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Smile Detector Based on the Motion of Face Reference

Points

Abstract: Human and computer interaction is without doubt a really important

part of our modern society. In order to improve it even further it is possible to

develop computer systems that react to gestures or facial expressions of its user.

Smiling is an expression that gives probably the most information about a person.

In this thesis we describe an algorithm that understands when a person is smiling.

To achieve that we first detect a face of a person using the Viola-Jones algorithm.

After that several facial reference points are located and then tracked across several

consequent frames using optical flow. The motion of these points is analyzed and

the face is classified as smiling or not smiling.

Keywords: Smile detection, Image processing, Computer vision

Naeratuse detektor näo kontrollpunktide liikumise põhjal

Lühikokkuvõte: Inimese ja arvuti suhtlus on kahtlemata tänapäeva ühiskonna

väga tähtis osa. Et seda veelgi parandada on võimalik luua süsteeme, kus arvuti

reageerib inimese liigutustele või näoilmetele. Naeratamine on ilmselt näoilme, mis

annab inimese kohta kõige rohkem informatsiooni. Selles lõputöös kirjeldame algo-

ritmi, mis suudab tuvastada seda, kui inimene naeratab. Selleks leiame kõigepealt

Viola-Jones’i algoritmi abil näo asukoha. Seejärel leiame vajalikele näoosadele vas-

tavad kontrollpunktid ning jälgime nende liikumist järgmiste videokaadrite jooksul.

Tuvastatud liikumise järgi otsustab algoritm, kas inimene naeratab või mitte.

Võtmesõnad: Naeratuse tuvastamine, Pilditöötlus, Tehisnägemine
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1 Introduction

In human communication information is transferred using the language, the tone

of the voice and also a variety of different gestures and facial expressions. All of

these components play a significant role in understanding other people well.

As it gives lots of useful information about people, it would be very good to be

able to automatically classify the expressions using a computer program. In this

thesis we describe an algorithm that detects whether a person is smiling or not

smiling.

1.1 History

The study of facial expressions has a long history. In 1872 Darwin created the

universality hypothesis [3]. It states that in all parts of the world and in all the

different cultures people use exactly the same facial expression. They also have

the same meaning, people smile when they are happy and feel well everywhere in

the world.

The work by Ekman and Friesen [4] in 1971 is considered a very important

step in facial expression research. They defined six main categories for all different

human facial expressions: happiness, sadness, surprise, fear, disgust, anger.

With the development of faster computers this theoretical model started to

inspire research in the field of computer science. One of the first works in this field

was published already in 1978 by Suwa et al [5]. It became a common topic of

research somewhat later in the 1990s.

1.2 Facial Expression Recognition

Facial Expression Recognition is a challenging problem in computer vision, it at-

tempts to classify different human facial expressions into a discrete number of

expression classes. This task is complicated, as the expressions create only slight

changes in a face and different expression classes can look quite similar. Moreover,

the facial expressions do not have a very good definition for an algorithm and they
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are therefore rather hard to detect. Issues like illumination changes and different

possible head rotations complicate the task even further.

Facial expression recognition is an open problem even today. There are methods

that give quite good results and work in most of the cases, but researchers are still

trying to develop a method that would work accurately in all the environments

and lighting conditions.

1.3 Importance

As facial expressions provide useful information about a person, recognition tech-

niques have a high importance in artificial intelligence and computer vision. It

would help to create autonomous systems that are able to interact with people in

a way that is the most comfortable to them.

As facial expression reflect the emotional state of a person, it is possible to

create different monitoring systems. For example, it becomes possible to constantly

observe patients in a hospital, the system would detect when the emotional state

of a patient is not good and would automatically notify a doctor.

Conventional human and computer interaction methods can also be improved

greatly. It enables to design computer systems that react to different facial ex-

pressions. It is possible to configure different actions for the computer in case it is

detected that its user makes some specific facial expression.

1.4 Smile Detector

In this thesis a smile detector is described. Detecting a smile is a first step towards

a general facial expression recognition. Smile detector is a computer program that

analyzes video input received from a webcam and tries to detect a smiling person.

To detect a smile we first need to locate a face of a person. If a face is found, then its

location is used to calculate several reference points that are being tracked during

the consequent frames. The motion of these points is analyzed and a decision is

made about whether the face is smiling or not.

The working principles of our smile detector are the following: The face of a
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person is located using the Viola-Jones algorithm [6]. Then we use the statistical

information about the location of eyes, mouth, nose and chin to calculate the

approximate locations for the reference points. The locations are refined even

further with the help of Harris corner detector [14]. The reference points are

tracked using the optical flow [9] method over several frames to extract motion

information. The motion is analyzed and used to classify the facial expression as

smiling or not smiling.

1.5 Outline of the Thesis

In section 2 the smiling expression is discussed more thoroughly. In section 3 there

is a short review of different already existing detection methods. In the following

sections 4-8 we introduce important methods that were used in this work. Section

4 describes the Viola-Jones object detection algorithm, section 5 introduces the

concept of discrete derivatives in image processing that is needed in the following

sections. Section 6 explains the optical flow method for tracking reference points

and section 7 specifies how to find these points in an image, section 8 describes

a method for detecting corners to improve reference point locations. Section 9

describes the actual smile detection algorithm and section 10 gives a brief overview

of the program implementation details. Section 11 presents the results, section 12

introduces some applications and section 13 concludes the thesis.
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2 Smiling Expression

Smiling is one of the basic facial expressions everywhere in the world. People

smile to express their happiness, when they are in a good mood or when they are

amused or when they are satisfied with their current situation. Smiling also has

approximately the same meaning in all cultures.

2.1 Human Understanding

All people can easily understand when a person is smiling, it is easy for everyone

who is at least three years old and does not have any specific medical conditions

that would prevent them from seeing or thinking properly. It is intuitive for

everyone and does not need any consideration or conscious analysis to tell if a

person is smiling or not. It is possible due to a vast amount of previous experience

of communicating with people, understanding their behavior and their reactions to

different situations. People are unconsciously learning these things starting from

a very young age, so that later they can do it without any conscious consideration

process.

2.2 Algorithmic Approach

Detecting a smile computationally, however, is a really challenging problem. The

reason is that none of the existing computer programs has a good enough under-

standing about the images or video stream it receives as input. It is not practically

possible to write such program either. It is possible to process image or video input

in a computer, but in most cases, some specific algorithm is used for that, there is

rarely any intelligent understanding.

Therefore a detection algorithm can not usually rely on the background knowl-

edge and visual understanding that humans use. Some more specific algorithm

is needed to do it. In order to develop such algorithm, we need to define what

we understand as a smile. The problem is that it does not have a good accurate

definition. People smile in many different ways, some people have a really wide

smile, some people only smirk, it is also possible to smile by using only one side
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of the mouth. Ideally we would like the algorithm to detect all of these types of

smiles.

2.3 Smiling Criteria

One of the common properties in all types of smiles is that the distance between

mouth corners increases noticeably. It is also common that teeth become visible

during a smile and it would give us a simple criterion to check, but it might

happen during other expressions as well. The lips usually form a bit different

shape compared to a neutral face and it could be used somehow. It turns out that

in most cases the distances between the eyes also increases a bit, because most

people narrow their eyes slightly while smiling. Surprisingly even the distance

between nostrils increases a little bit during a smiling expression. We have now

identified a few possible criteria that could be used to create an algorithm.
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3 Overview of Different Methods

A lot of research has been done on the field of facial expression recognition. Smile

detection is somewhat less studied, but the methods of facial expression recognition

generally extend to smile detection as well. There are two kinds of methods: the

ones that work on a single image and the ones that work on a video using the

information obtained from movement.

3.1 Methods for Single Image

An image contains a huge amount of information about a face. The challenge is

to select the most meaningful information that would enable us to process and

classify it easily based on our specific needs. This makes it a really challenging

problem.

Facial expression detection techniques often build on methods that were origi-

nally created to solve the general face recognition problem. One of those methods

is the elastic graphs method [22]. It was proposed to recognize faces and classify

them based on gender. The idea of this method is to use a small database of pre-

viously constructed graphs for matching the real images. Classifications of faces

are made based on how well they match to these predefined graphs.

Another important theoretical idea is to use statistical methods to reduce the

high dimensional information into much lower dimensions. This can be done quite

effectively, as a considerable amount of data is usually irrelevant or with high

correlation. It enables to express most of the data in terms of a small amount

of chosen meaningful information. As there is less information, it is easier to

analyze it too. Well known algorithms are the Eigenface [24] and the Fisherface [25]

algorithms, which use the same concepts, but a different method for dimensionality

reduction.

Lyons et al. use elastic graphs combined with a grid of features computed

by the Gabor wavelet method to classify images based on facial expressions [26].

The feature grid is processed in a way that resembles the Eigenface and Fisherface

algorithms. A dimensionality reduction is performed and the resulting information
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is used to classify the images based on facial expressions.

A somewhat similar approach is used by Shinohara and Otsu in [23]. They use

higher order local auto-correlation features instead of the Gabor wavelet features.

Dimensionality is reduced by using Fisher weight maps, final classification is made

using Fisher discriminant analysis.

Another method for facial expression classification uses discriminative scale

invariant feature transform D-SIFT [27]. After constructing feature vectors with

D-SIFT, weighted majority voting is used for classification.

Facial expression classification can be improved when 3D information is avail-

able. Soyel and Demirel proposed a method [28] that calculates 3D distance vectors

and applies neural networks for the final classification.

Another much more simple and less theoretical method works using cross-

correlation template matching. When the result of the cross-correlation of the

mouth area is higher than some fixed threshold, then a smile detection is claimed.

It is also possible to detect the corners near the lips and then tries to draw

a Bézier curve through them [29]. Based on how well the curve resembles the

expected result, a decision is made whether a person on the image is smiling or

not.

3.2 Methods for Video

Methods for video can use the additional information provided by movement

throughout the video frame sequence. The methods that work on a video usu-

ally detect the location of a face and then find several reference points that will

be used for tracking during the consequent frames. The information about the

movement is used to make a decision about the facial expression. The algorithm

that is described in the thesis also belongs to this category and it is somewhat

inspired by the work of Huang and Fuh [18]. It uses the Viola-Jones [6] algorithm

to detect the location of a face and then calculates reference point positions using

statistics about their average locations. The points are tracked by optical flow [9]

and the obtained information is used to decide whether a person is smiling or not.

Similar detection techniques are described in [19], [20] and [21].
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4 Viola-Jones Object Detection Algorithm

For face detection, the Viola-Jones object detection algorithm [6] is used. It is

an algorithm that enables rapid processing and high detection rates and that

makes it a very good choice for our purposes. The image is first converted to a

specific representation called the integral image. Then the algorithm uses a set of

simple rectangle features for testing all the sub-windows of the image that have

a reasonable size. In each sub-window a cascade of classifiers is used to make a

decision on whether the sub-window contains an object of interest or not.

4.1 Features

The Viola-Jones detector uses simple features instead of pixel intensity values.

Examples of the used features are shown in Figure 1. All the features consist of

two types of rectangles: white and gray. Viola and Jones originally proposed three

Figure 1: Feature types originally proposed by Viola and Jones in [6].

kinds of different features that are all displayed in Figure 1. Our implementation

actually uses the extended set of features proposed by Lienhart et al. in [7]. Most

notable addition of the extended set is the use of rectangular features that are

rotated by 45 degrees. To calculate a feature it is placed on the current search

window. The value of a feature is calculated by summing up the pixel intensity

values in the white rectangles and subtracting it from the sum of the pixel intensity

values in the gray rectangles. These features are used to achieve fast computation
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that is possible with the use of a special image representation called the Integral

Image.

4.2 Integral Image

To make the calculation of features easier, the image is first converted to the

integral image. Let I(x, y) be an image. Then the integral image I ′(x, y) is defined

by the equation

I ′(x, y) =
∑

x0≤x,y0≤y

I(x0, y0). (1)

It means that the value at a coordinate (x, y) is the sum of all the pixel values

above and to the left of the given coordinate in the original image.

By using this format, it is easy to calculate all the previously discussed features

in only a few summations and subtractions. Consider Figures 2 for example. The

left-side array of Figure 2 represents an arbitrary image and the array to the right

is its integral image representation.

8 0 9 1 1

6 3 0 9 1

0 5 5 4 4

4 2 0 6 1

9 6 3 6 0

Image I(x, y)

8 8 17 18 19

14 17 26 36 38

14 22 36 50 56

18 28 42 64 69

27 43 60 88 93

Integral Image I ′(x, y)

Figure 2: Example about integral image representation

If we want to calculate the sum of pixel values σ in a rectangle with (zero-based)
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coordinates (1, 1), (3, 1), (2, 1), (3, 2) for example, then

σ =
∑

1≤x≤3,
1≤y≤2

I(x, y) = I ′(0, 0) + I ′(3, 2)− I ′(3, 0)− I ′(0, 2) = 26. (2)

4.3 Cascade Classifier

For object detection a cascade of classifiers are used. Each test evaluates one of the

previously discussed rectangle features and compares the value with a threshold to

decide whether the test was passed or not. The cascade of classifiers means that

the second classifier is only used when the first one gives a positive decision, the

third one is used only when the second one gives a positive result etc. It means

that a negative decision by any of the classifiers results in immediately stopping

the evaluation of the current image sub-window. That way all the unpromising

sub-windows could be discarded as early as possible, whereas the promising areas

will be calculated more precisely. The first classifiers are designed in a way that

lets all the correct sub-windows pass along with a large number of false positive

areas. Each of the following classifier gradually lowers the false positive rate while

trying to keep the detection rate of correct areas as high as possible. It means

that the object is detected only when the investigated image sub-window passes

all the tests in the cascade.

4.4 AdaBoost

To create a previously discussed cascade of classifiers a machine learning algorithm

called AdaBoost [8] is used. AdaBoost is an algorithm that uses the output of some

other learning algorithm, often called a weak learner. In each AdaBoost cycle

the weak learner generates some form of classifier. The idea is that several weak

classifiers are combined in a way that they enable much more accurate classification

compared to running each of them separately.

For face detection the AdaBoost algorithm needs to identify the rectangular

features that enable the best classification. The weak learner is designed, so that

it always chooses exactly one of all the possible rectangular features, so it enables
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to classify the positive and negative examples most accurately. In each round of

the AdaBoost the following classifier function is generated by the weak learner:

h(x) =

1 if pf(x) < p θ

0 otherwise
(3)

where f is a feature that was chosen, θ is the threshold for optimal classification,

x is the search window and p is the polarity that indicates the direction of the

inequality. These classifiers are combined and eventually used to create a cascade

classifier that was introduced in the last subsection.

4.5 Scanning the Image

The whole image is scanned by moving a sub-window across the image and applying

the cascade of classifiers in every sub-window. The initial size of the sub-window

is chosen to be reasonable and the exact size was fixed by a series of experiments.

After the whole image is scanned with this sub-window, then the dimensions of

the sub-window are increased by a scale factor constant that was also chosen by

experiments. The scaling is important, because the size of the face in an image is

not known beforehand. The whole process of scanning and scaling the window is

repeated until some fixed maximum window size is reached. When this happens

then the detection algorithm has completed its work.
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5 Derivative of a Discrete Function

In calculus the derivative of a function f(x) with respect to variable x is defined

as the function f ′ whose value at x is

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
, (4)

provided the limit exists. For the limit to exist when h→ 0 the function f needs

to be defined at every point of the open interval (x− ε, x+ ε), except possibly at

the point x itself [2].

Digital images are defined as a discrete functions, however. This means that

they are not defined at every point of an open interval. This also means that the

limits of a discrete function are not defined. As the result we can not talk about

image derivatives using the definition from calculus. In discrete cases, another

definition is often used to obtain approximation to continuous derivatives. The

derivative of a continuous function f(x) is a function f ′(x) that describes how the

values of f change near x. An intuitive approximation for the discrete function is

obtained by defining:

f ′(x) = f(x+ 1)− f(x) (5)

where f is a discrete function f : Z → Z. This definition is well-known and it

is often used in image processing [1]. The definition can be generalized to higher

dimensions as well. The derivative of a continuous function f(x1, ..., xn) is defined

as

∂f

∂xi
(x1, ..., xn) = lim

h→0

f(x1, ..., xi + h, ..., xn)− f(x1, ..., xi, ..., xn)

h
, (6)

provided the limit exists [2]. We will define the derivative of a discrete function of

multiple variables as

∂f

∂xi
(x1, ..., xn) = f(x1, ..., xi + 1, ..., xn)− f(x1, ..., xi, ..., xn). (7)

where f is a discrete function f : Zn → Z.
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6 Optical Flow

Optical flow [9] can be defined as apparent motion of brightness patterns in an

image. Optical flow is caused by the movement of the observer (e.g. camera) or

the movement of the objects in the scene that is being observed. The concept of

optical flow enables us to estimate the movement of objects during a sequence of

images.

6.1 Optical Flow Equation

We will derive an equation that represents the previously explained concept of

optical flow in an image. Let I(x, y, t) denote the intensity value of an image

at spatial coordinates (x, y) at time t. We will assume that pixel intensities are

constant in time. It means that

I(x, y, t) = I(x+ ∆x, y + ∆y, t+ ∆t) (8)

Assuming that the movement in space and time is relatively small, we can approx-

imate the right-hand part of the equation using the Taylor series [2].

I(x+ ∆x, y + ∆y, t+ ∆t) = I(x, y, t) +
∂I

∂x
∆x+

∂I

∂y
∆y +

∂I

∂t
∆t+ α (9)

where α contains the higher order terms. When we substitute into (8) and subtract

I(x, y, t) from both sides of the equation, we get

∂I

∂x
∆x+

∂I

∂y
∆y +

∂I

∂t
∆t+ α = 0 (10)

After dividing the equation with ∆t we have

∂I

∂x

∆x

∆t
+
∂I

∂y

∆y

∆t
+
∂I

∂t
+ β(α) = 0 (11)

Now, we know that x and y change only when t changes, it means that if ∆t→ 0,

then ∆x→ 0 and ∆y → 0. Therefore, when ∆t→ 0, then α → 0 and β(α)→ 0.

Let’s now denote u = ∆x
∆t

and v = ∆y
∆t

, we obtain

∂I

∂x
u+

∂I

∂y
v +

∂I

∂t
= 0 (12)
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We have now derived the optical flow equation. The equation has two unknown

variables: u and v and it can’t be solved in that form without any additional

constraints.

6.2 Lucas-Kanade Method

To actually solve the optical flow equation (12), there are many different methods.

In my application, it is needed to calculate the optical flow vectors for a few chosen

points and not the whole vector field. That is the reason why I decided to use

the Lucas-Kanade method [10], [11]. The Lucas-Kanade method introduces a new

assumption: it assumes that the motion is locally the same. It means that we can

take a 3 x 3 pixel neighborhood and assume that they all have the same movement

vectors. As the result we get a system of 9 equations with 2 unknowns, so it is

possible to solve it now. We have the following over-determined equation system:

∂I(x1,y1,t)
∂x

u+ ∂I(x1,y1,t)
∂y

v = −∂I(x1,y1,t)
∂t

∂I(x2,y2,t)
∂x

u+ ∂I(x2,y2,t)
∂y

v = −∂I(x2,y2,t)
∂t

...

∂I(x9,y9,t)
∂x

u+ ∂I(x9,y9,t)
∂y

v = −∂I(x9,y9,t)
∂t

(13)

where the optical flow equations are evaluated at points x1, ..., x9, y1, ..., y9 and at

the current time t.

The Lucas-Kanade method was initially introduced as a method for image registra-

tion. To achieve the image registration, is necessary to find the displacement vector

of an image patch from one image to another. The method uses two functions:

F (x) and G(x) = F (x+t), where x =
(
x1 x2 . . . xn

)
and t =

(
t1 t2 . . . tn

)
is the disparity vector, the objective is to find that vector when the functions F (x)

and G(x) are known. This is done by minimizing the error with between these

two functions. The goal is to find the displacement vector that minimizes the least

squares error

E =
∑
x∈X

[F (x+ h)−G(x)]2 (14)
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where X is the set of all the points that are used for finding the disparity vector.

The following Taylor series based approximation is used:

F (x+ h) ≈ F (x) + h
∂F (x)

∂x
(15)

where ∂F
∂x

=
(

∂F
∂x1

. . . ∂F
∂xn

)T
. We are trying to obtain such h that the square

error would be minimal.

0 =
∂E

∂h
≈ ∂

∂h

∑
x∈X

[
F (x) + h

∂F (x)

∂x
−G(x)

]2

=

∑
x∈X

2
∂F (x)

∂x

[
F (x) + h

∂F (x)

∂x
−G(x)

] (16)

We can now use the previous theory to solve our system of partial differential

equations. The images have two dimensions, so we are looking for h =
(
u v

)
.

As two functions F and G we have two images I1(x, y) = I(x, y, t) at times and

I2(x, y) = I(x, y, t+ ∆t). It means that

I2(x, y)− I1(x, y) =
∂I

∂t
(x, y, t) (17)

according to the way the discrete function partial derivatives are defined.

Finally we obtain the following equation system:
u

n∑
i=1

(
∂I(xi, yi, t)

∂x

)2

+ v
n∑

i=1

∂I(xi, yi, t)

∂x

∂I(xi, yi, t)

∂y
= −

n∑
i=1

∂I(xi, yi, t)

∂x

∂I(xi, yi, t)

∂t

u
n∑

i=1

∂I(xi, yi, t)

∂x

∂I(xi, yi, t)

∂y
+ v

n∑
i=1

(
∂I(xi, yi, t)

∂y

)2

= −
n∑

i=1

∂I(xi, yi, t)

∂y

∂I(xi, yi, t)

∂t

(18)

It is a linear system with two equations and two variables: u and v, so we can

easily solve it after finding the partial derivatives.

6.3 Pyramid Representation

The major drawback of the Lucas-Kanade method is that it can only used when

the movement is small. All the calculations are made using a small image window,
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so obviously it can not track larger movements. To make it possible, it is neces-

sary to use pyramid representation [12]. The basic idea is to use the Lucas-Kanade

method several times while reducing the scale of the images. When applying the

Lucas-Kanade method on a scaled down versions of images, the small image win-

dow, that is used for calculation, now covers a larger area of the image and makes

it possible to estimate a larger movement.

Let Lm be the number of pyramid levels. Also, let I0 denote the lowest level

of the pyramid, the image itself in its original measurements. ILm−1 will denote

the highest level of the pyramid. The image of level L can be calculated from level

L− 1 image in the following way:

IL(x, y) =
1

4
Σ1 +

1

8
Σ2 +

1

16
Σ3, (19)

where Σ1,Σ2 and Σ3 denote

Σ1 =IL−1(2x, 2y)

Σ2 =IL−1(2x− 1, 2y) + IL−1(2x+ 1, 2y) +

IL−1(2x, 2y − 1) + IL−1(2x, 2y + 1)

Σ3 =IL−1(2x− 1, 2y − 1) + IL−1(2x+ 1, 2y + 1) +

IL−1(2x− 1, 2y + 1) + IL−1(2x+ 1, 2y − 1).

(20)

Let’s now explain how the different levels of the pyramid work together to deter-

mine the final motion vectors of our point of interest p = (x, y).

First the motion vector is calculated at the highest level of the pyramid image

ILm−1. In the next level ILm−2 the motion vector from the upper level is used as

an initial guess. It means that the image patch that is used for comparison to find

the displacement vector is determined by the coordinates that are received from

the upper level. That way it is possible to use the guess from the higher levels of

the pyramid and then fine-tune it when the resolution of the image is higher.
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Let gL =
(
gLx gLy

)T
denote the initial guess for level L image IL that is ob-

tained by applying the Lucas-Kanade method on higher levels L+ 1, L+ 2 and so

on. If there are no higher levels, then the initial guess will be the zero vector, i.e.

gLm−1 =
(

0 0
)T

. To improve the initial guess, the following sum of square errors

needs to be minimized:

E =
n∑

i=1

(
IL1 (xi, yi)− IL2 (xi + gLx + hx, yi + gLy + hy)

)2

(21)

where the sum is calculated over n pixels in the image window. After finding the

new disparity vector h =
(
hx hy

)T
, then the new vector is calculated by

gL−1 = 2(gL + h) (22)

and passed on to the lower levels if there are any. If there are no more levels then

gL + h will be the final result.
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7 Calculating Face Reference Points

To use the optical flow tracking method effectively for our purpose, we need to

select reference points that would give us useful information about a person’s facial

expressions. It is intuitively clear that the points near the eyes, mouth and nose

would provide more useful information compared to some other point locations.

The smile detection algorithm that is being described uses the following ref-

erence points to make a decision: mouth corners, inner and outer eye corners,

nostrils and the tip of the chin - 9 points in total. We believe these points would

give the algorithm enough information to decide whether the person is smiling or

not.

7.1 Detection by Using Statistics

Accurate detection of the required points, however, is not a simple task. As our

algorithm needs to work in real-time speed, we need a computationally efficient

solution. Fortunately, the locations of eyes, mouth and nose do not change very

much, they are always approximately in the same place for all people. It means that

we can make an accurate guess using statistical information about the locations

of these points.

We used the BioID image database [13] to extract information about the aver-

age locations of the face reference points. The BioID database consists of over 1500

images that show a face of a person while doing different facial expressions. Along

with these images they provide data about the locations of 20 different reference

points of these faces (see Figure 3). We detected these faces with the Viola-Jones

algorithm and calculated the provided locations in respect to the face rectangle lo-

cation given by the Viola-Jones algorithm. As a result, we can now give quite good

estimations for the reference points that are needed by smile detection algorithm

by simply using the average positions gathered from the BioID data.

Of course, this kind of approach depends heavily on the accuracy of the Viola-

Jones detector. In practice, however, it seems to work quite well. The reason is

that the Viola-Jones algorithm gives quite stable output, as the result we obtain
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Figure 3: A subset of these marked reference points are used. Image courtesy by the BioID

database [13].

quite accurate locations of our reference points.

7.2 Improvement by Corner Detection

This approach can be improved even further. The optical flow algorithm works

better for areas that contain edges or corners. It means that we can make the

optical flow tracking more precise, when we detect the strongest corners near the

estimated locations of our reference points.

We tested the smile detector with and without the use of the corner detector

and got different results depending on the lighting conditions of the working en-

vironment. In stable and good lighting conditions the corner detector generally

improves the detection process by locating the reference points more precisely. In

conditions where part of the face is in shadow, however, the corner detector often

detects false points like the edges of the shadows and the overall detection accuracy

is much worse.
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8 Corner Detection

In order to refine the interest point locations, we can use a corner detection al-

gorithm. We know the approximate locations of the points, so we can detect the

strongest corner near the previously computed reference point position. The rea-

son for doing so is that we the optical flow tracking is much more accurate near

edges and corners.

We used the Harris corner detection algorithm [14] in our smile detector. We

also had several good alternatives like the Susan detector [17] or the Shi-Thomasi

detector [16] that would both have been suitable for our application. The Harris

detector performed as well as its alternatives and while we had no clear preference,

some choice had to be made.

The corner detector proposed by Harris and Stephens is actually an improve-

ment over the detector proposed by Moravec [15] (in his work he referred to it

as the interest operator). That is why we start our discussion by explaining the

working principles of the Moravec detector.

8.1 Moravec Corner Detector

The Moravec Detector scans the image using a small fixed size search window. In

every window location it shifts the search window and then calculates the sum

of squared differences of pixel intensities in the initial and in the shifted search

window. When the search window contains a corner, then shifting it in any direc-

tion would make the pixel intensity difference quite large. In case it is an edge,

the difference would be large only in the direction perpendicular to the edge, the

change would be small in the direction along the edge. If the search window does

not contain an edge or a corner, then a shift in either direction would give a small

difference.

Let I(x, y) denote the intensity value of image I at position (x, y) and let E(u, v)

denote the sum of squared intensity value differences when the window is shifted
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by a vector (u, v).

E(u, v) =
∑

(x,y)∈W

[
I(x+ u, y + v)− I(x, y)

]2

, (23)

where W is the set of all the pixel coordinates of the current search window. The

shift by (u, v) is done by one pixel in every possible direction vertically, horizontally

and diagonally. After calculating all the shift differences, only the minimum of

them is used, because this way the algorithm avoids detecting edge points. When

the minimum is larger than some fixed threshold, the algorithm has found a corner

candidate. There are usually several candidates near a corner, only one of them is

chosen by selecting the corner with the highest minimum shift value.

8.2 Harris Corner Detector

The Harris detector improves on the Moravec detector by removing many of its

drawbacks.

Moravic detector has only a discrete number of possible shifts, all shifts are mul-

tiples of 45 degrees. We can obtain arbitrarily many shifts with the following

method: We can use the Taylor series expansion [2] to approximate

I(x+ u, y + v) ≈ I(x, y) +
∂I

∂x
u+

∂I

∂y
v. (24)

When substituting it into (23), we obtain

E(u, v) =
∑

(x,y)∈W

[
∂I

∂x
u+

∂I

∂y
v

]2

. (25)

This clearly enables us to have infinitely many different shifts. To make this work

even better, Harris and Stephens point out that the rectangular search window

W can be replaced with a circular window, possibly with a Gaussian weighting

function.

The Harris detector also uses a different scheme to make a final decision about
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the existence of a corner. Instead of using a minimum of shift differences, the

Harris detector relies on eigenvalues. First of all, we can write (25) using matrices:

E(u, v) =
(
u v

)
M

(
u

v

)
, (26)

where

M =
∑

(x,y)∈W

((
∂I
∂x

)2 ∂I
∂x

∂I
∂y

∂I
∂x

∂I
∂y

(
∂I
∂y

)2

)
. (27)

For a search window W to contain a corner, there needs to be a large change in

all the possible shifting directions. The eigenvalues λ1 and λ2 of matrix M can be

used to check this. After analyzing the dependance between M and the changes

in intensity values, Harris and Stephens concluded that a large change in any di-

rection means that both eigenvalues of M are large. In case of an edge, one of the

eigenvalues is much greater than the other and in a nearly constant image patch,

both eigenvalues are relatively small.

As calculating eigenvalues is computationally a quite expensive operation, the Har-

ris detector works using the determinant and trace (sum of elements in the main

diagonal) of matrix M . It is possible to use them, as it holds that Det(M) = λ1λ2

and Trace(M) = λ1 + λ2. Finally, the following criterion is used to evaluate the

probability that the search window contains a corner:

R = Det(M)− k (Trace(M))2, (28)

where k is some fixed constant. R is compared to a threshold to decide if the

search window contains a corner or not.
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9 Smile Detection Algorithm

The smile detection algorithm uses the motion of the reference points as input.

The points are tracked across several frames to gather enough information about

their movement. The motion is analyzed and finally a decision it is made, whether

the motion corresponds to a smiling facial expression or not.

The main features that are used for detection are the changes of the distance

between the mouth corners, nostrils and eye corners. Experiments clearly indicate

that all these distances increase when a person is smiling. Using this knowledge it

is possible to recognize most of the smiling expressions.

9.1 Sequence of Positions

From here on, we use the word sequence to refer to an ordered list of reference

point positions. Each element of the sequence is a set that consists of the coordi-

nates of 9 reference points. Each element describes the positions of the reference

points at different moments in time. In short, a sequence of n elements contains

full information about the motion of the reference points over n frames. As the al-

gorithm often processes several sequences at the same time, the previous definition

was necessary to describe the algorithm more clearly.

9.2 Workflow of the Algorithm

After a face has been detected by the Viola-Jones algorithm, the positions of all

the reference points are calculated and a new sequence is started based on the

coordinates of these points. The newly created sequence is added to the list of all

the current sequences. After that all the previous sequences in the list are also

updated. It means that the most recent reference point coordinates of a sequence

are used to calculate a new element by the Lucas-Kanade optical flow calculation.

It means that the number of elements of all the previous sequences is increased by

one.

After all the sequences in the list are updated, they are all analyzed to interpret

the motion of their reference points. The analysis procedure has three possible

27



results:

• Keep the sequence;

• Discard the sequence;

• Smile was detected.

The sequence can be either kept in the list for further processing or discarded

as unpromising. If the result is a smile detection, then the sequence is obviously

removed from the list as well. The sequences are mostly removed, because the

motion that they represent is not interesting or relevant for our algorithm. It

is also possible that the sequence analysis found them to be too noisy or the

measurements were abnormal and considered to be corrupted.

Sequences are also automatically discarded after they reach some maximum

limit. Our algorithm uses 20 as the maximum limit, because it corresponded to

roughly one second in time in the computer that was used for testing. We estimate

that most of the smiling expressions last a bit less than one second, so it should be

a quite good upper limit. Overall it means that the algorithm never has to process

more than 20 sequences at the same time, so the computational resources are not

spent more than needed.

9.3 Motion Analysis of a Sequence

9.3.1 Sanity Checks of the Measurements

Every sequence analysis starts with a few sanity checks. The measurements might

contain noise and the optical flow tracking might also cause some inaccuracies,

then the errors might accumulate over several frames. For this reason the newest

element of a sequence is always checked using some rough estimations for the dis-

tances between the reference points. We know the approximate distances between

the reference points, if some of our reference points have positions that do not fit

into the overall model, then we will assume that the measurements are corrupted

and the sequence will be discarded immediately.
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Figure 4: Example of the distance changes of mouth corners and outer eye corners in a sequence

where a smile was detected.

9.3.2 Checks of Superfluous Face Movement

The second step of the analysis checks if the face has moved too much during

all the previous frames. Too much movement sometimes confuses the detection

mechanism of the algorithm and therefore it is better to discard such sequences

to avoid false positive detections. Additionally, this analysis step also discards

sequences where the person is talking in front of the camera. The movement is

checked by summing up the position changes between the current and the initial

reference point positions of the four eye reference points. The movement of the

chin reference point is also added to the sum to avoid analyzing the sequences with

too much mouth movement any further.

9.3.3 Main Detection Conditions

The detection of a smile relies on comparing the distance changes between the

mouth corners, nostrils and inner and outer eye corners. When the sequence has

exactly two elements, then the movement of the mouth corners is checked. If they

are moving apart horizontally, then the sequence is marked as promising and kept

for further tracking during the upcoming frames. All the sequences that do not

have this property are automatically discarded as unpromising.

During the next frames the distance between the mouth corners is checked to

detect the moment when it reaches its peak i.e. maximum value. When it hap-
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pens, then the total changes of the mouth corner, nostril and eye corner distances

are calculated by comparing the initial and the current measurements. All these

distance changes are compared to some experimentally fixed thresholds. If the

distance changes are larger than the thresholds, then the sequence is considered

to have filled the conditions for a sufficient peak. Figure 4 displays the distance

changes of a sequence that has filled these conditions.

9.3.4 Final Conditions

The final decision about the sequences that have a sufficient peak is made during

the next n frames, we used n = 4. During these frames it is checked whether

all the reference points indicate a movement back towards their initial positions.

This stage is also useful to discard sequences that are caused by a person talking

in front of the camera and accidentally making some expression that looks similar

to smiling. The rationale is that usually a talking person does not stop talking

exactly after accidentally making such an expression. It is probable that they will

say something more immediately and the motion will not be detected as a smile.

If the sequence that has shown a sufficient peak and is not discarded during these

n final frames, then the algorithm claims to have detected a smile.
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10 Implementation

The algorithm is written in C++ and implemented to work on a Linux system.

More specifically, the algorithm was developed on an Arch Linux [31] system,

nevertheless, it should work on other distributions as well.

The camera input is read by Video4Linux2 API [32]. It should be supported

in most of the Linux distributions, since the API is included in the Linux kernel

starting from version 2.5. Our implementation uses the API directly without using

any third party libraries, as it enables fast frame acquisition that way.

For image processing the OpenCV computer vision library [33] was used. It

provided implementations for the Viola-Jones algorithm, Optical flow calculation

and corner detection.

10.1 GUI Tool

Figure 5: We created a special Gui that enables us to test the algorithm, change the detection

thresholds and also shows a real-time plot of the changes in reference point distances.

The algorithm does not show any visual output except logging information and

messages written to output stream. To develop the algorithm more intuitively, we

created a graphical user interface (see Figures 5 and 6). It enables to test the

algorithm with different thresholds that can be adjusted with sliders and it also
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Figure 6: The algorithm has detected a smile and a big smiley is displayed.

shows real-time plots of the important reference point distance changes that are

used by the algorithm.

The GUI tool is also written in C++. The graphical interface uses the Qt

library [34] and the plotting is done using the Qwt library [35].
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11 Results

11.1 Performance of the Detector

The algorithm works reasonably well in most environment conditions. Of course,

in different lighting conditions it might be necessary to change the thresholds a

little, that way the algorithm works more accurately.

The Viola-Jones algorithm locates a face really well, it is probably the most

stable part of the algorithm. The reference point calculation assumes that the head

is not rotated much, otherwise it will not be accurate. When using a corner detec-

tor, then the lighting must be quite good, as shadows might cause the detection of

corners that do not correspond to facial reference points. The optical flow calcula-

tion works quite well, but it depends on the previously calculated reference points.

If their locations are noisy, then the whole smile detection algorithm can not work

very precisely. The algorithm that analysis the motion of reference points must

consider all the noise that has accumulated over the last steps. In most cases it

manages to detect when the measurements are too noisy or unrealistic. Basically

the main weakness of the algorithm is caused by the detection of the reference

points.

11.2 Detection Rate

The correct detection rate depends on the choice of the thresholds. It is possible to

choose thresholds in a way that nearly all of the smiles are detected, but this also

results in a relatively high misdetection rate. In that case many face movements

like talking or making a grimace cause a misdetection. It is also possible to set

so strict thresholds that the misdetection rate goes to almost zero, the drawback,

however, is that the detection rate of the correct smiling expressions also goes

quite low.

A good compromise threshold configuration should be chosen that detects most

of the smiles with as few misdetections as possible. Of course, an optimal config-

uration depends on an application. In some cases it is not a big problem to have
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some misdetections. In other cases a low misdetection rate with a bit lower correct

detection rate is preferred.

11.3 Speed of the Detector

The smile detector was developed and tested on a modern computer with 8-core

Intel i7 processor and the processing speed was never a problem. Nevertheless we

believe it should work reasonably well on slower computers too, as multithreading

was not used and the limit was the 30 frames per second maximum frame rate of

the camera.
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12 Applications

There are many possible applications for the smile detector. First of all, the smile

detector can be used to improve human and computer interaction. A smile can

be interpreted as some specific signal to a computer, resulting in some predefined

action by the computer program. It can also be used in systems involving arti-

ficial intelligence, as it provides information about a person and hence enables a

sophisticated response.

12.1 Smile Detector Lock

The smile detector was initially created with a specific application in mind: The

idea was to use the detector to control a digital lock. The digital lock is connected

to an Arduino board [30] (see Figure 7), which is communicating with the computer

that runs the smile detection algorithm. When the algorithm detects a smile, then

the computer sends a command to the Arduino board to open the lock for a few

seconds. If the algorithm does not detect anything, then the lock will of course

not be opened.

Figure 7: The electric lock is controlled using digital output from PIN 4, the lock gets power

from 5V output PIN and is switched using a transistor.

The idea is to install the locking system to a seminar room to make it ”guard”

the entrance to the room. The door of the seminar room will be opened only if
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a smiling person is detected by the smile detection algorithm. The smile detec-

tion lock helps to increase the moral of the people by making them smile more

when entering the room. The system is very suitable for a seminar room, because

a seminar room generally does not need any real security. An interesting and

entertaining application is needed instead.

12.2 Plugin for an Instant Messenger

People use instant messenger applications like Skype to communicate with friends

and colleagues and it is common to use many different smileys. It is possible to

apply the smile detection algorithm to automatically enter a smiley whenever a

person smiles during an instant messaging conversation. This kind of system can

potentially be implemented as a plugin for a messenger application.

12.3 Capturing a Photograph Automatically

A common challenge when trying to take a good photo is to capture the moment

when a person is smiling. The smile detector can make this process much more

convenient, as it is possible to take the photo automatically at the exact moment

when a person smiles. There are already cameras with this kind of functionality

on the market, but it is likely that the accuracy can be improved.

12.4 Robot Interaction

Robots can be successfully used in many different fields of life. It is very likely

that in the future they will also be used for tasks that require interaction with

people. A large amount of information in a human communication is delivered

using speech, but a substantial part is also delivered using facial expressions. Hence

it is necessary for a robot to understand them. The smile detection algorithm can

be used to obtain a part of this information.
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13 Conclusion

We implemented a smile detection algorithm. It works by locating a face of a

person and calculating several of its reference points like the corners of the mouth,

corners of the eyes, nostrils and chin. These reference points are tracked across

several frames using optical flow. The algorithm detects when a person is smiling

based on the motion of the reference points.

The algorithm works in real-time speed. The detection rate depends on how

to adjust the thresholds, it is possible to detect nearly all smiles, but this also

results in a higher false positive rate. Reasonably chosen thresholds give a low

misdetection rate while most of the smiles are detected.

The algorithm was also used for an interesting application: a smile detector

lock. It is a system where our smile detection algorithm controls an electric lock,

the lock is opened when a person smiles. The application is supposed to be installed

to control access to a seminar room, as it does not need any security, but it is good

to entertain people who enter the room.
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