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Abstract

In this paper, we study a local public good game in an endoge-

nous network with heterogeneous agents. We consider two speci-

fications in which different networks arise. When agents differ in

the cost of acquiring the public good, active agents form hierarchi-

cal complete multipartite graphs; yet, better types need not have

more neighbors. When agents’ benefits from the public good are

heterogeneous, nested split graphs emerge in which investment need

not be monotonic in type. In large societies, few agents produce

a lot and networks dampen inequality for most agents under cost

heterogeneity and increase it under heterogeneity in benefits.
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Boulevard de l’Hôpital, 75647 Paris, France; email: lpmerlino@univ-paris1.fr. Merlino
gratefully acknowledges financial support from the National Bank of Belgium, ERC
through grant 208535 and the Wiener Wissenschafts-, Forschungs- und Technologiefonds
(WWTF) under project fund MA 09-017. Merlino is a Postdoctoral Researcher of the
Fonds National de la Recherche Scientifique-FNRS.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dadun, University of Navarra

https://core.ac.uk/display/83589626?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Consider consumers who decide how much information about alterna-

tive products to acquire or farmers who learn about new fertilizers. To

choose between alternatives whose advantages they do not know, they ac-

quire some information either personally or through their peers.

Since agents benefit from their neighbors’ investment, the personal ac-

quisition of information is a local public good. In these situations, as well

as in many others, the network of interactions is, at least to a certain ex-

tent, endogenous. Since social structure often depends on the factors it

affects, this poses a challenge to the estimation of the impact of social net-

works (Jackson, 2008, p. 437). Indeed, individual characteristics affect an

agent’s decision on public good provision and networking: influential con-

sumers enjoy shopping more (Feick and Price, 1987) and farmers imitate

more experienced neighbors (Conley and Udry, 2010). Yet, while games

on fixed networks have been thoroughly studied (Bramoullé, Kranton and

D’Amours, 2014), there is far less understanding of strategic interactions

when networks are endogenous.

A relevant exception is Galeotti and Goyal (2010), henceforth G&G,

in which homogeneous agents simultaneously choose public good provision

and links, which are established unilaterally. They find that strict Nash

equilibria are core-periphery networks in which few agents produce a sig-

nificant amount of the public good, the so-called law of the few. However,

some complementarity in neighbors’ actions or decay in information flow

invalidates these results. Yet, for a theory to be empirically relevant, it

should have robust predictions. Furthermore, it is important to under-

stand the role of heterogeneity in individual characteristics.

The aim of this paper is precisely to find robust predictions on who

produces what amount and who links with whom when different sources of

heterogeneity are introduced into the framework of G&G.

In particular, we study a framework in which agents differ in the (linear)

cost or in the (concave) benefits of the public good. For example, some

consumers enjoy shopping more and some farmers better assess the reaction

of their crops to the fertilizer because they are more experienced. As a

result, they differ in the marginal cost of collecting information. On the

other hand, richer consumers and farmers with more land value the same

piece of information more because they can exploit it better. Hence, they
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differ in the marginal utility of the public good. In both cases, better types

are those who optimally invest more into the public good in isolation.

When the network is exogenous, the actual source of heterogeneity does

not matter. However, it influences the decision of whether to establish a link

by determining how much different types gain from a connection (Lemma

1). As a result, the network architectures that arise in equilibrium differ

in (i) the relationship between investment, number of neighbors, and type,

and (ii) whether a core of well-connected agents emerges. This is the “rich

club phenomenon”, first described in Zhou and Mondragon (2004), which

we are the first to explain as a result of strategic interaction.
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(a) Heterogeneity in Production Cost
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(b) Heterogeneity in Valuation

Agents are labeled from the best to the worst type starting from 1.

Figure 1: Nash Equilibria of Public Good Games in Endogenous Networks.

In the model with cost heterogeneity, players with a lower production

cost find it more profitable to produce rather than to free ride, but worse

types free ride on them. As a result, agents are more likely to be connected

to players who are very different from them; in particular, the best types are

not interconnected. Rather, social hierarchies with a pyramidal structure

emerge (Figure 1(a)): active connected agents are ordered in independent

sets, i.e. layers of similar types that are not connected, and form complete

multipartite graphs (Theorem 1). Better types produce more and belong

to smaller, higher layers. In such equilibria, centrality and type might not

be monotonically related (Corollary 1) because of the links established by

inactive agents (such as agent 7).

In the model with heterogeneity in benefits, better types gain more

from a link: if one agent links, all those with higher valuations link as well.
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Hence, the best players form a core of very active agents. Worse types are

less willing to link and need less of the public good, and eventually are

isolated. Equilibrium networks are then nested split graphs (Figure 1(b))

in which one’s neighborhood is a subset of the neighborhoods of the better

type agents (Theorem 2). Since active agents at the periphery with different

links just produce enough to access their stand-alone optimal output, better

types need not produce more (Corollary 2).

Efficient architectures are stars where the worst or the best types (but

1) are isolated depending on the source of heterogeneity (Proposition 1).

We extend the law of the few to a society with arbitrary degrees of

heterogeneity in cost or in valuation of the public good in the local public

good game proposed in the seminal paper of G&G (Proposition 2).1 The

networks we get are also negative assortative (Newman, 2002): few agents

tend to have a large number of connections with poorly connected ones.

These properties are relevant because they arise in many contexts.2

Networks dampen inequality for most agents under cost heterogeneity

and increase it under heterogeneity in benefits (Proposition 3). Again, this

stresses the importance of how the gains from links change with type.

The model we have described so far is very stylized. Yet our results

are robust to many extensions relevant for empirical applications. In par-

ticular, we can introduce both types of heterogeneity at the same time,

the indirect flow of spillovers, some decay, imperfect substitutability be-

tween one’s effort and that of others, and heterogeneity in the linking cost

(Proposition 4).

Often, those who initiate communication bear the associated cost, such

as paying for a phone call or going to someone’s farm. Therefore, in our

model, links are established unilaterally. While this assumption is not

always appropriate, the same networks arise when mutual consent is needed

to create a link and agents can make transfers (Proposition 5).

We further discuss the relationship between G&G and our work at the

end of Section 3. When agents’ efforts are strategic complements instead,

1G&G consider a very limited form of heterogeneity, i.e. one agent has a lower
production cost than the others, in which case this player is the hub of a star.

2Some examples are the networks observed in peer-to-peer exchanges (Adar and Hu-
berman, 2000), intra-sector R&D (Tomasello et al., 2013), inter-bank linkages (Soramäki
et al., 2007), and trade (De Benedictis and Tajoli, 2011).
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either nested split graphs or complete multipartite graphs emerge when

best replies are increasing and convex or concave, respectively (Hiller, 2012

and Baetz, 2015). We obtain these structures with strategic substitutes,

i.e. decreasing best replies, depending on how the gains from a connection

differ with types. Hence, we provide a unifying approach that is a first step

towards a general theory of strategic interaction in endogenous networks.

Bramoullé and Kranton (2007) study public good provision in fixed

networks. They show that there always exist specialized equilibria in which

active agents are organized in an independent set and their direct neighbors

are inactive. However, links are often at least to some extent endogenous.

In these situations, studying the incentives to link matter. As first noted by

G&G, fewer effort profiles are equilibria when the network is endogenous,

because production and links are deeply related: players establish a link

only if it gives them access to enough public good.

In particular, we model network formation non-cooperatively as in Bala

and Goyal (2000) who show that center-sponsored stars are strict Nash

equilibria of a model without effort choice, two-way flow of information,

and homogeneous agents. Heterogeneity in benefits plays a minor role

here: equilibrium networks are a collection of stars (Galeotti, Goyal and

Kamphorst, 2006). It plays a major role instead when the gains from

connections depend on agents’ investment. When linking costs are also

heterogeneous, Billand, Bravard and Sarangi (2011, 2012) give sufficient

conditions for the existence of Nash networks, which do not necessarily

exist (Haller, Kamphorst and Sarangi, 2007), an issue that does not emerge

here.3

1 Model

We now introduce a local public good game, in which agents exert effort

and establish costly connections to free ride on the effort exerted by others.

All proofs are in the Appendix.

Players. There is a set of players N = {1, ..., n}; i denotes a typical player.

3Haller and Sarangi (2005) were the first to study heterogeneity in the model of Bala
and Goyal (2000) with perfect indirect flow of information. In particular, they focus on
heterogeneity in link failures. In our paper, links never fail.
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Network. Player i’s set of links is represented by a row vector gi =

(gi1, ..., gii−1, gii+1, ..., gin), where gij ∈ {0, 1}, for each j ∈ N \{i}. Let gi ∈
Gi = {0, 1}n−1. We say that player i links to player j if gij = 1. The cost

associated to a link is supported by those who initiate the communication,

similarly to a phone call. Hence, linking decisions are one-sided: the agent

proposing a link pays k and the link is established. Since in our game,

direct spillovers are never negative, incoming links are always accepted.

The network g obtained from the players’ linking strategies is a directed

graph. We define NOUT
i (g) = {j ∈ N : gij = 1} as the set of players to

which i links, and ηOUT
i (g) =

∣∣NOUT
i (g)

∣∣ as the number of links that i

sponsors.

The closure of g is an undirected network denoted by ḡ, where ḡij =

max{gij, gji}, for each i, j ∈ N . That is, each directed link in g is replaced

by an undirected one. Let Ni(ḡ) = {j ∈ N : ḡij = 1} be the set of players

to which i is linked in the undirected graph ḡ, and let ηi(ḡ) = |Ni(ḡ)| be

the number of i’s neighbors in ḡ, or i’s degree.

There is a path in ḡ between i and j if either ḡij = 1, or there are m

different players j1, ..., jm distinct from i and j, such that ḡij1 = ḡj1j2 =

... = ḡjmj = 1. The length of the path is 1 in the first case, and m + 1 in

the second. A component of the network is a set of agents such that there

is a path connecting every two agents in the set and no path to agents

outside the set. A network ḡ is connected if there is a unique component

encompassing all agents, and minimally connected if it is connected and

there exists only one path between every pair of players. We denote the

set of isolated agents as I(ḡ) = {i | ḡij = 0 for all j ∈ N}.
In a core-periphery graph, there are two groups of players, P(ḡ), the

periphery, and C(ḡ), the core, such that for every i, j ∈ P(ḡ), ḡij = 0, while

for every l,m ∈ C(ḡ), ḡlm = 1; furthermore, for any i ∈ P(ḡ), there exists

l ∈ C(ḡ) such that ḡil = 1. A complete core-periphery network is such that

Ni(ḡ) = C(ḡ) for all i ∈ P(ḡ), and Nl(ḡ) = N \{l} for all l ∈ C(ḡ). Nodes in

C(ḡ) are referred to as hubs. A core-periphery network with a single hub is

referred to as a star. A core-periphery network in which the sets of agents’

neighbors are nested is a nested split graph: for any pair of agents i and j,

if ηi(ḡ) > ηj(ḡ), then Nj(ḡ) ∪ {j} ⊂ Ni(ḡ) ∪ {i}.
An independent set of ḡ is a non-empty subset of players who are not
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linked. In a complete multipartite graph, agents can be partitioned into a

number S of independent sets Hs(ḡ
∗), s = 1, ..., S, such that every agent

shares a link with all agents outside her own set.

A network is negative assortative if the average degree of one’s neighbors

is decreasing in one’s own degree (Newman, 2002).

Effort. Player i’s effort is denoted by xi ∈ X, where X = [0,+∞). A

player i is active if xi > 0; otherwise i is inactive.

Strategies. Player i’s set of strategies is Si = X × Gi, and the set of all

players’ strategies is S = S1 × ... × Sn. A strategy profile s = (x, g) ∈ S
specifies investment x = (x1, ...xn) and links g = (g1, ...gn) for each player.

Payoffs. We consider a game of positive local externalities: direct neigh-

bors’ investments in the public good are perfect strategic substitutes. Hence,

player i’s payoffs under strategy profile (x, g) are:

Ui(x, g) = fi

(
xi +

∑
j∈Ni(ḡ)

xj

)
− cixi − ηOUT

i (g)k, (1)

where k > 0 is the linking cost paid by the player who initiates a link and

fi(x) is twice continuously differentiable in x and i. Furthermore, (i) fi(x)

is a strictly concave and increasing function in x for all i ∈ N , and (ii) for

all i, f ′i(0) > ci, and limx→∞f
′
i(x) = mi < ci.

Under these assumptions, there is a unique and non-negative optimal

investment in the public good in isolation for every i denoted by

ai = arg max
xi∈X

fi(xi)− cixi.

We introduce ex ante heterogeneity in two ways.

(a) Differences in the cost of producing the public good: fi = f for

all i, while c1 < c2 < ... < cn, i.e. agents are heterogeneous in how efficient

they are in producing the local public good. For example, some consumers

enjoy shopping more and some farmers better assess the reaction of their

crops to fertilizer because they are more experienced.

(b) Differences in the valuation of the public good: ci = c for all i

and ∂2fi/∂x∂i < 0, or f ′i(x) > f ′j(x) for all x > 0, if i < j. For example,
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there could be richer consumers, farmers with more land and firms with

bigger market shares. These agents would value information more, accessed

directly or indirectly, because they can exploit it better.

Under both specifications, the players’ types capture the amount of

public good they would optimally collect in isolation such that a1 > a2 >

... > an. We refer to lower-indexed agents as better types. We assume that

all inequalities are strict, i.e. there is one player per type. This assumption

simplifies the analysis but does not substantially affect our results.

We define player i’s gain from a connection to player z who produces

xz ≥ 0 given a certain amount y of spillovers already received as

GCi(xz, y) = fi(x
′ + xz + y)− fi(xi + y)− ci(x′ − xi),

where x′ = arg maxx≥0 fi(x + xz + y) − cix is the effort that i exerts after

accessing z’s production of the public good. The following lemma describes

how the gains from a connection change with type in both models.

Lemma 1 Under heterogeneity in the cost of producing the public good,

GCi is increasing in i. Under heterogeneity in the valuation of the public

good, GCi is decreasing in i.

In particular, under cost heterogeneity, players value the spillovers associ-

ated with an additional link identically, but more efficient players enjoy a

lower reduction in production cost. Hence, they have lower gains from a

connection. Conversely, under heterogeneity in the valuation of the public

good, better types benefit more from spillovers, while producing the public

good has the same cost for all players.

Equilibrium. A strategy profile s∗ = (x∗, g∗) is a Nash equilibrium if for

all si ∈ Si and all i ∈ N , Ui(s
∗) ≥ Ui(si, s

∗
−i), where s = (si, s−i). For

heterogeneous agents, small perturbations of the valuation or production

costs are enough to break eventual ties, so that we focus on strict equilibria,

in which the inequalities in the above definition are strict for all players.

Social Welfare. For any s ∈ S, social welfare is given by the sum of

individual payoffs, SW (s) =
∑

i∈N Ui(s). A strategy profile s∗ is socially

efficient if SW (s∗) ≥ SW (s), for every s ∈ S.
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2 Main Analysis

In this section, we characterize the equilibria of this game, solve the social-

planner problem, derive results for large societies, and study inequality.

The results are stated in terms of the closure of equilibrium networks

ḡ∗, partly because, under heterogeneity in the valuation of the public good,

there are equilibria in which both parties involved in a link could sponsor

it, so that the corresponding closure of the directed graph is identical.

2.1 Equilibrium Analysis

The next lemma shows that, in equilibrium, active agents always collect

exactly the level of public good they would in isolation. This is very helpful

to characterize the equilibria of both models.

Lemma 2 Given any Nash equilibrium, s∗ = (x∗, g∗), x∗i +
∑

j∈Ni(ḡ) x
∗
j ≥

ai, for all i ∈ N , and if x∗i > 0, then x∗i +
∑

j∈Ni(ḡ) x
∗
j = ai.

The proof is omitted since it is a straightforward extension of a result

in Bramoullé and Kranton (2007) to the case of heterogeneous players.

Lemma 2 implies that the set of active players cannot be fully intercon-

nected when agents differ in the amount of public good they optimally

collect in isolation. Otherwise, they would have access to the same amount

of public good, so that someone would have a profitable deviation. Hence,

stars are the only complete core-periphery networks that can be equilibria.

Lemma 3 In equilibrium, active players are not all connected.

2.1.1 Heterogeneity in Production Cost

When better types are more efficient in producing the public good, they

have lower gains from a connection. The payoff function is then given by:

Ui(x, g) = f
(
xi +

∑
j∈Ni(ḡ)

xj

)
− cixi − ηOUT

i (g)k. (2)
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The following theorem characterizes the relationship between public good

provision and type in this model.4

Theorem 1 Under heterogeneity in the cost of producing the public good,

if k ≤ f(a1)−f(an)+cnan, in a strict Nash equilibrium, active agents form

a complete multipartite graph in which better types produce more and are

in independent sets that comprise fewer agents.

Intuitively, when agents decide whether to establish a link, they compare

the gain from free riding on someone’s public good production with the

cost of acquiring the same amount of public good. For the best and most

efficient types, linking is relatively less attractive, so they might not be

connected to each other. Yet, they produce a lot. As a consequence, they

receive links from lower types that have higher gains from these connections

given their higher production cost.

In equilibrium, there is a tight correspondence between type and in-

vestment since any player always produces more than a worse type. This

is surprising in a framework where the value of connections is endogenous

because, in principle, less efficient agents could produce more to attract

many in-links. However, this is no equilibrium. Indeed, when x∗i < x∗j for

some i < j, both players need to have active in-links, j more so than i,

and moreover, i needs more active out-links than j. The players linking to

i and j in turn need to have active in-links themselves, some of them be-

ing distinct. Reiterating this argument recursively leads to a contradiction

since the number of players is finite.

Since the profitability of a link depends on one’s production cost, similar

players have similar out-links and produce similar quantities. Hence, agents

in the same independent set collect similar amounts of public good both

directly and via their neighbors. However, better types need to have access

to more public good, produce more, and receive many in-links from worse

types. As a result, in equilibrium, active players are ordered in a hierarchy

with a pyramidal structure in which the lower layers comprise more agents.

4When linking is sufficiently costly, the unique equilibrium is an empty network.
When the linking cost decreases, player n, who has the highest benefit from linking to 1,
eventually finds it profitable to link to 1. This yields a threshold in terms of the linking
cost below which a non-empty network exists: a periphery-sponsored star with player 1
as the hub producing a1. This guarantees equilibrium existence.
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example (a) example (b) example (c)

i ci ai x∗i U∗i U∗i (∅) ci ai x∗i U∗i U∗i (∅) ci ai x∗i U∗i U∗i (∅)
1 .6 2.777 .540 3.010 1.666 .695 2.070 .447 2.546 1.439 .6 2.777 .842 1.995 1.666
2 .601 2.769 .530 3.010 1.664 .774 1.670 .405 1.940 1.292 .8 1.562 .720 1.324 1.25
3 .83 1.452 .382 1.433 1.205 .775 1.665 .401 1.940 1.290 .83 1.452 .610 1.304 1.205
4 .831 1.448 .378 1.432 1.203 .831 1.448 .164 1.280 1.203 .831 1.448 .606 1.303 1.203
5 .832 1.417 .375 1.432 1.202 .832 1.445 .161 1.280 1.202 .840 1.448 0 1.3 1.190
6 .833 1.414 .371 1.432 1.200 .833 1.441 .157 1.280 1.200 .841 1.448 0 1.3 1.189
7 .834 1.411 .368 1.431 1.200 .834 1.438 .154 1.280 1.200 .842 1.448 0 1.3 1.188
8 .835 1.434 .364 1.430 1.198 .835 1.434 .150 1.280 1.198 .9 1.235 0 1.3 1.111
k k∈[.33,.44] .33 .6

Figure 2: Examples of Nash equilibria under heterogeneity in the cost of

producing the public good with f(x, g) = 2
√
xi +

∑
j∈Ni(ḡ) xj.

Figure 2 exhibits three examples of possible equilibrium configurations

that illustrate some general features. First, equilibrium networks do not

have a core since the most efficient players need not link to each other, as

in example 2(a). This property emerges in several real-world situations.

For example, Feick and Price (1987) show that influential consumers (mar-

ket mavens) enjoy shopping more than others, and do not rely on other

market mavens’ information. Similarly, Conley and Udry (2010) show that

the most experienced farmers do not learn from each other, but rather in-

experienced farmers learn from more experienced ones. Through the lens

of our model, market mavens and experienced farmers do not free ride on

others’ information precisely because their cost of acquiring information is

so low. Therefore, they acquire much information themselves, receive many

in-links from bad types, and have a low gain from sponsoring a link.

Second, equilibrium networks display vertical clustering : someone’s

neighbors are likely to be neighbors as well when they are sufficiently dif-

ferent. This follows from the fact that similar types have similar gains from

a link, and hence, are likely to be in the same independent set, as in exam-

ples 2(a) and 2(b). This is particularly surprising because, intuitively, one
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would think that players are more likely to cluster the more similar they

are, a phenomenon which is known as homophily.

Third, equilibrium networks are negative assortative. Since equilibrium

hierarchies are pyramidal, better players have many more links than worse

types who link to them. Furthermore, similar types are not linked. There-

fore, the average degree of one’s neighbors decreases with one’s own degree.

Fourth, if some active players are connected in equilibrium, then there is

a unique component encompassing all agents. Very efficient players, except

1, can be isolated only if all other agents are inactive and link to 1. If a

very efficient player j does not link to 1 and some periphery players are

active, then all of them link to j as well. Otherwise, each of the periphery

players linking to 1 would receive more public good than j.

So far, we have restricted our attention to active agents. Yet, the behav-

ior of inactive agents reveals another important implication of the higher

gains from a connection for worse types. It is stated in the next corollary.

Corollary 1 Under heterogeneity in the cost of producing the public good,

ηi(ḡ
∗) need not be monotonic in i.

Expressed in words, the number of neighbors or degree might not be mono-

tonic in type, as in example 2(c): although agents 5 to 8 are the most

inefficient players, they have two links, i.e. one more than players 3 and

4. Indeed, worse types might have more links if they are inactive because

they out-link more and need not link to all players in an independent set.

2.1.2 Heterogeneity in the Valuation of the Public Good

When better types value the public good more, the gains from a connection

are higher for better types. In this case, the payoff function is given by

Ui(x, g) = fi

(
xi +

∑
j∈Ni(ḡ)

xj

)
− cxi − ηOUT

i (g)k. (3)

We now show how this property affects the relationship between type and

investment. First, we characterize the equilibrium network structure.5

5When linking is sufficiently costly, the unique equilibrium is an empty network.
When the linking cost decreases, player 2, who has the highest benefit from linking to 1,
eventually finds it profitable to link to 1. This yields a threshold in terms of the linking
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Theorem 2 Under heterogeneity in the valuation of the public good, if

k ≤ f2(a1) − f2(a2) + ca2, ḡ∗ is a nested split graph in which better types

have more links. Moreover, there exist ñ1 and ñ2, ñ1 < ñ2 ≤ n, such that

(i) C(ḡ∗) = {i ∈ N : i ≤ ñ1, x
∗
i > 0} is the core of active players;

(ii) P(ḡ∗) = {i ∈ N : ñ1 < i ≤ ñ2} is the periphery;

(iii) I(ḡ∗) = {i ∈ N : i > ñ2} is a set of isolated players.

In equilibrium, the best players form a core because they not only need

more public good, but also gain more from a connection. Then, there are

players who do not produce enough to receive in-links, but who benefit

from linking to some players in the core. These agents form a periphery

of free riders that can be active, in which case both core players and free

riders enjoy positive spillovers. Finally, there are isolated agents whose

benefits from linking even to the top producers are too low to justify the

linking cost.
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example (a) example (b)

i bi ai U∗i (∅) x∗i U∗i x∗i U∗i
1 1.849 9.5 2.85 4.26 4.442 2.3 5.01
2 1.754 8.55 2.565 2.74 3.508 2.26 3.802
3 1.686 7.9 2.37 .9 2.87 2.16 2.783
4 1.627 7.35 2.205 .35 2.705 .6 2.28
5 1.621 7.3 2.19 .3 2.69 .55 2.265
6 1.370 5.21 1.563 .95 2.041 .65 1.631
7 1.082 3.25 0.975 0 1.433 .95 1.015
8 .657 1.2 .36 0 .557 1.2 .36
k - .8 .65

Figure 3: Nash equilibria under heterogeneity in the valuation of the public

good with fi(x, g) = bi
√
xi +

∑
j∈Ni(ḡ) xj and c = .3.

Figure 3 depicts two possible equilibrium configurations that illustrate

some general properties. First, equilibrium networks are nested split graphs

with a core that contains the best types. This structure emerges because

(i) players who sponsor η links always link to the η players that invest

more and from whom they receive no in-links, and (ii) better types have

more incentives to link and produce more. In example 3(b), agents 1 to 3

constitute the core of connected agents who receive in-links, while agents

4 to 7 are at the periphery, i.e. they free ride by sponsoring links to core

players, and the more so the better their type.

cost below which a non-empty network exists: a periphery-sponsored star with player 1
as the hub producing a1. This guarantees equilibrium existence.
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Overall, N7(ḡ∗) ∪ {7} ⊂ N6(ḡ∗) ∪ {6} ⊂ ... ⊂ N1(ḡ∗) ∪ {1}, i.e. the

neighborhoods of worse types are subsets of the neighborhoods of better

types. Hence, degree centrality is always higher for better types.

These two facts imply that equilibrium networks display negative as-

sortativity. In example 3(b), the average degree of player 1’s neighbors is

3, while player 7 is only linked to player 1, whose degree is 6.

By Lemma 2, active players produce enough to attain the optimal stand-

alone effort given the spillovers from their neighbors. Hence, if a player has

one link more than a worse type, the effort she exerts in order to achieve

her optimal level might be lower. In Figure 3(a), players 3 to 5 produce

less than 6 who does not link to 2. Hence, investment in the public good

need not be monotonic in type, as summarized in the next corollary.

Corollary 2 Under heterogeneity in the valuation of the public good, x∗i

need not be monotonic in i.

Finally, there can be isolated agents, such as player 8 in Figure 3(b). In

general, the worse an agent’s type, the more likely she is to be isolated

since she does not value the public good enough to pay linking cost k.

Our characterization of equilibrium networks shows that an agent’s type

and investment in general cannot be inferred from her position in the net-

work. Hence, one must be careful in interpreting degree centrality as evi-

dence of how good or important a player is.

The only architecture which can be a strict equilibrium in both models

(and in a model with homogeneous agents) is a periphery-sponsored star

with 1 as the hub. We show next that such structures are also efficient.

2.2 Efficiency

In the following proposition, the efficient allocations of production and links

in the model where agents have different production costs and valuations

of the public good are denoted by C and V , respectively.

Proposition 1 The socially optimal network is a star such that:

(a) under heterogeneity in production cost, there is n > 1 such that gi1 = 1

for all players i ≥ n, and the hub 1 produces yC given by (n−n+2)f ′(yC) =

13



c1, while players 1 < i < n are isolated;

(b) under heterogeneity in valuation, there is n̄ ≤ n such that all players

i ≤ n̄ form a star with a hub that produces yV given by
∑

i≤n̄ f
′
i(y

V ) = c,

while players i > n̄ are isolated.

The social planer minimizes linking costs. Therefore, efficient networks are

stars from which some players are excluded depending on the gains from

the connection to the hub. Due to the different relationship between type

and gains from a connection, the identity of isolated agents is very different

in the two models: under cost heterogeneity, the most efficient agents but 1

are isolated, while under heterogeneity in valuation, the agents that value

the public good the least are isolated.

Hence, decentralized non-empty equilibria always entail under-investment

since no player internalizes the marginal value of her production for all other

players. Moreover, if the equilibrium network is non-empty and is not a

star, then it is over-connected.

2.3 Large Societies

The law of the few, formally derived first by G&G, predicts that as the

number of players increases, the number of active players in the network

increases at a lower rate. This result captures well many social and eco-

nomic networks observed in reality. We now show that a similar result also

holds when agents are heterogeneous.

Given an equilibrium (x∗, g∗), we define A(x∗, g∗, ε) as the number of

agents in the component of g∗ who produce at least ε and AIN(x∗, g∗) as

the number of (active) agents in g∗ who receive at least one in-link.

Proposition 2 Under heterogeneity in valuation or in production cost,

given f1 and c1, for any ε > 0, limn→∞A(x∗, g∗, ε)/n = 0. Furthermore,

limn→∞AIN(x∗, g∗)/n = 0.

The number of active agents need not be bounded for two reasons. First,

some agents might be isolated producing their optimal amount of public

good. Second, some peripheral agents might produce some public good to

complement the amount received from their neighbors. However, periphery

players as a whole cannot produce but a limited amount of public good,

14



otherwise players to whom they link would receive too large an amount of

public good. Furthermore, the amount of public good acquired via each

link cannot fall below a certain threshold determined by the linking cost.

Therefore, the number of agents that produce more than an infinitesimal

amount of public good and the number of agents that receive links are

bounded as the population size increases. Hence, in large societies, a small

group of players produce a significant amount of public good, while most

other players either only free ride or produce almost nothing.

2.4 Inequality

Networks can increase inequality, i.e. the difference in payoffs across agents

in isolation versus in a network. This happens in particular when the

best types access a large amount of public good from active free riders, as

happens for some agents in the examples of Figures 2 and 3.

In the examples reported in Table 1 however, the best types do not

benefit much from the network because free riders produce little or nothing.

In these cases, the best type actually has the lowest equilibrium payoff, so

that the network dampens inequality with respect to these agents.

f(x, g) as in Fig. 2 and k = .1 f(x, g) as in Fig. 2 and k = .6 fi(x, g) as in Fig. 3 and k = .65

i ci ai x∗i U∗i U∗i (a, ∅) ci ai x∗i U∗i U∗i (a, ∅) bi ai x∗i U∗i U∗i (a, ∅)
1 .747 1.792 1.103 1.853 1.339 .6 2.777 2.777 1.666 1.666 1.849 9.5 9.5 2.85 2.85
2 .774 1.669 .127 2.386 1.290 .8 1.562 0 2.777 1.25 1.754 8.55 0 2.565 4.757
3 .775 1.665 .123 2.385 1.205 .83 1.452 0 2.777 1.205 1.686 7.9 0 2.37 4.548
4 .831 1.448 .095 2.028 1.203 .831 1.448 0 2.777 1.203 1.627 7.35 0 4.364 2.205
5 .832 1.417 .091 2.028 1.202 .840 1.448 0 2.777 1.190 1.621 7.3 0 4.347 2.19
6 .833 1.414 .088 2.028 1.200 .841 1.448 0 2.777 1.189 1.370 5.21 0 3.571 1.563
7 .834 1.411 .084 2.028 1.200 .842 1.448 0 2.777 1.188 1.082 3.25 0 2.684 .975
8 .835 1.434 .081 2.028 1.198 .9 1.235 0 2.777 1.111 .657 1.2 0 1.376 .36

Table 1: The impact on inequality of star networks with 1 as the hub.

Overall, how networks affect inequality depends on how much free riders

produce and who benefits more from a link. In large societies, the law of

the few implies that there are few active agents that receive links. Hence, it

is not possible to free ride on most free riders, and the only element which

matters is how the gains from a connection vary with type.

Define Ui = fi(ai)− ciai for all i ∈ N . We say that in a given network

g, the inequality between any two players i and j such that i < j decreases

if Ui(x
∗, g∗)− Uj(x

∗, g∗) ≤ Ui − Uj.
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Proposition 3 Given any g∗ and any i < j which receive no in-links, as

n → ∞, under heterogeneity in production cost, the inequality between i

and j decreases and, under heterogeneity in valuation, it increases.

In large populations, by the law of the few, the proportion of players that

receive in-links is very small, so that this result applies to most players.

Intuitively, the possibility of establishing links benefits those players that

gain more from a connection. Under cost heterogeneity, these are the worst

players, and thus, inequality decreases. Under heterogeneity in benefits, the

best types gain most from each link, and thus, inequality increases.

3 Discussion

Robustness Analysis. The benchmark model described in Section 2 is

very stylized. However, we now derive precise bounds on the robustness of

our characterization to having both cost and valuation heterogeneity at the

same time, indirect flow of public good, decay, imperfect substitutability,

and (some) heterogeneity in the linking cost. To do so, we introduce the

following payoffs

Ui(x, g, ε) = (1 + ε1,i)fi


x1−ε6

i + (1− ε4)
∞∑
d=1

εd−1
5

∑
j∈Nd

i (ḡ)

x1−ε6
j

 1
1−ε6


−(ci − ε2,i)xi − ηOUT

i (g)(k + ε3,i) (4)

where Nd
i (ḡ) = {j ∈ N : di,j(ḡ) = d} is defined as the set of neighbors that

are connected to player i via a shortest path of length d. The shocks are:

– ε1 ∈ RN and ε2 ∈ RN introduce both types of heterogeneity at the

same time; indeed, agents are often heterogeneous along several dimensions;

– ε3 ∈ RN introduces heterogeneity in linking costs; for example, some

individuals prefer to talk more or have cheaper phone rates;6

– ε4 ∈ [0, 1] introduces decay: some information is lost when transmitted

to neighbors, either because communication is imperfect or some knowledge

is tacit. Hence, if i is linked to j, the spillover she gets is only (1− ε4)xj;

6We do not study differences in the linking cost per se since they do not affect players’
type—the optimal public good production in isolation—which is the focus of our paper.
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– ε5 ∈ [0, 1] introduces indirect spillovers since often the public good

is also shared among indirect neighbors; in that case, information is dis-

counted by ε5 for each link it travels in the network.7 For example, con-

sumers who get information from market mavens might share it with others;

– ε6 ∈ [0,∞) captures imperfect substitutability between individuals’

efforts, for example because the information collected displays some content

heterogeneity (as in Zhang and van der Schaar, 2012).

We denote an equilibrium of the game by (x∗(ε), g∗(ε)) and the optimal

amount of the public good an agent would collect in isolation by ai(ε) to

stress the dependence on the shocks ε. The following proposition describes

how to determine precise bounds on ε for g∗ to remain an equilibrium.

Proposition 4 Under heterogeneity in valuation or in production cost, for

each strict equilibrium network g∗, there exist shocks ε such that g∗ is an

equilibrium network of the perturbed game if |ε| < ε̄.

The key ingredients in obtaining this result are the following. First, each

agent’s payoffs are continuous in the shocks. Second, in strict equilibria, all

inequalities representing agents’ optimal linking decisions are strict. Hence,

there is room to perturb payoffs. It is then enough to check that the effort

level of agents can be adjusted in a consistent way, which in general is

possible given that agents are heterogeneous. Furthermore, we can find

shocks such that inactive agents remain inactive. In that case, the law of

the few holds also for the perturbed game.

Two-sided Link Formation and Transfers. Some situations that can

be captured by our model include bilateral R&D collaborations among firms

or local constituencies that provide services and share them with nearby ju-

risdictions. In these cases, however, mutual consent is needed to share the

public good. Furthermore, agents might ask for compensation to commu-

nicate the information they acquire. In what follows, we study the impact

of this different network formation protocol on equilibrium properties.8

7For ε5 = 0, our benchmark models arise. Since ε5 converges to zero from above,
it is natural to define limε5→0+ ε5

0 = 1. If instead ε5 = 1, equilibrium networks are
minimally connected with possibly some isolated agents.

8Without transfers, other equilibria arise because players refuse some links once they
have acquired the optimal amount of public good. Some examples are available upon
request.
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We denote the transfers proposed by player i by τi = {τij}j∈N , where

τij ∈ R for all j ∈ N. We assume that ḡij = 1 if, and only if, τij + τji ≥ k.

A strategy profile s = (x, τ) specifies investments x and transfers τ =

{τ1, ..., τn}. The payoff function is then defined as

Ui(x, τ) = fi

(
xi +

∑
j∈Ni(ḡ)

xj

)
− cixi −

∑
j∈N

ḡijτij. (5)

In equilibrium, a link is formed if it is profitable and, if a link is not there,

at least one of the two agents involved does not benefit from it. Formally,

Bloch and Jackson (2007) and G&G define pairwise equilibrium as follows:

Definition 1 A strategy s∗ is a pairwise equilibrium if (1.) s∗ is a Nash

equilibrium, and (2.) for all τ ∗ij + τ ∗ji < k, if Ui(x
′
i, x
′
j, τ
′
ij, τ

′
ji, x

∗
−ij) > Ui(s),

then Uj(x
′
i, x
′
j, τ
′
ij, τ

′
ji, x

∗
−ij) < Uj(s

∗), for all x′i, x
′
j ∈ X and for all τ ′ij, τ

′
ji.

Proposition 5 shows that for each strict equilibrium in the benchmark mod-

els, there is an equilibrium under two-sided link formation, such that the

resulting network is identical.

Proposition 5 Under heterogeneity in valuation or in production cost,

take a strict equilibrium (x∗, τ ∗) in the model with one-sided linking. For

all i and j, let τij be such that if g∗ij = 1, then τ ∗ij = k + ε, ε > 0, while

if g∗ij = 0, then τ ∗ij = −ε. Then, (x∗, τ ∗) is a strict equilibrium in the

two-sided model with transfers that induces ḡ∗.

The proof of this proposition is trivial and hence omitted. Intuitively, if

under one-sided linking an agent is willing to sponsor a link, the other agent

accepts this link if the proposing player bears most of its cost.

Homogeneous Agents (G&G). When agents are homogeneous, strict

equilibria are complete core-periphery structures in which the law of the

few holds. Moreover, there are at most two levels of production. Compared

with these results, we get richer structures and some striking differences.

First, all active agents cannot be connected and share all their neighbors

since each agent’s optimal amount of public good is different (Lemmata

2 and 3). Hence, either a core does not emerge (Theorem 1) or active

periphery agents do not all connect to the same core agents (Theorem 2).

Second, for strict equilibria, there is a discontinuity in the limit of the

heterogeneous to the homogeneous population case since some links need
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to be established or deleted to get complete core-periphery structures.9

There are two exceptions: (i) stars are equilibria in all the models men-

tioned; and (ii) some complete multipartite graphs, such as the one in

Figure 2(a), are both strict equilibria with heterogeneous production cost

and non-strict equilibria with homogeneous agents.10 Therefore, it might

be inappropriate to focus on strict equilibria when agents are homogeneous.

Finally, when agents are homogeneous, even infinitesimal complemen-

tarity in neighbors’ actions or decay in information flow might destroy the

equilibrium characterization. When agents are heterogeneous instead, equi-

librium networks are robust to decay, as well as to many other extensions.

4 Conclusion

In this paper, we study a local public good game with an endogenous choice

of neighbors among heterogeneous agents. Depending on the dimensions

along which agents are heterogeneous (which in isolation is not relevant),

we find that (i) active agents form either complete multipartite or nested

split graphs, and (ii) the network reduces or increases inequality for most

agents. In both models, the law of the few holds in large societies.

The source of heterogeneity matters because it determines how the gains

from a connection differ across types. In equilibrium, this affects the rela-

tionship between outcomes or type and network statistics. In this sense,

our results are relevant beyond the theoretical literature of networks.

Surprisingly, the network structures we single out also arise under strate-

gic complements when players’ best replies are either convex (Hiller, 2012)

or concave (Baetz, 2015). Hence, future research should investigate whether

more general results are obtainable.

9For example, consider the network in Figure 3(a). This is no longer an equilibrium
if ā1 → ā2 because x∗2 → 0. Hence, as agents get more homogeneous, eventually only
the star with 1 as the hub is an equilibrium. Yet, at the limit, i.e., when all agents are
homogeneous, other complete core-periphery structures are equilibria.

10For example, consider the network in Figure 2(a). Let the economy converge to
the homogeneous agents’ case in the following way: first, a1 = a2 = ā and ai = a for
i = 3, ..., 8, i.e. there are two types. Then, Figure 2(a) is an equilibrium as ā→ a→ .527
if a ∈ [(11k/12 +

√
(11k/12)2 + ā/6, 11k

√
ā/6 + ā/6]. Eventually, it is a non-strict

equilibrium when a = ā = .527. The other equilibria are periphery sponsored stars with
1 or 2 as the hub; if a 6= ā both of them can be active under some conditions.
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Appendix

Proof of Lemma 1. Suppose fi = f for all i ∈ N . Then, GCi(xz, y) =

f(x′+xz +y)−f(xi+y)−ci(x′−xi) becomes ci(xi−x′) if xi−x′ > 0, i.e., i

is active when linking to z, or f(xz +y)−f(xi+y)+cixi otherwise. In both

cases, GCi is increasing in ci and, hence, in i. Suppose instead ci = c for all

i ∈ N . Then, GCi(xz, y) = fi(x
′+ xz + y)− fi(xi + y)− c(x′− xi) becomes

c(xi − x′) if i is active when linking to z, or fi(xz + y) − fi(xi + y) + cxi

otherwise. Since ∂2fi/∂x∂i < 0, GCi is decreasing in i. �

Proof of Lemma 3. Suppose that s∗ = (x∗, g∗) is a Nash equilibrium and

that the active players are all connected among them. In other words, for

all active i, j ∈ N , ḡij = 1. Take two players i, j ∈ N , then ai 6= aj. If they

are active, ai = xi +
∑

z∈N,z 6=i xz and aj = xj +
∑

z∈N,z 6=j xz. But i and j

have the same neighbors and ḡij = 1, which implies ai = xi+
∑

z∈N,z 6=i xz =

xj +
∑

z∈N,z 6=j xz = aj. At the same time, ai 6= aj, a contradiction. �

Proof of Theorem 1. First we show that for any active i and j such that

i < j, x∗i > x∗j . Suppose ad absurdum this is not the case. Without loss of

generality, consider first the best type j and the worst type i < j such that

x∗i < x∗j . We show in a series of Lemmata that a contradiction emerges.

Lemma 4 Suppose there exist players i, j and z such that g∗iz = 1 but

ḡ∗jz = 0 and x∗z > x∗j ≥ 0. Then, it holds that x∗z − x∗j > ai − aj.

Proof of Lemma 4. The result is trivial if ai < aj since x∗z > x∗j ≥ 0.

If ai > aj, define ∆ = x∗z − x∗j . In order to prove that (aj + ∆) > ai, we

suppose ad absurdum that (aj + ∆) ≤ ai. Then, the following inequalities

arise: since ci < cj, it holds that k−cix∗j > k−cjx∗j . Since j is not linked to

z, it holds that k− cjx∗j > f (aj + ∆)− f (aj) . Finally, since (aj + ∆) ≤ ai,

by the concavity of f , f(aj + ∆)− f(aj) ≥ f(ai)− f(ai−∆). Together this

yields k − cix∗j > f(ai)− f(ai −∆). Thus, player i is strictly better off to

break the link with z and to invest xj instead, a contradiction. �

Lemma 5 Suppose that there exist i and j such that i < j and x∗i < x∗j .

Then, (i) the set of players Z = {z : x∗z > 0, g∗iz = 1, ḡ∗jz = 0} is non-

empty; (ii) for any z ∈ Z, x∗z > x∗j and x∗z − x∗j > ai − aj; (iii) the set
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of players P = {p : x∗p > 0, g∗pj = 1, ḡ∗pi = 0} is non-empty; (iv) ḡ∗ij = 0;

(v) for any p ∈ P , ai > ap; (vi) there exists a non-empty set of players

L = {l : x∗l > 0, ḡ∗lj = 1, g∗li = 1, ḡ∗lp = 0 for any p ∈ P}.

Proof of Lemma 5. If there are i and j such that i < j and x∗i <

x∗j , it must be the case that
∑

h∈Ni(ḡ∗)
x∗h >

∑
h∈Nj(ḡ∗) x

∗
h (since ai > aj).

However, i does not receive more in-links than j (since x∗i < x∗j). Indeed,

if there is a player l such that g∗li = 1, then ḡ∗lj = 1. (Obviously this holds

if g∗jl = 1. If g∗li = 1, but ḡ∗lj = 0, then l would profitably sever the link

with i and link to j. This implies that ḡ∗lj = 1 whenever g∗li = 1.) Hence,

given g∗, it holds that {l : g∗li = 1} ⊆ {l : g∗lj = 1}, and therefore that

{l : g∗jl = 1} ⊂ {l : g∗il = 1}. Thus, there exists a non-empty set of players

Z = {z : x∗z > 0, g∗iz = 1, ḡ∗jz = 0}. This concludes the proof of part (i).

To show part (ii), pick any z ∈ Z. Then, g∗iz = 1 implies that cix
∗
z > k,

and since cj > ci, it holds that cjx
∗
z > k, that is, it is cheaper for j to link

to z rather than to produce x∗z by herself. However, j does not link to z

implying that by linking to z, j would stop producing and f(aj)− cjx∗j =

f(x∗j +
∑

h∈Nj(ḡ∗) x
∗
h) − cjx∗j > f(x∗z +

∑
h∈Nj(ḡ∗) x

∗
h) − k. Then by Lemma

4, x∗z > x∗j and x∗z − x∗j > ai − aj. This concludes the proof of part (ii).

To show part (iii), suppose instead that P = ∅. Pick any z′ ∈ Z. Then,

the inequality aj − x∗j + x∗z′ > ai, shown in part (ii), is violated since∑
l:g∗lj=g∗li=1

x∗l +
∑

t:g∗jt=g∗it=1

x∗t + x∗z′ ≤
∑

l:g∗lj=g∗li=1

x∗l +
∑

t:g∗jt=g∗it=1

x∗t +
∑

z:g∗iz=1,ḡ∗jz=0

x∗z + x∗i .

Then, j needs to have more active in-links than i in order for aj−x∗j +x∗z′ >

ai to hold. Hence, P is non-empty. This concludes the proof of part (iii).

To prove part (iv), we need to show that g∗ij = 0 and g∗ji = 0. Suppose first

that g∗ij = 1. Pick any z ∈ Z. From part (ii) it follows that f(aj − x∗j +

x∗z)− k > f(ai)− k. Suppose that i links to j paying k. Then, f(ai)− k >
f(ai) − cix

∗
j . Since ai > aj and ci < cj, it holds that f(ai) − cix

∗
j >

f(aj)− cjx∗j . Finally, since j is not linked to z it holds that f(aj)− cjx∗j >
f(aj − x∗j + x∗z)− k, a contradiction. Thus, player i does not link to j.

Furthermore, g∗ji = 0 since x∗i < x∗j < x∗z and j does not link to z: if

g∗ji = 1, then j has a profitable deviation to sever the link with i and link

to z instead, a contradiction. This concludes the proof of part (iv).

To show part (v), pick any p ∈ P and suppose ad absurdum that ap > ai.

Then, x∗p > x∗i since we assumed that j is the best type and i < j the worst
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type such that x∗i < x∗j . Pick some z ∈ Z. Then, either x∗p > x∗z or x∗p < x∗z.

In both cases a contradiction arises. In the first case, since g∗iz = 1, also

p and i are linked which contradicts that ḡ∗pi = 0, and in the second, the

same argument as in part (iv) applies (that is, Lemma 4 holds analogously

for p and j), and thus, ḡ∗jp = 0, which contradicts that g∗pj = 1. This shows

that ai > ap and concludes the proof of part (v) of Lemma 5.

To show part (vi), suppose ad absurdum that L = ∅. Consider now p ∈ P .

Since g∗pj = 1 and x∗p > 0, p is also linked to any z ∈ Z and to all other

players to which i links. Thus, p receives x∗p + x∗j which i does not, while i

receives x∗i which p does not. Since x∗j > x∗i , x
∗
p+x∗j > x∗i . Hence, p receives

strictly more public good than i. This contradicts ai > ap, as shown in part

(v), and x∗p > 0 implies, by Lemma 2, that p accesses exactly ap. Hence,

there is a player l such that x∗l > 0, g∗li = 1 and ḡ∗lp = 0. If ḡ∗lp = 1, then, by

the same argument, a contradiction would arise. This implies that x∗i > 0

and ḡ∗lj = 1 and concludes the proof of part (vi) of Lemma 5. �

Lemma 6 If there are i and j such that i < j and x∗i < x∗j , given the sets

of players P and L as defined above, then (i) x∗i > x∗p, for any p ∈ P ; (ii)

there exists a non-empty set of players Q = {q : x∗q > 0, g∗qp = 1, ḡ∗ql = 0

for any p ∈ P and for any l ∈ L}; (iii) for any p ∈ P and for any l ∈ L,

x∗p > x∗l ; (iv) for any l ∈ L, g∗lj = 1 and g∗jl = 0; (v) there exists a non-

empty set of players R = {r : x∗r > 0, g∗rl = 1, ḡ∗rp = 1 for any p ∈ P and

for any l ∈ L}.

Proof of Lemma 6. To show part (i): since g∗pj = 1 but ḡ∗ij = 0, there

is no player h such that g∗ih = 1 but g∗ph = 0, if not i (p) would profitably

sever the link with h (j) and link to j (h) if x∗j > x∗h (x∗j < x∗h). Suppose

now ad absurdum that x∗p > x∗i . Then, for any e such that g∗ei = 1, g∗ep = 1.

Therefore, p has at least as many in- and out-links as i. Furthermore,

since x∗j > x∗i and g∗pj = 1, while ḡ∗ij = 0, by Lemma 4 it holds that

ai−x∗i +x∗j > ap. However, rewriting and simplifying this inequality we get

a contradiction because x∗j <
∑

q:g∗hp=1∧ḡ∗hi=0 x
∗
h+
∑

h:g∗ph=1∧ḡ∗ih=0 x
∗
h+x∗p+x∗j .

Hence, x∗i > x∗p is necessary for i to attract more active in-links than p.

This concludes the proof of part (i) of Lemma 6.

To show part (ii), note that for any l ∈ L and p ∈ P , x∗i > x∗p and g∗li = 1

while ḡ∗pi = 0. Hence, from Lemma 4, ap − x∗p + x∗i > al. Suppose now ad
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absurdum that players of type p and l receive the same amount of public

good via in-links. There is no player h such that g∗ph = 1 but g∗lh = 0, if not

l (p) would profitably sever the link with i (h) and link to h (i) if x∗h > x∗i

(x∗h < x∗i ). Hence, l receives more public good than p via out-links, at least

from i. Finally, l produces x∗l . Hence, ap − x∗p + x∗i < al, a contradiction.

This concludes the proof of part (ii) of Lemma 6.

Hence, x∗p > x∗l > 0 for all l ∈ L and p ∈ P if not any player q ∈ Q would

profitably deviate and link to l. This in turn implies that g∗lj = 1 and

g∗jl = 0, if not j would have a profitable deviation to sever the link with l

and establish one with i or some z ∈ Z (since by part (i), x∗i > x∗p, and as

just shown x∗p > x∗l ). This concludes the proof of Lemma 6.(iii) and (iv).

To show (v), suppose ad absurdum that R = ∅. Pick p′ ∈ P. Then, since

x∗p′ > x∗l , g
∗
qp′ = 1, and ḡ∗lp′ = 0, (i) by Lemma 4, it holds that al−x∗l +x∗p′ >

aq, and, (ii) q has more active out-links than l (to p ∈ P ). Then,∑
h:g∗lh=g∗qh=1

x∗h + x∗l − x∗l + x∗p′ <
∑

m:g∗mq=1,ḡ∗ml=0

x∗m +
∑

h:g∗lh=g∗qh=1

x∗h +
∑

p:g∗qp=1,ḡ∗lp=0

x∗p + x∗q,

or x∗p′ <
∑

m:g∗mq=1∧ḡ∗ml=0 x
∗
m +

∑
p:g∗qp=1∧ḡ∗lp=0 x

∗
p + x∗q. This contradicts al −

x∗l + x∗p′ > aq.This concludes the proof of part (v) of Lemma 6. �

Lemma 7 There exist l ∈ L and p ∈ P such that ḡ∗lp = 0.

Proof of Lemma 7. Suppose that al > ap. Since x∗p > x∗l , the argument

of part (iv) of Lemma 5 applies, implying that ḡ∗lp = 0. Suppose instead

that ap > al. Since x∗i > x∗l and g∗pi = 0, g∗pl = 0. Suppose ad absurdum

that g∗lp = 1 for all l ∈ L and for all p ∈ P .

Then, i and p have the same active in-links. Compare the amount of public

good that i and p receive, respectively: player i receives x∗i +
∑

h:g∗hi=1 x
∗
h +∑

m:g∗im=1 x
∗
m and player p receives x∗p + x∗j +

∑
h:g∗hp=1 x

∗
h +

∑
m 6=j:g∗pm=1 x

∗
m.

There is no player h such that g∗ih = 1 but g∗ph = 0, if not i (p) would

profitably sever the link with h (j) and link to j (h) if x∗j > x∗h (x∗j < x∗h).

However, since g∗pj = 1, ḡ∗ij = 0 and x∗j > x∗i , Lemma 4 implies that

ai− x∗i + x∗j > ap. Using g∗lp = 1, this yields 0 < x∗p +
∑

m 6=j:g∗pm=1∧ḡ∗im=0 x
∗
m,

where the sum are p’s out-links to players other than j to which i is not

linked. This is a contradictionand it concludes the proof of Lemma 7. �

The results of Lemma 6 for players p ∈ P and l ∈ L apply analogously to

players of type q ∈ Q and r ∈ R after relabeling p as q and l as r.
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A recursive argument arises since, when someone produces more than a

more efficient player, there are some active players that link to both of

them and some that only link to the player producing more. In turn, these

last players produce more and need to receive more active in-links. And so

on and so forth. However, the set of players is finite, and eventually there

are agents who have no further active in-links. A contradiction then arises,

showing that in a strict equilibrium better active types produce more.

Suppose now that active agents do not form a complete multipartite graph.

Then, there exist i and j such that ḡ∗ij = 0 and, there is z such that g∗zi = 1,

ḡ∗jz = 0 and x∗z > 0. Clearly, x∗i > x∗j , if not z would rather link to j. This

implies that i < j. For agents z and j, there is no player h such that

g∗jh = 1 but ḡ∗zh = 0, if not z (j) would profitably sever the link with i (h)

and link to h (i), if x∗h > x∗i (x∗h < x∗i ); i.e., z has no less out-links than j.

Since x∗i > x∗j and g∗zi = 1 but ḡ∗zj = 0, by Lemma 4, aj − x∗j + x∗i > az, or∑
l:g∗lj=1 x

∗
l +
∑

h:g∗jh=1 x
∗
h + x∗i >

∑
l:g∗lz=1 x

∗
l +
∑

h6=i:g∗zh=1 x
∗
h + x∗i + x∗z. This

holds only if
∑

h:g∗lj=1 x
∗
l >

∑
h:g∗lz=1 x

∗
l . Hence, there exists l(0) such that

x∗
l(0)

> 0, g∗
l(0)j

= 1 and ḡ∗
l(0)z

= 0, thus implying x∗j > x∗z and j < z.

Now consider l(0) and z. There is no h such that g∗zh = 1 but ḡ∗
l(0)h

= 0, if not

z (l(0)) would sever the link with h (j) and link to j (h) if x∗j > x∗h (x∗j < x∗h).

Since x∗j > x∗z and g∗
l(0)j

= 1 but ḡ∗
l(0)z

= 0, by Lemma 4, az−x∗z +x∗j > al(0) ,

or
∑

l:g∗lz=1 x
∗
l +
∑

h:g∗zh=1 x
∗
h+x∗j >

∑
l:g∗

ll(0)
=1 x

∗
l +
∑

h6=j:g∗
l(0)h

=1 x
∗
h+x∗j +x∗

l(0)
.

This holds only if
∑

l:g∗lz=1 x
∗
l >

∑
l:g∗

ll(0)
=1 x

∗
l . Hence, there exists l(1) such

that g∗
l(1)z

= 1 and ḡ∗
l(1)l(0)

= 0. This implies x∗z > x∗
l(0)

and z < l(0).

Now consider l(0) and l(1). The same argument holds, and can be iterated

for any couple of players l(i) and l(i+1), until we get at most to l(n), who

have no more in-links than l(n−1) because there are no players left that can

link only to l(n) but not to l(n−1). At that point, we reach a contradiction.

Hence, active agents form a complete multipartite graph.

Finally, consider i and j belonging to the same independent set, i.e., ḡ∗ji = 0,

and a player l > {i, j} such that x∗s > 0 for s = i, j, l. Then g∗li = 1. Suppose

that ηl(ḡ) > ηi(ḡ) = ηj(ḡ). Without loss of generality, consider i < j. Then,

g∗lj = 1, and by Lemma 4, aj − x∗j + x∗i > al. This is possible if and only if

j receives more in-links than l, implying x∗j > x∗l . If x∗j > x∗l , then j < l.

Then, the same holds for all players to which l links but i does not. If there

are more players of type j than of type l, clearly l receives more public good
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than j, which by Lemma 2, leads to a contradiction with x∗l , x
∗
j > 0 and

j < l. This concludes the proof of Theorem 1. �

Proof of Theorem 2. First, we show parts (i) and (ii). Note that if there

are players j and i such that g∗ji = 1, then there is no player z such that

x∗z > x∗i and ḡ∗zi = 0. Suppose not. Then, since g∗ji = 1, k < cx∗i , player z

could profitably reduce effort by x∗i linking to i instead, a contradiction.

Therefore, any i receiving active in-links is connected to all players that

produce more than x∗i . This set of agents forms the core, C(ḡ∗). Since at

least player 1 is in the core, C(ḡ∗) 6= ∅, i.e. ñ1 ≥ 1. By Lemma 3, ñ1 < n.

Next we show that if there is more than one player in C(ḡ∗), then there is a

player in P(ḡ∗) exerting a positive amount of effort. Suppose not. Then, all

players in C(ḡ∗) receive an identical amount of public good, a contradiction.

Moreover, for any i < j in the core, x∗i > x∗j and ηi(ḡ
∗) > ηj(ḡ

∗). Suppose

not and that x∗i ≤ x∗j . Then, i gets no more in-links than j from the

periphery and x∗i +
∑

z∈Ni(ḡ∗)
xz ≤ xj+

∑
z∈Nj(ḡ∗) xz, a contradiction. Hence,

x∗i > x∗j and this implies that ηi(ḡ
∗) > ηj(ḡ

∗).

Suppose that there is j, 1 < j < ñ1, who receives no in-links, i.e., j /∈ C(ḡ∗).
Since aj > añ1 and player ñ1 receives more public good than j via links,

x∗j > x∗ñ1
. Then, the periphery player who links to ñ1 can profitably deviate

by linking to j instead, a contradiction. Hence, all players 1, ..., ñ1 belong

to C(ḡ∗). This concludes the proof of part (i).

Given that ηi(ḡ
∗) > ηj(ḡ

∗) for any i < j in the core, it follows immediately

that, for any l,m ∈ P(ḡ∗) such that l < m, ηOUT
l (g∗) ≥ ηOUT

m (g∗).

Note next that ñ1 < ñ2 ≤ n. Suppose that not all players ñ1 + 1, ..., ñ2

belong to P(ḡ∗). Then, there is j, ñ1 < j < ñ2, who is in C(ḡ∗) or isolated.

If j ∈ C(ḡ∗), then j is active and gets more public good than ñ1 + 1, a

contradiction. If instead j is isolated, aj < x∗ñ1
. If not, since player ñ1

receives an in-link, it would be profitable for j to link to ñ1 and to produce

aj − x∗ñ1
. Hence, suppose that aj < x∗ñ1

. Then, j does not link to player

1, if k > fj(x
∗
1)− fj(aj) + caj. By the envelope theorem, the derivative of

this inequality’s right-hand side with respect to type is ∂fj(x∗1)/∂j− ∂fj(aj)/∂j,

which is negative since we assume that ∂2f/∂i∂x < 0 for all x > 0. Hence, if

it is not profitable for j to link to 1, it is neither profitable for all players

i > j, a contradiction. This concludes the proof of part (ii).
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The existence of a core in which players receive more in-links the better

their type implies that the component of the network is a nested split graph.

To show part (iii), consider player n. If ñ2 = n, then n ∈ P(ḡ∗), x∗n ≥ 0

and g∗n1 = 1. Hence, I(ḡ∗) = ∅. If ñ2 < n, then n sponsors no link and

fn(an) − can yields n a larger payoff than any other strategy (xn, gn). In

this case, n is isolated and I(ḡ∗) 6= ∅, if n receives no in-link. Suppose

that n receives some in-link. Then, n belongs to the core and receives more

public good than ñ1 + 1, the player in P(ḡ∗) who wants more public good,

a contradiction. This concludes the proof of Theorem 2. �

Proof of Proposition 1. In any component only one agent produces to

minimize linking costs. Under heterogeneity in production cost, it is effi-

cient that only the most efficient agent, 1, produces while all others link to

1. Hence, a star with 1 as a hub is the efficient network. Under heterogene-

ity in valuation, suppose there are several components. Since agents are

heterogeneous, different components produce different amounts of public

good. Thus, players in less productive components would profitably link

to the highest producing player. Hence, the efficient solution is a star with

only one active agent.

To show part (a), note that ḡ12 is the first to be severed as k increases since

f(aj)− cjaj is smaller for higher j but linking to 1 yields any player f(a1).

Hence, defining y such that (n−1)f ′(y) = c1, the social planner maximizes

max
x,m

mf(x)− c1x− (m− 1)k +
n−m+1∑
j=2

[f(aj)− cjaj] . (A-1)

Given m, the objective function of the planner problem (A-1) is linearly

decreasing in k with a slope equal to −(m − 1) and an intercept at k = 0

that is lower as more agents are isolated; (A-1) is constant in k when all

agents are isolated. The objective function (A-1) is the upper envelope of

all these linear functions, i.e., it is piece-wise decreasing in k. Therefore, the

optimal m decreases as k increases, and for any k, there exists a threshold

n > 1 such that all players i ≥ n connect to 1 and the others are isolated.

The star’s hub produces yC(n) such that (n− n+ 2)f ′(yC(n)) = c1.

To show part (b), note that any player in the component can be the hub,

denoted by h, since ci = c for all i ∈ N . When gjh is severed, the linking

26



cost k is saved, while the remaining social welfare changes by

fj(aj)− caj +
∑

i∈N\{j}

fi(y)− cy −
[∑
i∈N

fi(x)− cx
]
, (A-2)

where x solves
∑

i∈N f
′
i(x) = c and y solves

∑
i∈N\{j} f

′
i(y) = c. By the

envelope theorem, the derivative of (A-2) with respect to j is ∂fj(aj)/∂j−
∂fj(x)/∂j, which is positive since x > aj, ∂f/∂j < 0 and ∂2f/(∂j∂x) < 0.

Hence, worst types are isolated. The number of isolated agents is given by

max
x,m

m∑
i=1

fi(x)− cx− (m− 1)k +
n∑

i=m+1

[fi(ai)− cai] . (A-3)

Given m, the objective function of the planner problem (A-3) is linearly

decreasing in k with a slope equal to −(m− 1) and an intercept at k = 0,

which is lower as more agents are isolated; the function is constant in k

when all agents are isolated. Since the objective function (A-3) is the

upper envelope of all these linear functions, it is piece-wise decreasing in k.

Therefore, the number of agents in the star decreases as k increases, and

for any k, there exists a threshold n̄ ≤ n such that all players i ≤ n̄ are in

the star and the others are isolated. The star’s hub produces yV (n̄) such

that
∑n̄

i=1 f
′
i(y

V (n̄)) = c. This concludes Proposition 1’s proof. �

Proof of Proposition 2. If g∗ is empty, the statement follows trivially. If

the network is non-empty, for all players j such that ηOUT
j (g∗) > 0, g∗j1 = 1

holds. In both models, by Lemma 2, player 1 produces at most x∗1 =

a1−
∑

j:ḡ∗1j=1 x
∗
j . For players j with x∗j > 0 to link to 1, x∗1cj ≥ k must hold

(with cj = c when fj 6= f). Hence, (a1 −
∑

j:ḡ∗1j=1 x
∗
j)cj ≥ k. Suppose now

that limn→∞ |{j : x∗j > 0 and g∗j1 = 1}|/n > 0. If limn→∞
∑

j:ḡ∗1j=1 x
∗
j =∞,

then since a1 <∞, by Lemma 2, player 1 is not active, a contradiction.

Re-label agents such that n < n′ if and only if xn > xn′ . Given 0 < x̄ <

∞, limn→∞
∑

j:ḡ∗1j=1 x
∗
j = x̄ holds only if the series {xn}n decreases in n.

Even more, it must decrease faster than the series {1/n}n which does not

converge to a finite value. This implies that for any n, the smallest element

in the series is smaller than 1/(n− 1). For any ε > 0, take n̄(ε) such that

ε ≤ 1/(n̄ − 1). Hence, there are at most n̄(ε) players who link to 1 and

produce more than ε, so that, for any ε > 0, limn→∞A(x∗, g∗, ε)/n = 0.

The same arguments apply to all players receiving in-links. Suppose now

that limn→∞AIN(x∗, g∗)/n > 0. If players in this set link to 1, the same

arguments as above apply. If instead they do not link to 1, there are z ∈ N
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such that czx
∗
j > k > c1x

∗
j and g∗zj = 1 for all such j who are in the indepen-

dent set of 1. This is possible only under cost heterogeneity. Clearly, xz = 0

since limn→∞AIN(x∗, g∗)/n > 0 implies limAIN (x∗,g∗)→∞
∑

j:g∗zj=1 x
∗
j = ∞,

and f(
∑

j:g∗zj=1 x
∗
j) − f(

∑
j:g∗zj=1 x

∗
j − minj:g∗zj=1 x

∗
j) > k. Yet, f ′′ < 0 im-

plies lim∑
j:g∗

zj
=1 x

∗
j→∞

[
f(
∑

j:g∗zj=1 x
∗
j)− f(

∑
j:g∗zj=1 x

∗
j −minj:g∗zj=1 x

∗
j)
]

= 0,

a contradiction. Then, limn→∞AIN(x∗, g∗)/n = 0. �

Proof of Proposition 3. Let n → ∞ and consider i < j which both

receive no in-links. Then |Ui(x
∗, g∗)−Uj(x

∗, g∗)| ≤ Ui−Uj. Note first that

Ui > Uj because, since there is no z ∈ N such that g∗zi = 1 or g∗zj = 1, i can

replicate j’s strategy and get higher payoffs. Consider now the two models.

Under heterogeneity in the production cost, i and j can be active or

inactive. If they are both active, then inequality between i and j de-

creases if ci(ai − xi)− kηOUT
i (g∗) ≤ cj(aj − xj)− kηOUT

j (g∗), which means

ci
∑

z:ḡ∗zi=1 xz ≤ cj
∑

z:ḡ∗zj=1 xz. If i and j have the same neighbors, then the

statement follows. If j has more out-links, by Theorem 1, j is in a lower

independent set. But then there is z such that g∗zi = 1, a contradiction.

If i and j are inactive, they have the same neighbors. Hence, Ui(x
∗, g∗) −

Uj(x
∗, g∗) = 0 while Ui −Uj > 0. Finally, if i is active while j is not, there

are two cases. (1) If ηi(g
∗) = ηj(g

∗), Ui(x
∗, g∗)− Uj(x

∗, g∗) ≤ Ui − Uj can

be rewritten as f(ai − x∗i )− ci(ai − x∗i ) ≥ f(aj)− cjaj. This clearly holds

when ai − x∗i = aj. If not, the left-hand-side is increasing in ai − x∗i since

ai−x∗i < ai given our assumptions on f . Hence, the statement follows. (2)

If ηOUT
j (g∗) > ηOUT

i (g∗), Ui(x
∗, g∗)− Uj(x

∗, g∗) ≤ Ui − Uj can be rewritten

as f(
∑

z:gjz=1 xz)−k[ηOUT
j (g∗)−ηOUT

i (g∗)] ≥ f(aj)−cjaj. Since j has some

more link, say to z, f(
∑

z:gjz=1 xz)− kηOUT
j (g∗) > f(ai − xi)− kηOUT

i (g∗),

so that f(
∑

z:gji=1 xz)− k[ηOUT
j (g∗)− ηOUT

i (g∗)] ≥ f(ai − x∗i )− ci(ai − x∗i ).
This concludes the proof of the first part of Proposition 3.

Under heterogeneity in benefits, i and j can be active or inactive. Suppose

i and j are active and ηOUT
i (g∗) = ηOUT

j (g∗). Then, Ui(x
∗, g∗)−Uj(x

∗, g∗) ≥
Ui − Uj holds because ai − x∗i = aj − x∗j . Suppose i and j are active and

that i has an out-link more than j, to some player z. Then, Ui(x
∗, g∗) −

Uj(x
∗, g∗) ≥ Ui−Uj implies c(ai−xi)−kηOUT

i (g∗) ≥ c(aj−xj)−kηOUT
j (g∗).

Since all neighbors but z are common, this implies cxz ≥ k, which needs

to hold because i links to z. The same argument holds when i has more
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than one neighbor more than j. Hence, Ui(x
∗, g∗) − Uj(x

∗, g∗) ≥ Ui − Uj.

When i and j are both inactive, suppose that ηOUT
i (g∗) = ηOUT

j (g∗). Then,

|Ui(x
∗, g∗) − Uj(x

∗, g∗)| ≥ |Ui − Uj| implies fi(
∑

z:g∗iz=1 xz) − ηOUT
i (g∗)k −

fi(ai)+cai ≥ fj(
∑

z:g∗jz=1 xz)−ηOUT
j (g∗)k−fj(aj)+caj. Then the condition

follows if fi(y) − fi(ai) + cai is decreasing in i for y > ai, i.e., higher

for better types. By the envelope theorem, this depends on ∂fi(y)/∂i −
∂fi(ai)/∂i, which is negative since ∂fi/∂i < 0 and ∂2fi/(∂x∂i) < 0. Hence

inequality increases. The same argument holds when i has more links than

j since then, by optimality, fi(
∑

z:g∗iz=1 xz)−ηOUT
i (g∗)k > fi(

∑
z:g∗jz=1 xz)−

ηOUT
j (g∗)k. This concludes the proof of Proposition 3. �

Proof of Proposition 4. Consider a strict equilibrium (x∗, g∗) under

cost heterogeneity. Consider ε1 = (ε1,1, ..., ε1,n) ∈ RN , while εs = 0 for all

s = 2, .., 6. Clearly, (x∗, g∗) = (x∗(ε1 = 0), g∗(ε1 = 0)). For any agent i

such that x∗i = 0, ai <
∑

j∈N ḡ
∗
ijx
∗
j by Lemma 2 while for any active agent i,

ai = x∗i +
∑

j∈N ḡ
∗
ijx
∗
j . Defining the adjacency matrix of links among active

agents as ḡA, the vectors of their efforts and optimal efforts as x∗A(ε1) and

aA(ε1), respectively, and the A-dimensional identity matrix as IA,

aA(ε1) = x∗A(ε1)(IA + ḡ∗A). (A-4)

This system has an interior solution for ε1 = 0. By Cramer’s rule, each

x∗i (ε1) is given by the ratio between the determinants of (IA + ḡ∗A) with

column i replaced by vector aA(ε1) divided by the determinant of (IA+ ḡ∗A).

Since, by Leibniz formula, this determinant is continuous in ai(ε1), for small

ε1 the solution x∗A(ε1) exists and is arbitrarily close to x∗A(ε1 = 0) as ε1 → 0.

Focusing on inactive agents, this implies that there is ε1 ∈ RN such that

ai <
∑
j∈N

ḡ∗ijx
∗
j(ε1). (A-5)

Then, for all i ∈ N , Ui(x
∗
i (ε1), g∗i ) is continuous in ε1 and Ui(x

∗, g∗) =

Ui(x
∗(ε1 = 0), g∗(ε1 = 0)). Finally, in strict equilibria, for any i ∈ N ,

there exists ε̄1 ∈ RN
+ such that (A-5) and (A-4) are satisfied for all |ε1| <

ε̄1 and Ui(x
∗(ε1), g∗) > Ui(x

′
i, g
′
i, x
∗
−i(ε1), g∗−i) for any any (x′i, g

′
i) ∈ Si \

{(x∗i (ε1), g∗i }. Hence, the same network structure is an equilibrium.

Analogousy, it follows immediately that for all εs, s = 2, ..., 6, there is

ε̄s ∈ RN
+ such that for any |εs| < ε̄s, g

∗ is an equilibrium. �
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