
UNIVERSITY OF TARTU

FACULTY OF MATHEMATICS AND COMPUTER SCIENCE

Institute of Computer Science

Software Engineering

Taivo Teder

Extracting Role-Based Access Control Models from
Business Process Event Logs

Master’s thesis (30 ECTS)

Supervisor(s): Raimundas Matulevičius

Fabrizio M. Maggi

TARTU 2014

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace at Tartu University Library

https://core.ac.uk/display/83597398?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Extracting Role-Based Access Control Models from
Business Process Event Logs

Abstract

Today, as business processes are getting more complex and the volumes of stored data about
business process executions are increasing in size, collecting information for the analysis and
for the improvement of the business process security1, is becoming a complex task.
Information systems that support business processes record business process executions into
event logs which capture the behavior of system usage in terms of events. Business process
event logs can be used for analysing and improving the business process, but also for
analysing the information security. One of the main goals of security analysis is to check the
compliance with existing security requirements. Also event logs can be the basis for business
process mining, or shortly process mining. Utilizing bottom-up process mining on event logs,
we can extract business process-related information for security analysis. Process mining is
not just only for discovering business process models, but also other models, such as security
models. For this purpose, we present a possible approach to extract RBAC models
(semi-)automatically from event logs in XES format. The focus is also on determining the
protected business assets, such as document or other artifact data that is exchanged and
accessed during business process activities. In addition, we evaluate the applicability of this
approach with conformance checking where we check the compliance of a real-life event log
with respect to the LTL constraints translated from RBAC model. Eventually, the purpose of
the extracted RBAC models is that they provide a basis for security analysis and they can be
adapted by other applications in order to implement access control mechanism.

Keywords:

business process mining, Process-Aware Information System, event log, Role-Based Access
Control model

1 In the context of this work, the security of the information accessed and exchanged during business process

2

Rollipõhise juurdepääse kontrolli mudeli tuletamine
äriprotsessi sündmuste logide põhjal

Lühikokkuvõte

Keeruliste äriprotsesside ja järjest suurenevate andmemahtude juures on väljakutsuvaks
ülesandeks analüüsida ja parandada ettevõtte äriprotsessi andmeturvalisust. Infosüsteemid,
mis toetavad äriprotsessi mudeli (abstraktne esitus äriprotsessist) rakendamist, registreerivad
äriprotsessi tegevusi sündmustena eraldi logisse. Salvestatud sündmuste logid on aluseks
äriprotsessiga seotud andmete kaevamiseks. Need andmed on vajalikud äriprotsessi
analüüsimiseks ja parendamiseks, kuid neid andmeid võib kasutada ka turvaanalüüsiks.
Turvaanalüüsi üheks eesmärgiks on ka kontrollida, kas nende andmete hulgas turvalisusega
seotud informatsioon on kooskõlas praeguste turvanõuetega. Lisaks, äriprotsessi logide peal
saab rakendada äriprotsessikaeve (uurimisvaldkond, mis ühendab andmekaeve ja
äriprotsesside modelleerimise) tehnikaid, et luua äriprotsessi mudeleid. Lisaks äriprotsessi
mudelitele on võimalik tuletada ka teisi mudeleid, näiteks turvamudeleid, mida saab hiljem
kasutada turvameetmete tagamiseks infosüsteemis. Käesoleva töö eesmärgiks on esitada üks
võimalik meetod, kuidas luua rollipõhist ligipääsukontrolli esitatavaid turvamudeleid (Role-
Based Access Control models) XES-formaadis sündmuste logidest, mis on salvestatud
äriprotsessi toetava infosüsteemi poolt. Lisatähelepanu on suunatud kaitstavate infovarade
väljaselgitamiseks sündmuste logide põhjal. Need infovarad on näiteks dokumendid,
dokumendiväljad, või muud andmed, mida töödeldakse äriprotsessi tegevuste jooksul. Lisaks,
me hindame antud meetodi rakendatavust reaalse äriprotsessi sündmuste logi peal. Ühe
võimaliku meetodina me kontrollime sündmuste logi andmete ja seoste vastavust juurdepääsu
õigustega olemasoleva rollipõhise juurdepääsu kontrolli turvamudelis. Lõppkokkuvõttes võib
sündmuste logidest tuletatud rollipõhist ligipääsu kontrolli mudelit võtta aluseks
turvaanalüüsiks või rakendada mõnes süsteemis juurdepääsumehhanismina.

Võtmesõnad:

äriprotsessikaeve, äriprotsessilogid, infosüsteemid, rollipõhise ligipääsu kontrolli mudel

3

Table of Contents
1 Introduction...6

2 Background and Technology...8

2.1 Concepts of Process Mining..8

2.2 Event Logs...9

2.2.1 Basic Structure and Elements..9

2.2.2 eXtensible Event Stream (XES)...10

2.2.3 Requirements for Event Log..11

2.3 Role-Based Access Control...12

2.4 Terms used for describing RBAC concepts...13

2.5 RBAC Concepts Expressed through XES Elements...13

2.5.1 RBAC Operation..13

2.5.2 RBAC Subject and Role..14

2.5.3 RBAC Resource...14

2.6 Extensible Markup Language..14

2.7 Summary..15

3 Related Work...16

3.1 Organizational Mining...16

3.2 Extracting RBAC Models from Business Process Data..17

3.3 Comparsion of Related Works...18

4 An Approach to Extract RBAC Models from Business Process Event Logs........................20

4.1 Analysing Event Log...20

4.2 Algorithm to Extract Business Process Elements and Relationships............................21

4.3 Creating RBAC Model..22

4.4 Algorithm to Transform Business Process Relationships to RBAC Model Relationships
Using Transformation Rules..23

4.5 Exporting RBAC Model..25

4.6 Discussion..26

5 Proof of Concept...28

5.1 Analysing Event Log...28

5.2 Creating RBAC Model..30

5.3 Exporting RBAC Model..32

5.4 Using The Prototype..33

5.4.1 Comparison of RBAC Models With The Prototype..35

5.4.2 Exporting LTL Constraints..35

4

5.5 Discussion..36

6 Evaluation of The Approach Through Conformance Checking..37

6.1 Comparison of RBAC Models from Different Event Logs...37

6.2 Conformance Checking with LTL Formulas...38

6.3 A Running Example of Conformance Checking with LTL Rules.................................39

6.4 Discussion..43

7 Conclusions and Future Work...44

7.1 Limitations...44

7.2 Conclusions...44

7.3 Future Work...45

References..46

Appendix A – Example event log as tabular data...49

Appendix B – Example event log in format of XES..50

Appendix C – Event log structure..55

Appendix D – XML Schema Definition for RBAC model..56

Appendix E – Business process elements in event log in format of XES................................59

Appendix F – RBAC permissions derived from example event log..60

Appendix G – An example RBAC model in format of XML..61

Appendix H – Conformance checking results..64

Appendix I – Example LTL file...66

Appendix J – XES meta model..68

Appendix K – Prototype...69

Non-exclusive licence to reproduce thesis and make thesis public..70

5

1 Introduction
Today, more and more organizations are becoming dependent on information technology to
facilitate their business operations, thereby meeting their business objectives. Keeping track
of the performance of business activities in an organization has become important for process
analysis, which is essential for the organization to stay competitive and progress in time.
Most of the business process improvement decisions are driven by the knowledge stored by
information system. Therefore, organizations are concerned with the security (in terms of
confidentiality, integrity, and availability) of the business assets, which include information,
business process itself, and other confidential data.

A possible solution to protect business assets is to establish access control mechanism, such
as role-based access control (RBAC)[1]. RBAC introduces the concept of role, which is the
classification of users based on their qualifications, responsibilities, or authorities within an
organization. Users acquire the access (the “need”) to system resources (the “know”) through
being a member of a role. Resent years show that RBAC has been adopted for different
systems as the primary access control mechanism [2], including business process
management systems. This is mainly due to the fact that RBAC reduces the complexity and
simplifies the administration of access control.

Business process management systems, or in general process-aware systems (PAIS)[3], are
driven by explicit business process models. PAIS-s have built-in capabilities to record
business process executions as a stream of events (hence the name event log), where a single
event corresponds to a specified step in business process. Usually, business processes are
complex and event logs contain large volumes of data. To overcome these obstacles, a
bottom-up process mining is used for getting insights about business processes from event
logs. Process mining can be interpreted as an intersection between data mining and business
process modeling. Event logs are not just the source for discovering business process models,
but also the source for security analysis and checking the compliance with existing security
requirements [4]. Additionally, utilizing the potential of process mining, we can derive other
models, such as organizational models [5] or RBAC models [6]. In this work, we are
particularly interested in standard RBAC models[1]. These RBAC models serve as a basis for
security analysis and can be adapted by different applications in order to implement access
control mechanism.

The aim of this work is to present an approach how to extract RBAC models from event logs.
The main focus is on extracting information about business assets (such as different
documents and document fields) that needs to be protected. This work can be considered as a
complementary solution to existing approaches, which are discussed in section 3.2.

This thesis work tries to address the following research questions:

1. What data could be extracted from a business process event log and how this data
could be used for creating RBAC models?

Answering to the first question we specify what kind of information is even possible to
extract from event logs and present an approach to get RBAC models from extracted business
process data. In this thesis, the approach is divided into three steps. In the first step, we make
use of process mining technique to discover business process data from an event log. In the
second step, we create in-memory object of RBAC model via applying transofrmation rules
on extracted business process data. In the last step, we export RBAC model in XML-based
format which structure is presented using XML Schema Definition specifically composed for

6

this work.

2. How applicable is this approach on real-life business process event logs?

We evaluate the approach through conformance checking. First, we compare two RBAC
models created from different event logs produced by the same source information system.
Secondly, we test the compliance between RBAC models and an event log. For the second
conformance checking, we utilize the approach presented in [7], which makes use of Linear
Temporal Logic constraints as RBAC constraints.

This work is divided into eight chapters. In chapter 2, we give theoretical overview of
technologies and terminology used in this work. In chapter 3, we give the review of the state
of the art and contribution of this work given the state of the art. In chapter 4 and chapter 5
we describe the approach in step-wise manner and illustrate this approach with running
example. In chapter 6, we compare two RBAC models created from different event created
from the same information system. We check the RBAC model, specifically role-permission
relationships, compliance with an event log. In chapter 7, we summarize research and discuss
some future work.

7

2 Background and Technology
The purpose of this chapter is to give relevant background for this thesis topic. First, we
present the main concepts of process mining. Then we discuss business process event logs. In
particular, we introduce the basic elements and structure of typical event log, the primary
format for event log (eXtensible Event Stream (XES)) and the requirements that event log
needs to satisfy in order to be used in this thesis work. We introduce Role-Based Access
Control (RBAC) and the core RBAC model, which is used as the reference RBAC model in
the remainder of this thesis. We determine the terminology for discussing RBAC concepts in
this work. Then, we discuss how RBAC concepts are expressed through elements of event
log in XES format. Lastly, we present a short overview of eXchanged Markup Language
(XML) technology.

2.1 Concepts of Process Mining

In this section, we discuss the concepts of process mining [8]. In most cases business
processes are modelled in top-down manner to describe the desirable version of business
process. Usually, these models are presented in some modeling language, such as BPMN[9],
YAWL[10], EPCs[11], Petri Nets[12]. These explicit graphical models are used to give the
better understanding of the business process. Furthermore, these models can be configured
into information systems, such as Process-Aware Information System (PAIS), which is
defined as “a software system that manages and executes operational processes involving
people, applications, and/or information sources on the basis of process models”[3]. PAIS
records process execution data in process execution logs (denoted as event logs). PAIS
instantiates model multiple times, each instantiation stores new process instance (or case) into
the log. The motivation of process mining is that business processes are getting more
complex, increasing in size of activities, work-flow decisions, and participants. Therefore,
these models cannot be created by hand and there has to be a mature way how to get different
aspects of business process from business process execution logs.

Business process mining, or simply process mining, is a research discipline that develops and
provides means, such as techniques, tools (e.g., ProM[13]), algorithms (e.g., process control-
flow discovery α-algorithm developed in [14]), to discover, monitor, and improve real-life
business processes. There exists three types of process mining: discovery, conformance, and
enhancement of business processes.

The discovery technique takes on event log and extracts information about business process
from event log without having any prior information. This discovery technique is not used
only for creating process models, but to also for deriving other models, such as organizational
models [5] or, as in the context of this work, RBAC models [6][15].

The second type of process mining is used to measure the alignment between idealized
process model and the actual real-life process model as captured in an event log. In this work,
we are not checking conformance between business process model and event log, but
between RBAC model (specifically role-permission assignments) and event log. We utilize
the approach presented in [7] to use Linear Temporal Logic constraints generated from
authorization constrains to conform event log. In [16] it is shown how to conform business
process model using LTL-based constraints. Linear Temporal Logic, as the name implies,
uses temporal operators in addition to classical logical operators, such as always (□),
eventually (◊), until (U), weak next (W), and next (○). A subset of these operations are used in
this work when creating LTL formulas from RBAC constraints in section 6.2.

8

The third type of process mining is the enhancement of existing business process using the
data about real business process as recorded in an event log. Oftentimes, the actual process
deviates from the desired process. For this reason, the enhancement technique is to modify
the existing process model in order to better reflect the reality.

Process mining assumes that PAIS sequentially records business process activities as a stream
of events where each event is a part of particular process instance. PAIS can include
additional information with event, such as the performer or originator of the event (i.e., a
person or a system executing or initiating activity), the activity (i.e., a predefined step in the
process), the timestamp of the event, or the data elements of the event (e.g., cost, quantity
etc). Additionally, event can contain additional information about the lifecycle of an activity,
namely event type (the standard event life-cycle model in [8] Fig. 4.3). Event types can
indicate the start or the end of an activity, examples are start, schedule, complete, suspend.
The typical structure of event log is illustrated in Figure 16 (an example of such event log is
given in Table 11 as tabular data). Most of the graphical business process models depict the
control-flow (the ordering of activities) of business process, expressed in Petri Nets [12] or
other notation, however process mining can be applied to mine different perspectives of
business process other than control-flow [17]. In [8], there are discussed four main
perspectives that process mining is used for analysis of the business process:

• the control-flow perspective: the ordering of activities and corresponding paths;

• the organizational perspective: people and systems who are participating in the
process and how they are related; one goal is to determine the structure of an
organization by classifying people in terms of roles;

• the case perspective: describes the properties of a case (process instance), for example
tasks and originators working on them, or values of corresponding data elements
during one process instance;

• the time perspective: the timing and frequency of events.

In this work, we use process discovery technique to get information about activities,
performers, and data elements. Specifically, we are interested in the organizational
perspective, i.e., how people or systems are classified into roles, and the case perspective, i.e.,
who are the people or systems involved with different activities and which data elements they
manipulate. We pay less attention to time perspective (when) and work-flow perspective
(how).

2.2 Event Logs

In this chapter, we present the general structure of business process execution logs (denoted
as event logs) and describe one specific format of event log that is being used in this work.
Most of the concepts about event logs are adapted from [8].

2.2.1 Basic Structure and Elements

Business process executions are recorded in PAIS as a stream of events where each event is a
part of one process instance (denoted as case). For process mining, a list of information
pieces needs to be present in event log in order to mine business process (as listed also in
[8]):

• business process cases;

• events where each event corresponds to exactly one case;

9

• events in case are ordered;

• events can have attributes, such as the activity name (i.e., a well-defined step in the
process), the performer, the timestamp, and additional data elements.

The structure of event log (how these pieces of information are interrelated), is illustrated in
Figure 16. Oftentimes, business process activity which represents a single unit of work is
called task, or in other words atomic activity. In this thesis work, regardless of this
distinction, we use the term activity. Additionally, event can contain additional information
about the event type (i.e., lifecycle transition).

2.2.2 eXtensible Event Stream (XES)

The problem with event logs is that they are vendor-dependent, i.e., different vendors and
information systems define their own format for event logs. For this reason, IEEE Task Force
on Process Mining[18] suggests to use a standardized generally-acknowledged logging
format, called XES (eXtensible Event Stream). XES is supported by different process mining
tools, such as ProM[13], OpenXES[19], Nitro[20]. In here, we elaborate on some of the
syntax presented by XES standard, the full description is given in [21].

An XML-based XES document (see Figure 18) contains log element consisting of any
number of trace elements (i.e., cases). Each trace consists of event elements corresponding to
exactly one trace. Each of the log, trace, and event element can contain any number of
attributes with specific type. XES standard defines attribute types, such as String, Date, Int,
Float, and Boolean. In order to provide semantics to commonly used attributes (e.g. concept,
org, lifecycle, time etc.), XES standard introduces extensions. In XES format, some of these
extensions are: concept, organizational, time, and life-cycle, with prefixes, such as “concept”,
“org”, “time”, and “lifecycle”, respectively. The keys of all attributes defined by the
extension will be prepended by the extension prefix and separated by the colon [21], e.g., the
name of an activity is presented using “concept:name” attribute key and this attribute is
defined by concept extension. XES distinguishes two lists of global attributes: one for the
traces and for one events. In this work, we are particularly interested in attributes that are
used within the scope of events.

A mandatory part of XES is also to provide event classifiers, which are defined through a set
of attributes, i.e., attributes that give an identity to each event. For example, event with
Activity is based on “concept:name” attribute, event with Resource classifier is based on
“org:resource” attribute.

In this work, we use XES as the primary format of event logs. An example event log in XES
format is presented in Table 12. Mappings from business process data to XES elements are
presented in Table 1, where log element represents the entire business process. A trace
element represents a particular process case, where element log contains a number of traces.
Business process activity is defined through attribute with key “concept:name”, the performer
of an activity is defined through attribute with key “org:resource”, the execution time of an
activity is defined through attribute with key “time:timestamp”, event type is defined through
attribute with key “lifecycle:transition”, and additional information is defined through
attributes of types String, Date, Int, Float, or Boolean. All of these elements with attributes
are nested in a single element event. A set of events is nested in one specific trace element.

10

Table 1: Representation of event log elements in XES (adapted from [21])

Process log (as the top level element)

Case trace

Event event

Activity string element attribute with key
concept:name on the event level

Resource (i.e., person or system) string element attribute with key
org:resource on the event level

Time date element attribute with key
time:timestamp on the event level

Event type string element attribute with key
lifecycle:transition on the event
level

Additional attributes XES format allows to present attributes in
five different types: String, Date, Int,
Float, Boolean, depending on the value
data type it represents.

2.2.3 Requirements for Event Log

The applicability of the approach presented in this work depends on the completeness of an
event log in terms of business process elements. For this reason, events in event log in format
of XES needs to meet at least minimum set of requirements:

• Activity: event refers to activity using attribute with key “concept:name”.
Additionally, an entry in event log may include activity life-cycle information (also
referred to as event type), such as a start or a completion of an activity via attribute
with key “lifecycle:transition”.

• User: event refers to user using attribute with key “org:resource”.

• Role: event refers to role using attribute with key “org:role” alongside with user
information. If this requirement is not met and only user informaton is provided, then
additional effort is spent on classifying users into roles. Most likely, due to the large
amount of users, classification is done automatically using role mining techniques (a
selection of them is discussed under chapter 3). Later on, domain knowledge is
required to interpret these classifications and to make necessary corrections, because
these classifications may not accurately reflect the roles in the real business process.
Moreover, these classifications can be different for different data sets originating from
the same source information system. For convenience, we assume that the role
information is existent in event log. This implies that roles are predetermined and
some primitive role management is implemented into PAIS beforehand. There is also
an option to define roles and assign them for each and every user manually.

• Data elements: event includes domain-specific data attributes, which are represented
in the log using XES data element type definitions (described in section 2.2.2). Data
attributes and their values can be considered as valuable business assets, such as

11

resource identifier, invoice number and so on. Thus, data attributes needs to be
protected from unauthorized access within and also from outside of an organization.

If this information is available, we can discover business process element and relationships
from an event log as basis to get RBAC model.

2.3 Role-Based Access Control

In information systems security, Role-Based Access Control (RBAC)[1] is a security model
where the access to system resources is regulated through permissions assigned to roles. A
motivation to use RBAC model is that system can have a lot of users. For this reason, instead
of making access control decisions on the level of individual users, access control decisions
are determined on the level of roles that individual users have as part of an organization. The
concept of role generally implies the qualifications, responsibilities, or authorities within an
organization. Roles tend to be more stable and not change as frequently, which simplifies the
management of permissions.

For describing the basic concepts of RBAC, we refer to the reference RBAC model[1]
proposed as NIST2 standard. In core RBAC, a user can have one to many roles, permissions
are given to the appropriate roles, and a user requests a permission by being member of a
role. Users and roles have many-to-many relationship, i.e., a user can have many roles and a
role can have many users. Similarly, there is many-to-many relationship between roles and
permissions, i.e., a role can have many permissions and a permission can be associated with
many roles. In current work, the core RBAC model (or in other words, a flat RBAC model) is
used, therefore other extensions, such as hierarchical RBAC, constrained RBAC, are
discarded.

The core RBAC model defines a minimum set of RBAC elements and relationships to define
a role-based access control system (as depicted on Figure 1). There are five main RBAC
elements: users, roles, objects, operations, and permissions. A user (also denoted as a
subject) is defined as a person or a system. A role is defined as a job or a function within an
organization. Role can refer to the authority and responsibilities that are delegated to the user
assigned to the role. A permission is an approval to perform an operation on one or more
protected objects. In most cases, “permissions are always positive and confer the ability to the
holder of the permission to perform some action(s) in the system”[22]. An operation is an
executable sequence of instructions which can be invoked to perform some task or job
function for the user. The nature of the permission operations depend on the implementation
details and system type, but in general, operations include create, read, update, and delete (in
terms of CRUD implementation). An object (also denoted as a resource) is a document or a
piece of information on which operations are performed by users, therefore it needs to be
protected to prevent unauthorized access. The RBAC model embodies three relationships (as
can be seen on Figure 1): user-role relationship, role-permission relationship, and operation-
object (as permission) relationship.

2 National Institute of Standards and Technology (NIST): http://www.nist.gov/

12

http://www.nist.gov/

2.4 Terms used for describing RBAC concepts

In this section, we present the terminology used for discussing RBAC concepts during this
work. The RBAC model is semantically the same as presented in section 2.3, however we
have introduced some small changes to it, as illustrated in RBAC model as UML[23] diagram
(see Figure 2).

In business process context, users (denoted also as subjects in the following parts of the
work) are referred to as (human) resources [8] or originators, i.e., a person or a system
performing some activity. Although, in the context of this work, resource as material or a
piece of information is used for denoting documents or other artifacts accessed during
business process execution (in core RBAC definition referred to as objects). These
documents may contain fields or data attributes (in our case resource attributes) which are
manipulated during some business activity. In RBAC context, business activity is an
operation on resource.

In most cases, the event log does not include the information to identify resources in the form
of documents or artifacts, only the different data attributes as key-value pairs as a part of
some document or artifact. Therefore, we assume that semantically the composition of
resource attributes is a resource (as also depicted in Figure 2). Hence, protecting each
resource attribute is protecting implicitly the whole resource.

2.5 RBAC Concepts Expressed through XES Elements

2.5.1 RBAC Operation

Every process instance contains a sequence of events. In the scope of a single event, business

13

Figure 2: RBAC model as UML class diagram

Figure 1: Role-Based Access Control model (adapted from [1])

process activity is recorded using string element with attribute value “concept:name”. This
activity is considered as an RBAC operation on protected resource.

Event entry can contain also event type to specify business process activity, such as start or
completion of an activity, which is expressed using string element with attribute value
“lifecycle:transition”. Thus, an activity in conjuction with a event type is an RBAC operation.

RBAC operations can be also of different types. For example, when defining RBAC model in
model-driven approach when using SecureUML[22], these types are referred to as action
types and each type “represents a class of security relevant operations on a particular type of
protected resource”. In RBAC definition, as discussed in section 2.3, we interpreted them as
CRUD operations, such as create, read, update, or delete operation. However, this kind of
information is not captured within event logs and it is difficult or even impossible to derive
this information from event logs. Therefore, operation types are not handled explicitly in
current work.

2.5.2 RBAC Subject and Role

User and role information are expressed through “Organizational” extension of XES using
the extension prefix “org”[21], Hence, string elements are used which have key attributes
with values “org:resource” and “org:role” for denoting user and role, respectively.

2.5.3 RBAC Resource

In current approach, data attribute keys and data attribute values which are extracted from an
event log are considered as RBAC resources. Event log can also include data attributes that
may not be relevant when creating RBAC model. It requires manual intervention for sorting
them out by domain expert. Additionally, some of the global attributes are used not only on
the level of event, but also on the level of entire process instance. For the simplicity, only data
attributes are considered that are associated with particular event (specifically, with particular
task). In terms of RBAC, data attributes are protected resources.

XES element (in the scope of event) RBAC element

string element with attribute value
„concept:name“

Operation

string element with attribute value
„lifecycle:transition“

Specification of an operation

string element with attribute value
„org:resource“

User (or subject)

string element with attribute value „org:role“ Role

All the data attributes in the scope of event Resource attribute

2.6 Extensible Markup Language

Extensible Markup Language (XML)[24] is a markup language for documents to present its
contents in a structured way. XML allows to express semantics of the elements, which makes
the XML document both human-readable and machine-readable. XML is considered as one
of the main data storage and exchange formats, because it is widely used as a base for

14

integration and communication between different applications.

The validation of XML is done using schemas, such as XML Schema Definition (XSD)[25].
XSD formally describes the purpose of the XML document, specifically the structure and
constraints, which the XML document needs to conform in order to be valid.

In order to use the contents of XML document in an application, XML processors, or simply
XML parsers, take the XML document and specification (for example XSD) as input and read
in the information stored in XML document. If XSD or DTD (Document Type Definition) is
specified, XML processor will also give the validation.

In this work, XML document is used for presenting the RBAC model, which can be adapted
by other applications.

2.7 Summary

In this chapter, we presented the concepts and technologies used in this thesis. In particular,
we introduced the main concepts of process mining. We discussed the business process event
logs, especially the primary format for event log and the minimum requirements for event log
used in this work. We introduced the RBAC model definition which is the fundamental to the
remainder of this work. We discussed how the XES event log elements are interpreted as
RBAC model concepts. Lastly, we gave a short overview of XML technology.

15

3 Related Work
In this chapter, we give an overview of the state of the art. First, we discuss the approaches
regarding process mining, specifically role mining or organizational mining, which can be
used for extracting data for RBAC models. Then, we give an overview of existing approaches
related with extracting RBAC models from business process data stored in specification files
or business process event logs. Finally, we compare the related works against the current
solution and highlight the contributions of this work.

3.1 Organizational Mining

Our main interest in process mining is to extract business process related data from an event
log, specifically different business process elements and their relationships which can be
mapped to RBAC concepts. In process mining research field, a lot of effort has been devoted
to control-flow discovery. However, there exists many process mining algorithms that mine
different perspectives of business process [17] that could be potentially contribute to creating
RBAC models, other than just business process control-flow. In [17], a role assignment
perspective is presented, which captures the relationships between roles and activities. These
relationships are discovered by algorithm that clusters subjects using similarity metric. Some
of the organizational mining techniques are presented in [5] which can be used for
discovering organizational perspective of business process, such as organizational structure
and interactions between different organizational entities. In [5], organizational entity is
defined as a set of originators (persons or machines executing business process activities)
who represent some organizational unit, role, etc. The methods that are included in the
mentioned approach [5] are also supported by different plug-ins of open-source process
mining workbench ProM[13], such as Organizational Miner, Social network miner. However,
these process mining techniques do not focus on deriving RBAC model elements, therefore
they are not designed to extract RBAC data and create RBAC models from event logs.

In the field of role mining, there have been different methods proposed how to derive role
information from different system configuration sources. Kuhlmann et al. uses data mining
techniques (e.g., association rule algorithm, hierarchical clustering) to find roles from an
existing database of cross-platform access rights [26]. Subsequently, RBAC model can be
created based on these detected patterns. Molloy et al. propose an approach for finding
RBAC model based on the observed usage of the permissions by system users [27]. The
approach uses generative machine learning algorithms, such as Latent Dirichlet Allocation
(LDA) and Author-Topic Model (ATM), which are enhanced with a discretization procedure
to convert the probabilistic assignments into actual binary permission to role and role to user
assignments. Another approach proposed by Molloy et al. is to mine roles with semantic
meanings [28]. The authors make use of available attributes attached with user data (for
example, job title, department name, location) and possible permission information
(permission parameters, permission updates, permission usage) which help to create roles
with semantic meanings. The idea behind this approach is that “a semantically meaningful
role should correspond to a real-world concept, and a real-world concept can be described by
an expression of user-attributes”[28]. In this work, we apply the same principle on the
protected resources and their attributes within event log, i.e., a group of data attributes
semantically form a resource.

These previous role mining techniques are not fully incorporated within this work. The main
reason is that the event log in format of XES can include role information, which is annotated
with “org:role” attribute key. Thus, the “org:role” attribute can be used to mine roles for

16

RBAC model.

3.2 Extracting RBAC Models from Business Process Data

Mengling et al. have proposed an approach [29] how to extract RBAC model from business
process specification presented in Business Process Execution Language (BPEL)[30]. In
particular, they present mappings from BPEL to RBAC elements. For example, BPEL
partner and partnerRole represent roles. BPEL activities for incoming messages, such as
pick, receive, and synchronous invoke, are considered as RBAC operations. BPEL port types
(as the interfaces to actual implementation of the system) are regarded as RBAC objects.
Therefore, permissions are operation-object pairs. The authors also provide extraction
mechanism, using XSLT transformation script, how to transform XML-encoded BPEL
process to RBAC model in XML format supported by access control policy management tool
called xoRBAC[31] (a component of role engineering tool called xoRET[32]). The presented
work is similar to this thesis contribution in a sense that these approaches are concerned with
access control for business processes, although sources, where RBAC data is extracted from,
are different.

Baumgrass presents an approach [6] of deriving current state RBAC models from event logs
which is the most similar work to this thesis. In several aspects, the approach is the same,
specifically when mapping event log elements in format of XES to RBAC model elements.
However, there are still some conceptual differences, which needs to be highlighted.
Baumgrass focuses on more role engineering and organizational mining techniques to
discover roles if no role information is present in an event log. The role mining method used
in that work is adapted from [5], which is assigning subjects into roles based on the similarity
of performed tasks. At first, each subject has exactly one role. In the next step, subjects with
similar permissions (performing similar tasks) are grouped together into single role.
Eventually, these relations between different roles will result in a role hierarchy. In this work,
an assumption has been made that role information is present in an event log (using XES
organizational extension). The main reason is that both role and subject information are
required in order to validate this approach (see chapter 6). Using this classification algorithm
may give different results for different event logs. However, in conformance checking the
classifications of users as roles needs to be the same for both event logs. In reality, if there is
no role information, then these user classifications needs to be examined and conformed by
domain worker before creating the RBAC model. This indicates that the process of creating
RBAC cannot be fully automated when there is no roles specified beforehand. Therefore, in
this work for simplicity, roles are identified using the “org:role” attribute in event logs. In
addition, our approach is only concerned with flat RBAC models without role hierarchy,
constraints, and separation of duty properties.

Another major difference is that, the only specified protected RBAC resource is information
system (referred to as source from which the event log is extracted) in [6], whereas in this
thesis, protected resources are resource attributes represented as data attributes in event logs.
These data attributes can be interpreted as different data fields of documents or artifacts used
during business process and they have a value to the organization. In [6], business process
activities are identified as permissions, because they are performed only on one object
(information system). Whereas in current work, there can be a number of resources and
permissions are resource-operation pairs. In terms of Information System Security Risk
Management (ISSRM)[33], the protected resource in [6] is considered as information system
asset (material asset3) which supports business assets (immaterial assets, such as information,

3 Expect software

17

processes). Therefore, the approach presented [6] tries to establish access control on the level
of information system, whereas current work on the level of information system resources.

The last notable difference is in the use of tool for access control policy management system,
called xoRBAC[31], in the approach [1]. This tool can be integrated with software, which
requires integration via C or tcl linkage. In order to fill this gap in current work, a prototype
(see section 5.4) is developed, which demonstrates the applicability of current approach and
allows to make preliminary adjustments to the RBAC data. xoRBAC provides also features,
which support constrained RBAC. Constrained RBAC (section 3.3 in [1]) defines notions
called static and dynamic separation of duties. An extension to [6], Baumgrass et al. present
an approach [15] for deriving static and dynamic separation of duties as well as subject and
role binding constraints from event logs. Constrained RBAC model and binding constraints
are out of the scope of this work.

3.3 Comparsion of Related Works

In this section, we present a comparison between some of the related works and current work
(see Table 2). We have taken into account the following characteristics: Business process
event logs – is the approach related with business process event logs; RBAC – does this work
serves as basis for creating RBAC models; RBAC presented standard format – is the RBAC
model presented explicitly in some standard format; Protected business assets – is this work
concerned with protecting business assets, such as document data. All of these selected
approaches support extracting role information from system configuration files or logs, which
we have left out from the characteristics.

Three approaches are not using event log as the source to extract information. For example,
in [26] the roles are found from large database of cross-platform access rights, in [27] the
roles are mined from access log records (as permissions usages), in [28] roles with semantical
meanings are discovered from a synthesized data set. The solutions which are not focused on
creating RBAC models, do not give an explicit representations of RBAC either nor do they
are concerned with protecting business assets. The solutions presented in [6] and [29] include
creating RBAC models from the extracted data, which are exported in XML-based format
that is supported by xoRBAC[31]. One can argue, if the solution [29] is protecting business
assets or not. In [29], BPEL portTypes are interfaces to objects, therefore it can be said that
business assets are protected indirectly. As we discussed in previous section, then in [6] the
only protected resource is information system, which makes unclear what are the data
attributes and what operations are permitted on data resources.

The key focus of this approach is to protect business assets through access control, therefore
this approach complements the work [6] discussed in section 3.2. The main novelty of this
approach lies in creating RBAC model automatically based on the business process
information extracted from an event log. Another contribution is storing the RBAC model in
XML-based format that can be adapted easily by different applications. For example,
information systems that implement RBAC or access control policy management systems.

18

Table 2: Comparison of related works

Business
process event

logs

RBAC RBAC
presented
standard
format

Protected
business

assets

Organization model mining [5] Yes No No No

Role mining using data mining
techniques [26]

No No No No

Machine learning to detect access
control policies [27]

No No No No

Role mining based on the
semantic meanings based on user
attributes [28]

No No No No

Deriving current state RBAC
models from event logs [6]

Yes Yes Yes (XML-
based format
supported by
xoRBAC)

No
(indirectly
through
information
system).

Creating RBAC model from
BPEL based business process
[29]

No Yes Yes (XML-
based format
supported by
xoRBAC)

Yes

Current approach Yes Yes Yes Yes

19

4 An Approach to Extract RBAC Models from Business
Process Event Logs

In this chapter, we present our contribution which includes the method to derive an RBAC
model from an event log which consists of three main steps, as illustrated in Figure 3. In the
first step, called analysis, a process mining technique is used to extract process-related data
from an event log in XES format. In the next step, extracted data can be transformed into an
in-memory RBAC model. Before that, minor adjustments could be made to the extracted
data, so that the data and relationships would reflect actual settings of the business process. In
the final step, an RBAC model is exported to the XML-based format in order to support the
data exchange between different applications, e.g., information systems could implement the
RBAC model or access policy management systems could be used to enhance the RBAC
model.

4.1 Analysing Event Log

Before an event log can be imported and analyzed, it needs to meet predefined requirements
(see section 2.2.3). In this work, we consider event logs represented in XES format (described
in ch. 2.2.2). The XES format supports the basic business process elements and has been
presented as a standard logging format by IEEE Task Force on Process Mining[18]. The
major benefit of using XES is that we can avoid tackling problems that may arise when using
different vendor-dependent business process logs. Analysis is important for getting insights
about the business process by extracting data and data relationships from the event log before
proceeding with creating an RBAC model.

The first step involves importing and analysing the event log. The analysis consists of parsing
the event log and extracting information about roles, originators, activities, data attributes of
the business process, and creating relationships between these elements (see Figure 4). For
this purpose, an algorithm is used, described in section 4.2.

When analysing the event log, no information about the secured resource is present in it, but
only a set of data attributes. Semantically, a composition of these data attributes describes the

20

Figure 3: Step-wise approach of deriving RBAC model from an event log

Figure 4: Business process elements and relationships elicited form an
event log

resource. The resource attributes are interpreted as protected resources. We assume that they
have potentially a business-critical importance to the organization. Additionally, in this work,
activities in conjunction with event type (such as start or completion of an activity) are
considered activities.

4.2 Algorithm to Extract Business Process Elements and
Relationships

In this section, we describe the high-level algorithm (see Algorithm 1) for discovering
business process elements and their relationships. First, we need to have an event log as
input. Then we can begin with the procedure by instantiating variables, where:

1. R is a finite set of roles present in the event log,

2. O is a finite set of originators present in the event log,

3. A is a finite set of activities present in the event log,

4. and D is a finite set of data attributes (in here, we consider data attribute keys)
present in the event log.

We define projections, such as πA(e)=a , πO (e)=o , πR(e)=r , πD(e)=d on
every event. An event is defined as a 4-tuple e=(a ,o , r , d)∈E , where a is an activity,

o is an originator, r is a role, d is a data attribute recorded with the event, and
E is the universe of the events contained in the event log. For simplicity, we define only

one projection for data attribute (i.e., data attribute key) d , however there can be more
different data attributes captured with the event.

We also define different assignments as follows:

a) Role-to-originator assignments:
RO={(r , orig)∈R×O∣∃e∈E ,πR(e)=r∧πO (e)=orig } . RO relation means that

if at least one event e∈E with originator orig∈O and role r∈R is recorded
in the event log, then we assign role r to originator orig .

b) Data-to-activity assignments: DA={(d ,a)∈D×A∣∃e∈E ,πD(e)=d∧πA=a } .
DA relation means that if at least one event e∈E with data attribute d ∈D

and activity a∈A is recorded in the event log, then we assign data attribute d
to activity a , i.e., this data attribute d can be accessed during activity a .

c) Activity-to-role assignments: AR={(a , r)∈A x R∣∃e∈E ,πA(e)=a∧πR(e)=r } .
AR relation means that if at least one event e∈E , where role r∈R executes

activity a∈A , is recorded in the event log, then we assign activity a to role
r , i.e., activity a can be executed by an originator with role r .

During the procedure we iterate over every event e∈E recorded in event log and check if
the event has any of the required elements attached. At every step we update the appropriate
value sets and relations. Finally, after completing the procedure, we have an in-memory
business process model, i.e., business process elements with data and relationships between
these elements.

21

Algorithm 1: High-level algorithm to elicit business process elements and their relationships

Input: event log in XES format
Name: discovering business process elements and relationships
Output: in-memory business process model

set R←∅ ,O←∅ , A←∅ , D←∅
for each event e∈E do
 // get activity, originator, role, and data attribute from e
 a←πA(e) , orig←πO (e) , r←πR(e) , d ←πD (e)
 // add elements to appropriate sets
 A←A∪{a} , R←R∪{r} , O←O∪{orig} , D←D∪{d }
 // add relations as assignments
 RO←RO∪{(r , orig)} , DA←DA∪{(d ,a)} , AR←AR∪{(a , r)}
endfor

4.3 Creating RBAC Model

Before proceeding with the second step, minor refinements can be made to the extracted
information. The adjustments might include changing role-subject, role-activity relationships,
and if necessary changing role names and data attributes (excluding the ones that are not
necessary). The rationale behind this refinement is to confirm assignments of users to roles,
actual activities performed by role, and select data attributes which are considered valuable
business assets to the organization. This is a manual activity that needs to be carried out by a
domain expert to assure that the information accurately reflects the actual real life process.

In order to create an RBAC model from an in-memory business process as a set of business
process elements with values and relationships, we introduce transformation rules to translate
those business process elements and relationships (as in Figure 4) into RBAC model elements
and relationships (as in Figure 2). During this step, we take all the knowledge collected about
the business process and place it in the context of security constraints in the form of an
RBAC model. In general, most of the concepts are the same for business process models and
RBAC models. Thus, transformation rules take care of renaming business process elements to
RBAC model elements. The main value of transformation rules is to create permissions for
different roles based on the extracted business process information. As illustrated in Table 3,
we take business process elements (including element values) role, originator, activity, and
data attribute, and create respective RBAC model elements (with values): role, subject,
operation, and resource attribute. In the RBAC model, we do not create relationships
between role and activity or originator and activity. Instead, we have a role-permission
assignment, where permission is an operation-resource attribute mapping (or activity-data
attribute, in the of business process terminology).

22

Table 3: Tranformation rules for transforming business process elements and relations to
RBAC model elements and relationships

Business process RBAC model Comment

Role Role
Business process roles are
translated to RBAC roles.

Originator Subject
Originators (as users) are
translated to RBAC subjects.

Activity Operation
Business process activities are
translated to RBAC operations.

Data (or data attribute)
Resource (or resource
attribute)

Data (or data attributes) are
translated to RBAC resources (or
resource attributes).

Role-Activity -
No direct role-operation in the
RBAC model.

Originator-Activity -
No direct subject-operation in
the RBAC model.

Activity-Data attribute
Operation-Resource
attribute

Activities that access or
manipulate data attributes are
translated to operations on
resource attributes. In the of
RBAC terminology, this
relationship is called as
permission.

- Role-Permission

This relationship is created
based on the Role-Activity and
Activity-Data attribute
relationships from the business
process.

4.4 Algorithm to Transform Business Process Relationships to
RBAC Model Relationships Using Transformation Rules

In this section, we describe the high-level algorithm (see Algorithm 2) to transform business
process elements and relationships to RBAC model elements and relationships using the
transformation rules presented in Table 3.

First, we need to have as input an in-memory business process. In-memory business process
consists of a set of roles R , a set of originators O , a set of activities A , a set of data
attributes D , and assignments RO , DA , and AR (descriptions and informal
definitions are given in section 4.2).

We begin the procedure by instantiating the variables for the RBAC model:

23

1. RRBAC is a finite set of RBAC roles;

2. S RBAC is a finite set of RBAC subjects;

3. ORBAC is a finite set of RBAC operations;

4. RARBAC is a finite set of RBAC resource attributes;

5. and PER is a finite set of RBAC permissions.

We also define different assignments:

1. Role-to-subject assignments: RS RBAC
={(r , s)∈RRBAC×S RBAC ,(r , s)∈RO } . RS RBAC

relation means that for every role-originator assignment RO in business process
model, there is role-to-subject assignment RS RBAC

 in the RBAC model.

2. Resource-to-operation assignments:
RAO RBAC

={(res , o)∈RARBAC×ORBAC∣∃(res , o)∈DA} . RAO RBAC
 relation means that

for every data-to-activity assignment DA in the business process model, there is a
resource-to-operation assignment RAO RBAC

 in the RBAC model.

3. Permission assignments:
PER={(res , o , r)∈RES RBAC×ORBAC ×RRBAC ,(o , r)∈AR∧(res , o)∈DA} . PER

relation means that for every such resource-activity assignment (d ,a1)∈DA and
activity-to-role assignment (a2, r)∈AR where d ∈D , a1, a2∈A and a1=a2 ,

r∈R in business process model, there exists permission (res , op , r)∈PER in
RBAC model, where res∈RARBAC is protected resource attribute, op∈ORBAC is
RBAC operation, r∈RRBAC is role, and res∈RARBAC corresponds to d ∈D ,

op∈ORBAC corresponds to a1 and a2 , and r∈R corresponds to
r∈RRBAC .

Finally, after applying the transformation rules on the in-memory business process, we get the
in-memory RBAC model, whose components and relationships correspond to the RBAC
model definition presented in section 2.3.

Algorithm 2: High-level algorithm to transform a business process model into a RBAC model

Input: in-memory business process model
Name: algorithm to transform business process model into RBAC model
Output: in-memory RBAC model

set RRBAC←∅ , S RBAC ←∅ ,ORBAC ←∅ , RARBAC ←∅ , PRBAC ←∅

for each activity a∈A
 opRBAC ←a
 ORBAC←ORBAC∪{opRBAC }
endfor

for each originator o∈O
 subjectRBAC ←o
 S RBAC← S RBAC∪{subjectRBAC }
endfor

for each role r∈R

24

 r RBAC←r
 RRBAC← RRBAC∪{r RBAC }
endfor

// Role-subjects assignments
for each role-to-originator (r , o)∈RO

 roRBAC ←(r , o)
 RS RBAC

←RS RBAC
∪{roRBAC }

endfor

for each data attribute key d ∈D
 d RBAC←d
 RES RBAC←RES RBAC∪{d RBAC }
endfor

// Resource-operation assignments
for each data-to-activity (d , a)∈DA

 da RBAC←(d ,a)

 RES O RBAC
←RES ORBAC

∪{daRBAC }
endfor

// Permission assignments
for each resource resRBAC∈RA
 for each operation oRBAC∈ORBAC

 for each role r RBAC∈RRBAC

 if (resRBAC , oRBAC)∈DA∧(oRBAC , r RBAC)∈AR

 then
 per ←(resRBAC , oRBAC , r RBAC)

 RA←RA∪{per}
 endif
 endfor
 endfor
endfor

4.5 Exporting RBAC Model

After the RBAC data is extracted from an event log, we can create an XML document which
presents the RBAC model. We decided to use the XML format, because it is supported in
many environments, and is a base for integration and communication between different
applications. XML is platform-independent and is not only used for showing data values but
also constraints and relationships between data. Therefore, it is suitable for capturing RBAC
model elements and relationships. In this work, an XML document is used for making RBAC
models available to other applications, for example when implementing an RBAC
mechanism into the information system that supports business processes or when importing it
into an access control policy management system.

The structure of the XML document is provided in XML Schema Definition (XSD), which is
graphically represented in Figure 5 (the content of XSD file is given in Table 13). The XSD
for RBAC models defines the structure and necessary RBAC components (such as roles,
subjects, operations, resources or data resources), and the corresponding relationships (for
example role to subject assignments, operations on resources). There is a separate element in

25

the XML document for permissions. XML document does not only contain permissions, but
also declares RBAC component instances in a separate list with unique identifier. These
instances are referred in other parts of the document with this unique identifier. The XSD also
defines sub-elements operations and values for resources, i.e., permissible operations on
resource and possible values of resource. Permissions element is divided into sub-elements
by resource, which in turn consists of sub-elements permission. Permission has attributes like
role and operation (representing the role-to-operation assignment). Permissions could have
also been presented as a list of flat elements, all having attributes resource, role, and
operation, but this is just a matter of representation.

4.6 Discussion

An event log can include information about user groups or departments (using “org:group”
key in XES), which should not be interpreted as roles. This kind of categorization is used for
dividing users into departments or larger user groups based on the organizational goals.
Therefore, this information can be used to develop an enterprise-wide RBAC model as an
extension of the standard RBAC model. In this work, we consider only simple RBAC models
without the mentioned extension.

In the core RBAC definition (section 2.3), the user has a permission for an operation that
changes a single resource. However, when we are dealing with business process event logs,
then during a business process activity, multiple data attributes as data resources are
manipulated. We have agreed that a composition of data attributes within an event is a

26

Figure 5: XML Schema Definition for RBAC model

resource and modifying one or many data attributes implies that whole resource is also
modified, although no information about whole resource is explicitly captured in event log.
Another difference with the standard RBAC definition is missing information about
operations with action types, such as create, read, update, delete. Action type information is
impossible to be automatically extracted from a log. Determining action types of different
operations would require insights about the business process. For the sake of simplicity, we
have not considered action types in our RBAC model, but they can be seen as an
improvement of the current approach.

27

5 Proof of Concept
In this chapter, we illustrate the step-wise approach on a running example, which is an
adjusted scenario from [8]. The scenario describes a process for handling a request for ticket
compensation within an airline (the process model is depicted in Figure 6). In section 5.1, we
present the results of analysing the example event log. In section 5.2, we present the results of
creating RBAC model from the business process information extracted in the analysis step. In
section 5.3, we present the output of exporting the created RBAC model in XML format. In
section 5.4, we explain the usage of the developed prototype for this thesis. The purpose of
this prototype is to demonstrate the applicability of the approach to create RBAC models
from event logs (semi-)automatically.

5.1 Analysing Event Log

Prerequisite for the first step is that we have an event log of the business process, which is
possibly generated by a non-RBAC information system. The event log needs to be in XES
format and meets the predefined requirements introduced in section 2.2.3. Once we have the
event log, we import the event log into the prototype application for analysis. The analysis
includes extracting business process related data and relationships from an event log using a
process mining technique (the algorithm is given in Algorithm 1). As a result, we get
different elements and relationships of the business process (in [17], they are referred to as
business process entities and relationships) needed for constructing RBAC model.

First, we find role-to-originator assignments, i.e., roles, originators, and relationships between
them (as shown in Table 4). In our example, every user has exactly one role, however a user
can have more than one role (based on the RBAC definition given in section 2.3). We can see
from the table there are 3 different roles: Assistant, Manager, and Expert; and there are in
total 5 different users: Pete, Ellen, Sara, Mike, Sean, where each subject is assigned to a role.

28

Figure 6: Business process that corresponds to the example scenario

Table 4: Role-to-originator assignments discovered from the event log represented in Table
12

Originator Role

Pete Assistant

Ellen Assistant

Sara Manager

Mike Assistant

Sean Expert

Next we find data and data attributes being processed during the business activities. A list of
data attributes and activities extracted from the example event log is given in Table 5. There
are 3 data attributes (cost, cid (client id), and status) and there are in total 8 activities (i.e.,
Register request, Check ticket, Examine thoroughly, Examine casually, Decide, Reinitiate
request, Reject request, and Pay compensation).

In business process, one activity can manipulate multiple data resource attributes at once (as
we can see also from the table), which is different from the standard RBAC, where one
operation (an activity) can change only one data resource. However, as discussed in section
4.6, we consider compositions of data attributes resulting in a single resource. Therefore,
when we speak in terms of RBAC, then it is acceptable to change multiple data resource
attributes of a single data resource (a document or an artifact which is comprised of different
data fields) during one single operation.

Table 5: Activities on different data attributes discovered from the example event log

Data attribute(s) Activity

cost, cid, status Register request

cost, cid, status Check ticket

cost, cid, status Examine thoroughly

cost, cid, status Examine casually

cost, cid, status Decide

cost, cid, status Reinitiate request

cost, cid, status Reject request

cost, cid, status Pay compensation

Lastly, we find roles executing particular activities (see Table 6). Each activity is performed
by only one role, although a role can be assigned to many users and an activity can be
performed by many users. From the business point of view, one can also make conclusions
about what are the business tasks that different roles are responsible for.

29

Table 6: Role and activity assignments discovered from the example event log

Activity Role

Register request Assistant

Check ticket Assistant

Examine thoroughly Expert

Examine casually Assistant

Decide Manager

Reinitiate request Manager

Reject request Manager

Pay compensation Assistant

5.2 Creating RBAC Model

Prerequisite for creating an RBAC model is to have different perspectives of business process
as an in-memory business process model (discovered in the first step). Once we have an in-
memory business process, we can transform it into an in-memory RBAC model using the
transformation rules implemented in the prototype. The transformation rules (also presented
in Table 3) and the outcomes are presented in Table 7.

Table 7: Results of transforming an in-memory business process model into an in-memory
RBAC model using transformation rules

Transformation rule Business process model RBAC model

Role -> Role Assistant
Manager
Expert

Assistant
Manager
Expert

Originator -> Subject Pete
Ellen
Sara
Mike
Sean

Pete
Ellen
Sara
Mike
Sean

Role-Originator -> Role-
Subject

Presented in Table 4, only in
the business process context.

Presented in Table 4, only in
the RBAC model context.

Data (or data attribute) ->
Resource (or resource
attribute)

cost
cid
status

cost
cid
status

Role-Activity -> Role-
Operation

The same element contents
and relationships as presented
in Table 6, only in the
business process context.

-

Activity-Data attribute ->
Operation-Resource attribute
(permission)

The same element contents
and relationships as presented
in Table 5, only in the

The same element contents
and relationships as presented
in Table 5, only in the RBAC

30

Transformation rule Business process model RBAC model

Role -> Role Assistant
Manager
Expert

Assistant
Manager
Expert

business process context. model context.

Role-Permission - Role-Permission assignments
are presented in Table 14.

After applying the transformation, we get the following RBAC components and contents:

• subjects: Pete, Ellen, Sara, Mike, Sean (the same individuals already identified within
the business process);

• roles: Assistant, Manager, and Expert (the same roles already identified within
business the process);

• role-to-subject relationships: Assistant - Pete, Ellen, Mike; Manager - Sara; Expert -
Sean (the same relationships already identified in Table 4);

• protected resource attributes: cost, data, status;

• permissions (a flat representation is given in Table 14).

We visualize the in-memory RBAC model using SecureUML[22] (see Figure 7). The
diagram shows that TicketCompensationRequest is a protected resource as a composition of
the discovered resource attributes cost, cid, and status. In reality, information about resource
(specifically the name of the resource) may not be present in event log. Therefore, in order to
get protected resource and resource attributes as valuable assets for the business, they need to
be recorded in the event log, so that they can be used as a basis when creating the RBAC
model.

In the SecureUML diagram (see Figure 7), role-to-user assignments are presented as
associations with stereotype <<secuml.roleAssignment>>. A permission, such as
ManagerTicktetCompensationRequestPermission, is presented as an association class with
stereotype <<secuml.permission>> between role Manager (a role class annotated with
stereotype <<secuml.role>>) and resource TicketCompensationRequest (a resource class
annotated with stereotype <<secuml.resource>>). Based on the running example, Manager
has permissions to perform operations decide, reinitiateRequest, and rejectRequest on
resource TicketCompensationRequest.

31

5.3 Exporting RBAC Model

Prerequisite for exporting RBAC model in XML format is to have created an in-memory
object of RBAC model using our prototype application. Once we have an in-memory RBAC
model, we can use the XML writer implemented in our prototype to generate our RBAC
model (in the form of declarative access control policies) as an XML document, whose
structure and data types are defined using XML Schema (represented in Table 13).

A fragment of the XML document generated for our running example is given in Figure 8. As
we can see, the XML document contains a complete list of RBAC data, such as subjects,
roles, resources, and permissions, and including all of the data relationships, such as the role-
to-subject, resource-operation assignments, and permissions. Most importantly, we can
capture the RBAC model components and relationships in the XML document (the full
contents of the XML document for our running example is given in Table 15) as they are
represented in our in-memory RBAC model (as illustrated in Figure 7 using SecureUML).
The RBAC model in XML format can be used by different applications for implementing
access control mechanisms for information systems that support the underlying business
process.

32

Figure 7: TicketCompensationRequest resource permissions presented using SecureUML

5.4 Using The Prototype

In this section, we describe the overall process of using the developed prototype for creating
RBAC models from event logs. Event log can be opened using Open event log in the File
menu. The only supported event log file type is XES. Once we have the event log imported,
we can run the analysis by clicking on the Analyze button. Event log file is internally
processed and an algorithm is applied to discover business process elements and
relationships.

After analysis, different views of discovered business process information are displayed in
three tabs: Roles, Attributes, and Operations (see Figure 9). These three different views show
role-to-originator (or role-to-subject) relationships, attribute-activity (or resource-operation)
relationships, and role-activity (or role-operation) relationships derived from the extracted
business process information.

33

Figure 8: A fragment of the XML document representing the RBAC model

Minor adjustments can be introduced to discovered data. For instance, we can rename
discovered roles in Roles tab, change assignments of role-to-subject in Roles tab and role-
operation in Operations tab. We can choose data attributes in Attributes tab which we think
are considered as protected resources. New roles can be added to RBAC model using Add
role button in Roles tab. New role can be assigned to admissible operations in the Operations
tab. Unfortunately, this prototype does not allow to add any other new relationships between
discovered business process elements.

Once the analysis is completed, RBAC model can be created by clicking on the Create RBAC
model button. Internally, in-memory object of RBAC model is created after the
transformation rules are applied on the business process data and relationships. Next we can
export the RBAC model in XML format via Export (also in the File menu there is an Export
button) and save it on the local hard drive. The XML file includes necessary RBAC model
elements, such roles, subjects, data, resources, and permissions, and relationships between
these elements.

Additionally, already existing RBAC model in XML format can be imported by clicking on
the Import in the File menu. Optionally, this imported data can be modified, as discussed
before, and new RBAC model can be created with the new adjustments. Otherwise, by

34

Figure 9: An analyzed event log which different views are presented in three tabs: Roles,
Attributes, and Operations

clicking on the Create RBAC model, new in-memory object is created based on the imported
data. The idea is to allow to modify and use already existing RBAC model instead of creating
RBAC from an event log again.

5.4.1 Comparison of RBAC Models With The Prototype

We can validate the created in-memory RBAC model against different RBAC model For the
validation, the other RBAC modal needs to be in XML format (follows the XML Schema
definition for our RBAC model as presented in Table 13) and can be imported by clicking on
the Validate button. If there are no differences, the application will notify the user. Otherwise,
a separate window opens where user can handle the discrepancies between different RBAC
models (see Figure 10). The user can resolve the differences (potential violations), which is
accepting or rejecting the differences, by clicking on the Resolve and export button. In the
background, these two RBAC models are merged together into new resolved RBAC model
with changes accepted by the user.

5.4.2 Exporting LTL Constraints

For the validation of current approach, additional functionality was implemented into the
prototype to create Linear Temporal Logic formulas from RBAC model constraints
(specifically role-permission assignments). When in-memory RBAC model is created, we can
export LTL formulas based on the RBAC constraints by clicking on the Export LTL formulas
in the File menu (see Figure 11). In the background, an algorithm is applied on the RBAC
model constraints to get LTL formulas, which then are exported as LTL file. The generated
LTL can be used for checking conformance between RBAC model constraints and an event
log, as will be discussed in section 6.2.

35

Figure 10: Violation handling between different RBAC models

5.5 Discussion

In here we give some reasoning regarding running example and RBAC model concepts.
Business process activities can compose of more complex tasks than just manipulating data
attributes. In addition, the activity names can be also too ambiguous and do not indicate what
data attributes are actually accessed or changed, for example „decide“, „examine
thoroughly“, „examine casually“. For this reason, we only concentrate on the data attributes
being captured in an event log and the activities, despite their names, associated with these
attributes.

In most cases, event logs do not include information about action types (such as create, read,
update, delete) information, therefore it is impossible to automatically detect action types for
RBAC operations without such information, For this reason, we have not added any action
type information to our RBAC models and have not presented this information in
SecureUML diagram (see Figure 7). This is different to the standard SecureUML metamodel
[22] where every permission includes possible types of actions on every resource attribute. In
addition, for the sake of simplicity, we have not explicitly presenting any resource attribute
specific methods in the SecureUML diagram or in our RBAC models, because they are
mostly getting and setting data attribute values.

36

Figure 11: Exporting RBAC model contraints as LTL contraints

6 Evaluation of The Approach Through Conformance
Checking

In this chapter, we evaluate the approach (presented in chapter 4) through conformance
checking. The conformance checking is divided into two parts. In the first part (see 6.1), we
show how we compare two RBAC models extracted from different event logs produced by
the same source information system and how we resolve the differences between these RBAC
models. In the second part (see 6.2), we show how we check the conformance of the event
log and the LTL formulas, which are translated from RBAC models. Lastly, we provide a
running example how the conformance checking is done on two real-life event logs.

6.1 Comparison of RBAC Models from Different Event Logs

A real-life scenario would be that the RBAC model is implemented into the information
system. However, we might still want to check if RBAC policies are enforced correctly and if
there are any deviations as possible vulnerabilities that might pose a threat to the security of
the information system and its data. If the system is process-aware and stores business
process executions as a stream of events in format of XES, then we can use this event log to
extract RBAC data, as described in section 4.1. After that, we can confirm if there are any
deviations with the previous RBAC model and newly extracted RBAC model.

The first part of the conformance checking is illustrated in Figure 12. Prerequisite for this
comparison is that we have two different event logs which are produced by the same
information system. These event logs are the input for creating RBAC models using the
approach presented in chapter 4. The first RBAC model extracted from the first event log is
considered as the base RBAC model, denoted as RBAC model A. The second RBAC model
extracted from the second event log (assumingly the newest event log) is considered as the
recent RBAC model, denoted as RBAC model B, which is validated against RBAC model A.
For the validation of these two RBAC models, we compare RBAC model constraints, i.e.,
permissions assigned to some particular role. If there are discrepancies in these constraints
then we interpret them as violations. In order to determine these violations, a two-way check
is performed: the RBAC model B is tested against the RBAC model A and vice versa. The

37

Figure 12: Extracting RBAC model A and RBAC model B from different logs and adjusting
RBAC model A to RBAC model B

check needs to be done in both directions in order to get permissions introduced by the
second RBAC model B and permissions that are in the first RBAC model A but not in the
second RBAC model B. For this reason, there can be different causes for these violations:

• the base RBAC model A can be outdated containing permissions that are not in effect
anymore;

• business process and responsibilities within an organization has changed, therefore
new permissions are introduced into the RBAC model B;

• the extracted RBAC model B contains permissions that are not defined in the base
RBAC model A nor these permissions are introduced by organization (possible
violations).

As a conclusion, not every case of violation is intentional. Violation handling needs to be
performed by knowledge worker who then distinguishes whether a violation is intentional or
not. After the knowledge worker has resolved all of the discrepancies, the adjusted RBAC
model can be generated which takes into account new changes.

6.2 Conformance Checking with LTL Formulas

The second part of the conformance checking is illustrated in Figure 13. The rationale behind
this conformance checking is that the RBAC model constraints might not always be fully
compliant with the business process executions as they are captured in an event log.
Therefore, we want to show that if we improve the RBAC model by introducing new RBAC
permissions, which is extracted from the event log, then the results could be better, too.

For this purpose, we use RBAC model A as the RBAC model, which is not fully compliant

38

Figure 13: Creating LTL formulas based on the RBAC model A and the adjusted RBAC
model. These LTL formulas are used to check the event log conformance against the RBAC
models.

with the event log B. In order to improve the RBAC model A, we use the method described in
the previous section 6.1. We extract the RBAC model B from the event log B. After the
comparison of the RBAC model A and RBAC model B, we adjust the RBAC model A to
RBAC model B, which is essentially creating new RBAC model with the accepted
differences. As a result, we get the adjusted RBAC model, which can be interpreted as the
improved RBAC model.

For checking of the RBAC model A and the adjusted RBAC model constraints (role-
permission assignments) and the business process executions in the event log B, we utilize
the approach presented in [7] where LTL formulas are generated from business process-
related RBAC models.

We create an LTL formula for every role-permission assignment, the formula template is
presented in Table 8. The formula specifies if always some event with data attribute named
ATTR and operation ACTIVITY (optionally with EVENT_TYPE) occurs, then it is executed by
the authorized subject P out of n authorized subjects. These set of subjects belong to
respectful roles which have the permission. An excerpt of LTL file with example formula is
given in Table 9. We use subjects instead of roles in LTL formulas, because for LTL checker
plug-in there is no standard definition for role and only subject declarations (i.e.,
“ate.originator”) are supported. Another reason could be that in most event logs there are no
role information included.

Table 8: LTL formula to check role-permission assignment

[](((ATTR != "" /\ activity == ACTIVITY /\ eventType == EVENT_TYPE) ->
(subject == P1 \/ (subject == P_N-1 \/ subject == P_N ...))));

Table 9: LTL formula to check role-permission assignment for activity „Examine casually“

formula RO_Assistant_attr1_examine_casually () := {}
[](((attr1 != "" /\ activity == "examine casually") -> (subject ==
"Mike" \/ (subject == "Ellen" \/ subject == "Pete"))));

If this statement does not hold for some event in the sequence of events, then we can say that
the event in the sequence of the events is not consistent with this formula and could be a
possible violation with respect to RBAC model.

As illustrated in Figure 13, we use LTL checker plug-in to perform the conformance
checking. LTL checker plug-in expects an event log (possibly in format of XES) and LTL file
with the LTL formulas as the input in order to start analysing event log and checking the log
against LTL formulas. First, we check the conformance of the RBAC model A and the
business process executions in the event log B. Next, we check the conformance of the
adjusted RBAC model and the business process executions in the event log B. Ideally, the
results for the adjusted RBAC model should be improved, i.e., the adjusted RBAC model is
more compliant with the event log B with respect to the RBAC model A.

6.3 A Running Example of Conformance Checking with LTL Rules

In this section, we illustrate the conformance checking with LTL formulas on a running
example. For this purpose, we use two different real-life event logs which originate from the
incident and problem management system of Volvo IT Belgium, called VINST[34], and were
prepared for the BPI Challenge 2013 [35]. The first event log is about open problems, and the
second event log is about closed problems. These event logs meet the requirements presented

39

in section 2.2.3.

We create the base RBAC model A from the event log A, closed cases, and the RBAC model
B from the event log B, open cases. We want to know how much the RBAC model A
conforms to the business process executions in the event log B and check if how much the
conformance improves when adjusting the RBAC model A to RBAC model B.

We have implemented RBAC model validation into the developed prototype. We use the
prototype to validate RBAC model B against the RBAC model A. An extract of the validation
results are given in Table 10 (for full list see Table 16), which consists of different examples
of violations. Violations are categorized as follows:

• Not allowed – no such authorization constraint is defined in the base RBAC model A,
although role, operation, and resource definitions are the same. For example, an
individual with role C_5 is not allowed to perform operation Completed\nClosed on
product, because this is not permitted according to the RBAC model A, although such
combination is present in the RBAC model B. Remark: Activities and event types of
activities are separated with “\n”.

• New role, new resource, new operation – the RBAC model B introduces new role,
resource, or operation definitions. For example, resource (or resource attribute)
organization involved is not present in base RBAC model descriptions.

• Outdated – authorization constraint defined in base RBAC model is not used anymore
in other BRAC model.

Once we have validated the RBAC model B against the RBAC model A, we can create the
adjusted RBAC model.

Table 10: An extract of validation results of two RBAC models for open and closed cases

Role
Permission

Reason
Operation Resource

C_5 Completed\nClosed product Not allowed

C_7 Completed\nClosed product New role

E_9 Accepted\nIn
Progress

product New role

C_5 Completed\nClosed resource country Not allowed

C_5 Completed\nClosed organization country Not allowed

C_7 Accepted\nAssigned organization country New role

E_9 Accepted\nWait organization country New role

E_1 Completed\nClosed organization involved New resource

C_7 Completed\nClosed organization involved New resource, new
role

C_5 Accepted\nWait impact Outdated

Next, we create LTL formulas based on the RBAC model A and the adjusted RBAC model
constraints, specifically role-permissions assignments. For this purpose, a high-level
algorithm (see Algorithm 3) is implemented into the developed prototype to generate LTL

40

formulas. The algorithm takes input: RBAC data attribute as protected resource attribute,
RBAC operation (or activity in business process), and a list of RBAC subjects. These three
attributes represent the role-permission relationship, where the role is a set of users and the
permission is the pair of attribute and operation. The output of the algorithm is the assembled
formula. These formulas are gathered into LTL file (with ltl file extension), which can be
used by the LTL checker plug-in[36] of the process mining workbench ProM[13]. The
contents of an example LTL file is given in Table 17).

Once we have created the LTL formulas for the RBAC model A and for the adjusted RBAC
model, we make the use of the LTL checker plug-in which expects two inputs: an LTL file
which constraints LTL formulas and an event log which is checked against these LTL
formulas. We perform two conformance checks with LTL plug-in, first with the RBAC model
A and the event log B, and then with the adjusted RBAC model and the event log B.

Algorithm 3: High-level algorithm to compose LTL formula for role-permission assignment

function createRolePermissionFormula(attribute, operation, subjects)
formula = ''
formulaA = ''
eventType = extractEventTypeFromOperation(operation)
if eventType != '' then

formulaA = '(attribute != "" /\ activity == "operation" /\
eventType == "eventType")'

else
 formulaA = '(attribute != "" /\ activity == "operation")'
endif
prevFormulaS = ''
formulaS = ''
for every subject in subjects

formulaS = 'subject == "subject"';
if prevFormulaS != '' then

formulaS = '(formulaS \/ prevFormulaS)'
endif
prevFormulaS = formulaS

endfor
formula = '[]((formulaA -> formulaS))';
return formula

endfunction

The results of the first check are presented in Figure 14. The metrics used here to measure the
conformance is satisfied and unsatisfied LTL formulas. LTL checker gives us that there are 16
formulas out of 35 unsatisfied. For example, a subject named Habib is executing operation
Accepted (with event type Assigned) on attribute product (alias attr1), which has no
permission definition in the RBAC model A, therefore it is considered as a violation. This can
be also unintentional violation due to various reasons as explained in section 6.1.

The results of the second check are presented in Figure 15. LTL checker shows that the
second event log is fully compliant with the adjusted RBAC model, i.e., there are no
unsatisfied LTL formulas. Also fom the results, we can see that the subject named Habib has
now the permission to execute operation Accepted (with event type Assigned) on attribute
product.

41

42

Figure 14: LTL checker results of conformance checking

Figure 15: Full conformance of RBAC model and an event log

6.4 Discussion

In this chapter, we have shown that extracting RBAC models from two real-life event logs is
applicable. In particular, we evaluated the approach with conformance checking, i.e., how
much the role-permission assignments defined in RBAC model conform to the business
process executions as captured in an event log. Additionally, we used the LTL checker to
measure the conformance of RBAC model and an event log in terms of satisfied and
unsatisfied LTL formulas.

In section 6.1, the different event logs may not capture the entire business process, which
inevitably will lead to deviations between RBAC models. This means that these differences
needs to be resolved manually by domain worker. Additionally, we used different logs instead
of doing the conformance checks with one event log. For obvious reasons, the RBAC model
will be fully compliant with the event log from which the RBAC model was extracted.
Therefore, the goal was also to show that we can improve the extracted RBAC models. The
improvement was measured in terms of satisfied and unsatisfied LTL constraints.

In section 6.2, we define formula (see Table 8) which checks only for role-permission
assignments, i.e., the LTL formula is satisfied if the permission exists in RBAC model and it
is performed by authorized subject defined in RBAC model or the permission does not exist
in RBAC model, then the formula does not check any further and the formula is satisfied
automatically. For the latter case, a (sub)formula is needed to check if operation and resource
attribute relationship is also in accordance with the RBAC model.

43

7 Conclusions and Future Work
In this thesis, we have proposed an approach how to extract RBAC models
(semi-)automatically from event logs in XES format, where the focus is also on determining
the protected business assets, such as document or other artifact data that is exchanged and
accessed during business process activities. We divided the approach into three consecutive
steps. The first step involves in analysing event log, which is utilizing business process
mining technique to extract business process elements and relationships from an event log.
The results of the first step are the input for creating in-memory RBAC model in the second
step. We create RBAC model by applying transformation rules on the extracted business
process elements and relationships. In the last step, we export in-memory RBAC model to
XML document, whose structure is specifically defined by XML Schema Definition for this
work. In addition, we evaluated the approach through conformance checking.

7.1 Limitations

In this work, we have required that both user and role information is present in event log,
although user information is not entirely needed when creating RBAC model. This
requirement is only set for conformance checking using Linear Temporal Logic constraints.

The developed prototype allows to make primitive changes to the extracted business process
data and relationships, such as changing role-user relationships, role-activity relationships,
and including or excluding data attributes as protected resources. It does not allow to
introduce new users, new activities and thereby new RBAC permissions.

We are not including RBAC operation types in our RBAC model, such as create, read,
update, delete. Mainly because they are difficult or even impossible to extract from event logs
automatically without knowing the underlying business process or PAIS implementation.

7.2 Conclusions

We have built our thesis around two research questions (formulated in chapter 1):

1. What data could be extracted from a business process event log and how this data
could be used for creating RBAC models?

When answering to the first question we addressed what is the data that could be extracted
from an event log and how this data could be used for creating standard RBAC models. We
selected the XES as the primary format of event logs in this thesis work, which can include
the minimum set of business process elements, such as users, roles, activities, and data
attributes, to derive RBAC model components. In order to extract the data from potentially
large event logs, we used the process mining technique (an algorithm presented in Algorithm
1). We divided the approach of creating RBAC model from an event log into 3 steps. The first
step is analyzing event log (as discussed in section 4.1), which is extracting business process
data from an input event log. The outcome of the first step is the business process elements
and relationships. The second step involves in creating RBAC model (as discussed in section
4.3) based on the extracted business process elements and relationships using transformation
rules (presented in Table 3). We get in-memory object of RBAC model as the output. Lastly,
we can present this RBAC model explicitly by exporting the in-memory object of RBAC
model as XML document (as discussed in section 4.5). The XML document follows the
structure and data type constraints of XML Schema Definition proposed for our RBAC
models.

44

2. How applicable is this approach on real-life business process event logs?

When answering to the second question we addressed the possible methods how to validate
the approach. In this work, we evaluated the approach through conformance checking. For
that reason, we used a real-life event log from BPI Challenge 2013, which was split into two
parts, open and closed cases. The first conformance checking included the comparison of
RBAC models created from different log samples of an event log. The second conformance
checking was testing the compliance of RBAC model constraints in the form of the Linear
Temporal Logic formula against an event log.

As a result, we have shown a possible approach how to create RBAC models from event logs
generated by information systems that support business processes. The aim was not to only
get RBAC roles, but to also focus on extracting information about business assets that needs
to be protected. The contribution of this work also includes developed prototype application
(as discussed in chapter 5) to demonstrate the applicability of our approach and to also
provide means of the approach evaluation, such as validating and merging two different
RBAC models and creating LTL constraints based on RBAC model constraints.

7.3 Future Work

Although, we have required that role information needs to be included in the event logs for
this approach, but typically there are no role information in event logs. The next opportunity
would be to extend this work with discovering roles based on the characteristics of event log
in XES format (or in MXML[37], an alternative but not so preferred logging format for
business processes). A possible solution would be to apply classification algorithms. Some
existing ideas were presented in the section of related work.

In this work, we use our XML Schema Definition for presenting RBAC models. Apparently,
there are more sophisticated technologies how to specify RBAC model in XML-based
format. We see an opportunity to develop an extension to export RBAC models created from
event logs also in XACML[38] or in X-RBAC[39].

Additionally, due to the limited capabilities of managing extracted RBAC data with the
developed prototype, improvements can be made to the current solution. Alternatively, this
tool can be integrated with existing access control policy management systems, for example
xoRBAC[31].

45

References
[1] D. F. Ferraiolo, R. Sandhu, D. R. Kuhn, R. Chandramouli. Proposed NIST Standard for

Role-Based Access Control, ACM Transactions on Information and System Security
(TISSEC), Volume 4 Issue 3, pp. 224-274. August, 2001.

[2] A. C. O'Connor, R. J. Loomis. Economic Analysis of Role-Based Access Control, 2010.
[3] M. Dumas, W.M.P. van der Aalst, and Hofstede. Process-Aware Information Systems.

Wiley. 2005.

[4] R. Accorsi, T. Stocker, On the Exploitation of Process Mining for Security Audits: The
Process Discovery Case, 2012

[5] M. Song, W. M. P. van der Aalst. Towards Comprehensive Support for Organizational
Mining, Decision Support Systems, Volume 46, Issue 1, pp. 300-317. , 2006.

[6] A. Baumgrass. Deriving current state RBAC models from event logs. In: International
Workshop on Security Aspects of Process-aware Information Systems (SAPAIS), Proc. of
the 6th International Conference on Availability, Reliability and Security (ARES).
Vienna, 2011.

[7] A. Baumgrass, T. Baier, J. Mendling, M. Strembeck, Conformance Checking of RBAC
Policies in Process-Aware Information Systems. In: F. Daniel, K. Barkaoui, S. Dustdar,
editors. Business Process Management Workshops: BPM 2011 International Workshops,
Revised Selected Papers, Part II, pp. 435-446. Springer. 2011.

[8] W.M.P. van der Aalst. Process Mining: Discovery, Conformance, and Enchancement of
Business Processes. Springer. 2011.

[9] Object Management Group, Business Process Model and Notation (BPMN), version
2.0: http://www.omg.org/spec/BPMN/2.0/ (last visited: 01.05.2014)

[10] Yet Another Workflow Language (YAWL): http://www.yawlfoundation.org/ (last
visited: 01.05.2014)

[11] A. Scheer, O. Thomas, O. Adam, Process Modeling Using Event-Driven Process
Chains. In: M. Dumas, W. M. P. van der Aalst, and A. H. M. ter Hofstede. Process-
Aware Information Systems: Bridging People and Software through Process Technology,
pp. 119-145. Wiley. 2005.

[12] W. M. P. van der Aalst, C. Stahl. Modeling Business Processes: A Petri Net-Oriented
Approach. MIT Press. 2011.

[13] Process Mining workbench ProM, v6.3: http://www.promtools.org/prom6/ (last visited:
11.05.2014)

[14] W. M. P. van der Aalst, A. J. M. M. Weijters, L. Maruster.Workow Mining: Which
processes can be rediscovered?. In: Knowledge and Data Engineering, IEEE
Transactions on, Volume 16, Issue 9, pp. 1128-1142. 2004.

[15] A. Baumgrass, S. Schefer-Wenzl, M. Strenbeck. Deriving Process-Related RBAC
Models from Process Execution Histories. In: 4th IEEE International Workshop on
Security Aspects in Processes and Services Engineering (SAPSE). Izmir, Turkey, 2012.

[16] W. M. P. van der Aalst, H. de Beer, B. van Dongen. Process Mining and Verification of
Properties: An Approach based on Temporal Logic. In: On the Move to Meaningful
Internet Systems 2005: CoopIS, DOA, and ODBASE, Lecture Notes in Computer
Science (LNCS). Springer-Verlag Berlin, Heidelberg, 2005.

[17] A. J. Rembert. An Initial Approach to Mining Multiple Perspectives of a Business
Process. In: he Fifth Richard Tapia Celebration of Diversity in Computing Conference:

46

Intellect, Initiatives, Insight, and Innovations. New York, NY, USA, 2009.

[18] IEEE Task Force on Process Mining: http://www.win.tue.nl/ieeetfpm (last visited:
01.05.2014)

[19] OpenXES Developer Guide version 1.9: http://www.xes-
standard.org/_media/openxes/openxesdeveloperguide-1.9.pdf (last visited: 01.05.2014)

[20] NITRO, process mining tool to convert tabular data to business process logs:
https://fluxicon.com/nitro/ (last visited: 25.05.2014)

[21] C. W. Günther, E. Verbeek. XES Standard Definition (version 1.4). October, 2014.

[22] T. Lodderstedt, D. Basin, J. Doser. SecureUML: A UML-Based Modeling Language for
Model-Driven Security, 2002.

[23] Unified Modeling Language (UML): http://www.uml.org/ (last visited: 01.05.2014)

[24] The Extensible Markup Language, version 1.1: http://www.w3.org/TR/xml11/ (last
visited: 25.05.2014)

[25] W3C XML Schema: http://www.w3.org/XML/Schema (last visited: 22.05.2014)

[26] M. Kuhlmann, D. Shohat, G. Schimpf. Role mining - revealing business roles for
security administration using data mining technology. In: Proc. of the 7th ACM
Symposium on Access Control Modelsand Technologies (SACMAT). NY, USA, 2003.

[27] I. Molloy, Y. Park, S. Chari. Generative Models for Access Control Policies:
Applications to Role Mining Over Logs with Attribution. In: SACMAT '12 Proceedings
of the 17th ACM symposium on Access Control Models and Technologies. Newark, NJ,
USA, 2012.

[28] I. Molloy, H. Chen, T. Li, Q. Wang, N. Li, E. Bertino, S. Calo, J. Lobo. Mining Roles
with Semantic Meanings. In: SACMAT '08 Proceedings of the 13th ACM symposium on
Access control models and technologies. New York, NY, USA, 2008.

[29] J. Mendling, M. Strembeck, G. Stermsek, G. Neumann. An Approach to Extract RBAC
Models from BPEL4WS Processes. In: Proceedings. WETICE '04 Proceedings of the
13th IEEE International Workshops on Enabling Technologies: Infrastructure for
Collaborative Enterprises. Washington, DC, USA, 2004.

[30] Business Process Execution Language (BPEL), short for Web Services Business Process
Execution Language (WS-BPEL): http://bpel.xml.org/ (last visited: 15.05.2014)

[31] Access control policy management tool xoRBAC: http://wi.wu-
wien.ac.at/home/mark/xoRBAC/index.html (last visited: 01.05.2014)

[32] Role engineering tool xoRET: http://wi.wu-wien.ac.at/home/mark/xoRET/index.html
(last visited: 01.05.2014)

[33] É. Dubois. P. Heimans, N. Mayer, R. Matulevičius, A Systematic Approach to Define the
Domain of Information System Security Risk Management. In: S. Nurcan, C. Salinesi, C.
Souveyet, J. Ralyté. Intentional Perspectives on Information Systems Engineering, pp.
289-306. Springer. 2010.

[34] Incident and problem management system VINST:
http://www.win.tue.nl/bpi/_media/2013/vinst_manual.pdf (last visitied: 25.05.2014)

[35] 9th International Workshop on Business Process Intelligence 2013:
http://www.win.tue.nl/bpi/2013/challenge (last visited: 25.05.2014)

[36] H. de Beer. The LTL Checker Plugins: A Reference Manual. September 20, 2007.
[37] B. F. Van Dongen, W. M. P. van der Aalst, A Meta Model for Process Mining Data, 2005

[38] eXtensible Access Control Markup Language (XACML) v3.0, OASIS Standard:

47

http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-en.pdf (last visited:
22.05.2014)

[39] J. B. Doshi, R. Bhatti, E. Bertino, A. Ghafoor.X-RBAC: An Access Control Language
for Multi-Domain Environments. In: Internet Computing, IEEE, Volume 8, Issue 6, pp.
40-50. 2004.

48

Appendix A – Example event log as tabular data
Table 11: Example event log as tabular data

#PID #EID #DATETIME #Activity #Resource #Role #Cost #Customer
ID

#Status

1 25654521 30-12-2013 15:10 register request Pete Assistant 50 1123 1

1 25654523 30-12-2013 15:10 examine
casually

Mike Assistant 400 1123 1

1 25654524 30-12-2013 15:10 check ticket Ellen Assistant 100 1123 1

1 25654525 30-12-2013 15:10 decide Sara Manager 200 1123 2

1 25654528 30-12-2013 15:10 reinitiate
request

Sara Manager 200 1123 2

1 25654530 30-12-2013 15:10 examine
thoroughly

Sean Expert 400 1123 1

1 25654531 30-12-2013 15:10 check ticket Pete Assistant 100 1123 1

1 25654532 30-12-2013 15:10 decide Sara Manager 200 1123 2

1 25654533 30-12-2013 15:10 pay
compensation

Ellen Assistant 200 1123 3

2 25654534 30-12-2013 15:10 register request Pete Assistant 50 1717 1

2 25654535 30-12-2013 15:10 check ticket Mike Assistant 100 1717 1

2 25654536 30-12-2013 15:10 examine
thoroughly

Sean Expert 400 1717 1

2 25654537 30-12-2013 15:10 decide Sara Manager 200 1717 2

2 25654538 30-12-2013 15:10 reject request Ellen Assistant 200 1717 4

3 25654539 30-12-2013 15:10 register request Ellen Assistant 50 1718 1

3 25654540 30-12-2013 15:10 examine
casually

Mike Assistant 400 1718 1

3 25654541 30-12-2013 15:10 check ticket Pete Assistant 100 1718 1

3 25654541 30-12-2013 15:10 decide Sara Manager 200 1718 2

3 25654543 30-12-2013 15:10 reinitiate
request

Sara Manager 200 1718 2

3 25654544 30-12-2013 15:10 check ticket Ellen Assistant 100 1718 1

3 25654545 30-12-2013 15:10 examine
casually

Mike Assistant 400 1718 1

3 25654546 30-12-2013 15:10 decide Sara Manager 200 1718 2

3 25654547 30-12-2013 15:10 pay
compensation

Ellen Assistant 200 1718 3

4 25654550 30-12-2013 15:10 register request Mike Assistant 50 1900 1

4 25654555 30-12-2013 15:10 check ticket Ellen Assistant 100 1900 1

4 25654556 30-12-2013 15:10 examine
casually

Mike Assistant 400 1900 1

4 25654559 30-12-2013 15:10 decide Sara Manager 200 1900 2

4 25654560 30-12-2013 15:10 pay
compensation

Ellen Assistant 200 1900 3

49

Appendix B – Example event log in format of XES
Table 12: Example event log in format of XES

<?xml version="1.0" encoding="UTF-8" ?>
<!-- This file has been generated with the OpenXES library. It conforms -->
<!-- to the XML serialization of the XES standard for log storage and -->
<!-- management. -->
<!-- XES standard version: 1.0 -->
<!-- OpenXES library version: 1.0RC7 -->
<!-- OpenXES is available from http://www.openxes.org/ -->
<log xes.version="1.0" xes.features="nested-attributes" openxes.version="1.0RC7"
xmlns="http://www.xes-standard.org/">
 <trace>
 <string key="concept:name" value="1"/>
 <event>
 <string key="org:resource" value="Ellen"/>
 <int key="status" value="1"/>
 <date key="time:timestamp" value="2013-12-30T15:10:00+02:00"/>
 <string key="org:role" value="Assistant"/>
 <int key="cost" value="100"/>
 <int key="cid" value="1123"/>
 <string key="concept:name" value="check ticket"/>
 </event>
 <event>
 <string key="org:resource" value="Pete"/>
 <int key="status" value="1"/>
 <date key="time:timestamp" value="2013-12-30T15:10:00+02:00"/>
 <string key="org:role" value="Assistant"/>
 <int key="cost" value="100"/>
 <int key="cid" value="1123"/>
 <string key="concept:name" value="check ticket"/>
 </event>
 <event>
 <string key="org:resource" value="Sara"/>
 <int key="status" value="2"/>
 <date key="time:timestamp" value="2013-12-30T15:10:00+02:00"/>
 <string key="org:role" value="Manager"/>
 <int key="cost" value="200"/>
 <int key="cid" value="1123"/>
 <string key="concept:name" value="decide"/>
 </event>
 <event>
 <string key="org:resource" value="Mike"/>
 <int key="status" value="1"/>
 <date key="time:timestamp" value="2013-12-30T15:10:00+02:00"/>
 <string key="org:role" value="Assistant"/>
 <int key="cost" value="400"/>
 <int key="cid" value="1123"/>
 <string key="concept:name" value="examine casually"/>
 </event>
 <event>
 <string key="org:resource" value="Sean"/>
 <int key="status" value="1"/>
 <date key="time:timestamp" value="2013-12-30T15:10:00+02:00"/>
 <string key="org:role" value="Expert"/>
 <int key="cost" value="400"/>

50

 <int key="cid" value="1123"/>
 <string key="concept:name" value="examine thoroughly"/>
 </event>
 <event>
 <string key="org:resource" value="Ellen"/>
 <int key="status" value="3"/>
 <date key="time:timestamp" value="2013-12-30T15:10:00+02:00"/>
 <string key="org:role" value="Assistant"/>
 <int key="cost" value="200"/>
 <int key="cid" value="1123"/>
 <string key="concept:name" value="pay compensation"/>
 </event>
 <event>
 <string key="org:resource" value="Pete"/>
 <int key="status" value="1"/>
 <date key="time:timestamp" value="2013-12-30T15:10:00+02:00"/>
 <string key="org:role" value="Assistant"/>
 <int key="cost" value="50"/>
 <int key="cid" value="1123"/>
 <string key="concept:name" value="register request"/>
 </event>
 <event>
 <string key="org:resource" value="Sara"/>
 <int key="status" value="2"/>
 <date key="time:timestamp" value="2013-12-30T15:10:00+02:00"/>
 <string key="org:role" value="Manager"/>
 <int key="cost" value="200"/>
 <int key="cid" value="1123"/>
 <string key="concept:name" value="reinitiate request"/>
 </event>
 </trace>
 <trace>
 <string key="concept:name" value="2"/>
 <event>
 <string key="org:resource" value="Mike"/>
 <int key="status" value="1"/>
 <date key="time:timestamp" value="2013-12-30T15:10:00+02:00"/>
 <string key="org:role" value="Assistant"/>
 <int key="cost" value="100"/>
 <int key="cid" value="1717"/>
 <string key="concept:name" value="check ticket"/>
 </event>
 <event>
 <string key="org:resource" value="Sara"/>
 <int key="status" value="2"/>
 <date key="time:timestamp" value="2013-12-30T15:10:00+02:00"/>
 <string key="org:role" value="Manager"/>
 <int key="cost" value="200"/>
 <int key="cid" value="1717"/>
 <string key="concept:name" value="decide"/>
 </event>
 <event>
 <string key="org:resource" value="Sean"/>
 <int key="status" value="1"/>
 <date key="time:timestamp" value="2013-12-30T15:10:00+02:00"/>
 <string key="org:role" value="Expert"/>

51

 <int key="cost" value="400"/>
 <int key="cid" value="1717"/>
 <string key="concept:name" value="examine thoroughly"/>
 </event>
 <event>
 <string key="org:resource" value="Pete"/>
 <int key="status" value="1"/>
 <date key="time:timestamp" value="2013-12-30T15:10:00+02:00"/>
 <string key="org:role" value="Assistant"/>
 <int key="cost" value="50"/>
 <int key="cid" value="1717"/>
 <string key="concept:name" value="register request"/>
 </event>
 <event>
 <string key="org:resource" value="Ellen"/>
 <int key="status" value="4"/>
 <date key="time:timestamp" value="2013-12-30T15:10:00+02:00"/>
 <string key="org:role" value="Assistant"/>
 <int key="cost" value="200"/>
 <int key="cid" value="1717"/>
 <string key="concept:name" value="reject request"/>
 </event>
 </trace>
 <trace>
 <string key="concept:name" value="3"/>
 <event>
 <string key="org:resource" value="Ellen"/>
 <int key="status" value="1"/>
 <date key="time:timestamp" value="2013-12-30T15:10:00+02:00"/>
 <string key="org:role" value="Assistant"/>
 <int key="cost" value="100"/>
 <int key="cid" value="1718"/>
 <string key="concept:name" value="check ticket"/>
 </event>
 <event>
 <string key="org:resource" value="Pete"/>
 <int key="status" value="1"/>
 <date key="time:timestamp" value="2013-12-30T15:10:00+02:00"/>
 <string key="org:role" value="Assistant"/>
 <int key="cost" value="100"/>
 <int key="cid" value="1718"/>
 <string key="concept:name" value="check ticket"/>
 </event>
 <event>
 <string key="org:resource" value="Sara"/>
 <int key="status" value="2"/>
 <date key="time:timestamp" value="2013-12-30T15:10:00+02:00"/>
 <string key="org:role" value="Manager"/>
 <int key="cost" value="200"/>
 <int key="cid" value="1718"/>
 <string key="concept:name" value="decide"/>
 </event>
 <event>
 <string key="org:resource" value="Mike"/>
 <int key="status" value="1"/>
 <date key="time:timestamp" value="2013-12-30T15:10:00+02:00"/>

52

 <string key="org:role" value="Assistant"/>
 <int key="cost" value="400"/>
 <int key="cid" value="1718"/>
 <string key="concept:name" value="examine casually"/>
 </event>
 <event>
 <string key="org:resource" value="Ellen"/>
 <int key="status" value="3"/>
 <date key="time:timestamp" value="2013-12-30T15:10:00+02:00"/>
 <string key="org:role" value="Assistant"/>
 <int key="cost" value="200"/>
 <int key="cid" value="1718"/>
 <string key="concept:name" value="pay compensation"/>
 </event>
 <event>
 <string key="org:resource" value="Ellen"/>
 <int key="status" value="1"/>
 <date key="time:timestamp" value="2013-12-30T15:10:00+02:00"/>
 <string key="org:role" value="Assistant"/>
 <int key="cost" value="50"/>
 <int key="cid" value="1718"/>
 <string key="concept:name" value="register request"/>
 </event>
 <event>
 <string key="org:resource" value="Sara"/>
 <int key="status" value="2"/>
 <date key="time:timestamp" value="2013-12-30T15:10:00+02:00"/>
 <string key="org:role" value="Manager"/>
 <int key="cost" value="200"/>
 <int key="cid" value="1718"/>
 <string key="concept:name" value="reinitiate request"/>
 </event>
 </trace>
 <trace>
 <string key="concept:name" value="4"/>
 <event>
 <string key="org:resource" value="Ellen"/>
 <int key="status" value="1"/>
 <date key="time:timestamp" value="2013-12-30T15:10:00+02:00"/>
 <string key="org:role" value="Assistant"/>
 <int key="cost" value="100"/>
 <int key="cid" value="1900"/>
 <string key="concept:name" value="check ticket"/>
 </event>
 <event>
 <string key="org:resource" value="Sara"/>
 <int key="status" value="2"/>
 <date key="time:timestamp" value="2013-12-30T15:10:00+02:00"/>
 <string key="org:role" value="Manager"/>
 <int key="cost" value="200"/>
 <int key="cid" value="1900"/>
 <string key="concept:name" value="decide"/>
 </event>
 <event>
 <string key="org:resource" value="Mike"/>
 <int key="status" value="1"/>

53

 <date key="time:timestamp" value="2013-12-30T15:10:00+02:00"/>
 <string key="org:role" value="Assistant"/>
 <int key="cost" value="400"/>
 <int key="cid" value="1900"/>
 <string key="concept:name" value="examine casually"/>
 </event>
 <event>
 <string key="org:resource" value="Ellen"/>
 <int key="status" value="3"/>
 <date key="time:timestamp" value="2013-12-30T15:10:00+02:00"/>
 <string key="org:role" value="Assistant"/>
 <int key="cost" value="200"/>
 <int key="cid" value="1900"/>
 <string key="concept:name" value="pay compensation"/>
 </event>
 <event>
 <string key="org:resource" value="Mike"/>
 <int key="status" value="1"/>
 <date key="time:timestamp" value="2013-12-30T15:10:00+02:00"/>
 <string key="org:role" value="Assistant"/>
 <int key="cost" value="50"/>
 <int key="cid" value="1900"/>
 <string key="concept:name" value="register request"/>
 </event>
 </trace>
</log>

54

Appendix C – Event log structure

55

Figure 16: Event logs structure (adapted from [8] p. 100)

Appendix D – XML Schema Definition for RBAC model
Table 13: XML Schema Definition for RBAC model

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<!-- edited with XMLSpy v2014 rel. 2 (x64) (http://www.altova.com) by Taivo Teder
(University of Tartu) -->
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
elementFormDefault="qualified">
 <!-- RBAC element -->
 <xs:element name="rbac">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="subjects" type="subjects_type"/>
 <xs:element name="operations" type="operations_type"/>
 <xs:element name="roles" type="roles_type"/>
 <xs:element name="resources" type="resources_type"/>
 <xs:element name="permissions" type="permissions_type"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <!-- Subjects complex type -->
 <xs:complexType name="subjects_type">
 <xs:sequence>
 <xs:element name="subject" minOccurs="0" maxOccurs="unbounded">
 <xs:complexType>
 <xs:attribute name="id" type="xs:string"/>
 <xs:attribute name="name" type="xs:string"/>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 <!-- Operations complex type -->
 <xs:complexType name="operations_type">
 <xs:sequence>
 <xs:element name="operation" minOccurs="1" maxOccurs="unbounded">
 <xs:complexType>
 <xs:attribute name="id" type="xs:string"/>
 <xs:attribute name="name" type="xs:string"/>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 <!-- Roles complex type -->
 <xs:complexType name="roles_type">
 <xs:sequence>
 <xs:element name="role" minOccurs="1" maxOccurs="unbounded">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="subjects">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="subject" minOccurs="0"
maxOccurs="unbounded">
 <xs:complexType>

56

 <xs:attribute name="refid"
type="xs:string"/>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 <xs:attribute name="id" type="xs:string"/>
 <xs:attribute name="name" type="xs:string"/>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 <!-- Resources complex type -->
 <xs:complexType name="resources_type">
 <xs:sequence>
 <xs:element name="resource" minOccurs="1" maxOccurs="unbounded">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="operations">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="operation"
minOccurs="0" maxOccurs="unbounded">
 <xs:complexType>
 <xs:attribute name="refid"
type="xs:string"/>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="values" type="values_type" />
 </xs:sequence>
 <xs:attribute name="id" type="xs:string"/>
 <xs:attribute name="name" type="xs:string"/>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 <!-- Values complex type -->
 <xs:complexType name="values_type">
 <xs:sequence>
 <xs:element name="value" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 <!-- Permissions complex type -->
 <xs:complexType name="permissions_type">
 <xs:sequence>
 <xs:element name="resource" type="resource_type" minOccurs="1"
maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 <!-- Resource complex type -->
 <xs:complexType name="resource_type">

57

 <xs:sequence>
 <xs:element name="permission" minOccurs="1" maxOccurs="unbounded">
 <xs:complexType>
 <xs:attribute name="operation" type="xs:string"/>
 <xs:attribute name="action" type="xs:string"/>
 <xs:attribute name="role" type="xs:string"/>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 <xs:attribute name="refid" type="xs:string"/>
 </xs:complexType>
</xs:schema>

58

Appendix E – Business process elements in event log in
format of XES

59

Figure 17: Business process elements presented in the event log in format of XES

Appendix F – RBAC permissions derived from example
event log
Table 14: RBAC permissions derived from example event log

Resource (or resource
attribute)

Operation Role

cost Register request Assistant

Check ticket Assistant

Examine thoroughly Expert

Examine casually Assistant

Decide Manager

Reinitiate request Manager

Reject request Manager

Pay compensation Assistant

cid Register request Assistant

Check ticket Assistant

Examine thoroughly Expert

Examine casually Assistant

Decide Manager

Reinitiate request Manager

Reject request Manager

Pay compensation Assistant

status Register request Assistant

Check ticket Assistant

Examine thoroughly Expert

Examine casually Assistant

Decide Manager

Reinitiate request Manager

Reject request Manager

Pay compensation Assistant

60

Appendix G – An example RBAC model in format of XML
An example RBAC model in format of XML that follows the XSD presented in Table 13.

Table 15: An example RBAC model in format of XML

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<rbac xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="rbac.xsd">
 <subjects>
 <subject id="subject1" name="Pete"/>
 <subject id="subject2" name="Ellen"/>
 <subject id="subject3" name="Sara"/>
 <subject id="subject4" name="Mike"/>
 <subject id="subject5" name="Sean"/>
 </subjects>
 <operations>
 <operation id="operation1" name="decide"/>
 <operation id="operation2" name="pay compensation"/>
 <operation id="operation3" name="examine casually"/>
 <operation id="operation4" name="reinitiate request"/>
 <operation id="operation5" name="check ticket"/>
 <operation id="operation6" name="examine thoroughly"/>
 <operation id="operation7" name="register request"/>
 <operation id="operation8" name="reject request"/>
 </operations>
 <roles>
 <role id="role1" name="Expert">
 <subjects>
 <subject refid="subject5"/>
 </subjects>
 </role>
 <role id="role2" name="Manager">
 <subjects>
 <subject refid="subject3"/>
 </subjects>
 </role>
 <role id="role3" name="Assistant">
 <subjects>
 <subject refid="subject1"/>
 <subject refid="subject2"/>
 <subject refid="subject4"/>
 </subjects>
 </role>
 </roles>
 <resources>
 <resource id="resource1" name="status">
 <operations>
 <operation refid="operation1"/>
 <operation refid="operation2"/>
 <operation refid="operation3"/>
 <operation refid="operation4"/>
 <operation refid="operation5"/>
 <operation refid="operation6"/>
 <operation refid="operation7"/>

61

 <operation refid="operation8"/>
 </operations>
 <values>
 <value>3</value>
 <value>2</value>
 <value>1</value>
 <value>4</value>
 </values>
 </resource>
 <resource id="resource2" name="cost">
 <operations>
 <operation refid="operation1"/>
 <operation refid="operation2"/>
 <operation refid="operation3"/>
 <operation refid="operation4"/>
 <operation refid="operation5"/>
 <operation refid="operation6"/>
 <operation refid="operation7"/>
 <operation refid="operation8"/>
 </operations>
 <values>
 <value>200</value>
 <value>400</value>
 <value>100</value>
 <value>50</value>
 </values>
 </resource>
 <resource id="resource3" name="cid">
 <operations>
 <operation refid="operation1"/>
 <operation refid="operation2"/>
 <operation refid="operation3"/>
 <operation refid="operation4"/>
 <operation refid="operation5"/>
 <operation refid="operation6"/>
 <operation refid="operation7"/>
 <operation refid="operation8"/>
 </operations>
 <values>
 <value>1717</value>
 <value>1718</value>
 <value>1900</value>
 <value>1123</value>
 </values>
 </resource>
 </resources>
 <permissions>
 <resource refid="resource1">
 <permission action="" operation="operation1" role="role2"/>
 <permission action="" operation="operation2" role="role3"/>
 <permission action="" operation="operation3" role="role3"/>
 <permission action="" operation="operation4" role="role2"/>
 <permission action="" operation="operation5" role="role3"/>
 <permission action="" operation="operation7" role="role3"/>
 <permission action="" operation="operation6" role="role1"/>
 <permission action="" operation="operation8" role="role3"/>

62

 </resource>
 <resource refid="resource2">
 <permission action="" operation="operation1" role="role2"/>
 <permission action="" operation="operation2" role="role3"/>
 <permission action="" operation="operation3" role="role3"/>
 <permission action="" operation="operation4" role="role2"/>
 <permission action="" operation="operation5" role="role3"/>
 <permission action="" operation="operation7" role="role3"/>
 <permission action="" operation="operation6" role="role1"/>
 <permission action="" operation="operation8" role="role3"/>
 </resource>
 <resource refid="resource3">
 <permission action="" operation="operation1" role="role2"/>
 <permission action="" operation="operation2" role="role3"/>
 <permission action="" operation="operation3" role="role3"/>
 <permission action="" operation="operation4" role="role2"/>
 <permission action="" operation="operation5" role="role3"/>
 <permission action="" operation="operation7" role="role3"/>
 <permission action="" operation="operation6" role="role1"/>
 <permission action="" operation="operation8" role="role3"/>
 </resource>
 </permissions>
</rbac>

63

Appendix H – Conformance checking results
Table 16: Validation results of two RBAC models for open and closed cases (first 50 rows)

Role Permission Reason

Operation Resource

C_5 Completed\nClosed product Not allowed

C_7 Completed\nClosed product New role

E_9 Completed\nClosed product New role

C_7 Accepted\nIn Progress product New role

E_9 Accepted\nIn Progress product New role

A2_4 Completed\nCancelled product Not allowed

A2_3 Completed\nCancelled product Not allowed

E_5 Completed\nCancelled product Not allowed

A2_2 Unmatched\nUnmatched product Not allowed

A2_3 Unmatched\nUnmatched product Not allowed

A2_1 Unmatched\nUnmatched product Not allowed

C_6 Unmatched\nUnmatched product Not allowed

E_3 Unmatched\nUnmatched product Not allowed

E_9 Accepted\nWait product New role

C_3 Accepted\nWait product Not allowed

E_2 Accepted\nWait product Not allowed

C_5 Accepted\nAssigned product Not allowed

C_7 Accepted\nAssigned product New role

E_9 Accepted\nAssigned product New role

C_3 Accepted\nAssigned product Not allowed

E_5 Accepted\nAssigned product Not allowed

C_7 Queued\nAwaiting Assignment product New role

D_1 Queued\nAwaiting Assignment product Not allowed

E_3 Queued\nAwaiting Assignment product Not allowed

V8_1 Queued\nAwaiting Assignment product New role

C_5 Completed\nClosed org:group Not allowed

C_7 Completed\nClosed org:group New role

E_9 Completed\nClosed org:group New role

C_7 Accepted\nIn Progress org:group New role

E_9 Accepted\nIn Progress org:group New role

64

A2_4 Completed\nCancelled org:group Not allowed

A2_3 Completed\nCancelled org:group Not allowed

E_5 Completed\nCancelled org:group Not allowed

A2_2 Unmatched\nUnmatched org:group Not allowed

A2_3 Unmatched\nUnmatched org:group Not allowed

A2_1 Unmatched\nUnmatched org:group Not allowed

C_6 Unmatched\nUnmatched org:group Not allowed

E_3 Unmatched\nUnmatched org:group Not allowed

E_9 Accepted\nWait org:group New role

C_3 Accepted\nWait org:group Not allowed

E_2 Accepted\nWait org:group Not allowed

C_5 Accepted\nAssigned org:group Not allowed

C_7 Accepted\nAssigned org:group New role

E_9 Accepted\nAssigned org:group New role

C_3 Accepted\nAssigned org:group Not allowed

E_5 Accepted\nAssigned org:group Not allowed

C_7 Queued\nAwaiting Assignment org:group New role

D_1 Queued\nAwaiting Assignment org:group Not allowed

E_3 Queued\nAwaiting Assignment org:group Not allowed

V8_1 Queued\nAwaiting Assignment org:group New role

C_5 Completed\nClosed resource country Not allowed

65

Appendix I – Example LTL file
Table 17: Example LTL file with RBAC role-permission assignments as LTL formulas

string ate.status;
rename ate.status as attr1;
string ate.cid;
rename ate.cid as attr3;
string ate.cost;
rename ate.cost as attr2;
set ate.EventType;
set ate.Originator;
set ate.WorkflowModelElement;
rename ate.Originator as subject;
rename ate.WorkflowModelElement as activity;
rename ate.EventType as eventType;
formula RP_attr1_decide () := {}
[](((attr1 != "" /\ activity == "decide") -> subject == "Sara"));
formula RP_attr1_pay_compensation () := {}
[](((attr1 != "" /\ activity == "pay compensation") -> (subject == "Mike" \/
(subject == "Violator" \/ (subject == "Ellen" \/ subject == "Pete")))));
formula RP_attr1_examine_casually () := {}
[](((attr1 != "" /\ activity == "examine casually") -> (subject == "Mike" \/
(subject == "Violator" \/ (subject == "Ellen" \/ subject == "Pete")))));
formula RP_attr1_reinitiate_request () := {}
[](((attr1 != "" /\ activity == "reinitiate request") -> subject == "Sara"));
formula RP_attr1_check_ticket () := {}
[](((attr1 != "" /\ activity == "check ticket") -> (subject == "Mike" \/
(subject == "Violator" \/ (subject == "Ellen" \/ subject == "Pete")))));
formula RP_attr1_register_request () := {}
[](((attr1 != "" /\ activity == "register request") -> (subject == "Mike" \/
(subject == "Violator" \/ (subject == "Ellen" \/ subject == "Pete")))));
formula RP_attr1_examine_thoroughly () := {}
[](((attr1 != "" /\ activity == "examine thoroughly") -> subject == "Sean"));
formula RP_attr1_reject_request () := {}
[](((attr1 != "" /\ activity == "reject request") -> (subject == "Mike" \/
(subject == "Violator" \/ (subject == "Ellen" \/ subject == "Pete")))));
formula RP_attr2_decide () := {}
[](((attr2 != "" /\ activity == "decide") -> subject == "Sara"));
formula RP_attr2_pay_compensation () := {}
[](((attr2 != "" /\ activity == "pay compensation") -> (subject == "Mike" \/
(subject == "Violator" \/ (subject == "Ellen" \/ subject == "Pete")))));
formula RP_attr2_examine_casually () := {}
[](((attr2 != "" /\ activity == "examine casually") -> (subject == "Mike" \/
(subject == "Violator" \/ (subject == "Ellen" \/ subject == "Pete")))));
formula RP_attr2_reinitiate_request () := {}
[](((attr2 != "" /\ activity == "reinitiate request") -> subject == "Sara"));
formula RP_attr2_check_ticket () := {}
[](((attr2 != "" /\ activity == "check ticket") -> (subject == "Mike" \/
(subject == "Violator" \/ (subject == "Ellen" \/ subject == "Pete")))));
formula RP_attr2_register_request () := {}
[](((attr2 != "" /\ activity == "register request") -> (subject == "Mike" \/
(subject == "Violator" \/ (subject == "Ellen" \/ subject == "Pete")))));
formula RP_attr2_examine_thoroughly () := {}
[](((attr2 != "" /\ activity == "examine thoroughly") -> subject == "Sean"));
formula RP_attr2_reject_request () := {}
[](((attr2 != "" /\ activity == "reject request") -> (subject == "Mike" \/

66

(subject == "Violator" \/ (subject == "Ellen" \/ subject == "Pete")))));
formula RP_attr3_decide () := {}
[](((attr3 != "" /\ activity == "decide") -> subject == "Sara"));
formula RP_attr3_pay_compensation () := {}
[](((attr3 != "" /\ activity == "pay compensation") -> (subject == "Mike" \/
(subject == "Violator" \/ (subject == "Ellen" \/ subject == "Pete")))));
formula RP_attr3_examine_casually () := {}
[](((attr3 != "" /\ activity == "examine casually") -> (subject == "Mike" \/
(subject == "Violator" \/ (subject == "Ellen" \/ subject == "Pete")))));
formula RP_attr3_reinitiate_request () := {}
[](((attr3 != "" /\ activity == "reinitiate request") -> subject == "Sara"));
formula RP_attr3_check_ticket () := {}
[](((attr3 != "" /\ activity == "check ticket") -> (subject == "Mike" \/
(subject == "Violator" \/ (subject == "Ellen" \/ subject == "Pete")))));
formula RP_attr3_register_request () := {}
[](((attr3 != "" /\ activity == "register request") -> (subject == "Mike" \/
(subject == "Violator" \/ (subject == "Ellen" \/ subject == "Pete")))));
formula RP_attr3_examine_thoroughly () := {}
[](((attr3 != "" /\ activity == "examine thoroughly") -> subject == "Sean"));
formula RP_attr3_reject_request () := {}
[](((attr3 != "" /\ activity == "reject request") -> (subject == "Mike" \/
(subject == "Violator" \/ (subject == "Ellen" \/ subject == "Pete")))));

67

Appendix J – XES meta model

68

Figure 18: XES meta model (adapted from [21])

Appendix K – Prototype
The prototype source code is submitted with this thesis work in an archive file
RbacModelTool.zip. The prototype is written in Java language, therefore Java needs to be
installed in order to run the application. Also, the prototype source code is maintained in Git
repository and is accessible at address: https://bitbucket.org/tefkon/rbac-model-tool. The copy
of the Git repository can be cloned into the local Git project with the following command
(requires that Git is installed into the computer):

git clone https://tefkon@bitbucket.org/tefkon/rbac-model-tool.git

Building the project is done through Maven with the command mvn package which creates
the executable jar-file into the project's target/ folder.

69

https://bitbucket.org/tefkon/rbac-model-tool

Non-exclusive licence to reproduce thesis and make
thesis public

I, Taivo Teder, (date of birth: 14.04.1989),

 1. herewith grant the University of Tartu a free permit (non-exclusive licence) to:

 1.1. reproduce, for the purpose of preservation and making available to the public, including
for addition to the DSpace digital archives until expiry of the term of validity of the
copyright, and

 1.2. make available to the public via the web environment of the University of Tartu,
including via the DSpace digital archives until expiry of the term of validity of the
copyright,

Extracting Role-Based Access Control Models from Business Process Event Logs

supervised by Raimundas Matulevičius and Fabrizio M. Maggi,

 2. I am aware of the fact that the author retains these rights.

 3. I certify that granting the non-exclusive licence does not infringe the intellectual
property rights or rights arising from the Personal Data Protection Act.

Tartu, 26.05.2014

70

	Extracting Role-Based Access Control Models from Business Process Event Logs
	Abstract

	Rollipõhise juurdepääse kontrolli mudeli tuletamine äriprotsessi sündmuste logide põhjal
	Lühikokkuvõte

	Table of Contents
	1 Introduction
	2 Background and Technology
	2.1 Concepts of Process Mining
	2.2 Event Logs
	2.2.1 Basic Structure and Elements
	2.2.2 eXtensible Event Stream (XES)
	2.2.3 Requirements for Event Log

	2.3 Role-Based Access Control
	2.4 Terms used for describing RBAC concepts
	2.5 RBAC Concepts Expressed through XES Elements
	2.5.1 RBAC Operation
	2.5.2 RBAC Subject and Role
	2.5.3 RBAC Resource

	2.6 Extensible Markup Language
	2.7 Summary

	3 Related Work
	3.1 Organizational Mining
	3.2 Extracting RBAC Models from Business Process Data
	3.3 Comparsion of Related Works

	4 An Approach to Extract RBAC Models from Business Process Event Logs
	4.1 Analysing Event Log
	4.2 Algorithm to Extract Business Process Elements and Relationships
	4.3 Creating RBAC Model
	4.4 Algorithm to Transform Business Process Relationships to RBAC Model Relationships Using Transformation Rules
	4.5 Exporting RBAC Model
	4.6 Discussion

	5 Proof of Concept
	5.1 Analysing Event Log
	5.2 Creating RBAC Model
	5.3 Exporting RBAC Model
	5.4 Using The Prototype
	5.4.1 Comparison of RBAC Models With The Prototype
	5.4.2 Exporting LTL Constraints

	5.5 Discussion

	6 Evaluation of The Approach Through Conformance Checking
	6.1 Comparison of RBAC Models from Different Event Logs
	6.2 Conformance Checking with LTL Formulas
	6.3 A Running Example of Conformance Checking with LTL Rules
	6.4 Discussion

	7 Conclusions and Future Work
	7.1 Limitations
	7.2 Conclusions
	7.3 Future Work

	References
	Appendix A – Example event log as tabular data
	Appendix B – Example event log in format of XES
	Appendix C – Event log structure
	Appendix D – XML Schema Definition for RBAC model
	Appendix E – Business process elements in event log in format of XES
	Appendix F – RBAC permissions derived from example event log
	Appendix G – An example RBAC model in format of XML
	Appendix H – Conformance checking results
	Appendix I – Example LTL file
	Appendix J – XES meta model
	Appendix K – Prototype
	Non-exclusive licence to reproduce thesis and make thesis public

