
UNIVERSITY OF TARTU

FACULTY OF MATHEMATICS AND COMPUTER SCIENCE

Institute of Computer Science

Information Technology Curriculum

Silver Jürimäe

A Literature Survey of the Development

Processes for Secure Software

Bachelor’s Thesis (6 ECTS)

Supervisors: Dr. Raimundas Matulevičius

TARTU 2014

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace at Tartu University Library

https://core.ac.uk/display/83597368?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

A Literature Survey of the Development Processes for

Secure Software

Abstract

Secure software development processes are critical part of designing secure

software. However, it is hard for the various stakeholders to make the decision about which

software development process to choose without a comparison between them. Even

further, after choosing the process, stakeholders have to decide which methods and

techniques to use to fulfil activities required to develop secure software development

processes. This is a problem, because there are a number of methods a stakeholder could

use to fulfil these activities, but no explicit links between a method and development

process.

 In this thesis firstly we perform comparison of three secure system development

approaches namely Microsoft Security Development Lifecycle, OWASP CLASP and

Cigital’s Security Touchpoints. In the next step we focus on step within these approaches,

namely the security risk management and carry out an analytical survey to find out current

methods for security risk management. We give a short overview and comparison between

found methods, which potentially will help stakeholders to select their approach for

designing secure software with the focus on security risk analysis. We also provide them

with opportunity to perform all activities required in risk analysis phase of the

development by giving them an aggregate view of risk management methods. This is

essential, because risk analysis is a major part of developing secure software and

combining different techniques can be used to discover and mitigate more risks in software

under development.

Keywords

Security development processes, Security Development Lifecycle, OWASP CLASP,

Cigital’s Security Touchpoints, security risk management, Secure i*, SecReq, Secure

Tropos, UMLsec, SQUARE, ISSRM domain model, Misuse cases

3

Uuring turvalise tarkvara arenguprotsesside kohta

Lühikokkuvõte

Turvalise tarkvara arendusprotsessidel on tähtis roll turvalise tarkvara

kavandamisel, aga erinevate arendusprotsessidel vahel on rakse valikut teha ilma

nendevahelise võrdluseta. Veel enam peale arendusprotsessi rakendamist tuleb valida

meetodid, mida kasutada selle arendusprotsessi rakendamisel. Meetodite valikul tekib aga

probleem, sest arendusprotsessides ei ole öeldud, milliseid meetodeid tuleks kasutada, et

täita vajalikud tegevused turvalise tarkvara arendamiseks.

 Selle töö raames me võrdleme kolme erinevat turvalise tarkvara arendusprotsessi:

Microsoft Security Development Lifecycle, OWASP CLASP ja Cigital’s Security

Touchpoints. Järgmisena me keskendume valitud arendusprotsesside faasile, mis käsitleb

turvariskide haldust ja viime läbi uuringu, et teada saada, mis on tänapäevased turvariski

meetodid. Me anname nendest meetoditest lühikokkuvõtte ja võrdleme neid omavahel, mis

loodetavasti lihtsustab nende vahel valimist. Me koostame veel leitud meetoditest ühise

vaate, mis aitab kaasa kõigi arendusprotsesside poolt pakutud tegevuste täitmisele selle

faasis. See on vajalik, sest riskihaldus mängib suurt rolli turvalise tarkvara arendamisel ja

erinevate riskihaldus meetodite kombineerimist saab kasutada, et avastada rohkem riske

loodavast tarkvarast ja hiljem neid riske korrektselt leevendada.

Võtmesõnad

Turvalise tarkvara arendusprotsessid, Security Development Lifecycle, OWASP CLASP,

Cigital’s Security Touchpoints, turvariskide haldamine, Secure i*, SecReq, Secure Tropos,

UMLsec, SQUARE, ISSRM domain model, Misuse cases

4

Table of Contents

Chapter 1. Introduction .. 6

Chapter 2. Security Development Processes .. 7

2.1 Security Development Lifecycle .. 7

2.2 OWASP CLASP .. 8

2.3 Cigital’s Security Touchpoints ... 10

2.4 Comparison .. 11

2.4.1 Education ... 11

2.4.2 Project launch .. 12

2.4.3 Risk analysis and requirements ... 12

2.4.4 Architectural and detailed design .. 13

2.4.5 Implementation and testing ... 14

2.4.6 Release and deployment .. 15

2.5 Summary .. 16

Chapter 3. Risk Analysis and Requirements: Survey Design .. 17

3.1 Research question ... 17

3.2 Source selection ... 17

3.3 Information extraction .. 18

3.4 Threats to validity .. 18

3.5 Summary .. 19

Chapter 4. Risk analysis and Requirements: Result Analysis .. 20

4.1 Secure i* ... 20

4.2 SecReq.. 21

4.3 Secure Tropos ... 21

4.4 UMLsec .. 21

4.5 SQUARE method ... 22

4.6 ISSRM domain model .. 22

4.7 Eliciting security requirements with misuse cases ... 23

4.8 Comparison .. 23

4.9 Security development models and risk management methods ... 23

4.10 Summary .. 24

Chapter 5. Aggregate view on the Risk Analysis and Requirements ... 25

Chapter 6. Related Work .. 28

Chapter 7. Conclusion .. 29

References .. 30

5

List of Tables and Figures

Table 1 - Education .. 12

Table 2 - Project launch comparison .. 12

Tabel 3- Risk analysis and requirements comparison .. 13

Table 4 - Architectural and detailed design comparison .. 14

Table 5 – Implementation and testing comparison .. 15

Table 6 – Release and deployment ... 16

Table 7 - Summary of the studies selected. .. 18

Table 8 – Comparison of methods for security risk management .. 20

Table 9 - Aggregate view on the Risk Analysis and Requirements ... 27

Figure 1 - Six phases of the traditional software development lifecycle (adapted from Microsoft,

2012) .. 7

Figure 2 CLASP Views and their interactions (adapted from OWASP 1, 2012) 9

Figure 3 Software security best practices are applied to various software artefacts. (adapted from

McGraw, 2006) .. 10

Figure 4 – Design of systematic literature review .. 17

file:///C:/Users/Kasutaja/Desktop/Lõputöö/A%20Literature%20Survey%20of%20the%20Development%20Processes%20for%20Secure%20Software.docx%23_Toc387956114
file:///C:/Users/Kasutaja/Desktop/Lõputöö/A%20Literature%20Survey%20of%20the%20Development%20Processes%20for%20Secure%20Software.docx%23_Toc387956114

6

Chapter 1. Introduction

Security has a major role in developing software, but without guidelines it is hard to

decide, which activities have to be implemented in order to develop secure software. A

secure software process can be defined as the set of activities performed to develop,

maintain, and deliver a secure software solution (Davis, 2006). These are a number of

secure software processes available and although, they all have the same purpose, they are

quite different in structure and activities, so it is hard to decide, which process is suitable

for software under development. In this thesis we answer two research questions. The first

question is: what are the differences between Security Development Lifecycle (Lipner &

Howard, 2005), OWASP CLASP (Graham, 2006) and Cigital’s Security Touchpoints

(McGraw, 2006) and the second question is: what are the current practices and methods for

security risk management?

 The purpose of this thesis is to make the comparison between three development

processes for secure software: Security Development Lifecycle, OWASP CLASP and

Cigital’s Security Touchpoints. Furthermore this thesis will provide a link between

development processes and methods for security risk management. The link is made by

performing a literature review to find out current methods and techniques chosen methods

use for security risk management and by comparing the activities of the development

processes to techniques of the chosen methods. Chosen methods are Secure i* (Elahi, et

al., 2010), SecReq (Houmb, et al., 2009), Secure Tropos (Giorgini, et al., 2007), UMLsec

(Jürjens, 2002), SQUARE (Suleiman & Svetinovic, 2012), ISSRM domain model

(Alcalde, et al., 2009) and Misuse cases (Sindre & Opdahl, 2004). After reviewing the

methods we categorise the information given by them to help the stakeholder use these

methods successively in order to fulfil required activities.

 The thesis is structured as follows. The first part introduces the background. In

Chapter 2 we provide the summary and comparison tables to Security Development

Lifecycle, OWASP CLASP and Cigital’s Security Touchpoints. In Chapter 3 we will give

the design for the systematic literature review and in Chapter 4 we will perform the

systematic literature review to find current practices and methods for security risk

management. Moreover we will provide criteria to compare found methods and find out in

which development process can these methods be implemented. In Chapter 5 we will

provide an aggregate view on risk analysis and requirements and therefore contribution of

this thesis.

7

Chapter 2. Security Development Processes

There exist several approaches for developing secure software. In this chapter, we

review three of these: Security Development Lifecycle (Lipner & Howard, 2005; Microsoft

Developer Network, 2012), OWASP CLASP (Graham, 2006; OWASP 2, 2005; OWASP

1, 2012) and Cigital’s Security Touchpoints (McGraw, 2006). These security development

processes were chosen because they have comprehensive set of activities which cover a

large part of the development process. The chapter concludes with their comparison in six

different categories: education, project launch, risk analysis and requirements, architectural

and detailed design, implementation and testing, release and deployment.

2.1 Security Development Lifecycle

Security Development Lifecycle (SDL) came out in 2002, as a result of Microsoft’s

commitment to improve the security of its operating system. Microsoft made the SDL to

address the security issues they had to face in their products. SDL is a set of activities

performed to develop and deliver a secure software solution. The SDL’s activities are

grouped in seven stages: training, requirements, design, implementation, verification,

release and response. In this thesis we are merging the response phase with release phase

due to the lack of response activities included in the security development processes

reviewed in this thesis. Although SDL stages are security specific, they are very alike to

the software development phases. Several activities continue throughout the SDL process,

for instance threat modelling and education. Doing so the SDL process focuses mainly on

remaking and improving on going results. SDL provides thorough description to which

method should be used to carry out activities so the execution of an activity can be

achieved.

Figure 1 - Six phases of the traditional software development lifecycle (adapted from

Microsoft, 2012)

 Education is a major part of SDL. Every team member should have knowledge in

software security in order to increase the awareness of the problem. Also mandatory

advanced education is scheduled annually in order to keep up with the evolving field and

new threats. SDL suggests instituting a measurement program to assess the effectiveness of

knowledge received by training programs.

 Security advisor is assigned to the project who serves as a point of contact, resource

and guide as planning continues. This advisor helps the product team with security related

issues and remains the team’s point of contact from the beginning to the software release.

Furthermore, security team is assembled for frequent interactions during software

8

development. SDL has devised a set of security metrics for product teams in order to

monitor their success in implementing SDL.

 SDL introduces a security risk assessment (SRA) as a mandatory exercise to

identify functional aspects of the software that might require deep security review. SRA

will determine which parts of the project will require threat modelling, which security

design reviews and which penetration testing. SDL also recommends doing privacy

requirements which measures the sensitivity of the data that software will process from a

privacy point of view.

 Architectural and detailed design is performed mainly by threat modelling. SDL

focuses on the impact of the project on user privacy and minimization of attack surface. To

minimize attack surface discarding unnecessary features and limiting privileges is

suggested. SDL recommends STRIDE (STRIDE, 2007) to evoke threats. STRIDE stands

for spoofing (impersonating something or someone else), tampering (modifying data or

code), repudiation (claiming to have not performed an action), information disclosure

(exposing information to someone not authorized to see it), denial of service (deny or

degrade service to users), elevation of privileges (gain capabilities without proper

authorization). It also provides all the resources and documents to carry out this technique.

SDL also recommends a security expert to review the architecture of the system from

security point of view.

 SDL suggests applying coding and testing standards for implementation and

testing. Coding standards help developers to avoid flaws that can lead to security

vulnerabilities. Testing standards help to ensure that testing focuses on detecting potential

security risks. Furthermore automated tools are suggested to detect minor errors. It also

suggests conducting manual code reviews in order to supplement automated tools. SDL

has heavy emphasis on fuzz testing tools, which unlike the static code-scanning tools must

be built for each file format and because of this they are able to find errors missed by static

analysis tools. The testing mainly covers only black box testing. SDL also describes

security push to ensure that the final software meets the requirements and allow deeper

review of any legacy code.

 During the release phase, the software should be subject to a Final Security Review

("FSR"). The FSR is an independent review of the software conducted by the central

security team for the organization. If FSR finds remaining vulnerabilities, the proper

response would be to revisit the earlier phases and take other pointed actions to address

root causes. SDL emphasizes evaluating reports of vulnerabilities after the release of the

product as it helps to detect and eliminate further security weaknesses before they are

discovered in the field.

2.2 OWASP CLASP

OWASP CLASP (CLASP), like SDL, is also a process for building secure

software. It includes 24 activities and also supplementary resources, which can be fitted to

the development process that is used. CLASP’s activities are defined mainly from a

theoretical angle and so the coverage of the activities is rather broad. CLASP is defined as

a set of independent activities that have to be integrated in the development process. The

choice of the activities and the order of execution are left open to make the development

process more flexible. Furthermore, the execution density of these activities is specified to

each activity, so the coordination of these activities is fairly difficult.

Two roadmaps (Legacy and Greenfield) have been made to give help on how to combine

the activities into an ordered set.

9

 CLASP defines the roles that are crucial for the security of the software product and

appoints the activities to these roles, so the roles are used to help to structure the set of

activities. Roles are responsible for the final outcome and the quality of the results of an

activity. CLASP has a large set of security resources that support the implementation of the

activities. For instance, it has a Vulnerability Lexicon that helps developers to avoid

common coding errors in source code and Vulnerability Use Cases to portray conditions

under which security services can become vulnerable in the software. The CLASP process

is presented through five high-level perspectives called CLASP Views. These views are

broken down into activities which in turn contain process components.

Figure 2 CLASP Views and their interactions (adapted from OWASP 1, 2012)

Education in CLASP is mandatory for all people involved in the project. Awareness

programs are implemented, using external expert resources in order to help to ensure that

activities promoting secure software will be implemented effectively.

 CLASP emphasizes the construction of the security team and they recommend

assigning a security officer to the project, which shares knowledge and reviews the project

throughout the development process. Furthermore CLASP recommends the use of

accountability to boost individual commitment and also has security metrics to assess the

security of the product. CLASP emphasizes the importance of making corporate security

policy to use as a base for security requirements and it provides templates to ease the

making of this security policy.

 CLASP recommends identifying data resources and linking them to system roles.

Requirements are created by using both offense and defence by means of threat modelling

and requirements specification. Threat modelling can be use case driven, during which

attacks to use cases are performed and resource driven that concentrates on illegal use of

resources. Functional security requirements are set to show how the basic security services

are addressed for each resource for determining risk mitigation and resolving deficiencies

and conflicts. CLASP also recommends identifying the attacker profile, so it would be

simpler to specify where threats could originate.

 CLASP supports threat modelling for architectural and detailed design. It includes

assessing security posture of technology solutions to research and assess third party

components that the project will depend on. CLASP is also devoted to minimize the attack

surface by concentrating on restricting access. CLASP advises designers to apply security

principles to design to harden and make software more resilient to attacks.

 CLASP acknowledges importance of testing, but focuses more on the white box

testing. It suggests automating security analysis and metrics by using dynamic or static

10

tools. CLASP deals with creation of necessary documentation to install and operate the

software safely and suggests reviewing the specifications from the developer’s perspective

in order to spot any ambiguities. In verification phase CLASP suggests penetration testing

to ensure that all issues have been caught.

 CLASP recommends verifying security attributes of resources to confirm that

software is meeting previously defined standards. It suggests code signing to provide the

stakeholders with a way to validate the origin of the software. Following the release

CLASP states that reported vulnerabilities should be addressed by updating software.

2.3 Cigital’s Security Touchpoints

 Cigital’s Security Touchpoints (Touchpoints) provides a set of best practices that

have been gathered over the years out of the extensive industrial experience. Best practices

are grouped together into seven touchpoints. Touchpoints recognize the importance of risk

management and tries to bridge the gap by elaborating a Risk Management Framework

(RMF) that supports the Touchpoints activities. Touchpoints are a mix of destructive and

constructive activities. Destructive activities are attacks, exploits, and breaking software.

These kinds of things are represented by the black hat. Constructive activities are about

design, defence, and functionality and these are represented by the white hat. In order to

make it easier for companies, different touchpoints are in ranking: 1. Code review, 2.

Architectural risk analysis, 3. Penetration testing, 4. Risk-based security tests, 5. Abuse

cases, 6. Security requirements, 7. Security operations.

Touchpoints does not cover education before project launch. It is recognized that

people should be trained about the particularities of the development environment, but

there is no mandatory education to the personnel involved in building the secure software.

A knowledge management framework is described to share software security knowledge

among the project team.

 Touchpoints describes an improvement program (McGraw 2006 p: 247-251) in

order to adopt the best practices. This program assigns which part of the project will be

done by whom, how the team will build and deploy it and also how they will continue to

improve it over time. Improvement program also has a metric system put in place in order

to demonstrate how well things are going from a security perspective. The improvement

program will be tailored to the given business and technical situations.

 Touchpoints advises abuse cases to be used in order to describe the system’s

behaviour under attack. Two critical activities of abuse cases are: creating an anti-

requirements and creating an attack model. Anti-requirements are for describing what can

go wrong and attack model is for describing how it can be achieved. Touchpoints also

suggests creating a risk management framework (RMF) (McGraw 2006 p: 59) to identify

Figure 3 Software security best practices are applied to various software artefacts.

(adapted from McGraw, 2006)

11

and keep track of risks over time as software project evolves. Extra security requirements

are based on three sources: laws and regulations, commercial considerations and

contractual obligations. Touchpoints also emphasize knowledge requirement as

architectural risk analysis is knowledge intensive.

 For architectural design the main focus is on threat modelling, but also risk analysis

is introduced to identify risks in the system and mitigate them. Risk analysis consists of

attack resistance analysis, ambiguity analysis and weakness analysis. Attack resistance

analysis is meant to capture the checklist-like approach to risk analysis taken in Microsoft's

STRIDE approach. Ambiguity analysis helps to uncover ambiguity and inconsistency and

identify downstream. Weakness analysis is a sub process aimed at recognizing the impact

of external software dependencies. Touchpoints also recommend a security expert to this

phase.

 Touchpoints emphasize the importance of testing by introducing risk-based security

testing. Risk-based security testing is a mix of constructive and destructive activities that

requires a black-and-white box approach. Testers must ground both the system’s

architectural reality and the attacker's mind-set. By identifying risks in the system and

creating tests driven by those risks, a software security tester can properly focus on areas of

code where an attack is likely to succeed. Touchpoints also suggests using automated tools

as it is the best way to identify the most basic of implementation defects and it

recommends penetration testing for a system in its final production environment.

Touchpoints also acknowledges unit testing as an important part of security testing. Unit

testing carries the benefit of breaking system security down into a number of discrete parts.

 For release and deployment Touchpoints covers the importance of event-

monitoring and event-logging as they will be effective during incident response operations.

2.4 Comparison

In this part we provide comparison between SDL, CLASP and Touchpoints in six

different categories: education, project launch, risk analysis and requirements, architectural

and detailed design, implementation and testing, release and deployment. Categories are

implemented from SDL phases as CLASP and Touchpoints activities can be categorized

similarly. Activities are SDL, CLASP and Touchpoints activities that each lifecycle

recommends to fulfil in order to assure secure system.

2.4.1 Education

In Table 1 we compare three processes in education criteria. SDL and CLASP both

emphasize education before project launch by instituting security awareness program and

providing advanced education, but SDL goes one step further by measuring the knowledge

gained from those activities. Touchpoints does not provide any activities for educating

team members before the project launch.

12

 Activity Description SDL CLASP Touchpoints

Institute security awareness

program

Ensure project members consider security
to be an important project goal through

training and accountability.

1 1 0

Provide advanced education Members of the team that do not directly
deal with security issues should be aware

of the project’s security practices.

1 1 0

Measure knowledge gained Provided metrics are used to measure
knowledge gained through training

programs.

1 0 0

Sum 3 2 0

2.4.2 Project launch

 In Table 2 we compare SDL, CLASP and Touchpoints in activities relating to

project launch. All three processes recommend assembling a security team and monitoring

implementation success. However, SDL and CLASP are different from Touchpoints by

also recommending security advisor for the team. CLASP has the most activities regarding

project launch as they also recommend instituting accountability and identifying global

security policy. Touchpoints is unique by recommending improvement program.

Table 2 - Project launch comparison

 Activity Description SDL CLASP Touchpoints

Assemble security team Identification of the team that is responsible for
tracking and managing security of the product

1 1 1

Appoint security advisor Team member or external auditor will be appointed to
be security advisor, who will review work of other team

members

1 1 0

Monitor implementation

success

A set of metrics is devised that product team can use to

monitor their success in implementing the approach
1 1 1

Institute accountability Team members will be accountable for performing
activities to satisfactory level

0 1 0

Institute improvement

program

A program which assigns which part of the project will

be done by whom and how they will continue to

improve it over time.

0 0 1

Identify global security

policy

Provide a way to compare the security posture of

different products
across an organization.

0 1 0

Sum 3 5 3

2.4.3 Risk analysis and requirements

 In Table 3 we compare the three processes in risk analysis and requirements

criteria. SDL has the least activities in this stage of the project. It recommends threat

modelling and specification of privacy requirements. Touchpoints and CLASP both

suggest identifying attacker profile and usage of abuse cases and threat modelling. CLASP

also advises identifying resources, trust boundaries, user roles and determining risk

mitigation. Touchpoints, which has the most activities in this stage, suggests using anti-

Table 1 - Education

13

requirements, attack model, risk management framework and also eliciting legal risks and

knowledge requirement.

Tabel 3- Risk analysis and requirements comparison

Activity Description SDL CLASP Touchpoints

Identify resources and

trust boundaries

Provide a structured foundation for understanding the

security requirements of a system.
0 1 0

Identify user roles Define user roles and the resources that the role can
access.

0 1 0

Identify attacker

profile

Identify potential groups that could be a threat as well

as the gross resources one expects them to have.
0 1 1

Anti-requirements Documenting the things that software should not do. 0 0 1

Abuse cases(misuse

cases)

Use cases that are meant to detail common attempted
abuses of the system.

0 1 1

Attack model Given a set of requirements and a list of threats,

cyclation through the list of
known attacks is made and decided whether an attack

applies to system under development

0 0 1

Threat modelling Assess likely system risks by
analysing the requirements and design.

1 1 1

Privacy requirements Measures the sensitivity of the data that software will

process from a privacy point of view.
1 0 0

Elicit legal and/or

regulatory risk

Elicit and manage security from laws and regulations 0 0 1

Elicit knowledge

requirement

Advanced knowledge is required before continuing to

next phase of the development
0 0 1

Risk management

framework

Risk management framework

encompasses identifying, synthesizing, ranking, and

keeping track of risks throughout
software development.

0 0 1

Determine risk

mitigation

Identify what risks could be considered, then identify
solutions for addressing those risks.

0 1 0

Sum 2 6 8

2.4.4 Architectural and detailed design

 In Table 4 we compare the three processes in architectural and detailed design

activities. SDL and CLASP are more thorough than Touchpoints in this phase. They both

suggest minimization of the attack surface, researching and assessing security posture of

technology solutions and reviewing threat modelling. SDL and Touchpoints both

recommend attack resistance analysis, but Touchpoints also recommends ambiguity

analysis. CLASP is unique by recommending annotating class designs with security

properties and applying security principles to design.

14

Table 4 - Architectural and detailed design comparison

 Activity Description SDL CLASP Touchpoints

Minimization of attack

surface

Specification of all entry points to a

program in a structured way and
minimization of those entry points

1 1 0

Research and assess security

posture of technology

solutions

Assess security risks in third-party

components.
1 1 1

Annotate class designs with

security properties

Elaborate security policies for

individual data fields.
0 1 0

Review threat modelling Assess likely system risks by

analysing the requirements and design.
1 1 0

Perform attack resistance

analysis

Identify general flaws using secure

design literature and checklists
1 0 1

Apply security principles to

design

Harden application design by applying
security design principles.

0 1 0

Perform ambiguity analysis The ambiguity analysis takes

advantage of the multiple points of

view afforded by multiple analysts to
create a critical analysis technique.

0 0 1

Create data flow diagrams Used to graphically represent a system 1 0 0

Sum 5 5 3

2.4.5 Implementation and testing

 In Table 5 we compare SDL, CLASP and Touchpoints in implementation and

testing criteria. SDL, which has the most activities in this phase, is unique by

recommending coding and testing standards, fuzz testing and security push. It is similar to

CLASP and Touchpoints by suggesting usage of automated tools and penetration testing.

CLASP which has the least activities suggests integrating security analysis into source

management process. Touchpoints focuses mainly on testing as it recommends risk-based

security testing and unit testing.

15

Table 5 – Implementation and testing comparison

2.4.6 Release and deployment

 In Table 6 we compare the three processes in activities relating to release and

deployment. SDL and CLASP have the most activities in this stage as they both suggest

conducting independent review of the software and updating it regularly. CLASP also

recommends code signing and SDL suggests evaluating reports of vulnerabilities.

Touchpoints, which has the least activities, suggests event-monitoring and event-logging

after the release.

 Activity Description SDL CLASP Touchpoints

Apply coding and testing

standards

1 0 0

Implement automated tools

1 1 1

Perform penetration testing Method of evaluating the security of a

computer system or network by

simulating an attack from malicious
outsiders and malicious insiders

1 1 1

Perform fuzz testing Software testing technique that

involves providing invalid,
unexpected, or random data to the

inputs of a computer program.

1 0 0

Integrate security analysis into

source management process

Automate implementation-level

security analysis and metrics

collection.

0 1 0

Perform risk-based security

testing

Covers functionality testing and

emulates the steps that an attacker will
take when breaking a target system.

0 0 1

Perform security push Team-wide focus on threat model

updates, code review, testing, and
documentation scrub.

1 0 0

Unit testing Method by which individual units of

source code are tested to determine if
they are fit for use.

0 0 1

Sum 5 3 4

16

Table 6 – Release and deployment

2.5 Summary

 Security development models play an important role in developing a secure system

and as we can see they all focus on different stages in development process. SDL has the

most activities in education, design and implementation. CLASP concentrates mainly on

project launch and risk analysis and Touchpoints emphasizes the importance of risk

analysis and security requirements. Choosing the process depends on what development

stage is the most important from stakeholder perspective. We selected risk analysis phase

for further analysis, because in this phase consequences of different threats are assessed

and the activities carried out in this phase give stakeholders the way to take appropriate

response to mitigate the risks in their software making it in our opinion the most important

phase of software development.

 Activity Description SDL CLASP Touchpoints

Conduct independent

review of software

Independent review of the software conducted

by the security team.
1 1 0

Perform code signing Provide the stakeholder with a way to validate

the origin and integrity of the software.
0 1 0

Evaluate reports of

vulnerabilities

 1 0 0

Update software 1 1 0

Perform event-

monitoring

Process of collecting, analysing, and signalling

event occurrences to subscribers.
0 0 1

Perform event-logging Provides system administrators with

information useful for diagnostics and auditing
0 0 1

Sum 3 3 2

17

Chapter 3. Risk Analysis and Requirements: Survey Design

 In this chapter we have conducted a systematic literature review (SLR). The SLR

was carried out by effectuating the following activities: defining research question, source

selection, studies selection process and information extraction.

Figure 4 – Design of systematic literature review

3.1 Research question

 We defined the following research question: “What are the current practices and

methods for security risk management?” After carrying out this SLR we expect to find out,

which activities current security risk management methods cover in Table 3 and also

provide a link between found methods and security development processes.

3.2 Source selection

 We picked sources which are of the recognized quality within the research

community and possibly can contain answers for our research question. These sources are:

 Requirements Engineering Journal (REJ)

 Computers & Security – Journal (COSE)

 Information Security Technical Report (ISTR)

 International Conference on Advanced Information Systems Engineering (CAISE)

 International Conference on Availability, Reliability and Security (ARES)

 European Conference on Information Systems (ECIS)

 Information Security Journal (ISJ)

 International Journal of Secure Software Engineering (IJSSE)

3.2 Source

selection

3.1 Defining

research question

3.3 Studies

selection

Information

4. Information

extraction

Selected studies

Selected sources

Research question

Result of Security Lifecycle Survey

18

In the selected sources, we experimented with various search string criteria. That which

eventually retrieved the highest number of useful results was:

(security risk management) AND (methods OR study OR review OR practices).

3.3 Information extraction

 Having defined the source selection, we implemented procedures to identify those

studies that provided direct evidence to the research question. First we implemented

criteria that studies have to be published in last 4 years to be current practices and methods

for security risk management. Older studies may still be relevant at the present time, but as

we had limited time and manpower we decided to focus on the studies published in last 4

years. After that we found initial studies by reading the title, abstract and introduction.

Studies which were not related to the research question were put aside.

 Next we reviewed the studies that had been selected and found out if they contain

activities in Table 3. Out of those studies we selected two methods Secure i*(Elahi, et al.,

2010) and SecReq (Houmb, et al., 2009).

 After finding only two methods we wanted to expand our literature review and to

expand it, we went through the references of our found methods. The outcome was the

selection of five other methods for security risk management. Those methods were Secure

Tropos (Giorgini, et al., 2007; Mouratidis, et al., 2007), UMLsec (Jürjens, 2002),

SQUARE (Suleiman & Svetinovic, 2012; Stehney & Mead, 2005), ISSRM domain model

(Mayer, et al., 2006; Alcalde, et al., 2009; Mayer, et al., 2008) and Misuse cases (Sindre &

Goguen, 2004).

Table 7 - Summary of the studies selected.

Sources REJ COSE ISTR CAISE ARES ECIS ISJ IJSSE

Total

results

23 11 21 5 12 36 40 23

Results

selected

3

0 1 0 2 0 0 3

Selected

studies

(Guerses, et al.,

2011), (Elahi, et

al., 2010),

(Houmb, et al.,

2009)

 (Jirasek,

2012)

 (Beckers,

2012),

(Jakoubi,

2010)

 (Islam, et al.,

2013),

(Nhlabatsi, et

al., 2010),

(Khan, 2012)

3.4 Threats to validity

 The main threat to validity is that whether we have failed to find all the relevant

studies, although we have selected a wide range of conferences and journals, there may

still exist relevant papers that we have not included. This may be caused by faulty search

string criteria or limited source selection. Another threat may come from different

interpretation of the methods selected. As selected methods’ activities may not accord

exactly to Table 3 definitions, it may result in some studies, which interpret the accordance

of the methods to Table 3 differently from our study.

19

3.5 Summary

 To carry out the systematic literature review, we defined our research question:

“What are the current practices and methods for security risk management?” After that we

picked sources that are of recognised quality and selected 7 different methods out of the

studies that we found. These 7 methods are Secure i*, SecReq, Secure Tropos, UMLsec,

SQUARE, ISSRM domain model and Misuse cases. In the next chapter we will extract

information from found methods to compare them to each other and provide an aggregate

view of those seven security risk management methods.

20

Chapter 4. Risk analysis and Requirements: Result Analysis

 In this part we have created Table 8 from Table 3 to see which activities from

security development processes each method covers. We have also composed reviews of

selected methods and description how each method covers its activities.

4.1 Secure i*

The i* framework provides the basic setting for representing vulnerabilities that are

brought by actions and assets and propagating them through the decomposition and

dependency links to other elements of model (Elahi, et al., 2010). The modelling process

consists of five views: requirements view, vulnerabilities view, attackers template view,

attackers’ profile view and countermeasures view. Identification of resources and user roles

is done by requirements view that shows stakeholders and actors with their goals, the tasks

to achieve those goals, required resources and the dependencies among them. Threat

modelling is done by vulnerabilities view that extends the requirements view by adding

vulnerabilities that tasks and resources bring to the system and what impact these

vulnerabilities have to the system. Attack model is in the attackers’ template view that

represents how an attacker can exploit the vulnerabilities. Attacker profile is identified in

Table 8 – Comparison of methods for security risk management

 Activity Definition Secure

i*
SecReq Secure

Tropos
UMLsec SQUARE ISSRM

domain

model

Misuse

cases

Sum

Identify

resources

and trust

boundaries

Provide a structured foundation

for understanding the security

requirements of a system.

1 1 1 1 1 1 1 7

Identify user

roles

Define user roles and the

resources that the role can

access.

1 1 1 1 1 0 0 5

Identify

attacker

profile

Identify potential groups that

could be a threat and define

their skillset and motivation for
the attack as well as the gross

resources one expects them to

have.

1 0 0 0 0 1 1 3

Anti-

requirements

Documenting the things that
software should not do.

0 0 0 0 0 0 0 0

Abuse

cases(misuse

cases)

Use cases that are meant to

detail common attempted

abuses of the system.

0 0 0 0 0 0 1 1

Attack

model

Model that shows goals and

methods that attacker may use.
1 0 0 0 1 1 1 3

Threat

modelling

Assess likely system risks by

analysing the requirements and
design.

1 0 1 1 1 1 1 5

Privacy

requirements

Measures the sensitivity of the

data that software will process

from a privacy point of view.

0 0 1 0 0 0 0 1

Determine

risk

mitigation

Identify what risks could be

considered, and then identify
solutions for addressing those

risks.

1 0 1 0 1 1 1 5

Sum 6 2 5 2 5 5 6

21

attackers’ profile view. The attackers’ profile view captures the attacker’s goals, skills and

behaviour. Risk mitigation is done in countermeasure view that shows the security

solutions adopted by actors to protect the system as well as their impacts on attacks and

vulnerabilities.

4.2 SecReq

SecReq is a security requirements elicitation and tracing method built on the CC

standard, The Heuristic Requirements Assistant (HeRA) tool, and UMLsec. The elicitation

part consists of five steps that take a developer through a series of refinement steps starting

from system objectives and functional requirements and ending with specific security

requirements at an early stage (Houmb, et al., 2009). The SecReq method consists of six

steps. In first step we must identify resources and trust boundaries by specifying security

objectives from system objectives and functional requirements. These requirements are

refined from security objectives. In step two we need to identify user roles by

distinguishing users or groups of end-users so they are properly authenticated to the

system. In step 3 we refine security objectives to sub security objectives. Sub security

objectives are a refinement of security objectives and are a detailed description of the

relevant part of the secure environment for end-users of the system specified by the

security objective (Houmb, et al., 2009). Step 4 takes the result from Step 3 and refines the

sub security-objectives into security requirements. Step 5 takes the result from Step 4 and

refines it to requirements that are specific, measurable, achievable, realisable and traceable.

Throughout Steps 1–5 the HeRA tool observes requirements inputs and raises warning and

hints when security-related input is detected. In step 6 we capture the results of step 5 and

integrate them into UML diagrams by using UMLsec stereotypes.

4.3 Secure Tropos

Tropos is a software development methodology tailored to describe both the

organisational environment of a system and the system itself. Secure Tropos extends the

original Tropos methodology with some new concepts: a security constraint, secure

entities, ownership, provisioning, trust of permission, trust of execution, delegation of

permission, delegation of execution, secure trust of permission, secure delegation of

permission (Giorgini, et al., 2007). Secure Tropos starts with identifying user roles,

resources and trust boundaries is done by modelling stakeholders and actors with their

goals, producing an actor diagram and extending the actor diagram with trust and

ownership relationships. Next we identify privacy requirements by modelling the security

constraints to identify secure capabilities for each actor. Threat modelling is done by

security reference modelling. Security reference modelling involves identification of

security needs, threats and vulnerabilities and also possible solutions to the security

problems.

4.4 UMLsec

 The Unified Modeling Language (UML) is the industry-standard in object-oriented

modelling. It offers an unprecedented opportunity for high-quality critical systems

development that is feasible in an industrial context (Jürjens, 2002). UMLsec is an

extension for Unified Modeling Language that allows to express security relevant

information within the diagrams in a system specification (Jürjens, 2002). UMLsec’s

security requirements are encapsulated in UML stereotypes, tags in the UMLsec profile

22

and constraints. UMLsec identifies resources and trust boundaries using statecharts,

sequence diagrams and class diagrams. Statecharts give the object behaviour, while class

diagrams define the static structure of the system and sequence diagrams ensure

correctness of security-critical interactions between objects (Jürjens, 2002). UMLsec

defines user roles by defining actors using activity diagrams and showing their rights to

access a protected resource. Threat modelling is done using threat scenarios in deployment

diagrams.

4.5 SQUARE method

The security quality requirements engineering (SQUARE) method is a security

requirements engineering method developed by Nancy Mead. SQUARE consists of nine

steps: agree on definitions, identify security goals, develop artefacts to support security

requirements definitions, perform risk assessment, select requirements elicitation

technique, elicit the security requirements, categorize the security requirements, prioritize

the security requirements, and inspect the security requirements. The steps include

identifying suitable techniques to systematically perform each step (Mead, et. al., 2005).

 SQUARE specifies five artefacts: system architecture diagrams, use cases, use-case

diagrams, attack trees and security template. Architecture diagram identifies resources and

trust boundaries. Resources are defined by security goals, which can be derived from

business application goals or potential threats to assets. and user roles are demonstrated in

use cases and use-case diagrams. In SQUARE threat modelling is done by the security

template. The security template is a modified version of the Software Engineering

Institute’s security template. The template specifies: source - specifies the weakness, threat

or vulnerability point, stimulus - specifies the first action triggering the event that reveals

the security threat, artefact - specifies the data or system services that attackers want to

attack, specifies the status of the environment before an attack, action - specifies the actions

that attackers plan to perform by exercising specific vulnerability, consequence - specifies

the results or the effects of an attack. Attack model is described by attack trees that capture

the security weakness points in the system and show us the goals and methods that attacker

may use. Risk mitigation is done by using National Institute of Standards and Technology

risk assessment method (Stoneburner, et al., 2002). This method has five steps: threats

identification, vulnerabilities identification, likelihood analysis, impact analysis and risk

determination.

4.6 ISSRM domain model

The objective of ISSRM is to protect assets of an organisation, from all harm to IS

security which could arise accidentally or deliberately, by using a risk management

approach. Its domain model aims at presenting the different concepts involved and their

mutual relationships. ISSRM core concepts are organised in three categories: asset-related

concepts, risk-related concepts and risk-treatment related concepts (Alcalde, et al., 2009).

 In first category we must identify resources and trust boundaries by defining which

assets are important to protect and what are their security needs. In second category we

must identify attacker profile by describing threat agents and their potential attacks to an

asset. Attack model is formed by describing the vulnerabilities that an attacker exploits and

the effect that the attack will have on an asset. In third category threat modelling is done by

analysing the security requirements and linking them to found risks. Furthermore we

determine risk mitigation by describing how to treat the identified risks.

23

4.7 Eliciting security requirements with misuse cases

Misuse Cases is described as a sequence of actions, including variants that a system

or other entity can perform, interacting with misusers of the entity and causing harm to

some stakeholder if the sequence is allowed to complete (Sindre & Opdahl, 2004).

 Eliciting security requirements with misuse cases consists of five steps. In first step

identification of resources is done by identifying critical assets in the system. In second

step security goals are added to each asset identified in first step. In third step attacker

profile is identified by identifying misusers that may harm the system or its environment

and also attack model is provided by describing attackers’ goals and methods. Threat

modelling is done in fourth step, where risks are identified and analysed. In fifth step risk

mitigation is done by defining countermeasures. Misuse cases compliment identifying

security threats, which can be described as misuse cases and misusers and also security

requirements can be described by misuse cases.

4.8 Comparison

 In this part we provide comparison between an extended i* meta-model, SecReq,

Secure Tropos, UMLsec, SQUARE, ISSRM domain model and Misuse cases. It is clear

that all of these methods provide a structured foundation for understanding the security

requirements of a system. All of these methods, except ISRRM domain model and Misuse

cases, identify user roles. Attacker profile is identified in Secure i*, ISSRM domain model

and Misuse cases. Anti-requirements are not included in any of these methods. Abuse

cases are used in method Misuse cases. All of these methods, except SecReq, provide

threat modelling, but Secure i*, SQUARE, ISSRM and Misuse case provide us also with

attack models. Secure Tropos is the only method that measures the sensitivity of the data

that software will process from a privacy point of view. ISSRM and Secure Tropos also

acknowledge that data’s confidentiality and integrity are important, but no actual

measurement is given. UMLsec and SecReq are the two methods that do not provide

solutions for addressing security risks of a system.

4.9 Security development models and risk management methods

 In Table 3 we can see that in risk analysis and requirements stage SDL consists of

threat modelling and privacy requirements. In Table 8 the only method that covers these

activities is Secure Tropos. Secure i*, UMLsec, SQUARE, ISSRM domain model and

Misuse Cases can also be used in SDL as they cover threat modelling. CLASP consists of

seven activities that are also in Table 8. These activities are identify resources and trust

boundaries, identify user roles, identify attacker profile, abuse cases, threat modelling and

determining risk mitigation. There is no method in Table 8 that covers all of these

activities. Misuse Cases covers all other activities requested for CLASP, except identify

user roles. Secure i* covers everything except abuse cases. Both Secure Tropos and

SQUARE cover four activities required in CLASP. Those activities are identify resources

and trust boundaries, identify user roles, threat modelling and determining risk mitigation.

ISSRM domain model also covers four activities, but instead of identifying user roles,

attacker profile is needed. UMLsec consists of three activities that are also requested for

CLASP: identify resources and trust boundaries, identify user roles and threat modelling.

SecReq cover the least activities for CLASP as it identifies resources, trust boundaries and

24

user roles. Touchpoints consists of four activities that are also in Table 8: identify attacker

profile, anti-requirements, abuse cases and attack model. None of the methods we have

chosen cover anti-requirements. However, all other Touchpoints activities can be covered

with Misuse cases, which combined with anti-requirements cover all Touchpoints

activities. Identification of attacker profile and an attack model is also provided in Secure

i* and ISSRM domain model. SQUARE can also be used as it provides an attack model.

Anti-requirements are used in the work of van Lamsweerde (2004), where he introduces

anti-models and anti-goals to document the things that software should not do.

4.10 Summary

 Security risk management methods are important part of development process for

secure software, however the choice between the methods can be rather difficult. Difficulty

comes from the structure of the methods. Even if the methods execute the same activity,

they may do so by using different artefacts, definitions and means to do so. For example in

Secure i* attack model is in the attackers’ template view that represents how an attacker

can exploit the vulnerabilities and in SQUARE attack model is described by attack trees

that capture the security weakness points in the system and show the goals and methods

that attacker may use. Stakeholders are the ones who have to choose which technique is the

best for system under development and Table 8 can only serve as a guideline to their

selection process.

25

Chapter 5. Aggregate view on the Risk Analysis and
Requirements

Completing our research question in chapter 4 gave us the understanding how

found practices and methods can be used successively in order to fulfil the activities

required in risk analysis phase. In this chapter we have created Table 9 to show which type

of information is given from each security risk management method for completing the

activities listed in Table 8. Additionally we explain in this chapter how the methods give

the type of information.

 We have divided information types into three groups: conceptual definition,

application guidelines and analysis techniques. Conceptual definition defines the meaning

of terms used in risk analysis and requirements activity. Application guidelines give rules

how to accomplish these activities and finally, analysis techniques give us a way of

carrying out a particular activity.

 Identifying resources and trust boundaries. To identify resources and their

trusted boundaries, one can use the ISSRM domain model, where the conceptual base for

assets and their security criteria is defined. This can guide the combined application of

SecReq and SQUARE. For instance resources and trust boundaries in SecReq are defined

as security objectives, which are derived from system objectives and functional

requirements. In SQUARE resources are considered for the security goals. They are

elicited from business application goals and through consideration of protected threats.

Analysis techniques for this activity include Secure i*, Secure Tropos, Misuse Cases and

UMLsec. Resources and trust boundaries are identified in Secure i* by modelling required

resources and goals. Similarly it is done in Secure Tropos. Misuse Cases treat resources as

critical assets in the system. UMLsec suggests means to define stereotypes together with

tags in order to give the object behaviour and interactions between objects.

 Identifying user roles. Application guidelines to identify user roles are given in

SQUARE, which demonstrates how to use modelling techniques (e.g. use cases) to identify

actors and processes. Analysis techniques for identifying user roles include Secure i*,

Secure Tropos and UMLsec. In Secure i* user roles are identified modelling stakeholders

and actors with their goals and the tasks to achieve those goals. Similarly it is done in

Secure Tropos, but they extend it with trust and ownership relations. UMLsec defines the

actors using activity diagram and shows their rights to access a protected resource.

 Identifying attacker profile. ISSRM domain model gives the application

guidelines for identifying attacker profile by guiding the definition of threat agent. Secure

i* and UMLsec provide the analysis techniques for this activity. In Secure i* attacker

profile is identified by defining the actor that can exploit the vulnerabilities to have a

negative impact towards the system. In Misuse Cases the attacker is defined as misuser that

wants to misuse the system under consideration.

 Abuse cases (misuse cases). Analysis technique for abuse cases is given by Misuse

Cases that identifies security threats and security requirements, which then can be

described by misuse cases.

 Attack model. Application guidelines for attack model are given by ISSRM

domain model and Misuse Cases. The ISSRM domain model describes vulnerabilities of

26

the system that an attacker exploits and the effects that an attack has on an asset. In

Misuse Cases attackers’ goals and methods are described to provide an attack model.

Secure i* and SQUARE provide the analysis techniques for composing an attack model. In

Secure i* attack model is depicted as attackers’ template view that represents how an

attacker can exploit the vulnerabilities in the system. SQUARE describes attack trees that

capture the security weakness points in the system and show us the goals and methods that

attacker may use.

 Threat modelling. Secure i*, SQUARE, ISSRM domain model and Misuse Cases

give the application guideline for threat modelling. In Secure i* threat modelling is done

by describing vulnerabilities that tasks and resources bring to the system and also

describing the impact that these vulnerabilities have to the system. In SQUARE threat

modelling is done by specifying the weakness in the system, threat that the weakness

brings, the action triggering the attack, the data or system service that attacker wants to

attack, the status before the attack, the attackers plan and consequences of the attack.

Misuse Cases says that to do threat modelling, it is necessary to identify and analyse found

risks. ISSRM domain model defines the security requirements of the system and links them

to found risks. Analysis techniques for threat modelling are provided by Secure Tropos and

UMLsec. Secure Tropos does security reference modelling that consists of identifying

security needs, threats and vulnerabilities. UMLsec covers threat modelling by threats

scenarios in deployment diagrams.

 Privacy requirements. Privacy requirements are carried out only in Secure Tropos,

which gives the analysis technique for it. Privacy requirements are covered by modelling

the security constraint to identify secure capabilities for the actors.

 Determine risk mitigation. Guidelines for determining risk mitigation are given

by the ISRRM domain model and Misuse Cases. ISSRM domain model insists on

description how to treat the identified risks. In Misuse cases countermeasures are defined

to found risks. Analysis techniques are given by Secure i*, Secure Tropos and SQUARE.

Secure i* determines risk mitigation by showing the security solutions adopted by actors to

protect the system and also their impact on attacks and vulnerabilities. In Secure Tropos

risk are mitigated by security reference modelling, where possible solutions to security

problems are shown and in SQUARE threats and vulnerabilities are identified using

National Institute of Standards and Technology risk assessment method (Stoneburner, et

al., 2002). It includes threat’s likelihood analysis, impact analysis and risk determination.

27

Table 9 - Aggregate view on the Risk Analysis and Requirements

 Identify

resources

and trust

boundaries

Identify

user roles

Identify

attacker

profile

Abuse

cases(mi

suse

cases)

Attack

model

Threat

modelling

Privacy

require

ments

Determine

risk

mitigation

Conceptual

definition

ISSRM

Domain

model

Application

guidelines

SecReq,

SQUARE

SQUARE ISSRM

domain

model

 ISSRM

domain

model,

Misuse

Cases

Secure i*,

SQUARE,

ISSRM

domain

model,

Misuse

Cases

 ISSRM

domain

model

,Misuse

Cases

Analysis

techniques

Secure i*,

Secure

Tropos,

Misuse

Cases,

UMLsec

Secure i*,

Secure

Tropos,

UMLsec

Secure

i*,

Misuse

Cases

Misuse

Cases

Secure

i*,

SQUA

RE

Secure

Tropos,

UMLsec

Secure

Tropos

Secure i*,

Secure

Tropos,

SQUARE

28

Chapter 6. Related Work

Comparison of risk management methods has also been done by Fabian et al.,

(2009). They presented a conceptual framework for security requirements engineering that

established a common vocabulary and made interrelations between different concepts used

in security engineering. Using the presented framework they compared different risk

management methods. SQUARE, UMLsec, Secure Tropos and Secure i* are methods that

are provided in their comparison as well as ours. They divided their methods into six

different approaches: multilateral approach, UML-based approaches, goal-oriented

approaches, problem frame-based approaches, risk analysis-based approaches and common

criteria-based approaches. Similar division can be seen in our aggregate view Table 9,

except we do not assign a method into one category, but rather appoint a method into a

category for each activity. Another comparison has been done by Kalloniatis et al.,(2004).

They compare requirements engineering methods under the scope of helping eGovernment

application development. Secure i* and Tropos are methods that are covered in their

comparison as well as ours. They conclude with the need for a combination of methods,

which would cover all aspects of security requirements modeling, which we trying to

achieve by giving stakeholders an aggregate view of our chosen methods. SecReq (Houmb,

et al., 2009) is also a combination of risk management methods. They use Heuristics,

Common Criteria, and UMLsec to provide one complete risk management method.

Difference comes from the quantity of methods and the criteria being followed. While in

Houmb et al.,(2004) work they formulate their own criteria that methods have to fulfil, we

follow the criteria given by security development models. Despite their existing

comparisons of different risk management methods, we did not find any related works that

connect risk management methods to security development processes.

29

Chapter 7. Conclusion

 Security development models like SDL (Lipner & Howard, 2005), CLASP

(Graham, 2006) & Touchpoints (McGraw, 2006) are made to improve the security of

software products by recommending series of security activities and although they serve

the same purpose, the activities they recommend vary greatly depending on the phase of

development. In this thesis we gave the answer to the following research question: what

are the differences between SDL, CLASP & Touchpoints? Current security risk

management methods are also composed to improve the security of the software, but their

coverage of the development is much smaller as they usually cover only one phase of the

development. To see which activities risk management methods cover, we answered the

question: what are the current practices and methods for security risk management? After

finding out current security risk management methods, we developed an aggregate view on

risk analysis and requirements to find the similarities between found methods, so it would

be easier to combine them in providing a secure software system.

 Our literature review was limited to one phase of security development processes,

because of limited time and manpower. In future, other phases of security development

processes (e.g. architectural and detailed design) can be covered similarly with a literature

review. That would give us a complete overview of methods that are needed to complete

these security development processes. Also aggregate view on risk analysis and

requirements can be completed by finding new methods that would give conceptual

definitions or application guidelines to activities, where they are missing.

30

References

Alcalde, B., Dubois, E., Mauw, S., Mayer, N., & Radomirovic, S. (2009). Towards a

Decision Model Based on Trust and Security Risk Management. In Proc. Seventh

Australasian Information Security Conference (AISC 2009), Wellington, New Zealand.

Beckers, K. (2012. Using Security Requirements Engineering Approaches to Support ISO

27001 Information Security Management Systems Development and Documentation.

Availability, Reliability and Security (ARES), 2012 Seventh International Conference on

(pp 242-248)

Davis, N. (2006). Secure Software Development Life Cycle Processes, Retrieved

December 13, 2011, from

https://buildsecurityin.us-cert.gov/bsi/articles/knowledge/sdlc/326-BSI.html

Elahi, G., Yu, E., &, Zannone, N. (2010). A Vulnerability-Centric Requirements

Engineering Framework: Analyzing Security Attacks, Countermeasures, and Requirements

Based on Vulnerabilities. Requirements Engineering: Vol. 15, Issue 1 (pp 41-62).

Fabian, B., Gürses, S., Heisel, H., Santen, T., & Schmidt, H. (2009). A comparison of

security requirements engineering methods. Requirements Engineering: Vol 15, Issue 1,

(pp 7-40)

Giorgini, P., & Mouratidis, H. (2007). Secure Tropos: A Security-oriented Extension of the

Tropos Methodology, Haralambos Mouratidis, Paolo Giorgini.

Giorgini, P., Mouratidis, H., & Zannone, N. (2007). Modelling Security and Trust with

Secure Tropos. Integrating Security and Software Engineering: Advances and Future

Visions : (pp 160-189).

Graham, D. (2006). Introduction to the CLASP Process. Retrieved December 13, 2012,

from

https://buildsecurityin.us-cert.gov/bsi/articles/best-practices/requirements/548-BSI.html

Guerses, S., Seguran, M., & Zannone, N. (2011). Requirements engineering within a large-

scale security-oriented research project: lessons learned. Requirements Engineering: Vol.

18, Issue 1 (pp 43-66).

Houmb, S. H., Islam, S., Knauss, E., Jürjens, J., & Schneider, K. (2009). Eliciting security

requirements and tracing them to design:an integration of Common Criteria, heuristics, and

UMLsec. Requirements Engineering: Vol. 15, Issue 1 (pp 63-93).

Islam, S., Mouratidis, H., Kalloniatis, C., Hudic, A., & Zechner, L. (2013). Model Based

Process to Support Security and Privacy Requirements Engineering. International Journal

of Secure Software Engineering: Vol. 3, Issue 3 (pp 1-22).

Jakoubi, S. (2010). A Formal Approach Towards Risk-Aware Service Level Analysis and

Planning. Availability, Reliability, and Security, 2010. ARES '10 International Conference

on (pp 180-187)

Jirasek, V. (2012). Practical application of information security models. Information

Security Technical Report: Volume 17, Issues 1–2 (pp 1-8).

https://buildsecurityin.us-cert.gov/bsi/articles/knowledge/sdlc/326-BSI.html
https://buildsecurityin.us-cert.gov/bsi/articles/best-practices/requirements/548-BSI.html

31

Jürjens, J. (2002). UMLsec: Extending UML for Secure Systems Development. Lecture

Notes in Computer Science: Vol. 2460 (pp 412-425).

Kalloniatis, C., Kavakli, E., & Gritzalis, S.(2004). Security Requirements Engineering for

e-Government Applications: Analysis of Current Frameworks. Electronic Government

Lecture Notes in Computer Science: Vol. 3183 (pp 66-71).

Khan, K. M. (2012). Software Security Engineering: Design and Applications.

International Journal of Secure Software Engineering: Vol. 3, Issue 1(pp 62-63).

Lipner, S. & Howard, M. (2005).The Trustworthy Computing Security Development

Lifecycle. Retrieved December 13, 2012, from http://msdn.microsoft.com/en-

us/library/ms995349.aspx

Mayer, N., Dubois, E., Matulevičius, R., & Heymans, P. (2008). Towards a Measurement

Framework for Security Risk Management.

Mayer, N., Heymans, P., & Matulevičius, R. (2006). Design of a Modelling Language for

Information System Security Risk Management.

McGraw, G. (2006). Software Security: Building Security In. Addison-Wesley.

Microsoft Developer Network. (2012) . Retrieved December 13, 2012, from

http://msdn.microsoft.com/en-us/library/windows/desktop/cc307748.aspx

Microsoft. (2012). Retrieved December 13, 2012, from

http://www.microsoft.com/security/sdl/default.aspx

Nhlabatsi, A., Nuseibeh, B., & Yu, Y. (2010). Security Requirements Engineering for

Evolving Software Systems: A Survey. International Journal of Secure Software

Engineering: Vol. 1, Issue 1 (pp 54-73).

OWASP 1. (2012). Retrieved December 13, 2012, from

https://www.owasp.org/index.php/CLASP_Concepts

OWASP 2. (2005). The CLASP Application Security Process. Retrieved December 13,

2012, from https://buildsecurityin.us-

cert.gov/bsi/100/version/1/part/4/data/CLASP_ApplicationSecurityProcess.pdf?branch=ma

in&language=default

Sindre, G., & Opdahl, A., L. (2004). Eliciting security requirements with misuse cases.

Requirements Engineering: Vol 10, Issue 1, (pp 34-44)

Stehney, T., & Mead, N., R. (2005). Security Quality Requirements Engineering

(SQUARE) Methodology.

Stoneburner, G., Goguen, A., & Feringa, A. (2002). Risk Management Guide for

Information Technology Systems.

Stride Chart. (2007). Retrieved December 13, 2012, from

http://blogs.msdn.com/b/sdl/archive/2007/09/11/stride-chart.aspx

http://msdn.microsoft.com/en-us/library/ms995349.aspx
http://msdn.microsoft.com/en-us/library/ms995349.aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/cc307748.aspx
http://www.microsoft.com/security/sdl/default.aspx
https://www.owasp.org/index.php/CLASP_Concepts
https://buildsecurityin.us-cert.gov/bsi/100/version/1/part/4/data/CLASP_ApplicationSecurityProcess.pdf?branch=main&language=default
https://buildsecurityin.us-cert.gov/bsi/100/version/1/part/4/data/CLASP_ApplicationSecurityProcess.pdf?branch=main&language=default
https://buildsecurityin.us-cert.gov/bsi/100/version/1/part/4/data/CLASP_ApplicationSecurityProcess.pdf?branch=main&language=default
http://blogs.msdn.com/b/sdl/archive/2007/09/11/stride-chart.aspx

32

Suleiman, H., & Svetinovic, D. (2012). Evaluating the effectiveness of the security quality

requirements engineering (SQUARE) method: a case study using smart grid advanced

metering infrastructure. Requirements Engineering, April 2012.

Tøndel, I. A., & Jaatun, M. G., & Meland, P. H. (2008). Security Requirements for the

Rest of Us. IEEE Software, 20-27.

van Lamsweerde. A. (2004). Elaborating Security Requirements by Construction of

Intentional Anti-Models. In Proceedings of the 26th International Conference on Software

Engineering (ISCE ’04). IEEE Computer Society, Washington, DC, USA, 148-157.”

33

Non-exclusive licence to reproduce thesis and make thesis public

I, Silver Jürimäe

 (date of birth: 04.07.1991),

1. herewith grant the University of Tartu a free permit (non-exclusive licence) to:

1.1. reproduce, for the purpose of preservation and making available to the public,

including for addition to the DSpace digital archives until expiry of the term of

validity of the copyright, and

1.2. make available to the public via the web environment of the University of Tartu,

including via the DSpace digital archives until expiry of the term of validity of the

copyright,

A Literature Survey of the Development Processes for Secure Software,

supervised by Dr. Raimundas Matulevičius,

2. I am aware of the fact that the author retains these rights.

3. I certify that granting the non-exclusive licence does not infringe the intellectual

property rights or rights arising from the Personal Data Protection Act.

Tartu, 14.05.2014

