
 
 
 
 
 
 
 
Facultad de Ciencias Económicas y Empresariales 
 
 
 
 
 

Working Paper nº 26/12 
 
 
 
 
 
 

      Term Structure Persistence 
 
 
 

Mirko Abbritti 
University of Navarra 

 
Luis Gil-Alana 

University of Navarra 
 

Yuliya Lovcha 
University of Navarra 

 
Antonio Moreno 

University of Navarra

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dadun, University of Navarra

https://core.ac.uk/display/83589674?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 

 

Term Structure Persistence 
 
Mirko Abbritti, Luis Gil-Alana, Yuliya Lovcha, Antonio Moreno 
 
Working Paper No.26/12 
December 2012 
 
 
 
 
 
 

ABSTRACT 
 
Stationary I(0) models employed in yield curve analysis typically imply an unrealistically 
low degree of volatility in long-run short-rate expectations due to fast mean reversion. In 
this paper we propose a novel multivariate affine term structure model with a two-fold 
source of persistence in the yield curve: Long-memory and short-memory. Our model, 
based on an I(d) specification, nests the I(0) and I(1) models as special cases and the 
I(0) model is decisively rejected by the data. Our model estimates imply both mean 
reversion in yields and quite volatile long-distance short-rate expectations, due to the 
higher persistence imparted by the long-memory component. Our implied term premium 
estimates differ from those of the I(0) model during some relevant periods by more than 
4 percentage points and exhibit a realistic countercyclical pattern. 
 
 
 
Mirko Abbritti 
School of Economics and Business Administration 
University of Navarra 
mabbritti@unav.es 
 
Luis Gil-Alana 
School of Economics and Business Administration 
University of Navarra 
alana@unav.es 
 
Yuliya Lovcha 
School of Economics and Business Administration 
University of Navarra 
ylovcha@unav.es 
 
Antonio Moreno 
School of Economics and Business Administration 
University of Navarra 
antmoreno@unav.es 



Term Structure Persistence

Mirko Abbritti∗ Luis Gil-Alana† Yuliya Lovcha‡

Antonio Moreno§

∗Economics Department, University of Navarra
†Economics Department and ICS, University of Navarra
‡Economics Department, University of Navarra
§Corresponding Author: Economics Department, Edificio de Amigos, University of Navarra, 31009

Pamplona, Spain. Phone # +34 948425600 Ext. 802330. Fax # +34 948425626. e-mail:
antmoreno@unav.es.



Abstract

Stationary I(0) models employed in yield curve analysis typically imply an unreal-

istically low degree of volatility in long-run short-rate expectations due to fast mean

reversion. In this paper we propose a novel multivariate affine term structure model with

a two-fold source of persistence in the yield curve: Long-memory and short-memory. Our

model, based on an I(d) specification, nests the I(0) and I(1) models as special cases and

the I(0) model is decisively rejected by the data. Our model estimates imply both mean

reversion in yields and quite volatile long-distance short-rate expectations, due to the

higher persistence imparted by the long-memory component. Our implied term premium

estimates differ from those of the I(0) model during some relevant periods by more than

4 percentage points and exhibit a realistic countercyclical pattern.
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1 Introduction

The yield curve contains a wealth of information about key current and expected macro-

finance developments. As a result, academics and policy makers continue to be intrigued

about the source of its changes and dynamics. In particular, the yield curve contains

relevant information about the future expected short-term interest rates as well as the

investors’ risk attitudes towards the different maturities along the yield curve. In fact,

researchers often decompose yields at longer maturities into a weighted average of current

and expected future short-rates, also known as the risk-neutral rate, and a risk premium,

also known as term premium.

In models of the term structure of interest rates, there are typically three crucial

elements determining short-rate expectations and the associated term premiums on long-

term bonds: The short-term process itself, the dynamics followed by the factors in the

short-rate process and the risk compensations required by the investors’ exposures to the

risk factors. In this paper we propose a flexible multivariate state process characterizing

the dynamics of the factors: A Vector Auto-Regressive Fractionally Integrated Moving

Average (VARFIMA) process which generalizes standard stationary and non-stationary

processes and which can accommodate the two alternative kinds of persistence, long-

memory and short-memory.

Our proposed model provides several economic and methodological advantages with

respect to previous studies. Economically, our long-memory model has the potential to

generate more volatile and realistic long-horizon expectations of the short-rate without

implying explosive dynamics for the short-rate. As was originally shown by Shiller (1979),

purely stationary I(0) models imply unrealistically flat distant expectations of the short-
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rate because of the fast mean reversion.1 This is a very unfortunate feature of these

models as it implies that changes in distant forward rates are mechanically attributed

to term premium changes, even when there is evidence that distant expectations of the

short-rate can be instrumental for these changes. In this sense, our model can derive a

more realistic measure of the term premium, a variable of extraordinary importance for

policy makers (see Bernanke (2006)).

On the methodological front, our model allows for a rich two-fold persistence structure

(long and short-memory) characterizing term structure factors and is able to impart

a very high persistence to term structure dynamics. Moreover, our model nests I(0)

and I(1) term structure models, is more flexible than standard approaches based on

integer degrees of differentiation, endogenously estimates the orders of integration of the

factors and identifies term premium. In this way, we do not have to choose the orders of

integration of the term structure factors -and yields themselves- ex-ante.

We embed our VARFIMA model for factors in a standard affine term structure model

and perform a battery of comparisons with respect to a simple I(0) VAR structure for

factors. We estimate our model with U.S. quarterly data using the short-term interest

rate and the unemployment rate as factors and the I(0) model is soundly rejected. We

show that the volatility of 10-year short-rate expectations is around 100% higher in the

VARFIMA term structure model. This wedge brings about important differences in term

premium identification, sometimes involving more than 4 percentage points. In our esti-

mation, the I(0) long-maturity term premium exhibits a clear downward trend for most

of the sample, whereas that implied by the VARFIMA appears clearly countercyclical.

These two term premiums have very different policy implications.

1This point has later been illustrated in a variety of contexts by Kozicki and Tinsley (2001),
Gürkaynak, Sack, and Swanson (2005), Backus and Wright (2007), Cochrane and Piazzesi (2008) and
Gil-Alana and Moreno (2012).

2



Two recent papers relating term structure models with fractional integration are

Golinski and Zaffaroni (2011) and Gil-Alana and Moreno (2012). The first paper esti-

mates two univariate fractionally integrated processes in order to separately identify the

real rate and expected inflation components in the term structure, whereas the second

one explores the consequences of univariate long memory in the short-rate in order to

uncover the relation between the term premium and macro dynamics. The present paper

is more general as it shows a novel methodology to estimate multivariate fractionally

integrated models of the term structure. As extensively shown in the term structure

literature, dynamic multivariate relations among factors are key in order to characterize

yield curve dynamics. While the factors used are the short-term interest rate and the

unemployment rate, our methodology can flexibly accommodate other macroeconomic,

international or financial factors. Moreover, it can be used to estimate non-affine term

structure models, as those estimated in Duffee (2011). It can also accommodate alter-

native estimation techniques for the prices of risk, such as those recently proposed by

Joslin, Singleton, and Zhu (2011) and Hamilton and Wu (2012).

As recently shown by Bauer, Rudebusch, and Wu (2012b), implied persistence in

estimated short-memory-only models can exhibit severe downward biases due to small-

sample problems, thus justifying bias-correction adjustment. While both fractional in-

tegration and bias-correction in I(0) models impinge more persistence to term structure

dynamics than estimated I(0) models, these two approaches are conceptually very dif-

ferent. Bias-correction addresses a well-known statistical problem, the downward bias

in estimated persistence, whereas fractional integration is a statistical approach which

can be economically motivated on aggregation grounds. For instance, the aggregation

of inflation sub-indexes can give rise to a fractionally integrated inflation rate, as shown

in Altissimo, Mojon, and Zaffaroni (2009). Since interest rates are intimately related to
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the inflation rate, they can exhibit long-memory, as we show in the paper. We compare

both empirical approaches and show that while fractional integration delivers more per-

sistence than the I(0)-bias corrected model, bias correction closes an important part of

the persistence gap between the I(0) and the fractionally integrated model. In our data

setting, with unemployment and the short-rate as factors, the fractional approach deliv-

ers more similar degrees of persistence across subsamples, thus providing a very stable

identification of the term premium.

In a related article, Jardet, Monfort, and Pegoraro (2011) apply the “averaging estima-

tors” technique devised by Hansen (2007) to identify the term premium. This method,

based on local-to-unity asymptotics, involves performing weighted averages of an I(0)

VAR and a cointegrated I(1) model based on the prediction performance of each model.

Therefore, this approach is also based on the I(0)/I(1) dichotomy, not taking into account

fractional alternatives. Interestingly, and despite the clear methodological differences, our

estimated term premium displays quite similar countercyclical dynamics to the ones de-

rived by Jardet, Monfort, and Pegoraro (2011) and Bauer, Rudebusch, and Wu (2012a).

The paper proceeds as follows. In Section 2, we illustrate some of the implications

of stationary I(0) dynamics for factors in the context of an affine term structure model.

In Section 3, we derive our term structure model with factors displaying short and long-

memory persistence. Section 4 shows the empirical results, emphasizing the relevant

differences between our fractionally integrated model and the I(0) counterpart. Section

5 concludes.
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2 A Stationary Affine Term Structure Model

In the term structure literature, factors determining yield curve dynamics are typically

assumed to be stationary I(0) (see Ang and Piazzesi (2003), Gürkaynak, Sack, and Swan-

son (2005) and Bekaert, Cho, and Moreno (2010), among others).2 In fact, researchers

routinely reject models with unit roots for interest rates because they may imply negative

interest rates and explosive interest rate dynamics. To understand the influence of fac-

tor dynamics on the entire term structure of interest rates, we consider a discrete-time,

no-arbitrage, affine term structure model (ATSM) of the sort employed by Cochrane and

Piazzesi (2008).

ATSMs typically display stationary dynamics through the q × 1 state process vector

(Yt), which can be modeled as an I(0) VAR(1) with constant variance without loss of

generality (a companion matrix form can nest higher VAR orders):3

Yt = µ+ ΩYt−1 + Ξεt εt ∼ N(0, I). (1)

Let p
(n)
t represent the price at time t of an n−period zero-coupon bond, and let i

(n)
t =

− log
(
p
(n)
t

)
/n denote its yield. If mt+1 denotes the nominal pricing kernel, bond prices

can be recursively expressed as:

p
(n)
t = Et

(
mt+1p

(n)
t+1

)
. (2)

2There are of course some exceptions. An incomplete list includes Campbell and Shiller (1987), who
assume that yields are I(1), or Ang and Bekaert (2002) and Ang, Bekaert, and Wei (2008), who assume
regime switches for interest rates.

3An I(0) vector process is defined as a covariance stationary vector with spectral density matrix that
is finite and positive definite.
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Under conditional log-normality in the pricing kernel (mt+1), we have that:

mt+1 = exp

(
−rt −

1

2
λ′tλt − λ′tεt+1

)
, (3)

where λt = λ0 + λ1Yt, the set of prices of risk, is an affine function of the vector of state

variables. In turn, λ0 and λ1 are a q × 1 vector and a q × q matrix, respectively.

The short-rate process can be expressed as:

it = δ0 + δ′1Yt, (4)

where δ0 is a scalar and δ1 is a q × 1 vector. Bond prices are then found as in Wright

(2011):

p
(n)
t = exp (An +B′nYt) , (5)

where An is a scalar and Bn is a q × 1 vector, satisfying the recursive equations:

An+1 = −δ0 + An +B′n(µ− Ξλ0) +
1

2
B′nBn (6)

B′n+1 = B′n (Ω− Ξλ1)− δ′1 (7)

with A1 = −δ0, B1 = −δ1. As a result, this model characterizes the entire yield curve as:

i
(n)
t = an − b′nYt, (8)

where an = −An

n
and bn = −B′

n

n
.

As the discussions in Cochrane and Piazzesi (2008), Jardet, Monfort, and Pegoraro

(2011) and Gil-Alana and Moreno (2012) illustrate, the stationarity I(0) assumption for

the factors is at all not innocuous and carries controversial implications for the char-
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acterization of term structure dynamics. In particular, one discomforting feature of the

stationary I(0) model is its relatively rapid mean reversion towards the interest rate mean

in forecasting exercises. As a result, long-term expectations of the short-rate -needed to

compute both the risk-neutral rate and the implied term premium- tend to display too

little volatility.

To make this point transparent, in Figure 1 we plot the expectations of the short-

rate (3-month T-Bill rate) 10 years out implied by our estimated I(0) VAR model for

factors and compare it with the one-quarter ahead expectations. The I(0) full ATSM is

estimated with the quarterly unemployment rate, the three and six-month T-Bill rates,

downloaded from the FRED database, and with the quarterly zero-coupon bond (one to

ten year) rates retrieved from the updated Gürkaynak, Sack, and Wright (2007) database

from 1971:3Q to 2011:2Q (the data available when we started writing the article). We

assume that the vector of factors Yt consists of the demeaned unemployment and short-

term (3-month) rates. Thus, Yt = [ut, rt]
′. As a result, δ0 = 0 and δ1 = [0, 1]′. The

short-rate captures the level of the yield curve, whereas the unemployment rate closely

follows the yield slope dynamics. The estimation strategy of the ATSM follows the two-

step procedure outlined in Wright (2011). We first estimate the optimally selected VAR

for the Yt vector (VAR(3) according to the Schwarz BIC criterion) and then minimize

the square difference between actual and model-implied yields to identify the prices of

risk (see also section 4). Table 1 shows the term structure model parameter estimates.

Figure 1 shows that while the one-quarter-ahead expectations of the 3-month rate are

much more volatile than the 10-year-ahead short-rate expectations, which are quite close

to the historical average. In Figure 2 we plot the standard deviation of the short-rate

expectations across forecast horizons. There is an exponential decay intrinsically related

to the rapid mean reversion of short-term forecasts. It is important to note the radical
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Figure 1: Short-term rate expectations (I(0) model)

76 81 86 91 96 01 06 11
0

5

10

15

 

 
1-quarter-ahead
10-year-ahead

Note: This figure plots the expectations of the short-rate (3-month) one-quarter and 10-years ahead

implied by the I(0) ATSM (Affine Term Structure Model).
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Table 1: Parameter Estimates: VAR I(0) ATSM

Ω11 1.4675 (0.0839) Ξ11 0.2966 (0.0207) λ0,1 0.1827 (0.0741)

Ω12 0.2127 (0.0920) Ξ21 -0.1080 (0.0212) λ0,2 -1.1488 (0.0257)

Ω21 -0.2201 (0.0749) Ξ22 0.2418 (0.0353) λ1,11 -0.1166 (0.0307)

Ω22 0.6615 (0.0822) λ1,12 0.2355 (0.0177)

Ω13 -0.2964 (0.1443) λ1,21 -0.2280 (0.0089)

Ω14 0.0197 (0.1176) λ1,22 0.1161 (0.0127)

Ω23 0.2009 (0.1289)

Ω24 0.0213 (0.1050)

Ω15 -0.2205 (0.0839)

Ω16 -0.1733 (0.0935)

Ω25 0.0062 (0.0749)

Ω26 0.2990 (0.0839)

This table shows the full-sample (1971:3Q-2011:2Q) estimates of the I(0) ATSM (Affine Term Structure

Model) parameters. Associated standard errors appear in parentheses. The first and second sets of

estimates correspond to the coefficient estimates of the state process for factors (demeaned unemployment

and short-rate, respectively), a VAR(3): Yt = Ω1Yt−1+Ω2Yt−2+Ω3Yt−3+Ξεt. The third set of estimates

show the price of risk estimates associated with the factors.
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difference between these forecasts and those which would be implied by an I(1) model for

the short-rates, whose standard deviations are essentially fixed across forecast-horizons.

The previous figures clearly show that as the forecasting horizons lengthen, expec-

tations of the I(0) and I(1) models diverge. So then, which one is the correct model-

ing assumption? One alternative is to formally test for the order of integration of the

short-rate. Most tests in fact fail to reject the null of a unit root, but they are how-

ever plagued with small-sample problems and lack of power.4 Faced with this arbitrary

choice, researchers typically feel more comfortable with the mean-reverting non-explosive

I(0) model. As we show in the next section, there is another way out of this cross-roads:

Let the data simultaneously determine the (possibly fractional) order of integration of

the term structure factors and simultaneously identify both the short-rate expectations

and the term premium.

3 A Fractionally Integrated Affine Term Structure

Model (FIATSM)

In this section, we first describe a type of long-memory process, denoted fractional inte-

gration and then embed this structure into a standard affine term structure model. As we

show below, an important advantage of our modeling strategy is that we can potentially

avoid the lack of variability of long-horizon interest rate expectations while retaining

interest rate mean reversion.

4It is well-known that in small samples unit root tests have very low power against alternative such as
trend-stationary models (DeJong, Nankervis, Savin, and Whiteman (1992)), structural breaks (Campbell
and Perron (1991)), regime-switching (Nelson, Piger, and Zivot (2001)), or fractional integration (Diebold
and Rudebusch (1991), Hassler and Wolters (1994), Lee and Schmidt (1996)).
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Figure 2: Volatility of short-rate expectations as a function of the forecast
horizon (I(0) model)
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Note: This figure plots the volatility of the short-rate (3-month) expectations series implied by the I(0)

ATSM (Affine Term Structure Model) as a function of the forecast horizon measured in quarters.
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3.1 Fractional Integration

Fractional integration lets the data decide the order of integration of macro-finance vari-

ables. This order could be zero, a fraction between zero and one, one or even above one.

In the fractional integration setting, if a demeaned variable xt has an order of integration

d, (d ∈ R), it is denoted as xt ∼ I(d) and can be expressed as:

(1− L)dxt = µt t = 1, 2, . . . , (9)

with xt = 0, t ≤ 0. µt is assumed to be an I(0) process, defined as a covariance stationary

process, with a spectral density function that is positive and finite at the zero frequency.

Thus µt can be a stationary ARMA process. We can express (1 − L)d as the following

binomial expansion:

(1− L)d =
∞∑
j=0

 d

j

 (−1)jLj =

(
1− dL+

d(d− 1)

2!
L2 − d(d− 1)(d− 2)

3!
L3 . . .

)
.

(10)

The representation of xt in (9) can then be approximated for any real d, as:

(
1− dL+

d(d− 1)

2!
L2 − d(d− 1)(d− 2)

3!
L3 . . .

)
xt = µt, (11)

which is the infinite auto-regressive representation of the process. Alternatively, the

process can also be expressed in terms of an infinite moving average process. While d

captures the long-memory component of the series, µt describes the short-run dynamics

through its ARMA structure. The literature on fractional models like (9) has recently

emerged in macroeconomics and finance. Some examples are Diebold and Rudebusch

(1989), Baillie and Bollerslev (1994) and Gil-Alana and Robinson (1997). If d = 0,
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the series is a covariance stationary process and possesses ‘short memory’, with the

autocorrelations decaying fairly rapidly. If d = 1, the series is a non-stationary I(1)

process. But in a fractional framework there are more alternatives available for the order

of integration of xt. If d belongs to the interval (0, 0.5), xt is still covariance stationary,

but both the autocorrelations and the response of a variable to a shock take much longer

to disappear than in the standard (d = 0) stationary case. If d = 0 and µt follows an

AR process, the decay in the autocorrelations is exponentially rapid compared with the

I(d, d > 0) case, where the decay is hyperbolic. If d ∈ [0.5, 1), the series is no longer

covariance stationary, but is still mean reverting, with the effect of the shocks dying away

in the long-run.

In our case, the fractional differencing parameter d plays a crucial role for our un-

derstanding of the dynamics of the short-term rate expectations. In particular, an I(0)

model for the factors typically implies long-run expectations which are very close to the

historical mean, thus making the term premium dynamics very similar to the actual

long-rate. In contrast, if at least one of the factors follows an I(1) process, then the

long-rate expectations of the short-rate mimic the current short-rate. While there may

be economic reasons to postulate each one of these two alternatives, this choice is always

essentially arbitrary. In this paper, we circumvent this problem by estimating the actual

integration order of the factors from the data, and thus the implied yield curve dynamics,

allowing it to be of a fractional order.

Even though most of the methodologies developed for fractional integration focus on

univariate models, multivariate methods have also been developed, and, though they have

been much less used than their univariate counterparts, they are extremely useful in our

context as will be shown below. Multivariate I(d) models have been mainly developed in

the context of fractional cointegration (see, e.g., Robinson and Hualde (2003)), requiring,
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in our bi-variate context, that the two variables display the same degree of integration.

However, in our work, we do not impose a priori the existence of any long-run equilibrium

relationship among the factors, and consider a simple fractional VAR specification. To our

knowledge, this is the first paper to introduce a VARFIMA model into a term structure

model, as we show in the next subsection.

3.2 Affine Structure

We first introduce the process for the state vector and then derive implications for affine

bond pricing in an ATSM. As a new contribution to the affine term structure litera-

ture, we let the vector of factors follow a bi-variate VARFIMA (Vector Auto-Regressive

Fractionally Integrated Moving Average) process of form:

DYt = µ+ ζt, (12)

where D is a (2× 2) diagonal matrix of form:

D =

 (1− L)d1 0

0 (1− L)d2

 , (13)

and d1 and d2 are the (potentially) fractional orders of integration of the factors. ζt is a

(2×1) stationary I(0) vector of errors. We can further assume that ζt follows a stationary

VAR(1) process, such as:

ζt = Ωζt−1 + Θηt, (14)

where ηt ∼ N(0, I). Notice that we can rewrite our model for the factors as:

DYt = (I − Ω)µ+ ΩDYt−1 + Θηt. (15)
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Applying the fractional integration filter in D in both sides of the equation, we can

rewrite the system as an infinite sum of lags of the Yt vector:

Yt = (I − Ω)µ+
∞∑
i=1

Υi(d,Ω)Yt−i + Θηt, (16)

where, importantly, the coefficient matrices Υi depend on the vector of long-memory (d)

and short-memory (Ω) parameters. As a result, our model for the factors combines both

long and short-memory dynamics and nests the purely I(0) and I(1) models as special

cases of interest. If we truncate the sequence of coefficient matrices Υi at i = k, we can

express the factor dynamics in companion form as:

Yt = µ̃+ ΓYt−1 + Σνt, (17)

where Yt is a 2k × 1 vector
(
Yt = [Y ′t , Y ′t−1, ..., Y ′t−k+1]

′), νt is a 2k × 1 vector(
νt = [η′t, 01×2(k−1)]

′), and the 2k×1 µ̃ vector and the 2k×2k Γ matrix are, respectively:

µ̃ =



(I − Ω)µ

0

...

0


, Γ(d,Ω) =



Υ1 Υ2 Υ3 . . . Υk

I 0 0 . . . 0

...
...

... . . .
...

0 0 . . . I 0


. (18)

Σ is also a 2k × 2k matrix with zeros everywhere except in the upper-left 2 × 2 block,

which is equal to Θ.

Notice that the persistence implied by the VARFIMA model is dependent on the

truncation lag, as seen in the definition of the matrix Γ. Alternative values of k can give

rise to different degrees of persistence in the model dynamics and, as a result, the choice

of k is a non-trivial decision. In our empirical exercise we choose a value of k which
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captures the persistence of the model fairly well and compare the implied persistence for

alternative values of k.

The implied equations for the short-rate, bond prices and yield curve dynamics are

analogous to those of the I(0) ATSM (equations (4) to (8)), with Yt instead Yt. Addi-

tionally, δ1 and Bn are 2k×1 vectors, whereas λ0 is now a 2k×1 vector and λ1 is a 2k×2k

matrix. In contrast to the I(0) ATSM, An and Bn depend on both the short-memory

and long-memory parameters embedded in Γ.

4 Data and Estimation Strategy

We work in the quarterly frequency with the unemployment rate and the end-of-quarter

three and six-month T-Bill rates, downloaded from the FRED database, and with the

one to ten-year zero-coupon rates, from the updated database elaborated by Gürkaynak,

Sack, and Wright (2007). Our full sample covers the 1971:Q3 - 2011:Q2 period.

As mentioned above, we choose the demeaned 3-month T-Bill rate and the unem-

ployment rate as the two factors because they capture the level and slope of the yield

curve, two key factors in the identification of the term structure. We also note that

our FIATSM setting can accommodate essentially any set of factors but principal com-

ponents, because these are constructed on the basis of contemporaneous yields alone.

Since the FIATSM includes lags as factors and yields are exact functions of factors in

the no-arbitrage framework, this would be inconsistent with the construction of principal

components.

The vector of prices of risk is defined as λt = λ0 + λ1Yt. To avoid parameter prolif-
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eration, the time invariant part of prices of risk is restricted to the first two elements:

λ0 = [λ
(1)
0 λ

(2)
0 0 . . . 0]′.

Furthermore, prices of risk sensitivities are restricted to contemporaneous components,

i.e., the λ1 matrix becomes:

λ1 =

 λ̃1 02×2(k−1)

02(k−1)×2 02(k−1)×2(k−1)

 .

Our two-step estimation approach is similar to that employed by Wright (2011).

Key to our strategy is the first-step estimation of the VARFIMA model outlined in the

previous section. The elements in Γ, containing the long-memory parameters in D and

the short-memory ones in Ω, and Σ are estimated following the maximization of the

Whittle function, which is an approximation of the likelihood function, in the frequency

domain, as outlined in the Appendix. Since the short-rate is a factor itself, δ0 = 0 and

δ1 is a vector of zeros except for the contemporaneous response to the short-rate, where

there is an entry with a value of 1.

The remaining parameters, the prices of risk, are estimated in a second step by

minimizing the sum of squared differences between actual and fitted yields, that is:

{
λ̂0, λ̂1

}
= arg min

λ0,λ1

∑
t

∑
n

(
i
(n)
t − ĩ

(n)
t

)2
, (19)

where ĩ
(n)
t = an + b′nYt are the model implied yields, and where Yt is truncated at lag

k = 20. Alternative higher values of k yielded almost identical results. Having estimated

the model parameters, short-term expectations and term premiums at various horizons
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can be easily computed.

5 Results

In the first part of this section, we present results for the full sample of the FIATSM

model and compare them with those obtained in the I(0) exercise. We then compare

the persistence implied by the FIATSM and that in the I(0) ATSM with and without

bias-correction, for the full sample and for alternative subsamples.

5.1 Full Sample Results

Table 2 shows the estimates of our Fractionally Integrated ATSM (FIATSM) for the

full sample (1971:3Q to 2011:2Q). The order of integration of the unemployment rate

is 0.76, statistically significantly different from zero and one, whereas that of the short-

term interest rate is 0.91, significantly different from 0, but not from 1. Thus, while

the factors exhibit significant long-memory, the implied process for the term structure of

interest rate is mean reverting. Interestingly, the I(0) model for factors is clearly rejected

in the data. Because the long-memory part exhibits great persistence, the short-memory

component of the FIATSM displays less persistence than its I(0) ATSM counterpart. As

a result, much of the persistence previously shown by the I(0) model is actually due to

the long-memory component and our flexible FIATSM captures this fact.

The model fits the yield curve very well with a low root-mean-square fitting error

(0.0069), lower than the I(0) ATSM (0.0074). Indeed, predicted yields track actual yields

very closely across the whole term structure of interest rates. This is a well-known

common finding in the ATSM literature, which our model shares with its I(0) counter-
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Table 2: Parameter Estimates: FIATSM

d1 0.7624 (0.1269) Θ11 0.3133 (0.0176) λ0,1 0.0333 (0.0636)

d2 0.9116 (0.0882) Θ21 -0.1155 (0.0216) λ0,2 -1.0935 (0.0164)

Ω11 0.7962 (0.0943) Θ22 0.2531 (0.0142) λ1,11 0.0609 (0.0337)

Ω12 -0.1401 (0.0592) λ1,12 0.0615 (0.0173)

Ω21 -0.1793 (0.1080) λ1,21 -0.1226 (0.0090)

Ω22 0.2199 (0.1017) λ1,22 0.0595 (0.0377)

This table shows the full-sample (1971:3Q-2011:2Q) estimates and standard errors of the FIATSM (Frac-

tionally Integrated Affine Term Structure Model) parameters. Associated standard errors appear in

parentheses. The first and second sets of estimates correspond to the coefficient estimates of the state

process for factors (demeaned unemployment and short-rate, respectively): DYt = ζt, ζt = Ωζt−1+Θηt.

The third set of estimates show the price of risk estimates associated with the factors.
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parts. Figure 3 compares the implied intercepts and factor loadings of our FIATSM

with those implied by the I(0) ATSM. These coefficients are quite similar with the small

difference that the I(0) ATSM loadings on the short-term rate are slightly higher across

maturities.5 The mean term structure is upward sloping and loads positively on both

the unemployment rate and the short-term rate. However, while the loadings on the

short-rate negatively depend on the maturity, the loadings on the unemployment rate

are higher at the long end of the yield curve. This is an interesting finding, showing

that uncertainty about the state of the economy translates into higher long-term yields.

Given the similarity of the estimated coefficients, a first conclusion emerges: Both the

I(0) and the fractionally integrated models fit equally well the cross-section of yields. So

where are the differences?

The two ATSMs clearly differ in the persistence implied by their state processes.

Table 3 shows that while the first eigenvalue is 0.9951 for the VARFIMA, it is 0.9822

for the I(0) VAR. Moreover, the second eigenvalues are 0.9877 and 0.7525 respectively.

Thus, the VARFIMA imparts substantially more persistence to state dynamics than the

I(0) model and this brings up some stark differences in terms of the implications of the

I(0) and FIATSM models, as we will now show.

Figure 4 performs an analogous exercise to Figure 1, but now with our FIATSM. It

compares the one-quarter-ahead and 10-year-ahead expectations of the short-rate. Unlike

the I(0) model, the two FIATSM expectation processes are not too different and this is

due to the persistence implied by the FIATSM, which incorporates long-memory to yield

dynamics. To emphasize this important point, Figure 5 compares the standard deviations

of short-rate expectations across forecast horizons. It shows that short-rate expectations

5Notice that our FIATSM implies factor loadings on both contemporaneous and past values of the
factors in Yt. Thus, we add the contemporaneous factor loadings and the associated ones for all lags
when graphing the three factor loadings in our FIATSM. If we only account for the contemporaneous
factor loadings in the FIATSM, results are still quite similar to the I(0) ATSM.
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Figure 3: Factor loadings of the ATSMs
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Note: This figure compares the factor loadings of the I(0) ATSM (Affine Term Structure Model) and the

FIATSM (Fractionally Integrated Affine Term Structure Model). The FIATSM determines the yields

as: i
(n)
t = an + b′nYt, with

(
Yt = [Y ′t , Y ′t−1, ..., Y ′t−k+1]′

)
and Yt = [ut rt]

′. In the case of the

I(0) ATSM, Yt = Yt. The maturity of the yield is measured in quarters and shown in the x-axis.
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Table 3: System Eigenvalues

Sample VARFIMA(100) VARFIMA(20) I(0) VAR I(0) VAR-bc

1971:3-2011:2 0.9990 0.9951 0.9822 0.9947

1985:1-2011:2 0.9935 0.9792 0.9412 0.9538

1986:1-2011:2 0.9951 0.9819 0.9368 0.9558

1987:1-2011:2 0.9955 0.9831 0.9495 0.9794

1988:1-2011:2 0.9955 0.9837 0.9407 0.9778

1989:1-2011:2 0.9968 0.9867 0.9267 0.9678

1990:1-2011:2 0.9969 0.9871 0.9200 0.9638

This table shows the highest eigenvalues associated with the estimation of the three state-systems for

the full sample and alternative subsamples: the Fractionally Integrated VAR (VARFIMA) under two

truncation schemes (20 and 100 lags), the I(0) Vector Auto-Regression (VAR) and the bias-corrected

I(0) VAR.
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are clearly more volatile in the FIATSM across forecast horizons, especially at longer

ones. This implies expectations which are much closer to actual rates than those implied

by the I(0) ATSM.

Figure 6 shows the impulse response functions of both the 1-year and 10-years interest

rates, as well as of the spread between the 10-year and 3-month interest rate, to the

unemployment and the interest rate shocks for both the I(0) ATSM and the FIATSM. It

shows important differences. In particular, following the unemployment shock, the short-

rate decrease is stronger and considerably more persistent under the FIATSM, whereas

the long-rate increases persistently, in contrast to the I(0) ATSM. As a result, the spread

notably and persistently increases following the unemployment shock. Responses are

more similar following the interest rate shock, with the spread experiencing an initial

decline but reverting back to normal after 10 quarters.

Figure 7 plots the five-year-ahead-five-year term premium for both the I(0) ATSM

and the FIATSM. This is computed as the difference between the model-implied five-

to-ten-year forward rate and the average expected three-month interest rate from five

to ten years hence. While both term premiums are mildly positively correlated (0.32),

there are some significant departures across term premiums in relevant periods of time.

For instance, in the late 70s and early 80s, the term premium implied by the FIATSM

becomes negative and sometimes 4 percentage points below its I(0) counterpart. Also,

during the recent credit crisis, the FIATSM term premium is more than two percentage

points above the I(0). Importantly, the FIATSM produces a term premium significantly

more countercyclical, and thus more reasonable, than the I(0) model.

This figure captures a key idea of the paper: The I(0) model implies long-run short-

rate expectations which are very close to the historical mean, producing term premiums

very much correlated with the forward rates. This is very clear all throughout the sample,
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Figure 4: Short-term rate expectations (FIATSM)
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Note: This figure plots the expectations of the short-rate (3-month) one-quarter and 10-years ahead

implied by the FIATSM (Fractionally Integrated Affine Term Structure Model).
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Figure 5: Volatility of short-rate expectations as a function of the forecast
horizon

0 5 10 15 20 25 30 35 40
1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4

 

 

FIATSM
I(0) ATSM

Note: This figure compares the volatility of the short-rate (3-month) expectations series implied by

the I(0) ATSM (Affine Term Structure Model) and the FIATSM (Fractionally Integrated Affine Term

Structure Model) as a function of the forecast horizon measured in quarters.
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Figure 6: Yield Curve Impulse Response Functions
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Note: This figure shows the impulse response functions of the 1-year rate, 10-year rate and interest rate

spread (10-year minus 3-month) to positive unemployment (left) and interest rate (right) shocks for both

the FIATSM (Fractionally Integrated Affine Term Structure Model) and the I(0) ATSM.
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Figure 7: Term Premiums

Note: This figure plots the implied five-year, five-year ahead forward term premiums implied by the

I(0) ATSM (Affine Term Structure Model, in thin line) and the FIATSM (Fractionally Integrated Affine

Term Structure Model, in thick line) models. The term premium is computed as the difference between

the model-implied five-to-ten-year forward rate and the average expected three-month interest rate from

five to ten years hence.
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until the 2008 crisis; see for instance the downward trend starting in the early 80s. In

stark contrast, the FIATSM does not exhibit this trend. Since it fully accounts for the

high persistence embedded in the whole term structure, it produces volatile expectations

of the short-rate even many years ahead.

In order to shed intuition on the sources of term premium dynamics, Figure 8 com-

pares the impulse response functions of the term premiums implied by the FIATSM

and the I(0) ATSM following the unemployment and interest rates shocks, respectively.

Structural shocks are recursively identified assuming that the short-rate does not con-

temporaneously affect unemployment. The figure shows that in the FIATSM, the term

premium increases persistently after an unemployment shock, reflecting the idea that

more uncertainty about the real economy makes investors more risk averse to long-term

bonds. In the I(0) ATSM setting, the effect is substantially lower, less persistent and dis-

appears after ten quarters. In contrast, the effect of the short-rate shock on the FIATSM

term premium is small, negative and not-statistically significant, whereas the response of

its I(0) counterpart is positive and statistically higher. Our results thus imply that term

premium dynamics are mostly driven by real factors.

5.2 Relation with Bias-Correction in I(0) Models

In recent papers, Bauer, Rudebusch and Wu (2011, 2012) have shown that bias-correcting

in an I(0) ATSM setting also imparts more persistence to fitted term structure dynamics

and implies more realistic and counter-cyclical term premiums. In this subsection we

explore the relation between our fractional integration approach and bias correction in

an I(0) framework for our original sample and additional subsamples.

First we discuss the effect of lag-truncation on the implied persistence of the VARFIMA
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Figure 8: Term Premium Impulse Response Functions
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Note: This figure shows the impulse response functions of the term premium responses following unem-

ployment and interest rate shocks for both the FIATSM (Fractionally Integrated Affine Term Structure

Model) and the I(0) ATSM.
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model. Table 3 compares the maximum eigenvalues implied by two different truncations:

20 and 100 lags. As explained in section 3, the persistence implied by the VARFIMA

model is dependent on the truncation lag. Accordingly, the table shows the maximum

eigenvalues of the VARFIMA implied by the two truncation lags. For the full sample, the

maximum eigenvalues are similar across truncations and thus the implied term structure

dynamics also are. For alternative subsamples, the eigenvalues differ a bit more. As a

result, the decision on the truncation lag for these subsamples is a non-trivial one and has

important implications on term structure persistence and term premium identification.

In practice, whenever the discrepancy is large, researchers should go with the highest lag

length in order to capture the persistence implied by the VARFIMA.

Table 3 compares the highest eigenvalues of the two VARFIMA models with the ones

implied by the optimally selected I(0) VAR model, with and without bias-correction.

In order to estimate the bias-corrected I(0) VAR, we perform the following bootstrap

exercise. We construct 1,000 synthetic samples bootstraping from the original error

terms of the I(0) model. We then re-estimate the model 1,000 times, yielding 1,000 sets

of parameter estimates. Given the mean of this set, we correct the original estimates and

compute the maximum eigenvalue of the system.

Comparing across specifications, Table 3 shows that there is a consistent downward

bias in the implied persistence of the originally estimated I(0) model. Indeed, in the full

sample, the maximum eigenvalue of the I(0)-bias corrected VAR practically converges

towards that of the fractionally integrated model. To graphically illustrate this point,

Figure 9 shows the impulse responses of unemployment and the short-term interest rate

following the respective structural shocks under the three modeling frameworks: I(0)

VAR, VARFIMA (with 100 lags) and bias-corrected-I(0) VAR. Shocks are identified

recursively, assuming that unemployment does not react contemporaneously to interest
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rate shocks. The figure clearly shows across impulse responses that the VARFIMA model

provides more persistence to macro-finance dynamics in comparison to the I(0) model.

It also shows that the bias-correction in the I(0) model closes part of this gap.

We further elaborate on this point by estimating the state variable systems (I(0) VAR,

I(0)-bias corrected VAR and VARFIMA with the two truncation lags) for alternative

subsamples. In particular, we perform the analysis on six subsamples starting at six

different times (1st quarter of 1985, 1986, 1987, 1988, 1989 and 1990) and ending all in

the second quarter of 2011. Starting with the second row, Table 3 shows the implied

maximum eigenvalues of alternative systems. Across samples, the results appear very

robust: the VARFIRMA consistently implies a very high degree of persistence across

truncation lags, significantly higher than the I(0) VAR, whereas the I(0)-bias corrected

VAR closes some of this gap. In any event, this bias correction never reaches the level of

persistence of the VARFIMAs (especially that with 100 lags).

Overall, the VARFIMA implies a higher degree of term structure persistence than

the I(0) model, even accounting for bias-correction. This is surely due to its parametric

structure which can accommodate richer dynamics. Additionally, and again conditional

on our dataset for factors, we show that the VARFIMA exhibits greater stability in the

term premium identification than its counterparts, as it delivers a very stable degree of

persistence across the samples. This can be an important point for policy makers because

they are likely to use alternative sample periods when identifying the key term premium

variable in the context of parametric models.
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Figure 9: Impulse Response Functions
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Note: This figure shows the impulse response functions of the two term structure factors following the

two structural shocks using the VARFIMA, I(0) VAR and I(0) VAR-bias corrected models in the full

sample (1971:3Q-2011:2Q).
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6 Conclusions and Extensions

In a well-known speech, Bernanke (2006) warned economic analysts that the monetary

policy implications of a change in long-term yields crucially depend on its source. An

increase in the long-rates due to higher expected short-rates would have very different

implications for policy than if it is due to a higher term premium. In short, when a

long-rate hike follows an increase in the term premium, the situation calls for a monetary

policy expansion, whereas the opposite is true if it follows an increase in expected future

short rates. While both expected future short-rates and the term premium are unobserv-

able, their dynamics can be extracted from a well-defined term structure model. In this

paper, we have proposed an affine model based on a dynamic multivariate model that

incorporates both long and short-memory components. Our model estimates imply that

term structure persistence is well characterized by such combination, with long-memory

providing a great deal of volatility to the expectations of the short-rate, even in a context

of mean-reversion. Interestingly, the persistence implied by our fractionally integrated

multivariate model is very stable across subsamples, which is key for stability of term

premium identification.

The methodology presented in this paper is quite general and can be applied in sev-

eral directions. First, we can include almost any set of additional relevant macro-finance

variables in order to examine the structural shocks affecting term premium dynamics as

well as the effects of term premium shocks on these macro-finance variables. Second,

while the application presented here focuses on an affine term structure model, it can

be easily applied to non-affine models. We can then assess the differences across models

and test their relative forecasting ability. Finally, we can extend the analysis to an inter-

national setting. While several papers have studied the relation between the home term

structure and international factors (see, for instance, Diebold, Li, and Yue (2008)), all
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these applications suffer from the fast-mean-reversion problem in short-rate expectations,

associated with the stationary I(0) contexts.
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Appendix: VARFIMA Estimation Procedure

The frequency domain approach to estimating the model parameters is based on the

maximization of the Whittle function, which is an approximation to the likelihood func-

tion. The approximation was originally proposed by Whittle (1953) for scalar-valued

stationary processes; see also Dunsmuir and Hannan (1976). The discussion of the mul-

tivariate version can be found in Hosoya (1996).

To derive the frequency domain log-likelihood function, assume for the moment that

the process for Yt = [ut, rt]
′, t = 1, ..., T is Gaussian. Denote the vector of parameters

to estimate by θ. It contains the parameters of fractional integration in the two factors,

short memory parameters and the parameters from the variance-covariance matrix of the

error term. The 2× 2 spectral density matrix of the process Yt, fY (ω, θ) is given by:

fY (ω, θ) = (2π)−1D
(
e−iω

)−1
fζ (ω)D

(
eiω
)−1

, (20)

where D (eiω) is a 2× 2 diagonal matrix with the diagonal elements given by (1− eiω)
dk ,

dk is a fractional order of integration of the k−th factor, and where the complex conjugate
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of D (eiω) is D (e−iω); fζ (ω) is defined as:

fζ (ω, θ) =
(
I − F (e−iω)

)−1
Σ
(
I − F (eiω)

)−1
(21)

where F (eiω) = F1e
iω+F2e

2iω+ ...+Fpe
piω and p is a number of lags in the short-memory

polynomial.

The finite Fourier transforms wi (ωj, Yi,t) based on finite observations Yi,t, i = 1, 2 and

t = 1, 2, . . . , T , are given by:

w (ωj, Yi) =
1√
2πT

T∑
t=1

Yi,te
−iωj(t−1) (22)

where the frequencies ωj = 2πj
T

, j = 0, 1, ..., T/2 − 1 are chosen equispaced on [0, π] in

such a way that fY (ω, θ) is continuous at ω = ωj.

The approximate log-likelihood function of θ based on Y is given up to constant

multiplication, by:

lnL (ω, θ) = −
T/2−1∑
j=0

[
ln det fY (ωj, θ) + trf−1Y (ωj, θ) IT (ωj, Y )

]
(23)

with the 2 × 2 cross-periodogram matrix IT (ωj, Y ). Each element kl, k, l = 1, 2 of this

matrix is given by:

IklT (ωj, Y ) = w (ωj, Yk)w (ωj, Yl)
∗ , (24)

where w (ωj, Yi) is the tapered Fourier transform based on finite observations Yi,t, i = 1, 2,
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t = 1, ..., T and w (ωj, Yi)
∗ is its complex conjugate.6

In such a way, for each j, the elements of the main diagonal (k = l = i) are points

of the periodogram of yi,t at frequency ωj, which are real numbers. The off-diagonal

elements (k 6= l) are points of the cross-periodogram, which are complex. Note, that the

element (k, l) is the complex conjugate of the element (l, k).

6We use taper with Parzen weights because we suspect non-stationarity (in levels) or anti-persistence
(after taking the first difference) of the data. As shown by Velasco and Robinson (2000), the estimates
from the Whittle maximum likelihood are still consistent and asymptotically normal for long range
dependence if the periodogram is computed from the tapered Fourier transform.
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