

FEF1.3.2 To what extent this tool provides

forward/backward traceability between
formal and informal, semiformal description?

II/1 ☐ ☒ ☐ ☐

2

6

FEF1.4 Define traceable associations between
requirements and the different elements of
requirements specification

Priority
Full
Support

Above
Average
Support

Minimal
Support

No
Support

/Score

FEF1.4.1 To what extent this tool provide
functions for testing traceability between

informal, semiformal, and formal
requirement description?

V/1

0

☐ ☐ ☐ ☒

 FEF1.4.2 To what extent this tool allows to
create parent Child traceable relations

between requirements?
I/5 ☐ ☒ ☐ ☐

10

FEF1.4.3 To what extent this tool allows to
maintain peer-to-peer traceable relations

between requirements?
II/4

8

☐ ☒ ☐ ☐

FEF1.4.4 To what extent this tool allows to

maintain traceable relations between various
related information?

III/3

9

☒ ☐ ☐ ☐

FEF1.4.5 To what extent this tool allows to

maintain forward/backward traceability
between a source of requirements, the

requirements and design?

IV/2 ☐ ☒ ☐ ☐

4

31

 Appendix B

101

FEF1.5 Connect seamlessly with other tools and
systems, by supporting interoperable protocols and
standards

Priority
Full
Support

Above
Average
Support

Minimal
Support

No
Support

/Score

FEF1.5.1 To what extent this tool allows

importing/exporting requirements
description from text document?

I/2

0

☐ ☐ ☐ ☒

FEF1.5.2 To what extent this tool allows

importing/exporting of requirements from
graphical documents?

II/1

0

☐ ☐ ☐ ☒

0
 Activities of Agreement Dimension

FEF2.1 Maintain an audit trail of changes, archive
baseline versions; and engage a mechanism to
authenticate and approve change requests.

Priority
Full
Support

Above
Average
Support

Minimal
Support

No
Support

/Score

FEF2.1.1 To what extent this tool provides

maintainability of user authentication for the
system?

I/5

10

☐ ☒ ☐ ☐

 FEF2.1.2 To what extent this tool allows
grouping of different users?

II/4 ☐ ☐ ☐ ☒
0

FEF2.1.3 To what extent this tool provides

different views i.e. (documents,
requirements, attributes) for different

stakeholders?

III/3

6

☐ ☒ ☐ ☐

 FEF2.1.4 To what extent this tool allows
changes/ history of requirements/

negotiation?
IV/2 ☐ ☐ ☐ ☒

0

FEF2.1.5 To what extent this tool allows to
call earlier requirement description/versions

and register them into history context?
V/1

0

☐ ☐ ☐ ☒

16.00

FEF2.2 Classify requirements into logical user defined
groupings.

Priority
Full
Support

Above
Average
Support

Minimal
Support

No
Support

/Score

 FEF2.2.1 To what extent this tool allows
specifying attributes/properties of the

requirement?
I/3

6

☐ ☒ ☐ ☐

 Appendix B

102

FEF2.2.2 To what extent this tool provides
sorting according to different

attributes/properties?
II/2 ☐ ☐ ☐ ☒

0

FEF2.2.3 To what extent this tool provides

filtering according to different
attributes/properties?

III/1

0

☐ ☐ ☐ ☒

6
 FEF2.3 Support secure, concurrent cooperative work

between members of a multidisciplinary team, which
may be geographically distributed.

Priority
Full
Support

Above
Average
Support

Minimal
Support

No
Support

/Score

 FEF2.3.1 To what extent this tool provides
independent interface for geographically

distributed users?
I/3

6

☐ ☒ ☐ ☐

FEF2.3.2 To what extent this tool allow

making a copy for modification of an already
approved version of requirements description

in different abstract levels (document,
requirement)?

II/2 ☐ ☐ ☐ ☒

0

FEF2.3.3 To what extent this tool provides
change approval cycle for multiple change

negotiation and approval before posting into
common repository?

III/1

0

☐ ☐ ☐ ☒

6.00
 FEF2.4 Maintain a comprehensive data dictionary of

all project components and requirements in a shared
repository

Priority
Full
Support

Above
Average
Support

Minimal
Support

No
Support

/Score

FEF2.4.1 To what extent this tool provides the

single repository or data and concept
dictionary?

II/2

2

☐ ☐ ☒ ☐

FEF2.4.2 To what extent this tool provide

separate data dictionaries for non-technical
users and technical users?

III/1

2

☐ ☒ ☐ ☐

FEF2.4.3 To what extent this tool provides the

help system to the user?
I/3

9

☒ ☐ ☐ ☐

13.00
 Activities of the specification Dimension

 Appendix B

103

FEF3.1 Collect and store a common system's and a
product family's domain requirements.

Priority
Full
Support

Above
Average
Support

Minimal
Support

No
Support

/Score

FEF3.1.1 To what extent this tool enable
selection and extraction of common domain

requirements and requirements which
differentiate systems in product line?

I/4

0

☐ ☐ ☐ ☒

FEF3.1.2 To what extent this tool incorporate

requirements to a concrete project?
II/3

0

☐ ☐ ☐ ☒

 FEF3.1.3 To what extent this tool
adapt/spread changes in domain

requirements to concrete projects within
domain?

III/2

0

☐ ☐ ☐ ☒

FEF3.1.4 To what extent this tool provides

comparison of domain requirements
feasibility?

V/1

0

☐ ☐ ☐ ☒

0.00

FEF3.2 Generate predefined and ad hoc reports,
documents that comply with standard industrial
templates, with support for presentation-quality
output and in-built document quality controls.

Priority
Full
Support

Above
Average
Support

Minimal
Support

No
Support

/Score

FEF3.2.1 To what extent this tool provides
wizards for report generation?

I/4

0

☐ ☐ ☐ ☒

 FEF3.2.2 To what extent this tool provides
possibility to print report according to views

and sorting?
II/3

0

☐ ☐ ☐ ☒

 FEF3.2.3 To what extent this tool provide
possibility to print results of rationale,

brainstorm and etc.?
III/2

0

☐ ☐ ☐ ☒

FEF3.2.4 To what extent this tool provides

techniques for error checking?
IV/1

0

☐ ☐ ☐ ☒

0.00
 FEF3.3 Generate the complete specification, expressed

using formal language (informal and semiformal
languages might also be included), commonly agreed
by all stakeholders.

Priority
Full
Support

Above
Average
Support

Minimal
Support

No
Support

/Score

 Appendix B

104

FEF3.3.1 To what extent this tool correspond
to standards of software documentation?

I/3

6

☐ ☒ ☐ ☐

FEF3.3.2 To what extent this tool correspond

to standards defined by an organization?
II/2

0

☐ ☐ ☐ ☒

FEF3.3.3 To what extent this tool support
formal languages for complete, commonly

agreed requirements specification?
III/1

2

☐ ☒ ☐ ☐

8.00

105

APPENDIX-C
Below are the results and the score of security engineering tools evaluation using method

constructed in this research.

Table 11-1 Calculated Results for STS-TOOL

Table 0-1 Likert Scale for SR001-Making Awareness

Sample questions
Priority

Full
Support

Above
Average
Support

Minimal
Support

No
Support

Score Total Score

/Score

80

To which extent this tool provides online
support, e.g. downloads and documentation?

I/6

18 ☒ ☐ ☐ ☐

To what extent this tools’ book on

methodology is explained and/or to what
extent this tool adapts the methodology?

II/5

5

☐ ☐ ☒ ☐

To what extent this tool provides support for

the user manual?
III/4

12

☒ ☐ ☐ ☐

 To what extent this tool provides tutorials?
That will support and provide learning

opportunity.
IV/3

9

☒ ☐ ☐ ☐

To what extent this tool has gained popularity
to support and provide several publications?

V/2

4

☐ ☒ ☐ ☐

To what extent this tool provides support for
hands on wizards? These will guide engineers

through several aspects of tool?
VI/1

0

☐ ☐ ☐ ☒

48
 Table 0-2 Likert Scale for SR002-Understand Context

and Assets

Sample questions
Priority Full

Support

Above
Average
Support

Minimal
Support

No
Support

 /Score

To which extent this tool supports the feature
to create asset diagram, or at-least include a
feature similar to declare assets in efficient
way?

I/3

9 ☒ ☐ ☐ ☐

 Appendix C

106

To what extent this tool supports the feature
that includes a template to document assets
and goals?

II/2

0 ☐ ☐ ☐ ☒

To which extent this tool supports the feature
to create checklist of assets and goals?

III/1

0 ☐ ☐ ☐ ☒

9
 Table 0-3 Likert Scale for SR003-Security Requirements

Sample questions
Priority Full

Support

Above
Average
Support

Minimal
Support

No
Support

 /Score

To which extent this tool supports the feature
to create treatment diagram, or at-least
include a feature similar to declare treatments
in efficient way?

I/3

0 ☐ ☐ ☐ ☒

 To what extent this tool supports the feature
that can help selecting security requirements
elicitation techniques?

II/2

0 ☐ ☐ ☐ ☒

To what extent this tool supports template to
document security requirements?

III/1

0 ☐ ☐ ☐ ☒

0
 Table 0-4 Likert Scale for SR004-Risk Analysis

Sample questions
Priority Full

Support

Above
Average
Support

Minimal
Support

No
Support

 /Score

To which extent this tool supports feature to
create risk diagram, or at-least include a
feature similar to declare risks in efficient
way?

I/4

12 ☒ ☐ ☐ ☐

 To which extent this tool supports feature to
create threat diagram, or at-least include a
feature similar to declare threats in efficient
way?

II/3

9 ☒ ☐ ☐ ☐

 To what extent this tool supports template to
document risks?

III/2

0 ☐ ☐ ☐ ☒

 To what extent this tool supports feature to
create checklist of vulnerabilities, security
threats and risks?

IV/1

0

 Appendix C

107

☐ ☐ ☐ ☒

21
 Table 0-5 Likert Scale for SR005-Secure Design

Practices

Sample questions
Priority Full

Support

Above
Average
Support

Minimal
Support

No
Support

 /Score

To which extent this tool supports the feature
to create security mechanism, or at-least
include a feature similar to declare security
mechanism in efficient way?

I/2

0 ☐ ☐ ☐ ☒

To what extent this tool supports the feature
that can help selecting secure software
architecture and secure software design?

II/1

0 ☐ ☐ ☐ ☒

0
 Table 0-6 Likert Scale for SR006-Justify Design Solution

Sample questions
Priority Full

Support

Above
Average
Support

Minimal
Support

No
Support

 /Score

To which extent this tool supports feature
that can help calculating risk estimations?

I/3

0 ☐ ☐ ☐ ☒

 To what extent this tool supports feature that
can help categorizing and prioritizing security
requirements?

II/2

0 ☐ ☐ ☐ ☒

To what extent this tool supports mechanism
to estimate trade-off analysis?

III/1

0 ☐ ☐ ☐ ☒

0
 Table 0-7 Likert Scale for SR007-Response

Sample questions
Priority Full

Support

Above
Average
Support

Minimal
Support

No
Support

 /Score

To what extent this tool supports feature that
can help creating response plan?

I/2

2

 Appendix C

108

☐ ☐ ☒ ☐

 To what extent this tool supports feature to
create templates for security requirements
inspection?

II/1

0 ☐ ☐ ☐ ☒

2

Table 11-2 Calculated Results for CORAS TOOL

Table 0-1 Likert Scale for SR001-Making Awareness

Sample questions
Priority Full

Support

Above
Average
Support

Minimal
Support

No
Support

Score
Total
Score

/Score

109.00

To which extent this tool provides online
support, e.g. downloads and documentation?

I/6

18
 ☒ ☐ ☐ ☐

To what extent this tools’ book on

methodology is explained and/or to what
extent this tool adapts the methodology?

II/5

15

☒ ☐ ☐ ☐

 To what extent this tool provides support for
the user manual?

III/4

4
 ☐ ☐ ☒ ☐

 To what extent this tool provides tutorials?
That will support and provide learning

opportunity.
IV/3

9

☒ ☐ ☐ ☐

To what extent this tool has gained popularity
to support and provide several publications?

V/2

4

☐ ☒ ☐ ☐

To what extent this tool provides support for
hands on wizards? These will guide engineers

through several aspects of tool?
VI/1

0

☐ ☐ ☐ ☒

50.00
 Table 0-2 Likert Scale for SR002-Understand Context

and Assets

Sample questions
Priority

Full
Support

Above
Average
Support

Minimal
Support

No
Support

/Score

 To which extent this tool supports the feature I/3 9

 Appendix C

109

to create asset diagram, or at-least include a
feature similar to declare assets in efficient
way?

☒ ☐ ☐ ☐

 To what extent this tool supports the feature
that includes a template to document assets
and goals?

II/2

0

☐ ☐ ☐ ☒

To which extent this tool supports the feature
to create checklist of assets and goals?

III/1

0

☐ ☐ ☐ ☒

9
 Table 0-3 Likert Scale for SR003-Security Requirements

Sample questions
Priority

Full
Support

Above
Average
Support

Minimal
Support

No
Support

/Score

To which extent this tool supports the feature
to create treatment diagram, or at-least
include a feature similar to declare treatments
in efficient way?

I/3

9

☒ ☐ ☐ ☐

To what extent this tool supports the feature
that can help selecting security requirements
elicitation techniques?

II/2

0

☐ ☐ ☐ ☒

To what extent this tool supports template to
document security requirements?

III/1

0

☐ ☐ ☐ ☒

9
 Table 0-4 Likert Scale for SR004-Risk Analysis

Sample questions
Priority

Full
Support

Above
Average
Support

Minimal
Support

No
Support

/Score

To which extent this tool supports feature to
create risk diagram, or at-least include a
feature similar to declare risks in efficient
way?

I/4

12

☒ ☐ ☐ ☐

 To which extent this tool supports feature to
create threat diagram, or at-least include a
feature similar to declare threats in efficient
way?

II/3

9

☒ ☐ ☐ ☐

 To what extent this tool supports templates to III/2 0

 Appendix C

110

document risks? ☐ ☐ ☐ ☒

To what extent this tool supports feature to
create checklist of vulnerabilities, security
threats and risks?

IV/1

0

☐ ☐ ☐ ☒

21
 Table 0-5 Likert Scale for SR005-Secure Design

Practices

Sample questions
Priority

Full
Support

Above
Average
Support

Minimal
Support

No
Support

/Score

To which extent this tool supports the feature
to create security mechanism, or at-least
include a feature similar to declare security
mechanism in efficient way?

I/2

6

☒ ☐ ☐ ☐

To what extent this tool supports the feature
that can help selecting secure software
architecture and secure software design?

II/1

0

☐ ☐ ☐ ☒

6
 Table 0-6 Likert Scale for SR006-Justify Design Solution

Sample questions
Priority

Full
Support

Above
Average
Support

Minimal
Support

No
Support

/Score

To which extent this tool supports feature
that can help calculating risk estimations?

I/3

6

☐ ☒ ☐ ☐

To what extent this tool supports feature that
can help categorizing and prioritizing security
requirements?

II/2

0

☐ ☐ ☐ ☒

To what extent this tool supports mechanism
to estimate trade-off analysis?

III/1

2

☐ ☒ ☐ ☐

8.00
 Table 0-7 Likert Scale for SR007-Response

Sample questions
Priority

Full
Support

Above
Average
Support

Minimal
Support

No
Support

/Score

 To what extent this tool supports feature that I/2 6

 Appendix C

111

can help creating response plan?

☒ ☐ ☐ ☐

 To what extent this tool supports feature to
create templates for security requirements
inspection?

II/1

0

☐ ☐ ☐ ☒

6

Table 11-3 Calculated Results for SQUARE TOOL

Table 0-1 Likert Scale for SR001-Making Awareness

Sample questions
Priority Full

Support

Above
Average
Support

Minimal
Support

No
Support

Score
Total
Score

/Score

75.00

To which extent this tool provides online
support, e.g. downloads and documentation?

I/6

12
 ☐ ☒ ☐ ☐

To what extent this tools’ book on

methodology is explained and/or to what
extent this tool adapts the methodology?

II/5

5

☐ ☐ ☒ ☐

 To what extent this tool provides support for
the user manual?

III/4

0
 ☐ ☐ ☐ ☒

 To what extent this tool provides tutorials?
That will support and provide learning

opportunity.
IV/3

9

☐ ☐ ☐ ☒

To what extent this tool has gained popularity
to support and provide several publications?

V/2

4

☐ ☒ ☐ ☐

To what extent this tool provides support for
hands on wizards? These will guide engineers

through several aspects of tool?
VI/1

3

☒ ☐ ☐ ☐

33.00
 Table 0-2 Likert Scale for SR002-Understand Context

and Assets

Sample questions
Priority

Full
Support

Above
Average
Support

Minimal
Support

No
Support

/Score

 To which extent this tool supports the feature I/3 3

 Appendix C

112

to create asset diagram, or at-least include a
feature similar to declare assets in efficient
way?

☐ ☐ ☒ ☐

To what extent this tool supports the feature
that includes a template to document assets
and goals?

II/2

6

☒ ☐ ☐ ☐

To which extent this tool supports the feature
to create checklist of assets and goals?

III/1

3

☒ ☐ ☐ ☐

12
 Table 0-3 Likert Scale for SR003-Security Requirements

Sample questions
Priority

Full
Support

Above
Average
Support

Minimal
Support

No
Support

/Score

To which extent this tool supports the feature
to create treatment diagram, or at-least
include a feature similar to declare treatments
in efficient way?

I/3

3

☐ ☐ ☒ ☐

To what extent this tool supports the feature
that can help selecting security requirements
elicitation techniques?

II/2

6

☒ ☐ ☐ ☐

To what extent this tool supports template to
document security requirements?

III/1

3

☒ ☐ ☐ ☐

12
 Table 0-4 Likert Scale for SR004-Risk Analysis

Sample questions
Priority

Full
Support

Above
Average
Support

Minimal
Support

No
Support

/Score

To which extent this tool supports feature to
create risk diagram, or at-least include a
feature similar to declare risks in efficient
way?

I/4

0

☐ ☐ ☐ ☒

 To which extent this tool supports feature to
create threat diagram, or at-least include a
feature similar to declare threats in efficient
way?

II/3

0

☐ ☐ ☐ ☒

 To what extent this tool supports template to III/2 6

 Appendix C

113

document risks?
☒ ☐ ☐ ☐

To what extent this tool supports feature to
create checklist of vulnerabilities, security
threats and risks?

IV/1

3

☒ ☐ ☐ ☐

9
 Table 0-5 Likert Scale for SR005-Secure Design

Practices

Sample questions
Priority

Full
Support

Above
Average
Support

Minimal
Support

No
Support

/Score

To which extent this tool supports the feature
to create security mechanism, or at-least
include a feature similar to declare security
mechanism in efficient way?

I/2

0

☐ ☐ ☐ ☒

To what extent this tool supports the feature
that can help selecting secure software
architecture and secure software design?

II/1

0

☒ ☐ ☐ ☐

0
 Table 0-6 Likert Scale for SR006-Justify Design Solution

Sample questions
Priority

Full
Support

Above
Average
Support

Minimal
Support

No
Support

/Score

To which extent this tool supports feature
that can help calculating risk estimations?

I/3

0

☐ ☐ ☐ ☒

To what extent this tool supports feature that
can help categorizing and prioritizing security
requirements?

II/2

6

☒ ☐ ☐ ☐

To what extent this tool supports mechanism
to estimate trade-off analysis?

III/1

0

☐ ☐ ☐ ☒

6.00
 Table 0-7 Likert Scale for SR007-Response

 Sample questions Priority Full Above Minimal No

 Appendix C

114

/Score
Support Average

Support
Support Support

To what extent this tool supports feature that
can help creating response plan?

I/2

0

☐ ☐ ☐ ☒

To what extent this tool supports feature to
create templates for security requirements
inspection?

II/1

3

☒ ☐ ☐ ☐

3

Table 11-4 Calculated Results for SecTro2 TOOL

Table 0-1 Likert Scale for SR001-Making Awareness

Sample questions
Priority Full

Support

Above
Average
Support

Minimal
Support

No
Support

Score
Total
Score

/Score

80.00

To which extent this tool provides online
support, e.g. downloads and documentation?

I/6

12
 ☐ ☒ ☐ ☐

To what extent this tools’ book on

methodology is explained and/or to what
extent this tool adapts the methodology?

II/5

5

☐ ☐ ☒ ☐

 To what extent this tool provides support for
the user manual?

III/4

12
 ☒ ☐ ☐ ☐

 To what extent this tool provides tutorials?
That will support and provide learning

opportunity.
IV/3

0

☐ ☐ ☐ ☒

To what extent this tool has gained popularity
to support and provide several publications?

V/2

4

☐ ☒ ☐ ☐

To what extent this tool provides support for
hands on wizards? These will guide engineers

through several aspects of tool?
VI/1

0

☐ ☐ ☐ ☒

33.00
 Table 0-2 Likert Scale for SR002-Understand Context

and Assets

 Appendix C

115

Sample questions
Priority

Full
Support

Above
Average
Support

Minimal
Support

No
Support

/Score

To which extent this tool supports the feature
to create asset diagram, or at-least include a
feature similar to declare assets in efficient
way?

I/3

9

☒ ☐ ☐ ☐

To what extent this tool supports the feature
that includes a template to document assets
and goals?

II/2

0

☐ ☐ ☐ ☒

To which extent this tool supports the feature
to create checklist of assets and goals?

III/1

0

☐ ☐ ☐ ☒

9
 Table 0-3 Likert Scale for SR003-Security Requirements

Sample questions
Priority

Full
Support

Above
Average
Support

Minimal
Support

No
Support

/Score

To which extent this tool supports the feature
to create treatment diagram, or at-least
include a feature similar to declare treatments
in efficient way?

I/3

9

☒ ☐ ☐ ☐

To what extent this tool supports the feature
that can help selecting security requirements
elicitation techniques?

II/2

0

☐ ☐ ☐ ☒

To what extent this tool supports template to
document security requirements?

III/1

0

☐ ☐ ☐ ☒

9
 Table 0-4 Likert Scale for SR004-Risk Analysis

Sample questions
Priority

Full
Support

Above
Average
Support

Minimal
Support

No
Support

/Score

 To which extent this tool supports feature to I/4 12

 Appendix C

116

create risk diagram, or at-least include a
feature similar to declare risks in efficient
way?

☒ ☐ ☐ ☐

To which extent this tool supports feature to
create threat diagram, or at-least include a
feature similar to declare threats in efficient
way?

II/3

9

☒ ☐ ☐ ☐

 To what extent this tool supports template to
document risks?

III/2

0
 ☐ ☐ ☐ ☒

To what extent this tool supports feature to
create checklist of vulnerabilities, security
threats and risks?

IV/1

0

☐ ☐ ☐ ☒

21
 Table 0-5 Likert Scale for SR005-Secure Design

Practices

Sample questions
Priority

Full
Support

Above
Average
Support

Minimal
Support

No
Support

/Score

To which extent this tool supports the feature
to create security mechanism, or at-least
include a feature similar to declare security
mechanism in efficient way?

I/2

6

☒ ☐ ☐ ☐

To what extent this tool supports the feature
that can help selecting secure software
architecture and secure software design?

II/1

0

☐ ☐ ☐ ☒

6
 Table 0-6 Likert Scale for SR006-Justify Design Solution

Sample questions
Priority

Full
Support

Above
Average
Support

Minimal
Support

No
Support

/Score

To which extent this tool supports feature
that can help calculating risk estimations?

I/3

0

☐ ☐ ☐ ☒

To what extent this tool supports feature that
can help categorizing and prioritizing security
requirements?

II/2

0

☐ ☐ ☐ ☒

 Appendix C

117

To what extent this tool supports mechanism
to estimate trade-off analysis?

III/1

0

☐ ☐ ☐ ☒

0
 Table 0-7 Likert Scale for SR007-Response

Sample questions
Priority

Full
Support

Above
Average
Support

Minimal
Support

No
Support

/Score

To what extent this tool supports feature that
can help creating response plan?

I/2

2

☐ ☐ ☒ ☐

To what extent this tool supports feature to
create templates for security requirements
inspection?

II/1

0

☐ ☐ ☐ ☒

2

Table 11-5 Calculated Results for Magic Draw TOOL

Table 0-1 Likert Scale for SR001-Making Awareness

Sample questions
Priority Full

Support

Above
Average
Support

Minimal
Support

No
Support

Score
Total
Score

/Score

99.00

To which extent this tool provides online
support, e.g. downloads and documentation?

I/6

18
 ☒ ☐ ☐ ☐

To what extent this tools’ book on

methodology is explained and/or to what
extent this tool adapts the methodology?

II/5

5

☐ ☐ ☒ ☐

 To what extent this tool provides support for
the user manual?

III/4

12
 ☒ ☐ ☐ ☐

 To what extent this tool provides tutorials?
That will support and provide learning

opportunity.
IV/3

9

☒ ☐ ☐ ☐

 To what extent this tool has gained popularity V/2 2

 Appendix C

118

to support and provide several publications?
☐ ☐ ☒ ☐

To what extent this tool provides support for
hands on wizards? These will guide engineers

through several aspects of tool?
VI/1

2

☐ ☒ ☐ ☐

48.00
 Table 0-2 Likert Scale for SR002-Understand Context

and Assets

Sample questions
Priority

Full
Support

Above
Average
Support

Minimal
Support

No
Support

/Score

To which extent this tool supports the feature
to create asset diagram, or at-least include a
feature similar to declare assets in efficient
way?

I/3

9

☒ ☐ ☐ ☐

 To what extent this tool supports the feature
that includes a template to document assets
and goals?

II/2

0

☐ ☐ ☐ ☒

To which extent this tool supports the feature
to create checklist of assets and goals?

III/1

0

☐ ☐ ☐ ☒

9
 Table 0-3 Likert Scale for SR003-Security Requirements

Sample questions
Priority

Full
Support

Above
Average
Support

Minimal
Support

No
Support

/Score

 To which extent this tool supports the feature
to create treatment diagram, or at-least
include a feature similar to declare treatments
in efficient way?

I/3

9

☒ ☐ ☐ ☐

 To what extent this tool supports the feature
that can help selecting security requirements
elicitation techniques?

II/2

0

☐ ☐ ☐ ☒

 To what extent this tool supports template to
document security requirements?

III/1

0 ☐ ☐ ☐ ☒

9
 Table 0-4 Likert Scale for SR004-Risk Analysis

Sample questions
Priority

Full
Support

Above
Average
Support

Minimal
Support

No
Support

/Score

 To which extent this tool supports feature to I/4 12

 Appendix C

119

create risk diagram, or at-least include a
feature similar to declare risks in efficient
way?

☒ ☐ ☐ ☐

 To which extent this tool supports feature to
create threat diagram, or at-least include a
feature similar to declare threats in efficient
way?

II/3

9

☒ ☐ ☒ ☐

To what extent this tool supports template to
document risks?

III/2

0

☐ ☐ ☐ ☒

To what extent this tool supports feature to
create checklist of vulnerabilities, security
threats and risks?

IV/1

0

☐ ☐ ☐ ☒

21
 Table 0-5 Likert Scale for SR005-Secure Design

Practices

Sample questions
Priority

Full
Support

Above
Average
Support

Minimal
Support

No
Support

/Score

To which extent this tool supports the feature
to create security mechanism, or at-least
include a feature similar to declare security
mechanism in efficient way?

I/2

6

☒ ☐ ☐ ☐

To what extent this tool supports the feature
that can help selecting secure software
architecture and secure software design?

II/1

0

☐ ☐ ☐ ☒

6
 Table 0-6 Likert Scale for SR006-Justify Design Solution

Sample questions
Priority

Full
Support

Above
Average
Support

Minimal
Support

No
Support

/Score

To which extent this tool supports feature
that can help calculating risk estimations?

I/3

0

☐ ☐ ☐ ☒

 To what extent this tool supports feature that II/2 0

 Appendix C

120

can help categorizing and prioritizing security
requirements? ☐ ☐ ☐ ☒

To what extent this tool supports mechanism
to estimate trade-off analysis?

III/1

0

☐ ☐ ☐ ☒

0
 Table 0-7 Likert Scale for SR007-Response

Sample questions
Priority

Full
Support

Above
Average
Support

Minimal
Support

No
Support

/Score

To what extent this tool supports feature that
can help creating response plan?

I/2

6

☒ ☐ ☒ ☐

To what extent this tool supports feature to
create templates for security requirements
inspection?

II/1

0

☐ ☐ ☐ ☒

6

121

LICENSE

Non-exclusive license to reproduce thesis and make thesis public

1. I, Wajid Ali Khilji (Date of birth: 23-10-1985), herewith grant the University of Tartu a

free permit (non-exclusive license) to:

a. Reproduce, for the purpose of preservation and making available to the public,

including for addition to the DSpace digital archives until expiry of the term of

validity of the copyright, and

b. Make available to the public via the web environment of the University of Tartu,

including via the DSpace digital archives until expiry of the term of validity of the

copyright,

Of my thesis.

Title,

(Evaluation framework for software security requirements engineering tools)

Supervised by,

(Dr. Raimundas Matulevičius)

2. I am aware of the fact that the author retains these rights.

3. I certify that granting the non-exclusive license does not infringe the intellectual property

rights and rights arising from the Personal Data Protection Act.

Tartu, 06.11.2014

