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ABSTRACT 

 Glioblastoma multiforme (GBM) is the most common and malignant primary brain 

tumor in adults, characterized by aggressive growth, limited response to therapy, and 

inexorable recurrence. Because of the extremely unfavorable prognosis of GBM, it is 

important to develop more effective diagnostic and therapeutic strategies based on 

biologically and clinically relevant patient stratification systems. Analyzing a collection of 

patient-derived GBM stem-like cells (GSCs) by gene expression profiling, nuclear magnetic 

resonance (NMR) spectroscopy and signal transduction pathway activation, we identified two 

GSC clusters characterized by different clinical features. Due to the widely documented role 

played by microRNAs (miRNAs) in the tumorigenesis process, in this study we explored 

whether these two GBM patient subtypes could also be discriminated by different miRNA 

signatures. Global miRNA expression pattern was analyzed by oblique principal component 

(OPC) analysis and principal component analysis (PCA). By a combined inferential strategy 

on PCA results, we identified a reduced set of three miRNAs – miR-23a, miR-27a and miR-

9* (miR-9-3p) – able to discriminate the proneural- and mesenchymal-like GSC phenotypes 

as well as mesenchymal and proneural subtypes of primary GBM included in The Cancer 

Genome Atlas (TCGA) dataset. Kaplan-Meier analysis showed a significant correlation 

between the selected miRNAs and overall survival in 429 GBM specimens from TCGA-

identifying patients who had an unfavorable outcome. The survival prognostic capability of 
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the three miRNA signatures could have important implications for the understanding of the 

biology of GBM subtypes and could be useful in patient stratification to facilitate 

interpretation of results from clinical trials. 

 

 
1. INTRODUCTION  
 
 Glioblastoma multiforme (GBM) is the most frequent and malignant primary adult 

brain tumor. Standard GBM treatment includes maximal safe surgical resection followed by 

combined radiotherapy and chemotherapy with the DNA methylating agent temozolomide 

(TMZ) (Stupp et al., 2005). Despite continuous improvements in the treatment of GBM 

during the past decade, these tumors are still associated with a poor prognosis and rare long-

term survival (Wen and Kesari, 2008). 

 Incurable GBM is characterized by uncontrolled cellular proliferation, robust 

angiogenesis, intense resistance to apoptosis, diffuse infiltration, propensity for necrosis and 

genomic instability. Moreover, it exhibits a high degree of intra- and inter-tumor 

heterogeneity (Dunn et al., 2012).  

 Genomic profiling, chromosomal number variations and abnormalities in DNA 

methylation have been used to define four subtypes of GBM, that include the pro-neural 

(oligodendrocytic signature), neural (oligodendrocytic, astrocytic and neural signature), 

mesenchymal (cultured astroglial signature) and classical (astrocytic signature) subtype 

(Verhaak et al., 2010). 

 Increasing evidence has led to the identification of a subpopulation of cells displaying 

stem-like properties reminiscent of normal stem cells, called tumor-initiating cells or GBM 

stem-like cells (GSCs), that are believed to play a fundamental role in tumor resistance to 

chemo- or radiotherapy as well as in tumor recurrence (Singh et al., 2004). GSCs can be 

isolated to generate cell lines characterized by self-renewing, multi-potency, and high 
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tumorigenic ability and are reported to recapitulate the genotype, gene expression patterns 

and in vivo biology of human GBM more closely than many commonly utilized glioma cell 

lines (Ernst et al., 2009; Lee et al., 2006). The availability of cell lines that represent a more 

reliable model for understanding the biology of primary human tumors, may help to identify 

cues for targeted therapies (Piccirillo et al., 2015). 

 One of the hallmarks of cancer is the defect in the regulatory circuits that control 

normal cell proliferation and homeostasis (Hanahan and Weinberg, 2011). Through the 

ability to regulate a large number of genes, microRNAs (miRNAs), a class of short non-

coding RNAs, has been shown to control diverse oncogenic signaling pathways including cell 

proliferation, cell cycle regulation, apoptosis, invasion, glioma stem cells behavior, and 

angiogenesis. Dysregulated miRNAs are considered to be essential players in carcinogenesis, 

and thus potential therapeutic targets (Mizoguchi et al., 2013). Deregulation of miRNAs can 

affect carcinogenesis if their target mRNAs are encoded by oncogenes or tumor suppressor 

genes (Lages et al., 2012); overexpression, silencing or switching off specific miRNAs have 

been described in carcinogenesis of GBM (Brower et al., 2014; Floyd and Purow, 2014; 

Henriksen et al., 2014). Silencing or down-regulation may result from deletion of a 

chromosomal region, epigenetic silencing, or defects in their biogenesis whereas increased 

expression of mature miRNA may occur as a consequence of transcriptional activation or 

amplification of the miRNA encoding gene. 

 In the attempt to find druggable signaling pathways, we previously analyzed a 

collection of nineteen patient-derived GSCs by gene expression profiling, NMR spectroscopy 

and phosphoproteomic analysis of the signal transduction pathway (Marziali et al., 2016). We 

identified two GSC clusters, resembling the GSf and GSr groups described by Schulte 

(Schulte et al., 2011), though with distinct molecular signatures. Based on gene expression, 

NMR spectroscopy and phosphoproteomic data, we found that the GSf-like and GSr-like 
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clusters are characterized by a "pro-neural-" and "mesenchymal"-like signature, respectively, 

similar to those described by Verhaak et al. (Verhaak et al., 2010). Significant overlaps with 

the other two GBM subtypes (i.e. neural and classic) were not observed in our GSC 

collection. Phosphoproteomic analysis showed that the GSf-like signature is characterized by 

a significant increase in SRC, Mitogen Activated Protein Kinase (MAPK), and Insulin-like 

Growth Factor-Receptor (IGF1-R/IR), whereas GSr-like lines displayed increased levels of 

phosphorylated proteins associated with the mammalian Target of Rapamycin (mTOR) 

pathway and a strong activation of downstream targets of the Epidermal Growth Factor 

Receptor (EGFR) (Marziali et al., 2016). 

 Classifying GBM patients included in The Cancer Genome Atlas (TCGA) based on 

combined expression patterns of the two RPPA endpoints discriminating GSf- and GSr-like 

phenotypes (i.e. SRC and RPS6, respectively), we showed that TCGA GBM patients with 

GSr-like features display a significantly shorter overall survival (Marziali et al., 2016).  

 To further dissect the molecular biology of GSCs, in the present study we analyzed 

miRNA expression profile by microarray analysis to identify miRNAs differentially 

expressed between GSf- and GSr-like sample groups. A reduced set of three miRNAs, able to 

discriminate GSf- and GSr-like GSC phenotypes as well as mesenchymal and proneural 

GBM patient subtypes with different clinical outcomes was identified.  

 
2. MATERIALS AND METHODS 

2.1. Clinical material and tumor characterization 

 Glioblastoma samples were harvested from 35 out of 109 consecutive patients who 

underwent craniotomy at the Institute of Neurosurgery, Catholic University of Rome. All 

patients provided written informed consent according to research proposals approved by the 

Institutional Ethical Committee. Clinical and pathological features are summarized in 

Supplementary Table S1. Patients were 38 to 80 year-old at diagnosis (median, 58 yrs); 26 
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were men and 9 were women. The expression of the proliferation marker Ki67, PTEN, 

Vascular Endothelial Growth Factor (VEGF) and EGFRvIII were characterized on tumor 

specimens by immunohistochemistry on deparaffinized sections as previously described 

(Martini et al., 2013; Martini et al., 2008; Montano et al., 2011; Pallini et al., 2008). MGMT 

promoter methylation patterns by methylation-specific PCR and isocitrate dehydrogenase 

(IDH)1/2 mutation state were assessed on genomic DNA extracted from paraffin-embedded 

tissue as previously described (Horbinski et al., 2009; Pallini et al., 2008). OS was calculated 

from the date of surgery where a diagnosis of GBM was established, to death. PFS was 

determined from the date of surgery until progression or death (Wen et al., 2010). After 

surgery, the patients received radiotherapy and concomitant TMZ followed by six cycles of 

adjuvant TMZ according to the Stupp protocol (Stupp et al., 2005; Wen et al., 2010). 

 Cox analysis was used for hazard ratio and 95% confidence interval determination. 

All p-values are based on two-tailed tests and differences were considered significant when 

p<0.05. StatView ver5.0 was used (SAS Institute, Cary, NC). 

2.2. Glioblastoma stem-like cell cultures 

 GSCs were isolated through mechanical dissociation of the tumor tissue and cultured 

in a serum-free medium supplemented with epidermal growth factor (EGF) and basic 

fibroblast growth factor (bFGF) as previously described (Pallini et al., 2008). Cell lines 

actively proliferating required 3 to 4 weeks to be established. In these conditions, cells grow 

as clusters of undifferentiated cells, as indicated by morphology and expression of stem cell 

markers such as CD133 and SOX2 (Supplementary Table S2). Stem cell marker expression 

was assessed by flow cytometry using a Canto analyzer (Becton Dickinson, Milan, Italy) 

using AC133-PE antibody (Miltenyi Biotec, Bologna, Italy) and PerCP-CyTM 5.5 mouse anti-

Sox2 (BD, Becton Dickinson, Milan, Italy) for CD133 and Sox2, respectively. Viable cells 

were identified using 7-amino actinomycin D (7AAD; Sigma Aldrich, St. Louis, MO). To 
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assess clonogenicity, viable cells were dispensed at different densities (1-3-10 cells/well) in 

96 well plates by cell sorting (FACS Aria, Becton Dickinson) (Supplementary Table S2). 

After 10-14 days, wells with growing clones were enumerated, and results were analysed by 

Extreme Limiting Dilution Assay (ELDA) software (Hu and Smyth, 2009). The in vivo 

tumorigenic potential of GBM neurospheres was assayed by intracranial or subcutaneous cell 

injection in immunocompromised mice in 30 out of 37 GSC lines. GBM neurospheres were 

able to generate a tumor identical to the human tumor in antigen expression and histological 

tissue organization. GSC lines were validated by Short Tandem Repeat (STR) DNA 

fingerprinting as previously described (Lulli et al., 2015). 

2.3. Microarrays and Real-Time PCR  

 To analyze GSC miRNA expression total RNA was prepared using TRIzol Reagent 

(Invitrogen Life Technologies, Carlsbad, CA, USA). RNA was labeled and hybridized to the 

Agilent-019118 array following the manufacturer's instructions. Microarray analysis was 

performed as previously described (Felli et al., 2010). 

For Real-time PCR, fifty nanograms of RNA were reverse transcribed with TaqMan 

MicroRNA Reverse Transcription Kit (Applied Biosystems, Carlsbad, CA, USA). Real-time 

PCR for miR-23a-3p (miRBase ID MIMAT0000078), miR-27a-3p (miRBase ID 

MIMAT0000084) and miR-9-3p (miRBase ID MIMAT0000442), were performed using 

TaqMan® MicroRNA Assays protocol (assay ID 000399, ID 000408, ID 002231, Applied 

Biosystems). All reactions were run in duplicate. Normalization was performed by using 

RNU6B primer kit (ID 001093, Applied Biosystems). RT-PCR was performed using an ABI 

Prism 7900 Sequence Detector (Applied Biosystems). 
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2.4. Statistical Methods  

 In order to single out an effective miRNA signature for the GSf/GSr discrimination 

we applied a four-step strategy:  

i) clustering of the variables (miRNA expression profiles) by means of Oblique Principal 

Component Analysis (OPC) to single out (if any) a profile partition consistent with the 

GSf/GSr classification. OPC (Sethi, 1971) is a divisive clustering that partitions the variables 

of a data set into maximally internally correlated clusters. The partition stops when the ratio: 

intra-cluster/inter-cluster correlation reaches a maximum. If this purely data-driven partition 

matches the GSf/GSr a priori classification we have a proof-of-concept of the discrimination 

of the two sub-types in the miRNA space; ii) application of Principal Component Analysis 

(PCA) on the data set having miRNA as statistical units and samples (miRNA profiles) as 

variables. The seven miRNAs endowed with the highest scores on the a posteriori emerging 

discriminant component were selected. This data-driven strategy allows for the elimination of 

overfitting problems (Napoletani et al., 2010) by concentrating on a purely unsupervised 

selection of miRNAs. After this step, we further refined our choice by the computation of (iii) 

mutual Pearson correlations between selected miRNAs on a transposed (statistical units = cell 

lines, variables = selected miRNA species) subset of the original data matrix to eliminate 

redundant miRNA species (only one of strongly correlated pairs selected on the basis of their 

statistical significance as for GSf/GSr classification).  

The last step (iv) was the application of Linear Discriminant Analysis (LDA) based on the 

three miRNA species previously selected on independent data sets so to check their 

classification ability at both statistical (training set) and predictive (test set) levels. 
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3. RESULTS  

3.1. Multidimensional analysis of GSf- and GSr-like miRNA profiles 

 Analyzing a collection of nineteen GSC lines derived from seventeen GBM patients 

(from two of these, GSC lines from different tumor regions were isolated), by complementary 

molecular approaches, we recently identified two GSC clusters: one characterized by a 

proneural-like phenotype (GSf-like) and the other showing a mesenchymal-like phenotype 

(GSr-like) (Marziali et al., 2016).  

 To further examine the molecular biology of our GSC lines we analyzed mature 

miRNA expression using a microarray platform. Following background subtraction and 

quartile normalization, the global miRNA expression pattern was analyzed by oblique 

principal component analysis (OPC), a divisive variable clustering technique (Sethi, 1971). 

This analysis gave rise to a two cluster optimal solution (Table 1) that exactly mirrors the a 

priori GSf-/GSr-like classification except for line GSC#83.2. It is worth noting that, being 

OPC a completely unsupervised procedure and the GSf-/GSr-like label added a posteriori, 

the classification does not suffer from overfitting problems. The misclassified line (shown in 

italics in Table 1) lies on the border between the two clusters having an R-square with its own 

cluster (Own Cluster R-square = 0.79) of the same order of magnitude of the R-square with 

the other class (R-square = 0.72). The two cluster partition explains the 84.6% of total 

variance (Proportion of variance Explained, bolded in the Table 1) while, considering all the 

samples as part of the same group (one cluster solution), it accounts for 82.5% of total 

information. Thus, all the samples, besides their GSf-/GSr-like character, are largely invariant, 

pointing to a shared ideal miRNA profile characteristic of the tissue.  

 Having verified the ability of the entire miRNA profile to correctly discriminate the 

two GBM subtypes we checked for the existence of a single score able to select the best 

linear combination of miRNA species endowed with such discriminant ability. We faced this 



A
cc

ep
te

d
 A

rt
ic

le

Molecular Oncology (2017) © 2017 The Authors. Published by FEBS Press and John Wiley 
& Sons Ltd. 

task by analyzing the same data set by a Principal Component Analysis (PCA) which allows 

for the projection of the initial 19 dimensions data set into a reduced space spanned by 

mutually independent axes (principal components) explaining the relevant (signal-like) part 

of total variance of the system. Differently from OPC that partitions the variables into disjoint 

sets, PCA is a spectral method (Preisendorfer et al., 1988) and this implies that each miRNA 

species has a score relative to each component while, at the same time, each sample has a 

peculiar correlation (loading) with all the extracted components. 

 PCA showed a clear clustering of GSC cell lines and confirmed separation between 

GSf- and GSr-like samples (Figure 1, top panel). PCA suggests a two-component solution as 

a bona fide reliable reconstruction of the 19 sample space. The percent of variation explained 

by the first two components (Factor 1, Factor 2) is reported in Table 2a. The first component 

(Factor 1) explains the far major part of system variation (77% of total variance explained), 

while the second accounts for 8.5% of total variance. Globally the two-component solution 

accounts for 85% of total information. Pearson correlation coefficients of the original 

variables (samples) with the extracted components constitute the factor-loading pattern 

(Table 2b) and allow to assign a meaning to the Factors.  

Factor 1 is a ‘size’ component (Jolicoeur and Mosimann, 1960): all the samples have values 

close to unity loadings, in line with the existence of a ‘common miRNA ideal profile’ shared 

by all the samples, possibly due to the common tissue origin. Factor 2 is a ‘shape’ component 

mirroring the ‘GSf-/GSr-like’ axis: all the GSf-like samples have negative loadings with 

Factor 2 while GSr-like loadings are positive. Thus, miRNAs with high scores on Factor 2 

point to the GSr-like phenotype whereas miRNAs with low scores identify the GSf-like 

subtype. Results of PCA for both samples (loading space) and miRNAs (score space) are 

shown in Figure 1. 
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3.2. A set of three miRNAs discriminates between GSf- and GSr-like GSC subtypes 

 Focusing on miRNAs endowed with the maximal relevance of the discriminating 

component (Factor 2), we established a threshold (Figure 1, bottom panel) corresponding to a 

score > 5 in absolute value to set a reduced signature. Since principal components have by 

construction zero mean and unit standard deviation, they correspond to z-scores, thus a 

threshold of 5 corresponds to a p < 0.00001 as far as the influence of Factor 2 (i.e. the 

discriminating component) on the selected miRNA species is concerned. Seven miRNAs 

species emerged from the application of the above threshold. The Pearson correlation 

coefficients between these seven miRNA species were computed to eliminate redundant 

miRNAs (two miRNAs having near to unity correlation need not be both inserted in the 

signature, given they carry largely redundant information). Table 3 reports the miRNAs 

correlation matrix (bolded near to unity correlations). Correlations near to unity correspond to 

miRNAs already known to be structurally related (mature sequences of miR-23a, miR-27a, 

miR-24-2 derived from a common pri-miRNA transcript encoded by miR-23a/miR27a/miR-

24-2 cluster on chromosome 19, miR-9 and  miR-9* originate from the opposite strand of the 

same precursor) (Liang et al., 2014). As expected, a statistically significant difference 

between the two groups was observed for all the seven miRNAs.  

 In order to select, for each redundant pair, the ‘best representative’ species, miRNAs 

were ordered in terms of their t-test statistics values (Table 4) and those with higher t-value 

were chosen (bolded in Table 4). At the end of this procedure a 3 miRNA signature (miR-23a, 

miR-27a and miR-9*), able to correctly cluster 18 out of 19 GSC lines collection in two 

subtypes emerged (Table 5). 

 To check the generalization ability of the selected signature, we analyzed the 

expression levels of miR-23a, miR-27a and miR-9* (now identified as miR-9-3p, 

www.mirbase.org) in both our sample set and in 18 newly established GSC lines by real-time 
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polymerase chain reaction (RT-PCR) (Supplementary Table S3), reaching a total of 37 GSC 

lines analyzed.  

 All the discriminant analyses were performed establishing a training set of 16 out of 

19 samples of known phenotype (7 GSr-like, 9 GSf-like). This set was selected to build the 

linear discriminant function, which in turn was used for predicting an independent test set 

(n=21; i.e. the 18 new GSC and the 3 remaining GSC lines previously analyzed). All the 

analyses made use of the same signature. Each discriminant analysis is reported in terms of 

its performance on both training and test sets by means of the relative confusion matrixes 

(Table 6). This analysis identified 7 out of 21 GSC lines as GSr-like subtype and the 

remaining as GSf-like subtype. 

 To confirm the predictive potential of the three miRNAs to discriminate between GSf- 

and GSr-like subtypes, the metabolite profiles of the 18 newly established GSC lines were 

analyzed by 1H NMR spectroscopy. We previously demonstrated that the GSf- and GSr-like 

clusters are differentiated by NMR spectroscopy profiles: the GSf-like, characterized by 

metabolites involved in the production of neurotransmitters such as NAA and GABA, with a 

prevalent neuronal metabolism; the GSr-like, characterized by lack of NAA and GABA and 

by high lipids, indicative of a prevalent astroglial-like metabolism (Marziali et al., 2016). 

Unsupervised cluster analysis on all GSC lines clearly separated the samples in the two 

clusters (Figure 2). According to NMR classification, the three miRNA signature was able to 

correctly clusterize 20 out of 21 samples belonging to the test set confirming the reliability of 

the miRNA signature in classifying GSC subtypes (Table 6 and Figure 2).  

 

3.3. Patient clinical features and the three miRNA signature  

 Univariate analysis in all our patient cohort (n=35), showed that post-operative 

Karnofsky Performance Status (KPS) (<70 vs > 70), O6-methylguanine-DNA 
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methyltransferase (MGMT) promoter methylation, and Phosphatase and Tensin Homolog 

(PTEN) expression were significantly associated with Overall Survival (OS) (p=0.0092, 

p=0.0167, and p=0.0284, respectively; log rank test; Supplementary Table S4). Post-

operative KPS>70, MGMT promoter methylation, and PTEN expression showed prognostic 

value also for Progression Free Survival (PFS) (p=0.0214, p=0.0440, and p=0.0485, 

respectively; log rank test; Supplementary Table S4). To analyze possible association of 

miRNA signature with clinical and pathological parameters of the donor patients, we 

distinguished GBMs that generated GSf-like cells (Group A, n=22) from those generating 

GSr-like cells (Group B, n=13) (Supplementary Table S5). Patients of group A and group B 

were homogeneous for the clinical and molecular features that hold prognostic value, such as 

age, extent of tumor resection, KPS, and MGMT methylation (Supplementary Table S1). As 

previously described (Marziali et al., 2016), EGFRvIII expression was more frequent in 

tumors generating GSr-like cultures than in those generating GSf-like cultures. There were no 

significant differences in OS and PFS between GSf- and GSr-like generating tumors (median 

OS=9 and 8 months, median PFS=5 and 4 months, p=0.5593 and 0.4921, respectively; log-

rank test; Supplementary Table S5).  

 

3.4. The three miRNA signature discriminates between Proneural and Mesenchymal 

subtypes in the TCGA cohort 

 Taking into account the potential bias of information obtained from our limited GSC 

samples, we tested the reliability of the signature in classifying GBM patients from 

completely independent sources such as the large cohort of GBM patients from TCGA. Thus, 

we explored the expression of miR-23a, miR-27a and miR-9-3p by using the Glioblastoma 

Bio Discovery Portal (GBM-BioDP software platform, http://gbm-biodp.nci.nih.gov). 

miRNA expression data were available for 429 patients, classified into the four subtypes: 
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proneural (P), neural (N), classical (C) and mesenchymal (M), as described by Verhaak and 

colleagues (Verhaak et al., 2010). As previously reported (Marziali et al., 2016), the GSf-like 

and GSr-like clusters are characterized by a “proneural” and a “mesenchymal-like” 

expression signature, respectively. Thus, we selected P (97 patients) and M (108 patients) 

from the 429 patients of the TCGA database and we performed the discriminant analyses 

according to the same scheme used for the 37 GSC lines described above. We defined a 

training set of 129 out of 205 patients of known subtype (70 M and 59 P) to build the linear 

discriminant function, which in turn was used for predicting an independent test set (n=76). 

As shown in Table 7, the analysis was able to correctly classify 30 out of 38 M patients and 

31 out of 38 P patients confirming the high predictive potential of the three miRNA signature.  

 To further validate the ability of miR-23a, miR-27a and miR-9-3p in discriminating 

between M and P GBM subtypes in the cohort of TCGA patients the GBM-BioDP software 

platform was used (Celiku et al., 2014). We found that both miR-23a and 27a were 

significantly higher in the M versus P subtype whereas miR-9-3p expression was 

significantly higher in the P versus M subtype confirming a role for these three miRNAs in 

patient stratification (Figure 3A). Similarly, using miR-23a, miR-27a and miR-9-3p 

expression levels of our collection of GSC lines, we found that miR-9-3p expression was 

significantly higher in the GSf- versus GSr-like subtype whereas, both miR-23a and miR-27a 

were significantly higher in GSr- versus GSf-like subtype (Figure 3B), confirming the 

“proneural” and “mesenchymal-like” expression signature of the GSC subtype, respectively.  

 

3.5. The three miRNA signature identifies two subtypes with different prognosis in the 

TCGA cohort of GBM patients  

In order to investigate the prognostic value of the three miRNA signature we evaluated 

whether miRNA-based classification correlated with clinical outcomes of the TCGA patients. 
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We initially classified the patients categorized as M and P subtypes, according to Verhaak’s 

criteria, for which survival data were available (n=169 out of 205). As shown in Figure 4A, 

the prognoses of the patients classified as GSr-like, were significantly worse than those 

classified as GSf-like (p=0.0032). Then, to assess the generalized power of the three miRNA 

based classification for predicting patient clinical outcome, we analyzed the whole cohort of 

TCGA patients, for which survival and miRNA expression data were available (n=429), 

irrespective of the Verhaak subtype classification. A training set of 177 patients of known 

subtype (i.e. 93 M and 84 P) was defined to build the linear discriminant function used to 

classify the remaining 252 patients (independent test set). TCGA patients identified as C 

subtype were equally distributed between GSf- and GSr-like subgroups whereas, the majority 

(2:1) of the N patients gathered in the GSf-like subtype. This analysis classified 121 patients 

as GSf-like and 131 as GSr-like subtypes. Kaplan-Meier survival analysis (Figure 4B) 

revealed that the prognoses of patients classified as GSr-like were significantly worse than 

those classified as GSf-like (p=0.042), indicating the three miRNA signature is significantly 

associated with survival.   

 

3.6. Genes involved in cancer and neurodegenerative pathways are the preferential 

targets of the three miRNA signature. 

 To explore the possible biological impact of miR-23a, miR-27a and miR-9-3p in 

GBM, we derived the potential target genes from GB-BioD. The lists of mRNAs correlating 

with selected miRNAs were then analyzed for pathway enrichment analysis by using the 

Kyoto Encyclopedia of Genes and Genomes (KEGG) present in MSigDB (GSEA online tool; 

http://www.broadinstitute.org/gsea/index.jsp). We found that the most significantly enriched 

pathways were related to cancer, apoptosis or focal adhesion. Interestingly, a significant 

association with pathways involved in neurodegenerative disease emerged, suggesting that 
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these three miRNAs may be associated to major neurodegenerative disorders such as 

Alzheimer’s and Parkinson’s diseases in addition to brain malignancies (Figure 5 and 

Supplemantary Table S6). 

  

4. DISCUSSION 

 The identification of the key cellular pathways targeted by mutation during tumor 

progression is a high priority aim in cancer research. Using global gene expression profiling, 

several research groups have categorized GBM into distinct subtypes. The proneural (P) and 

mesenchymal (M) subtypes have been identified as representative classifiers and reported to 

have both prognostic and predictive value (Colman et al., 2010; Freije et al., 2004; Li et al., 

2009; Phillips et al., 2006; Verhaak et al., 2010). 

 To date, classification of GBMs has not become part of clinical practice due mainly to 

the absence of a direct implication in the selection of a more appropriate therapy. However, 

identifying novel genetic signatures to gain better insights into the biology of cancers may 

help to develop novel therapies in the direction of precision medicine. 

 Several studies have reported miRNA profiles in GBM, highlighting the role of 

miRNAs in the progression of this disease and suggesting that miRNA signatures may be 

prognostic indicators of GBM and thus potentially, predict clinical outcome (Barbano et al., 

2014; Fowler et al., 2011; Guan et al., 2015; Kim et al., 2011; Kouri et al., 2015; Lakomy et 

al., 2011; Pang et al., 2015; Zhang et al., 2016). 
Here, we performed miRNA expression profiling of a collection of patients-derived GSC 

culture and identified a three miRNA signature (miR-23a–3p, miR-27a-3p and miR-9-3p) 

able to classify the cohort of TCGA GBM patients in two subgroups with significantly 

different overall survival.  
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 In agreement with previous data, the expression of these three miRNAs is 

significantly altered in GBM compared with normal brain tissues (Rao et al., 2010; Visani et 

al., 2014).  

 The TCGA GBM dataset showed decreased miR-9-3p and increased miR-23a and 

miR-27a expression preferentially in GBMs with a mesenchymal expression signature 

associated with a more invasive and aggressive behavior (Phillips et al., 2006). The same 

expression trends of these miRNAs were confirmed in our GSC samples.  

 Mature sequences of miR-23a, miR-27a, miR-24-2 derived from a common pri-

miRNA transcript encoded by mir-23a/mir-27a/mir-24-2 cluster on chromosome 19 (Liang et 

al., 2014). 

 Several studies have shown that miR-23a is involved in the development and 

progression of multiple types of cancers, such as gastrointestinal, colorectal, esophageal 

squamous cell, and lung cancer (Chhabra et al., 2010). Recently, the up-regulation of miR-

23a was found to be associated with glioma. It has been reported that miR-23a acts as a key 

modulator in CREB/PTEN regulated gliomagenesis (Tan et al., 2012). Moreover it promotes 

glioma cell proliferation via regulation of MXI1 (Xu et al., 2013), glioma cell invasion by 

inhibiting the expression of HOXD10 (Hu et al., 2013) and cell growth via targeting 

apoptotic protease activating factor-1 (APAF1) (Lian et al., 2013).   

 The oncogenic role of miR-27a has been confirmed by several experimental studies. 

miR-27a was significantly up-regulated in renal cell carcinoma (Nakata et al., 2015), in 

esophageal cancer (Wu et al., 2015), in gastric adenocarcinoma (Liu et al., 2009) and in 

breast cancer (Mertens-Talcott et al., 2007). miR-27a also contributes to oncogenesis by 

regulating cell cycle progression (Tian et al., 2014). It has recently been shown that miR-27a 

is overexpressed both in human glioma samples and cell lines (Yang et al., 2012).  
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 MiR-9, found to be highly expressed in the brain of vertebrates, has been 

demonstrated to play a role in the development of the nervous system, regulating key genes 

in neurodevelopment by synergizing with its complementary miR-9* (Schraivogel et al., 

2011; Yoo et al., 2009). Both miRNAs may be important GBM mediators via regulation of 

multiple distinct signaling pathways and resistance to chemotherapy. Importantly, it has been 

reported that miR-9 operate as a switch that regulates oligoneural versus mesenchymal 

decisions by suppressing mesenchymal differentiation through downregulation of JAK/STAT 

pathway (Kim et al., 2011). The same study also identified others miRNAs contributing to 

the phenotypic diversity of GBM subtypes indicating that miRNAs may be useful for GBM 

classication allowing for the development of molecular-treatment decisions and more 

accurate prognosis(Kim et al., 2011). 

Recently, the EGFRvIII/Ras/PI3K/AKT axis has been shown to exert its tumorigenic 

influence through the specific inhibition of miR-9 leading to the upregulation of the 

transcription factor FOXP1 thus providing a tumor growth advantage to EGFRvIII-driven 

tumors (Gomez et al., 2014).Interestingly, among the molecular variables characterizing our 

GSC collection, EGFRvIII expression was significantly more frequent in tumors generating 

GSr-like cultures than in those generating GSf-like cultures. However, the median overall 

survival of the donor patients that generated GSr-like cultures compared with that of the 

patients generating GSf-like cultures was not significantly different. The lack of correlation 

with clinical outcome in our patients can be ascribed both to the small number of patients 

included in the study and to limiting factors related to GSC isolation: GSC cultures were 

obtained from only one third of the tumors. This implies that the GSC paradigm cannot be 

applied in a substantial fraction of patients suffering from GBM but mainly to more 

aggressive cases, since median overall and progression free survival were significantly 

shorter in tumors that generated GSC cultures compared with those that did not (Pallini et al., 
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2008).  

 Altogether these data reinforce the concept that miRNAs are important actors in GBM 

carcinogenesis, and thus potential therapeutic targets.  

 

 5. CONCLUSIONS 

A three miRNA signature able to discriminate GSf- and GSr-like GSC phenotypes as well as, 

mesenchymal and proneural GBM patient subtypes was identified, confirming that miRNAs 

can be considered biomarkers for patient stratification. Even though clinical application of 

miRNAs either as potential therapeutics, targets or biomarkers is still at the initial phase of 

development, several ongoing studies are investigating the predictive value of single or 

multiple miRNA levels in oncology. The three miRNA signature grouping TCGA patients in 

two different classes with significant survival differences may be a promising prognostic tool 

that can improve the predictability of tumor aggressiveness. Thus, new knowledge about 

miRNAs in cancer has the potential to indicate new ways to stratify diseases and tailor an 

appropriate therapy to specific GBM patient subsets. 
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FIGURE LEGENDS 
 
Figure 1: Principal component analysis of miRNA expression identifies two distinct clusters 

of GSC-lines largely corresponding to the GSf-like/GSr-like classification described 

previously. Individual GSC samples (top) or miRNAs (bottom) are distributed into bivariate 

spaces spanned by the first two principal component loadings (top panel) and scores (bottom 

panel) respectively. 

 

Figure 2: Classification in two clusters of GSC-lines by miRNA signature reproduces the 

classification based on NMR analysis with the exception of one line. 

 

Figure 3: Box and whiskers plots of miR-9-3p (top), miR-23a (center) and miR-27a (bottom) 

expression in M and P subtype GBM samples extracted from TCGA (A) or in GSC-lines (B). 

Numbers of samples in each group is indicated in brackets. The variability represents the 

range encompassing minimum and maximum values. * and *** indicate a significant (p<0.05 

and p<0.001) difference between the two groups, respectively (Umpaired t test, two-tailed). 

 

Figure 4: Kaplan-Meier analysis shows that  among 169 GBM patients from TCGA 

prognosis was significantly worse in those classified as GSr-like than in those classified as 

GSf-like (p=0.0032) (A). The classification based on miRNA-expression applied to the whole 

cohort of 429 patients for whom survival and miRNA expression data were available, 
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irrespective of the Verhaak subtype classification, revealed that the prognoses of the GSr-like 

patients were significantly worse than those classified as GSf-like (p=0.042) (B). For this 

analysis a training set of 177 out of 429 patients of known subtype (93 M and 84 P) was 

defined to build the linear discriminant function for predicting the GSr- and GSf-like 

subtypes of the independent test set of 252 patients.  

 

Figure 5: Pathway enrichment analysis of mRNA targets of the three miRNAs included in 

the signature indicates a significant association with cell survival, cancer and cell adhesion 

but also with neurodegenerative diseases. 

 

 

 

 

 

 

 

Supplementary Information 

Supplementary Table 1. Clinical parameters: comparison between groups. 

Supplementary Table 2. Stemness features of GSC lines (CD133 and Sox2 
expression;estimated stem cell frequency evaluated by ELDA). 
 
Supplementary Table 3. Clusterization of GSC lines based on expression levels of miR-23a, 
miR-27a and miR-9-3p. 
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Supplementary Table 5. Univariate Kaplan-Meier analysis for prognosticators. 
 
Supplementary Table 6. Overlap of miRNA target genes with KEGG pathways. 
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Table 1. Cluster summary for the two subtypes 
 

 

Cluster  Variation Proportion Second 

Cluster Members Variation Explained Explained Eigenvalue

1 11 11 9.074497 0.8250 0.6826

2 8 8 6.76652 0.8458 0.5199

R-squared with 

§Own #Next 1-R**2     Variable 

Cluster  Variable Cluster Closest Ratio Label 

Cluster 1 GSC#1 0.9158 0.6729 0.2573 GSF

GSC#28 0.9454 0.5663 0.1260 GSF 

GSC#62 0.8492 0.6188 0.3955 GSF 

GSC#23P 0.9251 0.5786 0.1777 GSF 

GSC#148 0.4918 0.3335 0.7625 GSF 

GSC#83.2 0.7949 0.7244 0.7439 GSR 

GSC#70 0.7282 0.2607 0.3676 GSF 

GSC#67 0.8538 0.5345 0.3142 GSF 

GSC#68 0.9416 0.7630 0.2464 GSF

GSC#76 0.7078 0.6393 0.8101 GSF 

GSC#23C 0.9209 0.6639 0.2354 GSF 
              

Cluster 2 GSC#30PT 0.7142 0.3783 0.4596 GSR 

GSC#151 0.8917 0.6500 0.3094 GSR

GSC#147 0.8619 0.6964 0.4550 GSR

GSC#83 0.8890 0.7076 0.3795 GSR 

GSC#61 0.8113 0.4935 0.3725 GSR 

GSC#30P 0.9034 0.5170 0.2000 GSR 

GSC#74 0.9037 0.5606 0.2191 GSR 

GSC#112 0.7912 0.7170 0.7379 GSR 
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Table 2. Percent of variation (a) and loading pattern (b) of the PCA two components 
 

 

a                   
Eigenvalue Difference Proportion Cumulative

1 14.5695598  12.9073361 0.7668 0.7668

2 1.6622236  0.9878260 0.0875 0.8543
 

 

 

 

b                   
 

  

Factor 1 Factor 2

GSC#1 GSF 0.93869 -0.19860

GSC#28 GSF 0.91768 -0.33740

GSC#62 GSF 0.90229 -0.17376

GSC#30PT GSR 0.74159 0.46038

GSC#23P GSF 0.91457 -0.31932

GSC#148 GSF 0.67795 -0.13114

GSC#83.2 GSR 0.91327 -0.00270

GSC#70 GSF 0.73815 -0.59035

GSC#67 GSF 0.87964 -0.28438

GSC#151 GSR 0.90307 0.26623

GSC#147 GSR 0.91298 0.20288

GSC#83 GSR 0.92311 0.19042

GSC#68 GSF 0.96986 -0.13348

GSC#76 GSF 0.86077 -0.01324

GSC#61 GSR 0.81959 0.41098
GSC#30P GSR 0.85197 0.44001

GSC#74 GSR 0.87068 0.36793

GSC#23C GSF 0.93719 -0.21187

GSC#112 GSR 0.90372 0.09592
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Table 3. Pearson Correlation Coefficients 
 

 

 

  

                      Pearson Correlation Coefficients, N = 19
                        Prob > | r | under H0: Rho=0 

hsa-miR-9* hsa-miR-9 hsa-miR-27a hsa-miR-24 hsa-miR-29b hsa-miR-23a hsa-miR-29a 

hsa-miR-9* 1.00000 0.99076 -0.32515 -0.28202 -0.28583 -0.32931 -0.30315
hsa-miR-9* <.0001 0.17440 0.24210 0.23550 0.16860 0.20710

hsa-miR-9 0.99076 1.00000 -0.35684 -0.29708 -0.32582 -0.35608 -0.33291
hsa-miR-9 <.0001 0.13370 0.21680 0.17340 0.13460 0.16370

hsa-miR-27a -0.32515 -0.35684 1.00000 0.92851 0.41080 0.98329 0.40805
hsa-miR-27a 0.17440 0.13370 <.0001 0.08060 <.0001 0.08290

hsa-miR-24 -0.28202 -0.29708 0.92851 1.00000 0.32381 0.96156 0.31908
hsa-miR-24 0.24210 0.21680 <.0001 0.17620 <.0001 0.18300

hsa-miR-29b -0.28583 -0.32582 0.41080 0.32381 1.00000 0.38931 0.98087
hsa-miR-29b 0.23550 0.17340 0.08060 0.17620 0.09940 <.0001

hsa-miR-23a -0.32931 -0.35608 0.98329 0.96156 0.38931 1.00000 0.38926
hsa-miR-23a 0.16860 0.13460 <.0001 <.0001 0.09940 0.09950

hsa-miR-29a -0.30315 -0.33291 0.40805 0.31908 0.98087 0.38926 1.00000
hsa-miR-29a 0.20710 0.16370 0.08290 0.18300 <.0001 0.09950 
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Table 4. Pearson correlation coefficients ordered in terms of t-test value 
 

 

Variable Method Variances DF t Value Pr > | t |

      

hsa-miR-9* Pooled Equal 17 2.73 0.0143
hsa-miR-9* Satterthwaite Unequal 9.19 2.88 0.0178
hsa-miR-9 Pooled Equal 17 2.64 0.0173
hsa-miR-9 Satterthwaite Unequal 9.69 2.78 0.0201
hsa-miR-27a Pooled Equal 17 -3.17 0.0056
hsa-miR-27a Satterthwaite Unequal 8.74 -3.02 0.0151
hsa-miR-24 Pooled Equal 17 -2.66 0.0164
hsa-miR-24 Satterthwaite Unequal 8.22 -2.52 0.0349
hsa-miR-29b Pooled Equal 17 -2.18 0.0439
hsa-miR-29b Satterthwaite Unequal 8.67 -2.07 0.0697
hsa-miR-23a Pooled Equal 17 -3.43 0.0032
hsa-miR-23a Satterthwaite Unequal 8.97 -3.26 0.0098
hsa-miR-29a Pooled Equal  -2.39 0.0287
hsa-miR-29a Satterthwaite Unequal 8.9 -2.27 0.0493

 

 
Table 5. Three miRNA signature clusterization of 19 GSC lines 
 

 

        GSf-like GSr-like Total
     
GSf-like  10 0 10
  100.00 0.00 100.00
  
GSr-like  1 8 9
  11.11 88.89 100.00
  
Total  11 8 19  57.89 42.11 100.00  
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Table 6. Three miRNA signature clusterization of 37 GSC lines 
 

 

  Training set 

  GSr-like  GSf-like  Total 
       

GSr-like  7 0 7 
100.00% 0.00%  

 
GSf-like  0 9 9 

0.00% 100.00%  
 

Total  7 9 16 

Test set 

  GSr-like  GSf-like  Total 
       

GSr-like  7 0 7 
100 .00% 0.00%  

 
GSf-like  1 13 14 

7.10% 92.90%  
 

Total  7 14 21 
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Table 7. Three miRNA signature clusterization of TCGA patients 
 

 

Training set 
  M P  Total

   

M 64 6  70

91.4% 8.6%  

 

P 5 54  59

8.5% 91.5%  

 

Total  69 60  129

Test set 
  M P  Total

   

M 30 8  38

78.9% 21.1%  

 

P 7 31  38

18.4% 81.6%  

 

Total  37 39  76
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