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ABSTRACT 25 

Epigenetic processes, including DNA methylation, might be modulated by environmental factors such as the diet, which in turn 26 

have been associated with the onset of several diseases such as obesity or cardiovascular events. Meanwhile, Mediterranean diet 27 

(MedDiet) has demonstrated favourable effects on cardiovascular risk, blood pressure, inflammation, and other complications 28 

related to excessive adiposity. Some of these effects could be mediated by epigenetic modifications. Therefore, the objective of 29 

this study was to investigate whether the adherence to MedDiet is associated with changes in the methylation status from 30 
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peripheral blood cells. A subset of 36 individuals were selected within the PREvención con DIeta MEDiterránea (PREDIMED)-31 

Navarra study, a randomised, controlled, parallel trial with three groups of intervention in high cardiovascular risk volunteers, two 32 

with a MedDiet and one low-fat control group. Changes in methylation between baseline and five years were studied. DNA 33 

methylation arrays were analysed by several robust statistical tests and functional classifications. Eight genes related to 34 

inflammation and immunocompetence (EEF2, COL18A1, IL4I1, LEPR, PLAGL1, IFRD1, MAPKAPK2, PPARGC1B) were finally selected 35 

as changes in their methylation levels correlated with adherence to MedDiet and because they presented sensitivity related to a 36 

high variability in methylation changes. Additionally, EEF2 methylation levels positively correlated with concentrations of TNF-α 37 

and CRP. This report is apparently the first showing that adherence to MedDiet is associated the methylation of the reported 38 

genes related to inflammation with a potential regulatory impact.  39 

 40 
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 42 

INTRODUCTION 43 

Individual phenotypical features results from the interplay among genetics, epigenetics and environmental factors, including the 44 

diet [30]. In this context, epigenetic marks involve heritable changes that cannot be explained through variations in DNA sequence 45 

and can potentially be transmitted to the offspring [29]. Epigenetics signatures include DNA methylation, histone modifications, 46 

nuclear proteins action as epigenetic regulators, genomic imprinting, non-coding RNAs such as microRNAs (miRNAs), and non-47 

covalent mechanisms [30]. These epigenetic modifications may lead to chromatin structure impairments in terms of accessibility 48 

and compactness, which may regulate gene expression and provide mechanisms for cellular diversity [38]. Actually, epigenetic 49 

marks are influenced by environmental factors, which have been associated to several diseases and complications such as 50 

inflammation, obesity, insulin resistance, type 2 diabetes, cardiovascular diseases, immune diseases, apart from being implicated 51 

in embryogenic development, aging and cancer [10].  52 

 53 

DNA methylation is one of the most studied epigenetic processes and, in mammals, primarily occurs by the addition of a methyl 54 

group in the carbon 5’ position of a cytosine, which is adjacent to a guanine, forming a methylated CpG dinucleotide [38, 40]. 55 

Interestingly, nutrients and components of the diet are able to modify gene expression at the transcriptional level through changes 56 

in DNA methylation [3, 10, 18]. Indeed, Milagro et al., (2013) reviewed nutritional factors that may cause metabolic effects acting 57 

through epigenetic processes, such as methyl donors, vitamins, fatty acids or polyphenols [30]. For instance, some studies have 58 

evidenced the influence of n-3 and n-6 polyunsaturated fatty acids (PUFA), such as eicosapentaenoic [8, 14], docosahexaenoic [8, 59 

23] and arachidonic [21], on DNA methylation. Folic acid supplementation in juvenile-pubertal period in rodents induced 60 
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epigenetic and phenotypic changes, associated with an increase of PPAR-α gene methylation in liver and a decrease of insulin 61 

receptor methylation in adipose tissue, with reciprocal changes in gene expression [5]. Another example is genistein, which 62 

reduces methylation of WNT5a and BTG3 promoters in both cancerous and renal cells [24].  63 

 64 

Additionally, obesity and accompanying comorbidities have been highly associated to epigenetic changes induced by the dietary 65 

intake [19]. For example, subjects with greater response to calorie restriction in a weight loss intervention presented a 66 

hypomethylation of the promoter region of tumour necrosis factor α (TNF-α) and leptin (LEP) in peripheral blood mononuclear 67 

cells [6] and in subcutaneous adipose tissue [11]. Thus, the progress in the epigenetic field and the study of nutritional biomarkers 68 

is contributing to define new roles of nutrients in health and disease, for the prevention of these diseases and implementation of 69 

precision treatment strategies [17, 22].  70 

 71 

Traditionally, Mediterranean diet (MedDiet) has been associated with a protective effect against cardiovascular diseases [45], but 72 

no large primary prevention trials with clinical events as end-point was performed until 2003 when PREvención con DIeta 73 

MEDiterránea (PREDIMED) study arose with the purpose of analysing the effect of a MedDiet intervention on prevention of 74 

cardiovascular diseases [16]. The results of the trial showed that the MedDiet was associated with a decrease of cardiovascular 75 

events and with a favourable effect on blood pressure, insulin sensitivity, lipid profile, lipoprotein particles, inflammation, 76 

oxidative stress and metabolic syndrome manifestations [15, 27, 31]. 77 

 78 

Our hypothesis was that phenotypic changes observed after an intervention with MedDiet could be associated with epigenetic 79 

modifications in certain genes. Because of that, the objective of this epigenome-wide study was to investigate whether the 80 

adherence to MedDiet along the intervention is related to methylation changes in PREDIMED-Navarra participants.  81 

 82 

MATERIALS AND METHODS 83 

Study design and participants 84 

The current trial was conducted within the framework of the PREDIMED study, which was a multicenter, randomized, primary 85 

prevention feeding trial with blinded assessment of end points carried out in Spain with the aim of evaluating the effects of the 86 

MedDiet on primary cardiovascular prevention (www.predimed.es). The protocol and recruitment methods have been described 87 

in detail elsewhere [16, 26]. All participants provided written informed consent, and the protocol was approved by the Research 88 

Ethics Committees at all recruiting centres in compliance with the Helsinki Declaration guidelines. This trial has been registered 89 

with the International Standard Randomised Controlled Trial Number (ISRCTN of London, England: 35739639). 90 

http://www.predimed.es/
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 91 

Eligible participants were men aged 55–80 and women aged 60–80 years without any previous history of cardiovascular disease. 92 

At baseline, participants should fulfil at least one of the following two criteria: type-2 diabetes or three or more cardiovascular 93 

risk factors: smoking, hypertension, elevated low-density lipoprotein, cholesterol levels, low high-density lipoprotein cholesterol 94 

levels, overweight or obesity, or a family history of premature coronary heart disease. Participants were randomized to one of 95 

three nutrition interventions: a MedDiet supplemented with extra virgin olive oil (EVOO), a MedDiet supplemented with mixed 96 

nuts, or a low-fat diet (control group). All groups received dietary instructions and a previously validated fourteen-item dietary 97 

screener (p14) was used to assess adherence to MedDiet at baseline and at the last visit [37]. This questionnaire comprises 14 98 

questions about frequency of consumption of several recommended foods in MedDiet (Supl. Table S1). Each question can give 99 

one or zero points depending on whether the recommendations are accomplished or not, obtaining a maximum of 14 points which 100 

represent the highest adherence to MedDiet, and a minimum of zero points. Other questionnaires (medical conditions, food 101 

consumption and composition, physical activity) were completed as described elsewhere [16]. Data of anthropometric measures 102 

and body composition (body weight, waist circumference, body mass index) and blood pressure were collected in the same 103 

consultations [31]. Plasma, serum and buffy-coat were stored and biochemical features (glycaemia, cholesterol levels, and 104 

triglycerides) were measured as previously published [31]. Composition of different types of leukocytes (neutrophils, lymphocytes, 105 

monocytes, eosinophils and basophils) in whole blood was analysed by ABX Pentra 60 hematology analyser (Horiba, Madrid, 106 

Spain).  107 

 108 

For the present secondary analysis, 36 participants were selected from the recruitment centre at the University of Navarra. These 109 

volunteers were selected following different criteria. Firstly, they were sifted by smoking (non-smokers or former-smokers) and 110 

by age (between 60 and 70 years old). Then, six women and six men were randomly chosen from each diet. Data from patients 111 

(questionnaires, anthropometry, blood pressure, p14 score, blood samples and biochemical measures) were collected at baseline 112 

and at five years of intervention. Methylation analysis was also performed at baseline and at five-year follow-up. 113 

 114 

DNA extraction and DNA methylation analyse 115 

After overnight fasting, venous blood samples from baseline and five years of intervention were drawn on EDTA tubes. Samples 116 

were centrifuged at 2000 xg, 4 °C, 15 min and buffy-coats were collected. Aliquots were coded and kept refrigerated until they 117 

were stored at -80 °C. DNA was extracted from buffy-coat with MasterPure™ DNA Purification Kit for Blood (Epicentre, Madison, 118 

WI, USA) according to manufacturer’s instructions and shipped on dry ice to Unidad de Genotipado y Diagnóstico Genético from 119 

Fundación Investigación Clínico de Valencia (INCLIVA), where microarray preparation, hybridization and scanning was performed. 120 
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As previously described [25], DNA was quantified using PicoGreen double-stranded DNA (dsDNA) Quantification Reagent® 121 

(Invitrogen, Carlsbad, CA, USA). EZ DNA methylation kit (Zymo Reaearch, Irvine, CA, USA) was used to bisulphite modification of 122 

500 mg of genomic DNA according with manufacturer’s protocol. Bisulphite-treated genomic DNA was amplified and hybridized 123 

using the Infinium HumanMethylation450 BeadChip (Illumina, San Diego, CA, USA) and scanned using the Illumina hiScanSQ 124 

platform. The intensity of the images was extracted with the GenomeStudio Methylation Software Module (v 1.9.0, Illumina, San 125 

Diego, CA, USA). 126 

 127 

Treatment of methylation raw data, Ingenuity Pathway Analysis and selection 128 

Microarray data were normalized in R by a categorical subset quantile normalization method using the pipeline developed by 129 

Touleimat & Tost (2012) in a previous paper [41]. Afterwards, Pearson correlations between methylation changes (five years – 130 

baseline) and p14 differences (five years – baseline) were calculated in order to choose those CpGs that were differentially 131 

methylated and also correlated with the changes in adherence to MedDiet, assessed by p14. Methylation change was chosen 132 

instead of methylation at five years as a way of correction, in order to avoid the influence of methylation at baseline. From all the 133 

significant CpGs obtained (n=12990), and in order to control the type I error rate, a more restrictive selection was performed using 134 

the r-value from correlations >|0.5|, which corresponds to a p<0.0019. Then, the selected CpGs were submitted to a two-winged 135 

analysis. Initially, they were analysed with Ingenuity Pathway Analysis (IPA) software, (Qiagen Redwood City, CA, USA, 136 

www.ingenuity.com), using predefined pathways and functional categories of the Ingenuity Knowledge Base in order to detect 137 

associated pathways and relevant gene regulatory networks [43]. Pathway analyses were performed with IPA Core Analysis 138 

module. Canonical pathways with a p<0.05 after Fisher’s test were defined as a statistically significant overrepresentation of input 139 

genes in a given process. Secondly, CpGs were selected because: 1) they presented the highest standard deviation of the mean of 140 

methylation changes, and subsequently, the highest variability (>5% of methylation changes); this method is considered a robust 141 

and consistent process of filtering beta values of methylation with high sensitivity to changes [39]; and 2) there was previous 142 

evidence that these genes where the CpGs were located expressed in blood cells. Afterwards, a manual search in the scientific 143 

literature for the genes was performed in order to classify them into biological function groups for further analysis. A diagram of 144 

the analytic process is reported in the Supplementary Material (Fig S1). 145 

 146 

ELISA analysis 147 

Soluble intercellular cell adhesion molecule-1 (sICAM-1, Ref. DCD540), vascular cell adhesion molecule-1 (VCAM-1, Ref. DVC00), 148 

C-reactive protein (CRP, Ref. DCRP00), TNF-α (Ref. HSTA00D) and LEP (Ref. D0BR00) were measured using standard enzyme-linked 149 

immunosorbent assay (ELISA) in EDTA plasma samples at baseline and at five years according the manufacturer’s specific protocol. 150 
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All ELISA kits were purchased from R&D Systems Inc. (Minneapolis, MA, USA). Protein concentrations were measured by Multiskan 151 

Spectrum from Thermo Scientific (Waltham, MA, USA). The selection of these molecules was based on the observed decrease of 152 

VCAM-1, sICAM-1 and CRP in the MedDiet groups in PREDIMED trial [7, 15, 35] and the described relationship between TNF-α and 153 

the action of two selected genes (eukaryotic elongation factor 2 (EEF2) and mitogen-activated protein kinase (MAPK)-activated 154 

protein kinase 2 (MAPKAPK2). LEP was chosen because it is the ligand of LEP receptor encoded by another selected gene (LEPR).  155 

 156 

Statistical analysis 157 

Participants were characterised comparing the differences (five years-baseline) of some anthropometric and biochemical features, 158 

blood pressure and p14 score among the three groups using ANOVA test. Tukey’s multiple comparison test was applied for p14 159 

score analysis.  160 

 161 

Differences in the composition of types of leukocytes between five years and baseline were correlated (Pearson) with p14 changes 162 

and with methylation changes of the eight CpGs selected. Benjamini-Hochberg correction was applied to control the false 163 

discovery rate.  164 

 165 

For ELISAs statistical analysis, participants were categorised into two groups of p14 at five years by the median (Q1 and Q2) and 166 

then, a Student T test, Mann-Whitney U test or Median test, as appropriate, was carried out in order to compare the quantity of 167 

protein in both groups. One-tailed p-values were selected as the MedDiet has been previously described with inflammatory 168 

beneficial effects [27] and therefore, a decrease (or at least, no differences) was expected in the concentrations of inflammatory 169 

biomarkers in the Q2 group. Correlations (Pearson or Spearman, when appropriate) between the methylation data of selected 170 

CpGs and protein concentration obtained in ELISAs were also performed. For analysing the correlations, data from both baseline 171 

and five years were included.  172 

 173 

In general, the Shapiro-Wilk analysis was employed to test normality. R Studio [34] was used for the analysis of Pearson 174 

correlations during the selection process. Statistics and graphs were performed using STATA version 14.0 (Stata Corp, College 175 

Station, TX, USA) and GraphPad Prism 6 (Graph-Pad Software, San Diego, CA, USA). The significance level was set at p<0.05.  176 

 177 

RESULTS 178 

Participants showed no differences among the three intervention groups in age and changes of weight, waist circumference, body 179 

mass index, glycaemia, cholesterol levels, triglycerides and arterial pressure (Table 1). Variations among groups in composition of 180 
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types of leukocytes were also not observed (data not shown). However, when analysing the adherence to MedDiet assessed by 181 

p14, at baseline, all groups presented a similar p14 with non-significant differences. However, after five years, the MedDiet groups 182 

showed a significantly higher p14, and, consequently, a higher adherence to MedDiet in comparison with the control group 183 

(MedDiet groups in conjunction (11.8) vs. low-fat diet (9.8); p<0.001). When analysing each group separately, both MedDiet 184 

groups presented significant differences in p14 between five years and baseline, whereas in the control group such differences 185 

were not found (Fig 1A). Regarding inflammation biomarkers (Supl. Table S2), results showed a significant decrease of TNF-α 186 

(p=0.024), sICAM-1 (p=0.033) and CRP (p=0.044) in the group with higher p14 at five years of intervention, while a trend towards 187 

a decrease for VCAM-1 molecule (p= 0.051) was found (Fig 1B). However, non-significant differences were observed for LEP values 188 

(data not shown). 189 

 190 

 191 

Pearson correlations allowed the identification of CpGs that were differentially methylated and correlated with p14 changes. From 192 

all the significant CpGs, 316 were selected (Supl. Table S3) with the criteria of r>|0.5|, corresponding to a p<0.002. These 193 

selections are explained in detail in Materials and methods. These 316 CpGs were two-winged analysed combining computational 194 

and literature approaches.  195 

 196 

For the first approach, the 316 CpGs were further studied by IPA in order to feature the associated canonical pathways (Fig 2). 197 

Some of the pathways were related to inflammation, such as Role of JAK1, JAK2 and TYK2 in Interferon Signalling, STAT3 Pathway, 198 

Mitochondrial L-carnitine Shuttle Pathway, AMPK Signalling and Role of JAK family kinases in IL-6-type Cytokine Signalling), 199 

whereas others were involved in metabolism such as Histamine Biosynthesis, GDP-L-fucose Biosynthesis I, Glycine Biosynthesis I 200 

and Coenzyme A Biosynthesis.  201 

 202 

For the second approach, another selection strategy was performed as described in materials and methods. From all the 316 CpGs, 203 

50 were selected (Supl. Table S4). Afterwards, the 50 CpGs were classified into biological function groups (Fig 3). Those functions 204 

were immunocompetence/inflammation, adipogenesis, diabetes/insulin secretion, metabolism, methylation, angiogenesis, cell 205 

dynamics, cell survival/cell death, gene expression, cell differentiation/cell growth, blood pressure regulation, and ubiquitination. 206 

Some of the genes were categorised in more than one group because they presented different functions depending on factors 207 

such as the tissue where they were expressed. Further investigation was focused on eight genes (Supl. Table S2) from the 208 

immunocompetence-function group based on bibliographic search. The selected genes were: EEF2, COL18A1 (collagen type XVIII 209 

alpha 1), IL4I1 (interleukin 4-induced gene-1), LEPR, PLAGL1 (pleiomorphic adenoma gene-like 1), IFRD1 (interferon-related 210 
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developmental regulator 1), MAPKAPK2 and PPARGC1B (peroxisome proliferator-activated receptor gamma, coactivator 1 beta). 211 

Correlation graphs between methylation and p14 changes of these eight genes are reported (Fig 4). Interestingly, EEF2, IL4I1 and 212 

PPARGC1B presented a negative association whereas COL18A, LEPR, PLAGL1, IFRD1 and MAPKAPK2 had a positive association 213 

with p14. Methylation changes included from 60 to -40 for EEF2 as the maximum interval and from 10 to -30 for PPARGC1B as the 214 

minimum interval.  215 

 216 

Some inflammation-related molecules such as TNF-α, VCAM-1, sICAM-1 and CRP, and in addition LEP, were measured. The 217 

purpose of this assay was to assess whether a higher or a lower methylation induced changes in these protein concentrations. As 218 

a result, correlations between measured proteins and methylation data at baseline and at five years were performed. Results 219 

showed correlations between (A) LEPR methylation and concentration of LEP, (B) EEF2 methylation and concentration of TNF-α, 220 

and (C) EEF2 methylation and concentration of CRP (Fig. 5). 221 

 222 

Since methylation measured in peripheral blood cells (PBCs) can depend on variations in the types of leukocytes, correlation 223 

studies were performed between each type of cell (five years-baseline) and p14 changes or methylation changes of the selected 224 

eight CpGs, showing no association for any comparison.  225 

 226 

DISCUSSION 227 

The current study demonstrates for the first time that following a MedDiet is associated with the differential methylation of the 228 

selected genes: EEF2, COL18A1, IL4I1, LEPR, PPARGC1B, MAPKAPK2, IFRD1 and PLAGL1. Along these lines, other preliminary 229 

studies focused on selected genes (FTO and TCF7L2) in the PREDIMED-Valencia trial (n=195 individuals) reported that intervention 230 

with MedDiet was associated with changes in methylation at 1-year [12]. Likewise, when focusing on FNDC5 (irisin gene) (n=181), 231 

higher adherence to MedDiet at baseline was associated with statistically significant differences in methylation at baseline [13]. 232 

Thus, this study adds further insights to previous reports where environmental factors, including diet, were able to modify the 233 

epigenome [3].  234 

 235 

Phenotypical changes in anthropometric and biochemical measurements among the participants in the three dietary groups were 236 

not reported. Regarding adherence to the MedDiet, our results showed that, although baseline p14 scores were similar among 237 

the participants, intervention with MedDiet led to a significant increase in this score. In contrast, participants in the low-fat diet 238 

presented non-significant differences. Thus, the p14 score was demonstrated to be a good method for assessing adherence to the 239 

MedDiet [37] 240 
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 241 

The MedDiet has shown prevention capacity against cardiovascular diseases and associated risk factors such as inflammation, 242 

hypertension, and hyperlipidaemia, among others [15, 27]. On the other hand, variations in DNA methylation have been related 243 

to several diseases such as obesity, type 2 diabetes, cancer, and cardiovascular diseases [10]. Hence, the MedDiet could be 244 

associated with variations in DNA methylation, which in turn may cause changes in the expression of some genes associated with 245 

these diseases. In fact, the genes with higher variability in methylation changes selected from our study were linked to functions 246 

that are intimately related to those diseases. Such functions are immunocompetence/inflammation, adipogenesis, 247 

diabetes/insulin secretion, metabolism, methylation, angiogenesis, cell dynamics, cell survival/cell death, gene expression, cell 248 

differentiation/cell growth, blood pressure regulation, and ubiquitination. Canonical pathway screening from IPA showed that 249 

genes with methylation changes that correlated with p14 changes were mainly associated with pathways of inflammation and 250 

metabolism. From all these groups, eight genes from immunocompetence/inflammation were selected for further bibliographic 251 

research as methylation levels were measured in DNA extracted from PBCs. The studied eight genes were EEF2, COL18A1, IL4I1, 252 

LEPR, PPARGC1B, MAPKAPK2, IFRD1 and PLAGL1. All of them have been described performing functions associated with 253 

inflammation, which can be related to the described favourable effects of the MedDiet on the immune system [27]. For example, 254 

EEF2 controls TNF-α production in macrophages, regulating the inflammatory response and triggering several intracellular 255 

signalling cascades that influence cell survival, death, differentiation, proliferation, and migration [20]; IL4I1 can inhibit the 256 

proliferation of CD3-stimulated T lymphocytes [2, 48]; and MAPKAPK2 is involved in the production of TNF-α and other cytokines, 257 

and in the granulocyte infiltration [36]. In this context, several studies derived from PREDIMED trial have demonstrated that 258 

inflammatory biomarkers, such as Interleukin 6, VCAM-1, sICAM-1, and CRP, decrease in MedDiet groups [7, 15, 35]. In fact, the 259 

quantitative analysis of some of these molecules (CRP, sICAM-1, VCAM-1) and TNF-α in this study confirms that individuals with 260 

higher adherence to MedDiet presented lower inflammatory biomarkers. Therefore, the beneficial inflammatory effects of the 261 

MedDiet could be mediated by changes in the methylation levels of genes related to inflammation. Indeed, an association between 262 

EEF2 methylation and both inflammatory biomarkers TNF-α, and CRP, was observed in the study, suggesting that changes in EEF2 263 

methylation drive to a variation in EEF2 expression, which might result in the regulation of the production of inflammatory 264 

molecules. In fact, EEF2 has been described controlling TNF-α elongation [20]. Therefore, an increase in EEF2 methylation would 265 

produce changes in its expression and thus, in the production of TNF-α. Moreover, methylation of LEPR and concentration of LEP 266 

were also associated, suggesting a likely regulation of the interaction between the receptor and its ligand through epigenetic 267 

mechanisms. Zhang et al. (2001) described that there is a LEPR-mediated feedback suppression on LEP expression [49]. Hence, in 268 

order to be in accordance with the obtained results, an increase in LEPR methylation would lead to an increase in LEPR expression 269 

and thus, to a decrease in LEP production.  270 
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 271 

The mentioned gene functions also include actions related to adipogenesis and metabolism. For example, LEPR absence leads to 272 

severe obesity and metabolic disorders [33]; PPARGC1B is associated with type 2 diabetes [42] and related to brown adipocytes 273 

[32]; and IFRD1 is a unique mediator of nutrient absorptive and metabolic adaptation following gut resection and its 274 

overexpression in the intestine alters growth, metabolic rate, adiposity, and intestinal triglyceride absorption [44]. Nevertheless, 275 

the methylation levels were measured in PBCs. It may be possible that these cells could be acting as proxies for other tissues that 276 

are less accessible but clinically important [4] such as adipocytes. The analysis of these tissues in order to study whether the 277 

methylation levels match those observed in PBCs would be a step forward for identifying epigenetic biomarkers. In this context, 278 

further investigation of nutritional biomarkers would be useful to identify susceptibility to suffering from diseases, or even to 279 

guide personalized nutritional interventions [11].  280 

 281 

Methylation changes in this study have shown both a positive and a negative association with p14 changes. Traditionally, increases 282 

in methylation have been associated with lower gene expression and viceversa. However, it has recently been described that this 283 

relationship is not always valid as it depends on the location of the CpG inside the gene and in the gene itself. Thus, some genes 284 

present higher or lower expression when there is an increase or decrease in their methylation, respectively; however, this pattern 285 

is not universal [28, 46].  286 

 287 

Nevertheless, there are some limitations in this study. Firstly, it could be useful to increase the number of participants to raise the 288 

statistical power and more reliable results. Secondly, type I error cannot be discarded due to the high number of test performed 289 

in this study and that corrections for multiple comparisons were implemented, but an specific effort has been made to analyse 290 

data with different robust biological criteria and statistical strategies. Thirdly, although correlation between the different types of 291 

leukocytes and the variables investigated in this study was assessed in order to avoid influences in methylation changes, correction 292 

for cell type was not applied. Since there were no associations between the types of leukocytes and the variables studied, 293 

correction for cell type was not carried out. Finally, gene expression could be evaluated and related to methylation changes in 294 

order to determine how the diet influences the general health status. Although this analysis was not performed, it has been 295 

described in the literature that some foods and components of the diet are able to modify the expression of some of the genes 296 

selected in the present study in other contexts. For instance, two isothiocyanates obtained from broccoli (sulforaphane and iberin) 297 

increased expression of PLAGL1 in stromal cells, possibly being related to a reduced risk of prostate cancer [9]. Diet 298 

supplementation with flaxseed increased endostatin (fragment of COL18A1) levels in breast tissue cultures [1]. As for fucoxanthin, 299 

a carotenoid found in brown seaweed, macroalgae, and diatoms, Yoshiko & Hoyoku (2007) described an increase in IFRD1 300 
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expression in HepG2 cells [47]. Therefore, it is likely that the methylation changes observed in this study correlated with changes 301 

in the expression of the selected genes, although a further analysis is needed to corroborate this hypothesis.  302 

 303 

In conclusion, this study shows that the MedDiet is associated with changes in the epigenome through methylation mechanisms 304 

in PBCs in a notable way in at least 50 genes. Some of these changes in methylation levels occurred in genes related to 305 

inflammation, but with other possible functions related to adipogenesis, metabolism, angiogenesis, and diabetes, among others. 306 

Therefore, MedDiet may be exerting a beneficial effect on health through anti-inflammatory actions that might be potentially 307 

mediated by epigenetic mechanisms. Further studies with a larger sample size are needed to confirm these findings.  308 

 309 
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Table 1 

 Low-fat diet (n=12) MedDiet + EVOO (n=12) MedDiet + nuts (n=12) p 

Female, n (%) 1 6 (50) 6 (50) 6 (50)  

Age at baseline, years 64.6 (3.9) 63.5 (1.7) 63.2 (2.1) 0.425 

Δ Weight, kg 0.1 (2.7) 1.3 (4.9) 1.6 (4.4) 0.637 

Δ Waist circumference, cm 0.0 (3.0) 3.7 (6.8) 0.8 (5.8) 0.213 

Δ BMI, kg/m2 0.1 (1.1) 0.4 (1.9) 0.7 (1.7) 0.312 

Δ Glycemia, mg/dl -1.7 (15.3) -8.8 (53.9) 0.18 (37.6) 0.825 

Δ HDL-cholesterol, mg/dl 2.7 (6.7) -0.1 (8.0) 1.9 (13.9) 0.750 

Δ LDL-cholesterol, mg/dl -16.6 (24.7) -9.0 (29.5) 5.8 (28.1) 0.185 

Δ Total cholesterol, mg/dl -16.1 (33.1) -11.8 (33.4) 11.5 (36.9) 0.217 

Δ Triglycerides, mg/dl -10.9 (45.4) -13.6 (63.7) 19.4 (22.4) 0.243 

Δ Systolic arterial pressure, mmHg 1.2 (18.0) 0.9 (22.7) 4.8 (11.8) 0.740 

Δ Diastolic arterial pressure, mmHg 0.1 (9.6) -4.3 (10.2) -0.7 (9.3) 0.509 

Values are Mean (SD), except 1 for which is represented as n (%). P-values are achieved by an ANOVA test among the three groups. A significant 
p-value is considered p<0.05.  
BMI: Body Mass Index; HDL: high-density cholesterol; LDL: low-density cholesterol; MedDiet: Mediterranean diet; EVOO: extra-virgin olive oil 
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Table 1: Characteristics of the study population and differences between the three dietary groups after five years 

of follow-up. 

 

Figure 1: p14 values and inflammatory biomarkers after five years follow-up. A) p14 values at baseline and five years 

of each dietary group. Values represent Mean ± SD. Symbols represent *** p<0.001 (Student T test, 5 years vs. 

Baseline); ## p<0.01, ### p<0.001 (ANOVA + Tukey’s test, respect to control). B) Protein concentration variation 

depending on p14 at five years. p14 at five years is divided by the median in two groups, Q1 and Q2. Lines in the 

distribution represent mean and SD. One-tailed p-values were calculated by Student T-test or Mann-Whitney U test, 

when appropriate. p<0.05 was considered significant. CRP: C-reactive protein; MedDiet: Mediterranean diet; EVOO: 

extra-virgin olive oil; sICAM-1: soluble intercellular cell adhesion molecule 1; TNF-α: Tumor necrosis factor α; VCAM-

1: vascular cell adhesion molecule 1. 

 

Figure 2. Canonical pathways associated with differentially methylated CpGs that correlate with Δp14 (Ingenuity 

Pathway Analysis). The graph presents the canonical pathways ordered by –log(p-value) and the percentage of genes 

from our list (316 CpGs, in black) that are in one specific pathway (total number of genes in the right part of the graphs). 

In grey is represented the –log(p-value), indicating that all of them are significant (p<0.05).  

 

Figure 3. Manual curation of top 50 genes. The first 50 genes corresponding to the CpGs with higher standard 

deviation of the total CpGs that were differentially methylated and correlated with p14 changes (Δp14) are classified 

by biological functions after a bibliographic research.  

 

Figure 4: Correlation graphs (Pearson) of selected genes representing the association between differences in 

methylation (Δ Methylation) and differences in adherence to MedDiet (Δ p14). Dot lines on both sides of the solid 

line (linear regression for correlation) represent 95% confidence band. COL18A1: Collagen Type XVIII Alpha 1; EEF2: 

Eukaryotic Elongation Factor 2; IFRD1: Interferon-related developmental regulator 1; IL4I1: Interleukin 4-induced 

gene-1; LEPR: Leptin receptor, MAPKAPK2: Mitogen-activated protein kinase (MAPK)–activated protein kinase 2; 

PLAGL1: Pleiomorphic adenoma gene-like 1; PPARGC1B: Peroxisome Proliferator-Activated Receptor Gamma, 

Coactivator 1 Beta.  

Figure 5: Statistically significant correlation graphs (Spearman) representing the association between methylation 

of a selected CpG with the protein concentration obtained by ELISA. Dot lines on both sides of the solid line (linear 

regression for correlation) represent 95% confidence band. CRP: C-reactive protein; EEF2: Eukaryotic Elongation Factor 

2; LEP: Leptin; LEPR: Leptin receptor; TNF-α: Tumor necrosis factor α. 

 

 

 


