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ABSTRACT 
 
This paper proposes a general time series framework to capture the long-run behaviour 
of financial series. The suggested approach includes linear and segmented time trends, 
and stationary and nonstationary processes based on integer and/or fractional degrees 
of differentiation. Moreover, the spectrum is allowed to contain more than a single pole 
or singularity, occurring at both zero but non-zero (cyclical) frequencies. This framework 
is used to analyse five annual time series with a long span, namely dividends, earnings, 
interest rates, stock prices and long-term government bond yields. The results based on 
several likelihood criteria indicate that the five series exhibit fractional integration with 
one or two poles in the spectrum, and are quite stable over the sample period examined.  
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1. Introduction 

The statistical modelling of financial time series data such as asset prices plays an 

important role in portfolio management. Despite the extensive theoretical and empirical 

literature of the last thirty years, there is still no consensus on what might be the most 

adequate model specification for many financial series. For instance, whether asset 

returns of asset prices are predictable or not is still controversial. While the efficiency 

market hypothesis suggests that they should follow a random walk (see Fama, 1970; 

Summers, 1986), other authors have found evidence of mean reversion in their behaviour 

(see, e.g., Poterba and Summers, 1988 and Fama and French, 1988). The standard 

econometric approach to settle this issue empirically relies on establishing the (integer) 

order of integration of the series by carrying out unit root tests. More recently, however, 

the possibility of fractional orders of integration with a slow rate of decay has also been 

taken into account. Long-memory specifications based on fractional differentiation have 

been used for financial data by Crato (1994), Cheung and Lai (1995), Barkoulas and 

Baum (1996), Barkoulas, Baum, and Travlos (2000), Sadique and Silvapulle (2001), 

Henry (2002), Tolvi (2003) and Gil-Alana (2006) among others. Also using a fractional 

model, Caporale and Gil-Alana (2002) find that there is no permanent component in US 

stock market returns, since the series examined is close to being I(0). Caporale and Gil-

Alana (2007) decompose the stochastic process followed by US stock prices into a long-

run component described by the fractional differencing parameter (d) and a short-run 

(ARMA) structure. Empirical support for non-linear asset pricing models (such as the 

one by Dittmar, 2002) has also been found (see, inter alia, Hossein and Sonnie, 2008).  

The present paper takes into account these various strands of the literature on 

modelling asset prices and other financial series and proposes a general time series 
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framework to capture the long-run behaviour of financial data. This approach, not 

previously used in this context, includes linear and non-linear (segmented) time trends, 

and stationary and nonstationary processes based on integer and/or fractional degrees of 

differentiation. Moreover, the spectrum is allowed to contain more than a single pole or 

singularity, occurring at both zero and non-zero (cyclical) frequencies. We examine five 

annual time series with a long span, namely dividends, earnings, interest rates, stock 

prices and long-term government bond yields, obtainable from Robert Shiller’s 

homepage (http://www.econ.yale.edu/~shiller/). We are able to show that the selected 

specifications (with linear and segmented trends, fractional integration and cyclical 

fractional integration) perform better than alternative models used in the literature to 

analyse these data. 

A rationale for the use of this type of models is that they are sufficiently general 

to include as particular cases several theories that have been put forward in the financial 

literature in recent years, such as the Efficiency Market Hypothesis (Fama, 1970), mean 

reversion in stock market prices (Poterba and Summers, 1988), Fractal Market Analysis 

(Peters, 1994) and the connection between business cycles and financial data (Bernanke 

et al., 1999; Stock and Watson, 2003, 2005; Farmer, 2012).  

With respect to business cycles, it has been commonly argued that they are of a 

stationary nature and little attention has been paid to them in the context of financial 

data.1 However, it has become increasingly clear that the cyclical component of 

economic and financial series is also very important. This has been widely documented, 

especially in the case of business cycles, for which non-linear (Beaudry and Koop, 1993, 

                                                           
1 Note that the definition of  business cycle adopted in this paper is based on deviations from the long-term 
trend. This is the reason for its stationarity in contrast to the definition provided by the Business Cycle 
Dating Committee of the NBER considering the level of the series. 
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Pesaran and Potter, 1997) or fractionally ARIMA (ARFIMA) models (see Candelon and 

Gil-Alana, 2004) have been proposed. Furthermore, from a pure time series viewpoint, it 

has been argued that cycles should be modelled as an additional component to the trend 

and the seasonal structure of the series (see Harvey, 1985, Gray et al., 1989). The 

available evidence suggests that the periodicity of the series ranges between five and ten 

years, in most cases a periodicity of about six years being estimated (see, e.g., Baxter and 

King, 1999; Canova, 1998; King and Rebelo, 1999). Our results, based on methods that 

determine endogenously the length of the cycles also suggest approximately six years of 

duration. 

Given this evidence on the key role played by the cyclical component, we 

consider both long-run trends and cycles and model the two components either as a long-

memory, or as a short-memory process, or even as a combination of the two. Moreover, 

we allow for segmented trends. Therefore, this paper makes a methodological 

contribution by incorporating segmented trends in a general framework using long- and 

short-memory processes at zero and non-zero frequencies. The model presented here has 

not been previously employed in the financial time series literature and its generality 

allows to consider other more standard models as particular cases of interest. The present 

study also contributes to the literature by applying this procedure to several financial 

time series that have been widely examined in the literature using other, more classical 

methods.  

The structure of the paper is as follows. Section 2 describes the model and the 

statistical approach employed in the paper. Section 3 presents the empirical analysis, 

considering first the case with linear trends and then allowing for a break in the data. 
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This section also includes some forecasting performance analysis, whilst Section 4 offers 

some concluding comments. 

 

2.  The model 

Let us assume that {yt, t = 1, 2, .., T} is the time series we observe. We consider the 

following model: 

,...,2,1,)( =+= txtfy tt     (1) 

,)cos21()1( 221 tt
d

r
d uxLLwL =+−−    (2) 

,)()( tqtp LuL εθφ =     (3) 

where f is a function of time that may be of a linear/non-linear nature;2 L is the lag 

operator (i.e., Lsxt = xt-s); d1 is the order of integration corresponding to the long-run or 

zero frequency; wr = 2π/r, with r representing the number of periods per cycle; d2 is the 

order of integration with respect to the non-zero (cyclical) frequency, and ut is assumed 

to be an I(0) process3, that may follow a stationary ARMA(p, q) process, where )(Lpφ  

)...1( 1
p

pLL φφ −−−= and )...1()( 1
q

qq LLL θθθ +++=  are polynomials of orders p 

and q with all the roots outside the unit circle, and corresponding to the autoregressive 

(AR) and moving average (MA) components respectively. Note that d1 and d2 are 

allowed to be any real values and thus we do not restrict ourselves to integer degrees of 

differentiation. 

                                                           
2  In the context of a linear deterministic trend, f(t) = α + βt. Examples of non-linear trends are the 
Chebychev polynomials (see Hamming, 1973; Bierens, 1997) or segmented trends with dummies as those 
employed in this paper. 
3 For the purpose of the present paper, an I(0) process is defined as a covariance stationary process with 
spectral density function that is positive and finite at any frequency in the interval [0, π). 
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 The set-up described in (1) – (3) is fairly general, including the standard ARMA 

model (with or without trends), if d1 = d2 = 0; the ARIMA case, if d1 is integer and d2 = 

0; the standard ARFIMA specification, if d1 is fractional and d2 = 0; unit root cycles 

(Bierens, 2001) if d1 = 0 and d2 = 1, along with other more complex representations. 

 We now focus on equation (2), and first assume that d2 = 0. Then, for d1 ≠ 0, the 

spectral density function of xt is given by: 

    ,e
)e(
)e()(f

di
i

i
12

22
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2
−

−= λ
λ

λ

φ
θ

π
σλ     (4)  

and it contains a pole or singularity at the long-run or zero frequency, i.e., 

                                         .as,)(f +→∞→ 0λλ  

Further, note that the polynomial 1)1( dL− can be expressed in terms of its Binomial 

expansion, such that, for all real d1, 

,...
2

)1(1)1()1( 211
1

0

11 −
−

+−=−∑ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=−

∞

=
LddLdL

j
d

L jj

j

d    (5)  

implying that the higher is the value of d1, the higher is the degree of association between 

observations distant in time. Thus, the parameter d1 plays a crucial role in determining 

the degree of persistence of the series. Although the time series literature for very long 

only considered the cases of integer values of d1 (stationarity if d1 = 0, and 

nonstationarity with d1 = 1), more recently fractional values of d1 have been widely 

employed when modelling macroeconomic and financial data.4 Assume now that d1 = 0 

in (2). Then, if d2 ≠ 0, the process xt has a spectral density function given by: 

 

                                                           
4 Empirical applications using fractional values of d1 include among others Diebold and Rudebusch (1989), 
Sowell (1992), Baillie (1996) and Gil-Alana and Robinson (1997). 
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and is characterised by having a pole at a non-zero frequency, i.e., 

   .),(,as,)(f ** πλλλλ 0∈→∞→  

Moreover, the polynomial 22 )cos21( d
r LLw +−  can be expressed as a Gegenbauer 

polynomial, such that, defining rwcos=μ , for all 02 ≠d , 
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where )(2, μdjC  are orthogonal Gegenbauer polynomial coefficients recursively defined 

as:  
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(see, inter alia, Magnus et al., 1966, or Rainville, 1960, for further details on Gegenbauer 

polynomials). Gray et al. (1989, 1994) showed that this process is stationary if 5.02 <d  

for 1cos <= rwμ  and if 25.02 <d  for 1=μ . If d2 = 1, the process is said to contain a 

unit root cycle (Ahtola and Tiao, 1987; Bierens, 2001); other applications using 

fractional values of d2 can be found in Gil-Alana (2001), Ahn, Knopova and Leonenko 

(2004) and Soares and Souza (2006).5 

                                                                                                                                                                            
 
5 Models with multiple cyclical structures ( k -factor Gegenbauer processes) with multiple poles in the 
spectrum have been examined, among others, by Ferrara and Guegan (2001), Sadek and Khotanzad (2004) 
and Gil-Alana (2007a). 
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 In the empirical analysis carried out in the following section we use a method 

developed by Robinson (1994) that enables us to test a model such as the one given by 

equations (1) - (3). It is a very general testing procedure based on the Lagrange 

Multiplier (LM) principle that uses the Whittle function in the frequency domain. It can 

be used to test the null hypothesis: 

,),(),(: 2121 o
T

oo
T

o ddddddH ≡=≡   (8) 

in (1) – (3) where d10 and d20 may be real values, thus encompassing stationary and 

nonstationary hypotheses. The specific form of the test statistic (denoted by R̂ ) is 

presented in the appendix. Under very general regularity conditions, Robinson (1994) 

showed that for this particular version of his tests, 

,Tas,R̂ d ∞→→ 2
2χ    (9) 

where “→d” stands for convergence in distribution. Thus, unlike in other procedures, we 

are in a classical large-sample testing situation. A test of (8) will reject Ho against the 

alternative Ha: d ≠ do if R̂  > 2
,2 αχ , where Prob ( 2

2χ  > 2
,2 αχ ) = α. Furthermore the test is 

efficient in the Pitman sense against local departures from the null, that is, if the test is 

implemented against local departures of the form: Ha: d = do + δT-1/2, for δ ≠ 0, the limit 

distribution is a ),(2
2 vχ  with a non-centrality parameter v that is optimal under 

Gaussianity of ut. 

 There exist other procedures for estimating and testing the fractionally 

differenced parameters, some of them also based on the likelihood function. As in other 

standard large-sample testing situations, Wald and LR test statistics against fractional 

alternatives will have the same null and local limit theory as the LM tests of Robinson 
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(1994). For example, for the zero frequency Lobato and Velasco (2007) proposed a Wald 

test that requires a consistent estimate of d1. Ooms (1997) proposed tests based on 

seasonal fractional models: they are also Wald tests requiring consistent estimates of the 

fractional differencing parameters. He used a modified periodogram regression 

estimation procedure due to Hassler (1994). Also, Hosoya (1997) established the limit 

theory for long-memory processes with the singularities not restricted at the zero 

frequency, and proposed a set of quasi log-likelihood statistics to be applied to raw time 

series.6  Unlike these previous methods, the tests of Robinson (1994) do not require 

estimation of the long-memory parameters since the differenced series have short 

memory under the null. Thus, his LM method seems computationally more attractive.7 

 

3. Empirical Analysis 

The data analysed in this paper have been obtained from Robert Shiller’s homepage 

(http://www.econ.yale.edu/~shiller/). They are described in chapter 26 of Shiller’s (1989) 

book on “Market Volatility”, where further details can be found, and are constantly 

updated and revised. Specifically, they are the following series: dividends (an index), 

earnings (also an index), one-year interest rate (this series is the result of converting the 

January and July rates into an annual yield), long-term government bond yield (this is the 

yield on the 10-year Treasury bonds after 1953) and the S&P composite stock price 

                                                           
6 Models with a pole in the spectrum at the non-zero frequency were also considered, among others, by 
Giraitis, Hidalgo and Robinson (2001), Hidalgo and Soulier (2004) and Hidalgo (2005). These authors 
assume that the pole in the spectrum is unknown and suggest various parametric and semiparametric 
methods to estimate the fractional parameter (d2), along with the frequency of the pole. See also Arteche 
and Robinson (2000) and Arteche (2002) for semiparametric estimates of d2. 
7 See also Tanaka (1999) and Hassler, Rodrigues and Rubia (2009) for time domain representations of 
Robinson’s (1994) tests. 
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index. The sample period goes from 1871 to 2010 for the first two series and to 2011 for 

the remaining three.  

 

[INSERT FIGURE 1 ABOUT HERE] 

 

Figure 1 contains plots of the five series. As can be seen, dividends, earnings and 

stock prices appear to be quite stable for about a century, then increase sharply in the last 

few decades of the sample, with an irregular pattern in the last few years coinciding with 

the recent financial crisis. Interest rates and government bond yields fluctuate a lot more 

throughout the sample, but also seem to increase towards the end of the sample, before a 

significant fall. 

In the following two subsections, we examine first a model with linear trends, and 

then one with a single break.8 In both cases we allow for long-range dependence at both 

zero and non-zero (cyclical) frequencies. 

 

3.1 The case of linear trends 

First we consider the case of linear structures, and assume that the series exhibit a linear 

time trend in a model containing two stochastic structures, one for the long-term 

behaviour and the other for the cyclical component. We allow both components to 

display long-memory behaviour, and test the null hypothesis in (8), in the following 

model, 

,tt xty ++= βα     (10) 

                                                           
8 Allowing for more than one break would result in relatively small subsamples, invalidating the analysis 
based on long-range dependence. 



 11

,)cos21()1( 221 tt
d

r
d uxLLwL =+−−    (11) 

under the assumption that the disturbance term ut is white noise, AR(1) and AR(2) 

respectively.9 Higher AR orders and other MA (ARMA) structures were also employed, 

with similar results. In all cases, we test Ho for (d1o, d2o)-values from -1 to 3 with 0.01 

increments, and r = 2, 3, …, T/2,10 choosing as estimates of d1 and d2 the values of d1o 

and d2o that produce the lowest statistics. These values should be an approximation to the 

maximum likelihood estimates, noting that Robinson’s (1994) method is based on the 

Whittle function, which is an approximation to the likelihood function. Several Monte 

Carlo experiments based on this approach were conducted by Caporale and Gil-Alana 

(2006), and Gil-Alana (2007b). It is shown in these papers that this method correctly 

determines the orders of integration at the two frequencies for samples of similar size to 

those employed in this article. Given that some of the coefficients in (10) were not 

statistically significant, we also carried out the computations in a model with only an 

intercept (i.e. β = 0 a priori) and with no regressors at all (α = β = 0 a priori). The results 

for the five series are displayed in Table 1.  

Noting also that in some cases the order of integration for the cyclical part (d2) 

was not statistically significantly different from zero, we additionally perform the 

analysis with a single fractional differencing parameter, i.e., employing 

,)1( 1 tt
d uxL =−     (12) 

                                                           
9 The inclusion of a time trend might appear unrealistic in the context of financial data. Note, however, that 
in the context of fractional (or integer) differentiation, the time trend disappears in the long run. Thus, for 
example, in the model, yt = α + βt + xt, (1- L)dxt = ut, with white noise ut, if d = 1, the model becomes, for t 
> 1, a random walk with a drift. 
10 Note that in case of r = 1, the polynomial 2)cos21( 2 d

r LLw +−  becomes ,)1( 22dL− implying the 
existence of a pole at the long run or zero frequency. 
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rather than (11). The results for this case are displayed in Table 2. We describe first of all 

the results for the case of the two fractional structures.  

 

[INSERT TABLE 1 ABOUT HERE] 

 

The first remark to make is that the parameter r (indicating the number of time 

periods per cycle) lies between 2 and 15 in all cases, being around 8 in the majority of 

cases. This is consistent with the empirical findings in the business cycle literature 

(Canova, 1998; Burnside, 1998; King and Rebelo, 1999; etc.) according to which 

economic cycles have a periodicity between five and ten years. It is also noteworthy that 

the order of integration at the long-run or zero frequency (i.e., d1) is substantially higher 

than its corresponding value at the cyclical frequency (d2) in practically all cases. For 

earnings, interest rates and stock prices the unit root null cannot be rejected at the long-

run frequency (d1 = 1), while d2 is found to be strictly below 1 in all cases. We report in 

Table 1 in bold the cases where the null hypothesis of uncorrelated errors cannot be 

rejected at conventional statistical levels.11 There are two such cases for dividends, a 

single one for earnings, six for interest rates, five for government bond yields, and four 

for the stock price index. Among these selected models we choose the best specification 

on the basis of LR tests and other likelihood criteria, namely the AIC and the SIC. Note, 

however, that these might not necessarily be the best criteria in applications involving 

fractional differences, as they focus on the short-term forecasting ability of the fitted 

model and may not give sufficient attention to the long-run properties of the fractional 

                                                           
11 We use here the Box-Pierce and Ljung-Box-Pierce statistics (Box and Pierce, 1970; Ljung and Box, 
1978). 
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models (see, e.g. Hosking, 1981, 1984). The selected model for each series is the 

following: for dividends, 

.x)LLwcos21()L1(;x061.77y tt
17.02

10
35.1

tt ε=+−−+−=   (1A) 

For earnings, 

     
.u695.0u953.0u

;ux)LLwcos21()L1(;x241.94y

t2t1tt

tt
35.02

7
08.1

tt
ε+−=

=+−−+−=

−−
  (1B) 

For interest rates, 

t2t1tttt
23.02

8
77.0 u678.0u082.0u;ux)LLwcos21()L1( ε+−==+−− −− . (1C) 

For government bond yields, 

    
1.u133.0u

,ux)LLwcos21()L1(;x56.117y

t1tt

tt
24.02

8
08.1

tt
ε+=

=+−−+−=

−
 (1D) 

and finally, for stock prices, 

    
1.u124.0u646.0u

.ux)LLwcos21()L1(;x6.1506y

t1t1tt

tt
50.02

8
11.1

tt
ε++=

=+−−+−=

−−
 (1E) 

 

Considering the confidence bands for the orders of integration of these selected models 

(in Table 1) we see that, for dividends, d1 is significantly higher than 1 and d2 

significantly higher than 0. For earnings and stock prices we cannot reject the null of d1 = 

1 and d2 is significantly higher than 0, and finally, for interest rates and bond yields we 

cannot reject the hypotheses of d1 = 1 and d2 = 0 at conventional statistical levels. 

 

[INSERT TABLE 2 ABOUT HERE] 
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 Next we examine the case of a single pole at the long-run or zero frequency (Table 

2). Here we notice that for dividends the order of integration is much higher than 1 if the 

disturbances are uncorrelated, and the unit root null cannot be rejected if they are 

autocorrelated. For the remaining of the series the unit root null cannot be rejected or, if 

it is rejected, it is in favour of mean reversion, with an order of integration significantly 

below 1. Using this specification, the selected model for dividends is the following:12 

        ,u025.0u395.0u;ux)L1( t2t1tttt
955.0 ε+−==− −−    (2A) 

In case of earnings, the chosen specification is: 

.u585.0u250.0u
;ux)L1(;xt048.0911.0y

t2t1tt

tt
872.0

tt
ε+−=
=−+−−=

−−
   (2B) 

For interest rates, 

,u053.0u318.0u;ux)L1( t2t1tttt
702.0 ε+−==− −−    (2C) 

For government bond yields 

,u183.0u;ux)L1( t1tttt
892.0 ε+−==− −   (2D) 

and for the S&P composite stock price index, 

.u120.0u147.0u
;ux)L1(;x713.10y

t2t1tt

tt
926.0

tt
ε+−=

=−+−=

−−
   (2E) 

 

According to these models the five series are nonstationary, and the unit root hypothesis 

(d = 1) cannot be rejected in any single case.  

 

3.2 The case of segmented trends 

                                                           
12 We use here the same autocorrelation tests and likelihood criteria as in the previous case. 
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Next we allow for segmented trends, and assume that the five series exhibit a single 

break.13 A priori, we do not have any knowledge about the break date, and given the lack 

of procedures for estimating the break point in the context of the complex models 

presented above, we use a battery of methods, which are based on stationary I(0) (Bai, 

1997, Bai and Perron, 1998), nonstationary I(1) (Zivot and Andrews, 1992), and 

fractional models (Gil-Alana, 2008; Wright, 2009).  

 

[INSERT TABLE 3 ABOUT HERE] 

 

Table 3 summarises the results concerning the break dates for each series on the 

basis of the different methods. One can see that, for example, assuming that the series 

contain unit roots, when performing the Bai’s (1997) methodology on the differenced 

series, the break is found to occur in 1973 for earnings, interest rates and stock prices, 

and slightly later for dividends and bond yields. Using other I(0)/I(1) methods (Zivot and 

Andrews, 1992; Lee and Strazicich, 2001) breaks are also found in the early 70s, and 

using the fractional approach of Gil-Alana (2008) we also obtain some evidence of a 

break in 1973 in four of the five series examined. On the other hand, Figure 1 also 

suggests that there might be a break around 1973, the time of the first oil price crisis. 

Based on this evidence we take 1973 as the break date in the five cases. We 

experimented with a change in the intercept, in the slope and in both of them, and came 

to the conclusion that an intercept change was the most plausible one for government 

                                                           
13 As mentioned earlier, multiple breaks could also be considered. However, we believe that the series 
examined in this paper can be adequately described including a single structural break. Note that allowing 
for multiple breaks would result in relatively short subsamples and inaccurate estimates of the coefficients. 
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bond yields, while for the remaining four series we allowed for a change in both intercept 

and slope after the break. Specifically, we consider a model of the form: 

,)1973()1973( 21 tt xtItIy +≥+<= αα    (13) 

for government bond yields, and 

,)1973()1973()1973( 21 tt xtIttItIy +≥+≥+<= βαα    (14) 

for the remaining four series, allowing two fractional structures as in (11) (in Table 4) 

and with a single fractional differencing polynomial at the zero frequency as in (12) (in 

Table 5):14 

 

[INSERT TABLE 4 ABOUT HERE] 

 

 Starting again with the case of two poles in the spectrum (i.e., using equation (11)), 

the selected model for dividends (with T* = 1973) in Table 4 was: 

.u076.0u;ux)LLwcos21()L1(

;x)Tt(It375.1)Tt(I396.51)Tt(I289.91y
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For earnings, 
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For interest rates, 

.u251.0u;ux)LLwcos21()L1(
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t1tttt
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    (4C) 

and for government bond yields, 

                                                           
14 We also examined other break dates for the five series, and the coefficients in (13) and (14) were 
insignificant in the majority of the cases. 
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Finally, for stock prices: 
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 It can be seen that the number of periods per cycle (determined by r in wr) varies 

substantially depending on the series. Specifically, it is 11 for dividends, 7 for earnings, 

15 for interest rates and stock prices, and 3 for government bond yields. The order of 

integration at the long-run or zero frequency is higher than the cyclical one for dividends, 

earnings, government bond yields and stock prices, while the opposite holds for interest 

rates. For earnings, d1 is significantly higher than 1, while d2 is positive and in the 

interval (0, 1) for all series except the interest rates. Surprisingly, for this latter series d1 

is strictly smaller than 1 while d2 is significantly above 1. 

 

[INSERT TABLE 5 ABOUT HERE] 

 

When we assume that there is a single pole occurring at the long-run or zero 

frequency (in Table 5), the deterministic terms are found to be statistically insignificant 

in some cases for dividends and earnings, while they are all significant in the case of 

interest rates, government bond yields and stock prices. The order of integration appears 

to be sensitive to the chosen specification for the disturbance term, especially for 

dividends and stock prices. For instance, for dividends, d1 is about 0.7 in case of 
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autocorrelated errors, and it is about 1.1 with white noise disturbances. The selected 

models in this case are the following: for dividends, 
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For earnings, 
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For interest rates, 
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For government bond yields, 
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 Finally, for stock prices 
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 According to these specifications, the five variables (dividends, government bond 

yields, earnings, interest rates and stock prices) are nonstationary, with a fractional 

differencing parameter above 0.5, and for two of them (dividends and stock price index) 

the unit root null is rejected in favour of mean reversion (d < 1). 

 The final step is selecting the best model specification for each series. On the basis 

of the significance of the deterministic terms and of the fractional differencing 

parameters as well as the LR tests the most adequate specifications seem to be in all 
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cases those with two fractional structures and a single structural break, as in equations 

(4A) – (4E). The results imply that d1 (the order of integration at the long run or zero 

frequency) is significantly below 1 for interest rates; it is around 1 for dividends, bond 

yields and stock prices, and significantly above 1 in the case of earnings. With respect to 

the cyclical structure, the order of integration (d2) is significantly positive although below 

1 in all except one series (interest rates) where the order of cyclical fractional integration 

is strictly above 1. 

Having selected the above models using within-sample criteria, we also briefly 

examine their forecasting performance. For each of the series we consider the four model 

specifications given by equations (1A) – (5E). First, we compute the k (=1, 2, …, 25)-

ahead prediction errors of each model, obtained by expanding the fractional polynomials 

in (5) and (7). We computed the Root Mean Squared Errors (RMSE) of each 

specification for each series. The results (not reported here for reasons of space, but 

available from the authors upon request) indicate that, for dividends, earnings and 

government bond yields, the model with a single fractional polynomial at the zero 

frequency (i.e., (2A), (2B) and (2D)) yields the most accurate predictions 1-2 periods 

ahead; however, for longer horizons, a model with a segmented trend (and also a 

fractional process at the zero frequency, i.e., (5A), (5B) and (5D)) outperforms the rival 

models. For interest rates, the results are slightly more ambiguous: the model with two 

polynomials (at the zero and the cyclical frequency, (1C)) seems to be the most adequate 

one in some cases, but a segmented model with a single polynomial at the zero frequency 

(5C) appears to be preferable in other cases. Finally, for stock prices, the model with two 

fractional differencing parameters (1E) produces the best results in the majority of cases. 

These results, however, are all based on the RMSE. This criterion and other methods 
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such as the Mean Absolute Prediction Error (MAPE), Mean Squared Error (MSE), Mean 

Absolute Deviation (MAD), etc., are purely descriptive devices, and although there are 

several statistical tests for comparing different forecasting models (see, e.g. Diebold and 

Mariano, 1995; Harvey, Leybourne and Newbold, 1997; Ashley, 1998) it is well known 

that these methods have under some circumstances very low power, especially as regards 

non-linear models (see, e.g., Costantini and Kunst, 2011). Nevertheless, we computed the 

forecasting performance using the modified DM-tests as suggested by Harvey et al. 

(1997); the results (not reported) show that the models in Table 5 are to be preferred in 

most cases, especially based on the 5- and 10-period ahead prediction horizons. Only for 

interest rates and stock prices do models (1C) and (1E) outperform (5C) and (5E) in 

some cases. We also evaluated the forecasting performance of our selected models by 

means of comparisons with standard ARIMA models with and without break. In 

particular, we use an ARIMA(2, 1, 0) for dividends; an ARIMA(0, 1, 2) for earnings; an 

ARIMA(0, 1, 2) for interest rates and an ARIMA(1, 1, 0) for bond yields and stock 

prices. In all cases, the fractional models outperform the ARIMA ones on the basis of the 

M-DM procedure.  

 Finally, we conducted a recursive experiment, leaving out first the last 25 

observations, and then re-estimating the selected model for each series recursively, 

adding one observation at a time. The recursive estimates of the fractional differencing 

parameters in each case are displayed in Figures 2 – 6. It can be seen that the parameters 

are very stable over time in all cases. 

 

[INSERT FIGURES 2 – 6 ABOUT HERE] 
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5. Conclusions 

In this paper we have employed a time series approach, not much previously used, for 

modelling long-run trends and cycles in financial time series data. The proposed model is 

general enough to include linear and segmented trends along with fractional integration 

at both zero and non-zero (cyclical) frequencies. It is based on a procedure developed by 

Robinson (1994) for testing stationary and nonstationary hypotheses. We use this 

framework to investigate the behaviour of five financial time series already examined in 

many earlier studies. Specifically, we use the annual dataset including dividends, 

earnings, interest rates, government bond yields and stock market prices, which was 

constructed (and is constantly updated) by Robert Shiller. 

 The results can be summarised as follows. It appears that the five series of interest 

can be characterised in terms of long-memory processes with two poles in the spectrum, 

one corresponding to the long-run or zero frequency, and the other one to the cyclical 

component. The latter exhibits a periodicity ranging between 3 and 15 years depending 

on the series and the model considered. In general, the order of integration is higher at 

the zero frequency, implying that the degree of persistence is higher in this component. 

When a break is incorporated, the models outperform the linear ones in terms of both 

their in-sample performance based on goodness-of-fit (likelihood) measures and their 

forecasting accuracy, especially over longer horizons. Clearly, our findings have 

implications for the efficient market hypothesis and the debate on market anomalies, as 

in the case of the models where d is found to be smaller than 1 mean reversion takes 

place, suggesting some degree of inefficiency and predictability. The latter also 

characterises deviations from the random walk hypothesis when the order of integration 

of the series is higher than 1 and/or cases of serial (weak) correlation. 
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This paper can be extended in several directions. First, multiple cyclical structures 

of the form suggested by Ferrara and Guegan (2001) and others can be considered. In 

fact, the interaction between several cyclical (fractional) processes may produce 

autocorrelations decaying in a very complicated way that has not been much investigated 

yet. Other more complex non-linear structures (like the Threshold AutoRegressive, TAR, 

Momentum Threshold AutoRegressive, M-TAR or Smooth Transition Autoregressive, 

STAR-form (see, e.g. Enders and Granger, 1998; Enders and Siklos, 2001; Skalin and 

Teräsvirta, 2002; etc.) can also be included in the regression model (1), and their 

interaction with the fractional structures is another issue that should be examined in 

future research.  
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Appendix 

The test statistic proposed by Robinson (1994) for testing Ho (8) in the model given by  

equations (1) - (3) is given by: 
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function g above is a known function coming from the spectral density of ut: 
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Note that these tests are purely parametric and, therefore, they require specific modelling 

assumptions about the short-memory specification of ut. Thus, if ut is white noise, g ≡ 1, 

and if ut is an AR process of the form φ(L)ut = εt, g = |φ(eiλ)|-2, with σ2 = V(εt), so that the 

AR coefficients are a function of τ. 
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Figure 1: Time series plots 
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Table 1: Coefficient estimates with two fractional structures 

1a) Series: Dividends 

 α β d1 r d2 ρ1 ρ2 

AR(2) with time trend -563.39 
(-40.17) 

-0.209 
(-1.23) 

0.03 
[-0.08, 0.14] 8 0.57 

[0.49,  1.50] 0.882 -0.258 

AR(2) with an intercept -6.764 
(-3.66) --- 1.22 

[0.79,  1.57] 15 0.98 
[0.33,  1.35] -0.731 1.297 

AR(2) with no regressors --- --- 1.11 
[0.44,  1.47] 9 0.27 

[-.05,  0.66 -0.443 -0.478 

AR(1) with time trend -13.167 
(-3.77) 

-40.903 
(-75.87) 

1.03 
[0.92,  1.16] 13 0.76 

[0.53,  1.28] -0.291 --- 

AR(1) with an intercept -14.211 
(-9.36) --- 1.41 

[1.32,  1.82] 3 0.63 
[0.47,  0.77] 0.053 --- 

AR(1) with no regressors --- --- 1.14 
[1.01,  1.51] 5 0.09 

[0.02,  0.15] 0.178 --- 

White noise with trend -500.16 
(-30.54) 

-1.981 
(-9.85) 

0.13 
[0.07,  0.16] 15 1.06 

[0.99,  1.14] --- --- 

White noise + intercept*** -77.061 
(-6.013) --- 1.35 

[1.22,  1.67] 10 0.41 
[0.17,  0.70] --- --- 

White noise with no reg. 

R

--- --- 1.15 
[1.09,  1.38] 12 0.53 

[0.44,  0.76] --- --- 

1b) Series: Earnings 

 α β d1 r d2 ρ1 ρ2 

AR(2) with time trend -41.730 
(-1.621) 

-84.41 
(-27.40) 

0.99 
[0.81,  1.22] 8 0.58 

[0.30,  0.93] 0.148 -0.175 

AR(2) with an intercept*** -94.241 
(-0.813) --- 1.08 

[0.98,  1.77] 7 0.35 
[0.10,  0.49] 0.953 -0.695 

AR(2) with no regressors --- --- 1.04 
[0.60,  1.74] 8 0.11 

[-0.33, 0.64] 0.195 0.417 

AR(1) with time trend 4.049 
(0.143) 

-185.4 
(-36.90) 

1.23 
[0.97,  1.45] 11 0.57 

[0.12,  0.88] 0.264 --- 

AR(1) with an intercept 1191.41 
(15.311) --- 1.18 

[0.97,  1.48] 2 0.60 
[0.34,  0.98] 0.827 --- 

AR(1) with no regressors --- --- 0.77 
[0.28,  1.21] 3 0.10 

[-0.11, 0.32] 0.261 --- 

White noise with trend -95.908 
(-36.31) 

-8.750 
(-6.45) 

0.94 
[0.89,  1.14] 10 0.67 

[0.54,  0.94] --- --- 

White noise with intercept 62.073 
(-1.06) --- 1.14 

[1.02,  1.39] 8 0.31 
[0.12,  0.62] --- --- 

White noise with no reg. 

R

--- --- 0.90 
[0.75,  1.20] 6 0.27 

[0.01,  0.52] --- --- 

 
(continued) 
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1c) Series: Interest rates 

 α β d1 r d2 ρ1 ρ2 

AR(2) with time trend -11.840 
(-1.26) 

-2.925 
(-0.09) 

0.86 
[0.56,  1.22] 12 0.30 

[-0.09, 0.14] -0.348 0.785 

AR(2) with an intercept -205.62 
(-0.49) --- 0.75 

[0.40,  1.33] 4 0.21 
[-0.19, 0.45] 0.438 0.024 

AR(2) and no regressors*** --- --- 0.77 
[0.17,  1.10] 8 0.23 

[-0.17, 0.88] 0.082 -0.678 

AR(1) with time trend 72.541 
(4.32) 

14.870 
(42.63) 

1.15 
[0.77,  1.42] 3 0.09 

[-0.27, 0.32] 0.070 --- 

AR(1) with an intercept -75.046 
(-6.45) --- 1.32 

[0.88,  1.65] 2 0.13 
[-0.05, 0.69] -0.158 --- 

AR(1) with no regressors --- --- 0.77 
[0.41  1.15] 8 0.02 

[-0.17, 0.32] 0.067 --- 

White noise with trend -18.966 
(-1.82) 

4.408 
(26.370) 

1.13 
[0.76,  1.44] 15 0.07 

[-0.22, 0.43] --- --- 

White noise +  intercept -47.415 
(-6.99) --- 1.41 

[1.01,  1.86] 3 0.03 
[-0.34, 0.55] --- --- 

White noise with no reg. --- --- 1.01 
[0.72,  1.54] 15 0.15 

[-0.26, 0.44] --- --- 

1d) Series: Government bond yields 

 α β d1 r d2 ρ1 ρ2 

AR(2) with time trend -11.840 
(-1.26) 

-2.925 
(-0.09) 

0.86 
[0.56,  1.22] 8 0.30 

[-0.09, 0.14] -0.348 0.785 

AR(2) with an intercept -14.732 
(-0.08) --- 0.97 

[0.66, 1.29] 11 0.52 
[0.20,  1.04] -0.260 0.683 

AR(2) with no regressors --- --- 0.77 
[0.17,  1.10] 4 0.23 

[-0.17, 0.88] 0.082 -0.678 

AR(1) with time trend -11.840 
(-1.26) 

-2.925 
(-0.09) 

0.86 
[0.56,  1.22] 14 0.30 

[-0.09, 0.14] -0.348 0.785 

AR(1) with an intercept*** -117.56 
(-8.54) --- 1.08 

[0.94,  1.21] 8 0.24 
[-0.05, 0.85] 0.133 --- 

AR(1) with no regressors --- --- 0.53 
[0.12,  0.88] 3 0.08 

[-0.14, 0.34] 0.192 --- 

White noise with trend -11.152 
(-1295) 

-0.491 
(-7.158) 

0.78 
[0.66,  0.89] 15 0.09 

[-0.05, 0.38] --- --- 

White noise + intercept -280.53 
(-6.50) --- 1.15 

[0.97,  1.53] 3 0.05 
[-0.07, 0.28] --- --- 

White noise with no reg. 

R

--- --- 0.74 
[0.49,  0.98] 2 0.02 

[-0.15, 0.27] --- --- 

 
(continued)
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1e) Series: S&P composite stock price index 

 α Β d1 r d2 ρ1 ρ2 

AR(2) with time trend 812.02 
(1.71) 

-1463.9 
(-2.04) 

1.08 
[0.88,  1.23] 11 0.20 

[0.03, 0.54] 0.044 0.454 

AR(2) with an intercept*** -1506.6 
(-0.27) --- 1.11 

[0.89, 1.34] 8 0.50 
[0.32,  0.74] 0.646 0.124 

AR(2) with no regressors --- --- 0.70 
[0.43, 1.07] 4 0.02 

[-0.26,  0.61] 0.661 0.214 

AR(1) with time trend -822.26 
(-0.36) 

-1161.2 
(-95.71) 

0.97 
[0.46,  1.30] 14 -0.06 

[-0.37,  0.39] 0.377 --- 

AR(1) with an intercept* 6254.27 
(7.21) --- 1.49 

[0.97,  1.90] 5 0.08 
[-0.15, 0.44] 0.080 --- 

AR(1) with no regressors --- --- 0.70 
[0.42  1.13] 5 -0.09 

[-0.37, 0.33] 0.403 --- 

White noise with trend 9.3278 
(0.241) 

-1375.5 
(-71.72) 

1.06 
[0.79,  1.42] 5 0.37 

[0.02, 0.83] --- --- 

White noise + intercept 7126.64 
(7.138) --- 1.51 

[1.07,  1.87] 6 0.10 
[-0.22, 0.43] --- --- 

White noise with no reg. 

R

--- --- 0.90 
[0.74,  1.34] 6 0.13 

[-0.16, 0.29] --- --- 

In bold, the models for which the null hypothesis of white noise errors cannot be rejected. “***” indicates the best model 
specification using LR tests and other likelihood criteria. 
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Table 2: Coefficient estimates with one fractional structure 

2a) Series: Dividends 

 α β d1 ρ1 ρ2 

AR(2) with time trend 0.024  
(0.338) 

0.005 
(0.022) 

0.955 
[0.797, 1.404] 0.394 -0.025 

AR(2) with an intercept 0.031 
(1.110) --- 0.955 

[0.796,  1.402] 0.395  -0.025 

AR(2) with no regressors*** --- --- 0.955 
[0.801,  1.403] 0.395  -0.025 

AR(1) with time trend 0.046  
(0.062) 

0.159  
(3.385) 

0’.937 
[0.817,  1.101] 0.401 --- 

AR(1) with an intercept 0.283  
(0.384) --- 0.939 

[0.796,  1.087] 0.404  --- 

AR(1) with no regressors --- --- 0.944 
[0.787,  1.080] 0.397 --- 

White noise with trend 0.1697   
(0.251) 

0.1447  
(0.878) 

1.232 
[1.101,  1.440] --- --- 

White noise + intercept 0.2467  
(1.367) --- 1.221 

[1,094,  1.435] --- --- 

White noise with no reg. 

R

--- --- 1.217 
[1.091,  1.433] --- --- 

2b) Series: Earnings  

 α β d1 ρ1 ρ2 

AR(2) with time trend*** -0.911  
(0.115) 

0.048 
(0.091) 

0.872 
[0.744, 1.101] 0.250 -0.585 

AR(2) with an intercept -0.801  
(0.094) --- 0.879 

[0.765,  1.098] 0.251  -0.584 

AR(2) with no regressors --- --- 0.879 
[0.766  1.098] 0.255  -0.583 

AR(1) with time trend -3.597 
(-0.741) 

0.351   
(4.122) 

0.588 
[0.513,  0.682] 0.304 --- 

AR(1) with an intercept 4.480 
(1.034) --- 0.566 

[0.480,  0.633] 0.372  --- 

AR(1) with no regressors --- --- 0.548 
[0.471,  0.661] 0.381 --- 

White noise with trend -1.2251  
(-0.220) 

0.4136  
(2.392) 

0.765 
[0.654,  1.001] --- --- 

White noise + intercept 1.1841  
(0.217) --- 0.767 

[0.661,  0.994] --- --- 

White noise with no reg. 

R

--- --- 0.772 
[0.668,  0.999] --- --- 
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2c) Series: Interest rates 

 α β d1 ρ1 ρ2 

AR(2) with time trend 6.287  
(4.221) 

-0.054 
(-1.349) 

0.702 
[0.487, 1.064] 0.154 -0.139 

AR(2) with an intercept 4.666  
(4.675) --- 0.590 

[0.431,  1.064] 0.270  -0.102 

AR(2) with no regressors*** --- --- 0.702 
[0.337,  1.064] 0.318  -0.053 

AR(1) with time trend 6.202  
(5.057) 

-0.017  
(-0.903) 

0.555 
[0.384,  0.762] 0.273 --- 

AR(1) with an intercept 5.488  
(5.590) --- 0.495 

[0.371,  0.750] 0.338  --- 

AR(1) with no regressors --- --- 0.535 
[0.405,  0.622] 0.314 --- 

White noise with trend 6.495   
(4.471) 

-0.0269 
(-0.630) 

0.751 
[0.639,  0.913] --- --- 

White noise + intercept 6.3089  
(4.445) --- 0.746 

[0.631,  0.912] --- --- 

White noise with no reg. 

R

--- --- 0.745 
[0.622,  0.926] --- --- 

2d) Series: Government bond yields 

 α β d1 ρ1 ρ2 

AR(2) with time trend 5.345  
(8.030) 

-0.036 
(-0.541) 

1.058 
[0.793, 1.382] -0.265 -0.068 

AR(2) with an intercept 5.317  
(7.134) --- 1.059 

[0.793,  1.383] -0.257 -0.077 

AR(2) with no regressors --- --- 1.056 
[0.796, 1.399] -0.256 -0.036 

AR(1) with time trend 5.332  
(6.936) 

-0.013  
(-0.213) 

0.992 
[0.645,  1.239] -0.184 --- 

AR(1) with an intercept 5.318  
(6.943) --- 0.992 

[0.852,  1.155] -0.184 --- 

AR(1) with no regressors*** --- --- 0.892 
[0.775,  1.239] -0.183 --- 

White noise with trend 5.292   
(7.042) 

-0.0078 
(-0.212) 

0.877 
[0.798,  0.982] --- --- 

White noise + intercept 5.274 
(7.064) --- 0.877 

[0.797,  0.982] --- --- 

White noise with no reg. 

R

--- --- 0.862 
[0.766,  0.988] --- --- 

 
(continued)
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2e) Series: S&P composite stock price index 

 α β d1 ρ1 ρ2 

AR(2) with time trend -11.607  
(5.441) 

0.553 
(-0.117) 

0.926 
[0.698, 1.169] 0.147 -0.120 

AR(2) with an intercept*** -10.713  
(-4,198) --- 0.926 

[0.698,  1.171] 0.147 -0.120 

AR(2) with no regressors --- --- 0.924 
[0.722, 1.171] 0.150 -0.119 

AR(1) with time trend -14.746 
(-0.192) 

8.098  
(2.495) 

0.843 
[0.732,  0.991] 0.210 --- 

AR(1) with an intercept 10.039 
(0.132) --- 0.846 

[0.696,  0.989] 0.214 --- 

AR(1) with no regressors --- --- 0.849 
[0.731,  0.990] 0.210 --- 

White noise with trend -5.384   
(-0.069) 

8.731 
(1.515) 

0.974 
[0.877,  1.125] --- --- 

White noise + intercept 4.786 
(0.062) --- 0.974 

[0.882,  1.121] --- --- 

White noise with no reg. 

R

--- --- 0.975 
[0.883,  1.122] --- --- 

In bold, the models for which the null hypothesis of white noise errors cannot be rejected. “***” indicates the best model 
specification using LR tests and other likelihood criteria. 
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Table 3: Selected break-date for each series 

 Bai (1997) Z & A (1992) L & S (2001) G-A (2008) 

Dividends 1976 1968 1968 & 1972 1976 – 1977 

Earnings 1973 1972 1972 – 1974 1973 – 1975 

Interest Rate 1973 1965 & 1973 1973  1973 – 1974 

Bond Yields 1979 1965 & 1973 1973– 1981 1970 – 1073 

Stock prices 1973 1974 1973 & 1974 1973 
Z & A stands for Zivot and Andrews (1992), L & S for Lee and Strazicich (2001) and G-A for Gil-Alana 
(2008). 
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Table 4: Estimates in the nonlinear case with two fractional structures 

4a) Series: Dividends 

 α1 α2 β2 d1 r d2 ρ1 ρ2 

AR(2) -114.85  
(-2.167) 

-297.26 
(-0.432) 

7.001  
(0.004) 

1.25 
[0.91,  1.83] 7 0.55 

[0.14, 1.19] -0.616 -0.184 

AR(1)*** -91.289  
(-7.774) 

-51.396 
(-

-1.375   
(-2.014) 

1.05 
[0.88,  1.51] 11 0.44 

[0.27,  0.64] -0.076 --- 

White Noise -584.60 
(-61.54) 

-66.491 
(-.344) 

-14.036  
(-1.992) 

0.07 
[0.01,  0.11] 13 1.08 

[1.02,   1.17] --- --- 

4b) Series: Earnings 

 α1 α2 β2 d1 r d2 ρ1 ρ2 

AR(2)*** -262.18 
(-4.53) 

-198.18 
(-12.43) 

-4.360  
(--3.77) 

1.24 
[1.09,  1.51] 7 0.66 

[0.32, 0.81] 0.251 -0.255 

AR(1) -305.31 
(-14.44) 

312.05 
(14.04) 

-15.847 
(-1.181) 

0.30 
[0.02,  0.67] 15 1.33 

[1.23, 1.54] -0.148 --- 

White Noise -1101.33 
(-64.54) 

452.05 
(16.18) 

-40.617  
(-0.553) 

0.03 
[-.27,  0.52] 7  1.39 

[1.22, 1.54] --- --- 

4c) Series: Interest rates 

 α1 α2 β2 d1 r d2 ρ1 ρ2 

AR(2) 22.396 
(3.433) 

169.83 
(0.009) 

-3.035   
(0.041) 

1.22 
[0.98,  1.54] 5 0.56 

[0.33, 0.86] -0.543 0.016 

AR(1)*** -82.952 
(-9.558) 

-113.64 
(-8.89) 

-5.173 
(-2.32) 

0.32 
[0.15,  0.49] 15 1.29 

[1.18,  1.46] -0.251 --- 

White Noise 10.115 
(2.13) 

60.603 
(3.36) 

-61.708  
(-4.448) 

0.84 
[0.77,  1.09] 3 -0.11 

[-0.56,   0.33] --- --- 

4d) Series: Government bond yields 

 α1 α2 d1 r d2 ρ1 ρ2 

AR(2) -3.287 
(-2.89) 

-4.006  
(-2.095) 

0.97 
[0.68,  1.22] 13 0.77 

[0.49, 1.23] 0.931 -0.377 

AR(1)*** -26.576 
(-4.15) 

-33.123 
(-4.55) 

0.96 
[0.82,  1.05] 3 0.17 

[0.04,  0.50] -0.109 --- 

White Noise -34.841 
(-6.711) 

-36.915 
(-6.691) 

0.91 
[0.82,  1.12] 8 0.21 

[0.04,   0.55] --- --- 

4e) Series: Stock price index 

 α1 α2 β2 d1 r d2 ρ1 ρ2 

AR(2) 121.055 
(4.21) 

1373.73   
(2.13) 

-29.690  
(-1.56) 

1.31 
[1.02,  1.59] 6 0.51 

[0.23, 0.69] -0.833 0.379 

AR(1)*** -9387.07 
(-19.74) 

-2273.1 
(-14.45) 

-163.84 
(-4.51) 

1.04 
[0.65,  1.55] 15 0.40 

[0.14,  0.97] 0.091 --- 

White Noise 7506.88 
(7.32) 

-6298.6 
(-4.55) 

-319.42  
(-3.54) 

1.41 
[0.79,  1.88] 7 -0.02 

[-0.09,   0.15] --- --- 

In bold, the models for which the null hypothesis of white noise errors cannot be rejected. “***” indicates the best model 
specification using LR tests and other likelihood criteria.ç 
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Table 5: Coefficient estimates with one fractional structure 

5a) Series: Dividends  
 α1 α2 β2 d1 ρ1 ρ2 

AR(2) 0.4704  
(-0.55) 

-0.2074 
(-0.16) 

0.8458  
(1.23) 

0.74 
[0.61, 0.86] 0.550  -0.167 

AR(1)*** 0.4885 
(1.56) 

-0.2130 
(-2.17) 

0.8652  
(12.66)  

0.73 
[0.64,  0.89] 0.513  ---     

White noise 0.3210   
(0.42)  

0.0217  
(0.19)  

0.6157  
(3.53)  

1.10 
[0.85, 1.39] --- --- 

5b) Series: Earnings 
 α1 α2 β2 d1 ρ1 ρ2 

AR(2)*** 0.7104   
(0.11) 

-0.6616  
(-0.08)  

2.5332  
(5.21)  

1.02 
[0.80, 1.33] 0.314  -0.540 

AR(1) 1.0743 
(0.16) 

-1.4158 
(-0.14) 

3.1548  
(6.90) 

0.63 
[0.49,  0.80] 0.325  ---     

White noise 0.8003  
(0.12) 

-0.8748 
(-0.09) 

2.6979  
(5.77)  

0.69 
[0.55, 0.86] --- --- 

5c) Series: Interest rate 
 α1 α2 β2 d1 ρ1 ρ2 

AR(2)*** 12.6989   
(6.52) 

21.2274  
(7.44)  

-0.4237  
(-3.46) 

0.66 
[0.40, 1.23] 0.228  -0.074  

AR(1) 10.411  
(4.41) 

19.7797  
(5.59)  

-0.6778 
(-3.99) 

0.59 
[0.31,  0.75] 0.247 ---     

White noise 9.6139    
(5.64)  

15.5416  
(6.27)  

-0.3054 
(-2.43) 

0.71 
[0.53, 0.87] --- --- 

5d) Series: Government bond yield 
 α1 α2 d1 ρ1 ρ2 

AR(2)*** 5.344 
(7.22)   

4.614  
(4.45)  

0.97 
[0.81, 1.32] -0.156 -0.002 

AR(1) 5.702  
(8-71)  

5.801  
(5.90)  

0.98 
[0.80,  1.27] -0.155 ---     

White noise 6.003   
(6.80)  

5.902  
(4.505)  

0.90 
[0.81, 1.04] --- --- 

5e) Series: Stock price index 
 α1 α2 β2 d1 ρ1 ρ2 

AR(2)*** 10.0391  
(0.10) 

-101.490  
(-0.75)  

55.9646  
(8,82) 

0.67 
[0.53, 0.81] 0.109  -0.752  

AR(1) 24.848  
(0.82) 

227.639  
(3.26)  

51.0496 
(-17.92) 

0.19 
[-0.17,  0.44] 0.744  ---     

White noise 6.0079    
(0.07)  

-35.9727  
(-0.30)  

39.3996 
(4.80) 

0.84 
[0.63, 1.15] --- --- 

In bold, the models for which the null hypothesis of white noise errors cannot be rejected. “***” indicates the best model 
specification using LR tests and other likelihood criteria. 
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Figure 2: Recursive estimates of the differencing parameters for dividends 
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Figure 3: Recursive estimates of the differencing parameters for earnings 
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Figure 4: Recursive estimates of the differencing parameters for interest rates 
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Figure 5: Recursive estimates of the differencing parameters for bond yields 
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Figure 6: Recursive estimates of the differencing parameters for stock prices 
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