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RNA-seq andmete analiiiisi t60voog

Liihikokkuvote: Kuna bioloogid viivad ldbi suurel hulgal iilegenoomseid geeni-
ekspressiooni eksperimente, on tekkinud vajadus to6voo jaoks, millega saaks t60-
delda ning analiilisida RNA-seq andmeid. Selline t66voog koosneb erinevatest ar-
vutuslikest tooriistadest ning sisendfaili tiilipidest, mis teeb iihtse t66voo arenduse
raskeks iilesandeks, kuid teeks teadlastele andmete analiiiisi ja tulemuste tolgen-
damise palju lihtsamaks. Kohandatud t66voogu on lihtsam rakendada, kuid see
nouab, et kasutaja oleks tuttav koikide arvutuslike tooriistadega, millest t66voog
koosneb. Kéesoleva t66 eesmérk oli kirjeldada detailselt RN A-seq andmete analiiii-
si toovoo loomist ning rakendamist. Saadud tulemustest voib jareldada, et iihtse
toovoo tarkvara iRAP vajab veel edasiarendust. Lisaks sellele aitavad tulemused
paremini moista erinevate tooriistade funktsioonidest ning nende potentsiaalsetest
parandustest.

Mairksonad: RNA-seq, geeniekspressioon, té6voog, TopHat, Cufflinks, iRAP

RNA-seq data analysis pipeline

Abstract: The vast amount of large-scale gene expression experiments carried out
by biologists has created the need for a pipeline to process and analyse RNA-seq
data. The pipeline consists of different computational tools and data input types
which makes developing an integrated pipeline a challenging task but would make
the use of the workflow much easier for researchers. A customized pipeline, on the
other hand, is easier to implement but needs the user to be familiar with all of the
computational tools that the pipeline consists of. The aim of this thesis was to
provide good knowledge on creating and running a typical RNA-seq data analyis
pipeline. The results obtained allow to conclude that the integrated pipeline iRAP
still needs development. Also, the results create a better understanding of the
functions and potential improvements of different tools.

Keywords: RNA-seq, gene expression, pipeline, TopHat, Cufflinks, iRAP



Dictionary:

e alignment - arrangement of sequence reads in correct positions on the refer-
ence genome

e annotation - biological explanation or function of a gene collected into a
database

e cDNA - complementary DNA

e exon-exon junction or splice junction - marks a position in mRNA from which
protein non-coding regions called introns have been removed by a biological
process called splicing

e gene - a fragment of DNA that carries a defined biological function
e genome - the entire genetic library of an organism
e mapping - assigning already aligned reads to transcripts

e microarray - microscale chip covered with known short nucleotide sequences
called probes

e mRNA - messenger RNA; a type of RNA that is translated into protein in
the cell

e NGS - next generation sequencing

e nucleotides - building blocks of DNA and RNA

e read - a digitalized raw sequence

e RNA - ribonucleic acid

e sequencing - chemical detection of the nucleotide order of DNA and RNA
e transcript - single RNA molecule encoded from a gene; often mRNA

e transcriptome - the entire collection of transcripts encoded from the genome
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1 Introduction

The goal of this thesis is to give an overview of the computational analysis steps of
RNA-sequencing (RNA-seq) data and describe a typical RN A-seq analysis pipeline.
The need for creating this pipeline has arisen from the vast amount of large-scale
gene expression experiments carried out by biologists. In technical terms, RNA-seq
is a method to measure the abundance of transcripts by counting the sequenced
reads that map to certain regions in the genome. Biologically, RNA-seq enables
researchers to detect the expression levels of different genes. The computational
part of the analysis pipeline begins with getting sequenced reads (raw data) from
machines specifically engineered for high-throughput DNA sequencing and ends
with the generation of a gene expression matrix followed by a statistical analysis
of the data. The author of this thesis has:

1. processed relevant literature to give a detailed overview of the RNA-seq data
analysis pipeline;

2. worked with and analyzed different computational tools;
3. assembled these tools into a single working pipeline;

4. tested and analyzed an implementation of an integrated pipeline named
iRAP;

5. tested the RNA-seq data analyisis pipeline with two different datasets.

Motivation section (Section [2)) briefly introduces the principle of RNA-seq tech-
nique and its applications in biology and medicine. Also, RNA-seq and microarray
technology, another widely used but older high-throughput gene expression profil-
ing technique, are compared.

The main section (Section [3)) describes a typical RNA-seq data analysis pipeline.
The section gives a short overview of steps done in the experimental design and
sample preparation followed by a thorough explanation of processing the raw reads,
mapping the processed reads and analysing the mapped data.

Details of the computational methods section (Section {4 focuses on different
types of input files, computational tools and necessary computational resources to
run these tools. Also, a computational pipeline implementation, iRAP, is compared
to a customized pipeline protocol.

Lastly, example datasets section (Section [5)) describes the public datasets ran
through the pipeline: Homo sapiens (human) and Canis familiaris (dog) - with
associated comments and results from these datasets.



2 Motivation

Biological systems are complex and require computational means to resolve the
questions about the life of organisms. The aim of this thesis is to describe a step
by step approach for RNA-seq data analysis. RNA-seq is a method that allows to
measure genome-wide gene expression levels and thereby answer questions about
the function of genes and cells. This technique enables researchers to identify the
genes that are expressed at specific time in distinct conditions on a genome-wide
scale. More and more RNA-seq data is being generated both in basic research and
in clinical setting which is why the demand for coherent data analysis workflows is
increasing. Another demand is for a computational pipeline software acting as a
whole to simplify the implementation of the pipeline. A potential pipeline, iRAP
(see Section , is created for this purpose, and testing iRAP has been one part
of my work.

2.1 RNA-seq technique

RNA-seq experiment starts in the wet-lab by lysing (breaking) the cells of interest
and isolating the RNA. A fraction of isolated RNA named mRNA (originally
encoded from the DNA within the cell) represents the active genes of the cell. Upon
multiple sample preparation steps in the lab, the isolated RNA is converted to short
fragments of complementary DNA (cDNA). This collection of fragments called
'cDNA library’ is then applied to high-throughput sequencing. The sequencing
reaction results in hundreds of millions of 'reads’ - short DNA fragments - that
can be computationally mapped back to the genome for transcript (that is, mRNA)
identification. By counting the reads that map to the same region in the genome,
transcript abundance (that is, gene expression level) can be calculated.

Gene expression is tightly linked with cell function and identity. RNA-seq cap-
tures a so-called snapshot of currently active genes in a certain time and condition.
By knowing what genes are activated in a cell in response to applied stimuli or
to natural changes in cellular environment, researchers can identify, for example,
genes responding to these changes. Also, RNA-seq gene expression data is often
used to compare normal and cancer cells to identify which genes could be related
to or even cause cancer. New diagnostic tools and cancer therapies could be devel-
oped based on this information. Additionally, RNA-seq gene expression profiling
is used to study cell differentiation - movement of a cell from one functional state
to another - to understand how to turn stem cells into a desired cell type for cell
replacement therapy applications. In this thesis, one example RNA-seq dataset de-
scribes gene expression profile of human liver cells that were derived from human
stem cells [1].



2.2 RNA-seq versus microarray

Prior to RNA-seq, researchers used microarray technology for genome-wide gene
expression profiling. However, due to multiple advantages of sequencing over mi-
croarray technique, RNA-seq is shaping into a more preferred method for high-
throughput gene expression analysis. [2]

Microarray technology uses a chemically prepared microchip with probes com-
plementary to known sequences attached to the chip. This evidently means that
only those genes that are already known, can be analyzed using microchip-based
technique, whereas RNA-seq generates read output from both known and unknown
genes. Therefore, RNA-seq enables de novo (meaning "from the beginning") dis-
covery of new genes and alignment of new sequences with base-pair (nucleotide)
resolution, allowing to reanalyze the data once there is more information available
about the structure of genomes. Microarray technique is based on a chemical hy-
bridization reaction (binding between the sample of interest and the probe based
on complementarity), which may result in high background signal due to cross-
binding. This limits the signal detection level of microarray technique whereas
RNA-seq exhibits a large dynamic range and can be applied to detect both highly
expressed genes and rare transcripts.



3 Typical RNA-seq data analysis pipeline

Computational stages of the pipeline can be very complex because of the amount
of possible arguments needed to receive a high-quality result and therefore a good
overview is necessary. This section covers the stops of a typical RNA-seq data
analysis pipeline with special focus on the computational stages of the analysis
(see Figure . Since the details of the experimental design and generation of
cDNA libraries are outside the scope of this thesis, only a short overview of these
parts is provided.

Experimental design
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Figure 1: Typical RNA-seq data analysis pipeline. Stages marked in red are the
focus of this thesis.



3.1 Experimental design

RNA-seq data analysis pipeline starts with designing of an experiment. Exper-
imental design should be done carefully since a poorly designed experiment can
result in useless data with a lot of time and money gone to waste. The main thing
a researcher should decide is whether the objective is to gain qualitative or quan-
titative information from RNA sequencing. Qualitative data provides information
on annotation and requires deeper sequencing of individual samples, while quan-
titative data enables to perform differential gene expression analysis. Therefore,
more experimental replicates to compare are needed.

Accurate annotation results in identification of expressed transcripts, exon/in-
tron boundaries and transcriptional start sites. Differential gene expression, on the
other hand, measures differences in expression, alternative splicing and alternative
transcriptional start sites between two or more groups. [3]

3.2 Generation of cDNA library by sample preparation

After the experiment is designed, a chemical cDNA library preparation will be
done starting from harvesting the RNA. In order to get the highest quality reads,
the quality of cDNA libraries should be validated and the libraries should be
quantified before sequencing. Next generation sequencing (NGS) can be done by a
variety of sequencing platforms. The most popular ones for RNA-seq are Illumina
and SOLiD machines which provide deep sequencing and suitable read length for
alignment to either reference genome or for transcriptome assembly:.

3.3 Initial processing of raw reads: quality control

The computational stage of RNA-seq data analysis pipeline starts with controlling
the quality of raw sequence data output from sequencing. FastQC [4] is one tool
that can process BAM, SAM and FASTQ formats, preview the data for poten-
tial problems, create graphs and tables for summarization purposes and generate
HTML reports from the results. FastQC is compatible with integration into a cus-
tom pipeline which makes it a valuable tool. In addition to the previous tool’s func-
tions, there is a need for removing sequencing adapters, filtering and trimming of
reads and converting sequences from RNA to DNA or vice versa. FASTX [5] is one
of the programs that can perform these functions. In case the raw sequence data
is from the Sequence Read Archive (SRA, http://www.ncbi.nlm.nih.gov/sra),
the data must be converted to a format supported by the alignment program. An
official tool, SRA Toolkit [6], has been created for such purposes. It is very im-
portant to know whether the data is in the form of single-end or paired-end reads
since converting paired-end data from SRA format as single-end data will result


http://www.ncbi.nlm.nih.gov/sra

in failed alignment. The difference between single-end and paired-end reads comes
from sequencing: single-end reads are DNA fragments derived from one end only
while paired-end reads represent both ends of the same DNA fragment, resulting
in two files for raw read data instead of just one.

3.4 Alignment of processed reads to reference sequence

Before mapping the processed reads, a reference genome (FASTA file) and tran-
scripts annotation (GTF/GFF file) should be downloaded for the appropriate
species. Ensembl [7] and National Center for Biotechnology Information [8] are
two example sites that provide public genome and annotation data. It is not rec-
ommended to mix data from different databases since many alignment tools are
not compatible with it. If the reference genome is a collection of FASTA files (e.g.
chrl.fa, chr2.fa, ...) then they should be merged into a single FASTA file because
it is more easily manageable.

Properly processed reads are then mapped by using an alignment program.
TopHat2 (see Section, for example, is a good alignment program for a typical
RNA-seq data analysis pipeline because it is well-documented, often updated and
improved and has a wide selection of functions. TopHat2 requires specific indexes
to start mapping. These indexes can be built with Bowtie (see Section .
Preferrably, BT2 format indexes should be built because it is an improved format.
An alternative is to download pre-built indexes from Bowtie2’s website which are
in EBWT format (Bowtiel). Building the indexes requires a reference genome.
By default, without supplying TopHat2 with transcript annotation file, TopHat2
aligns the reads only to the genome. To align reads to the transcriptome, the
annotation file must be provided. TopHat2 will use the annotation file to create
a separate Bowtie index. If necessary, TopHat2 supplies an option to map reads
only to the transcriptome without mapping to the genome. Another important
argument to provide for TopHat2 is regarding the type of library. There are three
different options for that: unstranded library (default), first strand library or
second strand library.

In cases where TopHat2 run fails due to external problems (for example, when
the system runs out of memory or disk space), a resume function is possible. Also,
TopHat2 supports multithreading which makes the aligning much faster on sys-
tems using multi-core processor(s). After TopHat2 finishes, five different files can
be found in the output directory that is separate for each sample. The default
is "./tophat_out" but it can be changed. The most useful output file is "ac-
cepted hits.bam". It contains aligned reads and is used by analysis tools. The
other files, "junctions.bed", "insertions.bed" and "deletions.bed", are reports gen-
erated to represent found junctions and performed insertions/deletions.
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3.5 Calculating transcript abundances: raw and normalized
read counts

In order to calculate transcript abundances, the mapped data needs to be pro-
cessed. Cufflinks2 (see Section , being a well supported and actively de-
veloped software, is built on processing mainly TopHat2 reads and therefore is
a good fit for the pipeline. Firstly, the mapped reads in SAM or BAM format
need to be ran with cufflinks. It is a good practice to additionally supply an
output folder location for each BAM file (for example, "experiment] clout", "ex-
periment2 clout", ..., "experimentN clout"). The accuracy of cufflinks can be
improved by providing the reference genome in MultiFASTA file format with "-b"
option (MultiFASTA needs to be converted from FASTA format). Additionally,
if isoform expression estimation is needed, the reference transcript file should be
provided with the "-g" option. After cufflinks assembles the transcripts, "tran-
script.gtf" files can be found in the output folders. Each processed BAM file has
its own transcripts’ assembly file.

Assemblies need to be merged with cuffmerge by providing it a text file with
locations of the assembly files (if following the good practice example, the text file
would consist of "experimentl clout/transcripts.gtf", "experiment2 clout/trans-
cripts.gtf", ..., "experimentN clout/transcripts.gtf", each location being on a sep-
arate line). Optionally, a reference transcripts file can be provided with the "-g"
option which cuffmerge will assemble with the transcript assembly files. The out-
put of cuffmerge is a single file, "merged.gtf", that is an assembly of the input
files.

The single assembly file, "merged.gtf", can be used with cuffquant that cal-
culates the transcript abundances. Alignments not being structurally compatible
with the reference transcript will be ignored. The input of cuffquant is an aligned
read file in BAM format produced by TopHat2 with the "merged.gtf" file produced
by cuffmerge, therefore cuffquant needs to be run separately for each experiment.
A good practice is yet again to provide output folder locations (if the previous
good practice suggestions are followed then these are "experimentl clout", "ex-
periment2 clout", ..., "experimentN clout"). The output of cuffquant is "abun-
dances.cxb" file for each quantified experiment. Transcript abundance estimates
accuracy can be improved by providing the same MultiFASTA file, as discussed
above, with the "-b" option.

At this point, there are two options: produce normalized expression levels for
each gene, transcript, transcriptional start site group and coding sequence group
with cuffnorm or perform differential expression analysis with cuffdiff. Both tools
take the "merged.gtf" and "abundances.cxb" files produced as an input. The tool
cuffdiff also accepts the MultiFASTA file mentioned above with the "-b" option
to improve the accuracy of transcript abundance estimates. Both tools produce
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FPKM values that hold the read counts. In addition to FPKM values, cuffnorm
produces files containing information about samples and each gene, transcript,
transcriptional start site group and coding sequence group as text files delimited
by tab. The tool cuffdiff produces additionally count tracking files, read group
tracking files, differential expression and splicing tests, differential coding output,
differential promoter usage and read group information.

It should be noted that there are multiple advanced options for each tool in
Cufflinks2 pipeline and even these do not cover all applications of the RNA-seq
method. Also, RNA-seq as a method being constantly developed from which we
can conclude that Cufflinks2 has many more functions to be developed.
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4 Details of the computational methods

4.1 Input files

The standard of files used as an input in different stages of RNA-seq data analysis is
not yet fully developed but there are multiple file formats that can be considered as
a default. The main file formats used in the mapping stage are: GTF/GFF, FASTA
and FASTQ. GFF and GTF formats are used for known gene annotations and
transcripts data. FASTA format, representing DNA or protein sequences is widely
used for reference genome data. FAST(Q format, based on FASTA, is developed
for sequences and corresponding quality scores. Mapping stage is followed by
the analysis stage which generally accepts the following formats: SAM/BAM,
GFF/GTF and BED. SAM and BAM formats are used for storing alignment data
where SAM is text-based and BAM is a binary file. BED format is used to define
genomic regions. In addition to the previous formats, SRA format is also used
which is an archive for raw data.

The general feature format [9] (GFF) is a widely used plain text format by
bioinformaticians to represent genomic features. The latest version (as of 06.05.2014)
is GFF version 3. The gene transfer format [10] (GTF) is identical to GFF version
2 |11] and is another common format for representing genomic data. This format
consists of rows where each row holds 9 columns. The fields are separated by tab
and are defined below.

1. <seqid> - the identifier of the feature.

2. <source> - the source of this feature.

3. <type> - the type of the feature.

4. <start> - the starting position of this feature.
5. <end> - the ending position of this feature.
6. <score> - a floating point value.

7. <strand> - the value is '+’ for forward strand, -’ for reverse strand, ’.” for
not stranded features and ’?’ for relevant, but unknown strands.

8. <phase> - the phase which indicates where the features begins with reference
to the reading frame.

9. |attributes|- a list of attributes about the feature.
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FASTA [12] format is used to represent either nucleotide or peptide sequences
with describing nucleotides and amino acids as single-letter codes [13]. A sequence
data begins with a single line describing the sequence and it is distinguished with
the symbol ">". The first word following the symbol identifies the sequence and the
rest describes it. All other lines before the next greater-than symbol are considered
to be either nucleotides’ or amino acids’ data. Blank lines are not allowed and it
is recommended that the lines’ length does not exceed 80 characters. RNA is a
nucleic acid and the supported basic codes for it are provided in Table [T}

Nucleotide Code
Adenosine A
Cytidine C
Guanine G
Thymidine T
Uridine U
Any nucleotide | N

Table 1: Basic codes for nucleic acids in FASTA format

FASTQ format [14] is used to store a biological sequence together with its qual-
ity scores. It is a text-based format and generally uses 4 lines per read. The first
line, beginning with a '@’ character, represents the identifier of a sequence with
an optional description. The second line contains the raw sequence letters [13].
The third line begins with a '+’ character and optionally the identifier together
with more information. The fourth line contains quality scores for each letter
in the sequence. The quality scores, also known as PHRED scores, describe the
sequencing quality which estimates the probability of error. FASTQ files from
RNA-seq experiments are usually in Sanger or Solexa/Illumina format. The dif-
ferences between the two formats are provided in Table 2l In context of Sanger
or Solexa/Illumina formats, PHRED score is represented by an ASCII character
which has an integer value. The reason for using this error estimation format is
because using one character instead of numbers and spaces is more compact and
readable by a human and it gives a very broad range of error probabilities (in case
of Sanger format, the range is from 1.0, a wrong read, to 1073, a very precise

read).

Format ASCII interval | PHRED interval
Sanger 33-126 0 to 93
Solexa/Illumina | 64-126 0 to 62

Table 2: Basic codes for nucleic acid in FASTA format
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Sequence alignment/map [15] (SAM) format is used for representing aligned
reads data. Binary alignment/map (BAM) format is simply the binary version
of this format. SAM files are in the form of tab separated text (except lines
starting with "@QCO") consisting of headers and alignments. Headers are lines
starting with "@" symbol and hold fields, separated by tab, which are designed
as "TAG:VALUE" where "TAG" field describes the "VALUE" field’s content and
format. Alignments generally hold the linear alignment data, consisting of refer-
ence sequence name, mapping quality, alignment position, aligned sequence and
other information, of certain segments from a raw read.

Browser extensible data (BED) format is meant for defining annotation track’s
data without having very specific rules. It is a tab-delimited text file which has
three required fields on each line: the name of the chromosome (e.g. "chrl" or
"1"), the starting position of a feature the chromosome and the ending position of
a feature in the chromosome). There are nine additionally usable fields for more
specific information about each annotation track. For example, a BED file can be
used in the UCSC Genome Browser to view the data graphically [16].

Sequence read archive (SRA) format is generally used to compress raw sequenc-
ing reads data and store them in archives like DNAnexus [I7] or The Sequence
Read Archive [I8]. The accepted formats for conversion to SRA format are: BAM,
SFF, HDF5, SOLiD, FASTQ, SRF and Illumina native.

4.2 Computational analysis tools

This section focuses on specific computational methods of RNA-seq data analysis.
Namely, the methods focused on are Bowtie [19], TopHat [20] and Cufflinks [21].
They each serve a separate purpose in the pipeline. Bowtie is an open-source
alignment tool for aligning DNA sequencing reads to long genomes and it is written
in C+-+. TopHat aligns RNA-seq reads to a genome with the aim to identify exon-
exon splice junctions and it is built on Bowtie as a Python script. Cufflinks, on the
other hand, is also an open-source tool but it is meant for assembling aligned RNA-
seq reads into transcripts, quantifying gene expression and testing for differential
expression and regulation.

4.2.1 Bowtie

Bowtie was created with the purpose of having a faster and more memory-efficient
alignment program than the ones existing at that time. Bowtie implements ex-
tended full-text minute-space (FM) index [22] which is based on Burrows-Wheeler
transform (BWT) [23] (see Figure[2). The extension is necessary because the orig-
inal algorithm does not allow sequencing errors or genetic variations. The trade-off
to achieve Bowtie’s high mapping speed is accuracy but it is reasonable because
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of high computing costs. Bowtie also supplies an option to increase the sensitivity
resulting in a greater accuracy but that causes the computation time to be longer.

def burrowshheelerTransform(string ):
table [1

string transform

string = string

i ri 8, len(string )):

rotation = string [-i:]+string [:-1i]
table.append(rotation)
table.sort()
element table:
string transform = string transform + element[-1:]
string_transform

burrowshWheelerInverse(string tra rm)
table [1

tablesort [1

string_ '

i ri {(len{string_transform)):

table.append(string transform[i])

i range(len(string_transform)-1):
tablesort = table[:]
tablesort.sort()

j range(len(table)):

table[j] = table[j]+tablesort[j][-1:]

table.sort()
string = table[-1:][@]
string = string_.strip('|"')

string_

string_="This is an input string"
string_transform = burrowsWheelerTransform(string )
string original burrowskWheelerInverse(string transform)

string )
string transform)
string_original)

Figure 2: Example Burrows Wheeler transform implementation in Python (ap-
pendix named "bwt.py")

Over time, sequencing technology has been moving onto higher sequencing

16



throughput and read length. This caused the developers of Bowtie to create
Bowtie2 [24]. The latest release (as of 27.04.2014) is Bowtie 2.2.2 [25]. Bowtie2
consists of the main program bowtie2 and three tools: bowtie2-align, bowtie2-build
and bowtie2-inspect. The main program bowtie2 takes an index file, which is cre-
ated with bowtie2-build, and sequencing read files from an experiment and creates a
set of alignments in SAM format [15] with bowtie2-align. The tool bowtie2-inspect
is used to get information about Bowtie2’s index and reference files that were used
to create the index. In our RNA-seq data analysis pipeline, however, we only need
to use bowtie2-build and bowtie2-inspect because these tools produce the necessary
files and information in order to use TopHat2 (see Section [£.2.2).

4.2.2 TopHat

TopHat is an alignment program specifically created for RNA-seq experiments. It
is built on Bowtie and it is written in C++ and Python. The release of Bowtie2
caused the developers of TopHat to create TopHat2 [26]. The most recent version
(as of 30.04.2014) is TopHat 2.0.11 [27]. TopHat is designed to map RNA-seq
reads to a genome with the purpose of finding exon-exon splice junctions without
having to rely on a reference annotation. The software was originally developed
to work with the reads from Illumina machines.

The workflow of TopHat is a two-phased operation. The first phase is an initial
mapping of the reads to the genome using Bowtie or Bowtie2. Reads which do not
map to the genome are classified as ’initially unmapped reads’ (IUM) and are used
in the final stages of TopHat’s pipeline to search for span junctions. The second
phase is building a database of possible splice junctions using Maq [28] followed
by a final mapping of the reads against the newly built database using TopHat’s
own algorithm.

4.2.3 Cufllinks

Cufflinks is a program that assembles transcripts, calculates transcript abun-
dances and tests for differential expression and regulation transcriptome-wide.
Because Cufllinks relies on TopHat, Cufflinks2 was developed to be consistent
with TopHat2. The latest version (as of 4.05.2014) is Cufflinks 2.2.0 [29].
Cufflinks2 consists of the main program cufflinks and additional tools cuffmerge,
cuffquant, cuffdiff and cuffnorm. The main program assembles transcripts by using
reads mapped by TopHat2 as an input. The next tool in the pipeline is cuffmerge
which performs final transcriptome assembly and takes the output of cufflinks.
This is followed by cuffquant which takes cuffmerge’s output together with reads
mapped by TopHat2. The tool cuffquant outputs files in CXB format which are
an input to either cuffdiff and/or cuffnorm. The tool cuffdiff performs differ-
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ential expression while cuffnorm creates normalized expression and count tables.
Differential expression results can be used by, for example, CummeRbund [30] to
create expression plots. Normalized expression and count tables can be used with
R [31], MATLAB [32] etc. Typical workflow of Cufflinks2 (version 2.2) is provided
in Figure [3

accepted_hits.bam |—

transcripts.gtf

merged.gtf

genome.fa cuffquant

abundances.cxb

-
[ cuffdiff ] [ cuffnorm
"

Figure 3: Typical Cufflinks2 pipeline

4.3 iRAP

The software iRAP [33] is being developed with the purpose of implementing an
integrated RNA-seq pipeline. It covers the main pipeline (see Figure |3|) described
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in this thesis with additional tools and functions. iRAP implements multiple map-
ping, quantification and differential expression tools by using a single configuration
file that needs to be created by the user with information about the input files and
necessary methods. This pipeline is created for command line usage on Linux
operating systems. Properly working iRAP would have several advantages over
individual tools, for example:

1. it is a software for automatic RNA-seq data analysis;

2. it gives a good example of how a RNA-seq data analysis pipeline should
work;

3. it can be used by (early-stage) bioinformaticians in their research without
the need for a thorough knowledge of different RNA-seq data analysis tools.

4.3.1 iRAP versus customized pipeline

While the idea of iRAP grew out from a necessity for bioinformatic analysis of
RNA-seq data, it holds many challenges. First of all, the implementation needs to
be user friendly. Software like that needs to be well documented and self-evident
because the end user is subjected to various errors. If a mistake breaks the pipeline,
the user needs to begin troubleshooting which is hard without a good knowledge
of how the software works. On the other hand, if the mistakes do not break the
pipeline, the resulting data might be useless causing valuable resources, time and
money, go to waste.

Secondly, the software needs to be reliable. Bugs breaking the pipeline should
be rare and they should result only in very specific situations not directly caused
by the end user. If a bug cannot be avoided by the user, another way of performing
the pipeline needs to be found which typically is a customized pipeline where each
tool is used manually.

Thirdly, the software should use resources efficiently. Mixing single-threaded
programs with multithreaded programs in a computational cluster results in idle
resources that cannot be used by other users. Some clusters charge the user by
reserved resources. This causes the user to overpay simply because the software
reserves resources but does not use them.

All of the challenges discussed above are the main deficiency of iRAP and are
yet to be resolved. This is why a customized pipeline is better than iRAP in its
current state because it can settle these challenges. Each tool in the pipeline is
sufficiently documented and updated while depending on the end user instead of
the integrated pipeline. When a tool does not perform as wished, another tool can
be used instead. Also, the user can specify resources separately for each tool so
there is no need to overpay.
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4.3.2 Potential iRAP improvements

Until iRAP is developed to a state where the bugs are minimized, an automated
testing module should be implemented. Currently, iRAP only has a dry run func-
tion which checks for basics to start the pipeline but does not actually test the
pipeline itself. The module should take fragments of the input data and perform
a full but quick run to see if anything breaks. It would be useful to develop-
ers by reducing the number of faulty updates and it would help end users start
troubleshooting immediately in case something does not work correctly.

Additionally, a proper documentation should be created that covers all parts
of the software. The documentation should provide solutions to common problems
and cover different example pipelines.
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5 Implementation of the pipeline on example datasets

The more simple RNA-seq analysis pipelines can be basically run by modern com-
puters that are used in a home environment because modern multicore processors
provide the sufficient computational power. For testing our RNA-seq pipeline, we
chose datasets from human and dog RNA-seq experiments. Since they were more
compute-heavy, we used 60 cores from Intel Xeon E7-2860 processors running at
2.27 GHz clock speed. The experiments used as examples for the RNA-seq data
analysis pipeline are the following:

1. Homo sapiens (human) - GSM1124072 [34] samples.
2. Canis familiaris (dog) - SRP016141 [35] samples.

The machine used for these experiments was Alligaator (http://www.hpc.ut.ee/
alligaator_usage, High Performance Computing Center, University of Tartu).

5.1 Human dataset experiment

The raw reads from human samples were roughly 13 GB in total size and consisted
of 7 files in SRA format. After the SRA to FASTA format conversion, the result
was 14 paired-end read files with a total size of roughly 74 GB. The data was
gathered from human embryonic stem cell-derived hepatoblasts (liver cells) and
sequenced with Illumina Hiseq 2000 machine. The reason for choosing this data for
experimentation purposes is the thorough paper describing the original experiment
and supplementary file describing FPKM values. The genome was downloaded
from UCSC [I6] and annotation files were downloaded from Ensembl [7].

Firstly, the genome chromosome names were converted from "chrN" to "N".
After that, the reads were submitted into iRAP’s pipeline starting with processing
the reads with FastQQC and FastX. The reads were then mapped to the genome
with TopHat2 and after that the iRAP’s pipeline had to be stopped due to bugs
related to early stages of development. The resulting mapping data could not be
processed by Cufflinks2 either but judging by the alignment summary, the reads
were correctly mapped. We then mapped unprocessed reads to transcriptome only
with TopHat2. The resources used by mapping reads from human samples to the
genome and transcriptome are provided in Table [3] and 4] Results of mapping
can be seen in Table 5] The mapping rates provided are not different because the
data mapped to transcriptome was not processed but because mapping to genome
generally has more coverage.

The results from mapping to transcriptome with TopHat2 were then submitted
into Cufflinks2 pipeline starting with cufflinks. After cufflinks finished, cuffmerge
was ran with the original annotation file and transcript annotation files produced
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Resource type | Resources used

CPU time 1891 hours
Walltime 66 hours
Memory 34.5 GB

Virtual Memory | 38.4 GB

Table 3: Resources used by mapping to genome with TopHat2

Resource type | Resources used

CPU time 1768 hours
Walltime 38 hours
Memory 44.4 GB

Virtual Memory | 47.5 GB

Table 4: Resources used by mapping to transcriptome with TopHat2

by cufflinks. Because the reads were mapped to transcriptome only, cuffquant
could not use the merged transcript file and the original annotation file had to be
used with the reads. The produced abundance files were then ran with cuffnorm
which produced multiple files. The most interesting file (in this experimental
pipeline) is "genes.fpkm_table" which, describing the normalized gene expression
levels, can be used by bioinformaticians for further analysis.

5.2 Dog dataset experiment

The dog experiment reads consisted of 14 files in SRA format, roughly 71 GB in
total size. SRA to FASTA format conversion resulted in 28 paired-end read files
with a total size of roughly 346 GB. This data was used in the first experiment
for this thesis’ and therefore served a benchmarking role as the mapping data
could not be use. The reason for that was wrong conversion from the SRA format
(paired-end data was converted into single-end data). The benchmarking results
are provided in Table[6] From the results we can see that each sample from the dog
dataset took approximately 7.5 hours to map (in comparison, each human sample
took approximately 4.5 hours to map). The main reason for slower mapping is the
size of raw read files (the dog’s raw read files were more than twice the size of the
human’s files).

22



Experiment | Genome | Transcriptome
SRR828796 85.1% 73.0%
SRR&28797 84.9% 71.7%
SRR828798 85.2% 72.1%
SRR828799 86.2% 74.7%
SRR&828800 86.5% 75.1%
SRR828801 84.9% 74.0%
SRR&828802 85.2% 74.3%

Table 5: Overall mapping rates of experiments to genome and transcriptome with
TopHat2

Resource type | Resources used

CPU time roughly 6200 hours
Walltime 206 hours
Memory N/A

Virtual Memory | N/A

Table 6: Resources used by TopHat in the dog experiment
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6 Conclusion

The purpose of this thesis was to provide good knowledge on creating and running
a typical RNA-seq data analyis pipeline. The author described general RNA-seq
data analysis pipeline using specific tools; completed an example pipeline by using
data from a public database and provided the basic results together with statistics;
gave an analysis of integrated pipeline software and compared it to a customized
pipeline setup; and explained the different files and computational methods used in
a pipeline. The pipeline provided together with information about computational
tools and input files covers the general workflow of RNA-seq data analysis and the
information has great practical value. The experimental pipeline testing resulted
in acceptable data considering the fact that the author had no control over the
biological parts of RNA-seq. The conclusion from the analysis of an integrated
pipeline setup iRAP is that until the implemented software is not fully released,
it should not be used for heavy pipelines due to numerous downsides. It can be
used for more simple pipelines because it creates feedback for the developers of the
software and simple pipelines can be run in a customized pipeline in cases were
the integrated pipeline does not suffice.

The information this thesis holds can be used in the future in the following
ways.

1. Complete various RNA-seq data analysis pipelines.
2. Improve the provided pipeline even more due to active evolving of RNA-seq.

3. Develop a customized pipeline software that resolves the described chal-
lenges.

4. Develop testing tools for the data and tools in the pipeline.

5. Improve and upgrade the integrated pipeline software iRAP.
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