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Hulkade ühendamine

Lühikokkuvõte: Olgu erinevad seadmed, mis omavad failide hulga erinevaid alam-
hulki. Talletades neid hulki pilves, kaasneb sellega failide sünkroniseerimise prob-
leem. Eesmärgiks on igas seadmes leida nende hulkade ühend.

Naiivne lahendus sellele probleemile on kõikide hulkade edastamine kõikide osa-
poolte poolt. Selline lähenemine toob kaasa suure andmeedastuskeerukuse. Soovi-
tav oleks leida algoritm, mille andmeedastuskeerukus oleks proportsionaalne hulkade
sümmeetrilise vahe suurusega, mis on tüüpiliselt väike võrreldes kõikide failide arvuga.

Me defineerime mitmeid erinevaid andmete edastamise võrkude mudeleid. Efek-
tiivsed algoritmid hulkade ühendamiseks on teada kahe osapoolega võrkude jaoks,
kuid sarnased algoritmid üldiste võrkude jaoks on veel teadmata.

Me uurime võrgu topoloogiate ja hulkade ühendamise algoritmide vahelist seost.
Me paneme tähele, et andmeedastuskeerukust on võimalik vähendada spetsiifilise
topoloogiaga võrkudes.

Me samuti uurime juhtmega võrkudes iteratsioonide minimiseerimise ülesannet.
Me defineerime ühenduste kaaludena ühenduste otspunktideks olevates seadmetes
asuvate erinevate failide arvu. Me uurime katseliselt maksimaalsete kaalude va-
likumeetodi efektiivsust suhtlevate seadmepaaride valikuks. Tulemused viitavad, et
see algoritm annab paremaid tulemusi võrreldes suhtlevate seadmepaaride juhusliku
valikuga.

Selle magistritöö põhitulemuseks on algebraline analüütiline raamistik hulkade
ühendamise algoritmide uurimiseks juhtmeta võrkudes. Raamistiku abil on võimalik
optimeerida hulkade ühendamise algoritme, mis kasutavad lineaarselt kodeeritud
teateid. See lähenemine üritab minimiseerida iteratsioonide ja edastavate teadete
arvu.

Märksõnad: hulkade ühendamine, leviedastusega võrgud, maksimaalsete kaalude
valikumeetod, järgu optimiseerimise ülesanne, andmete vahetamise ülesanne.

Set reconciliation

Abstract: Assume that we have several devices with different subsets of a set of
files. The problem of file synchronization arises in cloud storage. The goal is to find
a union of the sets at each of these devices.

The naive solution to the problem is to transmit the whole sets by all parties in
the network. This, however, results in high communicational complexity. It would be
desirable to find an algorithm with communicational complexity that is proportional
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to the size of the symmetric difference of the sets, which is typically small when
compared to the total number of files.

We define a number of communication network models. Several efficient algo-
rithms for set reconciliation over a network with two devices have been described in
the literature, but similar algorithms for general networks are still unknown.

We study the connection between the network topologies and the communica-
tional cost in the set reconciliation algorithms. We observe that it is possible to
reduce the communicational cost in networks of specific topology.

We also study a problem of minimization of a number of communication rounds
in a wired network. We define weights on the edges of the graph according to the
number of different files in the communicating devices. Then, we experimentally test
the efficiency of choosing the communicating pairs using maximum weight matching.
The results imply that this algorithm provides better results than its counterpart
which chooses the communicating pairs randomly.

The main result of this Thesis is an algebraic analytical framework for studying
the set reconciliation algorithms in wireless networks. This frameworks allows for
optimizing set reconciliation protocols which use linearly coded messages. This ap-
proach aims at minimizing the number of iterations and the number of transmissions
during each iteration.

Keywords: set reconciliation, broadcast networks, maximum weight matching,
rank-optimization problem, data exchange problem.
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Notation

[n] integer sequence {1, . . . , n}
G directed graph
H undirected graph
V set of all nodes in a graph
k the number of all nodes in V
vi specific node in V

S(vi) set of neighbours of the node vi
Sr(vi) set of neighbours at distance r of the node vi
S≤r(vi) set of neighbours at distance up to r of the node vi
E set of all edges in a graph

(vi, vj) specific edge in E
w((vi, vj)) weight of edge (vi, vj)

M matching in a graph
x single object
b number of bits to represent an object
X set of objects
Xi set of objects associated with node vi
X i complement of the set Xi: X i = Xall \Xi

Xi,j union Xi ∪Xj

ni number of objects in Xi

X universe of objects
Xall set of all objects
n number of objects in Xall
nmax number of objects in the largest set Xi, i = 1, . . . , k
nmin number of objects in the smallest set Xi, i = 1, . . . , k
∆i,j set Xi \Xj

d(i, j) size of the set ∆i,j

dist(i, j) dist(i, j) = d(i, j) + d(j, i)
A set reconciliation algorithm
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Communication(A) communication cost of the algorithm A
Computation(A) computation cost of the algorithm A

Time(A) time cost of the algorithm A
Rounds(A) round count of the algorithm A

F a field
Fq a finite field of order q

χX(Z) characteristic polynomial χX(Z) = (Z − x1) . . . (Z − xn)
Ev set of evaluation points Ev = {ev1, . . . , evn}
F Bloom filter
hi i-th hash function used in Bloom filter
H number of hash functions used in Bloom filter
N number of cells in Bloom filter
Γy vector of linear coefficients such that y = Γy · (x1, . . . , xn)
A possession matrix of the graph

max-rank(A) maximum rank over all A ∈ A
Aj j-th sub-matrix of A
A(i) possession matrix after i-th round of algorithm iteration
A(i) a transmission matrix from matrix family A(i−1)

A
(i)
j j-th sub-matrix of A(i)

D adjacency matrix
Bj(A) operator which returns a matrix with minimal rank from A
Mj,? j-th row of the matrix M
I diagonal matrix
E ones matrix

Y ⊗ Z tensor product of matrices Y and Z
rowspace(A) vector space spanned by the row vectors of A
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Introduction

With the advances in cloud storage, increasing amount of information is being stored
off-site and used in several computer terminals. If the files are used concurrently then
inherently the problem of file synchronization arises. Synchronization can be viewed
as a problem of set reconciliation, which is defined as finding a union of sets of data
with the smallest communication complexity.

Few problems can be addressed in regard to current technology. As an example,
rsync protocol [Tri99] compares the modification dates of all files in the directories
being synchronized. Even though this guarantees the total synchronization between
the terminals, the amount of communicated data is proportional to the number of
files. In the case, where only few files were modified (compared to the total number
of files), redundant information is sent between the terminals.

Current protocols usually require point-to-point connection between the terminals
as the differences are calculated pairwise. This leads to communication complexity,
which is of the order of the square of the number of terminals. The decrease in the
total number of messages would allow for a faster synchronization and for increase
in the system efficiency.

The point-to-point connection model does not cover wireless networks and leads
to congestion of scarce transmission medium. If several terminals transmit pack-
ets simultaneously, then the interference creates errors for the receiver. Instead of
allowing one terminal to transmit at a time, the model could account for parallel
transmissions.

In the Thesis, we study different problems of set reconciliation and give several
results.

In Chapter 1, we define the notation used in the Thesis. As the context in the
literature is heterogeneous then we adapt a uniform approach to the definitions and
models.

In Chapter 2, we give an overview of the related literature.
In Chapter 3, we introduce our results.
In Section 3.1, we specify a bound introduced in [MTZ03] and generalize the
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approach to a certain type of graphs.
In Section 3.2, we test experimentally the efficiency of choosing the transmitting

nodes based on a metric. Based on our experiments, maximum weight matching gives
satisfying results if lacking other metrics or a priori knowledge of the used network.

In Section 3.3, we generalize the approach for solving the data exchange problem
introduced in [RSS10] to general network topologies.

We finish with a conclusion and a set of open problems in Chapter 4.
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Chapter 1

Models, settings

Definition 1. The set reconciliation problem is defined as finding the union of
sets with the smallest communication complexity.

x1, x3, x4 x1, x2, x4, x5

initialization

communication

x1, x2, x3,
x4, x5

x1, x2, x3,
x4, x5

computation computation

Figure 1.1: Set reconciliation process

1.1 Notation
In this Thesis we use a unified notation for describing the models. As the set recon-
ciliation problem is related to several fields then the notation is heterogeneous. This
is due to the fact that similar problems have arisen from different problems and the
authors have used familiar concepts in each of the cases.

For example, if we speak about set reconciliation, then in practice finding a union
of a set of files is preferred. However, in network coding one may refer to finding
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a vector space from received messages [KK08]. If some differences can be resolved
through wording the problem differently, others raise a more challenging issue.

To overcome the differences, no assumptions on the types should be enforced.
We say that the items which are being reconciled, are objects and we denote them
by small letters. We denote the set of objects by Xi. We use the usual set-theoretic
notations to denote the inclusion of a object in a set of objects by x ∈ X and exclusion
by x 6∈ X. We denote the distinct objects by different indices. Thus two objects xi
and xj are different if i 6= j. If it is not mentioned explicitly, then we assume that
the indices are integers from a set [n] = {1, . . . , n}, where n is the number of objects.
The objects are part of a universe of all objects, which we denote by X.

As the underlying network can be viewed as graph, we call the participants of
the protocol nodes. We denote the nodes as vi for i ∈ [k]. The set of all nodes is
denoted as V . The number of nodes in the graph is k. If we have associated a set of
objects to the node vi, then we denote this set of objects as Xi. The set of all objects
is the set Xall = ∪i∈[k]Xi.

We call a connection between two nodes an edge. If there is a directed edge
between the nodes vi and vj, then we denote it as an ordered pair (vi, vj) ∈ V ×V . If
there exists an edge (vi, vj) then this implies that node vi can transmit to vj but not
vice versa. The set of all edges is denoted as E . A path between the nodes vi and vj
is a sequence of edges such that the second node in the first edge collides with the
first node in the second edge for any two consecutive edges in the sequence.

In undirected graphs, the edges are unordered sets of two nodes {vi, vj} ⊂ V and
messages can be transmitted either to the node vi or to the node vj. The set of all
undirected edges is also denoted as E . The path in an undirected graph is defined
similarly as in a directed graph, but the requirement of the position of the node in
the edges is omitted.

The set of nodes V and the set of edges E make up a directed graph G = (V , E).
The undirected graph is denoted as H = (V , E).

The adjacency matrix of a directed graph G is an integer matrix where the element
in i-th row and j-th column is 1 if there is an edge (vi, vj) ∈ E and 0 otherwise. In
an undirected graph, the element in i-th row and j-th column is 1 if there exists an
edge {vi, vj} ∈ E and 0 otherwise. We denote the adjacency matrix of the graph
by D. If we construct an adjacency matrix of the graph G then we set all diagonal
elements to 1.

Example 1. Take the graph which is shown in Figure 1.2.
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v1 v2

v3 v4

Figure 1.2: Graph used in Example 1

The (4× 4) integer-valued adjacency matrix D for this graph is

D =


1 1 0 0
1 1 1 1
0 1 1 1
0 1 1 1


A nodes neighbours are nodes to whom the node has edges. For a node vi, we

denote the set of the neighbours as S(vi). Using similar notation, for the node vi, we
denote the set of the nodes to whom the node has a path of r edges as Sr(vi). We
define also S≤r(vi) = ∑r

j=1 Sj(vi).
If two nodes vi and vj have associated sets of objects Xi and Xj, then we call the

set ∆i,j = Xi \Xj as set of objects difference of vi and vj. We call the size of the set
∆i,j as the difference of vi and vj and denote it by d(i, j) = |∆i,j|. We call the size of
the symmetric difference as the distance and denote it by dist(i, j) = d(i, j) + d(j, i).

Lemma 1. The distance dist(·, ·) satisfies non-negativity, dist(i, i) = 0, symmetry
and triangle inequality, thus being a pseudometric.

Proof. Because the size of the set is non-negative, then the distance is non-negative.
The distance to itself is zero:

dist(i, i) = |Xi \Xi|+ |Xi \Xi| = 0.

The distance is symmetric:

dist(i, j) = d(i, j) + d(j, i) = d(j, i) + d(i, j) = dist(j, i).

For an element in Xi \ Xj, if it is in Xl, then it is in Xl \ Xj. Otherwise, it is
in Xi \Xl. Similarly, for an element in Xj \Xi, if it is in Xl, then it is in Xl \Xi.
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Otherwise, it is in Xj \Xl. Thus

|Xi \Xj| ≤ |Xl \Xj|+ |Xi \Xl|

and
|Xj \Xi| ≤ |Xl \Xi|+ |Xj \Xl|.

From the definition of the distance we see that the triangle inequality dist(i, j) ≤
dist(i, l) + dist(l, j) holds.

Observe that if Xi = Xj for i 6= j, then dist(i, j) = 0, and so dist(·, ·) is not a
metric.

We define E as a square matrix where all elements are ones. We call this matrix
as (n ×m)-dimensional ones matrix. We use the notation I for an identity matrix.
The dimensions of these matrices are given in the context if it is not evident.

Given a vector x, we denote the diagonal matrix where the elements on the
diagonal are the elements of x as diag(x).

We denote the i-th row vector of L as Li,? and the j-th column vector as L?,j.
For a (m× n)-dimensional matrix

A =


a1,1 · · · a1,n

... . . . ...
am,1 · · · am,n

 ,
we write A = (ai,j)j=1,...,n

i=1,...,m.
Let A = (ai,j) be a (m × n)-dimensional matrix and B be a (k × l)-dimensional

matrix. The tensor product A⊗B is a (mk×nl)-dimensional matrix defined through
(k × l)-dimensional submatrices Ai,j where Ai,j = ai,jB.

The row space of the matrix A is a vector space which is spanned by the row
vectors Ai,?,i ∈ [k]. The row space of the matrix A is denoted as rowspace(A).

Using the notation, it is possible to give a refined definition of the set reconcilia-
tion problem.

Definition 2. Let G = (V , E) be a graph describing the network of k nodes. Let
there be a universe X of objects. Let each node vi ∈ V , i ∈ [k], have an associated
set of objects Xi ⊂ X∗. The set reconciliation problem is finding an algorithm which
returns a union Xall = ∪i∈[k]Xi for each of the nodes with smallest communication
complexity.
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1.2 Models

1.2.1 Pairwise set reconciliation
Consider a situation where there are only two nodes with corresponding sets of
objects.

In this case, the nodes are
V = {v1, v2}

with a single edge
{v1, v2}

The associated sets of objects are X1 and X2. Let n = |X1 ∪ X2| and m =
dist(1, 2). We denote the algorithm which reconciles the sets of objects X1 and X2,
as A.

We denote the amount of communication in bits as Communication(A). The
amount of communication is counted over all messages back and forth between the
nodes. The communication takes into account the size to represent elements of
algebraic structure. If the exact amount of communication is not needed then we
may also give an asymptotic amount.

The total amount of computation operations needed for running A is denoted
Computation(A). We usually count all the required computation steps, even if some
of the operations are cheaper to perform (eg. exponentiation is faster than addition
on most of the computers). Similarly to communication, we can also give only an
asymptotic amount.

The number of dependent messages is denoted as Time(A). If the algorithm could
finish with some of the messages concatenated and sent as one, then we count these
messages as one message. This implies that time is the number of rounds in the
algorithm. Here, we can also give only the asymptotic amount.

Depending on the requirements, the goals of the algorithms may differ and the
notation of different amounts should describe these requirements.

For example, if we consider wireless mobile devices, then initializing the transmis-
sion to the base station requires temporary power increase and the wish is to reduce
Time(A) while loosening the requirements on Communication(A). Or, for sensors
with constrained computing capabilities, one hopes for a small Computation(A).

It can be easily seen that we can find the optimal communication and time cost.

Lemma 2. There exists no set reconciliation algorithm A which can reconcile all
instances of sets of objects in less than m log |X| bits.
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Proof. We assume that exists an algorithm A, which can reconcile any instances
X1, X2 ⊂ X in fewer than m log |X| bits. For any X ⊂ X there exists X1, X2 ⊂ X
such that X = X1 \X2 ∪X2 \X1. As |X| = m, then using the algorithm A, this set
can be transmitted with less than |X| log |X| bits.

We have constructed an algorithm to transmit all sets X ⊂ X with less than
|X| log |X| bits. This is a contradiction as it takes at least log |X| bits to represent
random object in X and |X| log |X| bits to represent a random subset X in X.

Rephrasing Lemma 2, we obtain a lower bound on communicational cost for any
set reconciliation algorithm.

Corollary 1. For any set reconciliation algorithm A and for any sets of objects, the
communicational cost is bounded

Computation(A) ≥ m log |X|.

Lemma 3. Optimal time cost for any set reconciliation algorithm A is Time(A) = 2.

Proof. It takes at least one message to transmit ∆1,2 and one message to transmit
∆2,1.

1.2.2 Pairwise sequence reconciliation
We diverge shortly from the initial setup and notation to see an alternative approach
to solving the set reconciliation problem using the methods from coding theory.

Let x be a sequence of symbols from X. Let the nodes v1 and v2 have a sequence
which is x but with some symbols erased. The sequence reconciliation problem is
finding x from the nodes sequences.

Now, if we consider the methods from coding theory, then the nodes need to
jointly decode their sequences to recover initial x. If they have recovered x, then
they have reconciled their sequences.

If instead of the sequence x = (x1x2 . . . xn) we consider the set {(x1, 1), . . . , (xn, n)},
then both nodes have a subset of this set and they need to find the union.

Even though there are well-studied methods to solve the coding problem, then
they may not be practical in the set reconciliation context. Firstly, the codes may
be inefficient for large symbol spaces X. Secondly, the coding problem covers also
errors, which are not allowed in the usual set reconciliation model. However, finding
an optimal solution to a set reconciliation problem can lead to coding algorithm.

15



1.2.3 Broadcast set reconciliation
In broadcast set reconciliation, the number of the nodes is arbitrary. Let V be the
set of all nodes and E the edges between the nodes.

We require that the graph G = (V , E) is strongly connected, i.e. there exists a
directed path between any pair of nodes. Otherwise, there exists no set reconciliation
algorithm.

In this model, if a node vi transmits a message, then it is received by all its
neighbours S(vi). We assume that the messages can be sent in parallel and each
node can transmit and receive a message at a single step. As with the pairwise set
reconciliation, if messages sent by a single node are independent, then they can be
concatenated and viewed as a single message. A single step of nodes transmitting
messages in parallel is called a round. The total number of rounds for an algorithm
A to reconcile the sets is denoted as Rounds(A).

Broadcast set reconciliation models the wireless networks. If a node transmits a
message, then it is received by all nodes which can decode the message successfully.
The messages can be transmitted in parallel using a time-slicing method. Using
the time-slicing method, the channel is divided into short time-slots and each of the
nodes transmits during a time slot assigned to it. An example of time-slicing method
is illustrated in Figure 1.3.

slot 1 slot 2 slot 3 slot 1 slot 2 slot 3 . . .
frame 1 frame 2

Time

v1 v2 v3

Figure 1.3: Time slicing method used in broadcast network model with three nodes
v1, v2, v2

1.2.4 Unicast set reconciliation
The setting for unicast set reconciliation is similar to broadcast set reconciliation
with the exception that a node can communicate with one node at a time.
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v1 v2

v3 v4

v1 v2

v3 v4

Figure 1.4: Red edges on the left figure make up a matching. On the right figure,
the node v2 is an endpoint for two red edges, thus the red edges do not make up a
matching

In a single round, we allow two neighbouring nodes to transmit more than one
message. Thus, the round ends if all the transmitting nodes have finished transmit-
ting their messages and are ready to choose a new neighbour.

For analysis of unicast set reconciliation, the following definition would be useful.

Definition 3. Let G = (V , E) be a graph. A matching M is a subset of E such that
each node in V is an endpoint to only one edge in the matching.

An illustration of a matching is shown in Figure 1.4.
It is possible to construct a set reconciliation algorithm A, which chooses the

optimal matching and performs pairwise set reconciliation between pairs of nodes
iteratively. It stops when the sets of objects in all nodes are reconciled.

There can also be an algorithm which does not perform full pairwise set recon-
ciliation algorithm for some neighbouring nodes but rather decreases some metric
which measures the difference of the sets of objects. The study of these algorithms
is not in the scope of this Thesis.

1.2.5 Threshold reconciliation
In all previous models, the goal was to reconcile the sets of objects for all nodes. In
this model, the goal is to have at least some fixed number of copies of each of the
object. The required minimum number is called a threshold. The transmission model
of threshold reconciliation can either be unicast or broadcast.

The threshold reconciliation model covers some storage systems where the re-
quirement is to provide redundancy while saving the storage space. Threshold rec-
onciliation could also be used in error correction. If the count of any object in the

17



graph is smaller than the threshold, then this object can be considered as an error.
Otherwise, if the count of any object exceeds the threshold, then the deficiency of
this object can be considered as an erasure.

18



Chapter 2

Related work

2.1 Characteristic polynomials
In [MTZ03], an algorithm for pairwise set reconciliation model was proposed. Even
if the computational cost of the algorithm is large, then it can be use for set reconcil-
iation if the differences are small as the communicational overhead of the algorithm
is small and the algorithm is very easy to implement.

A sample implementation of this algorithm by the author is available at [Kub13].
An example using this implementation is given in Appendix A.

2.1.1 Description of the algorithm
This approach uses the pairwise set reconciliation model.

The objects in this algorithm are elements from a field Fq. Here we consider the
case where q is a prime. Due to Bertrand’s postulate [MM13], for every b ∈ N there
is a prime p such that 2b ≤ p ≤ 2b+1. Thus, we can represent arbitrary bitstrings of
length b as bitstrings of length b+ 1 in the finite field Fq.

For a set of objects X = {x1, . . . , xn} we define a characteristic polynomial χX(Z)
of the set X as:

χX(Z) = (Z − x1)(Z − x2) . . . (Z − xn).

We see that the roots of χX(Z) correspond to the elements of X. If we are able
to factor χX(Z) then we have found all the objects of a node. As we need only the
differences, then we can instead consider the rational polynomial

χX1(Z)
χX2(Z) =

χX1∩X2(Z) · χ∆1,2(Z)
χX1∩X2(Z) · χ∆2,1(Z) =

χ∆1,2(Z)
χ∆2,1(Z) .
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Instead of sending the polynomials and finding a ratio, the polynomials can be
evaluated at predefined points. The values are divided and a rational polynomial is
interpolated using the divided values. From the interpolated polynomial, it is possible
to recover χ∆1,2(Z) and χ∆2,1(Z). The roots of these polynomials correspond to the
differences ∆1,2 and ∆2,1, respectively. Each of the nodes now adds the objects from
the differences to its set of objects and thus recovers Xall.

2.1.2 Evaluation and interpolation of polynomials
If the total number of differences is m, then we denote by m an upper bound m ≤ m.
The case where there is no known upper bound is considered in Section 2.1.5.

The polynomials are evaluated at m predefined points Ev = {ev1, . . . , evm}. If
some of the points in Ev is an object in Xall, then either of the characteristic polyno-
mials evaluates to zero and the algorithm is halted. A new evaluation point should
then be chosen or a pseudorandom generator should be used to generate a new
evaluation point.

Interpolating a rational function depends on evaluation points and values. Specif-
ically, if we have polynomials P (Z) = ∑

i piZ
i and Q(Z) = ∑

i qiZ
i with degrees

bounded with d1 and d2, then it is necessary to have d1 + d2 + 1 pairs (ki, fi) ∈ F2,
which we denote as P , to find a unique rational polynomial f such that f(ki) = fi
[Zip93]. The pairs in P establish linear constraints on f :

kd1
i + pd1−1k

d1−1
i + · · ·+ p0 = fi · (kd2

i + qd2−1k
d2−1
i + · · ·+ q0).

Because bounds on the degrees of polynomials are not known, we can find them
through the set sizes. Take δ = d(1, 2)− d(2, 1). Then:

d(1, 2) ≤
⌊
m+ δ

2

⌋
= d(1, 2),

d(2, 1) ≤
⌊
m− δ

2

⌋
= d(2, 1).

Because the numerator and denominator polynomials are monic in rational poly-
nomial being recovered and if δ and m have same parity, then d(1, 2) + d(2, 1) = m.
Thus m evaluation values are enough to interpolate f . The following proposition
gives sufficient conditions on uniqueness.

Theorem 1 ([SB93], Theorem 2.2.1.4). Let P be a support set with m elements over
the field F. Assume there exists two monic rational functions f and g that satisfy P,
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and that the numerator and denominator of f (respectively g) have degrees summing
to at most m. If the difference in degrees between numerator and denominator of f
is the same as for g, then f and g are equivalent.

2.1.3 Computational complexity
Evaluation of characteristic polynomials of sets ∆1,2 and ∆2,1 takes up to 2|Xall|m
additions and 2|Xall|m multiplications.

Solving system of m linear equations with Gaussian elimination has a complexity
of O(m3 log log |X|). Using other methods for solving linear equations could reduce
the complexity.

There is additional computation during the factorisation of interpolated polyno-
mials. In [KS98], an algorithm with computational complexity O(m1.815 log log |X|)
was given.

We see that the computational complexity is

Computation(A) = O(m3 log log |X|).

2.1.4 Communicational complexity
In this algorithm, the first node has to send m evaluation values of its characteristic
polynomial. Each of the evaluation value can be represented with b + 1 bits. In
addition, it needs to send the number objects in its set. The total number of bits
required to send by the first node is

(b+ 1)m+ b.

The second node can recover the sets ∆1,2 and ∆2,1 from the received bits. It
has to send ∆2,1 to the first node for set reconciliation. Each of the objects can be
represented with b + 1 bits. The total number of bits sent by the second node is
d(2, 1)(b+ 1) ≤ m(b+ 1).

The communication cost for this algorithm is bounded by

Communication(A) ≤ 2m(b+ 1) + b.

As the size of the universe is smaller than 2b+1, then the communication com-
plexity is Communication(A) = O(m log |X|). If the upper bound m is chosen close
to m, then the algorithm reaches optimal communication cost.

As there is only one message sent at each direction, then the time cost is Time(A) =
2.
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2.1.5 Algorithm without known bound on the size of the
symmetric difference

If there is no known bound on m, then the algorithm needs to be modified. The
idea of the modification is to test that the interpolated polynomial g(Z) equals to
f(Z) = χ∆1,2(Z)/χ∆1,2(Z). The equivalence testing can be done by evaluating the
polynomials at random points and see if the values are equal.

Let σ be the upper bound on degrees of g(Z) and f(Z). From Theorem 1 we
know that σ evaluations are enough for polynomials equivalence. In a worst case
scenario, we can choose σ− 1 evaluation points such that different polynomials g(Z)
and f(Z) agree on these points. So, the probability that test succeeds for different
polynomials is ρ = (σ − 1)/|Ev|.

Choosing q such that sets X1 ⊂ Fq and X2 ⊂ Fq are sparse an taking σ as
σ = |X1| + |X2| and Ev ≈ Fq, then ρ is small and repeating test l times, the
probability for false positive is ρl l→ 0.

Using this approach, evaluations can be sent one at a time. Then g(Z) should
be recalculated only then if evaluations and g(Z) do not agree. After l sequential
confirming tests it can be considered that g(Z) = f(Z). The probability that poly-
nomials differ after l succeeded tests is bounded above by mρl. If we want to achieve
a failure tolerance of 1− ε, then l should be chosen

l ≥ logρ(ε/m) > logρ(ε/|X1|+ |X2|).

The total number of transmitted bits is at most

(b+ 2)(m+ l) + b

and if the node has recovered differences of sets of objects then it has to send back
d(1, 2)(b+ 1) bits of information.

Computational cost is bounded by recalculation of g(Z), which is done m times.
As Gaussian elimination has complexity O(m3 log log |X|), then the total computa-
tion cost is Computation(A) = O(m4 log log |X|).

It is possible to reduce the computational cost by sending an increased amount
of evaluation values after each round. The amount of evaluation values is increased
c times after each successful round.

The total number of evaluation values sent is (cN − 1)/(c − 1) for some N > 0
and the total number of rounds is N = dlogc [(m+ l)(c− 1) + 1]e. In the worst case,
only one value is left to the last round. Then extra (c − 1)(m + l − 1) evaluation
values are sent. The total number of bits transmitted by one node is at most

2b+ 1 + (b+ 1)c(m+ l − 1) +
⌈

logc[(m+ l)(c− 1) + 1]
⌉
.
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The receiving node has to return d(1, 2)(b + 1) bits of information to finish the
algorithm.

In this case, as the number of rounds is proportional to logc(m+l), computational
complexity is reduced to

O((m+ l)3 logc(m+ l) log log |X|).

2.2 Bloom filters
In [Blo70], a new data structure was introduced, which allows very efficient proba-
bilistic testing of an element inclusion in a set. This data structure was modified in
[GM11], to allow deletion, lookup and listing of the elements included in the data
structure.

An algorithm for pairwise set reconciliation using invertible Bloom filters was
described in [EGUV11]. We give a description of the corresponding data structures
and describe the use of the data structure in a pairwise set reconciliation algorithm.

2.2.1 Description of Bloom filter
The filter F is an bit array of length N . Initially, all of the bits of the filter are set
to 0. We call the each bit of the filter as cell.

There are H hash functions hi : X → [N ], i ∈ [H]. An object x is added into
the filter by hashing the object with H hash functions hi. The resulting integers are
used as indices which denote the cells which are set to 1.

To test if an object x is stored in the filter F , it is hashed through H hash
functions hi and the resulting indices denote which filter cells are checked if they are
1. If all of the checked cells are 1, then the object x is included in the filter F with
some probability. Otherwise, if some of the cell is 0, then the object is not included
in the filter.

It can be seen that the Bloom filter is probabilistic data structure as it may allow
false inclusions if the checked cells are set to 1 by other objects. However, the data
structure is deterministic for checking exclusions as the cells are set 1 for the same
object if the same hash functions are used.

Adding an object to Bloom filter is illustrated in Figure 2.1.
For the analysis on the probability of false inclusion, we assume that the hash

functions are uniform. That is, for any object x and for arbitrary hash function hi,
i ∈ [H], we have

Pr {∀j ∈ [N ] : hi(x) = j} = 1
N
.
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h1 h2 hH−1 hH. . .

0 0 0 1 1 1 0 0 0 0 0 1 0 0

Figure 2.1: Adding an object x to Bloom filter

For a single object, the probability that single hash function sets a specific cell to
1 is 1/N and that the cell is not is not set is 1−1/N . As there are H hash functions,
then the probability that a cell is not set to 1 after all hash functions have set the
bits is (1 − 1/N)H . If there are n objects, then the probability that a cell is 0 is
(1− 1/N)Hn and that the cell is 1 is 1− (1− 1/N)Hn.

Asymptotically,

1−
(

1− 1
N

)Hn
= 1−

((
1 + −1

N

)N)Hn/N
≈ 1−

(
e−1

)Hn/N
≈ 1− e−Hn/N .

Thus, for the test to be false inclusive, all H functions must output an index
where the cell is set to 1. The probability of false inclusion is

Pr{x 6∈ F : inclusion test is positive} ≈
(
1− e−Hn/N

)H
. (2.1)

If n and N are fixed, then we can find an optimal H if we take a logarithm of
Equation (2.1) and take a derivate

d(H ln(1− e−Hn/N))
dH

= ln
(
1− e−Hn/N

)
+H

n
N
e−Hn/N

1− e−Hn/N . (2.2)

The right side of Equation (2.2) is 0 if H = N
n

ln 2.
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2.2.2 Description of invertible Bloom filter
The invertible Bloom filter (IBF) allows for inserting, removing and listing of the
key-value pairs (K,V ), K ∈ [|X|], V ∈ X, into the data structure. Similarly to
standard Bloom filters, we require H hash functions hi : [|X|]→ [N ], i = 1, . . . , H.

In addition to the requirement that hash functions are uniform, we also require
that they are distinct for same K, meaning that they all output distinct values. Here
we assume that the distinction is satisfied by dividing the filter to H subfilters of size
N/H. The hash function hi then outputs its values to i-th subfilter. We see that
this assumption does not contradict the requirement of hash function being uniform.

In the standard Bloom filter, the filter was a bit array of length N but in IBF,
the filter consists of N cells with the fields count, keySum, valueSum. All of the fields
are initially set to 0.

The definitions of the functions Insert, Remove, Get and ListEntries are given in
Algorithms 1, 2, 3 and 4.

Algorithm 1 Insert(K,V )
1: for all hi, i = 1, . . . , H do
2: F [hi(K)].count+ = 1
3: F [hi(K)].keySum+ = K
4: F [hi(K)].valueSum+ = V
5: end for

Algorithm 2 Remove(K,V )
1: for all hi, i = 1, . . . , H do
2: F [hi(K)].count− = 1
3: F [hi(K)].keySum− = K
4: F [hi(K)].valueSum− = V
5: end for

To analyze the success probabilities of the functions Get and ListEntries, we have
to assume that Insert and Remove operations are done correctly, i.e. an existing key-
value pair is not inserted into the filter and a nonexistent key-value pair is not
removed from the filter.

The Get function is always correct as it only returns non-null value if the count
in the cell is 1. As other fields in the same cell are updated simultaneously while
changing count field, then Get only returns the value if the valueSum field contains
only one value and it corresponds to the keySum value.
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Algorithm 3 Get(K)
1: for all hi, i = 1, . . . , H do
2: if F [hi(K)].count = 0 then
3: return null
4: else if F [hi(K)].count = 1 then
5: if F [hi(K)].keySum = K then
6: return F [hi(K)].valueSum
7: else
8: return null
9: end if

10: end if
11: end for
12: return “not found”

Algorithm 4 ListEntries()
1: output = []
2: while there is an i ∈ [N ] with F [i].count = 1 do
3: append (F [i].keySum,F [i].valueSum) to output.
4: Remove(F [i].keySum,F [i].valueSum)
5: end while
6: return output

As the filter is divided into smaller subfilters of size N/H and the hash functions
are uniform, then the probability that key-value pair hashes into a specific cell is
H/N . The probability that a it hashes to other cells in the subfilter is 1−H/N . If
n key-value pairs are hashed, then the probability that all but one key-value pair is
hashed to other cells is (1−H/N)n−1. Using similar argumentation as in Section 2.2.1,
we obtain that (

1− H

N

)n−1
≈ e−H(n−1)/N ≈ e−H(n−1)/N .

Thus, the probability that Get returns “not found” for a key-value pair included
in the filter is

(
1− e−Hn/N

)H
, as it has to hold for all H hash functions.

We say that function ListEntries succeeds if it returns all key-value pairs stored
in the filter.

In [GM11], the success probability of ListEntries was analyzed. The constant cH
was given by its inverse

c−1
H = sup

{
α : 0 < α < 1; ∀y ∈ (0, 1), 1− e−HαyH−1

< y
}
.
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The constant cH is used to find a failure probability O(t−c) for desired constant
c where t = N/cH . The relation between the filter size and the failure probability is
given by Theorem 2.

Theorem 2 ([GM11], Theorem 1). As long as N is chosen so that N > (cH + ε)t
for some ε > 0, ListEntries fails with probability O

(
t−H+2

)
whenever n ≤ t.

2.2.3 Using invertible Bloom filter for set reconciliation
Invertible Bloom filters can be used to perform pairwise set reconciliation. The
nodes construct IBFs from their sets of objects. The IBFs are transferred to each
other and they are subtracted. As the subtraction cancels out common objects, then
the resulting IBFs contain only insertions of objects in sets differences.

We construct a new data structure which is also called filter and denoted by
F . The filter consists of N cells. For the set reconciliation the concept of key is
irrelevant, and so the cells in the filter do not contain keySum field. If the indexing
of the objects is not done using keys, then we need to change the domain space of
the hash functions hi to X.

The subtraction function Subtract is equivalent to Remove function for ordinary
IBFs. However, we required that only objects included in the filter are removed, but
set differences consists only of objects which have not been included in the filter.
Without modifications, the ListEntries function would return incorrect objects. For
example, if objects x1 and x2 are hashed into a specific cell and x3 is subtracted from
this cell, then ListEntries would output an object x1 + x2 − x3.

To diminish the rate of false entries returned by ListEntries, an additional field
hashSum is added to the cells and a checksum hash function h : X→ [|X|] is required.
The hashSum field contains the sum of hashed values of the value. During listing,
it is checked if the fields valueSum and hashSum match, i.e. h(F [j].valueSum) =
F [j].hashSum. In the previous example, h(x1 +x2−x3) 6= h(x1) +h(x2)−h(x3) and
thus the listing function does not output any value.

We rewrite the Insert function and the Remove function as functions Encode and
Subtract to correspond with the modifications. The definitions of the corresponding
functions are written in Algorithms 5 and 6.

The ListDifference function is a modification of ListEntries which also checks for
the additional hash function. The definition of ListDifference is given in Algorithm 7.

The failure probability of listing differences was studied in [EGUV11].

Theorem 3 ([EGUV11], Theorem 1). Let X1 and X2 be two sets having at most
m elements in their symmetric differences, and let F1 = Encode(X1) and F2 =
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Algorithm 5 Encode(X)
1: F = []
2: for all xi ∈ X do
3: for all hj, j = 1, . . . , H do
4: F [hj(xi)].count+ = 1
5: F [hj(xi)].valueSum+ = xi
6: F [hj(xi)].hashSum+ = h(xi)
7: end for
8: end for
9: return F

Algorithm 6 Subtract(F1,F2)
1: F = []
2: for all j ∈ [N ] do
3: F [j].count = F1[j].count−F2[j].count
4: F [j].valueSum = F1[j].valueSum−F2[j].valueSum
5: F [j].hashSum = F1[j].hashSum−F2[j].hashSum
6: end for
7: return F

Algorithm 7 ListDifference(F)
1: output = []
2: while there is an i ∈ [N ] with F [i].count = 1 do
3: if h(F [i].valueSum) = F [i].hashSum then
4: value = F [i].valueSum
5: append value to output
6: F = Subtract(F ,Encode(value))
7: end if
8: end while
9: return output

Encode(X2) be invertible Bloom filters with N = (H + 1)m cells and with at least
Ω(H logm) bits in each hashSum field. Then with probability O(m−H) we fail to
recover X1 and X2 by applying the Subtract operation to F1 and F2 and then applying
the ListDifference operation to the resulting Bloom filter.

From Theorem 3 we see that the filter size is linear to the size of the difference if
the number of hash functions is fixed. To construct a filter with sufficient size such
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that the ListDifference function would not fail, we need to estimate the size of the
difference before filter construction.

In [EGUV11], the authors proposed an algorithm named Strata Estimator to
predict the size of the set difference. The universe X is partitioned into disjoint
subsets Xi of size 1/2i+1, i ∈ [log |X|]. If an object from set X belongs to i-th subset
Xi, then it is inserted into i-th filter Fi. All of the filters Fi have an fixed size of 80
cells.

The filters are transmitted to other node which subtracts corresponding filters
from its filters and tries to list set differences for each of the filter. The filter which
covers the smallest partition of the universe gives a good estimate on the size of the
set difference.

2.2.4 Computational and communication cost
The description of full pairwise set reconciliation algorithm A is given using the
descriptions of running a Strata Eliminator and using IBFs to find the set differences.

To start the set reconciliation process, a node v1 sends its Strata Estimator to
node v2. The node v2 estimates the size m of the symmetric difference and constructs
an IBF of size O(d log |X|) and sends it to node v1. Node v1 extracts the differences
d(1, 2) and d(2, 1) using ListDifference and sends d(1, 2) to node v2.

The computation consists of creating the estimator, which has the computational
complexity O(|Xall| log |X|); creating the IBF for reconciliation, which has same com-
putational complexity and extracting the differences, where there is an algorithm in
[EGUV11], which has the computational complexity of O(m log |X|). However, first
two steps can be precomputed and only the last step is done during the set reconcil-
iation process. Thus, the computational cost of the online phase of the algorithm is
only

Computation(A) = O(m log |X|).
The communication cost is dominated by the size of the estimator. As the sizes

of filters in the estimator are fixed and there are log |X| filters which store ele-
ments which can be represented by log |X| bits, then the size of the estimator is
O(log |X| log |X|). Thus the communicational cost of the algorithm is

Communication(A) = O(log |X| log |X|).

If the size of the symmetric difference is known, then the communicational cost is
Communication(A) = O(m log |X|), achieving optimal cost.

The round cost of the algorithm is Time(A) = 3 using the estimator and Time(A) =
2 if the estimator is not used.
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2.3 Data exchange protocol
The broadcast set reconciliation problem was studied in [RSS10]. The graph in their
model is a full graph. In their algorithm, nodes broadcast linear combinations of
their objects which are used to extract missing objects for each node. Based on these
ideas, we extended the algorithm to an arbitrary graph. This work is covered in
Section 3.3.

2.3.1 Bounds on the number of transmissions
Let the graph be defined by nodes V . Let E be a set of edges such that the graph
G = (V , E) is a complete graph. Let k be the number of nodes. We denote by Xi,
i ∈ [k] the sets of objects associated with each of the node. The complement of each
set of objects is denoted as X i = Xall \Xi. We denote by ni = |Xi|, i ∈ [k] the sizes
of the sets of nodes. Let n = |Xall| be the size of the reconciled set of objects. We
denote nmin = mini∈[k] ni and nmax = maxi∈[k] ni. The objects are from a finite field
F, so the universe is also X = F.

We observe that all of the nodes need to receive at least the amount of objects
they do not possess. The exact lower bound is given in the following lemma.

Lemma 4 ([RSS10], Lemma 1). The minimum number of transmissions Time(A)
is greater or equal to n− nmin. If all nodes initially have the same number of objects
nmin < n, then the minimum number of transmissions is greater or equal to n−nmin +
1.

Proof. The first part follows from the fact that each node needs to receive at least
n− ni objects. The second part follows from the fact that a transmitting node does
not benefit from its own transmissions.

The upper bound on the number of transmissions can be given through a naive
set reconciliation algorithm which always succeeds.

Lemma 5 ([RSS10], Lemma 2). For |X| ≤ k, it holds that

Time(A) ≤ min
i∈[k]

{
|X i|+ max

j∈[k]
|Xj ∩Xi|

}
.

Proof. The algorithm works in two phases:

1. pick a node vi and reconcile its set by transmitting all objects in X i. This
requires |X i| transmissions;
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2. this node transmits linear combinations of its packets to reconcile the sets of
other nodes.

After the first phase, each node vj knows all the packets in Xj ∪X i. For reconcil-
iation, it needs objects from Xj ∩Xi. Using network coding methods from [JSC+05],
these objects can be transmitted using maxj∈[k] |Xj ∩Xi| messages if |X| ≤ k.

Running this algorithm with i which minimizes the number of messages gives the
upper bound.

2.3.2 Data exchange protocol
The algorithm is used to create linear combinations of objects and these are broadcast
to neighbouring nodes. Each of the nodes receives these messages and solves a system
of linear equations to extract missing objects to recover Xall.

For a linear combination y, let Γy ∈ Fn be the vector of linear coefficients such
that y = Γy · (x1, . . . , xn). As the field F is a vector space, then the messages y also
belong to the universe X.

We consider the vector spaces Yi which are spanned by linear coefficients Γy where
y ∈ Xi. Formally, Yi = 〈{Γy|y ∈ Xi}〉.

The algorithm for set reconciliation is given in Algorithm 8.

Algorithm 8 Information Exchange algorithm as given in [RSS10]
1: for all i ∈ [k] do
2: Yi = 〈{Γy|y ∈ Xi}〉
3: end for
4: while there is a node vi with dim Yi < n do
5: while exists distinct vi, vj ∈ V such that Yi = Yj do
6: V = V \ {vi}
7: end while
8: Find a node vi with a vector space Yi of maximum dimension (if there are

multiple such nodes choose an arbitrary of them).
9: Select a vector b ∈ Yi such that b 6∈ Yj for each j 6= i.

10: Let node vi broadcast message b · (xi, . . . , xn).
11: for all l ∈ [k] do
12: Yl = 〈{a|a ∈ Yl ∪ {b}}〉
13: end for
14: end while
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In this algorithm, the dimensions of vector spaces Yi are increased each round.
The vector spaces are increased with adding a vector b from the vector space of such
node which has the highest dimension. The nodes which have the same vector spaces
are considered as one.

We see that the maximum number of rounds is n as the dimension increases by
one at each round and the dimension is unbounded from below.

As only a single field element is broadcast during a round, then the communica-
tional cost is Communication(n log |X|).
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Chapter 3

New reconciliation protocols

The research goal of this Thesis is finding methods for set reconciliation in arbi-
trary networks. We have seen from Sections 2.1 and 2.2 that there exist algorithms
which can achieve optimal communicational, computational cost and number of mes-
sages. However, little is known about algorithms working with arbitrary graphs. In
Section 2.3, Lemma 4 provided a lower bound for a set reconciliation algorithm in
broadcast network with complete underlying graph.

Extending known results to larger graphs is not straight-forward. Our first result
in Section 3.1 shows, that if optimizing the transmission schedule, it is trivially
possible to reduce the communicational cost by one third compared to performing
pairwise set reconciliation between all nodes. Thus it is possible to gain efficiency if
taking into consideration the structure of the graph.

In our second result in Section 3.2, we used characteristics which describe graphs
to achieve minimal number of rounds. Our preliminary experiment gave good re-
sults in large proportion of the cases and failed only in a small subset of the cases.
Furthermore, if the experiment failed, then difference with a counter-example was
minute. Even though this approach requires further study, it can be used if no other
good results are found as it is rather easy to implement.

The main contribution of this Thesis is in Section 3.3, where we develop an
analytical framework for describing the set reconciliation problem in an arbitrary
broadcast graph. If there exists a possible set reconciliation protocol for some specific
graph, the framework allows to construct it using the solution to a rank-optimization
problem. Even though we have used ideas from [RSS10], our idea and technique
is novel and could be possibly extended. The idea is based on observation that
the adjacency matrix of the graph could be incorporated into a rank-optimization
problem.
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3.1 Improvements to the method of characteristic
polynomials

If there are more than two parties that need to reconcile their sets, using set rec-
onciliation algorithm based on interpolation of characteristic polynomials between
each pair is not optimal, as this leads to transmission of redundant information. We
propose the following modification to the protocol.

Let there be three nodes v1, v2, v3, and let X1, X2 and X3 be the sets of objects
owned by v1, v2 and v3, respectively. We assume that an upper bound m on the
size of any two pairwise symmetric difference is known. We denote nodes v1 and v2
pairwise union as

X1,2 = (X1 ∩X2) ∪∆1,2 ∪∆2,1.

Pairwise unions can be simplified to

X1,2 = (X1 ∩X2) ∪∆1,2 ∪∆2,1 = X2 ∪∆1,2

and
X2,3 = X2 ∪∆3,2.

If X1,2 and X2,3 are known then Xall = X1,2∪X2,3. Now the node v1 and the node
v3 do not have Xall\X1 and Xall\X3 accordingly. But Xall\X1 = Xall\(X1,2\∆2,1) =
(Xall \X1,2)∪∆2,1 and Xall \X3 = (Xall \X2,3)∪∆2,3 and thus can be recovered from
sets known to node v2.

This discussion can be summarised as a protocol for reconciling sets between
three parties:

Algorithm 9 Set reconciliation with three parties using characteristic polynomials
1: Hosts v1 and v3 evaluate χX1(Z) and χX3(Z) at m evaluation points Ev.
2: The evaluation values χX1(Ev), χX3(Ev) and sizes of the sets |X1|, |X3| are sent

to host v2.
3: Host v2 recovers ∆A,B, ∆B,A, ∆C,B and ∆B,C .
4: Host v2 recovers XA,B and XB,C .
5: Host v2 recovers Xall.
6: Host v2 sends S \X1 to host v1 and S \X3 to host v3.
7: Hosts v1 and v3 recover Xall.

In this protocol, nodes v1 and v3 send values of m evaluation points and sizes of
their sets. Because node v2 has all the knowledge about differences, it can send to
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the nodes v1 and v3 only elements missing from X1 and X3. It sends elements from
∆2,1 ∪∆3,1 and ∆2,3 ∪∆1,3 to the nodes v1 and v3 respectively. In total, we have to
transmit |∆1,3 ∪ ∆2,3| + |∆3,1 ∪ ∆2,1| elements. By looking at disjoint sets, we can
simplify:

|∆1,3 ∪∆2,3|+|∆3,1 ∪∆2,1| =
=|∆2,1|+ |∆2,3|+ |∆1,3 \∆2,3|+ |∆3,1 \∆2,1|
=|∆2,1|+ |X1 \ (X2 ∪X3)|+ |∆2,3|+ |X3 \ (X1 ∪X2)|
=|∆2,1|+ |∆1,2| − |∆1,2 ∩∆3,2|+
+|∆2,3|+ |∆3,2| − |∆1,2 ∩∆3,2|
=2(m− |∆1,2 ∩∆3,2|).

Because no more than 2m elements are sent in this stage, then total number of
transmitted bits is bounded above by

2(b+ 1)m+ 2b+ 2bm = 2((2b+ 1)m+ b)

During the protocol, sets are evaluated 3 times and interpolation is done 2 times.
In this algorithm, node v2 acted as a proxy between nodes v1 and v3. Similar

construction, where one node acts as a master, could also be used to perform set
reconciliation between a large number of nodes, but this leads to uneven distribution
of computational cost while having balanced use of communication. The algorithm
can be extended to star graphs (see Figure 3.1) and to graphs that contain a star
graph as a subgraph.

It has not been considered if requirement would be to have even computational
cost across nodes. Intuitively, in this case the amount of communication would
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increase, as after reconciliation of two nodes sets upper bounds of differing elements
increase and more evaluation values should be sent.

Very recently, a similar observation for reconciliation algorithm using invertible
Bloom lookup tables was done independently in [MP13].

3.2 Network matching approach
We consider the unicast network model where the edges are undirected. In the
unicast network model, pairs of nodes perform pairwise set reconciliation. Our goal
is to find an optimal matching algorithm such that the number of rounds for a set
reconciliation problem is minimal.

We have constructed a framework [Kub14] which can be used to compare different
matching algorithms and to find counter-examples. This framework was used to test
if maximum weight matching algorithm gives good results against randomly chosen
matchings.

The maximum weight matching algorithm looks for matchings in a graph such
that the sum of weights for edges in the matching is maximal. For each of the edges,
we used the size of the symmetric difference of sets of nodes at the endpoints of
the edge. Formally, ∀e = {vi, vj} ∈ E : w(e) = dist(i, j), where w(e) is the weight
associated with the edge e.

We can intuitively see that maximum weight matching can not be optimal match-
ing algorithm. As the maximum weight matching algorithm takes into account only
the size of the symmetric differences and not the objects in nodes sets, then after a
round, weights on other edges may increase. However, we believed that on average
the maximum weight matching algorithm could diminish the effects of this anomaly.

3.2.1 Experimental results
We constructed arbitrary graphs with 5 to 19 nodes. Let the number of nodes be k.
For the graph being connected we require that the number of edges was greater or
equal to k − 1. For allowing only a single edge between any two pairs of nodes we
require that the number of edges is smaller than k(k − 1)/2. For each k, we tested
all possible edge set sizes satisfying the above restrictions.

For each number of nodes and edges, we constructed 10 arbitrary connected
graphs. The requirement that the graph has to be connected is trivial, as otherwise
there exists no reconciliation algorithm.

The random graph construction algorithm is a probabilistic algorithm which
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Figure 3.2: Number of graphs which are reconciled depending on the number of
rounds

works in iterations. During each of the iterations, a node which is not an end-
point for any edge is selected. An edge connecting this node and a random node in
a largest connected subgraph is added to the set of edges. If there exists no such
node then an edge between random nodes is added if these two nodes do not have
an edge. The exact implementation details can be seen from the source code of the
framework at [Kub14].

For each of the graphs, we assigned a subset of 100-element set to each of the
node. We compared the number of rounds required for reconciliation if the matchings
were chosen by maximum weight matching algorithm to if the matchings were chosen
randomly.

There were in total of 9650 graphs and 96500 test cases. With maximum weight
matching, all graphs were reconciled with up to 4 rounds and mean number of re-
quired rounds was 2. In Figure 3.2, we have illustrated how many graphs could be
reconciled with given number of rounds. We have compared the maximum weight
matching algorithm with random matching algorithm.

There were 122 cases where maximum weight matching was inferior to random
matching. In all of these cases, random matching required only one fewer round than
maximum weight matching.

We have illustrated one counter-example in Figures 3.3 and 3.4. In these figures,
red circles represent nodes and lines represent edges. The numbers on the edges
denote the size of the symmetric difference of the sets of nodes at endpoints. With

37



5

7

6

5

6

8

0

1
2

3

4
5

x
0
1

,x
2
4
,x

3
0

x
3
2

,x
3
4
,x

4
6

x
5
9

,x
6
2
,x

7
4

x
7
8

,x
8
3
,x

8
6

x
8
7

,x
8
9
,x

9
0

x
0
1
,x

1
4

,x
2
4

x
3
0

,x
3

4
,x

4
6

x
6
2
,x

6
8

,x
7
4

x
8

3
,x

8
6

,x
8

7
x
8

9
,x

9
0

x
0

1
,x

1
4

,x
2

4
x
3

0
,x

3
2
,x

4
6

x
5

9
,x

6
2
,x

6
8

x
7

4
,x

7
8
,x

8
6

x
8

7
,x

8
9

,x
9

0

x
1

4
,x

2
4
,x

3
2

x
3
4

,x
4
6
,x

5
9

x
6
8

,x
7
4

,x
7
8

x
8
3

,x
8
6
,x

8
9

x
9

0

x
0

1
,x

1
4
,x

2
4

x
3

0
,x

3
2
,x

3
4

x
5

9
,x

6
2

,x
6
8

x
7
4

,x
7
8

,x
8

3
x
8
9

,x
9
0

x
0
1
,x

1
4

,x
3
0

x
3
2

,x
3

4
,x

4
6

x
5
9

,x
6

2
,x

6
8

x
7
8

,x
8

3
,x

8
6

x
8
7

n
o
d
e
s:

 6
e
d
g
e
s:

 6
g
ra

p
h
se

e
d
: 

3
se

e
d
: 

N
A

0

1

1

0

0

1

0

1
2

3

4
5

x
0
1

,x
1
4
,x

2
4

x
3
0

,x
3
2
,x

3
4

x
4
6

,x
5
9
,x

6
2

x
6
8

,x
7
4
,x

7
8

x
8
3

,x
8
6
,x

8
7

x
8
9

,x
9
0

x
0
1

,x
1
4

,x
2
4

x
3
0

,x
3
2

,x
3
4

x
4

6
,x

5
9
,x

6
2

x
6
8

,x
7
4

,x
7
8

x
8
3

,x
8
6

,x
8

7
x
8

9
,x

9
0

x
0
1

,x
1
4

,x
2

4
x
3
0

,x
3
2

,x
3

4
x
4

6
,x

5
9
,x

6
2

x
6

8
,x

7
4

,x
7
8

x
8
3

,x
8
6

,x
8

7
x
8

9
,x

9
0

x
0

1
,x

1
4

,x
2
4

x
3

0
,x

3
2

,x
3
4

x
4
6

,x
5

9
,x

6
2

x
6

8
,x

7
4

,x
7

8
x
8

3
,x

8
6

,x
8

9
x
9
0

x
0

1
,x

1
4
,x

2
4

x
3

0
,x

3
2
,x

3
4

x
4
6

,x
5

9
,x

6
2

x
6

8
,x

7
4

,x
7
8

x
8
3

,x
8

6
,x

8
9

x
9

0

x
0
1

,x
1
4

,x
2
4

x
3
0

,x
3
2

,x
3
4

x
4

6
,x

5
9
,x

6
2

x
6
8

,x
7
4

,x
7
8

x
8
3

,x
8
6

,x
8

7
x
8

9
,x

9
0

n
o
d
e
s:

 6
e
d
g
e
s:

 6
g
ra

p
h
se

e
d
: 

3
se

e
d
: 

N
A

0

0

0

1

0

0

0

1
2

3

4
5

x
0
1
,x

1
4
,x

2
4

x
3
0
,x

3
2
,x

3
4

x
4
6
,x

5
9
,x

6
2

x
6
8
,x

7
4
,x

7
8

x
8
3
,x

8
6
,x

8
7

x
8
9
,x

9
0

x
0
1
,x

1
4
,x

2
4

x
3
0
,x

3
2
,x

3
4

x
4

6
,x

5
9
,x

6
2

x
6
8

,x
7
4
,x

7
8

x
8
3
,x

8
6
,x

8
7

x
8

9
,x

9
0

x
0
1

,x
1
4
,x

2
4

x
3
0

,x
3
2
,x

3
4

x
4

6
,x

5
9
,x

6
2

x
6
8

,x
7
4
,x

7
8

x
8
3
,x

8
6
,x

8
7

x
8

9
,x

9
0

x
0
1

,x
1
4

,x
2
4

x
3
0

,x
3
2

,x
3
4

x
4

6
,x

5
9
,x

6
2

x
6

8
,x

7
4

,x
7
8

x
8
3

,x
8
6
,x

8
7

x
8

9
,x

9
0

x
0

1
,x

1
4

,x
2
4

x
3

0
,x

3
2

,x
3
4

x
4
6

,x
5
9
,x

6
2

x
6

8
,x

7
4

,x
7
8

x
8
3

,x
8
6
,x

8
9

x
9
0

x
0
1
,x

1
4
,x

2
4

x
3
0
,x

3
2
,x

3
4

x
4

6
,x

5
9
,x

6
2

x
6
8

,x
7
4
,x

7
8

x
8
3
,x

8
6
,x

8
7

x
8

9
,x

9
0

n
o
d
e
s:

 6
e
d
g
e
s:

 6
g
ra

p
h
se

e
d
: 

3
se

e
d
: 

N
A

Fi
gu

re
3.

3:
R

ou
nd

s
of

re
co

nc
ili

at
io

n
if

m
at

ch
in

gs
ar

e
ch

os
en

by
m

ax
im

um
we

ig
ht

m
at

ch
in

g
al

go
rit

hm

5

7

6

5

6

8

0

1
2

3

4
5

x
0
1

,x
2
4
,x

3
0

x
3
2

,x
3
4
,x

4
6

x
5
9

,x
6
2
,x

7
4

x
7
8

,x
8
3
,x

8
6

x
8
7

,x
8
9
,x

9
0

x
0
1

,x
1
4

,x
2
4

x
3

0
,x

3
4

,x
4
6

x
6
2

,x
6
8

,x
7
4

x
8
3

,x
8
6

,x
8

7
x
8

9
,x

9
0

x
0
1
,x

1
4

,x
2

4
x
3
0

,x
3

2
,x

4
6

x
5

9
,x

6
2
,x

6
8

x
7
4

,x
7

8
,x

8
6

x
8
7
,x

8
9

,x
9

0

x
1

4
,x

2
4

,x
3

2
x
3
4
,x

4
6

,x
5
9

x
6
8

,x
7

4
,x

7
8

x
8
3
,x

8
6

,x
8
9

x
9

0

x
0

1
,x

1
4
,x

2
4

x
3

0
,x

3
2
,x

3
4

x
5
9

,x
6

2
,x

6
8

x
7
4

,x
7
8

,x
8

3
x
8
9

,x
9
0

x
0

1
,x

1
4

,x
3

0
x
3

2
,x

3
4

,x
4
6

x
5
9

,x
6
2

,x
6
8

x
7

8
,x

8
3

,x
8
6

x
8

7

n
o
d
e
s:

 6
e
d
g
e
s:

 6
g
ra

p
h
se

e
d
: 

3
se

e
d
: 

9

3

3

0

3

0

0

0

1
2

3

4
5

x
0

1
,x

1
4
,x

2
4

x
3

0
,x

3
2
,x

3
4

x
4

6
,x

5
9
,x

6
2

x
6

8
,x

7
4
,x

7
8

x
8

3
,x

8
6
,x

8
7

x
8

9
,x

9
0

x
0

1
,x

1
4
,x

2
4

x
3
0

,x
3

4
,x

4
6

x
6

2
,x

6
8
,x

7
4

x
8

3
,x

8
6
,x

8
7

x
8

9
,x

9
0

x
0

1
,x

1
4

,x
2

4
x
3

0
,x

3
2

,x
3

4
x
4

6
,x

5
9

,x
6
2

x
6

8
,x

7
4
,x

7
8

x
8

3
,x

8
6

,x
8

7
x
8

9
,x

9
0

x
0

1
,x

1
4
,x

2
4

x
3

0
,x

3
2
,x

3
4

x
4
6

,x
5

9
,x

6
2

x
6
8

,x
7

4
,x

7
8

x
8

3
,x

8
6

,x
8

7
x
8

9
,x

9
0

x
0

1
,x

1
4
,x

2
4

x
3

0
,x

3
2
,x

3
4

x
5
9

,x
6

2
,x

6
8

x
7
4

,x
7
8

,x
8

3
x
8
9

,x
9
0

x
0

1
,x

1
4
,x

2
4

x
3

0
,x

3
2
,x

3
4

x
4
6

,x
5
9

,x
6
2

x
6

8
,x

7
4
,x

7
8

x
8

3
,x

8
6
,x

8
7

x
8

9
,x

9
0

n
o
d
e
s:

 6
e
d
g
e
s:

 6
g
ra

p
h
se

e
d
: 

3
se

e
d
: 

9

Fi
gu

re
3.

4:
R

ou
nd

s
of

re
co

nc
ili

at
io

n
if

m
at

ch
in

gs
ar

e
ch

os
en

ra
nd

om
ly



each of the node, there are objects which are associated with that node. The thick
edges are edges belonging to the matching. The legend shows the used parameters.
We see that three rounds are required if the matchings are chosen using maximum
weight matching algorithm and two rounds if matchings were chosen randomly.

3.3 Data exchange protocol extension to set rec-
onciliation problem

We consider the generalization of the problem of data exchange. In [RSS10], a
connection between the number of transmissions and the minimum rank of a matrix
family was established.

Hereafter, we use the broadcast network model. In a broadcast network model,
messages transmitted by a node vi are received by all its neighbours in S(vi). This
model is relevant in wireless networks where the messages are received by nodes in
such proximity that they are able to successfully decode the messages. The messages
passed to longer distances need to be retransmitted at intermediate nodes. As each
of the nodes can possibly receive messages from several nodes at a time, then all of
the received messages could be taken into account while transmitting new messages.

In the current setting, let the graph H = (V , E) be undirected. This setting is
artificial as in wireless networks there may exist nodes with different transmission
capabilities. If this is the case, a node with higher transmission power may send
messages to neighbouring nodes but some of these nodes may not be able to transmit
messages back to this node.

Our goal in this model is to reduce the number of transmissions. This goal leads
to finding a set reconciliation algorithm which minimizes Time(A). To achieve this
goal, we study how many rounds are required for any set reconciliation algorithm
and reduce the number of messages during each round.

We define a property of a graph which gives the minimal number of rounds for
any set reconciliation algorithm for this graph.

Definition 4. The set reconciliation problem in a graph H = (V , E) is l-solvable
if for any set reconciliation algorithm A the rounds cost Rounds(A) ≥ l and l is the
largest such value.

We recall that the number of nodes is k. Let n = |Xall| be the size of the union
of the sets.

The solution to the set reconciliation problem for 1-solvable graphs was given
in [RSS10]. We use the adjacency matrix of the graph H to filter out the messages
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that each of the nodes receives. This allows to generalize the set reconciliation
algorithm to general graphs.

3.3.1 Possession matrix of the graph
Matrix families

Let F be a finite field. Let Ai, i ∈ [k], be a family of (n × n)-dimensional matrices
over F. For the matrix family Ai, i ∈ [k], we use a special symbol ∗ to denote an
arbitrary element in F. The element in j-th column and t-th row of Ai, for t ∈ [n],
is ∗ if xj ∈ Xi and 0 otherwise.

Let A be a family of matrices of the form (3.1), where each Ai, i ∈ [k], is a family
of matrices that was defined earlier.

A :=


A1
A2
...
Ak

 , (3.1)

Since the matrix families Ai, i ∈ [k], describe what objects each node vi has, the
matrix family Ai is called the possession matrix of the node vi. Similarly, the matrix
family A denotes the objects all of the nodes have and A is called the possession
matrix of the graph H.

As the symbols ∗ in these matrices can take any value in the field F, then Ai and
A consist of many distinct matrices with elements from the field F. This approach
allows to operate using known operators on a whole set of matrices.

We call a member A of a matrix family A as a transmission matrix. As A consists
of matrix families Ai, i ∈ [k], as in Equation (3.1), then the transmission matrix A
can also be written as

A =


A1
A2
...
Ak

 . (3.2)

For each of the Ai from Equation (3.2), the row vectors are denoted as ti,j =
(ti,j,1, . . . , ti,j,n), j ∈ [n]. The set of messages the node vi transmits is

Ti =

 ∑
m∈[n]

ti,j,mxm|j ∈ [n]

 .
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Without loss of generality, we can assume that only messages where the coeffi-
cients ti,j are linearly independent, are transmitted. The row vectors can be trans-
formed such that only linearly independent row vectors are non-zero. Then, if for
some j ∈ [k], if ti,j is a zero vector, a message 0 is transmitted. These messages can
be omitted.

The number of transmissions is the number of linearly independent row vectors of
the transmission matrix Ai, i ∈ [k]. As the transmission matrix Ai is a member of the
matrix family Ai, then it is possible to find the maximum number of transmissions
for a node vi by finding the matrix with the highest rank. The following definition
of maximum-rank captures this property between the number of transmissions and
the possession matrix.

Definition 5. The max-rank of the matrix family A is defined as

max-rank(A) = max
A∈A

rank(A).

Given Ai, we define an operator B, which replaces the symbols ∗ in the rows with
canonical vectors and removes linearly dependent rows from the matrix.

Similarly, operator Bj takes as an input the possession matrix A and returns
Bj(A) = B(Aj) for Aj as in Equation (3.1).

Example 2. For a fixed i ∈ [k], let

Ai =


∗ 0 ∗ ∗ 0
∗ 0 ∗ ∗ 0
∗ 0 ∗ ∗ 0
∗ 0 ∗ ∗ 0
∗ 0 ∗ ∗ 0

 .

After replacing the symbols ∗ in each row with canonical vectors and replacing
redundant rows, we obtain

B(Ai) =

1 0 0 0 0
0 0 1 0 0
0 0 0 1 0

 .
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The algebra of the matrix families

We consider the family of matrices over F (with symbol ∗ for an arbitrary element
in F) as a matrix over F∗ = F ∪ {∗} with a newly defined algebra.

For simpler manipulation of matrix families, we define basic operations for the
matrices with the entries in F∗.

As the symbol ∗ in the matrix family denotes any element from the field F, then
addition should comply with this definition. If 0 is added to any element, then the
sum is also any element from the field. Similarly, if any two non-zero field elements
are added, then we obtain some field element. Only if we add 0 to 0, then the
resulting element is uniquely defined as 0. This motivates for the following definition
of addition for the matrix family elements.

Definition 6. The addition of the elements of the matrix family A is defined by the
following addition table:

+ 0 ∗
0 0 ∗
∗ ∗ ∗

. (3.3)

If we represent 0 as logical false and ∗ as logical true, then the addition of the
elements of the matrix family is equivalent to logical OR operation.

During multiplication of the field elements, if one of the elements is zero, then
the result is also zero. If a random field element is multiplied with non-zero field
element, then the result is some field element, which corresponds to a star in the
matrix family.

Definition 7. The multiplication of the elements of the field F with elements in F∗
is defined by the following multiplication table:

· 0 6= 0
0 0 0
∗ 0 ∗

, (3.4)

where 6= 0 is any non-zero field element.

Similarly to addition as defined in Table (3.3), if we represent zero as logical false
and all other field elements as logical true, and matrix family A element 0 as logical
false and element ∗ as logical true, then the multiplication of a field element and a
matrix family element can be considered as logical AND operation.
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Given these operations, the matrix family multiplication with a matrix over the
field F is defined as usual matrix multiplication but with the addition and multipli-
cation operations as defined in Definitions 6 and 7. The following example illustrates
the new definition of matrix family multiplication with a matrix.

Example 3. Let a (3× 3)-dimensional matrix C over the field F be

C =

1 1 0
1 1 1
0 1 1

 .
Let A be a (3× 3)-dimensional matrix family defined as

A =

∗ 0 0
0 0 ∗
0 ∗ 0

 .
The element 0 in the matrix family A is written in bold to distinguish it from the

element 0 in F.
Multiplying the matrix family A from the left by the matrix C results in

CA =

1 1 0
1 1 1
0 1 1


∗ 0 0
0 0 ∗
0 ∗ 0



=

1 · ∗+ 1 · 0 + 0 · 0 1 · 0 + 1 · 0 + 0 · ∗ 1 · 0 + 1 · ∗+ 0 · 0
1 · ∗+ 1 · 0 + 1 · 0 1 · 0 + 1 · 0 + 1 · ∗ 1 · 0 + 1 · ∗+ 1 · 0
0 · ∗+ 1 · 0 + 1 · 0 0 · 0 + 1 · 0 + 1 · ∗ 0 · 0 + 1 · ∗+ 1 · 0


Table 3.4=

∗+ 0 + 0 0 + 0 + 0 0 + ∗+ 0
∗+ 0 + 0 0 + 0 + ∗ 0 + ∗+ 0
0 + 0 + 0 0 + 0 + ∗ 0 + ∗+ 0


Table 3.3=

∗ 0 ∗
∗ ∗ ∗
0 ∗ ∗



Note 1. In the following sections, by abusing the notation, we use the product
of integer matrices with matrices over F∗. In that case, every non-zero integer is
interpreted as 1 in F and integer zero is interpreted as F. The multiplication is then
performed as defined in Definition 7.
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The following example illustrates the multiplication of a integer matrix with a
matrix family.

Example 4. Let a (3× 3)-dimensional integer matrix C be

C =

1 2 0
4 5 6
0 7 8

 .
Let A be a (3×3)-dimensional matrix family be the same as defined in Example 3.
Multiplying C with A results in

CA =

1 2 0
4 5 6
0 7 8


∗ 0 0
0 0 ∗
0 ∗ 0



=

1 · ∗+ 2 · 0 + 0 · 0 1 · 0 + 2 · 0 + 0 · 0 1 · 0 + 2 · ∗+ 0 · 0
4 · ∗+ 5 · 0 + 6 · 0 4 · 0 + 5 · 0 + 6 · ∗ 4 · 0 + 5 · ∗+ 6 · 0
0 · ∗+ 7 · 0 + 8 · 0 0 · 0 + 7 · 0 + 8 · ∗ 0 · 0 + 7 · ∗+ 8 · 0


Note 1=

∗+ 0 + 0 0 + 0 + 0 0 + ∗+ 0
∗+ 0 + 0 0 + 0 + ∗ 0 + ∗+ 0
0 + 0 + 0 0 + 0 + ∗ 0 + ∗+ 0


Table 3.3=

∗ 0 ∗
∗ ∗ ∗
0 ∗ ∗


3.3.2 Adjacency matrix in set reconciliation
It is important to obtain the precise degree of solvability. The following trivial lemma
gives the smallest such n.

Lemma 6. Let D be the adjacency matrix of the graph. Let l be the smallest positive
integer such that

l∑
i=1

Di is a positive matrix. Then the graph is l-solvable.

Proof. The proof consists of two steps. We firstly show that there exists no smaller
l′, l′ < l, such that the graph is l′-solvable. Then, a set reconciliation algorithm
running in l iterations is constructed.

By contradiction we assume that there exists l′ such that l′ < l. As the element
in r-th row and s-th column of Di denotes the number of paths of length i between
the nodes vr and vs, then there exists r∗ and s∗ such that the shortest path between
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the nodes vr∗ and vs∗ has length l. Now, if one of these nodes has an unique object
x, then the minimum number of protocol iterations is l, as the distance between
the other host and the object decreases only by one during each iteration. So the
minimum number of iterations is l, contradicting our assumption.

We can construct a naive set reconciliation algorithm which reconciles the sets in
l rounds. The set reconciliation algorithm transmits all objects of each of the node
during each of the round. Upon receiving the objects, each of the node vi adds new
objects to its set Xi. As the longest path has distance l, then after l rounds the sets
of objects are reconciled.

We can now formulate a lemma which shows the connection between the posses-
sion matrices of the graph after a single iteration of the set reconciliation protocol.

Lemma 7. Let A be the possession matrix as defined in Equation (3.1). Let D be the
adjacency matrix of the graph. Let E be a (n × n)-dimensional ones matrix. After
performing one round of the protocol, the new possession matrix A+ is related to A
as

A+ = (D ⊗ E)A.

Proof. We analyze, how elements in A+ are calculated.
From the definition of A in Equation (3.1), the matrix families Ai, i ∈ [k], have

n identical rows. If we define a (n× 1)-dimensional integer matrix R as

R =


1
...
1

 ,
then, according to Note 1, we can write Ai = A∗i⊗R, where A∗i is a (1×n)-dimensional
matrix which consists of a single row of Ai. From the definition of tensor product,
this also means that

A = A∗ ⊗R,

where

A∗ =


A∗1
...
A∗k

 .
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The right hand side of the claim can be written as

(D ⊗ E)A = (D ⊗ E)(A∗ ⊗R)
(1)= (DA∗)⊗ (ER)
= (DA∗)⊗ (nR)
(2)= (DA∗)⊗R.

The equality (1) holds because of the properties of the tensor product. The
equality (2) holds because as mentioned in Note 1, any non-zero entry in nR is
mapped to the field element 1 in F and thus we can omit a non-zero factor.

We now look at the product DA∗ and later apply the tensor product of R.
Let A∗ = (a∗i,j)

j=1,...,n
i=1,...,k , D = (di,j)j=1,...,k

i=1,...,k and DA∗ = (ai,j)j=1,...,n
i=1,...,k .

We perform matrix multiplication according to Definitions 6 and 7. The elements
of DA∗ are

ai,j =
∑
ρ∈[k]

di,ρa
∗
ρ,j.

The element ai,j is ∗, if there exists ρ ∈ [k] such that di,ρ is non-zero and a∗ρ,j is a
star. This corresponds to the nodes vi and vρ having an edge and the node vρ having
an object xj.

On the other hand, if ai,j = ∗, then this corresponds to the node vi having an
object xj. Since during the set reconciliation protocol the objects between the nodes
having an edge are reconciled, these two conditions coincide as ai,j denotes if the
node has an element after an iteration of the protocol.

If we take the tensor product (DA∗) ⊗ R, then we obtain the possession matrix
of the graph H after an iteration of the protocol as defined in Equation (3.1).

This lemma can be extended for protocols with several rounds. We denote the
possession matrix A before the first round as A = A(0). We denote by A(i) the
possession matrix after i-th round of the protocol.

Corollary 2. Let A(0) be the possession matrix of the graph before the first run of
the protocol. Let the matrix E be a (n×n)-dimensional ones matrix. The possession
matrix after i-th round is

A(i) = (Di ⊗ E)A(0).
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Proof. From the properties of the tensor product and matrix products:

A(i) = (D ⊗ E)iA(0)

= (Di ⊗ Ei)A(0)

= (Di ⊗ ni−1E)A(0)

= ni−1(Di ⊗ E)A(0)

(1)= (Di ⊗ E)A(0)

The equality (1) holds since by Note 1, any non-zero integer entry in (Di⊗E) is
mapped to the element 1 in F and ni−1 > 0, the factor ni−1 can be omitted.

3.3.3 Broadcast set reconciliation algorithm using rank op-
timization problem

The following theorem is the main result of this Thesis.

Theorem 4. Let the graph H be l-solvable undirected graph defined by the adjacency
matrix D. Let A be the corresponding possession matrix of the graph. Then there
exists an iterated data exchange protocol with l rounds and τ transmissions, where

τ =
l∑

i=1
min

A(i)∈(Di−1⊗E)A

k∑
j=1

rankA(i)
j

for matrices A(i) which are subject to

rank
[
(diag (Dj,?)⊗ I)A(i)

Bj((Di−1 ⊗ E)A)

]
= max-rank

[
(diag(ej)⊗ I)(Di ⊗ E)A

]
, ∀j ∈ [k],

(3.5)

where the matrix I is (n×n)-dimensional identity matrix and the matrix E is (n×n)-
dimensional ones matrix.

Consider the following motivating example, which illustrates the usefulness of the
condition (3.5).

Example 5. Assume that the graph H consist of four nodes. The universe of files
is X = {x1, x2, x3, x4}. Thus, k = 4 and n = 4.
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v1 v2 v3

v4

x1, x2 x2, x3 x3, x4

x2, x4

D =


1 1 0 0
1 1 1 1
0 1 1 1
0 1 1 1



Figure 3.5: The graph H and the corresponding adjacency matrix D used in Exam-
ple 5

For these parameters, the (4× 4)-dimensional matrices I and E are

I =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , E =


1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

 .

The (n× n)-dimensional possession matrices for the nodes vj, j ∈ [k] are

A1 =


∗ ∗ 0 0
∗ ∗ 0 0
∗ ∗ 0 0
∗ ∗ 0 0

 ,

A2 =


0 ∗ ∗ 0
0 ∗ ∗ 0
0 ∗ ∗ 0
0 ∗ ∗ 0

 ,

A3 =


0 0 ∗ ∗
0 0 ∗ ∗
0 0 ∗ ∗
0 0 ∗ ∗

 ,

A4 =


0 ∗ 0 ∗
0 ∗ 0 ∗
0 ∗ 0 ∗
0 ∗ 0 ∗

 .
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The (nk × n)-dimensional possession matrix of the graph H is

A(0) =


∗ ∗ ∗ ∗ 0 0 0 0 0 0 0 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0 0 ∗ ∗ ∗ ∗
0 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0 0
0 0 0 0 0 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗


T

.

The smallest l such that ∑l
i=1D

i is positive, is l = 2. Using Lemma 6, we obtain
that the number of rounds is l = 2.

We calculate the right-hand side of the Equation (3.5). Multiplying A by (D1⊗E),
we obtain

A(1) =
(
D1 ⊗ E

)
A =

=


∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗


T

.

After the first round, the corresponding sets of objects are

X1 = {x1, x2, x3},
X2 = {x1, x2, x3, x4},

X3 = X4 = {x2, x3, x4}.

We see that the ranks in the right-hand side of Equation (3.5) denote the sizes of
the hosts sets.

j = 1 : (diag(e1)⊗ I)A(1) =


∗ ∗ ∗ ∗ 0 0 0 0 0 0 0 0 0 0 0 0
∗ ∗ ∗ ∗ 0 0 0 0 0 0 0 0 0 0 0 0
∗ ∗ ∗ ∗ 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0


T

,

j = 2 : (diag(e2)⊗ I)A(1) =


0 0 0 0 ∗ ∗ ∗ ∗ 0 0 0 0 0 0 0 0
0 0 0 0 ∗ ∗ ∗ ∗ 0 0 0 0 0 0 0 0
0 0 0 0 ∗ ∗ ∗ ∗ 0 0 0 0 0 0 0 0
0 0 0 0 ∗ ∗ ∗ ∗ 0 0 0 0 0 0 0 0


T

,

j = 3 : (diag(e3)⊗ I)A(1) =


0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 ∗ ∗ ∗ ∗ 0 0 0 0
0 0 0 0 0 0 0 0 ∗ ∗ ∗ ∗ 0 0 0 0
0 0 0 0 0 0 0 0 ∗ ∗ ∗ ∗ 0 0 0 0


T

,
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j = 4 : (diag(e4)⊗ I)A(1) =


0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 ∗ ∗ ∗ ∗
0 0 0 0 0 0 0 0 0 0 0 0 ∗ ∗ ∗ ∗
0 0 0 0 0 0 0 0 0 0 0 0 ∗ ∗ ∗ ∗


T

.

It is trivial to compute the rank on these matrices. In a sub-block containing
symbols ∗, we count the number of non-zero columns. We can replace the symbols
∗ in each of these rows with a canonical vector, forming a max-rank matrix. The
number of columns defines how many canonical vectors we can use.

j = 1 : max-rank
(
(diag(e1)⊗ I)A(1)

)
= 3,

j = 2 : max-rank
(
(diag(e2)⊗ I)A(1)

)
= 4,

j = 3 : max-rank
(
(diag(e3)⊗ I)A(1)

)
= 3,

j = 4 : max-rank
(
(diag(e4)⊗ I)A(1)

)
= 3.

If the right-hand side of the Equation (3.5) shows the size of the sets the nodes
should have after a round, then the left-hand side of the Equation (3.5) shows what
is achieved after specific transmission.

For each of the nodes, the left-hand side of the Equation (3.5) shows the size of
its set after it has received the combination of the elements from the other nodes.

More specifically, the upper part of the concatenated matrix denotes the received
vectors. The lower part denotes the elements the node already has. The rank of this
matrix thus estimates the number of elements in the host’s set after the round.

As the required A(i) must satisfy Equation (3.5) for all j ∈ [k], then this implies
that after a round the required sizes of the sets are achieved.

We look at some A(1), which satisfies Equation (3.5). Even though the Theorem 4
iterates over all transmission matrices A(1) ∈ A, it is possible to reduce the search
space. We see that x1 is unique to the node v1, thus it is mandatory for the node v1 to
send some linear combination including x1. We also see, that pairs (v2, v3), (v3, v4)
and (v2, v4) have the elements x3, x4 and x2 in common, respectively. Therefore, it
is not necessary to send redundant information.

A(1) =


1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0


T

,
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A(1) =


1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0


T

,

A(1) =


1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0


T

.

As the rank of all these examples is 3, then we can pick any A(1). We take the
first one to see what is happening on the left-hand side of the Equation (3.5).

We can find Bj ((D0 ⊗ E)A) , j ∈ [k]. As per definition of Bj:

B1(A) =
[
1 0 0 0
0 1 0 0

]
,

B2(A) =
[
0 1 0 0
0 0 1 0

]
,

B3(A) =
[
0 0 1 0
0 0 0 1

]
,

B4(A) =
[
0 1 0 0
0 0 0 1

]
.

Now, we find the upper part of the matrix, concatenate it with matrix found
previously and calculate the rank

(diag(D1,?)⊗ I)A(1) =


1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0


T

,

(diag(D2,?)⊗ I)A(1) =


1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0


T

,

(diag(D3,?)⊗ I)A(1) =


0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0


T

,
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(diag(D4,?)⊗ I)A(1) =


0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0


T

.

[
(diag(D1,?)⊗ I)A(1)

B1(A)

]
=


1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0


T

,

[
(diag(D2,?)⊗ I)A(1)

B2(A)

]
=


1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0


T

,

[
(diag(D3,?)⊗ I)A(1)

B3(A)

]
=


0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1


T

,

[
(diag(D4,?)⊗ I)A(1)

B4(A)

]
=


0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1


T

.

rank
[
(diag(D1,?)⊗ I)A(1)

B1(A)

]
= 3,

rank
[
(diag(D2,?)⊗ I)A(1)

B2(A)

]
= 4,

rank
[
(diag(D3,?)⊗ I)A(1)

B3(A)

]
= 3,

rank
[
(diag(D4,?)⊗ I)A(1)

B4(A)

]
= 3.

For this specific transmission matrix A(1), the node v1 transmits the messages
T1 = {x1}, the node v2 transmits the messages T2 = {x2 +x3}, the node v3 transmits
the messages T3 = {x4} and the node v4 does not transmit anything as T4 = ∅.
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The node v1 can recover the object x3 from the linear equation x3 = T2,1 − x2 =
x2 + x3 − x2. The node v2 receives x1 = T1,1 from the node v1. The node v3 recovers
the object x2 from the linear equation x2 = T2,1 − x3 = x2 + x3 − x3. The node v4
recovers the object x3 from the linear equation x3 = T2,1 − x2 = x2 + x3 − x2.

We now move on to the second round i = 2.
The possession matrix A(2) can be calculated from A(0) or A(1):

A(2) = (D ⊗ E)A(1) =
(
D2 ⊗ E

)
A(0) =

=


∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗


T

.

This possession matrix is expected as the Lemma 6 gave the number of rounds
to be l = 2. This also means that X1 = X2 = X3 = X4 = {x1, x2, x3, x4} after the
second round.

We omit the calculation of the ranks in the right-hand side of the equation. It can
be easily checked that the ranks are all equal to 4.

A transmission matrix A(2) which satisfies the Equation (3.5) is

A(2) =


0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0


T

This corresponds to only the node v2 transmitting x1 + x4.
We are omitting further calculations as they are done similarly to the ones in

round i = 1. As τ1 = ∑k
j=1 rankA(1)

j = 3 and τ2 = ∑k
j=1 rankA(2)

j = 1, then the data
exchange protocol requires only τ = τ1 + τ2 = 4 transmissions to reconcile the sets of
the nodes.

For the proof, we formulate the following lemma.
Lemma 8. Let H be an undirected graph defined by the adjacency matrix D. Let
the possession matrix of the graph H be A as defined in Equation (3.1). There exists
a transmission matrix A ∈ A as defined in Equation (3.2) such that

rank
[
(diag(Dj,?)⊗ I)A

Bj(A)

]
= max-rank [(diag(ej)⊗ I)(D ⊗ E)A]

for all j ∈ [k] and where E and I are (n×n)-dimensional ones and identity matrices,
respectively.
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Proof. We use the same (n × 1)-dimensional matrix R as defined in the proof of
Lemma 7.

The right-hand side of the equation can be written as

(diag(ej)⊗ I)(D ⊗ E)A = (diag(ej)⊗ I)(D ⊗ E)(A∗ ⊗R)
= (diag(ej)DA∗)⊗ (IER)
= (diag(ej)DA∗)⊗ (ER)
= (diag(ej)DA∗)⊗ (nR)
(1)= (diag(ej)DA∗)⊗R

The equality (1) holds because n > 0 and all non-zero integers are mapped to field
element 1, thus we can omit the factor.

Let D = (di,j)j=1,...,k
i=1,...,k , A∗ = (a∗i,j)

j=1,...,n
i=1,...,k and DA∗ = (ai,j)j=1,...,n

i=1,...,k .
From the proof of Lemma 7, we know that

ai,j =
∑
ρ∈[k]

di,ρa
∗
ρ,j.

If DA∗ is multiplied from the left by diag(ej), then in the resulting matrix only
j-th row is non-zero. The elements in j-th row are aj,η, η ∈ [n].

The resulting (k × n)-dimensional matrix diag(ej)DA∗ is

diag(ej)DA∗ =



0 . . . 0
... . . .

...
0 . . . 0∑

ρ∈[k] dj,ρa
∗
ρ,1 . . .

∑
ρ∈[k] dj,ρa

∗
ρ,n

0 . . . 0
... . . .

...
0 . . . 0


. (3.6)

The max-rank of the matrix family (diag(ej)DA∗) ⊗ R is the number of the
symbols ∗ in the non-zero row of the matrix in Equation (3.6). The max-rank can
not be larger because ∗ denotes the elements of the matrix family which can be
chosen freely. This max-rank can be achieved because the dimension of R is (n× 1)
and this means that up to n independent row vectors can be chosen.

We look at the upper part of the left-hand side. Let A = (a?
i,j)

j=1,...,n
i=1,...,kn. As we are

showing the existence of the transmission matrix A, the values of the elements a?
i,j

are not known. We show how the values are chosen.
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The matrix diag(Dj,?)⊗ I is

diag(Dj,?)⊗ I =



dj,1 0 . . . . . . . . . . . . 0
0 . . . 0 . . . . . . . . . 0
... 0 dj,1 0 . . . . . . 0
... . . . 0 . . . 0 . . . 0
... . . . . . . 0 dj,k 0 0
... . . . . . . . . . 0 . . . 0
0 . . . . . . . . . . . . 0 dj,k


If this matrix is multiplied by A, we obtain

(diag(Dj,?)⊗ I)A =



dj,1a
?
1,1 . . . dj,1a

?
1,n

... . . .
...

dj,1a
?
n,1 . . . dj,1a

?
n,n

... . . .
...

dj,ka
?
(k−1)n+1,1 . . . dj,1a

?
(k−1)n+1,n

... . . .
...

dj,ka
?
kn,1 . . . dj,1a

?
kn,n


. (3.7)

The element in the j-th row and i-th column in the matrix family in Equa-
tion (3.6) is ∗, if there exists γ such that dj,γ > 0 and a∗γ,i = ∗. In this case, we can
choose some s ∈ [n] and set a?

(γ−1)n+s,i to 1. Then also dj,γa?
(γ−1)n+s,i > 0.

As we can choose s from the sequence [n], then a different s can be chosen for every
i ∈ [n]. After setting an element to 1 in every column i ∈ [n], we set the values of all
other elements in A to 0. Because the ones in the matrix in Equation (3.7) are all in
distinct rows and in distinct columns, then the rank of the matrix (diag(Dj,?)⊗ I)A
equals to the max-rank of the matrix family (diag(ej)DA∗)⊗R.

The matrix A = (a?
i,j) belongs to the matrix family A, because if a∗i,j = ∗, then

a(i−1)n+s,j = ∗,s ∈ [n], in A and only elements in these places are set to 1 in A.
Because there exists A ∈ A such that rowspace(Bj(A)) = rowspace(A) and the

upper part has achieved at least the max-rank of this family, then the rank of the
left-hand side does not change if we concatenate Bj(A) to (diag(Dj,?)⊗ I)A.

The proof of this lemma showed that the transmission matrix exists. However, it
may not be optimal. For example, there can exist A which results in no transmission
by some of the nodes, as we saw in Example 5.
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We can now move on to the proof of Theorem 4.
Proof of Theorem 4. Using Lemmas 7 and 8 we observed that matrices A(i) exist.

Let A(i) = (a(i)
ρ,η)

η=1,...,n
ρ=1,...,kn. Let A(i)

s , s ∈ [k], be the matrices as in Equation (3.2).
For every s ∈ [k], let t(i)

s,r = (t(i)s,r,1, . . . , t(i)s,r,n), be the r-th row vectors of A(i)
s .

These row vectors are the linear coefficients for the objects transmitted by the node
vs during the i-th iteration of the protocol. At the i-th iteration of the protocol, the
message space for the node vs is

T (i)
s =

 ∑
m∈[n]

t(i)s,r,mxm|r ∈ [n]

 (3.8)

=
{
t(i)
s,r · x|r ∈ [n]

}
, (3.9)

where x = (x1, . . . , xn) and the product is a dot product of the vectors.
The node vs transmits at the i-th iteration the linearly independent subset of

messages from Equation (3.9). Thus the number of transmissions by the node vs
during i-th iteration of the protocol is the rank of the matrix A(i)

s . If summed over
all s ∈ [k], then this corresponds to the number of transmissions in the Theorem 4.

As each of the nodes receives messages from the nodes it has an edge to, then
the node vt, t ∈ [k], receives the messages from the node vs if dt,s = 1. The received
messages from the node vs are T (i)

s as defined in Equation (3.9).
If we consider the messages not received by the node vt as 0, then we can write

that the node vt receives the messages

dt,s
∑
m∈[n]

t(i)s,r,mxm,

for all s ∈ [k], r ∈ [n].
Now, if we write t(i)s,r,m = a

(i)
(s−1)n+r,m, then the messages received by the node vt

form a matrix 

d1,1a
(i)
1,1 . . . d1,1a

(i)
1,n

... . . .
...

d1,1a
(i)
n,1 . . . d1,1a

(i)
n,n

... . . .
...

dk,1a
(i)
(k−1)n+1,1 . . . dk,1a

(i)
(k−1)n+1,n

... . . .
...

dk,1a
(i)
kn,1 . . . dk,1a

(i)
kn,n


·


x1
...
xn

 . (3.10)

56



From Lemma 7, the matrix family (Di ⊗ E)A denotes the possession matrix of
the graph after the round i. Thus the matrix family (diag(ej)⊗I)(Di⊗E)A denotes
the possession matrix of the node vj after the round i. The max-rank of this matrix
family denotes the number of the elements the node vj has after the i-th round.

From the proof of Lemma 8, we see that the left-hand side of the condition equals
to the matrix in Equation (3.10). As the condition holds for the given A(i), then the
rank of the matrix in Equation (3.10) concatenated with the matrix Bj(A) is the
max-rank of the right-hand side of the condition. As the rank equals to the max-rank,
then the received messages are sufficient to recover all the missing objects.

For comparison, we consider the naive set reconciliation protocol, where all nodes
sequentially transmit all objects they possess. The number of transmissions by the
node vs at the i-th round for this protocol is max-rank(A(i−1)

s ). It can be easily seen,
that the number of the transmissions for the protocol defined in Theorem 4 is upper
bounded by the number of transmission by this naive protocol.
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Chapter 4

Conclusion and future work

We studied the problem of set reconciliation. The goal of set reconciliation algo-
rithms is to find a union of distinct sets while optimizing the communicational cost.
The expected communicational cost should be dependent only on the size of the
symmetric difference of the sets being reconciled. Such algorithms are known for
settings where there are only two nodes in the network.

These settings however do not model the actual networks where there are many
nodes with arbitrary connections between them. Good algorithms for set reconcilia-
tion in general networks are still unknown. Moreover, even the optimal communica-
tion cost in this setting is unknown.

In this Thesis, we categorized different network models. Some models were given
in the survey [MV12], but our definitions are more detailed and we included two
new models. The broadcast network model captures the properties of wireless net-
works and is relevant in many applications. The threshold reconciliation model was
proposed as a research subject.

We studied the set reconciliation problem in the star graph in an unicast network
model. In this setting, compared to performing set reconciliation pairwise, the com-
municational cost was reduced by factor of 1/k where k is the number of the nodes
in the network. The result suggested that if the topology of the network is known,
then it is possible to reduce the communicational cost. Very recently, a similar ob-
servation for set reconciliation using invertible Bloom lookup tables was made by
Mitzenmacher and Pagh in [MP13].

Similarly to gossip protocols, a node could choose a random neighbouring node
and perform pairwise set reconciliation with this node. We defined the weights on
the edges in the network graph according to the number of different objects in the
communicating hosts. We experimented with an approach where communicating
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pairs were chosen according to maximum weight matching. The results show that
this approach gave better results in 99.8% of the tested cases.

For set reconciliation problem in broadcast networks, we formulated an analytical
framework, where the number of transmissions is given by the solution of algebraic
minimization problem. Solving that problem yields a set reconciliation protocol that
uses linear coding for transmitting the objects. Even though we do not know the
optimal communicational cost in this model, the resulting protocol outperforms the
naive set reconciliation algorithm where all items are transmitted by each node. To
our knowledge, this is first algebraic analytical framework for a set reconciliation
protocols in a broadcast network model.

There are still many open questions related to the set reconciliation problem.
There may be better approaches to solve the problem for arbitrary unicast and
broadcast network. For example, techniques from the area of gossip protocols could
provide some insight into the reconciliation algorithms, but the relation between
gossip protocols and set reconciliation is still not fully established.

The results of this research can potentially be used in the industry as cloud
storage platforms have become widely used. Providing more efficient synchronization
algorithms could lead to reducing the costs of data exchange. It would be interesting
to implement the developed methods and to test their efficiency in practice.

Experiments on network matching

It could be further studied, how different matching algorithms work with unicast
networks. The experiments which were covered in Section 3.2, provide only initial
intuition and to make further conclusions, different models could be tested.

The experiments could be conducted in a virtual model using generated data or
tested in a more realistic environment. In addition, distributed file sharing models
should be considered for content distribution networks.

Also, it is not completely clear how the round cost and time cost are related. We
assumed that trying to minimize the number of rounds, we could also minimize the
number of messages transmitted. However, this could be false assumption. It would
be interesting to construct matching algorithms, which would reduce the number of
transmitted messages and to compare these algorithms to algorithms which minimize
the number of rounds.

Security guarantees of the algorithms

It would be interesting to study the security of the proposed algorithms. In larger
graphs, it is assumed that the nodes possess some side-information. If there is an
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adversary somewhere in the graph, then what does it need to possess to eavesdrop
transmitted messages?

For example, could some of the algorithms be used in multi-party computation
for secure information sharing?

Relation between unicast and broadcast networks

We presented an algebraic framework for the analysis of set reconciliation algorithms
in broadcast networks using linearly coded messages. It would be interesting to
obtain analogous results for unicast networks.

Metric in an arbitrary graph

The size of the symmetric difference was a good metric for pairwise set reconciliation.
How can one give a similar metric which describes the distribution of the messages
in the whole graph? Having a good characteristic of the graph, it is easier to analyze
the performance of set reconciliation algorithm.

Some possible metrics are the sum of pairwise distances; the sum of |Xall \ Xi|
for all i ∈ [k]; and the number of messages needed for reconciliation.

Practical implementations

We have written an implementation of set reconciliation algorithm using characteris-
tic polynomials which is available at [Kub13]. We also wrote a library to test different
matching algorithms which is available at [Kub14].

Practical implementations could gain traction in the open-source community and
this could lead to new ideas for optimizing the algorithms. Also, the current algo-
rithms have been given in mathematical notation. We have not specified how the
nodes should interact and how to represent information. For example, in Section 2.1,
the objects were elements of a field but this does not describe the model if we want
to reconcile files.
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Appendix A

Pairwise set reconciliation using
characteristic polynomials

1 import solve_recon
2

3 # Define sets and evaluation points, base and upper bound
4 set1 = [1, 2, 9, 12, 33]
5 set2 = [1, 2, 9, 10, 12, 28]
6 evpoints = [-1, -2, -3, -4, -5]
7 base = 97
8 m = 5
9

10 # Evaluates sets at given points
11 ev1 = solve_recon.evaluate(set1, evpoints, base)
12 ev2 = solve_recon.evaluate(set2, evpoints, base)
13 print ev1 # [mpz(58), mpz(19), mpz(89), mpz(77), mpz(4)]
14 print ev2 # [mpz(15), mpz(54), mpz(68), mpz(77), mpz(50)]
15

16 # Divides evaluation values
17 intvalues = solve_recon.divide(ev1, ev2, base)
18 print intvalues # [mpz(75), mpz(74), mpz(17), mpz(1), mpz(35)]
19

20 # Calculate polynomial bounds
21 d1, d2 = solve_recon.poly_bounds(set1, set2, m)
22 print d1, d2 # 2 3
23
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24 # Create system we are going to solve
25 constraints = solve_recon.create_equations(evpoints,
26 intvalues, d1, d2, base)
27 print constraints
28 # [[96 1 22 75 22 21]
29 # [95 1 92 51 23 83]
30 # [94 1 41 51 80 17]
31 # [93 1 81 4 96 17]
32 # [92 1 95 78 62 62]]
33

34 # Solve it
35 solved = solve_recon.solve(constraints, base)
36 print solved
37 # [[1 0 0 0 53 64]
38 # [0 1 0 0 94 0]
39 # [0 0 1 0 53 59]
40 # [0 0 0 1 23 86]
41 # [0 0 0 0 0 0]]
42

43 # See which values are independent
44 indep, dep = solve_recon.indep_solutions(solved, base)
45

46 # Output polynomial coefficients
47 coef_n, coef_d = solve_recon.rat_poly_sing(solved,
48 indep, d1, d2, base, coeff = True)
49 print coef_n # [(0, mpz(3)), (1, mpz(11))]
50 # == x2 + 11 x + 3
51 print coef_d # [(0, mpz(1)), (1, mpz(63)), (2, mpz(6))]
52 # == x3 + 6 x2 + 63 x + 1
53

54 # or the polynomials themselves
55 fn_n, fn_d = solve_recon.rat_poly_sing(solved,
56 indep, d1, d2, base, coeff = False)
57

58 # Test, if the polynomials are correct
59 sol1, sol2 = solve_recon.test(fn_n, fn_d, base)
60 print sol1 # [33]
61 print sol2 # [10, 28]

64



Non-exclusive licence to reproduce Thesis and make Thesis public

I, Ivo Kubjas (date of birth: 20.09.1989),

1. herewith grant the University of Tartu a free permit (non-exclusive license) to

1.1 reproduce, for the purpose of preservation and making available to the
public, including for addition to the DSpace digital archives until expiry
of the term of validity of the copyright, and

1.2 make available to the public via the web environment of the University
of Tartu, including via DSpace digital archives until expiry of the term of
validity of the copyright,

Set reconciliation,
supervised by Vitaly Skachek.

2. I am aware of the fact that the author retains these rights.

3. I certify that granting the non-exclusive license does not infringe the intellectual
property rights or rights arising from the Personal Data Protection Act.

Tartu, 26.05.2014

65


	Notation
	Introduction
	Models, settings
	Notation
	Models
	Pairwise set reconciliation
	Pairwise sequence reconciliation
	Broadcast set reconciliation
	Unicast set reconciliation
	Threshold reconciliation


	Related work
	Characteristic polynomials
	Description of the algorithm
	Evaluation and interpolation of polynomials
	Computational complexity
	Communicational complexity
	Algorithm without known bound on the size of the symmetric difference

	Bloom filters
	Description of Bloom filter
	Description of invertible Bloom filter
	Using invertible Bloom filter for set reconciliation
	Computational and communication cost

	Data exchange protocol
	Bounds on the number of transmissions
	Data exchange protocol


	New reconciliation protocols
	Improvements to the method of characteristic polynomials
	Network matching approach
	Experimental results

	Data exchange protocol extension to set reconciliation problem
	Possession matrix of the graph
	Adjacency matrix in set reconciliation
	Broadcast set reconciliation algorithm using rank optimization problem


	Conclusion and future work
	Bibliography
	Pairwise set reconciliation using characteristic polynomials
	License

