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Resumen 

Los sistemas prognósticos para la predicción y monitorización del 
estado de salud de sistemas complejos han atraído gran interés en los últimos 
tiempos. Las industrias que emplean sistemas en infraestructuras críticas para 
la seguridad, tales como, plantas nucleares, industria ferroviaria o aeroespacial, 
han descubierto su potencialidad, siendo capaces de mejorar la confiabilidad y 
la seguridad, así como de reducir los costes asociados al mantenimiento.  

El principal objetivo de los sistemas prognósticos es el de determinar el 
estado de salud de los componentes monitorizados, permitiendo conocer la 
Vida Útil Remanente (VUR), para así poder implementar políticas avanzadas 
de mantenimiento, alejadas del clásico mantenimiento correctivo. Esto conlleva 
prolongar la explotación del sistema de forma segura, reduciendo los costes 
debidos a las paradas no programadas y aumentando la disponibilidad.  

El incremento en el número y la variedad de los sensores introducidos, 
tanto en sistemas mecánicos como eléctricos, unido al desarrollo de algoritmos 
avanzados para el tratamiento de datos, ha permitido la introducción de los 
sistemas prognósticos en variedad de aplicaciones. 

La irrupción del vehículo eléctrico en el mercado, ha generado 
incertidumbre con respecto a su fiabilidad, mayormente, en sus componentes 
eléctricos y electrónicos, dada la sensibilidad de la industria automovilística en 
este aspecto. La industria del automóvil se ve especialmente afectada por el 
fallo de sistemas, debido a su impacto negativo en la percepción del cliente 
sobre la marca. En este sentido, el empleo de tecnologías poco testadas en 
estas aplicaciones, tales como motores de imanes permanentes e inversores 
de potencia, sugieren que el vehículo eléctrico es un candidato para la 
aplicación de sistemas prognósticos. 



vi Resumen 

En el presente trabajo, se desarrolla una metodología para la 
implementación de sistemas prognósticos en el tren de potencia de un vehículo 
eléctrico. Se ha llevado a cabo un caso de estudio en un inversor de potencia, 
para validar y testear la metodología. Las principales contribuciones de este 
trabajo son: la metodología seguida, la definición y selección de variables 
precursoras de fallo, así como el desarrollo de algoritmos para la predicción de 
la vida útil remanente de los componentes bajo estudio. 

 



 

Abstract 

Prognostic and Health Monitoring Systems (PHMS) have increased their 
importance in the last years. Safety critical applications, such as: nuclear power 
plants, aerospace, railway or automotive industries, have found that PHMS 
increases overall system reliability and safety while reducing maintenance 
costs. The objective of PHMS is to determine the health state of the 
components under study, being able to predict their Remaining Useful Life 
(RUL) in order to implement advanced maintenance policies. This allows to 
further exploit component’s life before replacement. 

The increased number and variety of sensors introduced both in 
mechanical and electrical systems, together with the development of advanced 
algorithms for data treatment, allow the implementation of PHMS in a wide 
range of applications. 

The introduction of Fully Electric Vehicles (FEV) in the mainstream, 
have raised concerns on their reliability, mainly, on their electric and electronic 
components. Automotive industry is specially affected by system failure due to 
their high impact on customer’s image of the brand. In fact, the employment of 
Permanent Magnet Motors and Pulse Width Modulation inverters on new 
environments in which they have not been intensively tested, such as the 
automotive industry, suggests FEVs are candidates for PHMS implementation.  

In this work, a methodology was developed for PHMS implementation in 
FEV powertrain. A case study has been carried out on the power electronics 
converter to validate and test the methodology. The main contributions of this 
work are the discovery of failure precursor parameters and the prediction of the 
RUL of the components under study. 
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Chapter 1 

1 Introduction 

On United Nations words (2013) [1]: “The human influence on the 
climate system is clear and is evident from the increasing greenhouse 
concentrations in the atmosphere. Warming of the climate system is 
unequivocal, and since the 1950s, many of the observed changes are 
unprecedented over decades to millennia. The atmosphere and ocean have 
warmed, the amounts of snow and ice have diminished, sea level has risen, and 
the concentrations of greenhouse gases have increased.”  

Upon the previous negative affirmation, many are the positive 
counteractions that several countries are trying to implement and develop. One 
of those is the meaningful employment of natural resources and energy.  

From this point of view, transportation is one of the main contributors to 
the increase of CO2 gas in the atmosphere, accounting for 25% of the total 
amount of emissions in the EU. Oil based transportation is still the most 
important one.  

In this sense, the EU has developed a bunch of policies to change the 
trend; i.e. tax reduction for low CO2 emission vehicles, investments on 
renewable energies and electric and hybrid vehicle development. It is in this last 
point were great effort has been done, being one of the groups of investment 
within the FP7 programme of the EU [2]. This research was developed within 
the European Community funded project called: “HEMIS: Electrical Powertrain 
Health Monitoring for Increased Safety of FEVs”, which is further explained. 
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As a result of this impulse and the introduction of the new policies, car 
manufacturers are giving steps towards a change for the electrification of road 
transport; beginning from newly appeared manufacturers such as Tesla motors, 
to Renault, Audi, BMW, Toyota or Nissan.  

FEV has attracted much attention in research communities as well as in 
the market. In 2011 electric vehicle sales were estimated to reach about 20,000 
units worldwide, increasing to more than 500,000 units by 2015 and 1.3 million 
by 2020, which accounts for 1.8 per cent of the total number of passenger 
vehicles expected to be sold that year [3]. 

It is well known that Fully Electric Vehicles (FEV) have some 
advantages over the conventional internal combustion engine (ICE) vehicles 
due to the absence of tailpipe emissions, high efficiency, and quiet and smooth 
operation. Over the last years, EVs have improved significantly in their system 
integration, dynamic performance, compact design and cost. On the other hand, 
the reduced autonomy of FEVs compared to ICEs is still a main drawback. The 
initial costs associated to FEV acquisition and the lack of knowledge on system 
degradation, and thus, on maintenance costs, have discouraged many potential 
customers. 

The automotive industry is especially affected by systems failure due to 
the high impact on customers’ image of the brand. Opinion polls show that 
consumers are concerned about the reliability of FEV technology; reliability is 
one of the main reasons why potential consumers would choose a hybrid 
vehicle instead of a FEV [4, 5]. Hence, the business case for electric vehicles is 
affected by component performance and lifetime issues [2] and any failure in 
this field can potentially damage consumers’ confidence. 

The introduction of FEV in the mainstream has raised concerns on 
reliability issues regarding the electric and power electronic components [6]. 
Although the electric machines and associated power electronics have been 
largely developed in the last decades and their manufacturing processes are 
well established, their reliability and failure mechanisms are still a pending issue 
on this type of applications [6, 7, 8]. Indeed, following batteries large space 
requirement, electric drives design has sought to reduce space, and thus, large 
power densities and compact design have been the main priorities, negatively 
influencing the reliability of components, due to higher operating temperatures. 
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Moreover, extreme and demanding environmental conditions are major 
challenges for the automotive industry suppliers in general, and so, they add to 
the mentioned problem. 

In this work, in order to improve FEV reliability and safety, the previously 
presented problems were addressed through the implementation of a 
Prognostic and Health Monitoring System (PHMS) for the most critical power 
electronic components.  

In the following points of this chapter the origins of PHM are described 
as well as the interests of introducing this kind of maintenance policies and their 
fundamentals. 

1.1 Prognosis, predictive maintenance and PHMS 
The origins of prognosis can be found in medicine, applied to humans, 

rather than applied to machinery. One of the earliest written works of medicine 
is the Book of Prognostics of Hippocrates, written around 400 BC. This work 
opens with the following statement: "It appears to me a most excellent thing for 
the physician to cultivate Prognosis; for by foreseeing and foretelling, in the 
presence of the sick, the present, the past, and the future, and explaining the 
omissions which patients have been guilty of, he will be the more readily 
believed to be acquainted with the circumstances of the sick; so that men will 
have confidence to entrust themselves to such a physician." [9]  

From the previous statement, it can be derived that Prognosis is related 
to the health state of components, either a person or a machine. More precisely, 
based on foreseeing the future state in the presence of a problem and taking 
into account the past and the present events. Therefore, a major issue of the 
prognostic system is being able to assess the lifetime and be able to predict or 
foresee the future health state of the system. In recent years, the 
implementation of prognostic systems has been done through the development 
of Prognostic and Health Monitoring Systems (PHMS).  

In spite of the long time passed since Hippocrates, PHMS is at an infant 
stage. Great advances have been done on prognostics in medicine applied to 
humans, but very few have been done related to machinery. Indeed, it is in the 
last decade that the name has been recovered and established for these 

https://en.wikipedia.org/wiki/Hippocrates
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applications. The foundation of the PHM Society in 2009 showed the clear 
increasing interest that is arising around monitoring systems. The introduction of 
PHM systems has been mainly associated to safety critical applications, such 
as aerospace, nuclear, military and railway industries. Following the novelty of 
PHMS, different approaches have been suggested depending on the industry 
[10].  

In [11], PHM is defined as the capabilities of a system that preserves the 
system’s ability to function as intended. In this way, it addresses the design, 
development, operation, and lifecycle management of components with the 
purpose of maintaining nominal system behavior and function and assuring 
mission safety and effectiveness under nominal conditions. 

Now, the different characteristics that PHM operation should enable are 
described [11]: 

1. Efficient fault detection, isolation, mitigation and recovery. 

2. Prediction of impending failures or functional degradation. 

3. Increased reliability and availability of systems. 

4. Enhanced vehicle situational awareness. 

5. Condition-based and just-in-time maintenance practices. 

6. Increased asset availability. 

The fulfillment of all the previous points would mean the application of a 
whole bunch of management policies to research and apply strict procedures on 
the lifecycle of products, from design to decommissioning. It is believed that 
PHM embraces and expands the capabilities of traditional safety and reliability 
engineering methods. It should not be limited to real-time operation, but it 
should cover the entire systems lifecycle from design to verification and from 
operation to logistics [12, 13, 14]. 

From the previous assessments, the main objective of PHMS is to 
provide information on the failsafe state of the component and enable the 
application of a predictive maintenance policy. Furthermore, a PHM system 
should predict the probability of failure and the Remaining Useful Life (RUL) of 
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the equipment, thus, providing valuable aid deciding when maintenance actions 
should be performed to avoid catastrophic failures of the system.  

The previous characteristics will lead to improve safety and 
maintainability, together with a reduction of maintenance costs, which are the 
highest ones during the operational life of the system [10], due to the enhanced 
knowledge of failure mechanisms affecting the powertrain.  

Since PHMS enables continuously monitoring the system operation, 
PHMS application can be observed as an advanced maintenance policy. 
Provided that the PHMS is monitoring the component, it allows replacing the 
component exactly prior to a failure occurrence, thus, extending to the limit its 
operative life. The evolution of maintenance policies has been possible due to 
the understanding of the degradation processes affecting the complex systems 
that humans have built.  

The different maintenance policies that have been applied until 
nowadays can be observed in Figure 1.1 [15]. Historically, the unplanned 
corrective maintenance intervention has been the most employed. It implies 
replacing a component when it has failed. More recently, planned maintenance 
policies have been applied at different levels. Regarding the scheduled 
maintenance, it implies replacing the components after a certain number of 
operating hours, usually set by the manufacturer. Then, the most recent and 
advanced ones, and in which PHM focuses, are condition-based and predictive 
maintenance policies. Both of them imply measuring and collecting operative 
data of the component. While condition-based maintenance assesses the 
degradation state of the component at the measuring time, predictive 
maintenance forecasts the future degradation state. This slight difference has 
major consequences, as predictive maintenance allows optimizing the 
maintenance procedure, arranging beforehand the required stock of parts, the 
supply chain and scheduling the repair time to reduce costs. Therefore, in the 
case of predictive maintenance, we can speak of Prognosis and Health 
Management, due to the wide implications that forecasting has on the decisions 
for the maintenance policy [5, 11, 16, 17]. Monitoring has major advantages 
with respect to corrective and scheduled maintenance, as the component 
exploitation can be extended, sudden failures can be avoided and the 
maintenance action is based on data, rather than human experience.  
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Nowadays, the knowledge on complex system degradation 
mechanisms, advances on sensory components, data mining and machine 
learning techniques, has made it possible to introduce PHM systems and 
improve maintenance policies. However, PHM system development require 
high research and investment costs, and so, its employment has been restricted 
to safety critical applications.  

In this sense, PHM application has been avoided in the automotive 
industry taking into account the associated costs. Still nowadays, corrective 
maintenance is the leading policy; mainly supported on a vast market of parts 
making profit from maintenance. Another issue that delays the application of 
PHMS are confidential clauses. As a consequence of such a competitive 
market, automakers refuse to publish any data or results of researches related 
to reliability of components.  

As a result, to the author’s best knowledge, the HEMIS project is the 
first attempt to implement a PHM system on a FEV. 

 

Figure 1.1. Maintenance intervention policies 
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Nevertheless, car manufacturers have given some steps forward 
regarding vehicle performance and failure analysis with the introduction of the 
On Board Diagnostics (OBD) system. The employment of OBD-II system was 
made mandatory since 1996 for all light vehicles. The OBD system gives the 
operator access to the status of the various vehicle subsystems. Modern OBD 
implementations use a standardized digital communications port to provide real-
time data and standardized diagnostic trouble codes. The main target was to 
reduce the repair time and ease the procedure to the repair technician, 
gathering relevant information provided by the different ECUs within the vehicle. 
However, this system is not provided with any intelligence, there is not data 
analytics implemented that could predict a RUL of the components, and it forces 
letting the vehicle on the garage for inspection. As a result, given the concern of 
customer’s on FEV reliability and safety, PHM is a trend that is foreseen to 
become a truth in the near future. 

After this brief introduction to prognosis and PHMS, the main features of 
the HEMIS project are described, as its development greatly influenced the 
outcome of this work.  

1.2 HEMIS Project description 
The “HEMIS: Electrical powertrain Health Monitoring for Increased 

Safety of FEVs” project (www.hemis-eu.org) was a European Community 
funded project within the 7th Framework Programme with reference number: 
FP7-ICT-314609, beginning in June 2012 and finishing on February 2015. 
Seven partners formed the consortium: CEIT-IK4 (Spain), as coordinator of the 
project, York EMC Services (UK), Applus IDIADA (Spain), VTT (Finland), 
Politecnico di Milano (Italy), MIRA Ltd. (UK) and JEMA Energy (Spain).  

Firstly, the project focused on the problems associated to the previously 
mentioned advent of FEVs in mass production. This implied immaturity of the 
new building blocks, which can reduce FEV’s safety and reliability. Among 
them, the project focused on the electric powertrain, i.e. electric traction motor 
and the power electronics converter. Another point taken into account by the 
project was the emitted electromagnetic fields (EMF) analysis, due to the high 
currents flowing from the battery to the electric motor, including Low Frequency 
(LF) emissions not covered within current automotive EMC standards.  

http://www.hemis-eu.org/
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As a result, the main objectives of the HEMIS project (see Figure 1.2) 
were: 

1. To develop an in-vehicle PHMS for the electrical powertrain, 
comprising the electric traction motor and its associated power 
electronics. The PHMS would perform an online assessment of the 
condition, estimate its degradation level, diagnose the failure type, 
and predict its Remaining Useful Life (RUL). 

2. To assess the possible effects of the EMF on EMC issues and the 
human body, and whether these fields, which may differ from those 
experienced in conventional cars, could exceed exposure limits. In 
that case, suitable reference levels should be proposed and the 
PHMS would also monitor the EMF, in order to ensure that 
occupant’s exposure remained below acceptable limits.  

 

 

 

 

 

 

 

 

 

 

 

 

 

The HEMIS PHMS concept (see Figure 1.3), rely on the idea of on-line 
assessing the powertrain condition through in-vehicle sensing of suitable 
physical parameters, such as voltages, currents, temperatures, vibration, or any 

 

Figure 1.2. HEMIS Project Concept 
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other relevant variable available. Diagnostic and prognostic algorithms 
developed within the project would then be used to assess the powertrain 
health condition and estimate the RUL of its critical components. Therefore, 
optimizing the maintenance actions and saving costs.  

The main features of the PHMS should be: 

• Safety. This aspect is essential to increase the safety of the vehicle. 
The PHM system must have low missing alarm rates. The failure rate 
of the PHMS should also be low compared to the powertrain in order 
to be useful.  

• Cost-effectiveness. During the project development some industrial 
representatives formed an Industrial Advisory Panel. It suggested 
that in order to be an interesting option to be introduced in 
commercial vehicles the main drawback was the cost of the system. 
Indeed, the cost of developing and installing the PHMS on the FEV 
should be repaid by the reduction of the maintenance costs. In this 
context, false alarm rates should be low to avoid unnecessary stops.  
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The project focused on the study of the powertrain of the vehicle, 
excluding the high voltage batteries from the beginning. The main reason was 
that projects addressing batteries health state monitoring were already run by 
other researches. Although HEMIS PHMS intended to be a broad and general 
application tool, independently of the powertrain architecture (1, or 2 motors, 
Permanent Magnet or Asynchronous Machines, etc.), it focused on powertrains 
working with an inverter and a Permanent Magnet Synchronous Machine 
(PMSM), since it is the most employed architecture in modern FEVs [18, 19, 20, 
21]. 

A key point of the project was the development of a Reliability, 
Availability, Maintainability and Safety (RAMS) analysis of the FEV. The goals 
of the RAMS analysis were:  

• Identify the most critical functional failures of FEV systems, focusing 
on the ones derived from the powertrain subsystem.  

• Identify reliability critical components of the powertrain subsystem.  

• Assess whether the Tolerable Hazard Risk target was fulfilled. 

• Evaluate the benefits of introducing the PHMS. 

 

Figure 1.3. HEMIS PHMS Concept 
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Minimum Endogenous Mortality is a risk acceptance principle which 
suggests that the introduction of a new system does not significantly contribute 
to the existing mortality caused by technical systems. In this sense, the target 
was fulfilled.  

RAMS techniques have been extensively applied to the electro-technical 
engineering field in risk engineering. RAMS techniques allow reliability 
engineers to forecast failures from the observation of operational field data [22]. 
RAMS analysis is well-structured, usually based on standards and follows 
systematic procedures. Different steps are required prior to the RAMS analysis, 
which are, the definition of the architecture of a generic system i.e. FEV, the 
preliminary hazards analysis (PHA), the establishment of a tolerable hazard rate 
and the definition of safety goals. An extract and the description of the main 
parts of the RAMS analysis, as well as the basic theory of Reliability 
Engineering, can be found in Appendix I and II. One of the most important tools 
of RAMS analysis, the Failure Modes and Effect Analysis (FMEA), helped to 
discover the most critical components of the powertrain. They were found to be: 

Most critical components of power electronics converter: 

• Insulated Gate Bipolar Transistors (IGBT). 

• DC Bus Link Electrolytic Capacitors. 

Most critical components of the PMSM: 

• Bearings. 

• Permanent Magnet field source. 

• Stator windings. 

In order to quantify and evaluate the improvement on reliability and 
availability regarding the introduction of a PHMS in the FEV powertrain, Monte-
Carlo (MC) simulations were run. This simulation method is extensively 
employed for complex system reliability and availability modeling [23]. In MC 
simulations, a logical model of the system being analyzed is repeatedly 
evaluated. The logical model contains the different states in which the system 
could be (i.e. working, degraded, failed, etc.). Each run of the simulation, 
randomly sampled values of the parameters for the transitions are employed. 
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The results of the MC simulations were published on [24] and [25]. A 
description of the MC method theory can be found in Appendix II. A 10 % 
improvement on reliability was obtained when a PHMS was introduced in the 
FEV powertrain.  

Following the results of the RAMS analysis of the HEMIS project, the 
starting point of this thesis was set. In order to develop a PHMS the most critical 
components of power electronics were selected to be further studied. This 
selection was also supported on the results of other industrial reliability 
researches (see Chapter 2.2), which draw attention over the same components.  

The development of PHMS is not standardized and scarce examples 
are available in the literature (see Chapter 2.1) for the different industries. 
Following the introduction that has been done on PHMS and on the HEMIS 
project, the objectives of this thesis are presented.  

1.3 Thesis objectives 
The main goal and contributions to knowledge of this research are 

presented. 

• Main goal: Propose and validate a Prognostic and Health Monitoring 
System (PHMS) for the inverter of a FEV powertrain, in order to 
improve its reliability, maintainability and safety.  

The milestones for the achievement of the main goal are listed below: 

o Identification of the main failure modes and mechanisms. 

o Identification of the failure precursor parameters. 

o Development of on-board systems for failure precursor 
parameter monitoring.  

o Development of accelerated aging tests for experimental data 
collection.  

o Development of the prognostic algorithms.  

o Validation of the algorithms on the collected experimental data.  
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In the next section the selected main features for the PHMS to be 
developed for the power electronics converter are presented, and then, the 
methodology is explained. 

1.4 PHMS impact and main features 
Having analyzed the main focus of the research, which is, the 

development of a PHM system for the power electronics converter of a FEV 
powertrain, it can be described the main features for the PHM system. 

First of all, the driving objectives and impact of the PHM system must be 
set. The knowledge of the state of equipment and the ability to predict its future 
evolution are the basis of condition-based maintenance strategies. According to 
these strategies, maintenance actions are carried out when a measurable 
equipment condition shows the need for corrective repair or preventive 
replacement [10, 26]. From the point of view of equipment safety and durability, 
by identifying potential problems in the early stages of their development, it is 
possible to allow the equipment to run as long as it is safe and to opportunely 
schedule the maintenance interventions. Thus, the driving objectives for PHM 
design in an automotive application are maximum availability, minimum 
unscheduled shutdowns and economical maintenance [24, 27]. 

Taking into account the previous considerations, the proposed PHMS is 
based on the following features: 

1. A set of sensors to monitor key physical characteristics (i.e. 
currents, temperatures, etc.) related to the health of the power 
electronic components.  

2. Analytical and empirical laws that allow predicting the evolution of 
the selected physical characteristics. In short, they will allow 
predicting the Remaining Useful Life (RUL) of the monitored 
equipment. Consequently, the online RUL estimation should be the 
main outcome of the methodology.  

3. Most critical failures and components must be addressed. 
Therefore, the failure modes and mechanisms of the monitored 
components must be deeply studied and understood.  
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4. Minimal impact (minimal intrusiveness) on vehicle design and 
manufacturing [27]. Sensor layout, wiring and control boards included 
within the PHM system, must be optimized to minimize the need for 
modifications of the adjacent structure and topology of the integrated 
systems within the car. Non-intrusive sensors and components are 
desired, in order to reduce the complexity and the mounting process 
of the items. 

5. The system must be reliable and robust. Firstly, it is expected that 
the PHM system lifecycle itself will be longer than the monitored 
system. Besides, the false positive and false negative cases need to 
be small in order to be a trustworthy system. Automotive industry is 
highly concerned on new system introduction unless it has been well 
tested. 

6. Minimum and optimized cost. This feature implies simplified and 
reduced hardware. 

In short, the PHMS consists of: 

1. Hardware monitoring variables related to the degradation process of 
components. 

2. Prognostic algorithms which predict the Remaining Useful Life (RUL) 
of the components based on the measured data. 

Taking into account the results of the HEMIS project and the analysis of 
the Reliability of Power Electronic components in Chapter 2.2, the selected 
items to be monitored by the PHMS are: 

1. Electrolytic Capacitors. 

2. Switching Semiconductor Devices.  

Now, a detailed description of the methodology that has been followed 
for PHMS development is presented. 

1.5 Methodology for PHMS development 
Once the objectives and main features of the PHMS have been set, the 

methodology that has been followed to develop the PHMS is explained.  
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The development of a PHMS for a new technological design such as the 
power electronics converter of a FEV powertrain is a complex task which 
requires the management of multiple and hybrid sources of information and 
knowledge, i.e. expert judgment, analytical models of degradation mechanisms 
and experimental data [28]. In order to do so, a systematic procedure for the 
development of the PHMS is presented.  

As it has been previously introduced, since dealing with an immature 
technology whose functional behavior has not been completely tested, the first 
step of the system analysis should be the identification of the most critical 
components and the corresponding failure modes. In this sense, RAMS 
analysis, and more precisely, FMECA tool with the computation of the Risk 
Priority Number (RPN) are of major importance [29, 30].  

Once the most critical components and their failure modes have been 
identified, it is necessary to investigate the degradation mechanisms which 
cause the identified failure modes. This analysis provides a physical point of 
view on the degradation process occurring in the system, augmenting the 
comprehension of the system possible behavior. Then, it is necessary to select 
the signals to be measured in order to monitor the health state, the so-called 
failure precursor parameters. This selection is driven by both physical and 
economic considerations, taking into account whether it is physically possible to 
measure a specific signal, the precision required and the cost of the 
measurement system.  

At that point, once the data is available and the knowledge of the 
physical laws driving the degradation process is known, the development of the 
PHM algorithms can be started. Depending on the characteristics of the 
degradation mechanisms (i.e. sudden or gradual), the objective can be the 
diagnosis or the prognosis of the failure. The diagnostic system would provide a 
detection of the onset of a component anomalous behavior and the 
identification of its causes. Meanwhile, a prognostic system aims at the 
prediction of the system RUL. The availability of degradation data or physical 
degradation models drives the choice of the monitoring algorithms, which can 
be model-based, data-driven or hybrid.  

Finally, in order to verify the performance of the developed algorithms, a 
validation strategy must be defined. In this case, the verification process has 
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been done through testing the algorithm with real experimental data and 
checking the results with performance indexes.  

Taking into account the previous considerations, Figure 1.4 summarizes 
the different steps to be followed in the selected PHM strategy. Note that data 
collection and the selection of physical characteristics to be measured form an 
iterative process. Some variables could have been selected because they were 
good candidates “a priori”, but they may not provide relevant information about 
the degradation process during the tests. It could also happen that a variable 
being monitored during the data collection provide relevant data and so, it is 
included within the prognostic physical characteristics.  

 

 

 

 

 

 

 

 

 

It must be highlighted that regarding the identification of the most critical 
components through the development of a FMECA study, the outcome of the 
HEMIS project was employed, thus, the development of the thesis starts from 
the identification of the main degradation mechanisms for the selected critical 
components [32].  

In order to clarify and extend the followed methodology, each of the 
milestones considered for the achievement of the main goal are further 
introduced in the next subchapters. 

 

Figure 1.4. PHM methodology 
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1.5.1 Identification of failure modes and mechanisms 
The main failure modes and mechanisms for the electrolytic capacitor 

and semiconductor devices have been studied through a literature review. Once 
the failure modes are clear, it is necessary to identify the corresponding 
responsible degradation mechanisms. This is a complex task, as degradation 
processes are closely related to physical characteristics of materials, 
mechanical properties, package technologies and manufacturing processes. 
Therefore, this task has required the analysis of the failure mode from a 
physical point of view.  

In this sense, a deep review on components physics has been done. 
Then, the failure mechanisms reported by other researches were analyzed. 
Information coming from experts or the analysis from failures in similar 
components was considered. If several degradation mechanisms cause the 
same failure mode (i.e. short circuit) the most likely to occur should be identified 
and the successive analysis focus on it. 

1.5.2 Identification of failure precursor parameters 
The objective of this step is to identify those physical characteristics 

which can provide useful information to the PHM for monitoring the component 
degradation state and predicting its useful life. With the term failure precursor 
parameters, signals that can be measured thanks to sensors and which are 
correlated to the health state or which describe the component operation mode 
and environment is meant. Operation mode and environmental variables should 
be considered since it has been shown that they can have a strong impact on 
component degradation [10].  

This step is performed by firstly identifying a list of possible physical 
characteristics by considering the following sources of information: 

• Information and knowledge on the degradation process, such as, 
signals used in analytical and/or empirical models of the degradation 
process.  

• Expert judgment on factors that may influence the component 
degradation state.  
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• Literature review. 

Once the candidate physical characteristics have been identified the 
final selection of those to effectively predict the component RUL is driven by the 
following considerations: 

• The possibility of predicting the components RUL using the proposed 
physical characteristics. 

• An assessment of the feasibility and cost of performing the 
measurements, their accuracy and the complexity of the data 
processing. 

With respect to the detection of the system degradation, physical 
characteristics which have different behaviors in case of normal operation or in 
case of system degradation are searched. Prognosis requires that the 
measurements collected during the degradation process leading to different 
failure modes should show clear trends and patterns, appearing in different 
zones of the space formed by the physical characteristics. 

Finally, with respect to the prognostic task, the following three properties 
of the physical characteristics are desirable [33]:  

• Monotonicity: physical characteristics are wished to present an 
overall positive or negative trend in time. 

 

 

 

 

 

 

• Prognosticability: the distribution of the final value that a physical 
characteristic takes at failure is wished to be “peaked”, i.e. not too 
wide-spread. 

  

 

Figure 1.5. Bad monotonicity (Left) and good (Right) 
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• Trendability: the entire histories of evolution of the physical 
characteristics towards failure are wished to have quite similar 
underlying shapes, describable with a common underlying functional 
form.  

 

 

 

 

 

 

1.5.3 Development of on-board systems hardware 
Once the physical characteristics to be monitored are selected “a priori”, 

sensor boards to monitor them online should be designed. In order to do so, the 
main features to be considered in the PHMS shall be considered, i.e. minimum 
intrusiveness, minimum cost, required accuracy levels, etc. 

It needs to be taken into account during the boards’ component 
selection process the required accuracy, as well as the variation of the signals 
due to external environmental effects. The variations in the measurements due 
to the measuring system could introduce noise, and, if big enough, it could 
avoid observing the underlying degradation patterns.  

 

Figure 1.7. Bad trendability (Left) and good (Right) 

 

 

Figure 1.6. Bad prognosticability (Left) and good (Right) 
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1.5.4 Development of accelerated aging tests 
This is a critical point of the development and validation process of the 

PHMS. Data coming from the degradation process of components may be 
required for each one of the following actions:  

• Check whether the selection of the degradation mechanisms and 
failure modes is correct. 

• Assessment of the real effect of the degradation on the selected 
precursor parameters. 

• Development of the prognostic algorithm, i.e. data-driven models.  

• Validation of the prognostic algorithm. 

It can be observed that the employment of data regarding components 
degradation is of vital importance. Three are the major possible sources of data. 

• Open-access databases developed by the research community are 
one of them. Databases regarding bearing degradation [35] or even 
IGBT degradation [34] have been found. However, it is crucial, in 
order to develop the prognostic algorithms, to know in which 
conditions the tests have been run. This is not always available, or 
even they may suffer from missing data.  

• Data provided by the manufacturer. An agreement with the 
manufacturer of components can be negotiated. However, reliability 
issues are usually internally and confidentially treated in companies, 
and thus, access to those sources of information is rare.  

• The development of accelerated aging tests. Accelerated aging tests 
are a common practice for data collection regarding components 
degradation for reliability and durability testing. The objective is to 
obtain degradation data results in a reduced period of time. The 
procedure is to apply stresses well in excess of those that will be 
seen during the service period. Thus, failures are caused to occur 
much faster, typically, several orders of magnitude less than would 
be observed in service.  
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No agreements were possible with manufacturers due to confidentiality 
issues. The studied open-access databases did not provide with the desired 
amount of information. As a result, accelerated aging tests were developed on 
selected components in this research. The procedure is later explained. As a 
final consideration, a selection of components is required in order to develop the 
tests.  

The selected capacitor was a general purpose electrolytic capacitor, 
ALS30 series from KEMET [36]. This capacitor model was selected due to its 
similarity to the ones employed in FEVs, following the same physical structure 
[8]. The selected capacitor rated values were a maximum voltage of 100 V and 
2200 uF of capacity. The manufacturer assures 20,000 h of operation under 
rated voltage and current values for a nominal temperature of 85 ºC.  

Accelerated aging tests were also developed for semiconductor devices 
test case. The selected semiconductor device was IGBTs, as it is the one most 
employed in FEVs (see Chapter 2). Three different types of discrete IGBTs 
were selected for testing: IR’s IRG4BC30KDpbf punch-through IGBT, FUJI’s 
FGW15N120VD Trench Field-Stop IGBT and the IXYS IXXN110N65C4H1 
Trench XPT GenX4 IGBT. The IR IGBT was selected in order to compare the 
results with those from previous studies on accelerated aging tests [37] and to 
validate the selected methodology. The other two IGBT types were selected to 
represent new IGBT technologies. The FUJI and IR IGBTs have similar 
packages and nominal currents. The IXYS IGBTs are characterized by a higher 
nominal current than the other two types. These three IGBT types were 
selected taking into account that they could be employed in a FEV, although the 
IXYS is the IGBT with higher current rating, and thus, the one with more 
possibilities to be embarked on a real inverter. The differences between the 
three selected IGBT technologies are explained on Chapter 3.  

1.5.5 Development of the prognostic algorithm 
The objective of this step is the practical implementation of the PHM 

algorithms. The nature of this algorithm strictly depends on the characteristics of 
the degradation mechanisms and the data available. According to this, the 
prognostic algorithms which predict the system RUL depend on the type and 
sources of data obtained by the accelerated aging tests. Furthermore, 
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depending on the availability of physical degradation models, or degradation 
data, or both, the PHM algorithms could be model-based, data-driven or hybrid, 
respectively. 

1.5.6 Algorithm validation 
Once the algorithms have been developed, different strategies could be 

followed to validate them. The different options are listed below: 

1. Testing of the algorithm with data from simulated data. This could be 
done on the first stages of the algorithm development, if no real data 
is available. 

2. Testing of the algorithm with data from accelerated aging tests. This 
would be a more close-to-reality approach; thus, if the tests are 
successful, the algorithm is highly probable to work on real 
applications. 

3. Testing of the algorithms with real data collected during operation of 
the component on the final application. This last validation is only 
possible if the final test equipment is built and can be introduced 
within the vehicle. 

In this research, the validation of the algorithms was done following the 
second validation process, given the lack of a final prototype to be tested within 
a car, although it would have been the ideal solution. Nevertheless, the 
application of the proposed validation strategy is able to provide reliable 
information about the effective applicability of the developed algorithm to the 
real operation of the system and to quantify its performance.  

1.6 Document structure 
The chapters of the thesis follow the same organization as the 

objectives except for Chapter 2. These are: 

Chapter 2 studies the state-of-the-art for prognosis of the power 
electronic components of the FEV powertrain.  
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The identification of the main failure mechanisms and the selection of 
the failure precursor parameters to be monitored are included in Chapter 3. 

Chapter 4 explains the development of the experimental tests and a 
description of the hardware employed.  

The development and validation of prognostic algorithms for Remaining 
Useful Life (RUL) estimation of components is explained in Chapter 5. 

Chapter 6 contains the conclusions of the research. 
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Chapter 2 

2 State-of-the-art 

In the previous chapter, the motivation of the present work and an 
introduction to PHMS were presented, as well as the methodology that will be 
followed for its implementation. However, several points are still missing to fully 
understand the benefits of introducing a PHMS in a vehicle. The state-of-the-art 
on the different topics that will be discussed needs to be presented before 
explaining the contributions of this research. The state-of-the-art is splitted in 
the following steps: 

1. PHMS implementations. The different examples available about PHM 
systems are reviewed. 

2. Power electronics reliability. The aim is to understand why power 
electronics and which parts may need to be monitored. 

3. Accelerated Aging Tests. The different possibilities to develop the 
accelerated aging tests to collect data regarding component 
degradation process will be reviewed. 

4. Prognosis. The different approaches to prognosis of components life 
will be reviewed. 
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2.1 PHMS implementation 
Prior to the explanation on the different PHM implementations, it must 

be introduced the origins that derived into the evolution for PHM systems. PHM 
systems are the consequence of the researches developed in the risk and 
reliability engineering fields in order to assess the lifetime of components. In this 
sense, reliability analysis has been related historically to predictions with an 
unknown uncertainty about a components life, therefore, predictions with poor 
confidence. Now, the advances on the knowledge of the degradation physics, 
sensory systems and mathematical algorithms allow making optimized 
predictions, thus reducing the uncertainty.  

The origin of the modern meaning of reliability comes from the World 
War II (WWII). The U.S. military meant by reliability “that a product would 
operate when expected”, which is nowadays more related to “mission 
readiness”. Later, the definition of reliability evolved into: “the ability of an item 
to perform a required function under stated conditions for a stated period of 
time” [1]. 

 During the WWII big issues arose from the inherent unreliability of 
electronics and fatigue issues, due to the new manufacturing processes. As a 
result, major effort was put by the Department of Defense (DoD) into improving 
the reliability and the quality of the products in the whole manufacturing process 
and supply chain. Later, that philosophy was exported by J. R. Juran and W. E. 
Deming to Japan and created the so-called “Japanese quality revolution”, 
applying the principles of “total quality management”. In 1952, the Advisory 
Group on Reliability of Electronic Equipment (AGREE) was set in the US. 
AGREE concluded that in order to break with the high ownership costs due to 
low reliability, disciplines must be laid down as integral activities in the 
development cycle. This mainly implied increasing the component testing hours 
prior to selling. The AGREE report was set as the US Military Standard (MIL-
STD 781) [2]. From that moment on, most of reliability predictions were based 
on handbooks.  

Reliability prediction for electronic equipment using handbooks can be 
traced back to MIL-HDBK-217, published in 1960, which was based on fitting 
the curve of a mathematical model to historical field data to determine the 
constant failure rate. Traditional reliability prediction methods for electronic 
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products include Mil-HDBK-217, 217-PLUS, Telcordia, PRISM and FIDES 
databases. However, posterior studies recommended avoiding them, as they 
provide misleading predictions which can result in poor designs and logistics [3]. 

Handbook based reliability prediction was overcome when in 1992, the 
U.S. Army Material Acquisition Activity (AMSAA) and the Center for Advanced 
Life Cycle Engineering (CALCE) spoke to the Department of Defense (DoD) 
about the problem of the current standards. After that, the AMSAA and CALCE 
started working with the IEEE Reliability Society to develop a new Standard for 
Reliability Prediction of Hardware. The outcome from that partnership was the 
IEEE Std 1413, which proposes a framework with guidelines for the correct 
implementation of electronic hardware reliability prediction [1, 4]. The purpose 
of the standard is to “identify the elements for an understandable and useful 
reliability prediction”, so that a prediction in compliance with the standard will 
identify critical pieces of information necessary for a user of the prediction to 
determine the accuracy, uncertainty, and, ultimately, value of the prediction. 

Having said that, when reliability predictions are not accurate enough, 
online monitoring systems that warn of the degradation state of the equipment 
has been used, in order to improve the reliability. These systems called PHM 
have been used in different applications which are reviewed now.  

One of the first applications at system level can be found on aerospace 
industry [5]. The so-called Integrated Vehicle Health Management (IVHM) 
project at NASA, which started in 2009, had the following title: “Automated 
detection, diagnosis, prognosis to enable mitigation of adverse events during 
flight.” This system was embarked and tested on the Space Shuttle, Deep 
Space-1, X-33, X-34 and X-37; and it is still under development for the NextGen 
programme.  

The three elements that compose flight IVHM are advanced sensors, 
distributed data acquisition architecture with storage and extensive real-time 
distributed data processing by system health diagnostic algorithms. The 
diagnostic algorithms are a key point of the system, including Livingstone 
software [6]. Livingstone is a model-based inference engine that reasons about 
system-wide interactions to detect and isolate failures. It relies on models of 
system structure and definitions of nominal behavior, in comparison with actual 
system behavior to identify and isolate current and predicted future faults. 
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However, the IVHM system is not a stand-alone application working on 
the space, but an “integrated” system, which implies a ground IVHM as well. 
The information is sent to a control room with advanced applications and 
automated information processing systems.  

On company’s words, the incorporation of the IVHM into the launch 
vehicle and spacecraft design would mean a potential for significant savings in 
operations costs. Three were the main objectives. First addressed objective 
was more autonomous operation in flight and on the ground, which directly 
translates to reduced workload on the ground controller team through reduction 
of raw vehicle data into “health summary information”. Secondly, a reduced 
ground processing of reusable vehicles was sought due to more performance of 
system health checks in flight, as well as more automated ground servicing. 
Lastly, safety and reliability were enhanced due to increased capability to 
monitor system health using modern sensing systems.  

Therefore, we could take IVHM as a primary example of the 
implementation of an onboard PHM system with clear focus on the 
improvement not only in the maintenance costs, but also in safety and reliability. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1: HUMS system 
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Another application of a PHM system called pHUMS – Prognostic 
Health and Usage Monitoring of Military Land Systems, was developed by 
nCode International [7] (Figure 2.1). Its main objective was to improve 
operational capability by providing enhanced decision support information on 
the operational condition of ground vehicles. That information was key to: a. 
ensure the most reliable vehicles were deployed; b. establish supply of 
necessary replacement components; c. rapidly identify aging or damaged 
onboard systems. Three were the elements composing the system: a network 
of sensors, an onboard processor and an off-board server. They can be seen in 
Figure 2.1. 

Two were the tasks of the HUMS system: diagnosis and prognosis. In 
the diagnostic task the system was focused on detecting the presence of a fault. 
On the prognostic task it was focused on predicting the residual life of a 
component independently from the presence of a fault. The failure of only 
mechanical systems was addressed. 

PHM systems are also expanding on aircraft industry. One of the first 
commercially available systems was developed by the U.S. Air Force. A system 
completely focused on semiconductor prognostics was developed by the U.S. 
Air Force Ridgetop Group, InstaCell [8]. Given the lack of a general approach to 
semiconductor device reliability, the Cell was designed to reside on-chip with 
the host application. The Cell captured the real environmental and operating 
conditions with a family of sensors. The gathered information provided the 
prognostic cell with the capacity to replicate the behavior of the transistors 
employed in the host application and make the output useful in determining the 
effects of the stresses on the application’s performance and service life. 

A broad portfolio of products is being offered regarding different aircraft 
technologies by Honeywell. Under these circumstances, they realized about the 
operative costs of stopped helicopters. They developed a PHM system also 
called HUMS for rotor bearing state monitoring, based on accelerometers and a 
central system with intelligence. HUMS monitors the health of vibrating and 
spinning parts, and records the operational context of events so that flight and 
maintenance crews can analyze trends and perform condition-based 
maintenance.  
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Regarding the automotive industry, as it has been previously claimed, 
no real application cases of PHMS have been found. Nevertheless, it is known 
that car manufacturers find appealing the benefits of PHMS; Chevrolet has 
been the first manufacturer to announce that a prognostic system will provide 
feedback information to the driver about different aspects of the car. The system 
is announced to be accessible since 2016 for some of their customers. All in all, 
some tests have been developed regarding electronic products reliability on in-
vehicle environments, such as [9] and [10].  

As an example of the interest of automotive manufacturers on PHMS, 
the patents published in recent years can be taken [11-16]. They all are focused 
on diagnostic and prognostic ideas applied to both hybrid and electric vehicles 
in particular [14]. The patents suggest in most cases the employment of sensors 
and advanced algorithms for RUL prediction. Vehicles would be connected to 
the Internet and real-time information could be collected to inform the driver on 
any issue. Daimler, Ford, Toyota and General Motors are listed as assignees of 
the patents. Another remarkable fact is the appearance of IBM, which might be 
a subcontractor for data analytics and data mining with prognostic objectives.  

2.2 Power Electronics Reliability 
Now that different PHM applications have been shown, the interest on 

monitoring the power electronic components of a FEV needs to be explained. 
There is a wide perception on car consumers that the electronics reliability is 
low [17]. This perception has spread among consumers for the electric vehicle 
case, being reliability one of the main reasons why potential consumers would 
choose a hybrid vehicle instead of a FEV [17]. In order to understand the focus 
on power electronic components the results of surveys about reliability in 
industrial applications will be reviewed, due to the lack of experimental results 
on real FEVs.  

To begin with, the employment of power electronic components on 
FEVs will be explained. Power electronics are not present only on the DC/AC 
converter (inverter) for electric motor driving. Despite, they can be found in the 
battery charger as an AC/DC converter. A DC/DC converter could also be 
employed to increase the battery voltage in order to feed the inverter of the 
motors, and thus, reduce the current flow. DC/DC converters are also employed 
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to reduce the main battery voltage to feed the low voltage systems, such as the 
Electronic Control Units (ECUs). The wide variety and importance of the 
applications of power electronics on FEVs suggest the improvement on cost 
savings that their monitoring could carry.  

Nevertheless, we will focus on the inverter for the electric motor, as it is 
a key component for functional operation of the powertrain and the operative 
loads that it suffers are the biggest ones within the car. The inverter provides 
with power the traction motor, which implies high temperature variations and 
highly dynamic conditions. The fact that it operates within a car provides some 
added sources of damage: high cooling system temperatures, vibrations, 
shocks, particular thermal and humidity conditions, etc. Therefore, they all affect 
the components degradation, reducing their life time and compromising overall 
system reliability [18, 19, 20]. The published reports concerning power 
electronic failures [21] explain that a powertrain must cope with vibrations and 
changes of humidity and ambient temperatures, which are source of stressors 
for electronic equipment failures as shown in Figure 2.2. 

 

Figure 2.2. Source of stressors for electronic equipment failures (% may vary for 
different applications and designs [21]). 

A DC/AC converter system topology commonly employed in FEV 
operation consists of a filtering capacitor in the input of the DC supply, power 
switching semiconductor devices, a power converter control board with its 

 

 



58 State-of-the-art 

switching strategy and the drivers, and usually, a closed-loop control system of 
the motor. The selection of the previous attributes and final system integration is 
of utmost importance for the development of efficient and high-performance 
vehicles. The challenges of power electronic converters for FEV applications lie 
in obtaining a high-efficient, rugged, small sized and low-cost system. Most of 
the current FEV and HEVs use a three-leg bridge inverter topology with hard 
switching methodology for converting the dc voltage of the battery to alternating 
voltage to power the motor [18, 19, 22, 23].  

A critical point of inverter design is the semiconductor device selection 
[24]. With the advancement of semiconductor device technology, several types 
of power devices with varying degrees of performance are available in the 
market. In the past, the selection of components was done through expert 
knowledge and the employment of application notes. Now, semiconductor 
device manufacturers already provide component selection tools depending on 
the constraints of the application. These new selection tools only require the 
introduction of the operating parameters (duty cycle, ambient temperature, 
cooling system temperature, load power, voltage range, etc…) and they select 
the right component for the application. Examples of these tools are IPOSIM 
from Infineon Technologies and Semisel from SEMIKRON.  

One of the first FEVs designed for mass production, the IMPACT, was 
made by General Electric in 1990. It employed 144 MOSFETs per inverter [20]. 
Each inverter had 24 MOSFETs connected in parallel, in order to carry the 
required current. Later, the 24 were replaced by a single IGBT. Currently, IGBT 
devices are being used in almost all commercially available FEVs and HEVs 
[25]. The IGBTs will continue to be the leading technology in the near future 
until the silicon carbide (SiC) and gallium nitride (GaN)-based devices are 
commercially available at a cost similar to IGBTs [74]. Much expectation has 
been placed on these devices, which are still under research. 

Reliability of power electronics is now studied. There have been 
industrial surveys on power converter reliability in order to determine the most 
fragile components. Figure 2.3 shows that capacitor and semiconductor failures 
in power modules account for a total 51 %, according to a survey based on over 
200 products from 80 companies [26].   
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Figure 2.4 shows the results of the survey carried in [26], distributed 
depending on the industry. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4. Fragile components distributed by sector type [26] 

 

 

Figure 2.3. Failure distribution on industrial power electronic components [26] 
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In this last survey is observed that semiconductor devices are 
considered the most fragile components followed by capacitors and gate 
drivers.  

Similar conclusions were reported in [27], which can be observed in 
Figure 2.5. In that survey, PCB faults were less compared to [26], in favour of 
more failures detected due to gate drivers and connectors. Common PCB 
failures modes are component de-soldering due to vibrations. 

 

Figure 2.5. Fragile components distribution [27] 

In Baraldi et al. [28], the results of the HEMIS project were published; it 
was shown that the three most critical components in FEV inverter regarding 
functional safety are the DC Bus link electrolytic capacitor, the gate-drivers and 
IGBTs.  

Although gate-drivers failure has been observed to be relevant in the 
analyzed reports, their monitoring was discarded in this research for several 
reasons. On the first hand, reported gate drivers’ failures happen due to a 
wrong selection of the component or wrong control commands [29, 30], not 
because of slow degradation processes. Once the inverter has been tested and 
is correctly operating, the degradation process will affect the IGBT much faster 
than to the gate-driver, due to the high temperature swings and the power flow. 
Moreover, any gate-driver fault detection technique would imply monitoring both 
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the input and the output signals and comparing both of them. This option was 
not considered interesting from the cost and the intrusiveness points of view, 
following the suggestions of the IAP. 

In addition to the previously mentioned failures, there are some other 
negative points affecting the reliability of inverters, which are a consequence of 
the control strategies that are implemented nowadays, i.e. Pulse Width 
Modulation (PWM). In order to generate the AC voltage, the inverter usually 
works in a “hard switching” mode. In this mode, the inverter switches the 
semiconductor devices at high speed, involving high voltage slew rates (dv/dt) 
and high common mode voltages [31]. This situation causes problems such as 
electromagnetic interference, winding failures, ground leakage currents and 
faster degradation of semiconductors. Three consequences of these problems 
are presented: 

• Device Stress: The overlapping of voltage and current waves during 
each switch-on and switch-off produce some high energy losses, 
thus an increase in the operating temperature. Consequently, the 
operating frequency of the inverter must be limited to reduce this 
effect. 

• EMI: It is known that high dv/dt, and high di/dt at the switching of fast 
devices can produce severe EMI problems that can affect the 
reliability of nearby systems, such as the control boards. 

• Wiring Insulation Degradation: The high dv/dt across the insulation of 
the stator windings of the traction machine can create large current 
displacement, which can lead to deterioration of the machine 
insulation. 

The main issues regarding inverter reliability have been reviewed and 
the employment of a PHMS is justified in order to improve the safety and 
reliability. A key point for PHMS development, which is demonstrated in the 
different applications reviewed, is the requirement of acquisition of relevant data 
showing the degradation process of components in order to develop the 
monitoring algorithms. Therefore, a review of accelerated aging tests performed 
in power electronic devices in order to obtain degradation data will be reviewed.  
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2.3 Accelerated Aging Tests 
In the way for PHMS implementation, data belonging to the degradation 

process of components is required for different actions, following the needs 
observed in Chapter 1.  

Accelerated aging tests are a common practice for data collection 
regarding components degradation and lifetime analysis [29, 30, 32]. 
Accelerated aging tests are a common practice for reliability and durability 
testing, as well as a quick way to collect operating data. Accelerated aging tests 
have also been employed as a validation process for new components before 
hitting the market. They allow the effects of failure modes and mechanisms to 
be analyzed and failure precursor parameters to be identified. Accelerated 
aging test development was widely studied by G. Hobbs [33]. 

The procedure consists on applying stresses well in excess of those that 
will be seen during the service period. Thus, failures are caused to occur much 
faster. Typically, the times or cycles to failure in accelerated tests will be several 
orders of magnitude less than would be observed in service [24]. A metric 
employed to determine the stress quantity is the acceleration factor AF.  

𝐴𝐹 =  𝑡𝑜𝑝
𝑡𝑠𝑡𝑟𝑒𝑠𝑠

      (Eq. 2.1) 

Where, 𝑡𝑠𝑡𝑟𝑒𝑠𝑠 is the operating point set higher than the nominal 
operating point, 𝑡𝑜𝑝. However, the AF metric is rarely employed, as it assumes a 
constant degradation rate and it is not useful when variable conditions are 
tested. The induced physical stresses can be electrical, mechanical or thermal. 
Typically, high temperatures, large currents, vibrations or even shock tests are 
developed [24].  

In [34], the key features that accelerated aging tests must have are 
presented: 

• The dominant failure mode under normal stress and under 
accelerated stress should be the same. 

• The engineering properties associated with the failure mechanisms of 
a material under accelerated stress should be the same before and 
after the test. 
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• The shape of the failure probability density function for the failure 
mechanisms at rated and higher stress levels should be the same. 

Usually, accelerated aging tests have also been related to stress tests, 
although they are different. Stress tests would be included in the tests for a new 
component before making it available to the general public. However, they differ 
with accelerated aging tests, in that the first looks to drive the component to the 
limit, but without failing; while the latter seek to know when and how the 
component will fail under certain circumstances. Stress tests are standardized 
depending on the industry of application. Electronic components to be 
embarked within a vehicle follow the standards set by the Automotive 
Electronics Council. However, there are not specific standards regarding power 
electronic components testing for electric vehicles yet. As a result, 
manufacturers are developing their traditional qualifying tests for standard 
industrial components [24] (i.e. High Temperature Reverse Bias, High Humidity, 
Thermal Shock, Power and Thermal Cycling).  

Given the variety of accelerated aging test developed for both 
capacitors and IGBTs they are separately reviewed in the next sub-sections. It 
must be highlighted that a great amount of the relevant literature on the topic 
has been developed by the CALCE research group with many and varied 
contributions.  

2.3.1 Accelerated Aging Tests on capacitors 
Aluminum electrolytic capacitor degradation has been investigated by 

several authors.  

In [35], Kulkarni et al. employed an electrical overstress (EOS) method 
for studying the degradation effects of electrolytic capacitors subjected to 
loading under extreme operating conditions. The method consisted on rapidly 
charging/discharging of capacitors. A square-wave of 200 mHz was employed 
to charge the capacitors and then, a RC circuit was used for discharging.  

Celaya et al. [36], applied separately electrical and thermal overstresses 
on electrolytic capacitors. In the electrical overstress (EOS) the capacitors were 
subjected to voltage stresses, similar to the ones developed in [35]. It was 
observed that the higher the amplitude level of the charge/discharge signal, the 
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higher the degradation rate was. During the thermal overstress, high storage 
temperature conditions were replicated, rising the temperature in an oven to 
125 ºC in time steps. Electrolytic capacitors Equivalent Series Resistance 
(ESR) and Capacitance where measured during the degradation process. The 
variation of Capacitance due to thermal stress can be observed in Figure 2.6, 
where capacitance is plotted vs. the aging time. 

 

 

 

 

 

 

 

 

 

 

Now, the variation of the ESR which is plotted vs. the aging time is 
shown in Figure 2.7 during electrical overstress.  

 

 

 

 

 

 

 

 

 

 

Figure 2.7. ESR and C variation for EOS [36] 

 

 

Figure 2.6. Capacitance variation for thermal overstress [36] 
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A great percentage variation of both the capacitance and the ESR are 
observed. Thus, they could be selected as failure precursor parameters. 

In [37], the main degradation mechanisms of a capacitor were analyzed 
and its equivalent circuit model developed. A degradation model with an 
exponential trend was suggested following the data provided by the vendor. The 
accelerated aging tests conditions to which the components were submitted 
are: ambient temperature 105 ºC, and 1 Arms at 120 Hz. Therefore, a mixture 
of temperature and electrical overstresses was applied.  

2.3.2 Accelerated Aging Tests on IGBTs 
Accelerated aging tests are a common practice for assessing the 

reliability of semiconductor devices [10, 32, 38, 39, 40]. Junction temperature 
has been described as the main variable affecting and describing the 
degradation of IGBTs [29, 30]. As a result, most reports suggested increasing 
its value further than the limits provided by the manufacturer to accelerate the 
degradation process. 

In Hensler et al. [10], and Smet et al. [32], accelerated aging tests were 
performed on IGBT modules for automotive applications. Electro-thermal aging 
was considered in both articles, in which the junction temperature was driven to 
values higher than its maximum nominal value. Different test procedures were 
applied: DC and PWM signals were applied to the gate and their influence on 
the degradation process was analyzed. The authors observed changes in the 
values of collector-emitter on-state voltage (VCE,ON) and thermal resistance (RTH) 
before IGBT failure. In Patil et al. [38], degradation was induced by considering 
temperature values well above the nominal, observing over 315 ºC on the case. 
Changes in component transconductance, collector-emitter on-state voltage 
and threshold voltage were observed during the degradation process. Celaya et 
al. [40], developed an accelerated aging system for different types of 
semiconductors. Since the study was focused on electrical stresses, the 
accelerated test conditions were attained by electrical operation of the devices 
at temperatures within the range that was below maximum ratings and above 
room temperature. This was done by controlling case temperature. Changes in 
threshold voltage were observed.  
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A common practice for product qualifying among manufacturers is 
power cycling [24]. A power cycling test followed by Infineon Technologies is 
commuting the component to obtain junction temperature variations of 60 ºC 
between 2 and 5 sec. However, the maximum junction temperature is never 
driven above the maximum operating limits; therefore, it would not be a properly 
called accelerated aging test, although some ideas can be drawn on how the 
tests could be developed.  

Once the reliability of power electronics has been studied and the 
different approaches to data collection through accelerated aging tests have 
been presented, we can proceed with the state-of-the-art on how to estimate 
the RUL of components.  

2.4 Prognosis 
The previous introduction to power electronics reliability and accelerated 

aging tests to collect degradation data, allows us to properly move to prognosis, 
which is the ability to estimate the health of a component. The key point is to 
answer the following question: what can be done when the requirements of 
standards are followed when designing an item, but the required safety levels of 
the item are not met? This could be the case in safety critical applications, 
where the predicted failure time of a given item is inherently below the objective 
established by the safety level.  

There might be systems that do not fulfill the required safety levels, but 
need to be embarked. This is the case of certain power electronic devices (i.e. 
semiconductor devices), which intrinsic manufacturing process leads to very 
stochastic (time varying) degradation processes, and thus, they are very 
unreliable. On the other hand, they greatly allow reducing weight and space, 
which are appreciated benefits. Therefore, several techniques have been 
proposed traditionally to counteract the effect of low reliability levels of 
equipment [2, 34]. The most extended are: 

• Redundant systems. 

• Fault-tolerant design. 

• Fault diagnosis. 
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• Prognosis. 

The principle of redundant systems operation is several elements 
working simultaneously, but they are capable of carrying the ‘load’ themselves if 
required, such as the engines on civil airliners. Other redundant systems 
principle consists on having idle elements that ‘awake’ when the system needs 
them, such as backup generators. Therefore, reliability can be increased by 
employing redundancy on part or at a system level, without affecting the safety 
level of the system.  

Fault-tolerant design is based on the principle that systems’ most critical 
failure modes can be identified and addressed specifically. A fault-tolerant 
device can maintain the system performance in the presence of a component 
failure. When a part of the device fails, another will take over for a time, until the 
faulty device is replaced. An example of fault-tolerant electric-machines design 
is provided by B. Prieto [41]. Upon the criteria that the most common failures in 
machines are phase short and open circuits, a multi-phase permanent magnet 
synchronous machine (PMSM) design is suggested. In case one of the phases 
fails, firstly, it is able to withstand the short-circuit current, and then, the rest of 
the phases are still able to carry on with the operation of the machine. This 
design has great impact on the associated power electronics topology and the 
motor control algorithm. Despite the benefits of fault-tolerant and redundant 
systems, they increase overall cost, size and weight of the machine, attributes 
the automotive industry is very concerned about.  

Another approach is fault diagnosis [42]. It is based on the capability of 
assessing the failure of a system, and thus, warning the operator about the 
situation. A certain kind of intelligence must be placed within the system in order 
to identify the root source of the failure. An example on the automotive industry 
is found with On Board Diagnostics (OBD) system. It gathers information related 
to the operation of the vehicle and provides useful information for repair and 
maintenance operations. Nevertheless, diagnosis operates once the failure has 
occurred, negatively influencing on the availability and costs of the system, due 
to the repair time. 

Under the previous considerations, prognosis is understood to be a 
possible optimum solution. Prognosis is the ability to predict the RUL and the 
health state of a degrading item. The main advantage compared with the rest of 
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the techniques proposed is that prognosis warns in advance of the impending 
failure. Thus, it is possible to define predictive maintenance policies that allow 
the optimal exploitation of the useful life of the monitored equipment, with 
benefits in terms of costs reduction and improvement of safety. 

Prognostic systems have received several terms to refer to Prognosis 
and Health Monitoring (PHM), including Integrated Systems Health 
Management (ISHM), Integrated Vehicles Health Management (IVHM), 
Condition-Based Maintenance (CBM), and Health and Usage Monitoring 
systems (HUMS). Despite the recent emphasis on the field of PHM, health state 
monitoring for subsystems such as aircraft engines has been part of the 
engineering practice [43]. 

Nevertheless, PHM integration has found different implementation 
approaches, as it has been previously stated in section 2.1. Each of the 
presented cases had a certain way to implement the prognostic model. In 
Vichare et al. [44], the different prognostic models are summarized in four: 

• Built-In-Test (BIT). 

• Use of fuses and canary devices. 

• Modeling accumulated damage based on measured life-cycle loads. 

• Monitoring and reasoning of failure precursors.  

The employment of these different approaches faces challenges and the 
most appropriate for each application should be selected. Once the potential 
failure modes, mechanisms, and effects have been identified, a combination of 
BIT, canaries, precursor reasoning, and life-cycle damage modeling may be 
necessary, depending on the failure attributes. In fact, different approaches can 
be implemented based on the same sensory data.  

BIT is defined as an on-board hardware-software diagnostic meant to 
identify and locate faults, which may include error detection and correction 
circuits, totally self-checking and self-verifying [44]. However, BIT system lacks 
any information of the operating component itself; therefore, operating 
component’s lifetime is unknown and the failure is detected once it happens. As 
the degradation conditions are not fully known in this research, provided the 
absence of data in a FEV, this approach is discarded.  
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Another approach is the employment of canary devices. The name 
comes from the canaries employed in mines to detect the presence of gases. 
Canary devices mounted on the product have been used to provide advanced 
warning of failure due to specific wear out failure mechanisms. Mishra et al. 
[45], studied the applicability of semiconductor-level health monitors by using 
pre-calibrated cells (circuits) located on the same chip of the actual circuitry. It 
was aforementioned the example of InstaCell [46], which follows this same 
strategy. The main disadvantage of this approach is the absence of knowledge 
of when the failure is going to happen exactly, although the canary provides a 
prior warning. 

The third approach is based on modeling the accumulated damage. The 
damage accounted during the life-cycle of the item, including: manufacturing, 
storage, handling, operating and non-operating conditions, is considered. These 
life-cycle loads may lead to physical degradation of the component, reducing its 
service life. The aim of these systems is to measure the loads in-situ and in 
conjunction with damage models to assess the degradation. Ramakrishnan et 
al. [47] introduced the life consumption monitoring methodology, which 
combined in-situ measured loads with physics-based stress and damage 
models for assessing the life consumed. The lack of a test bench in real 
operational conditions in which to collect the information of the whole life cycle 
prevents us from applying this prognostic approach. 

Finally, the monitoring and reasoning of failure precursor parameters is 
studied. Failure precursors are physical or operational characteristics of the 
component directly related to its degradation. For example, a drift from the 
nominal voltage of a power supply under certain conditions could mean an 
impending failure of the feedback sensing circuitry. Measuring the precursor 
parameters and a clever interpretation of the signals, could lead to the detection 
of the impending failure. If the event of a failure is gradual and follows a certain 
trend, the trend could be identified, and upon the selection of an appropriate 
limit threshold, a warning alarm could be provided in order to avoid the failure. 
This is one of the most common approaches to prognostics in modern systems, 
mainly due to the advances on non-intrusive sensors, statistical inference and 
machine learning algorithms, which allow an accurate prediction of the RUL of 
the components. As it has been introduced in Chapter 1, this last option is the 
selected choice for the PHM system that will be implemented, provided the 
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advantages on maintenance cost savings and safety with respect to the other 
approaches, and overall, due to the information type available.  

Pecht suggested in [48] the general framework shown in Figure 2.8 for 
monitoring and reasoning of failure precursor parameters. It could be 
understood as a previous version of the methodology presented in Chapter 1 for 
PHM implementation. The methodology begins on the left with the collection of 
data and information from prognostic sensors. It follows with the development of 
assessment methods based on the data previously collected, which could be 
data-based or model-driven. Once the method is set, an analysis of the 
obtained results applied to real data is required in order to validate it. Finally, a 
bunch of policies and management decisions can be taken based on the 
information provided by the previous steps, such as, advance warning of 
failures, maintenance forecasting, etc. 

 

 

 

 

 

 

 

 

 

 

 

Now, the different prognostic models that could be applied for 
monitoring and reasoning of failure precursor parameters in each specific case 
needs to be reviewed. 

 

Figure 2.8. Framework for prognostics [47] 
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2.4.1 Prognostic models 
Prognostics of failures in engineered equipment are based on the 

capability of predicting future degradation paths, so as to estimate the 
Remaining Useful Life (RUL) of the equipment [49]. On this basis, it is possible 
to define predictive maintenance strategies to set the best maintenance actions 
for allowing the optimal exploitation of the useful life of the monitored 
equipment, with benefits in terms of reduction of costs and improvement of 
safety [50]. 

In practice, industrial equipment works in varying operating conditions. 
These variations can have remarkable effects on the degradation process and 
on the values of the signals measured to monitor it [51]. For example, structures 
operating in environments characterized by high temperatures usually show 
faster degradation than structures operating at low temperatures, besides high 
temperatures may modify the measurement of electrical signals used to 
estimate the degradation of an electrical device. Thus, it is fundamental that 
prognostic methods properly take into account the effects of variations due to 
operating conditions [52]. 

In order to provide useful and reliable predictions, prognostic models 
need to take into account the different sources of noise or uncertainty when 
making a prediction. The degradation process of power electronic components 
has been demonstrated to be affected by several sources of uncertainty [30, 40, 
53]. Among them, the stochasticity of the degradation process of semiconductor 
devices is a major difficulty. Given the characteristics and constraints of the 
problem, there are many factors influencing the performance of prognostic 
systems, such as, (i) the dependence of the algorithm’s accuracy on the 
quantity of valid reference patterns; (ii) the variability associated to 
manufacturing conditions and uncertainties in environmental and operating 
conditions; and (iii) the sensory signal relationships with different health states. 
The prognostic models have to overcome these sources of noise and provide 
measurements of the uncertainty affecting the RUL predictions.  

The implementation of the algorithms for RUL prediction hugely 
depends on the data type or information available. Consequently, prognostic 
methods have commonly been splitted depending on the information available. 
They are splitted in two, data-driven models and physics-based models, which 
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we proceed to explain now. Some researches have also employed the so-called 
hybrid models, which is the combination of data-driven and model-based 
approaches. A final approach has been suggested as well, which is an 
ensemble of models. Ensemble of models has been employed in data-driven 
approaches. It relies on the idea that the combination of different data-driven 
approaches improves the final result. 

2.4.1.1 Data-driven models 

Data-driven models are based on statistical or artificial intelligence 
approaches, such as Artificial Neural Networks (ANN) [54], Autoregressive 
Moving Average techniques [55] and Relevance Vector Machines [56] that 
‘learn’ trends from collected data [57]. Wang and Vachtsevanos proposed 
architecture for prognosis employed dynamic wavelet neural networks (DWNN), 
reinforcement learning and genetic algorithms [57]. Most popular data-driven 
approaches to prognostics are Artificial Neural Networks (ANN). Although, 
decision trees, Support Vector Machines (SVM), wavelets, regression, statistical 
methods and fuzzy logic have been reported as well [57].  

2.4.1.2 Physics-based models 

Model-based prognostic approaches use an explicit physics-based 
model of the degradation process to assess the current degradation state and 
to predict its future evolution. This is, mathematical representations of the 
equipment degradation process are employed to predict the equipment RUL 
However, in several prognostic applications the degradation state of the system 
is not directly observable and measurements can be affected by noise. Thus, 
many approaches rely on Bayesian methods that iteratively assess the 
component degradation state [58]. Examples belonging to the latter are the 
exact and extended Kalman Filters (KF). Recently, numerical approximations 
based on the use of Monte Carlo sampling techniques, such as Particle 
Filtering, have gained popularity for their ability to deal with non-linear 
degradation models and non-Gaussian noises [58]. 

In model-based prognostics, it is possible to distinguish between two 
different situations: i) the effects of operating conditions on the degradation 
process and on the measured signals are known and represented in the 
mathematical models, ii) the effects are not fully known and a mathematical 



Chapter 2 73 

model of the operating conditions influence is not available. In the former 
situation i), traditional model-based prognostic approaches, such as those 
based on Bayesian Filters [59], can be directly used, whereas in the latter one 
ii) tailored prognostic approaches need to be developed. 

2.5 Prognosis of Capacitors 
Although prognostic model examples applied in FEVs are not available, 

the research developed in discrete components on the prognosis field is wide. 
In this sense, the researches developed on capacitors prognosis are reviewed 
now. 

In this work we face the problem of predicting the RUL of aluminum 
electrolytic capacitors installed in Fully Electric Vehicles (FEVs) [52]. The main 
task of this component, which is the most commonly used in the electronics 
industry [60], is to filter the rail voltage provided to the inverter of the electric 
motor [61]. According to [27], electrolytic capacitors are very critical 
components, being responsible for almost 30% of the total number of failures in 
electrical systems and, thus, it is of paramount importance to develop predictive 
maintenance approaches for them, as we saw in Chapter 2.2. 

The failure mechanisms of the aluminum electrolytic capacitors can be 
catastrophic or gradual. In case of catastrophic failures, capacitors completely 
and abruptly lose its function due to short or open circuits, whereas gradual 
failures are characterized by a gradual functionality loss [62, 63, 64]. Similarly to 
gate drivers’ case, catastrophic failures are related to a wrong selection of 
components or poor testing prior to final deployment. The main cause of 
gradual degradation mechanism, which is the most common in electrolytic 
capacitors, is the vaporization of electrolyte (see Chapter 3). This degradation 
process is strongly influenced by the capacitor operating conditions, such as 
voltage, current, frequency, and working temperature [35]. In capacitors 
installed in FEVs, these conditions would tend to continuously change due to 
external factors such as season, geographical area and driving style. In 
particular, the temperature experienced by the capacitor, which depends on the 
applied loads and on the ambient temperature, has a remarkable influence on 
the evolution of the degradation process: higher the temperature, faster the 
vaporization process due to the increase of the self-heating effects [65]. 
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Aluminum electrolytic capacitor degradation has been investigated by 
several authors. A direct degradation indicator for capacitors operating at 
constant temperature and load is the Equivalent Series Resistance (ESR) [37, 
66, 67, 68]. A capacitor is considered failed, i.e. not able to properly accomplish 
to its functions, when its ESR exceeds the double of its initial value [69]. In [37], 
the main degradation mechanisms of a capacitor were analyzed and its 
equivalent circuit model developed.  

In [66], a degradation model based on the physics of the wear-out 
mechanism was presented. In [70], a method based on the use of genetic 
algorithm for the identification of the parameters of the degradation model was 
discussed. In [35], a method for studying the degradation effects of electrolytic 
capacitors subjected to loading under extreme operating conditions was 
proposed. Furthermore, some approaches for monitoring capacitor degradation 
and for predicting its RUL were proposed. In [71], a method for real-time 
monitoring and RUL prediction for electrolytic capacitor used in uninterruptible 
power supplies (UPSs) was developed.  

However, the temperature at which the ESR measurement is performed 
has a remarkable influence on the observed ESR value (higher the 
temperature, lower the ESR). Moreover, the models mentioned above consider 
capacitors aging at constant temperature and do not quantify the uncertainty on 
their predictions. A Bayesian approach for the prediction of the capacitor RUL 
probability distribution has been proposed in [61], where a prognostic 
methodology based on the application of a KF for tracking the capacitor health 
state, forecasting the capacitance evolution and predicting the capacitor RUL 
was presented. This approach does not consider the possibility of variable 
operating and environmental conditions and, as underlined by the authors 
themselves, it is not able to cope with the abrupt change of the capacitor 
functional behavior arising near the end of the component life, thus providing 
inaccurate RUL predictions.  

2.6 Prognosis of IGBTs 
The degradation process of IGBTs has been demonstrated to be 

affected by several sources of uncertainty [30, 40, 53]. Two failure types are 
reported for IGBTs: sudden and progressive. Sudden failures could be 
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addressed through diagnostic approaches, but their prediction through 
prognostic rules is a most difficult task and for this reason they are typically 
disregarded in prognostic studies [30, 72, 73]. Therefore, they are left out of the 
scope of this work. Lifetime estimations consider that sudden failures have a 
constant occurrence probability during the lifetime of the component.  

With respect to progressive failures, the understanding and analysis of 
IGBT degradation mechanisms have advanced. According to [30, 32, 39, 53], 
the parameter more influencing the degradation process is the junction 
temperature variation. Thus, a great number of the reviewed researches try to 
measure or get a precise approach of the junction temperature [29, 30]; 
however, they are not prognostic approaches. 

In this section, we review the methods proposed for modeling the IGBT 
degradation process and predicting IGBT RUL. The first three subsections are 
devoted to the discussion of i) physics-based models ii) data-driven models, 
and iii) ensemble models, and a fourth subsection presents a summary of the 
conclusions drawn from the literature review. 

2.6.1 Physics-based models for IGBT prognosis 
Celaya et al. [40], exploit the on-state resistance exponential variation 

model to assess the degradation state of MOSFETs through the application of a 
KF. Lifetime modeling techniques are applied in order to predict the fatigue life 
of wire bonds and solder joints of IGBTs under cyclic loading conditions [29]. 
The LESIT project equation, which relies on the Arrhenius law, has been used 
to predict IGBT lifetime in several works [30, 74]. Denk et al. [75], proposed a 
method for measuring the junction temperature online, which, when combined 
with the equation from Bayerer et al. [53], provided lifetime predictions.  

The results of power cycling tests were employed by Huang and Mawby 
to fit a degradation model based on the Coffin-Mason law and on the 
assumption that solder joint fatigue was the dominant IGBT failure mechanism 
[29, 38]. The approach applied the rainflow counting algorithm developed by 
Matsuishi and Endo [76] to take into account the average and the swing values 
of the junction temperature. Then, Miner’s rule, which assumes linear damage 
accumulation, was applied to assess IGBT degradation.  
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𝐷𝑎𝑚𝑎𝑔𝑒 =  ∑ 𝑁𝑖
𝑁𝑓𝑖

𝑛
𝑖=1       (Eq. 2.2) 

where, Ni  is the number of cycles at a stress level i, and Nfi represents the 
number of cycles to failure at that particular stress level. It is assumed that the 
damage is complete when Damage = 1.  

A physics-based model was developed as part of the LESIT project [74], 
which has been largely employed by different researches. It provides the 
number of cycles to failure at a particular stress level, given by the average 
(TJ,med) and swing (∆TJ) junction temperature.  

𝑁𝑓𝑖 = 𝐴∆𝑇𝐽𝛼𝑒
( 𝑄
𝑅∗𝑇𝐽,𝑚𝑒𝑑

)
    (Eq. 2.3) 

Where, A = 640 and α = -5 are constants, Q =  7.8 ∗ 1014 J/mol and R is the gas 
constant. This model, based on the Arrhenius law, has been adopted since 
experimental tests suggest that IGBT degradation is mainly caused by thermally 
activated creeping processes. Furthermore, the model is able to cope with 
junction temperatures above the nominal temperature such as those 
encountered in accelerated aging tests. 

Bayerer et al. [53] proposed a more refined model for assessing the 
number of cycles (Nfi) taking into account other parameters that influence the 
degradation process, such as the power on time or the current per wire. It also 
takes into account the results of a large campaign of experimental tests on 
IGBTs. This model only applies to IGBTs working with a junction temperature in 
the range 50 to 150 ºC. This constraint comes from the statistical treatment of 
the vast amount of data employed to obtain the value of the parameters of the 
model. As a result, the equation is not valid outside the boundaries of the fitted 
data. Thus, the value of the β parameters in Eq. 2.4 was set, and therefore the 
variation of the curve was restricted.  

𝑁𝑓𝑖 = 𝐾∆𝑇𝐽
𝛽1𝑒

𝛽2
𝑇𝐽+273𝑡𝑜𝑛

𝛽3𝐼𝛽4𝑉𝛽5𝐷𝛽6   (Eq. 2.4) 

Where, K is a constant, ∆TJ is the junction temperature variation, ton is the power 
on time, I is the current per wire, V is the breakdown voltage which is related to 
the chip thickness and D is the diameter of the bonding wires. 
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2.6.2 Data-driven models for IGBT prognosis 
Given the lack of sufficient public data collected during the degradation 

of IGBTs, examples of applications of data-driven approaches to IGBT 
degradation modeling and IGBT RUL prediction are scarce. In Rigamonti et al. 
[77] a Self-Organizing Map (SOM) was tested on healthy and degraded IGBTs 
working in an electric inverter. The algorithm was able to assess IGBT 
degradation level, but it did not provide a RUL prediction. In Celaya et al [78], 
Mahalanobis Distance (MD) was computed and when an anomaly was 
detected, a particle filtering algorithm based on a polynomial regression of data 
was triggered to predict the RUL of MOSFETs. This approach showed 
limitations to obtain good results, since it applied a specific polynomial curve 
that not all the components degradation patterns followed. 

2.6.3 Ensemble methods for IGBT prognosis 
The idea behind the use of an ensemble of models is that the 

combination of several model outcomes provides better performance than what 
a single model does. Ensemble of models is commonly employed for data-
driven models.  

Different techniques for aggregating the outcomes of individual models 
into an ensemble outcome were investigated in [79], moving from algebraic 
combination rules (majority voting, max/min, average [80]) to fuzzy integral 
combination, Dempster-Shafer based fusion and bagging and boosting 
predictors. In Tamilselvan et al. [81], the aggregation of the degradation states 
provided by an ensemble of classifiers was performed by resorting to a 
weighted majority voting with dominance. In practice, the aggregation is guided 
by the local performance of each model. These methods rely on the idea that 
each model can perform well in some regions of the input space and poorly in 
others.  

In Baraldi et al. [48], a hybrid prognostic methodology was proposed in 
which a degradation dataset was available but a physical model was missing. It 
was suggested that a dataset could be used to train a bootstrapped ensemble 
of Artificial Neural Networks (ANN), which was then embedded in a Particle 
Filtering algorithm as an empirical measurement model. 
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2.7 Conclusions about the state-of-the-art 
The main conclusions extracted from the review of the state-of-the-art 

on the different topics are presented. Then, the contributions of the present 
research to that state-of-the-art are exposed. 

2.7.1 Conclusions about PHM implementations 
It is concluded that PHM implementations are very new and are mostly 

employed on safety critical applications, such as aerospace and military 
industries. The architecture and implementation of the systems widely vary from 
one application to another. However, no applications in the automotive industry 
have been found, although interest on them is high following the number of 
patents published.  

As a result, the proposed PHMS is designed to be applied to the FEV 
powertrain electronics. 

2.7.2 Conclusions about Power Electronics Reliability 
The employment of power electronic converters on FEVs was reviewed. 

The converter with higher power requirements and demanding operating 
conditions is the inverter driving the electric motor. The absence of failure 
statistics and studies on real data collected on a FEV powertrain forced to 
analyze the results on industrial applications. Capacitors and power 
semiconductor devices were pointed as the main failure causes. Other 
components such as PCBs and gate drivers were also pointed as important 
possible failure causes. However, monitoring of these components was 
discarded in a first stage due to different issues with the selected PHM features. 
Consequently, the ongoing studies are focused on electrolytic capacitors and 
power semiconductor devices.  

2.7.3 Conclusions about Accelerated Aging tests 
It is concluded that several researches have obtained data through the 

development of accelerated aging tests. Different methodologies have been 
observed depending on the component type. The researches have stated 
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different degradation mechanisms and failure precursor parameters for both 
IGBT and capacitor technologies. Nevertheless, a deep review on the reported 
degradation mechanisms on both components is required, in order to select 
appropriate failure precursors and a good understanding of the physics behind 
the degradation. On the other hand, the development of accelerated aging tests 
for both components is an unavoidable duty in order to obtain data from the 
degradation process. 

Regarding the degradation modes and mechanisms of capacitors, they 
have been studied and analyzed in previous researches. However, the 
accelerated aging tests have helped to confirm them and to validate the 
prognostic algorithm development with the collected data.  

Regarding the degradation mechanisms of IGBTs, it has been observed 
that there is controversy on the most important one. It has also been observed 
that tests have been developed on both new and old IGBT technologies, but the 
results have never been compared. As a consequence, accelerated aging tests 
have been developed and a deep analysis of the root causes underlying 
component degradation is done. The accelerated aging tests are employed to 
identify the failure precursor parameters. They were carried out on different 
IGBT technologies to evaluate the applicability of the prognostic model. 

2.7.4 Conclusions about Prognosis in Capacitors 
Regarding the literature review done on prognosis of electrolytic 

capacitors, several conclusions can be extracted. To begin with, there are 
several points that previous researches are missing: 

• They assume constant degradation temperatures. Therefore, the 
estimation of the lifetime of capacitors working on variable operating 
conditions, such as a FEV powertrain, would not be possible.  

• The effect of temperature on ESR measurements is not considered. 

• The predictions are not supplied with any uncertainty boundary. 

Nevertheless, a major achievement of these researches is the 
development of useful mathematical models of the degradation process, as well 
as the identification of the main failure mechanisms. Taking into account the 
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previous conclusions, the contributions of the present work beyond the state-of-
the-art will be presented. The objective of the present work will be to provide a 
method for the prediction of the RUL for a capacitor working in variable 
operating conditions, which ESR can be measured at different temperatures. 
The method will also be able to estimate the uncertainty affecting the RUL 
prediction.  

In order to give an answer to the previous objectives, a sequential 
Bayesian approach for the estimation of component degradation will be 
employed. The Bayesian approach is able to account for the uncertainty 
affecting: i) the ESR and temperature measurement process, ii) the possible 
inaccuracy of the degradation model, iii) the stochasticity of the degradation 
process. In this type of problems, KF have been applied, however, due to the 
presence of non-additive (non-Gaussian) noise terms, a Particle Filtering (PF) 
approach will be implemented. PF allows to properly take into account the 
uncertainty on the present degradation state estimation and the uncertainty on 
the future evolution of the operating conditions.  

To the best of the author’s knowledge, the implementation and 
application of a PF approach for RUL uncertainty estimation has not been yet 
considered for electrolytic capacitors. 

2.7.5 Conclusions about Prognosis in IGBTs 
Several conclusions can be extracted from the review done. The 

techniques present in the literature are few and still have difficulty assessing the 
RUL of IGBTs accurately. On the one hand, physical degradation models are 
not capable of adapting to the characteristics of each particular component. On 
the other hand, data-driven models are not able to accurately predict RUL in the 
long run, mainly because of the minute variation in the degradation estimation 
precursor parameters [32], which usually change rapidly in the end-of-life of the 
component. Thus, for long periods of time little information regarding the health 
state is available. Such models also have to overcome the lack of databases on 
IGBT degradation, and thus it is difficult to generalize data-driven models.  

Another issue observed regarding IGBT RUL prediction is that they do 
not provide uncertainty boundaries of the predictions.  
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Taking into account the previous conclusions, the contributions of this 
work beyond the state-of-the-art are presented. In this work, we consider the 
benefits of gathering both sources of information, data-driven and physics-
based models, with specific reference to the problem of predicting the RUL of 
IGBTs installed in FEVs [10]. 

Given the characteristics and constraints of the problem, a single data-
driven or model-based approach is not expected to meet performance 
requirements. Thus, we have developed an ensemble approach which 
leverages the strengths of different algorithms to form a robust unified algorithm 
[81]. 

The three main novelties of the proposed prognostic method are: 

• The employment of a bootstrapped aggregation ensemble for directly 
estimating the RUL of IGBTs together with RUL estimation 
uncertainty. 

• The application and validation of the method with real experimental 
data from three different IGBT types. 

• From the methodology point of view, the input to the prognostic 
model of a mixture of data-driven and physics-based model 
information for IGBT monitoring. 

To the best of the author’s knowledge, a hybrid ensemble based on the 
use of both physics-based and data-driven models has not been yet considered 
for predicting IGBT RUL. 

Following the results of the review on Section 2.7.3., the next Chapter 
will proceed with a deep analysis of the failure modes and mechanisms as well 
as failure precursor parameters of electrolytic capacitors and IGBTs, before the 
explanation of accelerated aging tests.  
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3 Failure modes & Failure 

Precursor Parameters 

In the previous Chapter, the state-of-the-art was presented and 
conclusions were extracted from it. Among them, the necessity to further 
analyze and understand the physics and the failure modes of components was 
claimed prior to the development of accelerated aging tests. In this Chapter, the 
failure modes and failure precursor parameters of Capacitors and IGBTs will be 
deeply reviewed. 

It is recalled that failure precursor parameters are physical 
characteristics or variables directly related to the degradation process of 
components. Their identification will allow determining the RUL of components, 
which is the final objective of the PHM system. Consequently, a deep 
understanding of the physics underlying the components behavior is required 
and will be done first. Then, the degradation mechanisms and failure modes 
associated to the physics will be introduced. Finally, the failure precursor 
parameters linked to those failure modes will be assessed.  

In order to follow the previous steps, information will be compiled 
through a literature review given the lack of other sources of information. The 
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outcome of the literature review will be confirmed in the next Chapter with the 
development of the accelerated aging tests. 

3.1 Electrolytic Capacitor physics 
A critical point of inverter design is the selection of passive components. 

One of them is the DC Bus Link capacitor. The DC Bus Link capacitor is 
employed for smoothing and noise filtering in DC voltages [1]. 

Aluminum electrolytic capacitors are the ones most commonly employed 
in power supplies, switched mode power supplies and DC/DC converters [2]. 
They are polarized capacitors which anode is made of aluminum, on which an 
insulating oxide layer works as dielectric. The electrolyte covering the rough 
surface of the oxide layer operates as the second electrode. The most 
commonly employed electrolyte is a mixed solution of ethylene glycol and 
ammonium borate. The electrolyte maintains the integrity of the aluminum oxide 
dielectric, but it is also the main responsible for the series resistance [1, 3]. The 
main advantage of electrolytic capacitors and the reason why they are widely 
employed is that they show a relatively high capacitance compared to their 
volume and low impedance values even at low frequencies. They are able to 
withstand high voltage values as well. Figure 3.1 shows typical configuration of 
these capacitors. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1. Electrolytic capacitor physical layout 
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On top, the terminal connections and the safety valve can be seen. The 
safety valve opens when the internal pressure exceeds a certain threshold. The 
previous could happen when high temperature limits are exceeded. The paper 
winding layers and the electrode can be observed, as well as the aluminum 
case covering them.  

More recently, other capacitor types considered for FEV applications are 
Metalized Thin Film Capacitors (MTFC). They have many advantages when 
compared to electrolytic capacitors, including longer lifetimes and durability [4]. 
They can also withstand higher temperature values. However, their low capacity 
to volume rate, as well as their limited voltage handling capability, encourages 
more research to be developed on them. Nevertheless, interest on them is high 
[4].  

The development of a reliable electric model of electrolytic capacitors 
has attracted much attention in the past, as it allows properly understanding and 
analyzing its behaviour [5]. An electrical model of electrolytic capacitors is 
shown in Figure 3.2.  

 

 

 

 

 

 

 

 

 

 

Where, the sum of R0, R1 and R2 is considered the Equivalent Series 
Resistance (ESR) of the capacitor and the sum of C1 and C2 is the equivalent 
capacitance. The ESR of the capacitor is defined as the sum of the resistance 
due to the resistive effects of the aluminum oxide, electrolyte, spacer, and 

 

Figure 3.2. Electrolytic capacitor model [6] 
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electrodes (foil, tabbing, leads, and ohmic contacts). This parameter is of 
paramount importance for capacitor RUL estimation. Other researches also 
include the inductive effect due to the wound structure of the capacitor, which is 
represented by the L or Equivalent Series Inductance (ESL). It can be observed 
in Figure 3.3 [2].  

 

 

 

 

Consequently, the impedance of the capacitor is frequency dependent; 
this is an important fact for measuring the ESR parameter. The resonant 
frequency is calculated as: 

𝑓𝑟 =  1
2𝜋√𝐸𝑆𝐿∗𝐶

      (Eq. 3.1) 

The previous behavior can be demonstrated through Figure 3.4, where 
the complex impedance Z is plotted versus the frequency. The figure belongs to 
the bode plot of a capacitor of 4700 μF. It can be observed that there are three 
separated frequency bands. The capacitance is dominant in the low-frequency 
band (Hz), the ESL in the high-frequency band (MHz) and the ESR in the mid-
frequency one (kHz).  

 

 

 

 

 

 

 

 

 

 

Figure 3.4. Capacitor impedance vs frequency plot 

 

 

Figure 3.3. Electrolytic capacitor model [2] 



Chapter 3 95 

3.2 Electrolytic capacitor failure modes 
Now that the main physical characteristics of electrolytic capacitors have 

been introduced, the failure modes and mechanisms will be reviewed. Most 
common faults in electrolytic capacitors include catastrophic failures due to 
manufacturing process introduced defects or wrong component selection, and 
gradual faults, which cannot be avoided [1]. Capacitors degradation process is 
well known under certain operating conditions (environmental temperature, 
voltage level, current, etc.). Manufacturers provide a reference lifetime of 
operating hours depending on the environmental conditions and the capacitor 
package type [3]. However, it only considers stationary conditions, and not 
varying operating conditions. Thus, preventive maintenance has been mostly 
employed on these components, simply replacing them after a given number of 
operating hours, independently of their real healthy state.  

The failure modes of electrolytic capacitors and root causes have been 
widely studied [6, 7, 8]. Degradation of these components is due to a combined 
effect of electrical, thermal, mechanical, and environmental stresses [7]. Its 
main degradation mechanism is caused by the vaporization of the electrolyte, 
which is strongly influenced by the capacitor working temperature [9]. The 
following operating parameters, voltage, current and frequency are known to 
have second order effects regarding the operating temperature of the capacitor, 
and thus, on the degradation process of it; however, their correlation with the 
temperature and the degradation has not been strictly determined. It is 
assumed that they affect at different degrees the internal temperature of the 
capacitor, which is the one directly degrading it.  

High electrical stress is known to accentuate the degradation of the 
oxide layer due to localized dielectric breakdown [7], although high electrical 
stresses are related to sudden failure causes. The literature on capacitor 
degradation shows a direct relationship between electrolyte decrease and 
increase in the ESR of capacitor [10]. An ESR increase implies a slow decrease 
in the average output voltage as well.  

Another mechanism occurring simultaneously is the increase of the 
internal pressure due to an increased rate of chemical reactions, which are 
attributed to the internal temperature increase in the capacitor due to the 
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activation of chemical reactions. A FMEA analysis was developed for 
electrolytic capacitors in [1]. It is shown in Figure 3.5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This FMEA shows the different failures modes. In this summary, either 
gradual or sudden failures that could take place are shown. In this thesis, the 
main focus is failures due to the degradation with time, this is, gradual failures 
and not sudden failures, following the conclusions that were observed in 
Chapter 2.6 for sudden failures and why their study was discarded.  

The different literature studies state that the degradation of capacitors 
involves a loss of functionality. The main consequences of gradual degradation 
are a decrease in capacitance and an increase in the ESR, which further 
increases the losses, and therefore, the internal temperature, accelerating the 
degradation process [8].  

 

Figure 3.5. FMEA electrolytic capacitors [1] 
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Manufacturers suggest the following guidelines to define the end of life 
of a component [1, 3]:  

• ESR > 2 x initial ESR value.  

• Variation of the initial capacitance > 10 %.  

• Leakage current > specified on datasheet.  

As a consequence, the previous guidelines are commonly considered 
as failure thresholds to replace the capacitor. 

3.2.1 Electrolytic capacitors failure mode conclusions 
The most reported gradual failure mode of electrolytic capacitors is 

electrolyte vaporization, mainly produced by thermal stresses. The thermal 
stresses might be influenced by other factors such as the voltage level and the 
frequency range of operation. However, models describing the relationship of 
voltage and frequency to the operating temperature have not been discovered 
on the literature.  

It is observed that most researches claim that a direct consequence of 
the thermal stresses is an increase of the internal pressure and of the leakage 
current, as well as a variation of the capacitance and the ESR. 

3.3 Electrolytic capacitor failure precursor 
parameters 

Following the analysis done on electrolytic capacitor failure modes, it 
has been observed that the different authors suggest the following variables as 
possible failure precursor parameters related to the time degradation of 
capacitors [4, 6, 7, 8, 11, 12, 13]: 

• Capacitance 

• ESR 

• Temperature 

• Leakage current 
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• Internal pressure 

Other prognostic approaches for switched mode power supplies were 
presented in [6, 14, 15]. One of the approaches consisted on measuring the 
power losses of the capacitor, which could be attributed to the ESR, and thus, 
an indirect measurement of it [6]. On the other approaches, the output ripple 
voltage and leakage current were presented as a function of time and 
degradation level of the capacitor, but there was not an associated physics 
model of the degradation. Finally, manufacturers claim that internal pressure 
and temperature are failure precursor parameters [1]. 

3.3.1 Conclusions on failure precursor parameters for 
electrolytic capacitors monitoring 

Having analyzed the different possibilities suggested on the literature 
review, the selected failure precursor parameters to be further studied and 
monitored in the accelerated aging tests were: the capacitance, the ESR and 
the surface temperature. The reasons to select them will be now explained. 

On the first hand, the output ripple voltage and the leakage current were 
discarded for several reasons. They can be affected by the operating conditions 
of the rest of the components in the circuit. In case other component fails or 
misbehaves, it could be reflected in those parameters. Another negative aspect 
is that they would require accurate measurements under varying operating 
conditions, which would require high sampling rates and processing memory. 
These features are not compatible with a PHM system for online monitoring the 
health state of FEV components.  

Internal temperature and pressure would have been good candidates for 
PHMS, unless for their intrusiveness. Opening the case and introducing a 
sensor is not a sensible change for a system operator. A possible suggestion 
for capacitor manufacturers would be to provide the components with integrated 
sensors; however, this is not the case yet.  

Finally, the selection of the failure precursor parameters is explained. A 
major positive point is that the capacitance and the ESR have shown good 
prognosticability on the reviewed researches [7]. Given the high impact of the 
temperature on the degradation process and the variation of the ESR with 
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respect to the measurement temperature, the surface temperature was also 
selected to be monitored. A major advantage of these variables is that they 
have good trendability during component lifetime, thus, they do not need to be 
continuously monitored with high sampling rates. They are also measurable 
from the connection terminals, therefore, they are not considered intrusive.  

Cost is a key point that must be taken into account for online monitoring 
of the suggested variables. In lab environments measurements are carried out 
with expensive RLC meters. Thus, the measurement of ESR and capacity for 
vehicle on-board systems will require self-developed equipment, which is 
explained in Chapter 4.  

3.4 Insulated Gate Bipolar Transistors (IGBT) 
physics 

IGBT is a semiconductor device that combines the high current and 
voltage capabilities of a Bipolar Junction Transistor (BJT) and the gate drive 
characteristics of a Metal-Oxide Semiconductor Field-Effect Transistor 
(MOSFET). Hence, the IGBT is a minority carrier device with high input 
impedance and high current carrying capability. The structure of an IGBT is 
similar to that of a vertical diffusion power MOSFET, except for an additional p+ 
layer above the collector [16]. The additional p+ layer in the IGBT acts as a 
source of holes that are injected into the drift region during operation. These 
injected holes enable quick turn-off by recombination with the excess of 
electrons that remain in the body of the IGBT after switch-off. Figure 3.6.a 
represents the schematic structure of the IGBT [24].  
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(a) 

 

(b) 

Figure 3.6. (a) IGBT schematic [4]; (b) IGBT schematic with parasitic 

elements [17] 
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Figure 3.6.b shows the schematic of the IGBT with the parasitic 
elements. These are:  

• Three pn-junctions J1, J2, J3. 

• One pnp-transistor structure T1. 

• One npn-transistor structure T2. 

• One diode structure D1. 

• One thyristor structure V1. 

• One MOSFET structure T3. 

• One JFET structure T4 between two adjacent IGBT cells. 

Parasitic elements play a key role in failure mechanisms of IGBTs, 
being the root cause of several failure modes.  

Compared to MOSFETs, IGBTs are better suited to scale in current 
handling capability at higher voltage levels due to their bipolar output 
characteristics. On the other hand, IGBT turn on and turn off times are bigger, 
increasing overall switching losses, and thus, reducing efficiency. The IGBT has 
a high current fall time that restricts the use of IGBT to moderate frequencies 
operation (less than 50 kHz) in conventional PWM switching applications. Since 
most automotive motor drive applications work in this frequency range, the 
IGBT is usually selected [18, 19].  

Regarding IGBT employment, one of the main problems arose when 
placing them in parallel for higher power rates [17]. First generation IGBTs, the 
so-called punch-through (PT) IGBTs, had a negative thermal coefficient (NTC). 
This means that if one of the paralleled components gets hotter, it becomes 
more conductive, and thus, it carries higher current values. This would end up 
with a thermal runaway of the IGBT. However, the successive IGBT 
technologies (non punch-through, Trench-FS) overcome this problem, obtaining 
positive thermal coefficients (PTC). Figure 3.7 shows a comparison of the 
different IGBT technologies [16, 17]. Some other names have been given to 
similar technologies; however, this is done depending on the manufacturer. It 
must be noticed the different die sizes required for each one, which has 
contributed to the reduction of manufacturing costs.   

 



102 Failure Modes & Failure Precursor Parameters 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A final consideration when talking about IGBTs is their package 
technology. In fact, the most important degradation mechanisms are associated 
to it, rather than to the electric behavior of the component. The manufacturing 
process and package technology influence on IGBT reliability were reported in 
both the LESIT project [20] and the research developed by Bayerer et al. [21]. 
The package of an IGBT module is shown in Figure 3.8.  

  

 

Figure 3.7. IGBT technologies overview [9] 
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The main functionality of the IGBT is contained in the IGBT die, where 
the different Silicon substrates (see Figure 3.6) are manufactured. The rest of 
the package is mainly a support for the functioning of the die. Bonding wires are 
commonly made of aluminum, they provide the means for electrical connection 
between the die and the terminals; depending on the manufacturer process it 
may connect either to the emitter or the collector. The die is connected to a 
substrate and then to a base plate, through solder joints of the sequential 
layers. The aim is to dissipate the heat generated on the die, through the base 
plate, usually made of copper. The encapsulant is made of epoxy or resin, 
which is intended to provide higher electrical insulation than air to avoid the 
formation of electrical arcs. The temperature reached in the junction between 
the die and the die solder is called the junction temperature. This temperature is 
critical for IGBT reliability [20-24], as the highest temperature values are 
reached there. A critical parameter of IGBT design is junction-to-case thermal 
resistance (Rthj-c). The lower the Rthj-c is, the better for the reliability of the 
component. It provides information regarding heat transfer from the junction to 
the base plate, where the heat is dissipated. It must be noticed that IGBT 
manufacturing package includes layers of different materials, such as copper 
(base plate), aluminum (bonding wires), silicon (die) and SnPb40Ag1 (solder 
joint).  

 

Figure 3.8. IGBT module package overview [22] 
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3.5 IGBT failure modes 
Factors affecting IGBT reliability during its operational life are various: 

electrical loading, mechanical vibration and environmental conditions, etc. Most 
of them have influence on the junction temperature variation, which is claimed 
to be the most important degradation force for IGBTs [20-24]. For example, the 
electrical traction drive for an urban tram may experience 106-108 power cycles, 
with temperature swings up to 80 ºC during its lifetime [23]. The effects of 
temperature swings critically affect IGBT reliability and lifetime. Figure 3.9 
shows the improvement on IGBT reliability in recent years, reducing the failure 
rate from 1000 FIT (failures-in-time, tipically, 10−9 failures/h) in 1995 to 20 FIT 
in 2000 [21]. This change is the result of improvements introduced on the 
manufacturing processes and package design. Much improvement has been 
made regarding solder-joint bonding and junction-to-case thermal resistance 
reduction. Hence, on the one hand, the electrical path is secured through a 
better bonding, and besides, heat is more efficiently removed to the cooling 
plate.  

 

 

 

 

 

 

 

 

 

 

 
  

 

Figure 3.9. Device (IGBT) FIT rate evolution [22] 
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Several previous projects studied IGBT reliability. Among them, the 
LESIT project investigated the reliability of IGBT modules for traction 
applications, including IGBT bond-wire liftoff and solder fatigue [23]. The 
physics-based model extracted from it was refined in [21]. The EU RAPSDRA 
project improved and achieved agreement on standardized accelerated tests. 
The outcome from most of these projects is the research on IGBT failure 
mechanisms analysis and the presentation of methods to improve the reliability, 
such as precursor parameter identification for condition monitoring. In [24] a 
FMEA shown in Table 3.1 was presented as an example. It shows some 
potential failures sites on IGBTs, together with the potential failure modes, the 
causes and the mechanisms. A deeper insight of all of them is reviewed in 
sections 3.5.1 and 3.5.2. 

 

 

 

 

 

 

 

 

 

 

 

In [25], a FMEA analysis was also developed showing the failures as a 
consequence of poor handling or selection of the component (extrinsic 
mechanisms). 

  

Potential Failure 

Sites 

Potential Failure 

Modes 

Potential Failure 

Causes 

Potential Failure 

Mechanisms 

Oxide 

Short circuit, loss of 

gate control, increased 

leakage current 

High temperature, 

high electric field, 

overvoltage 

Time Dependent 

Dielectric Breakdown 

(TDDB) 

Oxide, 

oxide/substrate 

interface 

High leakage current 
Overvoltage, high 

current densities 
Hot-electrons 

Device body 
Loss of gate control, 

device burn-out 

High electric field, 

overvoltage, ionizing 

radiation 

Latch-up 

Table 3.1. FMEA for IGBT failures [24] 
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The previous two figures show failures of IGBTs commonly observed in 
real applications, when a wrong selection of components is done. There is an 
extended feeling that semiconductors failure rate is high due to the previous 
figures, which include extrinsic (sudden) failure mechanisms. Although the 
literature is wide regarding sudden failures on semiconductors devices, in this 
research it is assumed that these failure types have been overcome through 
testing prior to the component operation, and we will be focusing on gradual 
failures. Regarding gradual failures, only time dependent dielectric breakdown 
was considered in [24]. 

 

Figure 3.10. IGBT FMEA for extrinsic mechanisms [25] 
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Regarding gradual failures development as a consequence of 
degradation, thermo-mechanical fatigue stresses have been reported to be the 
main degrading force for power devices [16, 22, 23]. Packaging materials have 
been reported to have a great influence. The different failure mechanisms of 
IGBTs are mainly driven by the swings in the junction temperature [20-24]. This 
can be observed in Figure 3.11, where the number of cycles endured by a 
component is directly related to the variation of the junction temperature (∆Tvj). 
This figure belongs to a large reliability study carried out by Infineon 
manufacturer. 

 

 

 

 

 

 

 

 

 

 

 

 

The figure shows reliability tests developed with 4th generation (Trench-
FS) IGBT modules with maximum operating junction temperature of 150 ºC. 
Each of the repetitive power cycling tests lasted less than 3 seconds. Two 
conclusions can be extracted from the figure. On the one hand, the IGBTs 
which junction temperature was higher driven endured less number of cycles 
(i.e., red line compared to the blue and the brown). On the other hand, following 
the x axes, independently of the junction temperature reached, the higher the 
temperature swing, the faster the degradation rate was, enduring less number 
of cycles. 

 

Figure 3.11. Power Cycling capability of IGBT Modules [26] 
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Consequently, from the reviewed studies, it can be derived that the 
swings in the junction temperature would be directly affecting the reliability of 
the component. In this sense, the temperature swings would be directly 
affecting the different layers of materials of the IGBT. The main failure 
mechanisms are the consequence of the different coefficients of thermal 
expansion (CTE) of the layers of the IGBT (see Figure 3.8). The main materials 
involved within IGBT manufacturing are: aluminum for bond-wires, copper for 
the base plates and contacts, and silicon for the die [27]. As a consequence, the 
temperature swings produces different strains in the materials, thus, shear 
stresses in the interface [22, 23]. The CTE of the different materials is shown in 
Table 3.2. 

IGBT Module Part Material CTE (ppm/ºC) 

Silicon gel Silicon resin 30-300 

Bond wire/Chip metallization Aluminum 24 

Terminal/Baseplate Copper 16.5 

Ni plating Nickel 13.4 

Chip die Silicon 3.2 

Table 3.2. CTEs for common electronic materials [27] 

To sum up, failure modes in IGBTs are commonly splitted in two 
categories [18]. The first includes the extrinsic mechanisms, which results from 
poorly controlled or wrongly selected components. Usually these failures 
happen for components working outside their designed Safe Operating Area 
(SOA1), determined by the manufacturer. The second category includes the 
intrinsic failure mechanisms, which lead to a time-dependent degradation of the 
performance of the device during its useful lifetime. Opposite to Integrated 
Circuits (IC), power modules lifetime is limited due to intrinsic mechanisms, 
since devices operate close to their physical limits.  

1 The SOA is defined as the voltage, current and frequency conditions over which the component can be 

expected to operate without self-damage. 
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IGBT failure mechanisms have also been divided from a different point 
of view, which is depending on the place of the failure. They are: chip-related 
failures and package related failures. Provided their importance in the following 
studies each of them is briefly addressed.  

3.5.1 Chip-related failures 
Chip related failures are the ones that ultimately destroy the device, 

disabling any possibility of normal operation. Although they are splitted from 
package-related failures, both may be interlinked for a failure event. Most 
reported chip-related failures are: 

1. Transient Electrical Stresess: Electrostatic discharge (ESD) and 
Electrical Overstress (EOS) would be included within this group. Both 
of them provide similar failure modes [22, 23, 27], including gate 
oxide puncture and internal short circuit. ESD failure is related to 
inappropriate handling of the device. Meanwhile, EOS is associated 
to voltage and current conditions outside of the component SOA. 
Heating effects due to overvoltage conditions and heat sinking may 
lead to component destruction. Large 𝜕𝑖

𝜕𝑡
 values could also contribute 

to component heating. 

2. Latch-up and Triggering of parasitics: Switch on and especially, 
switch off times must be properly calculated. Loss of gate control or 
latch-up failures may appear due to large 𝜕𝑣

𝜕𝑡
 during the switch off 

process of the component, triggering the inherent parasitic thyristor of 
IGBT body [25]. High junction temperature also contributes to this 
failure. 

3. Time Dependent Dielectric Breakdown (TDDB): Dielectric breakdown 
occurs when a strong electric field induces a current channel through 
an originally insulated medium. High temperature and strong electric 
field may impart energy into an electron or a hole which becomes a 
“Hot Carrier”. It gets enough energy to overcome the energy barrier 
and to be injected into the gate oxide by tunneling, resulting in charge 
trap and interface state generation [28]. The latter may lead to shifts 
in the performance characteristics of the device, i.e. the threshold 
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voltage, transconductance; ultimately leading to the loss of gate 
control.  

4. Electromigration: This is a wear-out mechanism in silicon 
interconnection owing to high current densities. Extremely high 
density current flows displace atoms within thin-film conductors, 
leaving a void at one end. The formation of the void causes open 
circuit or high resistive paths. 

5. External radiation - Cosmic rays: There is a minute probability of high 
energy mobile ions and neutrons travelling on space to hit the 
devices. This produces tunneling and destruction of the chip. This 
failure mode is rare [25]. In [29], a figure of the damage caused by a 
cosmic ray is shown (see Figure 3.12).  

 
 
 
 
 

 

 

 

 

 

 

 

 

 

  

 

Figure 3.12. Cosmic ray caused damage [29] 
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3.5.2 Package-related failures 
Package-related failures are, as the name says, failures due to the way 

components are manufactured and layers of materials assembled (see Figure 
3.8). Package-related failures are reported to be the main cause of time-
dependent degradation processes. The most frequently reported package 
related failure modes are: bond wire lift off and solder fatigue [22, 23]. Bond 
wire lift off is a consequence of crack growth at the bond wire/chip interface. 
Solder fatigue is the propagation of cracks or voids between the module 
substrate and base plate. They are explained below. 

1. Bond-wire lift off: Bond wire lift off is a consequence of crack growth 
at the bond wire/chip interface. Owing to temperature swings and 
different CTEs between Silicon and Aluminum. The difference in 
strain in both materials creates a stress in the interface. These strain-
stress cycles initiate cracks that propagate, ending with the wire 
complete disconnection [23]. The process is shown in Figure 3.13. 

 

 

 

 

 

 

 

 

 

A bond-wire liftoff failure can be observed in a real component on Figure 
3.14, when observed through Scanning Electron Microscope (SEM). 

  

 

Figure 3.13. Bond-wire lift off process [6] 
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Bond-wire heel cracking rarely occurs on advanced IGBTs, although it 
can be observed after long endurance tests [5]. An example can be observed in 
Figure 3.15. 

 

 

 

 

 

 

 

 

2. Solder fatigue: Solder fatigue is the propagation of cracks or voids 
between the module substrate and the base plate and/or the device 
chip and substrate. Solder fatigue arises because of the different 
CTEs of the silicon die and copper substrate, resulting in shear 
stresses in the solder layer. In the case of solder, elastic, plastic and 
creep-induced strains are all significant. Eventually, leading to cracks 
and voids formation. Due to the creep strain, and the relationship of 
the crack length with the number of thermal cycles, Arrhenius Law 
has been employed to explain this degradation process [21]. The 
propagation of voids reduces the effective area to dissipate heat, and 

 

Figure 3.15. Bond-wire heel cracking IGBT [5] 

 

                             (a)                                         (b) 

Figure 3.14. Bond-wire lift off examples [34] 
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thus, the thermal resistance (RTH) is increased. Ultimately, thermal 
runaway is the critical failure. In Figure 3.16 and Figure 3.17 the 
process of solder fatigue is shown. More precisely Figure 3.16 shows 
the most common solder fatigue failures depending on the junction 
temperature swings. The tests developed in [6] show that 
temperature swings bigger than 100 K destroyed faster the bond wire 
solder; meanwhile, swings smaller that 80 K destroyed faster 
chip/base-plate interface. Figure 3.17 shows the latter case. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
  

 

Figure 3.17. Solder fatigue crack propagation [6] 

 

 

Figure 3.16. Solder fatigue [6] 
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3.5.3 IGBT failure mode conclusions 
A large amount of researches have dealt with the problem of assessing 

the failure modes and mechanisms in IGBTs. The reported gradual failure 
modes with higher importance are package related failures: a) bond-wire liftoff 
and b) solder fatigue. Chip-related failures have also been investigated, but 
their identification is done through the analysis of the atomic structure of the 
component. In this sense, advanced microscopy techniques (Scanning Electron 
Microscope (SEM) and Scanning Acoustic Microscope (SAM) have been 
employed to assess them. Whereas, package related failures are analyzed 
through optic microscopes. 

Finally, in this research we will be focusing on the identification of the 
failures taking place at package level which are the failures directly related to 
gradual degradation due to temperature variations.  

3.6 IGBT Failure Precursor Parameters 
IGBT health state estimation is an incredibly challenging task. The 

stochasticity of the degradation process has been demonstrated [24], showing 
different degradation patterns even for the same IGBT types. Furthermore, the 
continuously varying operating conditions of traction applications forces to 
carefully select the appropriate physical characteristics to be monitored.  

IGBT failure precursor parameters have been widely studied [20-24]. A 
great number of researches focus on junction temperature measurement. 
Junction temperature measurement allows junction-to-case thermal resistance 
measuring (RTHj-c) and the application of thermal models. The latter researches 
employ the measurement of the junction temperature to supply with information 
Finite Element Analysis (FEM) or mathematical approaches. Then, the 
employment of a cycles counting algorithm [32] is employed for average and 
swing temperatures assessment. Finally, this kind of techniques relies on 
physics-based thermal models (i.e. Arrhenius law) which employ the counted 
average and swing temperatures to assess the degradation state. As it can be 
observed, the complexity of the procedure is high with poor results [22, 23]. 
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It needs to be considered that an IGBT is a three terminal component. 
Therefore, apart from temperature monitoring, the measurement of currents and 
voltages at the terminals have been suggested in different ways.  

The possibility of assessing the degradation state of the IGBT through 
ringing characterization was studied in [33]. The ringing of the voltage on 
inductive switching of the IGBT was analyzed with successful results. However, 
the measuring accuracy and sampling rates (MHz) were very high. In [24], a 
gate capacitance variation was observed for degraded components. A variation 
of the switching on times and of the gate threshold voltage (VGE,TH) were also 
observed. 

In Hensler et al. [25], Smet et al. [34], and Patil et al. [24] accelerated 
aging tests were performed on IGBT modules. The authors observed changes 
in the values of collector-emitter on-state voltage (VCE,ON) and thermal 
resistance (RTHj-c) before IGBT failure. Thermal resistance was measured 
through thermo-optical sensors. The required accuracy was very high and it 
implied measuring the junction and the baseplate temperatures under a fixed 
thermal flux. A criterion adopted for IGBT failure was a variation higher than 20 
% for RTHj-c. Therefore, the measurements were made at regular intervals. It 
was observed that crack and voids propagation due to the degradation 
increased the RTHj-c. Regarding the variation of the VCE,ON, changes of 2 to 4 % 
were observed. Measurement accuracy on the decades of volts was required. 
On-state resistance (RON), has also been included in some studies [23], 
however, this is a term more employed for MOSFETs. RON stands for the 
fraction of the VCE,ON by the instantaneous flowing current.  

Consequently, different variables have been suggested and employed 
for failure precursor parameters. Gate signal analysis, switching times, junction-
to-case thermal resistance and collector-emitter on state voltage have been 
proposed. They are now summarized with their corresponding definition [23]: 

• VCE,ON: collector-emitter voltage when the IGBT is on-state. 

• VGE,TH: gate-emitter threshold voltage. It stands for the measured 
gate voltage at which the IGBT is considered to be in the on-state. 

• Switching times (TON, TOFF): transition times from the on-state to off-
state and vice versa. 
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• TJ: junction-temperature. Temperature measured at the closest point 
to the die. 

• RTHj-c: junction-to-case thermal resistance. Heat transfer capability 
from junction to case measured as: 𝑅𝑇𝐻𝑗−𝑐 = 𝑇𝐽−𝑇𝐶

𝑉𝐶𝐸,𝑂𝑁∗𝐼𝑂𝑁
, where TC is 

the case temperature, and ION is the on-state current.  

These physical characteristics were summarized in [22]. Figure 3.18 
compiles them and some of their pros and cons. 

 

 

 

 

 

 

 

 

3.6.1 Conclusions on failure precursor parameters for 
IGBT monitoring 

Once the different possibilities suggested on the literature review were 
analyzed, the failure precursor parameters were selected. The physical 
characteristics selected to be monitored during the accelerated aging tests 
were:  

• Collector-emitter voltage (VCE). 

• Collector current (IC). 

• Case temperature (TC). 

• Gate voltage (VG). 

• Gate current (IG).  

 

Figure 3.18. Pros and cons failure precursor parameters [23] 
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These variables allow monitoring the following failure precursor 
parameters, VCE,ON and VGE,TH. The gate current (IG) parameter was initially 
selected in order to monitor the gate in the switching events. If the gate 
capacitance changes with the degradation, the current consumption during 
these transient periods could change as well.  

Different issues with respect to the discarded failure precursor 
parameters are discussed now. Firstly, the junction temperature (TJ) was 
discarded for one reason, its intrusiveness [7, 24]. Some manufacturers have 
started to implement on-chip temperature sensors on their IGBT modules, but 
still, they claim to have some difference with respect to the junction temperature 
[17], as well as possibly electrical noise adding to the measurements in tractive 
applications. Therefore, accurately monitoring the TJ is an unsolved problem. 
Furthermore, it would be impossible to have access to the inner side of the 
component in discrete IGBTs, which are encapsulated in polymer. As a 
consequence of avoiding TJ monitoring, RTH monitoring was restricted as well. 
Finally, although the selected parameters allowed monitoring the switching 
times (TON and TOFF) of the IGBT, they were discarded. High sampling rates 
(MHz) and measuring accuracies are required, as well as complex data 
processing at high speeds.  

3.7 General conclusions of Failure Mode and 
Failure Precursor Parameters 

First, the physics of both components have been explained. Their 
structure and package have been deeply analyzed. This knowledge allowed 
understanding the most common failure modes and mechanisms reported by 
different researches. On this basis, failure precursor parameters related to them 
were studied.  

Finally, a preliminary selection of the failure precursor parameters to be 
monitored in this research has been done, following the criteria and features 
defined in Chapter 1 for PHM development. The next Chapter will study the 
behavior of the selected failure precursor parameters during the degradation 
process through the development of accelerated aging tests. The problems 
arising from the measurement of failure precursor parameters will be also 
treated.   
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Chapter 4 

4 Accelerated Aging Tests 

In the previous chapter, the failure modes and candidate failure 
precursor parameters of the two most critical components of the inverter were 
analyzed with a deep literature review. However, in the way for the 
implementation of the PHM system, failure modes and failure precursor 
parameters need to be confirmed. In this basis, data belonging to the 
degradation process of both components is required, as we stated in Chapter 1 
and 2. Therefore, the development of accelerated aging tests is explained now.  

A major issue about experiments development is the hardware 
architecture to measure the different physical characteristics. Measurement 
types and accuracy are critical aspects that need to be clarified before 
experiments development. Hence, this Chapter follows the next guideline for 
each of the components (capacitor and IGBT): 

1. Failure precursor monitoring hardware. The hardware employed for 
laboratory tests and the hardware that would be employed in online 
tests is explained. 

2. Accelerated Aging Tests Mode. A description of the development of 
the accelerated aging tests is provided. 

3. Accelerated Aging Tests Results. 
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Failure precursor monitoring hardware section is especially important for 
its relevance on the PHM system configuration. It is on the way hardware is 
implemented that the features considered for the PHMS on Chapter 1 should be 
compiled.  

In this Chapter, the hardware employed for the lab tests (i.e. accelerated 
aging tests) and the hardware that would be employed in the real application on 
a PHMS (Online monitoring hardware) is shown. It must be taken into account 
that different measuring systems may be employed depending on the test 
environment. For example, it is interesting for tests developed in lab that the 
measurements are collected with the highest possible accuracy and resolution, 
in order to be able to observe any small variations that can provide with 
information to the researcher. However, the measurements developed online, 
this is, in the final system to be onboard, they may require less accuracy, but 
enough to observe the desired change. Regarding intrusiveness, intrusive 
sensors could be employed in a lab, but never on the final system. These 
considerations are crucial, as they have direct impact on the final cost of the 
system. 

Finally, the most important results of the accelerated aging tests are 
compiled and presented for each of the components. The employment of the 
selected failure precursor parameters is evaluated and the main failure 
mechanisms are analyzed. Special mention must be given to the analysis of 
IGBT failure mechanisms, where the physical structure of components is 
observed through an optic microscope.  

4.1 Capacitor failure precursor monitoring 
hardware 

It was stated in the previous Chapter that the selected failure precursor 
parameters were the ESR, the Capacity and the surface temperature.  

It was also stated that the online monitoring of the ESR and capacity 
was a challenge. During lab tests they are monitored through expensive RLC 
meters, which operation is further explained now. However, an RLC meter 
cannot be o on the final system, as it would dramatically raise the cost of the 
equipment. In this sense, a prototype sensory system was developed for online 
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Figure 4.1. Phase diagram 

 

monitoring the ESR and the capacity. Firstly, the laboratory tests measuring 
hardware is explained, and secondly, the hardware developed for the online 
monitoring. 

4.1.1 Laboratory tests measuring hardware 
The ESR and the capacity were measured in set intervals of time during 

the experiments. In order to measure them a RLC meter was employed. The 
measuring device selected for the experiments was the FLUKE PM6306 RLC 
meter. The procedure that it employs to measure the parameters is briefly 
exposed. 

Component measurement is based on the current and voltage 
technique. The voltage and current of the connected component are measured 
and converted into binary values. From these values, the CPU calculates the 
electrical parameters of the component. The microprocessor uses the 
measured values to calculate the equivalent series resistance Rs, the 
equivalent series reactance Xs, and the quality factor Q = Xs/Rs; 

The following phase diagrams and formulas show the mathematic 
basics for the internal calculation.  

In the example Figure 4.1, the phase relation between I and V is a lossy 
inductance, due to the Ф angle of V with respect to the I. In each measurement 
cycle, the Vp, Vq, Ip, Iq are determined. The series resistance and reactance 
are calculated from these components. 

𝑅𝑠 =  𝑉𝑝𝐼𝑝+𝑉𝑞𝐼𝑞
𝐼𝑝2+ 𝐼𝑞2

     (Eq. 4.1) 
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Figure 4.2. Equivalent phase diagram 

 

𝑋𝑠 =  𝑉𝑞𝐼𝑝+𝑉𝑝𝐼𝑞
𝐼𝑝2+ 𝐼𝑞2

     (Eq. 4.2) 

Therefore, the equivalent circuit shown in Figure 4.2 is valid. 

Once the previous parameters are obtained (Rs, Xs and Ф), the RLC 
meter is able to provide a value for the main parameter, i.e. capacitance, 
inductance or resistance, and the secondary parameter.  

4.1.1.1.1 Measurement accuracy 

As it has been previously claimed, measurement accuracy during lab 
tests is of major importance, in order to obtain relevant and reliable information. 
The detection of minimal changes on the failure precursor parameters depends 
on the accuracy of the measurements. 

First, it is necessary to know the minimum accuracy required for the 
measurements. In order to analyze it, the variation range of the selected failure 
precursor parameters needs to be studied. The ESR is employed to assess the 
accuracy. The selected capacitors for testing from KEMET have an initial ESR 
value provided by the manufacturer of 30 mOhm. On Chapter 3, following 
manufacturer’s advice, it was stated that a capacitor should be replaced when 
its ESR value doubled the initial one. Therefore, the selected capacitor type 
would finish its operative lifecycle when an ESR of 60 mOhm has been 
reached. The manufacturer provides an estimation of the operative lifetime of 
the capacitor at rated voltage and current ripple conditions, which for the 
selected capacitor is set to 11000 h. Consequently, an accuracy within ±1 
mOhm is asked to the measuring device in the lab, which is considered enough 
to be able to distinguish clearly the degradation trend. This selection would 
mean being able to observe variations on the ESR of around 360 h (15 days), if 
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the ESR evolution with degradation is taken as linear. Indeed, the evolution of 
the ESR is closer to an exponential behavior as it is shown in the results 
section, and thus, variations in a narrower gap of time could be observed. That 
number of hours is considered enough for a maintenance planning to be 
designed. Once the results of accelerated aging tests are obtained, a revision of 
the required accuracy could be done. 

The manufacturer of the RLC meter assures a basic accuracy of ±0.1 % 
for measurements at DC voltages or test signal frequencies up to 50 kHz, which 
is our case [1]. Consequently, when 30 mOhm are being measured, the total 
error committed is less than 0.5 mOhm. Hence, we can conclude that the 
employed laboratory equipment is accurate enough for the demanded 
conditions.  

4.1.2 Onboard monitoring hardware 
It has been explained how RLC parameters are measured on laboratory 

environments and the accuracy of those measurement. However, the weight 
and the cost of a RLC measurement device is high, and thus, not affordable for 
an online PHM system to be onboard in transport applications. As a result, the 
design and implementation of an electronic circuit able to measure online at a 
reasonable cost the ESR and the capacity of the component was made.  

In this research, a low cost circuit to assess the ESR and the 
capacitance of capacitors was developed, which we proceed to explain now. 
The circuit is based on the classical electronic circuit called Hartley oscillator [2]. 
The simplified schematic is shown in Figure 4.3.  

 
 

 

 

 

 

 

 

Figure 4.3. Hartley Oscillator 
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Where, R1, R2 and R0 are resistances, L1 and L2 are inductances, X1 
is an operational amplifier and C1 is the capacitor under test. The idea behind 
the employment of the Hartley Oscillator is passing an electric current through 
the capacitor and the two inductors for a short period of time, in order to 
appreciably charge them. Due to the losses (mainly because of the presence of 
the ESR) of the circuit during the oscillation process, new energy needs to be 
supplied. This produces a voltage difference across the capacitor equal to the 
product of the current and the ESR, thus, proportional to the ESR value. A 
different voltage for a set current value means a different value of ESR. 
Therefore, the non-measurable ESR parameter has been converted to a 
measurable voltage, which is acquired by any Analog-to-Digital converter (ADC) 
system. The frequency at which the oscillation process takes place is 
proportional to the capacity C1, and thus, the capacity is also estimated. 

4.1.2.1 Circuit analysis 

An analysis of the circuit behavior is presented now. The Hartley 
oscillator is based on the resonance of an LC tank formed by L1, L2 and C1. 
The frequency and amplitude of the output voltage wave highly depends on the 
values of the LC tank. However, the influence of the parasitic elements (such as 
the ESR) is also very noticeable and is studied in this research.  

Ideally, if the components of the LC tank were lossless, the tank would 
always oscillate. However, given the influence of the parasitic elements, it is 
necessary to supply energy to the tank. This energy supply is sustained by an 
operational amplifier that provides enough gain to compensate the losses of the 
parasitic elements. The current supplied is mainly controlled through a resistor 
R0. The tank output voltage, Vout (see Figure 4.3) is inversely proportional to 
the losses as it is demonstrated through simulations and experiments; 
therefore, an increase of the ESR value means a decrease of Vout. A 
capacitance change of the capacitor means a change in the oscillation 
frequency. Both changes can be easily detected using a microcontroller. 

The capacitance of the monitored electrolytic capacitors varies 
depending on the application. However, the circuit has been proved to work well 
for a wide range of capacitances (from 20 uF to 2000 uF). The resonance of the 
circuit is obtained for low values of L1 and L2 inductors, thus, the size of the 
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circuit is kept small. Now, a mathematical analysis of the circuit in Figure 4.3 is 
done.  

4.1.2.1.1 Mathematical analysis 

This initial analysis does not consider the parasitic elements of the 
circuit, and thus, it is an ideal lossless case. The gain of the circuit is provided 
by the operational amplifier as A = -R2/R1. 

Let’s assume Z0 is the equivalent impedance of the parallel of L1 with L2 
and C:  

𝑍0 = (𝑗𝜔𝐿1)‖ �𝑗𝜔𝐿2 + 1
𝑗𝜔𝐶

�                                                 (Eq. 4.3) 

Therefore, VIN is: 

𝑉𝐼𝑁 =  𝑍0
𝑍0+𝑅0

𝐴𝑉𝑂𝑈𝑇 ≡ 𝐾1𝐴𝑉𝑂𝑈𝑇                                             (Eq. 4.4) 

VIN can also be put as a function of VOUT as: 

𝑉𝑂𝑈𝑇 =  𝑍𝐿
𝑍𝐿+𝑍𝐶

𝑉𝐼𝑁 ≡ 𝐾2𝑉𝐼𝑁                                                    (Eq. 4.5) 

As a result, given Eqs. 4.4 and 4.5, the following expression could be 
written: 

𝑉𝐼𝑁 =  𝐴𝐾1𝐾2 𝑉𝐼𝑁                                                                 (Eq. 4.6) 

Therefore, the circuit is capable of sustaining the oscillations as long as 
AK1K2=1. Where, AK1K2 is defined in Eq. 4.7: 

𝐴𝐾1𝐾2 = 𝑅2
𝑅1

1

�−1+ 1
𝜔2𝐿2𝐶

�−𝑗𝑅0𝜔 ( 1
𝜔2𝐿2𝐿1

− 1
𝐿2
− 1
𝐿1

)
                           (Eq. 4.7)  

As AK1K2 is a real value, the imaginary part should be zero. So, the 
resonance frequency can be obtained as: 

𝑓0 =  1
2𝜋�𝐶(𝐿1+𝐿2)

                                                                  (Eq. 4.8) 

And the real part determines the minimum gain to sustain the oscillation: 
𝑅2
𝑅1

𝐿2
𝐿1

= 1                                                                              (Eq. 4.9) 

The previous equations only describe the basic behavior of the circuit 
for ideal components. However, in this application, it is of paramount 
importance to understand the behavior of the circuit considering the parasitic 
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elements (the series resistance of the inductors and the ESR). In order to do so, 
two actions were taken. On the first hand, a detailed mathematical analysis of 
the circuit was carried out considering the parasitic elements. On the other 
hand, simulations were run with pSpice. 

The transfer function of the circuit was obtained employing the laplace 
transform. The impedances, assuming null the initial conditions and introducing 
the parasitic elements are: ZL1=sL1 + RL1; ZL2=sL2 + RL2; ZL1= RC + 1/sC; now, Z0 

is assumed: 

𝑍0 = (𝑍𝐿1)‖(𝑍𝐿2 + 𝑍𝐶)                                                          (Eq. 4.10) 

Therefore, the transfer function of the circuit can be obtained from 
equation 4.6, where AK1K2 = 1. 

𝐴𝐾1𝐾2 =  −𝑅2
𝑅1

∗ 𝑍𝐿1∗(𝑍𝐿2+𝑍𝐶)
𝑍𝐿1∗(𝑍𝐿2+𝑍𝐶)+𝑅0∗(𝑍𝐿1+𝑍𝐿2+𝑍𝐶)

∗ 𝑍𝐿2
𝑍𝐿2+𝑍𝐶

       (Eq. 4.11) 

After some little algebra, the following transfer function of the circuit was 

obtained: 

𝐺(𝑠) =

 𝐴 ∗
[𝑠𝐶]∗[𝑅𝐿1𝑅𝐿2+𝑠(𝐿1𝑅𝐿2+𝑅𝐿1𝐿2)+𝑠2𝐿1𝐿2]

(𝑅𝑜+𝑅𝐿1)+𝑠(𝐿1+𝐶𝑅𝐿1𝑅𝐶+𝐶𝑅𝐿1𝑅𝐿2+𝐶𝑅0𝑅𝐿1+𝐶𝑅0𝑅𝐿2+𝐶𝑅0𝑅𝐶)+𝑠2(𝐶𝐿1𝑅𝐶+𝐶𝐿2𝑅𝐿1+𝐶𝐿1𝑅𝐿2+𝐶𝑅0𝐿1+𝐶𝑅0𝐿2)+𝑠3𝐶𝐿1𝐿2
   

                                                                                      (Eq. 4.12) 

The behavior of the transfer function observed in eq. 4.12 was analyzed 
in Matlab, obtaining the following bode plot with the same parameter values 
considered in the simulations section. It can be observed that the resonance 
frequency is obtained close to a 1 kHz frequency. 

  



Chapter 4 131 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.1.2.1.2 Simulations 

Several simulations were developed in order to assess the circuit 
behavior and check whether the mathematical analysis was correct. The 
simulation software is ICAP4 from Intusoft®. The real circuit parameters were 
introduced in the model. The selected operational amplifier is OPA541.  

The parasitic elements considered in the simulations are the ESR of the 
capacitor and the series resistance of inductors. At the time of the circuit 
development the final capacitors to be tested had not been selected, and thus, 
the values of a reference capacitor of 300 uF were employed. In Table 4.1 the 
values measured with the RLC meter of the considered capacitor are shown, as 
well as the other important parameters of the circuit.  

  

 

Figure 4.4. Bode plot of ESR circuit Matlab 
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Name Value Unit 

Capacity 300 uF 

ESR (Typical) 0.002 Ohm 

L1≈L2 47 uH 

ESR of L (R7, R8) 0.070 Ohm 

Gain(R2/R1) 500k/10k Ohm 

R0 5 Ohm 

Table 4.1. Simulation component values 

The simulation results for the parameters in Table 4.1 of the circuit 
shown in Figure 4.5, give the waveforms shown in Figure 4.6.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
  

 

Figure 4.5. Simulation circuit schematic 
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Figure 4.6. Simulated output waveforms: a) Current in the tank; b) OPAMP 

output voltage; c) Tank output voltage (Vout) 
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The results of the different simulations can be seen in Table 4.2. The 
characteristic parameters are: the frequency, the peak to peak current value 
and the output voltage of the tank (VOUT pk-pk). Notice that a variation of the ESR 
produces a change in the VOUT pk-pk; a variation in the capacitance produces a 
change in the oscillation frequency f0. 

Simulation 1 2 3 4 

Capacitance 300 uF 300uF 300uF 280 uF 

ESR 0.002 Ω 0.01 Ω 0.05 Ω 0.002 Ω 

f0 800 Hz 800 Hz 775 Hz 862 Hz 

Ipk-pk 3.64 A 3.43 A 2.685 A 3.82 A 

VOUT pk-pk 1.23 V 1.17 V 923.19 mV 1.34 V 

Table 4.2. Simulation results 

The simulations proved the following statements: 

• An increase of the ESR decreases the output voltage, keeping the 
frequency almost constant (simulations 1, 2, 3). 

• A small decrease in capacity increases the oscillation frequency and 
the output voltage (simulation 4). 

• Once the gain is tuned through R1 and R2, that value is enough to 
sustain the oscillation for the ESR variation range. 

• It is observed that inductors with high values of parasitic resistance 
reduce the output voltage, and so, the sensibility of the circuit for the 
variation of capacitor’s ESR is reduced.  

• The relationship between the output voltage and the ESR is not 
strictly linear, but it could be easily approximated and tuned. 

Finally, an analysis of the AC transfer characteristic of the circuit was 
also developed in order to obtain a bode plot with the simulation software. It can 
be observed that the results from the mathematical analysis (Figure 4.4) and 
the simulations (Figure 4.7) match. 

  



Chapter 4 135 

 

4.1.2.2 Experimental results 

The prototype is shown in Figure 4.10. When the experimental results 
were developed, the accelerated aging tests have not been done yet, and thus, 
the ESR was artificially increased through the addition of copper wires. Three 
copper wires of 8.6 cm, 17 cm and 26 cm length with equivalent series 
resistances of 70 mΩ, 108 mΩ and 150 mΩ respectively, were used to increase 
the ESR. The gain of the circuit was set in 60 and R0 in 5 Ohm.  

  

 

Figure 4.7. Bode plot pSpice simulations 
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The results obtained for the capacitor are shown in the following table: 

Experiment 1 2 3 4 

Capacity 303 uF 303 uF 303 uF 303 uF 

ESR 0.006 Ω 0.07 Ω 0.108 Ω 0.150 Ω 

f0 833 Hz 800 Hz 790 Hz 781 Hz 

Ipk-pk 3.49 A 2.67 A 2.23 A 1.92 A 

VOUT pk-pk 1.10 V 850 mV 710 mV 590 mV 

Table 4.3. Results of experiments  

The waveforms of the measured signals on the oscilloscope for the 
experiment of Table 4.3 can be seen on Figure 4.8. The red line is the current in 
the tank; the yellow line is the input voltage to the tank from the OPA445 
operational amplifier and the green line is the output voltage of the tank (VOUT). 

 

 

 

 

 

 

 

 

 

 

 

 

It can be seen that the output waveforms of the circuit (Figure 4.8) are 
very close to the ones predicted by the simulations (Figure 4.6). It must be 
highlighted the low standard deviation of the measurements, therefore a high 

 

Figure 4.8. Experiments waveforms 
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measurement repeatability, as several measurement were taken for each value 
of ESR. This means the circuit is stable and it is possible to rely on the 
measurements. A final consideration needs to be taken into account and this is 
the tank output voltage variation with the ESR. As it can be seen in Figure 4.9, it 
is an almost linear variation, therefore easy to make a relationship between the 
two.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

  

 

Figure 4.10. Prototype PCB 

 

 

Figure 4.9. Relationship between Vout in simulations and 

experiments 
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4.1.2.3 Measurements accuracy 

Previously, a desired accuracy of ±1 mOhm had been set for the lab 
tests. It would be a great monitoring system if that value could be obtained for 
the online monitoring system. The measurement accuracy of online monitoring 
systems greatly depends on the selected ADC employed, which is the one 
evaluating the output voltage level of the system dependent on the ESR.  

The results of the experiments developed with the ESR measuring 
device for online monitoring show a voltage amplitude variation of 7.5 
mV/mOhm. During the lab tests it was observed that the series resistance of the 
inductors had an impact on the previous amplitude variation. The greater the 
resistances, the losses became higher, and thus, the output voltage variation 
was much smaller. Consequently, the selection of inductors with small parasitic 
resistance was a critical point in order to achieve the desired accuracy.  

A common ADC of 10 bits on a 5 V variation range has a resolution of 5 
V/1023 bits = 4.887 mV/bit. Consequently, the selection of a 10 bit ADC system 
would be enough to observe variations of 1 mOhm on the ESR of the capacitor. 
A final consideration should be taken into account with respect to temperature. 
A deep analysis on the influence of the environmental temperature on the 
measuring device accuracy was not developed, and thus, it should be carried 
out prior to a final deployment of the system.  

4.1.2.4 Conclusions of capacitor online monitoring system 

Knowing that the ESR and the capacitance are precursor parameters of 
capacitors degradation, a cost effective solution has been given in order to 
convert them into measurable quantities. The results prove that the 
measurement accuracy is good enough, in order to take decisions on 
maintenance actions. The PCB size could be optimized, but it has a small 
number of components. 

In conclusion, this design can be used in portable applications where 
size and cost are the main issue. Together with a reliable prognostic algorithm 
the capacitor could be replaced before a faulty event occurs, saving costs and 
increasing the overall reliability of the system.  
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4.2 Capacitors Accelerated Aging Mode 
In Chapter 2 the selection of the electrolytic capacitors to be tested was 

explained. Now that the different measurement procedures have been 
explained, the development of the accelerated aging tests is presented. The 
selected capacitors for the accelerated aging tests were ALS30 series from 
KEMET (2200 uF, 30 mOhm and 85 ºC of maximum operating temperature) in 
pristine conditions. Now, the developed degradation process for the selected 
capacitors is explained. 

The selected degradation process was thermal aging. Several studies 
have been reviewed in Chapter 2 pointing towards the operating temperature as 
the main degrading factor [3-8]. Other operating parameters, such as the 
frequency and the voltage level of operation, were considered to have direct 
influence over the temperature, and thus, they would be factors with a second 
order of importance in the degradation process. As a result, a thermal aging 
similar to the one employed in [9] was selected. On it, the capacitors were 
continuously submitted in an oven to temperatures well in excess (125 ºC) to 
the ones observed in normal operating conditions. However, in [9], the 
components under test were small sized electrolytic capacitors for electronic 
PCBs. In this research, the selected components are designed to operate in 
power electronic converters with higher operating voltage range and larger 
packaging. The operating voltage range and the package are known to have 
great influence over components reliability [9, 10]. Due to the absence of a 
standardized procedure for setting the degradation temperature, preliminary 
tests were developed to select the temperature to be applied.  

These preliminary tests were developed on two capacitors. The aim was 
to discover at which temperature, sudden and critical failures occurred in a 
reduced amount of time, i.e. a week. The degradation process was carried out 
in a Votsch Industrietechnik climatic chamber. The capacitors were introduced 
in the climatic chamber and left for one week at a set temperature, starting from 
115 ºC. Given that it was a thermal aging process, electrical charge/discharge 
cycles were not employed. If no damage was observed after the week (i.e. the 
measured ESR did not dramatically change and the venting valve was closed), 
the temperature was increased in 15 ºC and left for another week. Critical 
failure was observed after the week at 175 ºC. Therefore, a temperature 
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between 175 ºC and 125 ºC was selected, this is, 145 ºC. With a temperature of 
145 ºC, a fast degrading path was assured, while a sudden failure, due to high 
internal pressure, was avoided. 

Two different rounds of test types were developed, one with constant 
temperatures and another with varying temperatures. 

4.2.1 Constant temperature degradation 
The main characteristic of these accelerated aging tests is that the 

temperature of 145 ºC was kept constant during the whole experimental 
process. Two capacitors were submitted to these experiments.  

The experimental test procedure was based on the following steps: 

1. Prior to any damaging, components’ parameters in pristine conditions 
were measured. 

2. The capacitors were introduced in the climatic chamber. 

3. The temperature was increased in steps of 20 ºC each 10 minutes;  

4. Once stationary conditions were reached in the climatic chamber, the 
components were left for a week at the set constant temperature 
(145 ºC). 

5. After a week, the components were extracted. ESR and capacity 
measurements were done when the components were at room 
temperature. 

This procedure was repeated from step 2, until components’ ESR value 
doubled the initial one.  

4.2.2 Varying temperature degradation 
The 2nd round of capacitor degradation through accelerated aging tests 

was focused on obtaining experimental data for validation of the prognostic 
algorithm. Although the constant temperature tests were enough for developing 
the algorithm, a major contribution of the algorithm is claimed to be the 
assessment of the degradation of capacitors working under variable operating 
conditions (Chapter 5). In order to test it, 3 different degradation temperature 
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values were selected (100 ºC, 120 ºC and 140 ºC). These temperature values 
were selected taking into account that the 145 ºC of the constant temperature 
experiments have degraded the components at a very fast pace. Therefore, the 
maximum temperature was shifted to 140 ºC. The other two were put in steps of 
20 ºC to be wide enough to observe the differences on the ESR evolution.  

The same 5 steps of the constant temperature degradation tests were 
followed. A unique difference was introduced on step 4, where each week, a 
different temperature value was randomly selected. The tests were run until the 
ESR value doubled the initial one. Table 4.4 shows the temperature values set 
for each week. 

Week 1 2 3 4 5 6 7-10 11 12 13 14 15-17 

Temp (ºC) 140 100 120 140 100 120 140 120 140 100 120 140 

Table 4.4. Varying degradation temperature values per week 

4.3 Capacitors Accelerated Aging Tests Results 
Firstly, it must be highlighted that the obtained results for all of the tests 

confirmed the ones observed for other studies [9, 11]. The capacity showed a 
clear decreasing trend, while the ESR increased from its initial value for each of 
the carried tests.  

4.3.1 Constant temperature degradation results 
The results for the electrolytic capacitor 3A degraded at constant 

temperature are shown in Figure 4.11 for the capacity and Figure 4.12 for the 
ESR. The figures show the different stages of the degradation process, each 
line meaning a measurement after a certain amount of hours of the degradation 
process. The measurements were taken in the whole measuring frequency 
range of the RLC meter, so the frequency behavior of the capacitor can be 
observed.  

  

 



142 Accelerated Aging Tests 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

Figure 4.12. ESR vs- frequency at different degradation cycles 

 

 

Figure 4.11. Capacity vs frequency at different degradation cycles 
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Now, the results for the two capacitors degraded at constant 
temperature (Cap 3A and 4A) are shown in Figure 4.13 and Figure 4.14 in order 
to compare their behavior. The measurements were taken at 100 Hz, where the 
variation of the ESR was observed to be higher.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

Figure 4.14. ESR variation for 3A, 4A and equation from [7] 

 

 

Figure 4.13. Capacity variation for 3A and 4A 
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Following the constant temperature value, the ESR and the capacity 
showed a constant increasing and decreasing degradation patterns, 
respectively. The results for a commonly employed equation on model-based 
prognostics, the model from Abdennaher et al. [8] for the evolution of the ESR, 
are shown in Figure 4.14 as well. This equation is of vital importance for the 
development of the prognostic algorithm, thus, the model is deeply revised on 
Chapter 5, although it is worthy observing the difference of its results with 
respect to the real degradation curve. The initial ESR value taken for the 
equation is the same as capacitor 4A. Here, the results of the equation for a 
constant temperature of 145 ºC are plotted, in order to assess the error on 
modeling the degradation process of the capacitor. This error needs to be taken 
into account by the algorithm.  

It can be observed that the last measurement of Cap 3A suffered a 
dramatic change. That capacitor showed great damage after the degradation 
process (pressure valve opened). It can also be concluded that although the 
manufacturer claimed that the capacitors had 2200 μF initially, the real 
measured parameters are slightly different.  

4.3.2 Varying temperature degradation results 
Now, the results for the varying temperature degradation results are 

shown. The patterns for all the degraded capacitors are shown in Figure 4.15 
and Figure 4.16. 
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Figure 4.16. ESR variation with degradation 

 

Figure 4.15. Capacity variation with degradation 
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It can be observed that the initial value of the capacity has a wide 
standard deviation with differences of almost 0.1 mF for capacitors in pristine 
conditions. It can also be observed that the initial value of 2200 μF claimed by 
the manufacturer is not reached. It can also be concluded that capacitor 8A and 
10A follow the same trend, which slightly differs from the one followed by 
capacitors 11A, 12A and 13A.  

Regarding the ESR, it can be observed that the standard deviation of 
the initial value is low. It can be also concluded that the patterns of the ESR for 
the different capacitors are very similar. Therefore, the good prognosticability of 
the ESR is the most valuable conclusion of these results.  

A final test was developed regarding the ESR parameter. The ESR is a 
parameter known to be temperature dependent. In order to develop the 
prognostic algorithm, the influence of the temperature in the ESR needs to be 
known. In particular, ESR was measured at different temperatures on a new 
capacitor using the FLUKE PM6306 RLC meter in the climatic chamber. The 
experimental test procedure has been based on the following three steps: 

• Setting of the desired temperature in the climatic chamber. 

• Once stationary conditions are reached in the climatic chamber, the 
temperature is maintained for 20 minutes in order to allow the internal 
layers of the capacitor to heat up and reach the thermodynamic 
equilibrium with the chamber. 

• The ESR is measured. 

This procedure has been repeated at 7 different temperatures in the 
range [15 ºC, 110 ºC], which is expected to be experienced by the capacitor 
during operation in a FEV. 

Therefore, the ESR was measured on a new capacitor for varying 
thermal conditions. The results of the experiment can be observed on Figure 
4.17. It can be observed that the higher the temperature is, the lower the ESR 
value. This conclusion is provided in other researches [21]. The physical 
explanation is that for higher temperature values the conductivity of the 
electrolyte increases, and thus, the ESR decreases. 
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Figure 4.17 ESR measurement vs Temperature variation 
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4.4 IGBT failure precursor monitoring hardware 
Similarly to the measurement systems developed for the capacitors 

case, for the IGBT two different systems were developed. One was done for lab 
tests and the other for online monitoring tests.  

The circuit designed for lab tests studied IGBT degradation in order to 
characterize it. The influence of the degradation on the selected preliminary 
failure precursor parameters needed to be studied. Given the uncertainty of the 
impact that degradation would have on them, the precision required was high; 
therefore, tests were run with high accuracy laboratory instruments. From the 
outcome of these tests, a final set of failure precursor parameters was selected.  

The second circuit designed was intended for failure precursor 
parameter online monitoring. The purpose was to measure the final selected 
variables under normal operating conditions; this is, during operation of the 
IGBTs within a real inverter. The online monitoring system was tested with an 
inverter connected to a resistor load.  

Prior to the beginning of the explanation of the measuring hardware the 
employed failure precursor parameters are recalled: 

• Collector-emitter voltage (VCE); 

• Collector current (IC); 

• Case temperature (TC); 

• Gate voltage (VG); 

• Gate current (IG).  

4.4.1 Laboratory tests measuring hardware 
It was observed during the literature review on Chapter 3 that the 

variation of VCE,ON and VTH due to the degradation was small, in the order of 
tenths of mV. Therefore, low variation of the signals and possibly low signal-to-
noise ratio can be expected. In order to have enough accuracy on the 
measurements, a minimum resolution of the data acquisition system of 1 mV 
was set as desired. In this sense, a 16-bit resolution laboratory data acquisition 
system fulfilling the previous condition was selected: the NI USB-6259 from 
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National Instruments. It has a maximum sampling rate of 1.25 Ms/s, which 
allows us monitoring signals in the frequency range on the tenths of kHz (i.e. 
power inverter) at ease.  

Now, the measurement of the different failure precursor parameters is 
exposed. To measure the VCE, a Zener diode and a resistive divisor were used 
in order to measure the voltage when the IGBT was both on and off and under 
transient conditions. They can be seen on the right hand side of Figure 4.18, as 
R1, R2 and Zener.  

The gate current (IG) was measured through the CST1-020lb SMT 
current sensor from Coilcraft. It consists on a primary and secondary coils 
magnetically coupled to obtain a voltage difference when the current flows 
through it with the employment of a resistance in the output.  

The schematic of the circuit used to degrade the IGBT and take the 
measurements is shown in Figure 4.18. The IGBT under test is depicted as 
DUT (Device Under Test).The gate voltage (VG) was directly measured through 
a resistive divisor (R3 and R4 in Figure 4.18). The collector current (IC) was 
measured through a LEM current transducer model LTSR-15NP. The selected 
temperature sensor for case temperature (TC) monitoring was a K-type 
thermocouple from Omega, which endures temperatures ranges of -200 to 1250 
ºC.  

 

 

 

 

 

 

 

 

 

 
  

 

Figure 4.18. IGBT Degradation monitoring circuit 
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To degrade the IXYS IGBT some modifications to the previous circuit 

were required. The IXYS is capable of carrying 110 A in nominal conditions at 
case temperature of 110 ºC. Given the power limitations of the power supply, 
110 A was not reachable, and thus, a resistive divisor at the gate that set the 
operating conditions in the active region was built. As a result, a power loss of 
60 W was dissipated. 

4.4.1.1 Measurement accuracy 

A critical challenge for the degradation characterization is the 
measurement accuracy of the signals. A major benefit of the accelerated aging 
tests, and thus, the lab tests, is that the environment is greatly controlled and 
the power employed is low. In the accelerated aging tests the highest current 
flow was 17 A, which limits the electrical noise of the circuits. In this sense, the 
failure precursor measuring sensors were selected with high accuracy, but 
small range of measurement. 

In lab tests, the accuracy was limited by the data acquisition system, 
and thus, the measurement error was analyzed on it. Therefore, absolute 
accuracy for analog inputs was evaluated for the NI USB 6259. A nominal range 

 

Figure 4.19. IGBT degradation Circuit board 
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of ±5 V was selected to run the calculations. The followed procedure to assess 
it is established within the component datasheet [12]. 

 

 

Where, Reading = 5 V, GainError = 93 ppm, Range = 5 V, OffsetError = 
101 ppm, NoiseUncertainty = 83 μV; 

The variables included in Eq. 4.13 receive different values depending on 
the settings of the data acquisition system, which are included in the component 
datasheet. The calculations are standardized and so, they are not included 
here. The outcome of Eq. 4.13 was an absolute accuracy of 1.012 mV. The 
resolution provided by the manufacturer is 56 μV.  

Now, the accuracy of the employed sensors is analyzed. During the 
accelerated aging tests, the applied on/off switching frequencies was very low, 
close to DC behavior, taking into account that the on period last around 6 
seconds. As a result, the noise that a resistive divisor may produce is negligible, 
and its accuracy is directly related to the data acquisition system. The LTSR 15-
NP current transducer was selected due to its sensitivity of 41.6 mV/A and 
accuracy of ±0.2 % on full scale, which means an error 0.06 A. Finally, the K-
thermocouple sensor adapter device accuracy at full scale is ±1 %, which 
provides a 3 ºC error.  

The range of variation observed in the results for the VCE due to the 
degradation was in the order of the tenths of mV, which means that the required 
accuracy needs to be high. According to the obtained results and the analysis of 
the measured data, it can be concluded that the accuracy of the measuring 
system was acceptable.  

4.4.2 Onboard monitoring hardware 
A second measurement circuit was built in order to test degraded IGBTs 

under normal operating conditions within an inverter, which would replicate the 
conditions of online monitoring. The aim was to test not only that the selected 
variables and sensors were appropriate for online prognostics, but also that the 
measurement procedure was correct and whether it allowed the degradation to 

AbsoluteAccuracy = Reading*GainError +  

+ Range*OffsetError + Noiseuncertainty    (Eq. 4.13) 
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be assessed online. This way, an inverter was also built for testing the 
degraded components under load.  

In this new framework, a sensor system prototype that was closer to 
what could be integrated in the vehicle for on-board monitoring was developed. 
This system would also require complying with the features of the PHMS set in 
Chapter 1. In this sense, the selected variables to be implemented in the final 
monitoring system would not be the same as the ones selected to monitor in 
accelerated aging tests. This new selection is a direct consequence of the 
results observed in the accelerated aging tests, so some of the results are being 
put forward, but they are later explained. 

The final selection of the variables to be monitored in the online system 
for IGBTs were:  

• Collector-emitter voltage (VCE). 

• Collector current (IC). 

• Case temperature (TC). 

In this respect, the VCE, IC and TC measuring sensors, as well as the 
ADC component were chosen. It must be noted that the measurement 
resolution within an onboard system, greatly depends on the ADC converter, as 
it was explained in the capacitors case. During lab tests the data acquisition 
system from NI was employed, thus, highly reducing the noise of the 
measurements and improving the accuracy. However, onboard systems employ 
cheaper and less accurate microcontrollers to collect it. This is an issue to take 
into account when implementing the final system, as it must be accurate 
enough to register the minute degradation trends of the parameters.  

Another major issue when selecting the components is their power 
rating. The final inverter employed in a FEV may need to flow powers in the 
order of kW, and so, the current ratings are larger than in experimental setup. 
The selected collector-current sensor was a LEM HTFS-200P [13]. There is no 
connection between the sensor and the power wires, therefore increasing 
reliability and safety. The output voltage of the sensor ranges from 0 to 5 V. 

The temperature sensor used was the same K-Type from OMEGA used 
in the lab setup. The signal supplied by the sensor needs to be compensated 



Chapter 4 153 

for the ambient temperature, and therefore, the LT1025 IC temperature 
compensator from linear technology was employed. Then, the compensated 
signal was filtered with an operational amplifier and the final analogue output 
was obtained. 

Finally, the VCE was sensed through a new sensor from IR, the IR25750, 
instead of the resistive divisor. Although it is intended to be an indirect current 
measurement sensor, it perfectly meets the requirements for the on-line 
prognostic purposes of the VCE, as it can handle high voltage ranges. 
Additionally, it can be easily placed on the gate driver board, and thus it is 
considered to be non-intrusive.  

4.4.2.1 Vce monitoring sensor 

The IR25750 is a new sensor released by International Rectifier in 2015. 
The schematic of the sensor is shown in Figure 4.20.  

 

 

 

 

 

 

 

 

Its intended main function is an indirect measuring of collector current. 
Normal applications, such as motor drive inverters, traditionally employed 
current monitoring sensors, i.e. Hall-effect sensors, are noisy and expensive, 
which is undesirable for control-loops. In this sense, the VCE is a current 
sensitive parameter. Assuming the VCE value for a fixed current is known, a 
correlation can be made. However, as we have previously stated, the VCE also 
changes with degradation, and thus, this sensor is appropriate for it. To begin 
with, it provides an isolation of 600 Vmax. It also provides a signal transfer ratio 
of 1:0.98, thus, the IR sensor is very suitable when accurate measurements are 

 

Figure 4.20. IR25750 internal schematic diagram [13] 
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required [14]. The schematic diagram of the component is shown in Figure 4.20. 
Then, the signal was filtered and adapted with a rail-to-rail MCP6002 
operational amplifier.  

4.4.2.2 ADC converter 

The ADC converter selection followed a tradeoff between cost and 
measurement accuracy. 16-bit resolution ADC converters, such as, ∑/∆ 
converters are already available, yet, too expensive for automotive applications. 
The selected ADC, is the MCP3304 from Microchip [15]. It has 0 to 5 V signal 
input, with SPI communication interface, and above all, a 12-bit measurement 
resolution, this is, 1.22 mV of signal resolution in the 0 to 5 V range.  

The final system implementation board employed for test is presented in 
Figure 4.21.  

 

 

 

 

 

 

 

 

 

4.4.2.3 Measurement accuracy 

The most relevant and critical signal regarding accuracy is the VCE 
measurement. The accuracy of the IR25750 is directly related to the accuracy 
of the data acquisition system, as it has a 1:0.98 signal transfer ratio, which 
means a very small attenuation of the output signal. As a matter of fact, it was 
observed in the results that the signal variation of the VCE for a given TC and IC 
values due to the degradation is on the tenths of mV. Therefore, the accuracy 
on the measurement of the VCE is limited by the accuracy of the ADC system. In 

 

Figure 4.21. Sensor board 
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this sense, the manufacturer of the MCP3304 claims that a maximum error of 6 
Least Significant Bits (LSB) could be made on the measurements. This error 
would mean a maximum deviation of 8 mV for any measurement. The accuracy 
and error of the measurement system is good enough to be able to detect the 
signal variations due to the degradation. Nevertheless, given the noisy 
environment of a FEV powertrain, the fulfillment of the accuracy requirements 
for the given ADC system should be validated on the final application.  

4.5 IGBT Accelerated Aging Tests Mode 
The selected accelerated aging test mode for IGBT was thermoelectric 

degradation process. Several researches suggested its employment for failure 
mechanism and failure precursor parameter identification [16, 17]. The purpose 
of thermoelectric degradation process is to increase the junction temperature of 
the component well above its nominal operating value, in order to accelerate the 
degrading process. In this process, the component is switched on for a set 
amount of time while a current flows through it. Due to the power losses 
generated within the IGBT, its junction temperature raises.  

Different application of thermo-electrical degradation processes have 
been described, some use DC current supply while others apply PWM signals. 
IGBTs submitted to DC currents endured less number of cycles than the ones 
with PWM [16], which means that DC current application is more demanding for 
the IGBT. Given the time constraint at the time of the experiments development 
and without the observation of any advantage of applying PWM signals, the DC 
current supply was selected to be applied.  

During the accelerated aging tests, 7 IR IGBTs, 5 FUJI IGBTs and 5 
IXYS IGBTs were subjected to ageing tests. Each of the selected IGBT types 
has different maximum junction temperature values. This is due to their 
manufacturing technologies (see Chapter 3). FUJI and IXYS use newer 
technology than IR. As previously noticed, the IR IGBTs are PT technology with 
a TJ,max = 125 ºC and a IC,nom = 16 A. The Trench-FS FUJI can carry the same 
nominal current with TJ,max = 175 ºC. Finally, the XPT IXYS can carry IC,nom = 
110 A with TJ,max = 175 ºC. The IGBT package and design technology had a 
great influence on the number of lifecycles they can endure [18]. The 
characteristics of each IGBT type are compiled in Table 4.5. 
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The degradation process followed this procedure. The IGBT was turned 
on until it heated up to a given maximum threshold; then, it was turned off in 
order to cool down, until a minimum threshold was reached. Afterwards, the 
cycle started again and repeated. The process was fully stopped after 100 
toggling cycles to make specific measurements explained in the following 
section. Then, the process started again. Each of the thermal cycles took 
around 10-12 seconds. The degrading current was set to a maximum of 17 A 
due to the power supply limits and also for safety reasons, as a failure of the 
IGBT is expected. The degradation process was fully stopped and ended when 
the IGBT gate control was lost (latch-up) or it suffered an internal short-circuit. 

The temperature and current profiles for two on/off cycles of the IGBT 
can be seen in Figure 4.22.  

  

IGBT 
Type 

Ic,nom @ (Tc) Vce,on typ. @ (Tj) 
Tj,max 

(ºC) 
Vce,max 

(V) 
Rthj-c 
(ºC/W) 

IR 16 A @ (100 ºC) 2.36 V @ (150 ºC) 125 600 1.2 

FUJI 15 A @ (100ºC) 2.4 V @ (175 ºC) 175 1200 0.962 

IXYS 110 A @ (110 ºC) 2.34 V @ (150 ºC) 175 650 0.2 

Table 4.5. IGBT Nominal Characteristics 
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Figure 4.22. (a) Degradation temperature profile; (b) Current profile 

(a)  

(b)  
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The number of cycles each IGBT type would endure was initially 
unknown. Therefore, similar preliminary tests to the ones conducted for the 
capacitors were developed in order to set the degradation temperature 
thresholds.  

Two IGBTs of each of the selected types were submitted to degradation 
cycles. In this process, the IGBTs were submitted to 100 degradation cycles at 
a set temperature, beginning from the nominal maximum junction temperature 
as the maximum case temperature threshold. If no damage was observed after 
the 100 cycles, the value of both (lower and upper) temperature thresholds was 
increased 15 ºC. When the component was found to fail, the average was 
calculated between the final maximum temperature and the nominal one, and it 
was set as the upper degrading threshold. Regarding the amplitude of the 
variation of the temperature, the so-called Delta TC, it was not clear the process 
to be followed to select them. So they were selected to be 40 ºC for the IR, 30 
ºC for the FUJI and 20 ºC for the IXYS. In any case, the selected temperatures 
were proved to produce gradual degradation of the IGBTs at a reasonable 
speed, without generating uncontrolled sudden failures. The selected 
degradation temperatures of the case for the thermal cycles are shown in Table 
4.6, as well as the calculated Tj.  

 

 

 

 

 

 

A question may arise regarding the comparison of the results if different 
temperature values are employed for each IGBT type. Although the degradation 
values are different, it is possible to compare the results given the following 
statement. The behavior due to the degradation was not analyzed taking into 
account only the temperature; instead, the ensemble behavior of the IC, TC and 
VCE variables was analyzed. As it is observed in the results, this showed trends 
that were comparable for the different IGBT types.  

IGBT Type Tc min (ºC) Tc max (ºC) Calculated Tj min (ºC) Calculated Tj max (ºC) 

IR 120 160 225 261 

FUJI 150 180 245 275 

IXYS 250 270 276 291 

Table 4.6. Selected degradation temperature values 
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Due to time limitations, the IXYS IGBTs were degraded following a 
continuous process, that is, the degradation process was not stopped every 100 
cycles to take measurements. Instead, the measurements were taken at 900 
cycles, 1800 cycles and 2700 cycles. This fact is represented in the different 
shapes of the figures shown in the results for the IXYS IGBTs. After the final 
measurement at 2700 cycles, the IGBTs were replaced and the degradation 
was not followed. This procedure was done in order to have IGBTs degraded at 
different levels but still alive. 

Although the failure precursor parameters have been explained, in order 
to obtain certain measurements, different procedures were followed that are 
further explained now. 

4.5.1 Measurement types 
Three different measurement types were carried out for the 

characterization of the IGBTs: continuous measurements during the 
degradation process, discrete measurements after each degradation process 
step (each 100 cycles) and measurements during normal operating conditions 
in a switching frequency inverter with an ad-hoc designed prototype. They are 
explained in detail now.  

4.5.1.1 Discrete measurements after degradation cycles 

After each of the 100 degradation cycles had finished, discrete 
measurements were taken. These measurements were taken only when the 
IGBT reached room temperature. The main characteristic of these 
measurements is that the signals were less noisy and, therefore easier to 
analyze, and the procedure was controlled and repeatable. There were two 
types of discrete measurements. On the one hand, the threshold voltage 
(VGE,TH) was measured. The VGE,TH has been previously defined as the minimum 
gate voltage (VG) for the IGBT to be considered in the on-state. Therefore, its 
measurement consisted on slowly increasing the gate voltage until the flowing 
collector current (IC) value showed a dramatic change, meaning the IGBT is on. 
During the process, the gate voltage was accurately monitored and recorded. 
The current supplied to the IGBT was limited to 250 mA in order to keep low the 
heating rate and the temperature as constant as possible, but big enough to 
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observe the change. The second measurement focused on the VCE,SAT. The 
VCE,SAT is defined as the VCE value at which the IGBT is in the on state while a 
set IC flows. The IGBT was switched on for three seconds, letting a fixed current 
rate of 10 A to flow. The sampling frequency of these measurements was 100 
Hz. 

4.5.1.2 Continuous measurements during degradation cycles 

Continuous degradation measurements of the five variables (IG, VG, IC, 
TC, VCE) were collected during each of the degradation cycles. Although this 
kind of measurement is noisy and includes some transient information, it allows 
the dynamic behavior of IGBTs to be studied for a given collector current and 
case temperature range. The selected temperature range and collector current 
values to plot the VCE were: 

• IR: 

o Tc: 150 and 160 ºC. 

o Ic: 15 and 16 A. 

• FUJI: 

o Tc: 170 and 180 ºC. 

o Ic: 15 and 16 A. 

• IXYS:  

o Tc: 260 and 270 ºC. 

o Ic: 14 and 15 A. 

This process makes it possible to compare the behavior of the different 
IGBT types operating under the same conditions. The sampling frequency of 
the data acquisition system during this process was set to 10 Hz. On the one 
hand, the selected sampling frequency allows monitoring the degradation 
behavior with enough detail, which is shown in Figure 4.22. Besides, the size of 
the data file was small enough to be managed during the data treatment phase.  
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4.5.1.3 Continuous measurements under normal operating 

conditions 

This final measurement mode was only applied to the IXYS IGBTs, 
which are the ones that were kept alive after 2700 degradation cycles. The 
three variables (IC, TC and VCE) were measured during the IXYS IGBTs 
operation under normal operating conditions in an inverter. A PWM switching 
inverter was designed and built in order to employ it for sensor hardware 
validation. The designed inverter can be seen in Figure 4.23. The switching 
frequency of the inverter was 10 kHz and the modulation frequency was 50 Hz. 
The inverter was connected to a resistive load of 2 Ohm. The inverter had a 
cooling plate attached. The sampling frequency of these measurements was 20 
kHz. The interest on these measurements was to know, in the different stages 
of the degradation process for IXYS IGBTs, whether the selected sensors and 
monitoring variables were able to distinguish a variation between the new and 
degraded IGBTs under normal operating conditions in an inverter.  

 

 

 

 

 

 

 

 

 

 

 

 

  

 

Figure 4.23. Designed inverter 
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4.6 IGBT Accelerated Aging Tests Results 
Firstly, the total amount of cycles endured by each of the degraded 

IGBTs is summarized in Table 4.7. We recall that 7 IR, 5 FUJI and 5 IXYS 
IGBTs were fully degraded in total.  

 

 

 

 

 

 

One of the first things to be analyzed is the goodness of the aging 
method employed. The mean and the standard deviation of the cycles endured 
are analyzed for this purpose. The observed mean and standard deviation for 
the FUJI IGBTs failure is 2755.4 and 1438 cycles respectively. For the IR IGBTs 
the mean is 477.42 and the standard deviation is 169.16 cycles and for the 
IXYS 3247 and 902.4. These numbers probably do not match with the results 
obtained if a higher sample of IGBTs was available. However, these numbers 
let us assume that the tests have good repeatability, showing values in the 
same order of magnitude for the same IGBT types. Hence, we can assume that 
the tests are reliable enough to make qualitative conclusions that could apply to 
a greater number of components.  

It must be said that no results have been provided regarding the gate 
current (IG). During lab tests development, no variation of the signal was 
observed. Certainly, the sampling frequency of the data acquisition system was 
set too low. However, increasing it to monitor the gate current was discarded, 
as it was not possible to change the sampling frequency of a single ADC 
channel, and thus, the collected data size would have been too big to be 
managed. Probably, the sampling frequency requirement for the gate current 
was underestimated when selecting it, and thus, its employment was discarded 
for the final online monitoring system. 

IGBT Type 
1 2 3 4 5 6 7 

IR 710 704 500 400 300 400 328 

FUJI 1524 2100 2150 2803 5200   

IXYS 5007 3186 2742 3200 3000   

Table 4.7 Number of thermal cycles endured 
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The results are now presented. The VGE,TH and VCE,SAT from the discrete 
measurements are initially shown. Then, the degradation patterns obtained from 
the continuous measurements during the degradation cycles are presented. In 
third place, data from continuous measurements under normal operating 
conditions of IXYS IGBTs in an inverter is shown. Finally, a description of the 
possible failure mechanisms occurred in the components during the 
degradation process is provided looking at the inner structure with an optic 
microscope.  
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Figure 4.24. IGBT threshold voltage for (a) IR, (b) FUJI, (c) IXYS 
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4.6.1.1 Discrete measurement: VGE,TH 

The VGE,TH evolution for the lifecycle of the IGBTs is shown in Figure 
4.24. The discrete measurements were only taken at the beginning of each 100 
cycles; however, for the sake of clarity, the values of the VGE,TH are plotted in a 
straight line until the new measurement is available.  

Figure 4.24.a shows the results of the VGE,TH discrete measurements for 
2 IR IGBTs. The grey dots belong to IGBT 3 and the black dots to IGBT 4. It can 
be observed that only 5 measurements could be taken for each IGBT, given the 
fast pace of the degradation process. 

Figure 4.24.b shows the results for 2 FUJI IGBTS. The grey dots belong 
to FUJI 1 and the black dots belong to FUJI 2. The dots of FUJI 1 show a 
certain characteristic, the initial voltage value of an IGBT in pristine conditions is 
at a higher level than that observed after 200 degradation cycles. This behavior 
is commonly observed in semiconductors [19]. For pristine components, there is 
a stabilization period for the impurities. Then, their change is directly related to 
the degradation process. In the case of the other two IGBT types, IXYS and IR, 
the degradation process was probably too fast and not enough measurements 
were taken to observe this process.  

Figure 4.24.c shows the threshold voltage value for 4 IXYS IGBTs after 
they were degraded to the different number of cycles. Consequently, the VGE,TH 

is shown for a new IGBT and for three IGBTs degraded at the three different 
values (900, 1800, 2700).  

Finally, it can be observed that the trends are increasing for the three 
different IGBT types. Table 4.8 shows the average percentage variation due to 
the degradation process. 
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Figure 4.25. IGBTs Vce,sat voltage for (a) IR, (b) FUJI, (c) IXYS 
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4.6.1.2 Discrete measurement: VCE,SAT 

The VCE,SAT voltage evolution for the lifecycle of IGBTs is shown in 
Figure 4.25. The plotting procedure is the same used for the VGE,TH. The IR 
IGBT VCE,SAT shows a clear decreasing trend while the FUJI and IXYS IGBTs 
show an increasing one. Table 4.8 summarizes the average percentage 
variation.  

A major issue for prognostics is observed. The initial and VGE,TH values 
are not the same among IGBTs of the same type. This means that within the 
range of variation due to the degradation, the initial VGE,TH or VCE,SAT for a 
certain IGBT could be the final of another one. As a result, for the 
implementation of an algorithm a normalization stage is of major importance. 

4.6.1.3 Continuous measurements during degradation cycles 

The data collected during the continuous degradation process is shown 
in Figure 4.26. It shows the evolution of the VCE during the degradation process 
for a given IC and TC values. The figures on the top show the evolution for IR 3 
and IR 4 IGBTs. The figure in the middle shows the evolution for FUJI 1 and 4 
IGBTs. The figure in the bottom shows the evolution for IXYS 2 and 3 IGBTs.  

It can be observed that under the same operating conditions (TC and IC) 
but with a higher number of cycles, the value of VCE changes. A curve fitting 
analysis of the IR and FUJI VCE variation has shown an exponential change with 
the degradation, where the initial slope is very small and rapidly changes when 
a critical failure is about to happen.  

The trends shown through VCE monitoring are consistent with the 
behavior observed in the discrete measurements for VCE,SAT. For the same 
operating conditions, an increase in the VCE can be seen for both FUJI and 
IXYS IGBTs, while there is a decrease for IR IGBTs.  
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Figure 4.26. IGBTs Vce,sat voltage for continuous degradation for (a) IR, (b) FUJI, 
(c) IXYS 
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Figure 4.27. (a) Vce voltage for normal conditions (b) Vce value for the 
same Ic and Tc conditions 
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4.6.1.4 Continuous measurements under normal operating 

conditions 

Finally, the results obtained for the IXYS IGBTs under normal operating 
conditions are presented. A new IGBT and a close to end-of-life degraded one 
(2700 cycles) were tested.  

Figure 4.27.a shows the VCE signal during inverter operation for both 
IGBTs. In the figure, three switching transients can be observed. The grey dots 
represent the degraded IGBT and the black ones represent the new one.  

Figure 4.27.b shows the VCE signal for the new and the degraded one 
for the same TC operating conditions (30 to 40 ºC). It was observed for the 
continuous measurements that during the degradation process the VCE value 
tends to increase. Figure 4.27.b shows this behavior, where the dots of the 
degraded IGBT are on top of the new one, for a given TC and IC. The average 
maximum value of the degraded IGBT is 1.105 V, while the new one shows an 
average of 1.060 V. Therefore, we observe a drift of 40 mV on the VCE signal. It 
must be highlighted that using the IR25750 VCE sensor along with the current 
and temperature ones and together with the data acquisition system it was 
possible to distinguish the variation between the older and the newer IGBT. This 
shows that if the VCE is measured accurately enough, the degradation can be 
assessed under normal operating conditions. The measurements were not 
carried out with the ADC system due to problems with the SPI interface, so 
testing whether its accuracy is enough is still pending. However, these tests 
allow observing that the variation of the VCE during the operation on an inverter 
is possible. 

4.6.2 Degradation mechanisms analysis 
Once the degradation process was over, a destructive analysis of the 

components was carried out in order to discover the degradation mechanisms. 
Given the nature of thermoelectric degradation process, mechanical damage of 
the IGBTs inner structure was expected, mainly produced by mechanical fatigue 
and creeping effects of the large thermal cycles. Some of the components were 
cut, while others were attacked with H2SO4 to discover the metallization state on 
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the chip surface. Then, the samples were studied with a LEICA optic 
microscope.  

Firstly, the severity of the developed degradation process must be 
highlighted. Huge damages were observed in the samples as a consequence of 
the degradation cycles. A first major difference appears when looking at chip 
thickness. IR wafer thickness is 380 µm, while FUJI is 120 µm and IXYS is 270 
µm.  

Figure 4.28.a shows the surface of the gate oxide, once the encapsulant 
was removed. It can be observed that IR IGBTs suffered gate oxide 
degradation, which explains the increase of VGE,TH. An increase in VGE,TH is 
related to gate oxide damage due to hot carrier injection resulting in charge trap 
[9]. 

Following other studies results [17, 20] and observing Figure 4.28.b and 
c, it can be concluded that IR degradation mechanism was related to die-attach 
solder degradation. Crack appearance on chip-solder interface points to die-
attach degradation as a main degradation mechanism. Cracks were created at 
the extremes of the die attach and propagated to the center of the die. Die 
attach degradation was probably followed by an increase of temperature at the 
PN junction, increasing the intrinsic carrier concentration as well, concluding 
with a VCE,SAT decrease.  

Other studies concluded that the increase of VCE,SAT in IGBT modules is 
a consequence of bond-wire lift off [16, 17, 20]. However, after attacking one of 
the FUJI samples with H2SO4 and looking at Figure 4.28.f, the operation of bond 
wire lift off failure mechanism was discarded. The attachment of the bond wires 
showed full contact.  

Observing Figure 4.28.d and e related to FUJI IGBTs, a great 
destruction of the chip was discovered. It included void and crack propagation 
on the die attach as well. Similar cracks were observed on IXYS IGBTs. It was 
concluded that the destruction on the die attach increased the conduction 
resistance and therefore, the VCE,SAT increased for a given current value. This 
effect demonstrated to have more importance on FUJI and IXYS IGBTs than 
the effect of intrinsic carrier concentration, as explained for IR IGBTs case. It 
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can be concluded that the thermo-mechanical fatigue stress induced on the die 
attach was the main degradation mechanism. 

4.6.3 IGBT Accelerated Aging Tests Results Summary 
First of all, conclusions on the selected failure precursor parameters are 

analyzed. To begin with, the selection of the triplet formed by IC, TC and VCE 
variables have demonstrated to sensibly change due to the degradation of 
IGBTs when measured together with enough accuracy. The sensor and data 
acquisition system selection were proved to be able to identify the degradation 
of IGBTs as well. The employment of the discrete measurements of VCE,SAT and 
VTH were also valuable for identifying IGBT degradation, so their employment is 
encouraged. As a result, the gate voltage monitoring (VG) under certain 
conditions have been proved to be useful. However, in order to measure it, a 
different procedure from just measuring the operating conditions during normal 
operation is required, therefore, its implementation in the final measuring 
system for online monitoring was not done. The IAP also discouraged the 
employment of this variable. 

A positive conclusion of the research is the similar results that have 
been obtained compared to [17]. IR IGBTs were selected in order to verify that 
the followed degradation methodology was correct and that the results were 
reliable. In this sense, similar degradation trends and behavior of the signals 
were observed when compared to the results of [17].  

Finally, a summary extracted from the results is shown in Table 4.8. The 
percentage variation of the variables due to the degradation process is shown. 
The main degradation mechanisms and their consequences are presented as 
well. Finally, the physical damages observed through optic microscopic 
inspection are included.  
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 IR FUJI IXYS 

VGE,TH trend with 
degradation 

Increase 5% Increase 4% Increase 4% 

VCE,SAT trend with 
degradation 

Decrease 7% Increase 4% Increase 4% 

Main Degradation 
Mechanism 

Die attach 

degradation 

Voids & cracks on die-

attach 

Voids & cracks on die-

attach 

Degradation 
consequences 

Increased carrier 

concentration 

Decreased VCE,SAT 

Increased conduction 

resistance 

Increased VCE,SAT 

Increased conduction 

resistance 

Increased VCE,SAT 

Microscopic 
Inspection 

Damaged gate 

oxide 

Cracks on chips 

Cracks on chip 

No bond-wire lift-off 

Cracks on chip 

No bond-wire lift-off 

Table 4.8. Accelerated Aging Tests Results Summary 
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      (a)                                                   (b) 

 

                        (c)                                                     (d) 

 

                          (e)                                                      (f) 

Figure 4.28. (a) Gate-oxide destruction IR (b) and (c) die-attach degradation on IR1 and 
IR4 (d) and (e) voids and crack propagation on FUJI1 and 4. (f) bond-wire on FUJI5 
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4.7 Accelerated Aging Tests Conclusions 
In this Chapter, taking into account the failure precursor parameters 

reviewed in Chapter 3, they were analyzed through the development of 
accelerated aging tests. The hardware required in order to monitor them, both in 
lab tests and online monitoring tests was presented. The required accuracy for 
the measurements was also provided and stated for each of the cases. 

The behavior and the degradation patterns of the failure precursor 
parameters were presented in the results of the degradation process. 
Evidences were provided on the IGBT case for the degradation modes and 
mechanisms.  

In the next Chapter, the development of the prognostic algorithms for 
RUL prediction of components is explained. The results and the data collected 
during the development of the accelerated aging tests are demonstrated to be 
of vital importance. 
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Chapter 5 

5 Prognostic Algorithms 

In the previous chapter, the development and the results of the 
accelerated aging tests have been analyzed. The sensors and hardware to be 
employed have been described, enabling the collection of accurate data. The 
failure mechanisms and failure precursor parameters have been identified. 
Moreover, valuable data of components degradation process have been 
collected. Consequently, on the way for a PHMS implementation, enough data 
and information are available to proceed with the development of the prognostic 
algorithms in order to predict the RUL and the health state of the degrading 
components. 

Prognostics of failures in equipment is based on the capability of 
predicting future degradation paths, so as to estimate the Remaining Useful Life 
(RUL) of the equipment and the potential risks associated to its failure [1]. On 
this basis, it is possible to define predictive maintenance strategies to set the 
best maintenance actions for allowing the optimal exploitation of the useful life 
of the monitored equipment, with benefits in terms of reduction of costs and 
improvement of safety. 

On this Chapter, the development and implementation of the prognostic 
algorithms will be explained. The algorithms will be validated with data collected 
in accelerated aging tests.  
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A special mention must be cited prior to the explanation of prognostic 
algorithms. The prognostic algorithm for electrolytic capacitor RUL estimation, in 
which the author cooperated, was designed and implemented by Marco M. 
Rigamonti within the Nuclear Energy Department of Politecnico di Milano. 
Besides, during the stay of the author in Politecnico di Milano, the development 
of the prognostic algorithm for IGBT RUL estimation was guided and supervised 
by Prof. Piero Baraldi and Prof. Enrico Zio. 

5.1 RUL Prediction of Capacitors 
The objective of the present Chapter is to provide a method for the 

prediction of the RUL for a capacitor working in variable operating conditions. 
The method should also allow estimating the uncertainty affecting the RUL 
prediction. A complete literature review was presented in Chapter 2 regarding 
electrolytic capacitor prognosis. However, some of the most relevant 
conclusions will be revised here.  

Major issues were found during the literature review regarding prognosis 
of electrolytic capacitors. Among them, the following three points were 
concluded: 

• The previous prognostic algorithms cannot cope with variable 
operating conditions and abrupt changes of the degradation 
parameters. 

• The effect of temperature on ESR measurements is not considered. 

• The predictions are not supplied with any uncertainty boundary. 

However, previous investigations proved useful models of components 
degradation process with close relationship to the physical effect taking place 
on real applications. Regarding the information and the models available on 
electrolytic capacitors degradation the employment of a model-based rather 
than a data-driven approach is suggested. Consequently, in this work, a model-
based prognostic approach will be employed, which uses mathematical 
representations of the degradation process to predict the RUL of components.  

In model-based prognostics, it is possible to distinguish between two 
different situations: i) the effects of operating conditions on the degradation 
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process and on the measured signals are known and represented in the 
mathematical models, ii) the effects are not fully known and a mathematical 
model of the operating conditions influence is not available. In the former 
situation i), traditional model-based prognostic approaches, such as those 
based on Bayesian Filters [2], can be directly used, whereas in the latter ii) 
properly tailored prognostic approaches must be developed. As it was shown in 
Chapter 2, Kalman Filters (KF) have been employed in other researches 
despite of their limitations. In this work, the employment of a sequential 
Bayesian approach was decided, which is able to deal with the described 
uncertainties of type ii) and overcome the limitations of KF. 

The two main novelties of the proposed prognostic method are: 

• the implementation and application to electrolytic capacitors of a 
particle filtering approach for RUL uncertainty estimation. 

• the definition of a novel degradation indicator for capacitors operating 
at variable temperatures. 

In order to take into account the temperature at which the ESR 
measurements are taken, and thus, to make the prognostic algorithm 
independent of it, a new degradation indicator was developed. The proposed 
degradation indicator is the ratio between the ESR measured on the degraded 
capacitor and the ESR value expected on a new capacitor at the same 
operational temperature. This index provides an indication of the capacitor 
degradation level and, since it is independent from the measurement 
temperature, it can be used for capacitors working in variable operating 
conditions. Its definition has required performing a series of laboratory 
experiments for investigating the relationship between the ESR and the 
temperature in a new capacitor, which have been explained in Chapter 4. 

The physics-based model of the ESR evolution proposed in [3], has 
been applied to the new degradation indicator and used within a sequential 
Bayesian approach for the estimation of component degradation. The Bayesian 
approach has been employed to account for the uncertainty affecting: i) the 
ESR and temperature measurement processes, ii) the possible inaccuracy of 
the degradation model (see Chapter 4.3.1), iii) the stochasticity of the 
degradation process. These sources of uncertainty cannot be modeled as 
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additive noises, since it is not expected them to be normally distributed in the 
time domain (Gaussian noise). Therefore, a classical Kalman Filter approach 
cannot be applied to this problem due to the presence of non-additive noise 
terms. Consequently, we resort to a Particle Filtering (PF) approach which is 
able to deal with non-additive noise terms [4]. Once the component degradation 
state probability distribution has been estimated by the PF method, Monte Carlo 
(MC) simulation has been used for the prediction of the future component 
degradation path and its RUL [5]. The MC simulation allows to properly take into 
account the uncertainty on the present degradation state estimation and the 
uncertainty on the future evolution of the operating conditions. 

The performance of the proposed prognostic method will be verified with 
respect to the degradation data collected in laboratory accelerated aging tests. 

5.1.1 Particle filter-based prognostics theory 
It is considered a situation in which a physics-based model of the 

degradation process is available and can be formulated in the form of a first-
order Markov Process: 

( )11 , −−= ttt xgx γ                                                               (Eq. 5.1) 

Where 𝑔(𝑥, 𝛾) is a recursive, possibly non-linear, transition function, 𝑥𝑡 
is the indicator of the equipment degradation state at time t and 𝛾 is the process 
noise used to capture the degradation process stochasticity and the inaccuracy 
of the model.  

It is assumed that the observation equation providing a link between the 
degradation state x and its measures is known and can be represented by a 
possibly non-linear function h: 

( )ttt xhz σ,=                                                                     (Eq. 5.2) 

Where, σ is the noise of the measurement. The PF-based approach to 
prognostics relies on the following three steps (Figure 5.1): 

1. A filtering step for the estimation of the equipment degradation state 
at the present time, which is based on the use of Eqs. (5.1) and (5.2) 
and the measures, z1:t, performed until the present time.  
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2. A prediction step for the estimation of the future degradation 
evolution using the posterior probability density function (pdf) of the 
degradation state (output of step 1) and the degradation model (Eq. 
5.1). 

3. The prediction of the equipment RUL considering the degradation 
state prediction (output of step 2) and the failure threshold.  

 

 

 

 

 

 

With respect to step 1), a natural framework for estimating the 
component degradation state and its RUL is offered by Bayesian filters [2, 4, 6, 
7, 8]. They allow to properly treat the process and measurement uncertainty 
and to update the degradation state and RUL estimates each time a new 
degradation measurement becomes available. The operative procedure is 
based on the repetition of a prediction and updating stage each time a measure 
becomes available. In the prediction stage, one knows (xt−1|z1:t−1), and, by 
using Eq. (5.1), the prediction distribution (pf) of the degradation at the next time 
can be obtained from: 

1: 1 1 1: 1 1 1( | ) ( | ) ( | )f t t t t t t tp x z p x z p x x dx− − − − −= ∫              (Eq. 5.3) 

When the new measurement 𝑧𝑡 arrives, one can update and calculate 
the posterior pdf 𝑝(𝑥𝑡|𝑧1:𝑡) using the Bayesian rule: 

1: 1
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t t t t

t t
t t t t t

p x z p z x
p x z

p x z p z x dx
−

−

=
∫

                             (Eq. 5.4) 

Usually, except for the situation of linear Gaussian state space models 
(Kalman filter) and hidden finite-state space Markov chains (Wohnam filter), it is 
not possible to evaluate analytically the pdf in Eq. (5.4), since this requires the 

 

Figure 5.1. Sketch of the PF approach to fault prognostics 
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calculation of complex high-dimensional integrals. Particle Filter (PF) provides a 
numerical solution of the degradation state probability, which can be applied in 
the case of non-linear degradation models and non-Gaussian non-additive 
noises. The PF solution is based on the Monte Carlo sampling of a large 
number of samples (called particles) from a proposal pdf (𝑥𝑡|𝑧1:𝑡). Then, the 
estimated posterior pdf 𝑝𝑒(𝑥𝑡|𝑧1:𝑡) is approximated by: 

( )1:
1

( )
N

i i
e t t t t t

i
p x z w x xδ

=

≈ −∑                                                         (Eq. 5.5) 

Where 𝑥𝑡𝑖(𝑖 = 1,2, … ,𝑁)  are the particles sampled from 𝑞(𝑥𝑡|𝑧1:𝑡) and 
𝑤𝑡𝑖 is the weight associated to the particle 𝑥𝑡 given by: 
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One of the most adopted choices is to consider the proposal pdf 
𝑞(𝑥𝑡|𝑧1:𝑡) as the transition function, namely 𝑞(𝑥𝑡|𝑧1:𝑡) = 𝑝(𝑥𝑡|𝑥𝑡−1). In this way, 
using (Eq. 5.7), the particle weights 𝜔𝑡 at time t are provided by: 
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Where 𝑝(𝑧𝑡|𝑥𝑡𝑖) is called the likelihood of measurement 𝑧𝑡 given the 
particle 𝑥𝑡𝑖, which can be derived from the observation function in Eq. (5.2). The 
reader interested in a detailed description of the PF method for the estimation of 
the degradation state can refer to [4, 9, 10, 11, 12].  

With respect to step 2), once the posterior pdf of the equipment 
degradation state has been estimated, it is possible to predict the future 
evolution of the equipment degradation trajectory by computing [13]: 

1
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Where pf(xt+i|z1:t) is the predicted pdf of degradation state at time t+l. 
In order to facilitate this computation, according to [13], we numerically estimate 
the pdf of the degradation state at time t+l, pf(xt+i|z1:t) by, 

( ) ( )1:
1

t l

N
i i

f t l t t t l
i

p x z w x xδ
++ +

=

≈ −∑                                    (Eq. 5.9) 

Where the particle state 𝑥𝑡+1𝑖  is obtained by iteratively applying Eq. (5.1) to the 
state 𝑥𝑡𝑖 at the previous time t.  

Finally the estimate of the RUL pdf in step 3 is performed by [13, 14, 15, 
16, 17, 18]: 
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Where 𝑅𝑈𝐿𝑡𝑖  is the RUL associated to the i-th particle at the present 
time t given by:  

( ) ( ) ( ){ }1
1 , , , , ,i i

t t

i i i i
t t t th t thT T

RUL T t g x x g x xγ γ
−

= − − < ≥p p   

                                                                                       (Eq. 5.11) 

and 𝑇𝑡𝑖 can be found by iteratively applying Eq. (5.1) to simulate the 

particles evolution. 

5.1.2 Capacitor Degradation Model 

In this Section, we present the physics-based degradation model (Eq. 
5.1) and the corresponding measurement equation (Eq. 5.2) for aluminum 
electrolytic capacitors working in variable operative conditions. The main 
degradation mechanism of this component is caused by chemical reactions 
occurring inside the component which induce the vaporization of the contained 
electrolyte. According to our measurements and the results of previous 
investigations [19, 20], ESR is a degradation indicator for capacitors operating 
in stationary operative conditions. In particular, from a physical point of view, the 
ESR can be considered as the sum of the inherent electrical resistances of the 
materials composing the capacitor.  
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According to [3], the ESR time evolution for a capacitor aging at 
constant temperature Tag is given by: 

tTCagag
t

ag

eTESRTESR )(
0 )()( =                                         (Eq. 5.12) 

Where, 𝐸𝑆𝑅0(𝑇𝑎𝑔) represents the initial ESR value of a capacitor at 
temperature Tag, t the age of the capacitor and C(Tag) a coefficient which 
defines the degradation rate of the capacitor. Resorting to the Arrhenius law, 
the temperature coefficient C(Tag) is given by: 
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Where, Ea is the activation energy, k is the Boltzmann constant 
(8.617*10-5 eV/K) and Lifenom represents the nominal life of the capacitor aged 
at the constant nominal temperature (Tnom). A detailed description of the semi-
empirical procedure adopted for the definition of the macro-level physical model 
of Eqs. (5.12) and (5.13) can be found in [21]. By applying Eq. (5.14), one can 
obtain the RUL of a capacitor operating at the constant temperature Tag, for 
which, at the present time t, 𝐸𝑆𝑅𝑡(𝑇𝑎𝑔) is measured [3]: 
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Where, ESRth indicates the ESR value at which the capacitor is 
considered failed, usually considered as the double of its initial value ESR0 [22]. 

Notice, however, that Eq. (5.12) cannot be applied to a capacitor 
operating at variable temperatures since the measured ESR value depends on 
the temperature at which the measurement is performed, i.e., if we measure the 
ESR of the same capacitor at different temperatures, TESR, we obtain different 
ESR values. In the case of a new capacitor, the dependence of the ESR from 
the measurement temperature has been investigated by [3], who proposed the 
following model: 
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γβα
ESRT

ESR eTESR
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+=)(0                                            (Eq. 5.15) 

Where, α, β and γ  are parameters characteristics of the capacitor. The 
results of Eq. (5.15) with respect to the values obtained in Chpater 4 are 
analyzed in section 5.1.3. Notice, however, that Eq. (5.15) does not apply to 
degraded capacitors and an analogous equation for degraded capacitors is not 
available. Thus, given the unavailability of a relationship between the measured 
ESR and the expected ESR at a reference temperature for a degraded 
capacitor, which would allow monitoring the degradation evolution, ESR “per se” 
is not a suitable degradation indicator for capacitors working at variable 
temperatures. For this reason, we take as a degradation indicator independent 
from the temperature at which ESR is measured, the ratio between the ESR 
measured at temperature TESR and its expected initial value at the same 
temperature TESR: 
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TESRESR =                             (Eq. 5.16) 

Where, ESR0(TESR) is obtained by using Eq. (5.15). Notice that the 
same degradation indicator, ESRnorm, would be associated to a degraded 
capacitor whose ESR value is measured at two different temperatures T1 and 
T2. In practice, the proposed degradation indicator allows overcoming the lack 
of knowledge on the relationship between the temperature and the measured 
ESR for a degraded capacitor, by considering the relative variation of the ESR 
with respect to that of a new capacitor at the same temperature. 

Hence, the degradation process can be represented as a first order 
Markov Process between discrete time steps t and t-1: 
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Where, Tt−1
ag  represents the aging temperature at time t-1 and ω models 

the process noise.  

Notice that Eq. (5.17), which represents the degradation model (Eq. 5.1) 
in a sequential Bayesian approach, is independent from the measurement 
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temperature TESR, but it depends from the temperature 𝑇𝑡−1
𝑎𝑔  experienced by the 

capacitor during its operation between time t-1 and t. Given the ESR 
measurement circuit described on Chapter 3, in order not to influence the 
behavior of the rest of the equipment, the ESR measurement could be 
performed during vehicle startup. This is, when the capacitor is in thermal 
equilibrium with the external temperature, whereas the capacitor aging occurs 
during motor operation when the capacitor temperature is higher, therefore, the 
two capacitor temperatures with the two different symbols TESR and 𝑇𝑎𝑔 are 
represented. 

The equation linking the measurement of the degradation indicator, 
𝑧𝑡 = 𝐸𝑆𝑅𝑡(𝑇𝑡𝐸𝑆𝑅), and the degradation indicator, 𝐸𝑆𝑅𝑡𝑛𝑜𝑟𝑚, is: 
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Where, 𝑇𝑡𝐸𝑆𝑅 represents the measurement temperature at time t and 𝜂𝑡 
represents the measurement noise. 

Notice that both temperatures, 𝑇𝑎𝑔 and 𝑇𝐸𝑆𝑅, are quantities affected by 
a measurement error 𝜀𝑇: 

T
ag
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ag

meas TT ε+=                                                       (Eq. 5.19) 

T
ESR
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ESR

meas TT ε+=                                                      (Eq. 5.20) 

Under the non-additivity and non-gaussianity of the noise terms, 𝜀𝑇, in 
Eqs. (5.17) and (5.18), a particle filter-based approach is applied for the 
estimate of the component degradation state at the present time. Then, the 
prediction of the future evolution of the degradation state is performed by Monte 
Carlo simulation, iteratively applying Eq. 5.17, where the noise on the aging 
temperature is properly sampled from the underlying distributions. 

5.1.3 Case study of Electrolytic Capacitors 
In this Section, the proposed prognostic approach has been verified 

considering experimental data collected during the accelerated degradation 
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test. As previously explained, the selected capacitor for accelerated aging tests 
was the ALS30 series in pristine conditions produced by KEMET. In order to 
properly set parameters α, β and γ  in Eq. (5.15) for this type of capacitor, 
experimental laboratory tests were performed (see Chapter 4.3.2). The figure is 
replicated here for clearance. 

 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
Parameters α, β and γ have been set to the values reported in Table 5.1 

by using the exponential regression method [23, 24]. 

α 0.0817 Ω 
β 0.037 Ω 
γ 30.682 K          

Table 5.1. Experimental values for α, β and γ parameters 

5.1.3.1 Tests with experimental data 

The data collected during the accelerated aging tests is now employed. 
As it has been explained in Chapter 4, two different rounds of tests were 
developed. On the first one, the set degradation temperature was 145 ºC (Tag) 
continuously. On the second one, the degradation temperature was randomly 
selected for each week between one of these three values: 100 ºC, 120 ºC and 
140 ºC. During the accelerated degradation tests, capacitors have been 

 

Figure 5.2. ESR measurement vs Temperature variation 
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periodically taken out of the climatic chamber, cooled at room temperature (25 
ºC, TESR) and the ESR measured. In order to evaluate the prediction 
performance of the developed algorithm, we have set the ESR failure threshold 
equal to ESRnorm = 200 %, following the recommendation of manufacturers [25].  

5.1.3.2 Performance analysis metrics 

In order to validate and assess the performance of the PF algorithm, it 
has been verified with respect to five metrics: precision, accuracy, steadiness, 
coverage and risk level [14, 26, 27]. 

The Precision Index (PI) computes the relative width of the prediction 
interval, which is defined by: 

t

tt
t RUL

IRULIRULPI )_inf()_sup( −
=                        (Eq. 5.21) 

Where, sup(RUL_It) and inf(RUL_It) are the upper and lower bounds of 
the 80% RUL prediction interval and RULt is the true RUL at time t. Small 
values of PIt indicate more precise predictions. 

The Accuracy Index (AI) is defined as the relative error of the RUL 
prediction: 
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=                                           (Eq. 5.22) 

Where 𝑅𝑈𝐿𝑡 is the RUL estimated at time t. Small values of AIt indicate 
more accurate predictions. 

The Steadiness Index (SI) measures the volatility of the End-of-Life 
(EOL, the time at which the RUL becomes null) prediction when new measures 
become available. It is defined by: 

)var( :)( tttt EOLSI ∆−=                                         (Eq. 5.23) 
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Where ∆t is the sliding time window. Small values of SIt indicate more 
stable predictions. 

The Risk Index (RI) is the probability of obtaining a RUL estimate 
smaller than the true RUL. 

( ) ∫
∞−

=≤=
tRUL

ftt dRULRULpRULRULPRI )(                (Eq. 5.24) 

Where, pf (RUL) is the estimate of the RUL pdf. Large RIt values 
indicate conservative RUL predictions, which are associated to lower risk from 
maintenance decisions. 

The Coverage Index (COV) is a binary index which considers whether 
the true RUL lies within the 80% RUL prediction interval: 

( ))_sup()_inf( tttt IRULRULIRULCOV ≤≤=       (Eq. 5.25) 

Where, sup(RUL_It) and inf(RUL_It) are the upper and lower bounds of 

the 80% RUL prediction interval and RULt is the real RUL at time t. The average 

value of COVt over the component life provides information on the ability of the 

prognostic method to represent the uncertainty on the prediction. Coverage 

values close to 0.8 indicate a good representation of the uncertainty [28]. 

5.1.4 Results of algorithm application 
The results obtained for both, constant temperature degradation and 

varying temperature conditions are presented. 

5.1.4.1 Constant degradation temperature results 

We have applied the PF-based prognostic method described in Section 
5.1.2 to the data collected in the accelerated aging tests with constant 
degradation temperature considering 1000 particles. Three different settings of 
the process noise standard deviation applied in Eq. 5.17 were selected, in order 
to assess its influence on the predictions: 0.1, 0.2 and 0.3 respectively.  

Figure 5.3 shows the obtained RUL predictions and the corresponding 
10th and 90th percentiles. Notice that in all the three cases, the RUL expected 
value tends to become closer to the true RUL value as new ESR measurements 
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become available. It is also interesting to notice that, the higher the process 
noise standard deviation, the worse the results are when few ESR 
measurements are available. Indeed, the precision and accuracy indexes are 
worse for higher noise values. On the contrary, low noise values; imply more 
difficulties for the algorithm to change the initial prediction when new 
measurements are available. This can be seen for the case of 0.1, where the 
predictions have a constant offset from the True RUL that is not able to 
overcome.  

Table 5.2 reports the five metrics previously considered to evaluate the 
prognostic performance of the method. The best performance is obtained by 
considering a process noise standard deviation equal to 0.2, whereas using a 
standard deviation process noise equal to 0.1 we obtain a too low coverage 
value that indicates that the method is not properly taking into account the 
uncertainty, since the true RUL values turn out to fall outside the prediction 
intervals in many cases. On the other side, when a process noise standard 
deviation equal to 0.3 is considered, the uncertainty of the prediction is 
overestimated; leading to a coverage of 100% but with very large prediction 
intervals (the precision index is 55% larger than that obtained considering a 
process noise standard deviation equal to 0.2). It is also interesting to observe 
that the process noise standard deviation has a significant effect on the 
accuracy of the prognosis, where higher noise values imply worse accuracy and 
larger boundaries of the prediction uncertainty. Given the difficulties of 
assessing the noise in the real application, the previous study was made.  
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Figure 5.3. RUL prediction and corresponding 10th and 90th percentiles. The 

top Figure refers to a process noise standard deviation of 0.1, the Figure in the 

middle to 0.2, the bottom Figure to 0.3 
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PF Process Noise Standard Deviation 

σ(ωt)=0.1 σ(ωt)=0.2 σ(ωt)=0.3 

Precision Index 0.30 0.64 1.40 

Accuracy Index 0.23 0.28 0.75 

Steadiness Index 0.50 0.54 0.56 

Risk Index 0.85 0.72 0.51 

Coverage Index 0.11 0.66 0.94 

Table 5.2. Average value of the Performance Indexes AI, PI, SI, RI, COV over 

the 6 available real ESR measures 

5.1.4.2 Varying degradation temperature results 

We have applied the PF-based prognostic method described in Section 
5.1.2 to the data collected in the accelerated aging tests with varying 
degradation temperature considering 1000 particles.  

Firstly, it must be highlighted the positive result on the predicted RUL. It 
can be observed in Figure 5.4 that the algorithm is able to assess the 
uncertainty due to the varying conditions, as it was stated in the requirements 
for the algorithm. On the other hand, the predicted ESR, which is required for 
the algorithm development, can be observed in Figure 5.5. It can be seen that 
the predictions follow the value of the ESR, except for two of the last three 
measurements, falling the predictions outside of the uncertainty boundaries.  
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Figure 5.5. Expected ESR of PF with varying temperature 

 

Figure 5.4. Expected RUL of PF with varying temperature 
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The goodness of the prediction is assessed through the previously 
introduced Performance Indexes, which are shown in Table 5.3. Indeed, the 
obtained PI values are very satisfactory, with good precision and accuracy 
indexes and a reasonable coverage of the predictions. 

Precision Index 0.30 

Accuracy Index 0.10 

Steadiness Index 0.68 

Risk Index 0.50 

Coverage Index 0.75 

Table 5.3. Performance Indexes of RUL prediction for varying temperature 

5.1.5 Conclusions of capacitor prognosis 
The problem of predicting the RUL for electrolytic capacitors working in 

variable operating conditions has been addressed. The data collected during 
accelerated aging tests have been employed to test the approach. Given the 
non-stationary operating conditions and, particularly, the varying operational 
temperature experienced by this kind of components, a new degradation 
indicator independent from temperature has been proposed. The indicator is 
defined as the ratio between the ESR measured at temperature TESR and its 
initial value at the same temperature TESR. Using a physics-based model of the 
degradation evolution, a Particle Filter-based modeling framework to predict the 
capacitor RUL have been developed and applied to real degradation data. The 
effects of the uncertainty of the degradation model associated to the process 
noise have also been investigated performing a sensitivity analysis on few noise 
values and evaluating the corresponding performance by means of commonly 
used prognostic metrics. The performance of the method on real data has been 
found satisfactory. 
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5.2 RUL prediction of IGBTs 
The objective of the present work is to provide a method for predicting 

the RUL of IGBTs. The method should also be able to estimate the uncertainty 
that affects RUL predictions. On Chapter 2 a complete literature review on 
IGBTs prognosis was provided, however, some of the results are revised here.  

The degradation process of IGBTs has been demonstrated to be 
affected by several sources of uncertainty [32, 33]. Given the characteristics 
and constraints of the problem, several data-driven or model-based approaches 
have been suggested with different outcomes. However, RUL prediction has 
been scarcely addressed provided the difficulties to be faced. This statement is 
confirmed by the limited number of references with results on real data [29, 31, 
32, 35]. 

A major challenge for the techniques present in the literature is the 
accurate assessment of IGBTs RUL. Several physical degradation models have 
been proposed; however, they are not capable of adapting to the different IGBT 
types and to varying operating conditions. Therefore, IGBT stochasticity is a 
problem for these predictions. On the other hand, data-driven models are not 
able to accurately predict the RUL in the long run, mainly because of the minute 
variation of the failure precursor parameters. Thus, in [29] and [30] a 
classification of the IGBT health state distributed in three levels (healthy, 
degraded and failed) was provided, the estimation of the RUL is still a pending 
issue.  

Consequently, in this work, we consider a prognostic method based on 
both data-driven and physics-based model approaches. Model-based 
prognostics use an explicit mathematical model of the degradation process to 
predict the future evolution of the degradation state and, thus, the equipment’s 
RUL. On the other hand, data-driven prognostics are used when an explicit 
model of the degradation process is not available, but sufficient data have been 
collected.  

Because of the many factors influencing the performance of prognostic 
systems, such as (i) the dependence of the algorithm’s accuracy on the quantity 
of valid reference patterns; (ii) the variability associated to manufacturing 
conditions and uncertainties in environmental and operating conditions; and (iii) 
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the sensory signal relationships with different health states, a single data-driven 
or physics-based approach would not consider all the available information [29]. 
Thus, the benefits of gathering both sources of information with specific 
reference to the problem of predicting the RUL of IGBTs installed in Fully 
Electric Vehicles (FEVs) have been considered. An ensemble algorithm which 
leverages the strengths of different sources of information to form a robust 
unified algorithm for IGBT RUL prediction has been applied.  

The three main novelties of the proposed prognostic method are:  

• The employment of a bootstrapped aggregation ensemble [47, 48] for 
directly estimating the RUL of IGBTs together with RUL estimation 
uncertainty. 

• The application and validation of the method with real experimental 
data from three different IGBT types. 

• From the methodology point of view, the input to the prognostic 
model of a mixture of data-driven and physics-based model 
information for IGBT monitoring. 

The data used to develop the prognostic method and verify its 
performance are taken from accelerated degradation tests performed on three 
different types of IGBTs: IR’s IRG4BC30KDpbf punch-through IGBT, FUJI’s 
FGW15N120VD Trench Field-Stop IGBT and the IXYS IXXN110N65C4H1 
Trench XPT GenX4 IGBT, as it was explained on Chapter 4.  

The selected variables for IGBT RUL prediction for an online monitoring 
system are: case temperature (TC), collector current (IC) and collector-emitter 
voltage (VCE). These variables were selected taking into account the results of 
accelerated aging tests previously developed and explained in Chapter 4 and 
confirmed by other researches [35, 36]. The results obtained show that 
accurately measuring these three variables allows the degradation state of 
IGBTs to be assessed [29, 35, 36, 37].  

Now, the proposed prognostic methodology is explained. 
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5.2.1 Prognostic method 
In this section, the implementation of the prognostic method is explained 

following these steps: 

1. The selection and use of the physics-based model is explained. 

2. The employment of data-driven methods to get the degradation 
patterns is explained. 

3. The process of combining the data-driven and physics-based model 
information into an ensemble method is shown. 

Prior to the development of the prognostic method, a brief summary of 
the available information is done, in which the data collected in the accelerated 
aging tests is shown.  

5.2.1.1 Available information 

In order to test and develop the prognostic method, data collected 
during accelerated aging tests for the three different IGBT types was used. A 
detailed description of the accelerated aging tests is presented in Chapter 4.  

For the sake of simplicity, the results shown in Figure 5.6 were not 
shown in Chapter 4. The data collected from the accelerated aging tests 
showed minute variation in the signals before a failure occurred, a characteristic 
that confirmed the conclusions drawn from the literature review [32, 35, 37, 38]. 
For a given TC and IC, the VCE value variation with degradation was minute, in 
the range of 4 to 7 %. This change can be observed in Figure 5.6, where the 
evolution of the variation of the VCE is shown with respect to the number of 
degradation cycles for a set TC and IC. Note that the degradation trajectories 
followed by each of the IGBTs are initially different from one IGBT type to the 
other. Nevertheless, it can be seen that each IGBT type shows a repeatable 
trend, which could be learnt by a prognostic algorithm.  
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Figure 5.6. Vce,sat evolution with degradation for (a) IR, (b) FUJI and (c) IXYS 
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5.2.1.2 Use of the physical model for identifying the 

accumulated damage 

Now, an analysis of the selected physical model (Eq. 5.26) with respect 
to the collected data can be made.  

The physics-based model selected for our study was developed as part 
of the LESIT project [39]. It provides the number of cycles to failure at a 
particular stress level, given by the average (TJ,med) and swing (∆TJ) junction 
temperature.  

Nfi = A∆TJαe
( Q
R∗TJ,med

)
     (Eq. 5.26) 

where, A = 640 and α = -5 are constants, Q =  7.8 ∗ 104 J/mol and R is 
the gas constant. This model, based on the Arrhenius law, has been adopted 
since experimental tests suggest that IGBT degradation is mainly caused by 
thermally activated creeping processes. Furthermore, the model is able to cope 
with junction temperatures above the nominal temperature of the component 
such as those encountered in accelerated aging tests. 

Bayerer et al. [33] proposed a more refined model based on the LESIT 
equation for assessing the number of cycles (Nfi) taking into account other 
parameters that influence the degradation process, such as the power on time 
or the current per wire. However, their model is not considered in this work 
since it only applies to IGBTs working with a junction temperature in the range 
50 to 150 ºC. 

Note that junction average and swing temperature values are employed 
in the physical model (5.26); however, only the case temperature was available 
from the measurements. Thus, the junction temperature was estimated from the 
case temperature, employing Eq. 5.27. 

Tj =  Tc + Rth ∗ PTOTAL     (Eq. 5.27) 

Where, Tj is the junction temperature, Tc is the case temperature, Rth is 
the thermal resistance (provided in component’s datasheet) and PTOTAL 
represents the total losses, which is the sum of switching and continuous 
conduction losses [40] that were estimated following the procedure in [41]. It is 
assumed that an error is being made in Eq. 5.27, as we already know that Rth, 
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which this equation considers to be constant, changes slightly with degradation. 
However, it is expected that he ensemble method is able to cope with this 
source of noise or inaccuracy.  

The junction temperature was then processed by employing the rainflow 
counting algorithm to obtain the average and swing temperatures during the 
lifetime for a set time window, as explained in [42]. This algorithm is widely 
employed for cycles counting in fatigue processes of mechanical devices and 
electronics [32]. The rainflow counting algorithm was implemented by employing 
the toolbox developed in [43].  

Finally, Miner`s rule [44] was applied to get a value for the accumulated 
damage from the physics-based model. Miner’s rule assumes linear damage 
accumulation (Eq. 5.28); 

Damage =  ∑ Ni
Nfi

n
i=1         (Eq. 5.28) 

Where, Ni  is the number of cycles at a stress level i, and Nfi represents 
the number of cycles to failure at that particular stress level. It is assumed that 
the damage is complete when Damage = 1. 

The outcome of this process is a prediction of the accumulated damage 
for each of the IGBTs, which will become an input pattern for the ensemble 
method. 

5.2.1.3 Development of the data-driven degradation patterns 

As previously mentioned, the data collected from the accelerated aging 
tests showed a minute variation in the signals before a failure occurred, 
confirming the results obtained in [35, 36]. Therefore, the employment of the 
raw data of the three collected variables together (VCE, IC, and TC), was 
insufficient to teach to a prognostic algorithm the degradation pattern of IGBTs, 
as will be later shown in the results section. As a result, the employment of 
multi-variate analysis was decided to be applied in order to obtain 
representative degradation patterns to train the hybrid ensemble method. It 
must be noticed that the aim of these algorithms is not to provide direct RUL 
predictions, but to generate degradation patterns that will be fed to the 
ensemble method to produce the RUL predictions. 
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The selected data-driven models were the following: Self-Organizing 
Maps (SOM), Artificial Neural Networks (ANN), Mahalanobis Distance (MD) and 
Principal Component Analysis (PCA). These algorithms were initially selected 
for several reasons. Firstly, they all are state-of-the-art multi-attribute 
classification techniques (supervised learning, unsupervised clustering, 
classification, and statistical inference) which have been widely reported and 
tested in the literature in different data analysis problems [29, 32, 38]. The aim 
of such a wide selection is that the different algorithms may perform better than 
the others on some regions of the data, as stated in [29]. Indeed, the selected 
ensemble approach has the inherent flexibility to incorporate any desired 
advanced algorithm, such as Support Vector Machines. Therefore, it is not 
restricted the employment of any algorithm to obtain the degradation patterns 
and thus, the above list of selected data-driven models could be extended.  

The degradation patterns or indicators, that will be part of the input for 
the ensemble method, were obtained from the extraction of “residuals” from the 
application of each of the mentioned data-driven models. “Residuals” are 
defined as the distance between the output of the data-driven models when 
trained with healthy operational data of the IGBT, and the actual measured 
value. This is, the algorithms are trained with raw data values belonging to the 
healthy state of the IGBT in a certain working conditions. Then, when 
operational data from degraded conditions is presented to the algorithm, it will 
still provide an output similar to the one from the healthy state, and thus, a 
distance can be calculated from the output provided by the algorithm and the 
actual measured value. The models were trained with data belonging to the 
initial 10 % of the lifetime operation of the IGBTs, assuming them as healthy 
state. Then, data measured from more degraded time windows were tested in 
the models. The distance or “residuals” between the output of the model and 
the actual measured data were calculated for each algorithm employing the 
Root Mean Square Error (RMSE). Now, a brief description of the employed 
data-driven models is provided. 

5.2.1.3.1 Self-Organizing Maps (SOM) 

SOMs are an unsupervised learning algorithm. SOMs, also known as 
Kohonen maps, are a neural network model for data clustering [30]. The SOM is 

 



204 Prognostic Algorithms 

a two-dimensional projection of a multi-dimensional feature space, which is able 
to maintain the relevant information about the data. In particular, two vectors 
that are close in the multidimensional feature space are located in two 
topologically close SOM units. The SOM uses a neighborhood function to 
preserve the topological properties of the input space and determine the closest 
unit distance to the input vector. 

In our case, the SOM was trained and tested following the same 
procedure as in [30] to obtain the degradation patterns. 

5.2.1.3.2 Artificial Neural Networks (ANN) 

ANN are largely employed for supervised learning purposes, including 
data fitting or pattern recognition [28, 45]. A back-propagation neural network 
has been used as a data-driven model. This is a multi-layer NN, including a 
layer for the input, some hidden-layers and an output layer. The number of 
hidden layers and the number of neurons vary based on the complexity of the 
problem. During the training phase, the output values are compared with the 
correct answers to compute the value of some predefined error-function. The 
error is then fed back through the network. Using this information, the algorithm 
adjusts the weights of each connection in order to reduce the value of the error 
function by some small amount.  

In this work, the NN was trained with the healthy data belonging to the Ic 
and Tc parameters, while the Vce was set as the target value. When new (Ic 
and Tc) data, belonging to more degraded time windows, was introduced to the 
algorithm it predicted a Vce value similar to the one observed for the healthy 
data. As a result, the RMSE value was computed for each of the outcomes from 
the algorithm and the measured Vce value, obtaining the “residual”. 

5.2.1.3.3 Mahalanobis Distance (MD) 

MD is a statistical technique employed for data treatment. It differs from 
the previous learning algorithms in that it is a distance measurement based on 
the correlations between variables. The MD of an observation 
x =  (x1, x2, … , xN)T from a set of observation with mean µ =  (µ1, µ2, … , µN)T 
and covariance matrix S is defined as: 
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DM(x) =  �(x − µ)TS−1(x − µ)     (Eq. 5. 29) 

For the MD algorithm, the “residuals” where directly obtained through 
the application of the distance calculation between the healthy state data and 
data belonging to more degraded time windows.  

5.2.1.3.4 Principal Component Analysis (PCA) 

Principal Component Analysis is a widely employed method for 
dimension reduction. PCA is a statistical procedure that uses an orthogonal 
transformation to convert a set of possibly correlated variables into a set of 
values of linearly uncorrelated variables called principal components. This 
transformation is defined in such a way that the first principal component has 
the largest possible variance. The resulting vectors constitute an uncorrelated 
orthogonal basis set. The principal components are orthogonal because they 
are the eigenvectors of the covariance matrix [46].  

In our problem, the “residuals” were calculated as follows. The principal 
component of the healthy state data was initially calculated. Then, the Vce 
variable belonging to more degraded time windows was projected into that 
basis. The residuals were calculated through the RMSE calculation between the 
resulting score of the projection and the actual value of the Vce.  

5.2.1.4 Combining data-driven and physics-based models 

information into the ensemble method: the 

bootstrapped aggregation algorithm 

The hybrid approach was considered given two premises. Firstly, data-
driven degradation patterns were available, but the patterns were highly 
stochastic. Secondly, a physics-based model of the degradation was available, 
but its accuracy was poor (see Case Study below). Therefore, the logical step 
was to try to mix the different data sources in order to improve the outcome, 
thus, “hybridizing” the input of the algorithm.  

The points previously explained in Sections, 5.2.1.2 and 5.2.1.3, now 
allow us to explain how to join both physics-based and data-driven models as 
inputs for the ensemble method. 

 

https://en.wikipedia.org/wiki/Orthogonal_transformation
https://en.wikipedia.org/wiki/Orthogonal_transformation
https://en.wikipedia.org/wiki/Correlation_and_dependence
https://en.wikipedia.org/wiki/Variance
https://en.wikipedia.org/wiki/Eigenvector
https://en.wikipedia.org/wiki/Covariance_matrix
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The approach consists on treating the two different sources of 
information (the degradation patterns coming from the different data-driven 
models and the physics-based one) as “weaklearners” of the same degradation 
process. Consequently, the “Bagging” or bootstrapped aggregation algorithm 
would work as a regression ensemble method that would make the RUL 
predictions based on the information collected from the “weaklearners” [47]. The 
proposed hybrid approach is shown in Figure 5.7.  

 

 

 

 

 

 

 

 

5.2.2 Applying the “Bagging” method for RUL and 
uncertainty prediction 

A general methodology for the “Bagging” algorithm was presented in 
[47]. The “Bagging” algorithm was one of the earliest ensemble based 
algorithms, providing unexpectedly good results [48]. The method is based on 
randomly drawing (with replacement) bootstrapped replicas of the training data. 
Each data subset, in our case 80% of the total data, is used to train different 
classifiers of the same type. The output of the individual classifiers is then 
averaged, obtaining one result. Bagging is used to generate the datasets for 
training the different ANN predictors whose output are, then, combined to give 
the ensemble output, which is characterized by a lower variance than the one of 
the single ANN predictor [48].  

“Bagging” is a recommended algorithm when the available data is of 
limited size to ensure diversity among the classifiers. The selected classifiers for 
RUL prediction were Artificial Neural Networks (ANN). Therefore, a set number 

 

Figure 5.7. Sketch of the Hybrid Model approach to fault prognostics 
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of different ANN was trained with the data belonging to the selected degradation 
patterns coming from the different IGBTs. The target for those training patterns 
was the corresponding RUL value for each data point. 

5.2.2.1 Uncertainty boundaries assessment 

A major issue with the previous algorithm was assessing the uncertainty 
of the predictions, or in other words, quantifying the confidence on RUL 
predictions. The possibility of assessing the main sources of uncertainty from 
bootstrapped ensembles was addressed in Baraldi et al. [28]. Three sources of 
uncertainty were accounted for when employing a bootstrapped aggregation 
ensemble. The first is the uncertainty due to model uncertainty (σB), which is 
studied through the variability in the predictions of the diverse models of the 
ensemble. Additionally, the uncertainties due to the stochasticity of the 
degradation process (σA ), and the input noise (σC) of the employed past 
degradation data were studied. They required that the relationship between the 
input data and the error of the prognostic model based on its performance on a 
validation dataset were studied. In this sense, the methodology of approach 2: 
Bootstrapped ensemble of empirical models trained on sequences of 
degradation observations and life time data, defined in [28] was followed (see 
Appendix III).  

5.2.2.2 Leave One Out (LOO) Strategy 

To analyze the algorithm performance on unseen data, the Leave One 
Out (LOO) method was employed [30]. This means that a trajectory from an 
IGBT is not used during the training phase; instead, it is employed only for 
testing. This is a key point for the algorithm validation. After following the LOO 
strategy, not only the algorithm performance is being tested, but the algorithm is 
being validated as well if the accuracy levels are met. It must be highlighted that 
the testing data has not been shown to the algorithm, and so, the prediction fully 
relies on the trends “learnt” by the algorithm. 

5.2.2.3 Algorithm application pseudo-code 

In Table 5.4 the pseudo code for the application of the hybrid ensemble 
algorithm is summarized. 

 



208 Prognostic Algorithms 

Input Raw data (Vce, Ic and Tc) for different IGBT degradation trajectories with the 
corresponding RUL value for each measurement 

Algorithm 

Step 1 Obtain the residuals with PCA, MD, ANN and SOM for each degradation trajectory 

Step 2 Obtain the predicted damage by the physics-based model for each degradation 

trajectory 

Step 3  Normalize the data and generate the training matrix with the data from steps 1 and 2, 

without the data of one trajectory (LOO procedure). Take a fraction of the training data 

for validation 

Step 4 Train H neural networks (“bagging ensemble”) with the training matrix and set the 

training target as the corresponding RUL values 

Step 5 Assess the uncertainty involved in the prediction with the validation dataset following 

the procedure set in [28] 

Step 6 Test the H neural networks with the trajectory of the component left out in Step 3 

Step 7 Calculate the uncertainty boundaries 

Output RUL prediction and uncertainty estimation of the left IGBT trajectory 

Table 5.4. Pseudo code for the hybrid ensemble application 

5.2.3 Case study of IGBTs 
As mentioned previously, the model was applied to the accelerated 

aging tests carried out on different IGBTs, more precisely, 7 IR IGBTs, 5 FUJI 
IGBTs and 5 IXYS IGBTs were subjected to ageing tests. A detailed description 
of the aging tests is provided in Chapter 4.  

The three selected variables for monitoring were based on the 
developed experiments and the literature: IC, TC and VCE [29, 32, 35, 49]. 

With regard to the recorded signals, several problems were observed for 
prognosis. The variation of the signals with degradation can be considered 
small, on the order of hundredths of mV, which is in line with other reports [35]. 
This is especially true for the VCE, whose variation for a given value of IC and TC 
is directly related to the degradation state. Secondly, the evolution of the Vce 
with the degradation of the IGBT shows an abrupt change at the end-of-life 
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(EOL) of the component. However, with longer operation times within the safe 
operation area (SOA) of the component, more consistent and regular patterns 
are expected, thus showing better prognosticability. 

In order to deal with the previously mentioned problems, it was decided 
to employ the residuals from the data-driven models, which allowed clear 
degradation patterns to be obtained. 

After the degradation tests, the three recorded signals (TC, IC, VCE) 
containing the degradation patterns of the tested IGBTs were available. The 
cycles endured by each IGBT are recalled in Table 5.5.  

 
In Figure. 5.8 the number of cycles that an IGBT would endure 

depending on junction temperature swing is presented for different physical 
models. The line made up of squares represents the lifetime estimation 
provided by the LESIT equation (Eq. 5.26) for an average junction temperature 
of 125 ºC and different junction temperature deltas. The line made up of circles 
represents the lifetime estimation made by Bayerer et al. [33] for an average 
junction temperature of 125ºC. The line made up of diamonds represents the 
estimation of the LESIT equation for an average junction temperature of 230 ºC, 
which is the average junction temperature of the degraded components. Finally, 
the rest of the data points represent the failures of the different IGBTs tested. It 
can be seen that the physical model from Eq. 5.26 is able to approximately 
estimate the RUL of the components at least in the order of magnitude. 

IGBT 

Type 1 2 3 4 5 6 7 

IR 710 704 500 400 300 400 328 

FUJI 1524 2100 2150 2803 5200 - - 

IXYS 5007 3186 2742 3200 3000 - - 

Table 5.5. Number of thermal cycles endured 
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Figure. 5.8. Lifetime vs. Delta Tj 

The results of the LESIT equation are shown in Figure. 5.9 after 
applying the method proposed to the real data coming out from the rainflow 
algorithm. The solid line represents the true accumulated damage of the 
component and the dots denote the predicted damage from applying the 
physics-based model. 

 
Figure. 5.9: Accumulated damage predicted by the physics-based model 
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It can be seen that the prediction for the physics-based model is not 
accurate enough, underestimating the damage caused to the component. 
However, it can be observed that it is able to estimate it within the same order 
of magnitude. This means that the model is able to replicate at a certain level 
the behavior of the ongoing degradation mechanism represented. 

The computation of the aforementioned data-driven algorithms allowed 
us to detect when the behavior of the signals was different from the one 
presented for the training and corresponding to the healthy state. The 
application of the multi-variate analysis discovered clear degradation patterns. 
Figure. 5.10 shows the residuals obtained for the lifetime of IR 4 IGBT for the 
different data-driven models. 

 
Figure. 5.10. Data-driven algorithm residuals for IR 4 

Figure. 5.10 shows that an abrupt change of the residuals was detected 
close to the end-of-life of the component, which indicates it is close to fail. 
However, such an abrupt change is a known problem for data-driven 
prognostics, as the signals are flat during most of the component life, thus 
showing a lack of relevant information for long periods of time. This problem is 
addressed here, through the mixture of both data-driven and physics based 
models. 
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After collecting the different “weaklearners” (e.g. the results of the data-
driven and physics based models application), the matrix for training the 
ensemble method was built. Columns contained the data for each 
“weaklearner”, e.g. the results from the application of the data-driven and 
physics-based models. Rows represented the values corresponding to a time 
window. The target of the algorithm was a column containing the associated 
RUL for each time window of the degradation process. Finally, the algorithm 
was trained and tested employing the LOO strategy. 

In order to study the performance of the predictions made by the hybrid 
ensemble model, the following performance indexes (PI) were selected: 
precision and accuracy, which are defined in Chapter 5.1.3.2. and in [49]. 
Attending to the equations of the indexes, the lower the value, the better the 
prediction is. A final index was also studied in order to compare the results of 
the prognostic algorithm with respect to the one from other researches [34]. 
This is the Relative Accuracy (RA), defined as: 

RA = 100 ∗ (1 − �RUL∗−RUL′�
RUL∗

)    (Eq. 5.30) 

Where, RUL* is the True RUL and RUL’ is the predicted RUL. The True 
RUL stands for the RUL obtained experimentally. The closer the RA value to 
100, the better the predictions are. 

5.2.4 Results of prognostic algorithms 
The prognostic method described was applied to the accelerated aging 

tests data. The method was separately applied to the data of 7 IR, 5 FUJI and 5 
IXYS IGBTs. The LOO methodology was employed during the whole testing 
process. The figures show the following parameters. The True RUL is the 
experimentally measured RUL, which is a decreasing straight line beginning at 
the total lifetime of the IGBT and finishing at the end-of-life of the component at 
0 remaining cycles. The Predicted RUL is the outcome of the algorithm, 
together with the lower and upper uncertainty boundaries. 

In order to test and validate the hybrid-ensemble methodology, initially, 
different tests were carried out on IR IGBTs dataset. The results can be seen in 
Figure. 5.11, where the data of 6 IGBT degradation trajectories were employed 
for training and the data from IR 4 was employed for testing.  
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First, the algorithm was tested with raw data from the experiments (the 
VCE, IC and TC variables were directly employed to train the ensemble, setting 
the RUL as the predictions’ target, without the processing done for the 
residuals), in order to demonstrate the capability of raw data for RUL prediction. 
The results can be observed in Figure. 5.11.a. The second tests consisted on 
testing the algorithm when training only with data-driven models. The results are 
shown in Figure. 5.11.b. Figure. 5.11.c shows the results when the algorithm 
was tested training it only with physics-based models. Finally, Figure. 5.11.d. 
contains the results when training the algorithm with both data-driven and 
physics-based models. Table 5.6 shows the PI indexes for the results of the 
previous tests. 

To begin with, observing Figure. 5.11.a and Table 5.6 it can be 
concluded that training the ensemble algorithm with raw data does not provide 
satisfactory results. The ensemble is unable to learn the degradation pattern of 
the IGBTs. Note the high error committed in the RUL prediction. Indeed, Table 
5.6 shows the highest precision and accuracy figures when raw data is 
employed. 

According to the figures of the predictions when data-driven or physics-
based models were employed (Figure. 5.11.b and Figure. 5.11.c), it can be 
concluded that the importance on the prediction is higher for the data-driven 
models. Table 5.6 shows better results when data-driven models, instead of 
physics-based models are only employed. Due to less amount of information 
available for the ensemble method, the algorithm prediction losses accuracy. 
This explains the wider uncertainty boundaries. 

Finally, it can be observed that the results of the hybrid-ensemble 
method are very satisfactory. It improves the performance over the unseen data 
when trained with both physics-based and data-driven sources of information 
(Figure. 5.11.d). This statement is confirmed by the figures shown in Table 5.6. 
The best prediction, which includes the two sources of information for the 
training phase (4th column), shows the lowest precision and accuracy figures 
compared to the rest of the predictions, together with the highest RA number. 

Note that the algorithm sometimes predicts negative RUL values, which 
would not have physical sense; however, they can be understood as an 

 



214 Prognostic Algorithms 

overestimation of the damage generated to the component under test, and thus, 
a prediction that the component lifetime should already be over. 

 

 

 

 

 

 

A final validation test was done in order to state which of the data-driven 
models provide more information about the degradation of the IGBTs. 
Therefore, tests were run with both physics-based and data-driven models, but 
leaving out one of the data-driven models each time. Results are shown in 
Table 5.7. The worst results were obtained when the degradation trajectories 
extracted by the ANN algorithm were left out. Thus, ANN is the best data-driven 
algorithm for collecting information about IGBTs degradation trajectories. In this 
sense, MD would be the worst algorithm. 

Following the results observed in this section, it can be concluded that 
the hybrid approach, thus, mixing the data-driven and physics-based models 
with the ensemble method, provides the best results. 

 

 Prediction without 
ANN 

Prediction without 
PCA 

Prediction without 
MD 

Prediction without 
SOM 

Precision  6.1539 4.4752 3.8526 5.2420 

Accuracy 2.9711 2.2082 1.9832 2.0965 

RA 62.6698 71.3462 74.44 66.0415 

Table 5.7. Average values of the PI for RUL prediction for IR 4 

 

 Prediction with 
raw data IR 4 

Prediction with data-
driven models 

Prediction with 
physics-based model 

Prediction with all 
sources of information 

Precision  5.0661 2.4731 3.1758 1.1216 

Accuracy 1.6161 0.8385 0.9174 0.3479 

RA 60.0661 82.1370 80.2555 92.3064 

Table 5.6. Average values of the PI for RUL predictions for IR4 
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(a) 

 
(b) 

 
(c) 
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(d) 

Figure. 5.11. RUL predictions for IR 4 only employing (a) raw data, (b) data-

driven models, (c) physics-based model, (d) data-driven and physics-based 

Following the previous results, it was decided to do the ongoing tests 
including both physics-based and all the data-driven models to test the 
ensemble on the remaining IGBT models. Table 5.8 and Figure. 5.12 gather the 
results of the final tests made with the algorithm regarding the rest of IGBTs.  

Figure. 5.12.a shows the results when the algorithm is trained only with 
IR IGBTs and testing it on IR6. Figure. 5.12.b shows the results when the 
algorithm is trained only with FUJI IGBTs and testing it on FUJI 4. Figure. 5.12.c 
shows the results when the algorithm is trained only with FUJI IGBTs and 
testing it on IXYS 4.  

Despite the good values obtained in Table 5.8, some conclusions can 
be extracted. Firstly, the predictions made to IR IGBTs are better than the ones 
for the other IGBT types. This might be explained due to the bigger number of 
available trajectories for the training phase on IR IGBTs. Following the LOO 
strategy, there are only 4 IGBT trajectories available for FUJI and IXYS IGBTs 
during the ensemble method training. Nevertheless, the obtained accuracy and 
RA values are acceptable.  

Finally, taking into account that the algorithm seemed to improve with 
more available data, we decided to include within the training matrix all the 
degradation patterns, independently from the IGBT type. In order to test this, 
the degradation patterns of all the available IGBTs, that is, the 16 degradation 
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trajectories from IR, FUJI and IXYS IGBTs, were included within the training 
algorithm, except for the IGBT being tested, IGBT IR 6 indeed. The results are 
shown on the 4th column of Table 5.8 and Figure. 5.12.d. It can be concluded 
that overall the precision and accuracy were not improved with respect to the 
training of data coming solely from the IGBTs of its type. This is the 
consequence of the differences between the trends followed by each IGBT 
type. However, it has been observed that a greater number of degradation 
patterns from the same IGBT type improve the performance of the ensemble.  

Given the scarce quantity of references regarding IGBT RUL 
predictions, it is difficult to compare the obtained results with other researches. 
However, in order to assess the goodness of the RUL predictions with the 
proposed ensemble method, precision values close to 1 and accuracy values 
around 0.3 were suggested in [49]. With respect to RA parameter, which 
employment is introduced in [34] for MOSFET RUL prediction assessment, 
values between 60 and 90 are found in good predictions. Therefore, we can 
confirm that the obtained values for the PI and the results of the predictions, 
overall, are very satisfactory.  

 PREDICTIONS IR 
6 

PREDICTIONS FUJI 
4 

PREDICTION IXYS 
4 

PREDICTIONS IR 6 MIX IGBT 
DATA 

Precision 1.0055 3.4904 3.6226 1.9165 

Accuracy 0.2143 0.5139 0.8938 0.5578 

RA 92.7160 93.1602 86.2144 82.9975 

Table 5.8. Average values of the PI for RUL prediction of IR 6, FUJI 4, IXYS 4 

and IR 6 with mixed data 
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(a) 

 

(b) 

 

(c) 
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(d) 

Figure. 5.12. RUL predictions for (a) IR 6, (b) FUJI 4, (c) IXYS 5 and (d) IR 6 

with Mixed data 

5.2.5 Conclusions of IGBT prognosis 
In this research, the problem of predicting the RUL of IGBTs has been 

addressed. Although IGBT lifetime models have been previously suggested, 
IGBT RUL prediction is still a major issue given the stochasticity of their 
degradation process. In this work, a hybrid ensemble algorithm was presented 
and tested. Other researches [34, 50] rely on experimentally obtained 
degradation models and Particle Filter (PF) approaches to predict the RUL of 
semiconductors. The advantage of the proposed method is that small amounts 
of data are required. However, its performance decreases with components that 
do not follow the set trend.  

The advantages of the algorithm proposed in this work are that it is able 
to “adapt” to the singularities of each IGBT type, providing accurate RUL 
predictions and the uncertainty boundaries related to them. However, it requires 
a bigger amount of data to be trained. 

The goodness of the selected methodology can be concluded after 
analyzing the results. The hybrid ensemble has demonstrated its validity in 
predicting the RUL of IGBTs with information provided by physics-based and 
data-driven models. Moreover, the algorithm improves its performance when 
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more information and degradation patterns become available. Therefore, the 
algorithm is able to “learn” the degradation behavior for each IGBT type. The 
algorithm has been successfully validated through the development of different 
tests, and its validity for IGBT RUL prediction has been proved. Thanks to the 
hybridization of the data sources, the performance of the algorithm is boosted.  

To sum up, a hybrid ensemble based on the “Bagging” method for direct 
RUL prediction of IGBTs has been proposed. This model mixes the information 
coming from physics-based and data-driven models. The problem of assessing 
the uncertainty associated with RUL prediction has also been addressed. The 
performance of the method was analyzed using performance metrics. The 
hybrid model was tested on experimental data from accelerated aging tests of 
IGBTs. The satisfactory results support the employment of the method on a 
PHM system.  

5.3 Conclusion of prognostic algorithms 
In this Chapter, the results of the accelerated aging tests were 

employed to develop the prognostic algorithms for RUL estimation. The data of 
accelerated aging tests was employed for training of the algorithm in the case of 
IGBTs, and for validation of the algorithms in both cases for capacitors and 
IGBTs.  

The obtained results were satisfactory, fulfilling the statements required 
for the PHM system stated in Chapter 1 and the work claimed to be beyond the 
state-of-the-art in Chapter 2. The predictions have been provided with 
uncertainty boundaries and the algorithms are able to take into account the 
varying operating conditions.  

A still pending issue would be the testing of the suggested hardware 
and prognostic algorithms on a real FEV on-board application. This would imply 
porting the algorithms into a portable device with its limitations of memory and 
data processing. However, these topics are left out of the present work, due to 
the lack of a testing platform for the final system, although the final 
implementation of the algorithms should take into account these facts.  
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Chapter 6 

6 Research Findings and 

Future Work 

In this chapter, the main research findings will be collected and 
summarized. The contributions made to the state-of-art will be compiled as well.  

6.1 Findings of the investigation 
Initially, the background on different PHM systems development was 

reviewed. It was stated that no examples on the automotive industry are publicly 
available, although examples referring to military and aerospace applications 
were found. The foundation of the PHM Society in 2009 showed the increasing 
interest that is arising around monitoring systems.  

Then, the state-of-the-art for reliability analysis of components and the 
evolution towards prognostics was presented. A general description and the 
advantages of prognostic methodologies were explained.  

A final introduction to the methodology that has been followed was 
done. All the previous information, allowed us moving to the chapters containing 
the information on the implementation of the PHM methodology on the FEV 
powertrain. 
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The findings of the developed investigation are summarized for each 
chapter.  

6.1.1 Regarding the State-of-the-art 
• Real cases of PHMS implementation were analyzed. PHMS were 

found out to be at an infant stage. The few real applications observed 
are focused on safety critical industries, such as aerospace and 
military. The main reason is the initial high costs associated to its 
development with respect to research on sensory and data 
acquisition systems and advanced algorithms. No real applications 
were found on the automotive industry, although an increasing 
amount of patents in the recent years point to a great interest to 
PHMS implementation in the near future. 

• Power Electronic systems reliability was analyzed. Power electronic 
systems are a good candidate to employ PHMS, given the failure rate 
of some of the components. Despite the lack of public data, this 
perception has extended to FEV consumers, which are concerned 
about their reliability and safety. Following the reports of industry 
based surveys and HEMIS project results, the electrolytic capacitor 
and semiconductor devices were selected to be further studied. 

• In order to study the reliability and the degradation process of 
components, accelerated aging tests are a common practice in the 
industry. Different aging stressors are proposed (thermal, electrical, 
mechanical, etc.) depending on the component application. 
Accelerated aging tests are suggested for failure mechanism and 
failure precursor parameter identification, as well as, operating data 
collection. Data collected from accelerated aging tests is employed 
for algorithm development. 

• A pending ability to be reviewed of PHMS is Prognosis. Prognosis is 
the ability of assessing the health state of components and predicting 
its RUL. Different prognostic approaches including physics-based, 
data-driven and hybrid were exposed. The selection of the approach 
depends on the data and information available. Different 
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methodologies were suggested in literature for electrolytic capacitor 
and IGBT prognosis. However, some improvements to the suggested 
methodologies were observed.  

6.1.2 Regarding the Failure Modes and Failure 
Precursor Parameters on electrolytic capacitors 
and IGBTs 

The physical structure of components was reviewed. Then, the most 
reported failure mode and mechanisms were analyzed for both electrolytic 
capacitors and IGBTs.  

• Electrolytic capacitors mainly degrade because of thermal-stresses, 
producing the dry-out of the wet electrolyte. This produces an 
increase of the ESR and a decrease of the capacity, thus, increasing 
overall losses, and finally, system malfunction. 

• IGBTs degrade due to thermally activated induced fatigue stresses, 
worsening with higher junction temperature variations. IGBT failure 
mechanisms range from increased losses, to short-circuit or open 
circuit. The main failure mechanisms are package related failures, 
bond-wire lift-off and die-attach degradation.  

The conclusions for the analyzed failure precursor parameters were: 

• Capacity and ESR were selected to be monitored for electrolytic 
capacitor degradation assessment. In order to capture the 
environmental stressors, the surface temperature was also 
suggested. 

• TC, IC, VCE, VG and IG variables were selected to be monitored for 
IGBT degradation assessment. Nevertheless, several researches 
claim that a small variation of the signal was observed and accurate 
measurement was required. 
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6.1.3 Regarding the Accelerated Aging Tests 
• The hardware architecture to collect data for both laboratory 

experiments and FEV onboard monitoring were exposed. The 
accuracy of the measurement systems was also studied. The 
selected sensors were proved to properly assess the degradation of 
components. The designed hardware for onboard monitoring was 
successfully tested on laboratory environment. 

• Thermal accelerated aging tests were performed on electrolytic 
capacitors from KEMET. The tests proved the results reviewed, an 
increase of the ESR and a decrease of the capacitance were 
observed. Useful degradation data and patterns were collected for 
algorithm development.  

• Electrothermal accelerated aging tests were performed on IGBTs. 
The tests proved a variation due to the degradation of the VCE signal 
for a given IC and TC values for the three different IGBT types. The 
measurement of the discrete variables VCE,SAT and VGE,TH was proved 
to provide useful information as well. However, owing to the different 
measurement process they were not suggested for a final system. In 
short, an accurate measurement of the three parameters (TC, IC, VCE) 
was identified to allow assessing the health state of IGBTs.  

• The failure mechanisms of IGBTs were analyzed through destructive 
testing. The results of the degradation were observed with a LEICA 
optic microscope. The images show different consequences 
depending on the IGBT type. Die-attach degradation and cracks on 
the die were observed. The large junction temperatures produced 
severe damages on the components. Thus, it is assumed that in a 
nominal range of variation, different degradation mechanisms could 
also be induced, such as bond wire lift-off, which was not observed in 
this investigation. Consequently, the most relevant failure modes 
observed are package-related failures due to mechanical fatigue 
stresses. 
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6.1.4 Regarding the Prognostic Algorithms 
Once the degradation data of the accelerated aging tests became 

available, the development of the prognostic algorithms was addressed. 

• A Particle-Filtering algorithm (PF) was selected for RUL prediction of 
capacitors. The tests performed on the collected data from 
accelerated aging tests showed that the model is able to accurately 
predict the RUL. Consequently, the algorithm is valid for 
implementation on a PHMS.  

• A hybrid-ensemble of physics-based and data-driven algorithms was 
implemented for IGBT RUL prediction. The ensemble of different 
data sources enriched the model and boosted its performance. The 
training and validation phase done with accelerated aging tests data 
and following the LOO strategy, suggest that the algorithm is able to 
accurately predict the RUL of components when fed with enough 
data.  

Hence, the final outcome of this research work shows that the followed 
methodology for PHM implementation allows predicting the RUL of 
components onboard a FEV. The steps of the followed methodology are: 

o Identification of the main failure modes and mechanisms. 

o Identification of the failure precursor parameters. 

o Development of onboard systems for failure precursor parameter 
monitoring. 

o Development of accelerated aging tests for experimental data 
collection. 

o Development of the prognostic algorithms. 

o Testing of the algorithms on the collected experimental data.  

6.2 Future Work 
In this work the implementation of a PHM methodology for RUL 

prediction of most critical components of FEV powertrain is addressed. 
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However, certain aspects of the research are still pending and could be further 
investigated in future research works.  

• A first major issue arises with respect to cost analysis. PHM systems 
have been implemented within safety critical applications, where 
costs are a secondary factor when introducing safety improving 
components. A detailed costs analysis should be carried out for PHM 
system design. The costs analysis should take into account the costs 
associated to accelerated aging tests, as well as the equipment and 
the expert knowledge required for prognostic software development. 
Finally, the advantages and cost savings due to the PHM 
implementation should be also analyzed. Cost saving related to the 
ability of maintenance planning and abrupt stoppage avoidance 
should be studied. Indeed, a detailed costs analysis would help to 
take management decisions. 

• The implementation of PHM systems in the future should point 
towards Prognostic and Health Management systems. Fault 
management, including detection, diagnosis and prognosis should be 
included as a whole. As well as the analysis of the entire lifecycle of 
the component from its design phase to disposal.  

• A pending issue regarding PHM implementation is the porting of the 
algorithms into portable computer devices for onboard analysis. The 
increased complexity of the prognostic algorithms developed in 
powerful PCs, makes it difficult to implement the algorithms into 
state-of-the-art portable microcontrollers such as the ones employed 
in automotive applications. In the HEMIS project, the PF algorithm 
was partially tested within a Linux based low cost portable computer 
(Beagle Board). However, the porting of the ensemble algorithm for 
IGBT was unsuccessful. Further research on algorithms porting 
should be done.  

• Testing of the suggested sensory systems and algorithms should be 
done on a real FEV in order to fully validate the PHMS and analyze 
its industrialization possibility. 

 

 



 

 

 

7 I. Appendix A: 

Introduction to Reliability 

Engineering 

7.1 Reliability Engineering 
Reliability engineering covers a wide range of topics concerning items 

lifetime. Due to historical misleading definitions, lack of proper documentation 
and difficulties on formulation, disparate views of the problem have been given.  

The modern meaning of reliability comes from the World War II. The 
U.S. military meant by reliability “that a product would operate when expected”, 
which is nowadays more related to “mission readiness”. During the WWII big 
issues arose from the inherent unreliability of electronics and fatigue issues, 
due to the new manufacturing processes. As a result, major effort was put by 
the Department of Defense (DoD) into improving the reliability and the quality of 
the products in the whole manufacturing process and supply chain. Later, that 
philosophy was exported by J. R. Juran and W. E. Deming to Japan and 
created the so-called “Japanese quality revolution”, applying the principles of 
“total quality management”. In 1952, the Advisory Group on Reliability of 
Electronic Equipment (AGREE) was set in the US. AGREE concluded that in 
order to break with the high ownership costs due to low reliability, disciplines 
must be laid down as integral activities in the development cycle. This mainly 
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implied increasing the component testing hours prior to selling. The AGREE 
report was set as the US Military Standard (MIL-STD 781). [3] 

In [1] a common definition of reliability is provided: “Reliability is the 
ability of an item to perform a required function under stated conditions for a 
stated period of time”.  

It can be derived from the definition that reliability is closely related to 
the probability that an item (it can be a system, product, subsystem, assembly, 
component, part, etc [2]) will perform its intended function for a specified interval 
under stated conditions. In classical reliability, a single product, unit, or 
component is generally considered to have two states, operational and failed. In 
classic reliability, R(t), is the probability that the product is in the operational 
state up to time t. At time 0, the product is assumed to be good, and the product 
must eventually fail, so R(0) = 1, R(∞) = 0, and R(t) is a non-increasing function. 
If there is a mission with duration T, the classic reliability for that mission is 
R(T). It can be expressed mathematically as: 

𝑅(𝑡) = Pr{𝑇 > 𝑡} = ∫ 𝑓(𝑥)𝑑𝑥∞
𝑡      (Eq. 1) 

Where, f(x) is the failure probability density function (pdf) and t is the 
length of the time period. Upon the previous probability model, a reliability 
theory was built, which meant that measures (metrics) for reliability could be 
obtained. In [4], several common metrics employed for reliability are presented. 
These are the failure rate, the mean time to failure (MTTF), the mean time to 
repair (MTTR) and the availability. 

The failure rate of an item is an indication of the proneness to failure of 
the item after time t has elapsed. The shape of bathtub curve (Figure 7.1) is 
suggested in reliability to plot the life cycle of an item. The life cycle is divided 
into three different periods, the burn-in, the useful life and the wearout period. 
Failures occurring on the burn-in period are considered as infant mortality, 
usually related to defects of the manufacturing process. If the item survives that 
period, the failure rate stabilizes at a level where it remains for a long period 
until the wear-out process begins. In the wear-out period, it is assumed that the 
item has finished its operative life and the failure rate increases exponentially. 
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The failure rate (𝜆(𝑡)) of an item is related to the reliability function R(t) 
from Eq. 1 as follows, 

𝜆(𝑡) =  limΔ𝑡→0
𝑅(𝑡)−𝑅(𝑡+∆𝑡)

𝑅(𝑡)∆𝑡
= − 1

𝑅(𝑡)
𝑑𝑅(𝑡)
𝑑𝑡

                               (Eq. 2) 

Where ∆𝑡 is the time interval, and it is considered that R(0) = 1, thus, 

𝑅(𝑡) =  𝑒−∫ 𝜆𝑡0 (𝜏)𝑑𝜏                                                                (Eq. 3) 

In many reliability applications, the failure rate is considered 
independent from time, and thus, the resulting equation is, 

𝑅(𝑡) =  𝑒−𝜆𝑡                                                                         (Eq. 4) 

A common way to express the failure rate is from the estimation of the 
mean number of failures per unit, which is called failures in time (FIT). 
Therefore, 

1 FIT = 10−9 failures/hour                                                    (Eq. 5)  

The MTTF gives the average time in which an item operates without 
failing. It is largely employed to compare different system designs. Its function 
with respect to the reliability function is described as, 

𝑀𝑇𝑇𝐹 =  ∫ 𝑅(𝑡)𝑑𝑡+∞
0                                                             (Eq. 6) 

 

Figure 7.1. Bathtub curve 
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If the failure rate is considered constant in time, the MTTF is 1/𝜆. The 
MTTR is the mean time it takes to fully restore the system to a given state. It 
depends on the maintainability of the item, such as proper fault diagnosis, 
replaceable components, etc. 

Finally, availability is defined as the probability that a system will be 
functioning at a given time. If the system is repaired each time to an “as good as 
new” state, the average availability is, 

𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =  𝑀𝑇𝑇𝐹
𝑀𝑇𝑇𝐹+𝑀𝑇𝑇𝑅

                                                      (Eq. 7) 

As a result, increasing the MTTF and decreasing MTTR improves 
availability, and for industrial applications, this means an increase of production. 
In the previous statements, we have considered the failure rate as a given 
parameter; however, it has been a major historical issue the discovery of this 
quantity. Indeed, reliability prediction has become an engineering subject itself.  

While some people view reliability prediction as art more than science, 
others think they are useless or dangerous, and still others believe them to be 
indispensible to understanding reliability and formulating safety and business 
decisions. A major reason for these disparate views is the inconsistency among 
prediction methods, lack of proper documentation for the processes, and failure 
to quantify data sources and uncertainties [1].  

First attempts to reduce the uncertainty and improve reliability prediction 
were based on reliability handbooks. They are employed for components 
showing constant failure rates. The failure rates are given summarized on 
tables arranged by part type. Multiplicative factors are provided depending on 
the environmental conditions to which the system is submitted. Therefore, in 
order to make a prediction, a complete description of the hardware is required. 
It is also required to know the intended functions and the operating and 
environmental conditions. The term given for the description of the operating 
and environmental conditions that the system must endure is mission profile. 
The mission profile will vary depending on the application, i.e. it will not be the 
same mission the one assigned to a space shuttle, than the one of a road 
vehicle. The common mission profile adopted for road vehicles in Europe has 
been the New European Driving Cycle (NEDC) (Figure 7.2). It shows the 
variation of the speed with respect to travel time for a typical journey of 
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European citizens. It must be noticed that knowing the previous curve, 
assumptions on the degradation stressors affecting the powertrain of a vehicle 
could be made and thus, lifetime predictions. Therefore, mission profiles are 
employed as a reference for component reliability testing. 

 
 
 

 

 

 

 

 

 

 

 

Reliability prediction of electronic equipment using handbooks can be 
traced back to MIL-HDBK-217, published in 1960, which was based on fitting 
the curve of a mathematical model to historical field data to determine the 
constant failure rate. Traditional reliability prediction methods for electronic 
products include Mil-HDBK-217, 217-PLUS, Telcordia, PRISM and FIDES. 
However, posterior studies arrived to the general consensus that they should 
never be used, as they provide misleading predictions which can result in poor 
designs and logistics [5]. 

Handbook based reliability prediction was overcome when in 1992, the 
U.S. Army Material Acquisition Activity (AMSAA) and the Center for Advanced 
Life Cycle Engineering (CALCE) spoke to the Department of Defense (DoD) 
about the problem of the current standards. After that, the AMSAA and CALCE 
started working with the IEEE Reliability Society to develop a new Standard for 
Reliability Prediction of Hardware. The outcome from that partnership was the 
IEEE Std 1413, which proposes a framework with guidelines for the correct 
implementation of electronic hardware reliability prediction [1, 2]. The purpose 
of the standard is to “identify the elements for an understandable and useful 

 

Figure 7.2. New European Driving Cycle 
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reliability prediction”, so that a prediction in compliance with the standard will 
identify critical pieces of information necessary for a user of the prediction to 
determine the accuracy, uncertainty, and, ultimately, value of the prediction.  

All in all, apart from reliability predictions, different methodologies have 
been proposed in order to develop items with high reliability and safety levels. 
Not only it is taken into account the final item lifetime prediction, but it is 
influenced throughout the whole development process (lifecycle) of the item to 
obtain a certain degree. One of these is the Reliability, Availability, 
Maintainability and Safety (RAMS) methodology. Largely employed in the 
railway industry for safety critical applications, it is the fundamental of several 
standards. The aim of these standards is not setting availability, reliability or 
maintainability targets, but to address the system itself, including test and 
assessment requirements, and associated tasks and documentation.  

One of the key points is the design of failure analysis, trying to anticipate 
them and mitigate the consequences of hazardous events. To derive the 
requirements in an effective manner, system engineering-based risk 
assessment and mitigation logic are used. Widely employed tools addressing 
failure and risk discovery are: Reliability Hazard Analysis (RHA), Fault Tree 
Analysis (FTA), Failure Mode and Effects Analysis (FMEA), Functional Hazard 
Analysis (FHA), etc. 

One of the reference standards in the automotive industry is the ISO 
26262 employed to comply with needs specific to the application of electrical 
and electronic (E/E) system within road vehicles. At the moment, there is not a 
specific standard for FEV electric and electronic systems. The standard applies 
to all activities during the safety lifecycle of safety-related systems. Some of the 
points content within the standard are shown to serve as a reference. 

The ISO 26262 provides, 

• an automotive safety lifecycle including: the management, the 
development, the production, the operation, the service, and even 
decommissioning; 

• an automotive-specific risk-based approach to determine integrity 
levels (Automotive Safety Integrity Levels (ASIL)); 
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• uses ASIL to specify applicable requirements to avoid unreasonable 
residual risks; 

• requirements for validation and confirmation measures to ensure an 
acceptable risk level; 

• requirements for relations with suppliers. 

7.2 References 
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8 II. Appendix B: FEV RAMS 

Analysis 

An important task of reliability engineering is risk and hazards events 
assessment in case of failure of the systems, in order to counteract and 
diminish its negative effects. Reliability, Availability, Maintainability and Safety 
(RAMS) analysis is an efficient tool to discover and assess these critical 
functional failures. A RAMS analysis of the FEV powertrain was developed in 
the HEMIS project, in which the author was involved, and expert knowledge 
was required for criticality assessment of the failures. The reader can enlarge 
the content of this chapter accessing the public deliverables of the project 
(www.hemis-eu.org) available until 2019. Here, a brief introduction and a 
general idea of the methods employed is presented. 

The final point of this Appendix deals with the theory of Monte-Carlo 
Simulations. Monte-Carlo simulations have been employed for reliability and 
availability analysis in safety critical applications, such as, nuclear power plants 
and aerospace systems. Monte Carlo simulations were employed in order to 
assess the improvement on Reliability and Availability when installing a PHMS 
on a FEV. The results are found on the publications Appendix within the 
conference paper called “Assessment of the improvement of the safety and 
reliability embedding an Electrical Powertrain Health Monitoring in a FEV”, by B. 
Sedano et al. 
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8.1 Introduction 
Reliability, Availability, Maintainability and Safety (RAMS) techniques 

have been extensively applied to the electro-technical engineering field. RAMS 
techniques allow reliability engineers to forecast failures from the observation of 
operational field data [6, 16]. This study considers the possible applications of 
RAMS techniques to the case of FEV functional failures, focusing on the FEV 
powertrain.  

RAMS analysis is well-structured, usually based on standards and 
follows systematic procedures. Different steps are required prior to the RAMS 
analysis, which are, the definition of the architecture of a generic FEV, the 
preliminary hazards analysis (PHA), the establishment of a tolerable hazard 
rate, the definition of safety goals, and finally, carrying out the RAMS analysis 
and apportionment. In this case, a Monte-Carlo simulation was also run to 
assess the improvement of reliability with the implementation of the PHM 
system as a risk reduction methodology. 

The reference standard in automotive industry for electric and electronic 
(E/E) systems design within road vehicles, the ISO 26262, sets the steps 
through the whole lifecycle of a product. The so-called V development model 
(Figure 8.1) is employed, which comprises different actions to be followed 
during each phase of the lifecycle. It also establishes the tolerable hazard rate 
of new systems depending on the required safety level. 

Following the V model implicit in ISO 26262, the risk analysis of a new 
system belongs to the concept phase. One way to analyze it is through the 
RAMS analysis. The purpose of the RAMS analysis is to assess and determine 
the most critical components within a system and its relationships with respect 
to the functional safety.  
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The next points are followed for the development of a RAMS analysis, 
the definition of a generic architecture, the development of a Preliminary Hazard 
Analysis (PHA) and finally, the RAMS apportionment is developed through 
established tools, such as FTA, FMECA and Ishikawa diagrams employed for 
failure criticality analysis. First of all, the tolerable hazard rate must be assigned 
with respect to the ASIL levels. 

8.1.1 Tolerable Hazard Rate assignment to ASIL 
The approach for probabilistic Safety Integrity Level (SILs) can be found 

in a number of standards, depending on the environment, such as EIC 61508 
(generic), IEC 61513 (nuclear power), IEC 62061 (machinery), and EN 50129 
(railway). These domains rely on the concept of safety functions as a 
mechanism of risk reduction. For the automotive industry, however, safety 
functions are not easily distinguished from non-safety functions. Hence in ISO 
26262, which is the automotive interpretation of IEC 61508, no quantitative 
targets are associated with the ASILs. 

The tolerable hazard rate (THR) is a rate of occurrence of dangerous 
events that is deemed to be acceptable from a piece of equipment in order to 
achieve overall safety targets. Although this concept is used in EN 50129, THR 
in the form of quantified safety targets for each particular railway application are 

 

Figure 8.1. ISO 26262 V Process model 
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the responsibility of the relevant railway authority, and are not defined by the 
standard. However, THR is not used in ISO 26262, so a proposed mapping 
between ASIL, SIL and THR (shown in Table 8.1) was derived from a risk 
model including both systematic and random faults, taking account of 
controllability and severity aspects, based on safety targets described by Evans 
and Moffett [2]. 

ISO 26262 IEC 61508 THR 

ASIL A SIL 1 10−5 ≤ 𝑇𝐻𝑅 ≤ 10−4 

ASIL B SIL 2. 10−6 ≤ 𝑇𝐻𝑅 ≤ 10−5 

ASIL C SIL 3 10−7 ≤ 𝑇𝐻𝑅 ≤ 10−6 

ASIL D SIL 3 10−8 ≤ 𝑇𝐻𝑅 ≤ 10−7 

Table 8.1. Mapping between ASIL of ISO 26262, SIL of IEC 61508, and THR 

8.2 RAMS Analysis 
This analysis is based on the risks of a FEV failure. Evidently, the risk of 

a failure depends on many other variables different from the vehicle (driver 
behavior, environmental conditions, or traffic situations), which would add to the 
total risk level of a crash; but only FEV systems will be considered in this 
analysis. 

The RAMS analysis also allows defining the need for hazard mitigation 
techniques, when the functional failures overcome a certain ASIL level. Initially, 
the definition of a generic architecture is required in order to properly assess the 
functions and relationships between the different items within the FEV.  

8.2.1 Generic architecture 

8.2.1.1 Background 

The definition of generic vehicle architecture needs to be defined. It 
should describe the features and functions common to FEVs and provide a 
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general overview. The relationships between the functions should also be 
included.  

The generic electric vehicle architecture that is proposed must therefore 
reflect a balance between the desire to make the analysis generic (and 
therefore high level) whilst also considering sufficient detail to make the RAMS 
analysis practicable. It is anticipated that the architecture may need to be further 
developed in the course of the RAMS analysis activities. 

Some assumptions must be made about the nature of the vehicle in 
order to describe the architecture at a level that is suitable for analysis. Firstly, it 
is assumed that the target application is probably a near-future, high-end 
passenger vehicle. Although the physical and electrical architectures of 
alternative powertrain vehicles vary widely, the focus is “fully electric vehicles” 
(FEVs). In the context of the European Green Cars Initially, FEVs are defined 
[6] as: 

• electrically-propelled vehicles that provide significant driving range on 
purely battery-based power. 

• including vehicles with range extenders. 
• including small light-weight passenger and light duty vehicles. 

The FEV concept therefore includes series hybrid architectures and 
vehicles equipped with other energy sources such as fuel cells, as well as the 
purely battery powered.  

At subsystem level many options and technologies are available. 
Electrical machines are available in many topologies: examples used in 
automotive traction applications include induction, DC brushed, synchronous 
permanent magnet, and synchronous brushed motors. Switched reluctance 
machines are also under investigation for automotive traction applications. 
Power ratings for automotive traction machines range from less than 5 kW to 
more than 200 kW for electric and hybrid electric passenger cars [3]. Traction 
currents are delivered in DC form between energy sources and inverters, but in 
three-phase form between machines and inverters.  

Similarly, a wide variety of operating voltages (up to 650 V [4]) and cell 
chemistries (e.g. lead acid, lithium ion, nickel metal hydride) have also been 
deployed for automotive traction applications.  
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Consequently, the initial assumptions that have been made concerning 
the electric powertrain are: 

• traction power will be provided only via PMSM electrical machines, 
and not mechanically from any on-board energy generator (such as 
an ICE); 

• the electrical machine could be operated as a traction motor, or as a 
generator under braking conditions; 

• the vehicle could contain at least one such machine, but possibly 
more (e.g. one in each wheel, or one for each axle).  

• electrical energy storage is provided by a high voltage traction 
battery, as this is the most commonly used solution; 

• energy may be obtained from the following sources: 
o the electricity grid (by conductive or inductive charging – note 

that the latter may be achieved by wireless power transfer, during 
which the vehicle may active but temporarily stationary above a 
source coil embedded in the road, or possibly even while in 
motion); 

o energy recovery during regenerative braking; 
o possibly from an on-board energy generator (which could be an 

ICE or turbine coupled to a generator, or a fuel cell system 
generating electricity). 

8.2.1.2 Definition 

The generic electric vehicle architecture that is proposed must therefore 
reflect a balance between the desire to make the analysis generic (and 
therefore high level) whilst also considering sufficient detail to make the RAMS 
analysis practicable.  

As it is not practicable to address the entire vehicle, this analysis 
focuses on those elements of the system that are important for the PHMS and 
the electric powertrain components that this system is intended to monitor. 

8.2.1.2.1 Functional view 

A functional view of the adopted vehicle architecture is illustrated in 
Figure 8.2, which focuses on those elements of the vehicle that are important 
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for the PHM system and the electric powertrain functions. In Figure 8.2 the 
Powertrain Domain is shown in great detail. Relevant interfaces, both internal 
and external to the vehicle, are also shown. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Interfaces between the vehicle systems and the driver are split into four 

groups, depending on which of the functional domains is involved. These are:  

• Driver Interfaces: Representing interactions via the Instrument 
Panel with the Body Electronics Domain (driver inputs include 
controls for climate, window position, lighting etc.) 

• Driving Demand: Representing driver input to functions associated 
with the Chassis and Safety Domain, indicated by the steering wheel, 
brake pedal and ACC selector switches. 

• Powertrain Demand: Representing Driver input to functions 
associated with the Powertrain Domain, indicated by the Driver via 
the accelerator pedal and the PNRD selector. Sensor signals 

 

Figure 8.2. Generic electric vehicle architecture: functional view 
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reflecting the pedal positions and PNRD selector status are made 
available on the Powertrain Domain Network. 

• Infotainment Interfaces: Mechanisms for receiving input from the 
Driver and the Passengers and providing infotainment services to the 
Driver and Passengers. 

A deeper analysis of electrical transmission is required for a proper 
assessment of the failures. In this sense, the components belonging to the 
electrical transmission were further extended. 

8.2.1.3 Electrical Transmission 

A more refined description of the architecture of the Electrical 
Transmission identified in the generic vehicle architecture is described now.  

8.2.1.3.1 Electrical Transmission Architecture 

The generic Electrical Transmission, illustrated in Figure 8.3, includes 
one or more traction machines, power electronics to drive the traction 
machine(s), and local controls for the power electronics. Associated 
components include the HV DC Power Bus connecting the Electrical 
Transmission to the Energy System, the HV AC Power Bus connecting the 
traction machine to the power electronics, and various sensors that provide 
status information for control and monitoring of the traction machine and power 
electronics. 

In the analysis that follows the HV AC Power Bus is regarded as part of 
the Electrical Machine, and the HV DC Power Bus is regarded as part of the 
Inverter. 
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8.2.1.3.2 Electrical Transmission Requirements 

The basic requirements of the automotive Electrical Transmission in 
order to provide acceptable driving performance are [11], [12]: 

• high torque at low speed, for vehicle starting and hill-climbing. 
• high power at high speed for cruising. 
• bi-directional torque, to allow the vehicle to be driven forwards or 

backwards. 
• operation in driven (motor) and regeneration (generator) mode. 
• very wide speed range, including both constant-torque and constant-

power regions. 
• quick torque response. 

Other factors that influence market acceptance for a specific automotive 
design solution include: 

 

Figure 8.3. Expanded view of Electrical Transmission from architecture functional 

view 
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• high efficiency over wide speed and torque ranges, as well as when 
used as a generator (in regenerative mode), in order to minimize 
energy consumption and maximize vehicle range. 

• high reliability and robustness over a wide range of vehicle operating 
conditions, as well as a degree of fault tolerance in order to ensure 
customer satisfaction and minimize maintenance requirements. 

• high power density (i.e. small size and low weight) in order to simplify 
vehicle packaging, minimize energy consumption, and maximize 
range. 

• reasonable cost, in order to ensure that the Electrical Transmission is 
affordable. 

Different machine topologies offer different performance characteristics, 
as well as limitations that may be both technical and economic. Different 
machine designs also require different power electronics topologies and control 
algorithms. Thus, both the type of machine and its associated power converter 
and control technologies matter on the cost/benefit and performance trade-offs 
that must be carried out for any particular Electrical Transmission design. 

8.2.1.4 Electrical Machine components 

The carried out analysis aims to be as generic as possible, as it is not 
focused on a specific vehicle or even a narrow class of vehicles. However, at 
lower levels of description it becomes necessary to become more specific about 
the design details. In particular, electric motor/generator designs are wide-
ranging and constantly evolving.  

A view showing decomposition of a generic Traction Machine is shown 
in Figure 8.4, which illustrates its lower level subsystems. 
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The main differences between different motor types relate to the 
implementation of the Rotor Magnetic Field Source, here we consider the 
Permanent Magnet Synchronous Machine (PMSM), provided its high 
application on automotive drives: 

• PMSM: In the PMSM, permanent magnets are used to provide a 
permanent magnetic field. In drive mode the permanent magnetic field 
of the rotor magnets interacts with the stator magnetic field (created by 
drive currents in the Stator Windings), causing the Rotor Shaft to rotate. 
In regeneration mode, the rotating magnetic field of the spinning Rotor 
Magnets induces currents in the Stator Windings.  

The other components of the Traction Machine are similar for different 
machine types considered. Consequently, most of the failure mechanisms are 
also common. 

8.2.1.5 Power Electronics components 

A view showing the composition of a generic three-phase inverter 
(DC/AC) is shown in Figure 8.5, illustrating its lower level subsystems. 

  

 

Figure 8.4. Hierarchical view of generic Traction Machine 
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Based on a review of inverter technologies used in existing EV/HEV 
vehicles, the basic building blocks of Inverters are power semiconductor 
switches, mostly MOSFETs and IGBTs as explained in Figure 8.5. 

The subsystems comprising the Inverter are the following, as shown in 
Figure 8.5 are the DC Bus Link Capacitor, Terminals, Housing, Inverter 
Instrumentation and Inverter Gates. The Inverter Gates are the gates of the 
switching devices (IGBTs) of the Inverter.  

8.2.2 PHA 
The PHA is carried out by reviewing the mission of a system (i.e. its high 

level functionality), together with its operating environment. In this way it is 
possible to identify system hazards when the mission is not fulfilled. As the PHA 
is intended to be systematic and repeatable the use of guidewords is 
encouraged.  

The PHA distinguishes between system hazards and failures, and the 
system under analysis is to be considered without any safeguards or 
mitigations. Furthermore, implementation details are not relevant for this type of 

 

Figure 8.5.Hierarchical view of generic Power electronics 
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study. The defined generic architecture forms the basis of the PHA. The focus 
of this analysis is to identify hazards.  

The high level functions of the systems are specified, based on the 
architectural description, in order to identify functional failures that could result 
in hazards. The hazard identification was carried out in two parts: the first part 
identified hazards related to functional failures of the system; the second part 
identified non-functional hazards that are inherent in the novel technologies 
assumed to be used in the vehicle.  

The objective of the PHA is to translate system hazards into design 
constraints, or functional safety requirements. Once the hazards were identified, 
each was assessed in terms of their potential consequences (“severity”), 
likelihood of occurrence (“exposure”) and opportunities for the driver to 
influence the outcome (“controllability”). A risk graph is then used in order to 
establish and classify the associated risks in terms of the Automotive Integrity 
Levels (ASILs) 

The preliminary hazard analysis (PHA) is normally carried out by 
reviewing the mission of a system, i.e. its high level functionality, together with 
the environment around the system and its uses. 

8.2.2.1 Hazard classification 

The identified hazards were classified using the ISO 26262 risk criteria 
[6]0, which are briefly outlined below.  

8.2.2.1.1 Severity 

The ‘severity’ of potential harm shall be estimated based on a defined 
rationale for each hazardous event. The severity shall be assigned to one of the 
severity classes S0, S1, S2 or S3 in accordance with Table 8.2 below. 
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Severity class S0 S1 S2 S3 

Description No injuries 
Light and 
moderate 
injuries 

Severe and 
life- 

threatening 
injuries 

(survival 
probable) 

Life-
threatening 

injuries 
(survival 

uncertain), 
fatal injuries 

Table 8.2. Classification of severity of functional safety hazards 

The severity class S0 may be assigned if the hazard analysis 
determines that the consequences of a malfunctioning behavior of the item are 
clearly limited to material damage and do not involve harm to persons. If a 
hazard is assigned to severity class S0, no ASIL assignment is required. 

8.2.2.1.2 Probability of exposure 

The ‘probability of exposure’ of each operational situation shall be 
estimated based on a defined rationale for each hazardous event. The 
probability of exposure shall be assigned to one of the probability classes, E0, 
E1, E2, E3 and E4, in accordance with Table 8.3 below. 

Exposure 
class E0 E1 E2 E3 E4 

Description Incredible Very low 
probability 

Low 
probability 

Medium 
probability 

High 
probability 

Table 8.3. Classification of “probability of exposure” to functional safety hazards 

Class E0 may be used for those situations that are suggested during 
hazard analysis and risk assessment, but which are considered to be extremely 
unusual, or incredible, and therefore not followed up. A rationale shall be 
recorded for the exclusion of these situations. If a hazard is assigned to 
exposure class E0, no ASIL assignment is required. 

8.2.2.1.3 Controllability 

The ‘controllability’ of each hazardous event, by the driver or other 
persons potentially at risk, shall be estimated based on a defined rationale for 
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each hazardous event. The controllability shall be assigned to one of the 
controllability classes C0, C1, C2 and C3 in accordance with Table 8.4 below. 

Controllability 
class C0 C1 C2 C3 

Description Controllable 
in general 

Simply 
controllable 

Normally 
controllable 

Difficult to 
control or 

uncontrollable 

Table 8.4. Classification of “controllability” of functional safety hazards 

Class C0 may be used for hazards addressing the unavailability of the 
item if they do not affect the safe operation of the vehicle (e.g. some driver 
assistance systems). Class C0 may also be assigned if dedicated regulations 
exist that specify the functional performance with respect to a defined hazard, 
and C0 is argued using the corresponding existing experience concerning 
sufficient controllability. 

8.2.2.2 Determination of ASIL and safety goals 

In ISO 26262 a risk-based approach is presented for determining 
automotive safety risk classes known as ‘automotive safety integrity levels’ 
(ASILs). 

The ASILs are used for specifying the necessary safety integrity 
requirements for safety functions that are required to achieve an acceptable 
level of residual risk. In this scheme, four ASILs are defined: ASIL A, ASIL B, 
ASIL C and ASIL D; where class D represents the highest integrity category and 
class A the lowest. In addition to these four ASILs, the class QM (quality 
management) denotes no requirement to comply with ISO 262622. 

The ASIL is determined for each hazardous event using the severity, 
exposure and controllability parameters, as indicated in Table 8.5 below. 
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Severity Exposure Controllability 
C1 C2 C3 

S1 

E1 QM QM QM 
E2 QM QM QM 
E3 QM QM A 
E4 QM A B 

S2 

E1 QM QM QM 

E2 QM QM A 
E3 QM A B 
E4 A B C 

S3 

E1 QM QM A 
E2 QM A B 
E3 A B C 
E4 B C D 

Table 8.5. Risk classification criteria 

8.2.2.3 Functional hazard analysis 

Once the base functionality of the vehicle was identified, a set of 
guidewords was used in combination to each of the functions in order to elicit 
functional failures, consequences of the failures, hazards and people to be 
affected by the hazard. Figure 8.6 illustrates the steps to be followed for the 
functional failure analysis. 

 

 

 

 

 

 

 

Figure 8.6. Functional failure analysis steps 

 

 



Appendix B 257 

Hazards causes have not been included but these will be identified in 
the RAMS analysis stage. For each functional failure a hazard title has been 
consolidated. The identified hazards were classified using the ISO 26262 risk 
criteria and the classification took into consideration example situations and the 
most severe outcome was recorded. 

8.2.2.4 Hazard analysis and risk classification results 

Based on the assumptions about the vehicle architecture and operation, 
a number of potential safety hazards related to the electrical powertrain were 
identified that were considered to be the most critical. 

The FEV hazards identified for the study are: 

• FHAZ_01 – Undemanded acceleration  

• FHAZ_02 – Undemanded deceleration  

• FHAZ_03 – No vehicle acceleration 

• FHAZ_04 – No vehicle deceleration 

• FHAZ_05 – Excessive acceleration 

• FHAZ_06 – Insufficient acceleration  

• FHAZ_07 – Reversed acceleration 

• FHAZ_08 – Increased vehicle stopping distance  

• FHAZ_09 – Vehicle instability 

• FHAZ_10 – Vehicle roll-away 

The results of the analysis are summarized in Table 8.6.  
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ID Hazard Severity Exposure Controllability ASIL 

FHAZ_01 
Undemanded 

vehicle  
acceleration 

S3 E4 C3 D 

FHAZ_02 Undemanded 
vehicle deceleration S3 E4 C3 D 

FHAZ_03 No vehicle 
acceleration S3 E4 C3 D 

FHAZ_04 No vehicle 
deceleration S3 E4 C3 D 

FHAZ_05 Excessive vehicle 
acceleration S3 E3 C2 B 

FHAZ_06 Insufficient vehicle 
acceleration S3 E4 C3 D 

FHAZ_07 Reversed vehicle 
acceleration S3 E4 C3 D 

FHAZ_08 Increased vehicle 
stopping distance S3 E4 C3 D 

FHAZ_09 Vehicle Instability S3 E4 C3 D 

FHAZ_10 Vehicle roll-away S3 E3 C2 B 

PHAZ_01 Explosion S3 E4 C3 D 

PHAZ_02 Fire S3 E4 C3 D 

PHAZ_03 Exposure to 
hazardous voltages S3 E4 C3 D 

PHAZ_04 
Exposure to 
hazardous 
substances 

S3 E4 C3 D 

PHAZ_05 Incorrect reporting S1 E3 C0 QM 

PHAZ_06 General hazard S1 E1 C1 QM 

Table 8.6. Hazard analysis and risk classification results: functional (FHAZ_x) 

and physical (PHAZ_x) safety hazards  
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8.2.2.5 Safety goal identification 

After the main functional hazards have been identified, a safety goal 
must be determined for each hazardous event with an ASIL evaluated in the 
previous hazard analysis. Safety goals are top level safety requirements for the 
FEV. Safety goals are expressed in terms of functional objectives. The case of 
undemanded vehicle acceleration is employed as an example. 

FHAZ_01: Undemanded vehicle acceleration 

Safety goal: The vehicle must not accelerate without valid 
acceleration demand.  

8.2.3 RAMS apportionment 
RAMS apportionment is the application of the RAMS techniques to 

deeply investigate the origins of the hazards identified by the PHA. In this 
sense, Fault Tree Analysis (FTA), Failure Mode Effects and Criticality Analysis 
(FMECA) and Ishikawa diagrams are employed.  

It must be noted that the RAMS apportionment for the FEV powertrain 
was developed leaving aside the battery. Much research is being developed on 
battery degradation analysis [19, 20] and there are specific projects focused 
solely on FEV batteries, including new chemistries development. As a 
consequence, the failure modes affecting the electric machine and the inverter 
were addressed for the detected functional hazards.  

8.2.3.1 FTA 

Fault Tree Analysis (FTA) is a top-down approach to the failure analysis, 
starting from any potential adverse event and then setting out all the ways the 
event can happen. The analysis includes functionality, failure definition, 
architecture, and stress and operational profiles. It provides a methodical way of 
following the functional flow of products down to the low level assemblies, 
components, failure modes, and respective causes of events and their 
combinations. Flexibility of modeling of various functional conditions and 
interaction such as enabling events, events with specific priority of occurrence, 
etc. using FTA, provides for accurate representation of the interdependence of 
the functionality of the product.  

 



260 FEV RAMS Analysis 

A fault tree is a logic diagram that displays the interrelationships 
between a potential critical event (accident) in a system (i.e. a FEV), and the 
reasons for this event. 

This logic diagram is a graphical model illustrating the state of the 
system’s subsystems (basic events), and the connections between these basic 
events and the system’s state (TOP event). The graphical symbols used to 
illustrate these connections are called ‘logic gates’. The output from a logic gate 
is determined by the input events. 

SYMBOL LOGIC GATE NAME DESCRIPTION 

 

AND gate 

The ‘AND’ gate indicates that the 

output event occurs if all of the 

input events occurs simultaneously 

 

OR gate 

The ‘OR’ gate indicates that the 

output event occurs if any of the 

input events occurs 

 

PASS-THROUGH gate The ‘PASS-THROUGH’ gate 

 

Description of STATE 
The comment rectangle is for 

supplementary information 

 

BASIC event 

The ‘Basic’ event represents a 

basic equipment fault or failure 

that requires no further 

development into more basic faults 

or failures 

 

TRANSFER 

The ‘Transfer’ symbol indicates 

that the fault tree is developed 

further at the occurrence of the 

corresponding ‘Transfer’ symbol 

Table 8.7. Fault Tree Symbols 

 



Appendix B 261 

Table 8.7 shows the most commonly used fault tree symbols, together 
with a brief description of their interpretation. 

The fault tree analysis (FTA) is based on the previous FEV architecture 
definition and on the hazards defined in the preliminary hazard analysis (PHA), 
not considering the hazards assessed class QM (quality management) which 
denotes no requirement to comply with ISO 262622. 

The undemanded vehicle acceleration fault tree is shown as an example in 
Figure 8.7. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
  

 

Figure 8.7. Undemanded vehicle acceleration fault tree 
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8.2.3.2 FMECA 

Following the V model implicit in ISO 26262 the FMEA belongs to the 
concept phase. 

Failure Mode, Effects and Criticality Analysis (FMECA) is a bottom-up, 
inductive analytical method which studies the effects of single component or 
function failures on the system or subsystem. It is useful for exhaustive listing of 
all potential initiating faults. FMECA is a safety engineering technique aimed at 
identifying and classifying potential failure modes, their effect on the system and 
defining actions to avoid these failures. Its main use is to classify the effect of 
potential failure modes by severity, occurrence and detection and subsequently 
prioritize the actions needed to counteract or avoid these failures. This is done 
by calculating the risk priority numbers (RPN) for each failure mode. The Risk 
Priority Number (RPN) is computed as a simple product of the Severity, 
Occurrence and Detection ratings: RPN = Severity × Occurrence × Detection. 

This value may then be used to prioritize the failure modes that require 
a corrective action. If the Risk Priority Number (RPN) is less than 35, actions 
must be recommended to counteract or avoid these failures. It should be noted 
that the ‘severity’ used here is similar but not identical to the severity parameter 
used in the hazard analysis. The FMECA analysis table results for the inverter 
most critical components are shown as reference in Table 8.8.  
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FMECA
_ID 

Subsyste
m and 

Functions 

Failure 
Mode 

Causes Subsyste
m Effect 

System 
Effect 

Hazard at 
vehicle 

level 

Haz_ID S O D RPN Recommend 
Actions 

 2.5.1.1.1 
DC Bus 
Link 
Capacitor 

           

FMPWT
_14/12/1
6 

Stabilize 
HV DC 
Power Bus 

Increase
d ripple 

Thermal 
stress, 
self-
heating 

Low DC 
voltage 

Poor 
efficienc
y. 
Batteries 
may get 
damage
d 

Insufficient 
vehicle 
acceleratio
n / 
instability 

FHAZ_0
9/06 

3 1 3 9 PHMS 
measures 
capacitor 
variables 

 2.5.1.1.2 
Inverter 
Gates 

           

FMPWT
_14/12/1
6 

Switch the 
IGBTs to 
chop the 
DC current 

Short 
circuit 

Aging, 
overload
s 

Gate driver 
cut the 
current 
flow 

Rotor 
may 
block 

Undemand
ed vehicle 
deceleratio
n / No 
vehicle 
acceleratio
n 

FHAZ_0
2/03 

1 1 2 2 PHMS 
measures 
IGBTs 
internal 
variables 

FMPWT
_12/11/2 

  Loss of 
gate 
control 

Time 
depende
nt 
breakdo
wn, hot 
electron
s 

IGBT will 
burn out 

Rotor 
may 
block 

Undemand
ed vehicle 
deceleratio
n / No 
vehicle 
acceleratio
n 

FHAZ_0
2/03 

1 1 2 2 PHMS 
measures 
IGBTs 
internal 
variables 

FMPWT
_12/11 

  Burn out latch-up IGBT will 
burn out 

Rotor 
may 
block 

Undemand
ed vehicle 
deceleratio
n / No 
vehicle 
acceleratio
n 

FHAZ_0
2/03 

1 1 2 2 PHMS 
measures 
IGBTs 
internal 
variables 

FMPWT
_12/11/1
7 

  Open 
circuit 

Bond 
wire lift 
off, 
solder 
fatigue 

IGBT will 
overheat 

Rotor 
may 
block. 
Motor 
will work 
in 
unstead
y way 

Instability / 
No vehicle 
acceleratio
n 

FHAZ_0
9/03 

1 2 3 6 PHMS 
measures 
IGBTs 
internal 
variables 

Table 8.8. FMECA sample of electrical transmission inverter components 
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8.2.3.3 Ishikawa Diagrams 

The Ishikawa Diagram [5] (also described as Fishbone Diagram or 
Cause and Effect Diagram) is a tool that helps in the identification of the root 
causes of a problem. It provides an overview of the causes of a problem, using 
a structured representation of all causes that could contribute to produce the 
undesirable effect. This approach results in a graphical representation of the 
relationships between all of the potential causes from which one is more readily 
able to identify the root causes of the problem. 

Major benefits of the Ishikawa diagram approach are that it reduces the 
risk of missing some causes in the analysis, provides a convenient mechanism 
for documenting the results of the analysis, and acts as an input for further 
study of potential solutions. This method makes it possible to identify causes, 
correct defects and provide solutions by employing corrective actions. 

The basic structure of the Ishikawa diagram, shown in Figure 8.8, 
consists of a horizontal primary arrow that is directed towards the problem. 
Potential causes are sorted into groups that are represented with secondary 
arrows that terminate on the primary arrow.  

 

 

 

 

Lower-level causes associated with each of the main groups are 
indicated by smaller horizontal arrows that terminate on the corresponding 
secondary arrow, with further levels of detail added as necessary in a similar 
manner. All potential causes are required, from which the real root causes of 
the problem must be sought, thus allowing corrective solutions to be proposed. 

 

Figure 8.8. Structure of Ishikawa diagram 
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The Ishikawa diagram of undemanded vehicle acceleration is shown as 
an example in Figure 8.9.  

 

 

 

 

 

 

 

 

 

 

 

8.3 RAMS Analysis Conclusions 
The conclusions extracted from the RAMS analysis can be summarized 

in the following points: 

• Regarding the most critical components of FEV powertrain are: the 
DC-BUS Link electrolytic capacitors, IGBTs and IGBT gate drivers for 
power electronics; the bearing, the stator windings and the rotor 
magnetic field source are the most critical components for electric 
machines. These components were the ones that obtained smaller 
scores on the RPN number. 

• The development of risk reduction methodologies should be included 
for those components. The MC simulation concluded that introducing 
a PHM monitoring system would improve the availability and 
reliability of the system.  

 

Figure 8.9. Ishikawa diagram of Undemanded vehicle acceleration 
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8.4 Monte-Carlo simulations theory 
As it was previously point out Monte-Carlo simulations were developed 

to assess the improvement on Reliability and Availability of the FEV powertrain 
when introducing a PHMS. Here, the theory of Monte-Carlo simulations is 
explained for further understanding the work done on the publication. 

Monte-Carlo simulations are extensively employed for complex system 
reliability and availability modeling [1]. In Monte-Carlo simulations, a logical 
model of the system being analyzed is repeatedly evaluated, using each run 
different values of the distributed parameters.  

8.4.1.1 Theory 

At the initial phase of the design process of a system, the engineer tries 
to anticipate to the possible problems and future realities of operation the 
system will be subjected to. Therefore, the engineer looks at a model, rather 
than at reality itself. By definition a model will never fit reality in all details; it will 
be at some “distance” from it. The model is based on the available information, 
the interactions between the elements and with the environment, the properties 
of components and how they move among their possible states. Once the 
model is established, questions can be asked about the future expected 
performance. It is at this point when mathematics comes into play [11]. 

Monte Carlo method is a powerful tool for the analysis of complex 
systems, owing to its capability of achieving a closer adherence to reality. It may 
be defined as a methodology for obtaining estimates of the solution of 
mathematical problems by means of random numbers sampling. By random 
numbers we mean numbers obtained through the roulette-like machine of the 
kind employed in gambling casinos at Montecarlo Principate, thus, the name 
comes after it. MC method can yield solutions to complex multidimensional 
problems; however, its employment has been limited to nuclear applications, 
mainly, due to its requirement for computer memory and time [8].  

The MC approach is based on the sampling of random numbers from a 
given probability distributions (i.e. uniform, exponential, weibull, etc.).  

Let 𝑋 ∈ (−∞, +∞) be a real number with cumulative density function 
(cmd) Fx(x) and probability density function fx(x), 
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𝐹𝑥(𝑥) =  ∫ 𝑓𝑥(𝑥′)𝑑𝑥′𝑥
−∞ = Pr{𝑋 ≤ 𝑥}                                (Eq. 1) 

Thus, through the application of the inverse transform of the 
corresponding extracted number, knowing the cumulative density function, it is 
possible to derive when the transition of a given state happens. Since Fx(x) is a 
non decreasing function, for any y ∈ [0,1), its inverse may be defined as, 

𝐹𝑥−1(𝑦) = inf {𝑥:𝐹𝑥(𝑥) ≥ 𝑦}                                             (Eq. 2) 

This is a fundamental relationship of the inverse transform method 
which for any R value sampled from a distribution UR[0,1) gives the 
corresponding X value sampled from the Fx(x) distribution. The previous is 
shown in Figure 8.10. 

 

 

 

 

 

 

 

 

𝑅~𝑈𝑅(𝑟) =  𝑟 𝑖𝑛 [0,1) → 𝑋~𝐹𝑥(𝑥)                                 (Eq. 3) 

Taking into account the previous definition, random number sampling 
can be applied to the system transport problem. Let us consider a system 
whose states are defined by the values of a set of variables, i.e. by a point P in 
the phase space Ω. Let us suppose that the evolution of the system is a 
stochastic process. Each of the possible trajectories of P is then a function of 
the ensemble generated by the process and the system’s dynamics can be 
studied by calculating the ensemble values of the quantities of interest, for 
example probability distributions and expected values.  

The Monte Carlo method allows us to generate the sample function of 
the ensemble: every Monte Carlo history simulates a trajectory of P, in the 
course of which we accumulate quantities of interest in appropriate counters. At 

 

Figure 8.10. Inverse transform method: continuous distribution 
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the end of the simulation, after a great deal of histories has been generated, the 
arithmetic averages of the desired quantities represent the Monte Carlo 
ensemble estimates of the quantities themselves [10-18]. These quantities 
represent the estimated reliability and availability of the system throughout its 
whole lifecycle following the studied model. 
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9 III. Appendix C: Ensemble 

method uncertainty 

assessment 

The methodology to assess the uncertainty accounting the RUL 
predictions which were made through the employment of a “Bagging” ensemble 
method was studied and deeply analyzed by P. Baraldi, F. Mangili and E. Zio in 
“Investigation of uncertainty treatment capability of model-based and data-
driven prognostic methods using simulated data” published in Reliability 
Engineering and System Safety. The methodology employed will be exposed 
and explained. 

The problem faced in this Chapter is quantifying the confidence made in 
equipment RUL predictions. The prognostic task of RUL prediction is affected 
by large uncertainties. The sources of uncertainty were classified in three: 

A. Randomness in the future degradation of the equipment. This 
intrinsic uncertainty has several causes, such as, the unknown future 
load profile, and operation and environmental conditions. 

B. Modeling error, i.e. inaccuracy of the prognostic model used to 
perform the prediction. In model-based prognostic approaches, this 
source takes into account the assumptions and simplifications made 
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on the model. In data-driven approaches it relates to the incomplete 
coverage of the data set used to train the empirical model. 

C. Uncertainty in current and past equipment degradation data, which 
are used by the prognostic model to elaborate the RUL prediction.  

Different problems were stated in order to proceed to assess the 
uncertainty affecting it. Our case was compiled in approach 2, which claims to 
solve the uncertainty problems for RUL estimation problems through: 
Bootstrapped ensemble of empirical models trained on sequences of 
degradation observations and life time data. 

More precisely, on our problem, the bootstrapped ensemble of empirical 
models was formed by H, where H is an integer, Neural Networks through 
“Bagging”. The sequences of degradations and life time data, refer to the 
degradation patterns of the different IGBTs used to train the algorithm. For each 
of the degradation patterns is required to know the failure time, discretized in N 
steps. In this sense, the failure times are known, and the data is inherently 
discrete. The only problem is that this approach is only providing a unique RUL 
output when new data is introduced, without any information of the uncertainty.  

To overcome this limitation, the bootstrapped method for estimating the 
accuracy in the prediction of a stochastic output whose mean value and 
variance are unknown functions of the input, is used in this work. Consequently 
and under the assumption that the model is an unbiased estimator, the model 
error variance (𝜎𝐵2) can be rewritten as: 

𝜎𝐵2(𝑧𝑖) = 𝐸[(𝑓(𝑧𝑖) − 𝐸[𝑓(𝑧𝑖)])2]                                                  (Eq. 1) 

This estimate of the model error variance, is then obtained from an 
ensemble of models, trained using the training dataset. Consequently, the 
training dataset is tested in the H Neural Networks of the ensemble. The 
variance of the RUL predictions is assumed as the estimate of the 𝜎𝐵2, where 
their average is taken as the best RUL estimate.  

With respect to the assessment of the other two sources of noise 
caused by the randomness of the degradation process (𝜎𝐴) and the observation 
noise (𝜎𝐶), i.e. 𝜎𝐴+𝐶2 = 𝜎𝐴2 + 𝜎𝐶2, the development of an independent subset from 
the training data, called validation dataset is required. In particular, this 
validation dataset is applied to the H empirical models. The obtained RUL 
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predictions (𝑟𝑢𝑙� 1:𝑁
𝑠 ) , where s is the training trajectories, are used to calculate for 

each validation observation 𝑧𝑖
𝑣𝑎𝑙,𝑠, the prediction residual 𝑟𝑖𝑠: 

𝑟𝑖𝑠 = (𝑟𝑢𝑙� 𝑖
𝑠 − 𝑟𝑢𝑙𝑖𝑠)2 − 𝜎�𝐵2(𝑧𝑖

𝑣𝑎𝑙,𝑠)                                               (Eq. 2) 

Where, 𝑟𝑢𝑙𝑖𝑠 is the real RUL value of the S trajectory (1 IGBT). The set 
of input/output by associating to 𝑧𝑖

𝑣𝑎𝑙,𝑠to the corresponding 𝑟𝑖𝑠, is used to train a 
new empirical model (Χ(𝑧𝑖) = 𝜎𝐴+𝐶2 (𝑧𝑖)), i.e. a Neural Network, of the residual 
variance approximating the unknown relation between the input 𝑧𝑖 and the 
variance of the residuals.  

When a new observation is collected, the following procedure is applied 
to obtain the estimate 𝑟𝑢𝑙� 𝑖 of the equipment RUL and of the corresponding 
variance 𝜎�𝑟𝑢𝑙2 : 

• Compute the output 𝑟𝑢𝑙� 𝑖
ℎ of each H models of the ensemble 

• Compute the point estimate of the RUL, through calculation of the 
average value of the obtained H rul values. 

• Compute th RUL prediction uncertainty as follows: 

𝜎�𝑟𝑢𝑙2 =  𝜎�𝐵2(𝑧𝑖) + 𝜎𝐴+𝐶2 (𝑧𝑖) = 𝑣𝑎𝑟 �𝑓ℎ ��𝑧𝑖�𝐷𝑖
𝑜

ℎ��� +  Χ(𝑧𝑖)          (Eq. 3) 

The result of the previous equation accounts for all the three uncertainty 
sources previously described. Ideally, the training and validation data should be 
taken from different trajectories. If they were taken from the same, this 
procedure would underestimate the variance. 
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