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Aerosol processes often are modeled using the population balance equation (PBE). This article
presents a study on the simulation of particle size distribution during nanoparticle growth with
simultaneous chemical reaction, nucleation, condensation and coagulation. The method used to
reduce the population balance model is the method of moments. Under the assumption of lognor-
mal aerosol size distribution, the method of moments was employed to reduce the original model
into a set of first-order ODE’s (ordinary differential equations) that accurately reproduce important
dynamics of aerosol process. The objective of this study is to investigate if we can use the reduced
population balance model for the control of nanoparticle size distribution. The numerical result
shows there is a dependence of the average particle diameter on the wall temperatures and the
model can thus be used as a basis to synthesize a feedback controller where manipulated variable
is the wall temperature of the reactor and the control variable the aerosol size distribution at the
outlet of the reactor.

Keywords: Population Balance Equation, Method of Moments, Particle Size Distribution and
Average Particle Diameter.

1. INTRODUCTION

Physical characterization of aerosol nanoparticles is criti-
cal to the advancement of the underlying science and prac-
tical development of nanotechnologies. Nanoparticle size
must be tightly controlled to take full advantage of quantum
size effects in photonic applications, and agglomeration
must be prevented. Agglomeration can only be prevented if
the number concentrations are tightly controlled, and this
requires that the rate of new particle formation be quan-
titatively determined. The aerosol system is characterized
by large number of interacting particles which differ with
respect to certain physical and/or chemical properties such
as particle size, shape, morphology, porosity and molecu-
lar weight, which in turn, determine the physicochemical
and mechanical properties of the final product.2�3 Aerosol
growth occurs in stages, beginning with the gas phase
chemical reaction of the reactants to produce monomers
or molecules of the condensable species.1 Modelling par-
ticles with specific properties and morphologies requires
tools, which are capable of yielding accurate prediction of

∗Author to whom correspondence should be addressed.

particle size, composition and shape. To do this, method-
ologies that are able to capture the hydrothermal and hydro-
chemical interactions between the fluid and particles fields
are needed. The dynamic of nanoparticle growth is captured
by the application of population balance equation (PBE)
model which is a valuable means for simulating nanoparti-
cle formation processes.
The industrial importance of nanoparticles and the real-

ization that the physiochemical and mechanical properties
of materials made with particulate depends heavily on the
characteristics of the underlying particle size distribution
(PSD) have motivated significant research attention over
the years on modeling and prediction of the production of
particles.4 Debra and Sonia5 described a single moment
sectional model to simulate the evolution of an aerosol dis-
tribution that contains more than one chemical component.
The proposed method is based on dividing the particle
domain into X sections with time variant sections bound-
aries. Ashish and Christofides6 used the sectional model to
divide the continuous particle size distribution (PSD) into
a finite number of sections within which the size distribu-
tion function is assumed to be constant. Suddah and Mark7

used the sectional method of moment to approximate the
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continuous size distribution by a finite number of sections
or bins within which one numerically conserved aerosol
property is held constant.
An alternative to sectional methods are the more

sophisticated finite element methods. In the finite ele-
ment approach, the solution of the population balance is
expanded in series of polynomials. For the coefficients of
this expansion, a set of equations has to be solved and
this is obtained by inserting the expansion into the pop-
ulation balance equation. Various methods can be derived
by different nodes, functions, and time stepping schemes.
The mathematical discipline of functional analysis pro-
vides the theoretical framework with which errors can
be estimated. This is of course a very attractive fea-
ture of finite element methods. Baker and Christofides8

proposed a finite-dimensional approximation and control
of nonlinear parabolic partial differential equation (PDE)
systems by combining Galerkin’s method with the con-
cept of approximate initial manifolds, known as non-linear
Galerkin’s method. Alexopoulos and Kiparissides9 used
orthogonal collection of finite element methods to solve
a continuous form of general population balance equation
(PBE).
Another alternative to sectional methods for solving

the population balance equation are Monte Carlo (MC)
methods. They are easy to implement, can account for fluc-
tuations, and can easily incorporate several internal coordi-
nates. In the case of nanoparticle modelling, the number of
particles is so large that the fluctuations in particle numbers
can be neglected. The kinetic Monte Carlo (KMC) method
is used to estimate and control methodologies for surface
properties (e.g., surface roughness). Monte Carlo methods
can be easily extended to multiple internal coordinates and
for this reason they have been employed to simulate various
systems of nanoparticles. Akhtar et al.10 included two inter-
nal coordinates to describe the restructuring of the particles
and showed the time evolution of mass fractal dimension.
The least squares method (LSM) is a well-established

technique for solving a wide range of mathematical prob-
lems .The basic idea in the LSM is to minimize the inte-
gral of the square of the residual over the computational
domain, in the case when the exact solutions are suffi-
ciently smooth the convergence rate is exponential. Daora
and Jakobosen11 applied the least square method to solve
the population balance equation.
The method of moments (MOM) is computationally the

most efficient approach to obtain a numerical approxi-
mation to the moments of population balance. For this
reason, this method is often used when simulating prob-
lems where transport of particles in a flow with complex
geometry is essential. The dominant dynamic behaviour
of many aerosol processes can be accurately captured by
a model that describes the evolution of the three leading
moments of aerosol size distribution.12 The aim of this
work is to investigate if we can use the reduced popu-
lation balance model for the control of nanoparticle size

distribution. The measurement of particle size distribution
is a distinguishing feature in production of nanoparticles
because the particle size provides the critical link between
the product quality indices and the operating variables.1

Thus, the ability to effectively control the shape of the PSD
is essential for regulating the end product quality of the pro-
cess. Many applications require a close control of this dis-
tributed particle length scale in order to achieve the highest
performance.

2. PROCESS DESCRIPTION

The premixed preheated reactants (titanium tetrachloride
and oxygen gas) are injected into the reactor where fol-
lowing exothermic reaction takes place. The products of
these reactions are titania monomers and chlorine gas.

TiCl4�g�+O2�g�→ TiO2�s�+2Cl2�g� (1)

The size of a single TiO2 molecule (monomer) is larger
than the thermodynamic critical cluster size. As a result
the difference between chemical reaction and nucleation
cannot be noticed, thereby implying that the rapid chemi-
cal reaction leads to nucleation burst. The coagulation of
TiO2 monomers leads to an increase in the average particle
size and a decrease in particle concentration.

2.1. Population Balance Model

The population balance equation consists of the following
nonlinear partial integro-differential equation.3

�n

�t
+ ��G�v� z� x̄�n�

�v
+ cz

�n

�z
− I�v∗���v−v∗�

= 1
2

∫ v

o
��ṽ� v− ṽ� x̄�n�ṽ� z� t�n�v− ṽ� z� t�dṽ

−n�v� z� t�
∫ �

o
��v� ṽ�n�ṽ� z� t�dṽ (2)

The first term on the left hand side of Eq. (2) describe
the change in the number concentration of particle vol-
ume interval v, v+dv and in the spatial interval z. z+dz,
n�v� z� t� denotes the particle size distribution function, v
is particle volume, t is time, z ∈ �0�L� is the spatial coor-
dinate, L is the length of the process. The second term
on the left hand side gives the loss or gain of particles
by condensational growth, the third term on the left hand
side which is cz�n/�z corresponds to the convective trans-
port of aerosol particles at fluid velocity cz and the fourth
term on the left hand side accounts for the formation of
new particles of critical volume v∗ by nucleation rate I .
I�v∗���v−v∗�, also accounts for gain and loss of particles
by condensation. G�v� z� x̄�, I�v∗� and ��ṽ� v− ṽ� x̃� are
the nonlinear scalar functions and � is the standard Dirac
function. The mass and energy balance model which pre-
dicts the spatio-temporal evolution of the concentrations of
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species and temperature of the gas phase given by Ashish
and Panagiotis14 has the following form:

dx̄

dt
= Ā

dx̄

dz
+ f̄ �x̄�+ ḡ�x̄�b�z�u�t�+Ã

∫ �

0
a�	�v�x�dv (3)

where x̄�z� t� is an n-dimensional vector of state variables
that depends on space and time, Ā, Ã are constant matri-
ces, f̄ �x̄�, ḡ�x̄�, a�	� v� x� are nonlinear vector functions,
u�t� is the axially distributed manipulated input (e.g., wall
temperatures, Tw1 and Tw2) and b�z� is a known function
which determines how control action u�t�, is distributed
in space. The last term on the right hand side of Eq. (3)
accounts for mass and heat transfer from the continuous
phase to all the particles in population. The gain and loss
of particles by Brownian coagulation is described by the
first and second term on the right hand side of Eq. (2)
respectively.

1

2

∫ v

o
��ṽ� v− ṽ� x̄�n�ṽ� z� t�n�v− ṽ� z� t�dṽ

−n�v� z� t�
∫ �

o
��v� ṽ�n�ṽ� z� t�dṽ (4)

G�v� z� x̄� and � are the condensational growth and
collision frequency function, respectively for which two
different expressions are used for free molecule size and
continuum size regimes.13 The free molecule size regime
takes the following form:

GFM�x̄� v� z�= B1v
1/3�S−1�� where

B1 = �36
�1/3v1ns�kBT /2
m1�
1/2

�FM�x̄� v� z�= B2

(
1
v
+ 1

v

)1/2

�v1/3+ v̄1/3�2

B2 = �3/4
�1/6�6kBTv1/m1�
1/2 (5)

And the continuum size regime takes the following form:

GC�x̄� v� z�= B3v
1/3�S−1� where

B3 = �48
2�1/3Dv1ns� D = ��8kBT /
m1�
1/2/3

�C = B4

(
C�v�

v1/3
+ C�v̄�

v̄1/3

)
�v1/3+ v̄1/3�� B4 =

2kBT
3�

(6)

In Eqs. (5) and (6), T is the temperature, S is the satu-
ration ratio, D is the condensable vapour diffusivity, � is
the mean free path of the gas, � is the fluid viscosity, ns

is the monomer concentration at saturation. (ns = Ps/kBT �
where Ps is the saturation pressure), m1 is the monomer
mass, v1 is the monomer volume, r is the particle radius,
C�v�= 1+B5�/r is the Cunningham correction factor and
B5 = 1257. Lastly, the nucleation rate I�v∗� is assumed
to follow the classical Becker-Doring theory given by the
expression below (Pratisinis).15

I=n2
s s1�kBT /2
m1�

1/2S2�2/9
�1/3
1/2∑

exp�−k∗InS/2�
(7)

where s1 is the monomer surface area and k∗ is the number
of monomer in critical nucleus and is given by:

k∗ = 


6

(
4
∑

InS

)3

(8)

Where
∑= �v

2/3
1 /kBT and is the surface tension.

3. LOGNORMAL AEROSOL SIZE
DISTRIBUTION

The population balance model in Eq. (2) is highly complex
and does not allow the direct use for numerical compu-
tation of the size distribution in real-time. To overcome
this problem and to accelerate the computations, method
of moments was employed to reduce the population bal-
ance model to a set of ODEs for the moments of the
size distribution. In order to describe the spatio-temporal
evolution of the three leading moments of the volume dis-
tribution (which describes the exact evolution of the log-
normal aerosol size), a lognormal function was employed
in moment model, which was applied to population bal-
ance model.

3.1. Moment Model

We assumed that the aerosol size distribution can be
adequately represented by lognormal function which is
described as:

n�v� z� t�= 1

3v
1√

2
In�
exp

[
− In2�v/vg�

18In2�

]
(9)

where vg , is the geometric average particle volume and �
is the standard deviation. The kth moment of the distribu-
tion is defined as:

Mk�t�=
∫ �

0
vkn�v� z� t�dv (10)

According to the properties of a lognormal function,
any moment can be written in terms of M0, vg , and � as
follows:

Mk =M0v
k
g exp

(
9
2
k2In2�

)
(11)

If Eq. (11) is written for k = 0, 1, and 2, then vg and
� can exactly be expressed in terms of the first three
moments of the distribution according to the following
relations:

In2� = 1
9
In

(
M0M2

M2
1

)
and vg =

M2
1

M
3/2
0 M

1/2
2

(12)

In this subsection, the ODEs describing the temporal
evolution of the three leading moments of the size distribu-
tion for the free molecule size and continuum size regime
are presented.
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3.1.1. Free Molecule Size Regime

The ODE system that describes the spatio-temporal size
distribution of the kth moment of the aerosol size distri-
bution is computed by substituting Eq. (5) into Eq. (2),
multiplying by vk, and integrating over all particle sizes.
That gives the temporal evolution of the zeroth moment
which is affected by nucleation and coagulation:

dM0

dt
= −cz

dMo

dz
+ I −B2b0

× �M0M1/6+2M1/3M−1/6+M2/3M−1/2� (13)

where the coefficient b0 is used for the relationship:(
1
v
+ 1

ṽ

)1/2

= b0

(
1

v1/2
+ 1

ṽ1/2

)
(14)

and it was computed by the expression b0 = 0633+
0092�2−0022�3 in publication of Pratisinis.15 The evo-
lution of M1 (aerosol volume), which is affected by con-
densation is given by

dM1

dt
=−cz

�dM1�

dz
+ Iv∗ +B1�S−1�M2/3 (15)

And the second moment, M2, depends on nucleation and
coagulation according to the formula:
dM2

dt
= −cz

dM2

dz
+ Iv∗2+2B1�S−1�M5/3

+2b2B2�M7/6M1+2M4/3M5/6+M1/2M5/3� (16)

where b2 is used as b0 but for coagulation kernel of the
second moment b2 is computed by the expression: b2 =
039+05� −0214�2+0029�3 (Pratisinis15).

3.1.2. Continuum Size Regime

The spatio-temporal evolution of the kth moment of the
aerosol size distribution in the continuum regime is com-
puted by substituting Eq. (6) into Eq. (2), multiplying by
vk, and integrating over all particle sizes gives the temporal
evolution of the zeroth moment M0, M1 and M2

dM0

dt
= −cz

dM0

dz
+ I

−B4

[
M2

0 +M1/3M−1/3+B5�

(
4

3

)1/3

× �M0M−1/3+M1/3M−2/3�

]
(17)

dM1

dt
= −cz

dM1

dz
+ Iv∗ +B3�S−1�M1/3 (18)

dM2

dt
= −cz

dM2

dz
+ Iv∗2+2B3�S−1�M4/3

+2B4

[
M2

1M4/3M2/3+B5�

(
4

3

)1/3

× �M1M2/3+M1/3M4/3�

]
(19)

4. ANALYSIS OF RESULTS AND
DISCUSSION

This section describes the application of moment model
of the aerosol flow reactor for the purposes of nonlinear
control of the reactor. Under the assumption of lognor-
mal aerosol size distribution, the mathematical model that
describes the evolution of the first three moments of dis-
tribution, together with the monomer and reactant concen-
tration and temperature takes the following form.

dN

d�
=−czl

dN

dz̄
+ I ′ −�N 2

dV

d�
=−czl

dV

dz̄
+ I ′k∗ +	�S−1�N

dV2

d�
=−czl

dV2

dz̄
+ I ′k∗2+2��S−1�V +2�V 2

dS

d�
=−czl

dS

dz̄
+CC̄1C̄2− I ′k∗ −	�S−1�N

dC̄1

d�
=−czl

dC̄1

d�
−A1C̄1C̄2

dC̄2

d�
=−czl

dC̄2

d�
−A2C̄1C̄2

dT̄

d�
=−vzl

dT̄

dz̄
+BC̄1C̄2T̄ +ET̄ �T̄w − T̄ � (20)

� = �FM�C
�FM +�C

�C = K

[
1+ exp�In2��+B5�Kn1

/r ′g�

× exp
(
1
2
In2�

)
�1+ exp�2In2���

]

�FM = r ′1/2g b0

[
exp

(
25
8
In2�

)
+2 exp

(
5
8
In2�

)

+ exp
(
1
8
In2�

)]
(21)

	 = 	FM	C

	FM +	C

� 	FM = v′2/3g exp�2In2�� and

	C = 4Kn1

3
v′1/3g exp

(
1
2
In2�

)
(22)

�= �FM�C

�FM +�C

� �C = 4Kn1

3
v
′1/3
g exp

(
7
2
In2�

)
and

�FM = v
′2/3
g exp�8In2�� (23)

� = �FM�C
�FM + �C
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Table I. Dimensionless variables by Ashish and Panagioti.

N =M0/ns, V =M1/nsv1 Aerosol concentration and volume
V2 =M2/nsv

2
1 Second aerosol moment

� = �2
m1/kBT �
1/2nss1 Characteristic time for particle growth

K = �2kBT /3��ns� , Coagulation coefficient and nucleation rate
I ′ = I/�ns/��

Kn1
= �/r1 Knudsen number

v′g = vg/v1, r
′
g = rg/r1 Geometric volume and geometric radius

z̄= z/L Dimensionless distance
czl = �cz/L, � = t/� Dimensionless velocity and time

�FM = r
′1/2
g b2 exp

(
3
2
In2�

)

×
[
exp

(
25
8
In2�

)
+2 exp

(
5
8
In2�

)

+ exp
(
1
8
In2�

)]

�C = K

[
1+ exp�In2��+B5�Kn1

/r ′g�

× exp
(
−1
2
In2�

)
�1+ exp�−2In2��

]
(24)

where C̄1 and C̄2are the dimensionless concentrations of
the reactants, T̄w, T̄ are the dimensionless reactor and wall
temperature, respectively, A1, A2, B�C�E are the dimen-
sionless quantities. See Table I for dimensionless vari-
ables. Table II gives the process parameters used in the
simulation.
Dimensionless quantities for the model of Eq. (20),

according to Ashish and Panagiotis14

A1 = �kP0y20/RT0� A2 = �kP0y10/RT0

B = P0k��HRy10y20/RT
2
0 CP� C̄i = yi/y10T̄

C = Navk�y10y20�P0/RT0�
2/ns0� E = 4URT0�/DCpP0

T̄ = T /T0 and T̄w = Tw/T0

Table II. Process model parameters for the simulation study.

L= 20 m, D = 005 m Reactor length and diameter
P0 = 1 atm Process pressure
T0 = 350 K Inlet temperature
Tw = 250 K−600 K Wall temperatures
y10 = y20 = 40 ppm Inlet mole fractions of reactants
U = 104 Jm−2s−1 K−1 Overall coefficient of heat transfer
�HR = 1757 KJ mol−1 Heat of reaction
CP = 291 J mol−1 K−1 Heat capacity of process fluid
MWg = 140×10−3 kg mol−1 Mol wt. of process fluid
K = 114 m3 mol−1s−1 Reaction rate constant
�= 35×10−6 kg m−1s−1 Viscosity of process fluid
logPs�mmHg�=−4�644/T PVT relation
+0906 logT −000162T +9004 PVT relation

� = 008 Nm−1 Surface tension
v1 = 533×10−29 m3 Monomer volume
Nav = 6023×1023# mol−1 Avogrado’s constant
R= 8314 J mol−1K−1 Universal gas constant
kB = 138×10−23J K−1 Boltzmann’s constant

Fig. 1. Steady state profile of dimensionless particle number
concentration.

Figures 1 and 2 shows the steady state profile of dimen-
sionless particle number concentration, N and volume v
as a function of time. As particles collide and coagulate,
their number concentration decreases. This is revealed in
the zeroth moment M0. As the flow evolves, M0 decreases
while the particle volume is increasing. Since the control
objective is to control nanoparticle growth with desired par-
ticle distribution in high temperature reactor, we also study
the effect of wall temperature on average particle diameter.
It is a variable that could be used in industry to control the
aerosol size distribution.
Figures 3 and 4 shows the distribution of Average par-

ticle diameter and surface area with process time. Particle

Fig. 2. Steady state profile of dimensionless volume.

Fig. 3. Average particle diameter against time.

J. Comput. Theor. Nanosci. 7, 571–576, 2010 575
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Fig. 4. The total surface area against time.

Fig. 5. Average particle diameter as function of the wall temperature.

diameter in the reactor increases with increase of the pro-
cess time and the total surface area increases due to coagu-
lation. One can see from the graphs that when particles are
nucleated, a primary particle with diameter less than 2nm
is produced. After a certain number of particles have been
produced, the frequency of bi-particle collision increases,
resulting in a sharp increase in particle diameter.
Figure 5 gives the plot of the average particle diame-

ter, dp versus the wall temperature. From the Figure 5,
it is clear that the wall temperature is a variable that has
significant effect on the average particle diameter.
In the numerical investigation of the reactor wall tem-

perature on particle growth was found that the particle size
increases with increasing wall temperature.

5. CONCLUSIONS

Under the assumption of lognormal size distribution, the
method of moment was employed to reduce the popula-
tion balance model into the simpler model, describing the
evolution of the first three leading moment. This simpli-
fied model is a set of ODEs. The average particle diameter
can be increased by increasing the reactor wall temper-
ature. Based on the sensitivity of wall temperature upon
the particle diameter dp, the model can be used as a basis
to synthesize a feedback controller which manipulates the
wall temperature of the reactor to control the aerosol size
distribution at the outlet of the reactor.
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