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Testing for Persistence with Breaks and Outliers in South African House Prices 

Luis A. Gil-Alana*,  Goodness C. Aye** and Rangan Gupta*** 

Abstract 

This study examines the time series behaviour of South African house prices within a 

fractional integration modelling framework while identifying potential breaks and outliers. 

We used quarterly data on the six house price indexes, namely  affordable, luxury, middle-

segment (all sizes, large, medium and small sizes), covering the periods 1966:Q1-2012:Q1 for 

the different middle-segments, 1966:Q3-2012:Q1 for the luxury segment and 1969:Q4-

2012:Q1 for the affordable segment. In general, there is persistence in South African house 

prices with breaks identified. Our results show that in the cases of affordable and luxury, 

shocks will be transitory, disappearing in the long run, while for the remaining four series of 

the middle-segment, shocks will be permanent. Hence, for the middle-segment series strong 

policy measures must be adopted in the event of negative shocks, in order to recover the 

original trends. 

Keywords: House prices, persistence, breaks, fractional integration, South Africa  

JEL Classification: C16 R21 

 

1.  Introduction 

Housing accounts for a large share of household expenditures and assets and a significant part 

of economic activity. Around half the net wealth of private households in the US and other 

developed countries such as the UK consists of real estate, of which the own home constitutes 

a substantial part (Schindler, 2012). In South Africa, housing accounts for 29.4% of 
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household assets and 21.68% of total wealth (Das et al., 2011). By affecting the net wealth of 

households and their capacity to borrow and spend, as well as profitability and employment in 

the construction and real estate industries, developments in house prices have major economic 

implications (Maier and Herath, 2009; Posedel and Vizek, 2010). Monetary policy moves 

may translate to mortgage market rate changes; housing demand may change during the 

business cycle and housing might be a hedge against inflation (Demary, 2010, Inglesi-Lotz 

and Gupta, forthcoming). Asset price bubbles have potential negative effects on the economy. 

The departure of asset prices from fundamentals can lead to inappropriate investments that 

decrease the efficiency of the economy (Mishkin, 2007). Furthermore, the origin of the 

current global financial crisis has quite clearly demonstrated the importance of the housing 

market for the financial system and the economy. The importance of housing is also reflected 

in the great number of papers published on house price modelling. 

Understanding the time series behaviour of house prices is critical in the assessment of 

the impact of house price shocks and structural breaks on households, firms and the general 

economy. Further, house intermediaries rely on price series to manage their activity, therefore 

investigating the statistical characteristics of prices is of paramount importance for their 

management (Garcia and Raya, 2011). Two important features commonly observed in house 

price data are persistence across time and breaks in the series (Alexander and Barrow, 1994; 

Gil-Alana and Barros, 2012). Persistence is a measure of the extent to which short term 

shocks1 in current market conditions lead to permanent future changes (MacDonald and 

Taylor, 1993; Malpezzi, 1999).  Modelling the degree of persistence is important in that it 

reflects the stability of the macroeconomic variable of the relevant country (Holmes and 

Grimes, 2008; Barros et al. 2011). Furthermore, the persistence of house price shocks may be 

                                                            
1A shock is an event which takes place at a particular point in the series, and it is not confined to the point at 
which it occurs (Gil-Alana and Barros 2012). 
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transmitted to other sectors and macroeconomic aggregates. Such shocks could be transitory 

or persistent.2 A prior knowledge of the persistent behaviour of house prices can help real 

estate agents reap the benefit of positive effects, or avoid the drawbacks of a negative effect 

(Gil-Alana and Barros, 2012). Information on persistence is critical for policy decisions in the 

event of an exogenous shock, when different policy measures have to be taken depending on 

the degree of persistence (Himmelberg et al., 2005).  

 The definition of persistence is inadequate without considering the influence of breaks 

and outliers. Ignoring structural changes may have effects on statistical inference as well as 

investment allocation implications.  On statistical grounds, it is shown that ignoring structural 

breaks in financial or economic time series can have persistence or long memory effects 

(Mikosch and Stărică, 2004, Hillebrand, 2005) and can have implications about the existence 

of higher order unconditional moments such as kurtosis or tail index (Mikosch and Stărică, 

2004; Andreou and Ghysels, 2005) as well as forecasting (Pesaran and Timmerman, 2004). 

From an economic perspective, structural breaks can affect the returns and volatility of an 

economic time series, risk management measures as well as asset allocations (Andreou and 

Ghysels, 2005, 2006, 2009; Horváth, et al., 2006; Pettenuzzo and Timmerman, 2011). Breaks 

and outliers in house price data may reflect shocks in house prices due to changes in monetary 

or fiscal policies, fluctuations in world prices, financial liberalization and other major 

economic events. If house prices are stationary I(0), shocks to house prices will be transitory 

and following major structural breaks in house prices, the price of houses will return to its 

original equilibrium with the disruptions only having a temporary impact. However, if house 

                                                            
2 A shock is considered to have a transitory or short term effect, if after a number of periods the series returns 
back to its original performance level. On the other hand, a shock is considered to have a persistence or long 
term impact if its short run impact is carried over forward to set a new trend in performance. A shock is known 
to have a transitory or short term effect, if after a number of periods the series returns back to its original 
performance level. On the other hand, a shock is known to have a persistence or long term impact if its short run 
impact is carried over forward to set a new trend in performance. 
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prices contain a unit root (i.e., if it is nonstationary I(1)), shocks to house prices will have 

persistent effects with the disruptions in the housing prices having a permanent impact on 

economic activity (Gil-Alana and Barros, 2012). 

Several researches have been conducted on house prices for various economies around 

the world.3  Although, the basic objective of most of these studies is not to test for unit root 

characteristics of house prices, most of these studies usually perform preliminary analysis to 

determine the unit root characteristics of house prices and in some cases investigate 

cointegrating relationships between regional house prices. As far as South Africa, our country 

of study is concerned, a number of studies have been conducted for the housing sector 

focusing on forecasting housing prices or the impact of monetary policy on housing prices or 

“ripple” effects or the impact of housing prices on consumption and output or the hedging 

property of housing or the short and long-run relationship between house and stock prices (a 

few recent examples: Gupta and Das, 2008; Das et al.,  2009; Gupta et al., 2010; Das et al., 

2010; Balcilar et al., 2011; Das et al., 2011; Simo-Kengne et al., 2012; Aye et al., 

forthcoming; Balcilar et al., forthcoming; Iglesi-Lotz and Gupta, forthcoming; Peretti et al., 

forthcoming). However, none of these studies except Gil-Alana and Barros (2012) 

investigated fractional integration and breaks together for housing. Therefore, this study 

extends the previous studies on South Africa based on I(0) and I(1) hypotheses to the 

fractional I(d) case, which, in turn, permits the examination of the dependence of house prices 

between periods. Specifically, we employ a fractional integration model adopted by Caporale 

and Gil-Alana (2007; 2008) and Gil-Alana and Barros (2012) which incorporates breaks and 

outliers in the analysis of South Africa’s house price persistence.  

 

                                                            
3 For a detailed literature review in this regard, refer to Gil-Alana and Barros (2012) and Peretti et al., 
(forthcoming).  
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2.  Methodology 

One characteristic of many economic and financial time series is their nonstationary nature. 

There exists a variety of models to describe such nonstationarity. Until the 1980s a standard 

approach was to impose a deterministic (linear or quadratic) function of time, thus assuming 

that the residuals from the regression model were stationary )0(I . Later on, and especially 

after the seminal work of Nelson and Plosser (1982), there was a general agreement that the 

nonstationary component of most series was stochastic, and unit roots (or first differences, 

)1(I ) were commonly adopted. However, the )1(I  case is merely one particular model to 

describe such behaviour. In fact, the number of differences required to get )0(I  may not 

necessarily be an integer value but any point in the real line. In such a case, the process is said 

to be fractionally integrated or )(dI . The )(dI  models belong to a wider class of processes 

called long memory. We can define long memory in the time domain or in the frequency 

domain. 

Let us consider a zero-mean covariance stationary process ,...}1,0,{ ±=txt with 

autocovariance function )( uttu xxE +=γ . The time domain definition of long memory states that 

∞=∑
∞

−∞=u
uγ .  Now, assuming that tx  has an absolutely continuous spectral distribution, so that 

it has spectral density function 
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the frequency domain definition of long memory states that the spectral density function is 

unbounded at some frequency in the interval ],0[ π . Most of the empirical literature has 
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concentrated on the case where the singularity or pole in the spectrum takes place at the 0-

frequency. This is the standard case of )(dI models of the form: 

,)1( tt
d uxL =−      ,...,1,0 ±=t                    (2) 

where L  is the lag-operator )( 1−= tt xLx and tu is )0(I defined, as a covariance stationary process 

with spectral density function that is positive and finite at the zero frequency. The polynomial 

dL)1( − in equation (2) can be expressed in terms of its binomial expansion, such that, for all 

real d , 
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In this context, d plays a crucial role since it indicates the degree of dependence of the time 

series: the higher the value of  d is, the higher the level of association will be between the 

observations (Barros et al. 2011). The above process also admits an infinite Moving Average 

(MA) representation such that 

,
0
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=  

and )(xΓ represents the Gamma function. Thus, the impulse responses are also clearly affected 

by the magnitude of d, and the higher the value of  d is, the higher the responses will be. If  d 

is smaller than 1, the series is mean reverting, with shocks having temporary effects, and 

disappearing in the long run. On the other hand, if 1≥d , shocks have permanent effects unless 

strong policy actions are adopted. Processes with 0>d  in equation (2) display the property of 
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“long memory”, characterised because the spectral density function of the process is 

unbounded at the origin. However, fractional integration may also occur at other frequencies 

away from 0, as in the case of seasonal or cyclical models. 

In this study, we estimate the fractional differencing parameter d using the Whittle 

function in the frequency domain (Dahlhaus, 1989) along with a testing procedure developed 

by Robinson (1994) that permits us to test the null hypothesis 00 : ddH = in equation (2) for 

any real value 0d , where tx in equation (2) can be the errors in a regression model of the 

form: 

,tt
T

t xzy += β        ,...,2,1=t          (3) 

where ty  is the observed time series, β  is a )1( ×k vector of unknown coefficients and tz is a 

set of deterministic terms that might include an intercept (i.e., 1=tz ), an intercept with a 

linear time trend )),1(( T
t tz = , or any other type of deterministic processes such as dummy 

variables to examine the potential presence of outliers/breaks.4 

On the other hand, it has been argued that fractional integration may be a spurious 

phenomenon caused by the presence of breaks in the data (Cheung, 1993; Diebold and Inoue, 

2001; Giraitis et al., 2001; Mikosch and Stărică, 2004; Granger and Hyung, 2004, Ohanissian 

et al, 2008). Thus, we also employed a procedure that determines endogenously the number of 

breaks and the break dates in the series. This method, of Gil-Alana’s (2008), is based on 

minimising the residual sum of the squares at different break dates and different (possibly 

fractional) differencing parameters.5 The general model can be described as follows: 

;tt
T

it xzy += β     ,)1( tt
d uxL i =−      ,,...,1 i

bTt =    ,,...1 nbi =      (4) 

                                                            
4 This method is described in appendix 1 of Gil-Alana and Barros (2012). 
5 This method is described in appendix 2 of Gil-Alana and Barros (2012). 
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where nb  is the number of breaks, ty is the observed time series, the si 'β  are the coefficients on 

the deterministic terms, the sdi '  are the orders of integration for each sub-sample, tu is )0(I

and the sT i
b ' correspond to the unknown break dates. Given the difficulties in distinguishing 

between models with fractional orders of integration and those with broken deterministic 

trends, it is important to consider estimation procedures for fractional unit roots in the 

presence of broken deterministic terms (Barros et al., 2012). 

 

3.  Data and Empirical Results 

We used seasonally adjusted quarterly house price indexes, with the data being obtained from 

the Amalgamated Bank of South Africa (ABSA). ABSA categorizes housing into three price 

segments, namely luxury (ZAR 3.5 million – ZAR 12.8million), middle (ZAR 480,000 – 

ZAR 3.5 million) and affordable (below ZAR 480,000 and area between 40 square metres - 

79 square metres). The middle-segment is further categorized into three more segments based 

on sizes, namely large-middle (221 square metres – 400 square metres), medium-middle (141 

square metres – 220 square metres) and small-middle (80 square meters – 140 square meters). 

Thus, six house price indexes (affordable, luxury, middle class (all sizes, large, medium and 

small sizes)) are analysed in this study, and plotted in Figure 1. The different middle-

segments of housing covers the period of 1966:Q1-2012:Q1, while the luxury and the 

affordable segments start from 1966:Q3 and 1969:Q4 respectively, and ends at 2012:Q1. We 

observe that all series increase across the sample period, and for the last four (middle class) 

we notice that the values stabilizes at around the year 2007. 

[Insert Figure 1 about here] 

In order to account for the main features of the data (i.e. their degree of dependence 

across time), we start by estimating the fractional differencing parameter d for each series. For 
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this purpose, we employed a parametric approach, using the equations (2) and (3) with zt = 

(1,t)T, t ≥ 1, (0, 0)T otherwise, i.e., we consider the following model, 

;tt xty ++= βα        tt
d uxL =− )1(         (5) 

where ty is the observed time series (log-price index), α  and β  are the coefficients 

corresponding to an intercept and a linear trend respectively, and tu  is supposed to be I(0). 

However, given the parametric nature of the method employed (Dahlhaus, 1989; Robinson, 

1994) we need to specify a model for tu  in (5). We first assume tu  is a white noise 

disturbance, then we assume autocorrelated errors, and finally, given the quarterly nature of 

the series examined, we suppose tu  follows a seasonal AR(1) process. In the case of 

autocorrelated (non-seasonal) errors, we employed the model of Bloomfield (1973), which is 

basically an approximation to ARMA processes with a reduced number of parameters. 

On the other hand, we consider the estimates of d  for the three standard cases 

examined in the literature, i.e., the case of no regressors, i.e. 0== βα  in (5), an intercept (α

unknown and 0=β ) and an intercept with a linear time trend (α  and β unknown in (5)). We 

report the estimates of d along with the 95% confidence band of the non-rejection values of d

using Robinson’ s (1994) parametric approach. This method uses model (5) and tests the null 

hypothesis, 00 : ddH = , for 0d  equal to any real value. We tried with 0d  = 0, 0.001, …, 2, i.e., 

from 0 to 2 with 0.001 increments, reporting in parenthesis the subset of non-rejection values 

of 0d . 

Table 1 reports the results for white noise disturbances; Table 2 refers to the case of 

Bloomfield autocorrelated disturbances, while Table 3 displays the results for quarterly 

seasonal AR(1) errors. The first thing we observe across the three tables is that the results are 

very similar in the three cases of no regressors, an intercept, and an intercept with a linear 

trend. Moreover, the time trend is required in the six series under autocorrelated (Bloomfield) 
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disturbances. However, with white noise or seasonal AR disturbances, the time trend is not 

statistically significant in some of the series. 

[Insert Tables 1 - 3 about here] 

Performing some diagnostic tests on the residuals of the selected models, (not reported) the 

results indicate that the model with Bloomfield disturbances seems to be the most appropriate 

in all cases, since no additional evidence of serial correlation is present. 

Focusing on this model (Table 2) we notice that for all except one series (affordable) 

the unit root null (i.e. d = 1) cannot be rejected. For luxury, the estimated value of d is smaller 

than 1 (d = 0.887), while for the four middle class series, d is above 1. Nevertheless in all 

these cases the confidence intervals include the value of 1. A different picture emerges for 

affordable. Here, the estimated value of d is 0.338 and the unit root is rejected in favour of 

mean reversion (d < 1). As a conclusion, in the event of an exogenous shock in the price index 

of affordable, its effect will be transitory, disappearing in the long run. On the other hand, for 

the remaining series, the unit root cannot be rejected and shocks are expected to be 

permanent. Therefore, different policy measures must be adopted in affordable compared with 

the other cases. In the former, there is no need of strong measures in the event of an 

exogenous shock since the series will return by itself to its long run projection. 

 Next we examine the stability of the fractional differencing parameter d across the 

sample period, and in particular, after the crisis in 2007. We consider recursive estimates of  d 

(and their corresponding 95% intervals), starting with a sample ending at 2006Q4, and then 

adding successively one observation each time till the end of the sample in 2012Q1. The 

results are displayed in Figure 2. In general the results are rather stable across the sample 

period, noting no significant differences across the estimates in each series. 

[Insert Figure 2 about here] 
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Moreover, performing Gil-Alana’s (2008) approach we do not find evidence of breaks with 

different fractional differencing parameters in any of the series. Using a similar methodology, 

we focus exclusively on changes in the deterministic terms. The general model used here is 

the following; 

;*)(*])[**(*)()( tt xTtITtTtIty +>−++≤+= βαβα   tt
d uxL =− )1(    (6) 

where )(xI is the indicator function, and *T is the time of the break. We estimate d for all 

potential *T  removing the first ten and the last ten observations to avoid extreme cases, 

choosing the value of d that produces significant coefficients for the deterministic terms with 

the smallest test statistic in absolute value with Robinson’s (1994) method. 

The results indicate that there is no break in the case of affordable, and one single 

break in the remaining series, occurring at 1969Q4 in the case of luxury, and at 2007Q4 for 

the four middle class series. Results are displayed across Tables 4-6. Table 4 refers to the case 

of white noise errors; Table 5 to Bloomfield autocorrelated disturbances and Table 6 to 

seasonal AR(1) errors. The results are consistent in the three cases: *α  and *β are both 

statistically insignificant for affordable, implying the existence of a single trend in this series; 

β  is insignificant for Luxury; and *β is statistically insignificant in the four middle segment 

series. 

[Insert Tables 4 – 6 about here] 

Again, we observe that the most significant results are those based on Bloomfield-type 

disturbances (Table 5). Therefore, we summarize the main results in the table: for two series, 

the estimated value of d is smaller than 1 and the unit root is rejected in favour of mean 

reversion (d < 1). These series are Affordable and Luxury. For the former, the estimated value 

of  d is 0.388 implying covariance stationary. For the latter, d is equal to 0.781 so the series is 

nonstationary. In any case, in the two cases, shocks will be transitory, disappearing in the long 
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run, and faster in the case of affordable. For the remaining four series (middle-segment), the 

estimated value of  d  is slightly above 1 and the unit root null cannot be rejected implying the 

permanent nature of the shocks. In these series strong measures must be adopted in the case of 

negative shocks in order to recover the original trends. 

Focusing on the deterministic terms, we observe that for affordable a linear trend is 

required. For luxury, the trend starts at 1970Q1; and for the four middle-segment series, the 

trend becomes flat at the end of 2007. The estimated trends are displayed in Figure 3. 

[Insert Figures 3 and 4 about here] 

A potential interpretation of our results is that the bubble is exploited in the case of the 

Middle class series in 2007 but this does not happen in the cases of affordable and luxury.  

Figure 4 displays the log-series from 2007Q1 till 2012Q1. We observe that in the 

cases of affordable and luxury, the values continue increasing during this period. However, in 

case of the middle-segment series, the values start stabilizing. Table 7 displays the price 

indexes in the two periods along with the growth rate experienced. We see that the highest 

increases correspond to affordable and luxury (36.28% and 25.06% respectively), much 

higher than those corresponding to the middle-segment series. 

[Insert Table 7 about here] 

 

4.  Conclusion  

This study adopts a fractional integration model which incorporates breaks and outliers in the 

analysis of house prices in South Africa. This is a deviation from previous studies on South 

African house prices based on stationary I(0) or non-stationary I(1) models. Specifically, we 

present different specifications based on fractional integration, first with no breaks, and then 

allowing for breaks to describe time series dependence of South African house prices. Our 

analysis is also conducted with different specifications for the disturbance term. Our results 
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show evidence of long memory (d > 0) in all house prices, with orders of integration ranging 

widely from 0.388 to 1.173 depending on the series under study and the specification of the 

error term, but with mean-reversion for the affordable and the luxury segments of the housing 

market. Note that, the price of the affordable segment is controlled by the government, so 

even though the house price is persistent within this category, in the long-run it tends to revert 

back to its mean value. At the other end of the market, the mean reversion for the luxury 

segment is, perhaps, an indication of the smaller number of demanders and suppliers 

interacting in these markets, resulting in correction of the deviation of the house price from its 

mean value, but at a slower rate than the affordable segment, since the price is determined 

freely in the market of the luxury segment. Very high persistence and the lack of mean 

reversion for the different categories of the middle-segment housing, is likely due to a fall out 

of large number of economic agents (both on the supply and demand sides) operating in this 

market, and, hence the difficulty in getting the market cleared up immediately after a shock to 

the economy. It takes time for buyers and sellers of existing houses to find each other, and 

also for developers to bring new houses to market after an increase in demand and to work off 

inventories when demand weakens. Also, as indicated by Inglesi-Lotz and Gupta 

(forthcoming), the middle-segment of the housing market provides a hedge against inflation, 

since housing within this segment is not only viewed as a consumption good, but also as an 

investment opportunity, resulting in a large number of continuous transactions, with agents 

taking advantages of the hedging opportunities.         

Focusing on changes in the deterministic terms, the results indicate that there is no 

break in the case of affordable, and one single break in the remaining series, occurring at 

1969Q4 in the case of luxury, and at 2007Q4 for the four middle-segment series. The 2007 

break date corresponds to the global financial crisis. Mean reversion is obtained in the case of 

affordable and luxury with their orders of integration strictly below 1, which indicates that 
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shocks are transitory and mean reverting, disappearing in the long run. For the remaining four 

series, the orders of integration are slightly above 1 and the null of unit root cannot be rejected 

implying that shocks are permanent and the series are persistent. Focusing on the 

deterministic terms, we observe that for affordable a linear trend is required. For luxury, the 

trend starts at 1970Q1; and for the four middle-segment series, the trend becomes flat at the 

end of 2007. This implies that the bubble is exploded in the case of the middle class series in 

2007 but this does not happen in the cases of affordable and luxury. Our results have 

important policy implications: First, taking first differences of affordable and luxury house 

prices under the assumption of a unit root could lead to series that are over-differenced and 

subsequently such a procedure may result in inappropriate policy actions. Second, in the event 

of a negative shock, strong policy measures will have to be adopted to revert the middle-

segment house prices to their original trend whereas affordable and luxury series will not 

require strong policy measures as they will return to their equilibrium levels over time, 

Finally and perhaps more importantly, given that South Africa is an inflation targeting 

country,6 the persistence property of house prices is of paramount importance, since it is 

likely to affect the persistence property of the aggregate inflation of the economy, as pointed 

out by Gupta and Hartley (forthcoming) through their results that house prices lead inflation 

(and real economic activity). Increase (decrease) in house prices following an increase 

(decrease) in housing demand, would lead to an increase (decrease) in residential investment, 

which in turn, would cause aggregate demand to increase (decrease) resulting in inflationary 

(deflationary) pressures. Now, depending on which segment of the housing market the shock 

originates from, the behaviour of the inflation in the economy is going to be different: while, 

                                                            
6 Since the announcement made by the minister of Finance in the February of 2000, the sole objective of the 
South African Reserve Bank (SARB) has been to achieve and maintain price stability. More specifically, the 
SARB has now adopted an explicit inflation targeting regime, whereby it aims to keep the Consumer Price Index 
(CPI) inflation within the target band of 3 percent to 6 percent, using discretionary changes in the Repurchase 
(Repo) rate as its main policy instrument. 
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the impact of a house price increase on domestic inflation would be persistent but mean 

reverting if the shock originates in the luxury and affordable segments, the effect on inflation 

would be permanent if the shock is observed in the middle-segment, which in any event is 

likely to be the case, since the dominant proportion of the South African population resides in 

middle-segment housing. Clearly then, the response of the monetary authority in terms of the 

adjustment to the policy rate to affect inflation appropriately, is closely tied to which segment 

of the housing sector the shock in house price surfaces from, with likely changes in the policy 

rate if house prices changes in the middle-segment.  
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Figure 1: Log-transformed time series 
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Affordable  Luxury  
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Figure 2: Recursive estimates of d with data ending at 2006Q4, and adding one  
observation each time 
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Affordable  Luxury  

Middle: All sizes  Middle: Large size 
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Figure 3: Log-series and the estimated time trends from 2007Q1 
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Figure 4: Log-transformed time series 
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Table 1: Estimates of d and 95% confidence interval: White noise  disturbances 
Series: Original No regressors An intercept A linear time trend 

Affordable 1.333 
(1.229,   1.482)

1.333 
(1.223,   1.449)

1.347 
(1.244,   1.496) 

Luxury 1.151 
(1.088,   1.255)

1.162 
(1.091,   1.265)

1.184 
(1.105,  1.293) 

Middle: All sizes 1.261 
(1.161,   1.391)

1.233 
(1.152,   1.374)

1.261 
(1.174,   1.395) 

Middle: Large size 1.526 
(1.406,   1.791)

1.499 
(1.362,   1.736)

1.521 
(1.382,   1.742) 

Middle: Medium size 1.277 
(1.166,   1.412)

1.252 
(1.152,   1.393)

1.283 
(1.172,   1.427) 

Middle: Small size 1.070 
(0.973,   1.261)

1.068 
(0.961,   1.234)

1.081 
(0.978,   1.263) 

Note: bold indicates the cases where the deterministic components (intercept and time trend) are statistically 
significant at the 5% level. 

 
Table 2: Estimates of d and 95% confidence interval: Bloomfield disturbances 

Series: Log-transform No regressors An intercept A linear time trend 

Affordable 0.930 
(0.764,   1.148)

0.689 
(0.651,   0.753)

0.388 
(0.249,   0.585) 

Luxury 0.928 
(0.769,   1.136)

0.928 
(0.865,   1.037)

0.887 
(0.758,   1.036) 

Middle: All sizes 0.945 
(0.797,   1.141)

1.149 
(0.980,   1.408)

1.160 
(0.927,   1.422) 

Middle: Large size 0.936 
(0.782,   1.140)

1.049 
(0.945,   1.238)

1.032 
(0.847,   1.229) 

Middle: Medium size 0.947 
(0.792,   1.152)

1.185 
(1.010,   1.449)

1.193 
(0.981,   1.470) 

Middle: Small size 0.929 
(0.782,   1.131)

1.105 
(0.918,   1.441)

1.134 
(0.869,   1.479) 

Note: bold indicates the cases where the deterministic components (intercept and time trend) are statistically 
significant at the 5% level. 

 
Table 3: Estimates of d and 95% confidence interval: Seasonal AR disturbances 

Series: Original No regressors An intercept A linear time trend 

Affordable 1.738 
(1.622,   1.907)

1.742 
(1.631,   1.915)

1.737 
(1.637,   1.909) 

Luxury 1.295 
(1.222,   1.407)

1.288 
(1.217,   1.399)

1.307 
(1.237,   1.407) 

Middle: All sizes 2.251 
(1.966,   2.583)

2.325 
(2.051,   2.653)

2.329 
(2.055,   2.658) 

Middle: Large size 1.763 
(1.677,   1.898)

1.785 
(1.682,   1.915)

1.789 
(1.684,   1.921) 

Middle: Medium size 1.975 
(1.791,   1.923)

2.023 
(1.842,   2.297)

2.023 
(1.845,   2.294) 

Middle: Small size 1.903 
(1.723,   2.135)

1.922 
(1.743,   2.156)

1.923 
(1.744,   2.155) 

Note: bold indicates the cases where the deterministic components (intercept and time trend) are statistically 
significant at the 5% level. 
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Table 4: Results with breaks in the deterministic terms and white noise disturbances 

Series Break 
date 

α 
(t-val.) 

β 
(t-val.) 

α*

(t-val.) 
β* 

(t-val.) 
d 

(95% C.I.) 

Affordable XXX 8.1005 
(115.92) 

0.0451 
(1.743) XXX XXX 1.382 

(1.081, 1.831) 

Luxury 1969Q4 10.9066 
(271.95) XXX 10.5200 

(111.54) 
0.0270 
(4.857) 

1.124 
(0.998, 1.316) 

Middle: All sizes 2007Q4 9.1081 
(596.75) 

0.0245 
(1.849) 

13.2324 
(5.947) XXX 1.714 

(1.564, 1.919) 

Middle: Large size 2007Q4 9.4454 
(340.42) 

0.0293 
(3.912) 

14.3859 
(11.412) XXX 1.279 

(1.177, 1.427) 

Middle: Medium size 2007Q4 9.0927 
(587.66) 

0.0298 
(2.272) 

14.1141 
(6.399) XXX 1.699 

(1.559, 1.894) 

Middle: Small size 2007Q4 8.9065 
(392.15) 

0.0288 
(2.043) 

13.7670 
(5.796) XXX 1.538 

(1.407, 1.704) 
Note: XXX indicates statistical insignificance. 

 
 
 

Table 5: Results with breaks in the deterministic terms and autocorrelated  (Bloomfield) 
disturbances 

Series Break 
date 

α 
(t-val.) 

β 
(t-val.) 

α*

(t-val.) 
β* 

(t-val.) 
d 

(95% C.I.) 

Affordable XXX 8.3880 
(235.28) 

0.0260 
(70.316) XXX XXX 0.388 

(0.249, 0.585) 

Luxury 1969Q4 10.9355 
(261.96) XXX 10.5059 

(167.79) 
0.0276 
(22.68)

)

0.781 
(0.664, 0.929) 

Middle: All sizes 2007Q4 9.1078 
(439.78) 

0.0278 
(9.905) 

13.7966 
(219.17) XXX 1.121 

(0.933, 1.360) 

Middle: Large size 2007Q4 9.4567 
(313.56) 

0.0279 
(10.130) 

14.1572 
(30.564) XXX 1.036 

(0.884, 1.202) 

Middle: Medium size 2007Q4 9.0953 
(453.29) 

0.0284 
(8.226) 

13.8692 
(23.903) XXX 1.173 

(0.997, 1.411) 

Middle: Small size 2007Q4 8.9047 
(317.16) 

0.0270 
(9.082) 

13.4627 
(26.861) XXX 1.068 

(0.833, 1.397) 
Note: XXX indicates statistical insignificance. 
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Table 6: Results with breaks in the deterministic terms and seasonal AR disturbances 

Series Break 
date 

α 
(t-val.) 

β 
(t-val.) 

α*

(t-val.) 
β* 

(t-val.) 
d 

(95% C.I.) 

Affordable XXX 9.4429 
(343.74) 

0.0267 
(2.431) XXX XXX 1.330 

(1.103, 1.764) 

Luxury 1969Q4 10.9039 
(273.71) XXX 10.5179 

(98.408) 
0.0272 
(4.040) 

1.165 
(1.059, 1.318) 

Middle: All sizes 2007Q4 9.1022 
(596.34) 

0.0238 
(1.708) 

13.1381 
(5.593) XXX 1.751 

(1.614, 1.923) 

Middle: Large size 2007Q4 9.4425 
(343.45) 

0.0301 
(3.350) 

14.5151 
(9.608) XXX 1.328 

(1.216, 1.481) 

Middle: Medium size 2007Q4 9.1075 
(589.22) 

0.0291 
(2.074) 

14.0169 
(5.933) XXX 1.749 

(1.623, 1.917) 

Middle: Small size 2007Q4 8.9096 
(393.97) 

0.0286 
(1.856) 

13.7318 
(5.295) XXX 1.538 

(1.407, 1.704) 
Note: XXX indicates statistical insignificance. 

 

 

Table 7: Growth rates in price indexes from 2007Q1 till 2012Q1 

Series 2007Q1 2012Q1 Growth rate 

Affordable 242959 331126 36.28% 

Luxury 3961101 4953866 25.06% 

Middle: All sizes 891540 1019411 14.34% 

Middle: Large size 1245479 1487260 19.41% 

Middle: Medium size 858212 966943 12.66% 

Middle: Small size 621709 636544 2.38% 
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