
UNIVERSIDAD DE NAVARRA

ESCUELA SUPERIOR DE INGENIEROS

SAN SEBASTIÁN

Design of Efficient Viterbi Decoders for

Communication Transceivers: IEEE

802.11a case study

DISSERTATION

submitted for the Degree of Doctor of Philosophy by

ARITZ ALONSO DOMINGO

under the supervision of

Andoni Irizar Picón

and

Ainhoa Cortés Vidal

Donostia–San Sebastián, July 2016

What we call the beginning is often the end.
And to make an end is to make a beginning.

The end is where we start from.
T.S.Elliot

Acknowledgement

Dećıa Constantino Cavafis en su poema Ítaca que cada persona deb́ıa aspi-
rar a que su viaje fuese largo y fecundo. En mi caso, concluir esta tesis ha
sido un largo camino que he recorrido en compañ́ıa de gente que ha dejado
una fuerte impronta en mı́. Por medio de estas primeras ĺıneas me gustaŕıa
expresar mi agradecimiento a todas ellas.

En primer lugar quiero dar las gracias a mis padres, por haber recorrido
conmigo este camino d́ıa a d́ıa, en los momentos buenos y los no tan buenos.
Por haberse sentido ilusionados ante lo que haćıa y ayudarme a levantarme
cada vez que tropezaba. Por haberme dado la oportunidad de llegar hasta
aqúı y el esfuerzo que les ha supuesto. En definitiva, por ayudarme a ser
quien soy hoy. Gracias.

A mis familiares, a los que están y estuvieron, en especial a mis t́ıos Eu-
genio y Rosa y a mi primo Pablo, por haberme motivado a seguir adelante
y las muestras de cariño que me han dado durante todos estos años.

A Maite y Juan, por el interés y apoyo desinteresado que me han de-
mostrado.

A Aurelia, porque, no importa la distancia, haber sido una amiga desde
que tengo uso de memoria.

Quiero agradecer también a los compañeros con los que he coincidido
durante estos años en Tecnun/CEIT en el desarrollo de esta tesis. A los
miembros del Área de Comunicaciones y Tratamiento Digital de la Señal,
Igone, Fanfi, Luis, Koldo, Ramón, Esti, Naiara, Borja y Pilar, quiero agra-
decerles lo mucho que he aprendido junto a ellos y la oportunidad que me
han brindado para crecer tanto personal como profesionalmente. A Markos,
por estar siempre dispuesto a echar una mano o discutir nuestros gustos ci-

iii

nematográficos. A las chicas del laboratorio, Ainara, Ainhoa, Leti y Marta,
por haber sido las mejores compañeras que he podido tener.

Agradezco también las horas que he pasado en compañ́ıa del grupo del
café, a Aitor, Ane Miren, Borja, David, Gurutz, Jon y Lexuri, por haber
hecho de estos años una traveśıa mucho más amena. Me llevo de vosotros
los recuerdos más bonitos de estos años. En especial quiero agradecer a Iker,
quien me ha demostrado ser un auténtico amigo, y estar siempre dispuesto
a ayudarme.

A mis nuevos compañeros de Farsens, en especial a Dani e Ibon, por la
ayuda que me han brindado para terminar esta tesis y el interés que han
demostrado en ella.

A Ainhoa Cortés quiero agradecerle el esfuerzo y dedicación que me ha
dedicado en estos últimos meses de redacción y por haber arrojado luz ante
el recurrente temor a enfrentarse al folio en blanco.

Y por último quiero dar mi más sincero agradecimiento a Andoni Irizar,
quien, literalmente, me ha acompañado desde el primer d́ıa en que pisé la
Universidad hasta el momento en que defienda este proyecto de tesis que
tienes entre manos. Él es en gran medida el responsable de que en primer
lugar llegase a ser ingeniero y, posteriormente, tuviese la oportunidad de
realizar el doctorado. Gracias.

Summary

Forward error correcting techniques have become fundamental tools to ob-
tain robust and reliable communication networks. In this reward, convolu-
tional coders belong to a family of codes used in applications such as deep
space communications, LTE, GSM, UWB and WLAN. The Viterbi algo-
rithm is a maximum likelihood decoder for convolutional codes. It operates
recursively and in each iteration it discards the less probable messages that
can have been transmitted. It is estimated that the Viterbi decoder is the
most complex entity of the receiver chain of a multicarrier transceiver.

In this research work the architecture of a flexible and parameterizable
Viterbi decoder is presented. This flexibility allows us to quickly modify
our architecture so that it decodes any given convolutional code. This way
we can easily compare our implementation with other alternatives found in
the literature. The decoder description does not make use of external or
proprietary IPs, so the decoder can be easily ported to any FPGA manu-
facturer or ASIC technology.

The Viterbi decoder is one of the most important building blocks of the
receiver chain of a transceiver, and its performance is a clear indicator of
the Bit Error Rate (BER) or Packet Error Rate (PER) we can expect from
the system. The parametrization of our decoder implementation allows
us to make trade offs between the complexity, area resource utilization,
achievable clock speed and decoding capacity of the transceiver. However,
making such a parametrical analysis, specially when the entire transceiver
architecture is being analyzed under different channel configurations, is a
time consuming task. In order to overcome this limitation, in this research
work a fast Hardware in the Loop (HiL) evaluation platform has been
designed. This platform allows us to quickly compare different decoder
configurations and evaluate the performance of the transceiver architecture

v

in which they are embedded. The HiL platform has proven to significantly
reduce the simulation time of other alternatives such as RTL simulators.

The case study of the parametrical analysis has been WLAN 802.11a.
In this research work the sources of a WLAN 802.11a compliant transceiver
have been obtained. The transceiver architecture is functional up to the
MAC layer of the standard, and it includes complex components such as a
time and offset synchronizer and equalizer and phase offset tracker. Also,
during this research work a simple hardware oriented demapping algorithm
has been proposed.

By means of the HiL platform, the Viterbi decoder architecture has been
optimized in terms of area resource utilization and its PER performance
curves have been obtained for different transmission modes supported by
the WLAN standard.

Contents

Acknowledgement iii

Summary v

Contents vii

List of Figures xi

List of Tables xv

List of Abbreviations xix

1 Introduction 1

1.1 Introduction . 1

1.2 Outline of the research work 3

2 State of the art 5

2.1 Introduction . 5

2.2 Viterbi decoder . 6

2.2.1 Convolutional codes 6

2.2.1.1 Parallelization of convolutional codes . . . 12

2.2.2 Viterbi algorithm . 14

vii

viii Contents

2.2.2.1 Adaptive Viterbi Algorithm 26

2.2.3 Viterbi decoder building blocks 26

2.2.3.1 Branch Metric Unit 27

2.2.3.1.1 Hard decoder 29

2.2.3.1.2 Soft decoder 30

2.2.3.1.3 Carrier Strength Indicator aware
decoders 31

2.2.3.2 Add-Compare-Select Unit 32

2.2.3.3 Survivor Path Unit 34

2.2.3.3.1 Register exchange implementation 36

2.2.3.3.2 Traceback implementation 38

2.2.4 Viterbi decoder implementations 41

2.2.4.1 Area efficient Viterbi decoders 41

2.2.4.2 Data throughput enhanced Viterbi decoders 45

2.2.4.3 Latency optimized Viterbi decoders 50

2.2.4.4 Reconfigurable Viterbi decoders 52

2.3 Hardware-in-the-Loop simulations 57

2.3.1 Introduction . 57

2.3.2 HiL simulation characteristics 57

2.3.3 HiL simulation use cases 59

2.3.3.1 Summary of the Hardware-in-the-Loop plat-
form use cases 63

2.4 Concluding Remarks . 65

3 Objectives 67

3.1 Introduction . 67

3.2 Figures of merit . 68

3.2.1 PER . 68

Contents ix

3.2.2 Metric Φ . 69

3.3 Objectives . 70

3.4 Scope of this work . 71

4 Viterbi decoder architecture 73

4.1 Introduction . 73

4.2 Top level Viterbi decoder entity 74

4.3 Viterbi decoder components 79

4.3.1 Branch Metric Unit (BMU) 79

4.3.2 Add-Compare-Select Unit (ACSU) 84

4.3.3 Survivor Path Unit (SPU) 91

4.3.3.1 Minimum Path Unit 96

4.3.3.2 SPU core 100

4.3.3.2.1 Register Exchange implementation 102

4.3.3.2.2 Traceback implementation 103

4.4 Concluding remarks . 109

5 Hardware-in-the-Loop simulations 111

5.1 Introduction . 112

5.2 WLAN 802.11a transceiver 112

5.2.1 Synchronizer . 116

5.2.2 Demapper . 117

5.3 Hardware-in-the-Loop simulator 124

5.4 Parametrical study . 129

5.5 Results . 135

5.6 Concluding remarks . 139

6 Results 141

x Contents

6.1 Introduction . 141

6.2 Viterbi decoder implementation results 141

6.3 Concluding remarks . 157

7 Conclusions and areas for further research 159

7.1 Conclusions . 159

7.2 Areas for further research 164

References 167

A Publications 181

A.1 International Conference papers 183

A.2 National Conference papers 223

List of Figures

Chapter 1 1

Chapter 2 5

2.1 Simplified block diagram of a communication system 6

2.2 Example convolutional encoder with R=1/2 8

2.3 State diagram . 10

2.4 One-state Trellis . 11

2.5 Example path in the Trellis diagram 12

2.6 Example convolutional encoder with parallelization index
p = 2 . 13

2.7 Parallel Trellis diagram . 14

2.8 Path extension at time instant t = 1 18

2.9 Path extension at time instant t = 2 18

2.10 Path extension at time instant t = 3 19

2.11 Survivor path selection at time instant t = 3 19

2.12 Path extension at time instant t = 4 20

2.13 Survivor path selection at time instant t = 4 20

2.14 Path extension at time instant t = 5 21

2.15 Survivor path selection at time instant t = 5 21

2.16 Path extension at time instant t = 6 22

xi

xii List of Figures

2.17 Survivor path selection at time instant t = 6 22

2.18 Path extension at time instant t = 7 23

2.19 Survivor path selection at time instant t = 7 23

2.20 Path extension at time instant t = 8 24

2.21 Survivor path selection at time instant t = 8 24

2.22 Survivor path with minimum accumulated metric of the de-
code process . 25

2.23 Decoded message r . 25

2.24 Simplified block diagram of a Viterbi decoder 27

2.25 Block diagram of an OFDM transceiver 28

2.26 Block diagram of the Branch Metric Unit (BMU) 29

2.27 Demap function of a hard decoded bits 30

2.28 Demap function of a soft decoded bits 31

2.29 ACS unit block diagram . 33

2.30 Viterbi decoder latency . 35

2.31 Register exchange implementation example. Register values
at t = 5 . 36

2.32 Register exchange implementation example. Data shift at
time intant t = 6 . 37

2.33 Register exchange implementation example. Shift register
content update at time instant t = 6 38

2.34 Register exchange implementation example. Store decoded
bits at time instant t = 6 38

2.35 Traceback implementation example. Memory contents . . . 39

2.36 Traceback implementation example. Traceback step 40

2.37 Simplified block diagram of a HiL simulation 58

Chapter 3 67

List of Figures xiii

Chapter 4 73

4.1 Top level Viterbi decoder 74

4.2 Block diagram of the Viterbi decoder architecture 78

4.3 Block diagram of the CSI aware BMU 83

4.4 Block diagram of the Add-Compare-Select unit 89

4.5 Add-Compare-Select (ACS) cluster. Interconnection of the
different ACS units for the trellis diagram of figure 2.4 . . . 90

4.6 Survivor Path Unit (SPU) top level view 91

4.7 Global Finite State Machine (FSM) of the SPU 95

4.8 Block diagram of the Minimum Path Unit (MPU) for constr len =
2 . 98

4.9 Register exchange SPU for constr len = 2 and traceback depth =
5 . 106

4.10 Block diagram of an element implementing the traceback SPU107

4.11 Timing diagram of the traceback implementation of the SPU 108

Chapter 5 111

5.1 Block view of the transceiver 113

5.2 Transmitter chain block diagram of the Physical Medium
Dependent (PMD) . 113

5.3 Receiver chain block diagram of the PMD 114

5.4 Block diagram of the transceiver architecture 115

5.5 Architecture of the synchronizer 118

5.6 Hard demapping . 118

5.7 Soft demapping . 119

5.8 Simulation set-up to analyze coefficient dispersion 120

5.9 Example of a demapping function 121

5.10 Linear approximation of the demapping function in figure 5.9 122

xiv List of Figures

5.11 Demapping parameters for softbit 3 and 6 on 64-QAM . . . 123

5.12 Architecture of the fast simulator system 125

5.13 Simulation flow dissection 126

5.14 Implementation of the Hardware-in-the-Loop (HiL) simula-
tion platform . 128

5.15 Influence of the precision in CSI over the PER of the system 131

5.16 Influence of the traceback depth of the decoder over the PER
of the system . 132

5.17 PER of the optimized transceiver 136

Chapter 6 141

Chapter 7 159

Chapter A 181

List of Tables

Chapter 1 1

Chapter 2 5

2.1 Generated codewords for the parallel convolutional encoder(p =
2) . 15

2.2 Hamming distances between all possible 3-bit wide codewords 16

2.3 Comparison of normal and adaptive ACSs with coden = 2,
codek = 1 and softbitbw = 3 in Xilinx xc3s50 Field Pro-
grammable Gate Array (FPGA) 43

2.4 Summary of adaptive Viterbi decoders found in the literature
implementing hard-decoding with k = 1 and n = 2 44

2.5 Resource utilization of ACSs of different radices for convo-
lutional codes with k = 1 48

2.6 Gate count comparison of different radix-4 ACSs at different
clock speeds in [BK13] . 48

2.7 Gate count comparison of different radix-4 ACSs at their
achievable maximum clock speed in [BK13] 49

2.8 Logic area and throughput comparison of Viterbi decoders
implementing type-1 ACSs of different radixes in [VNS12a] 50

2.9 Summary of the latency of FPGA Viterbi decoder imple-
mentations found in the literature with R = k/n = 1/2 . . . 51

xv

xvi List of Tables

2.10 Implementation results of the Xilinx Viterbi decoder [Xil11c]
with R = k/n = 1/2, ν = 6, τ = 96 and 3 soft bits on a
Virtex-6 6VLX75T-3 FPGA 55

2.11 Implementation results of the Xilinx Viterbi decoder [Xil11c]
with R = k/n = 1/2, ν = 6, τ = 96 and 3 soft bits on a
Spartan-6 XC6SÑX45T-2 FPGA 55

2.12 Implementation results of the Xilinx Viterbi decoder [Xil11c]
with R = k/n = 1/2, ν = 6, τ = 96 and 3 soft bits on a
Virtex-5 5VLX30-3 FPGA 56

2.13 Summary of HiL platforms 64

Chapter 3 67

Chapter 4 73

4.1 Generics of the top level Viterbi decoder 75

4.2 Input ports of the Viterbi decoder 76

4.3 Output ports of the Viterbi decoder 77

4.4 Generics of the Branch Metric Unit (BMU) 80

4.5 Input ports of the BMU . 81

4.6 Output ports of the BMU 81

4.7 Calculation of branch metrics in the BMU 82

4.8 Generics of the ACS unit 85

4.9 Input ports of the ACS unit 85

4.10 Output ports of the ACS unit 86

4.11 Generics of the SPU . 92

4.12 Input ports of the SPU . 93

4.13 Output ports of the SPU 94

4.14 Generics of the MPU . 96

4.15 Input ports of the MPU . 97

List of Tables xvii

4.16 Output ports of the SPU 97

4.17 Pipeline examples of the MPU for ν = 2 99

4.18 Generics of the SPU core 100

4.19 Input ports of the SPU core 101

4.20 Output ports of the SPU core 102

Chapter 5 111

5.1 Hardware utilization of the transceiver architectures for var-
ious values of csibw with τ = 60 and acsxtr bw = 7 133

5.2 Hardware utilization of the transceiver architectures for var-
ious values of τ with csibw = 5 and acsxtr bw = 2 134

5.3 PER of different WLAN 802.11a transceivers 137

Chapter 6 141

6.1 Area and speed comparison of Viterbi decoder implemen-
tations with coden = 2, codek = 1, constr len = 6 and
traceback depth = 18 on Xilinx xa3s500-ecpg132-4 FPGA . 143

6.2 Area and speed comparison of normal and adaptive ACSs
with coden = 2, codek = 1 and softbitbw = 3 in Xilinx
xc3s50 FPGA . 145

6.3 Data throughput comparison between Viterbi decoders with
codek = 1, coden = 2, ν = 6, softbitbw = 1 and τ = 35 on
different Xilinx FPGA . 146

6.4 Implementation results of a Viterbi decoder with codek = 1,
coden = 2, constr len = 2 and τ = 32 in a Xilinx xc7vx330t-
ffg1157-3 FPGA . 147

6.5 Throughput comparison of adaptive Viterbi decoders and
the proposed implementation on different Xilinx FPGAs . . 148

6.6 Implementation results of a Viterbi decoder with codek = 1,
coden = 2, constr len = 6 and softbitbw = 1 in different
Xilinx FPGAs . 149

xviii List of Tables

6.7 Implementation results of a Viterbi of the Xilinx reconfig-
urable Viterbi decoder with codek = 1, coden = 2, constr len =
6, τ = 96 and softbitbw = 3 in a Xilinx xc6vlx75t-3 FPGA . 150

6.8 Implementation results of a Viterbi of the Xilinx reconfig-
urable Viterbi decoder with codek = 1, coden = 2, constr len =
6, τ = 96 and softbitbw = 3 in a Xilinx xc6slx45t-2 FPGA . 150

6.9 Implementation results of a Viterbi of the Xilinx reconfig-
urable Viterbi decoder with codek = 1, coden = 2, constr len =
6, τ = 96 and softbitbw = 3 in a Xilinx xc5vl30-3 FPGA . . 151

6.10 Implementation results of a reconfigurable Viterbi decoder
with maximum parameters defined as codek = 5, coden =
6, constr len = 8, τ = 96 and softbitbw = 1 in a Xilinx
xc5vlx330t-1 FPGA . 152

6.11 Implementation results of a Viterbi decoder with codek =
1, coden = 2, constr len = 6, and τ = 120 on a Xilinx
xc6vcx75t-1 FPGAs for different softbit widths 153

6.12 Implementation results of a Viterbi decoder with codek =
1, coden = 2, constr len = 6, and τ = 84 on a Xilinx
xc6vcx75t-1 FPGAs 802.15.3c applications 154

6.13 Decoder comparison in terms of Φ comparison 1/2 155

6.14 Decoder comparison in terms of Φ comparison 2/2 156

Chapter 7 159

Chapter A 181

Glossary

ACS Add-Compare-Select

ADC Analog to Digital Converter

AGC Automatic Gain Control

ASIC Application Specific Integrated Circuit

AWGN Additive White Gaussian Noise

BBP Base Band Processor

BER Bit Error Rate

BMU Branch Metric Unit

BPSK Binary Phase-Shift Keying

CiL Controller-in-the-Loop

CDMA Code Division Multiple Access

CLB Configurable Logic Block

CORDIC Coordinate Rotation Digital Computer

CPU Central Processing Unit

CRC Cyclic Redundant Check

CSI Carrier Strength Indicator

DAC Digital to Analog Converter

DUT Device Under Test

xix

xx List of Tables

DVB-T Terrestrial Digital Video Broadcasting

FIR Finite Impulse Response

FEC Forward Error Correction

FFT Fast Fourier Transform

FIFO First-In First-Out

FPGA Field Programmable Gate Array

FSM Finite State Machine

GSM Global System for Mobile communications

GPS Global Positioning System

GPU Graphics Processing Unit

HiL Hardware-in-the-Loop

HDL Hardware Description Language

IC Integrated Circuit

IFFT Inverse Fast Fourier Transform

IIR Infinite Impulse Response

IoT Internet of Things

IP Intellectual Property

ISI Inter-Symbol Interference

JTAG Joint Test Action Group

LAN Local Area Network

LIFO Last-In First-Out

LSB Least Significant Bit

LUT Look-up Table

MAC Medium Access Control

List of Tables xxi

MMC Modular Multilevel Converter

MPU Minimum Path Unit

MSB Most Significant Bit

OFDM Orthogonal Frequency Division Multiplexing

PER Packet Error Rate

PLCP Physical Layer Convergence Protocol

PLME Physical Layer Management Entity

PMD Physical Medium Dependent

PPDU PLCP Protocol Data Unit

PRNG Pseudo Random Number Generator

QAM Quadrature Amplitude Modulation

RAM Random Access Memory

ROM Read-Only Memory

RRC Root Raised Cosine

RSSI Received Signal Strength Indicator

RTL Register Transfer Level

SAIF Switching Activity Interface File

SDR Software Defined Radio

SNR Signal-to-Noise Ratio

SoC System-on-Chip

SPU Survivor Path Unit

UI User Interface

UWB Ultra Wide Band

VHDL VSIC (Very High Speed Integrated Circuits) Hardware
Description Language

WLAN Wireless Local Area Network

List of Symbols

⌈x⌉ Largest integer not greater than x

⌊x⌋ Smallest integer not less than x

ǫ Comparator level in the MPU

ν Constraint length of the convolutional code

τ Traceback depth of the convolutional decoder

Φ Figure of merit used to compare decoder architectures

ζ Comparator identifier at level ǫ in the MPU

k Number of bits that are loaded into to the convolutional
coder per clock cycle

lmpu Latency in clock cycles of the Minimum Path Unit (MPU)

m Number of bits coded in a QAM constellation point

n Number of coded bits generated by the convolutional coder
per clock cycle

p Parallelization ratio of the ACSU

R Coding rate

T Threshold of the adaptive Viterbi algorithm

Nmax Number of survivor paths per iteration in the adaptive
Viterbi algorithm

xxiii

xxiv List of Symbols

c Source coded symbol

m Source uncoded symbol

r Received symbol

x Demapped received symbol

G(x) Transfer function of the convolutional code

CHAPTER 1

Introduction

Contents

1.1 Introduction . 1

1.2 Outline of the research work 3

1.1 INTRODUCTION

For the last decades new and more complex digital system have ap-
peared on a yearly basis as predicted by Moore’s observation [Moo65]. How-
ever, the possibility of designing more complex Integrated Circuits (ICs) has
not only be limited to increase their performance on a very specific task.
On the contrary: the miniaturization requirements of new devices such as
smartphones, tablets or phablets (or those which will become common un-
der the newly coined Internet of Things (IoT)) have only been achieved
when technology has been mature enough to integrate into a single chip
devices as diverse as Central Processing Units (CPUs), Graphics Process-
ing Units (GPUs), Digital to Analog Converters (DACs), Analog to Digital
Converters (ADCs) and wireless transceivers. These ICs are known as
System-on-Chips (SoCs).

1

2 CHAPTER 1. Introduction

With the advent of advanced touch-control User Interfaces (UIs) the
mobile market has experienced a significant growth that continues nowa-
days, with several reports [AMJ+14a, AMJ+14b, Chu14, CMS14, Cis14]
forecasting shipments between 1.8 and 2.2 milliard units for the year 2015.

As SoCs grew in complexity and performance, end user began to de-
mand application and services with higher bandwidth consumption. High
reliable communication systems are necessary for the development applica-
tions and services. In this scenario, forward error correcting techniques are
fundamental tools that provide robustness to digital communication links.

Convolutional coders are one of the first codes for which an optimum de-
coding algorithm was discovered. They are preferred over block codes such
as Turbo codes for their superior performance with comparable complexity
decoding architectures.

The Viterbi algorithm is a maximum likelihood decoder for convolu-
tional codes. It operates recursively and in each iteration it discards the
less probable messages that can have been transmitted. It is estimated that
the Viterbi decoder is the most complex entity of the receiver chain of a
multicarrier transceiver.

Since its discovery, Viterbi decoders have become a fundamental cor-
nerstone in many communication systems. Back in 1986, V.32 modems
used an 8 state convolutional code to obtain a coding gain of about 3.5 dB.
V.34, an updated revision of the standard, used 16 to 64 state convolutional
codes to achieve coding gains of 4.0 to 4.5 dBs [FBEM96]. The Viterbi al-
gorithm is known also for being the first coding scheme used in deep space
communications in the Pioneer program [CHIW98]. At the dawn of the
new millennia, Viterbi decoders were implemented in around one milliard
cell phones worldwide [Jr.05], and a contemporary survey carried out by
Qualcomm [Pad05] indicated that approximately 1015 bits were decoded by
Viterbi decoders on video broadcast applications.

The Viterbi decoder proposals found in the literature aim at optimiz-
ing its description in areas such as area and power consumption, decoding
capacity or achievable maximum frequency. These goals are generally mu-
tually exclusive and do not analyse their impact on the overall decoder
performance.

Outline of the research work 3

The purpose of this research work is to obtain, verify and optimize a
Viterbi decoder description with respect to the transceiver architecture in
which it will be used. Wireless Local Area Network (WLAN) 802.11a will
be used as the case study of the research work.

1.2 OUTLINE OF THE RESEARCH WORK

In the following, the organization of this PhD dissertation is outlined:

Chapter 2: State of the art

This chapter summarizes the State of the Art of Viterbi decoders.
First, convolutional codes are introduced. Next, the Viterbi algo-
rithm is described. Following, the basic building blocks of hardware
Viterbi decoders are enumerated. Finally, Viterbi decoder hardware
implementations found in the literature are listed.

Chapter 3: Objectives

This chapter states the main objective of this research work and de-
composes it into partial objectives. It also presents the figrues of
merit that will be used to compare the different Viterbi decoder ar-
chitectures found in the literature with that developed in this research
work.

Chapter 4: Viterbi decoder architecture

The chapter describes the hardware architecture of the Viterbi de-
coder implemented in this research work. Both register exchange and
traceback implementations are proposed.

Chapter 5: Hardware-in-the-Loop simulations

This chapter describes a Hardware in the Loop simulation platform
used to perform a parametrical analysis of the Viterbi decoder and in-
troduces the WLAN 802.11a compliant transceiver, the case study of
this research work, hardware modules. The Viterbi decoder is embed-
ded within the WLAN 802.11a compliant transceiver description and
then a parametrical analysis of the entire system is performed using
the Hardware-in-the-Loop (HiL) simulator to find a balance between
system performance and resource utilization. Once the transceiver
architecture has been optimized, a more thorough analysis is exe-
cuted using the HiL platform to obtain the Packet Error Rate (PER)
performance curves of the system under multipath fading channels.

4 CHAPTER 1. Introduction

Chapter 6: Results

This chapter compares the Viterbi decoder description developed in
this research work with other proposals found in the literature.

Chapter 7: Conclusions and areas for further research

This chapter presents the conclusions of this research work and pos-
sible areas for further research.

CHAPTER 2

State of the art

Contents

2.1 Introduction . 5

2.2 Viterbi decoder . 6

2.3 Hardware-in-the-Loop simulations 57

2.4 Concluding Remarks 65

2.1 INTRODUCTION

The continuous advances in integration processes have allowed the de-
ployment of cheaper, more complex digital circuits. At the same time, these
new devices have boosted the appearance of applications and services that
demand high bandwidth mobile communications. Error correction tech-
niques are fundamental and powerful tools that allow the deployment of
highly reliable communication systems.

The Viterbi algorithm, named after Andrew James Viterbi [Vit67], is
the key decoding algorithm of convolutionally encoded messages. It is used
in a wide range of applications such as speech recognition, LTE, Physical
Downlink Control Channel (PDCCH), CDMA and GSM digital cellular,
dial-up modems, satellite, deep-space communications [Doo10], Ultra Wide

5

6 CHAPTER 2. State of the art

Band (UWB) communication schemes and 802.11 wireless Local Area Net-
works (LANs).

Among all the available algorithms aimed at decoding convolutional
codes the Viterbi is the most resource intensive. However, it is capable
of performing maximum likelihood decoding. A significant research work
effort is maintained up to this day aimed at identifying new, optimized
hardware architecture implementations of the algorithm.

Analyzing these architectures is a very time consuming task, specially
when the decoder is embedded in a communication transceiver. The hard-
ware implementation must not only be verified, but its decoding capacity
must be measured in various channel configurations (noise level, multipath
delay spread, . . .) and, if the communication system allows it, different
transmission rates supported by the transceiver. Consequently, the entire
system (transceiver architecture and surrounding channel) should be con-
sidered when the architecture of the transceiver is being optimized to meet
certain area, power consumption or decoding capacity criterion.

2.2 VITERBI DECODER

This section presents the state of the art of Viterbi decoders. First con-
volutional codes are disclosed. Next, the Viterbi algorithm is introduced.
Following, the building blocks of Viterbi decoders are described and finally
the different implementations of Viterbi decoders are presented.

2.2.1 CONVOLUTIONAL CODES

A simplified view of the operation of a communication system is de-
picted in figure 2.1.

������ ����	��

�������

��
������
�������

������
��

��������
����	�� ����

����

� � � �

� � � �

Figure 2.1: Simplified block diagram of a communication system

Viterbi decoder 7

In the transmitter side of the communication system, a data source
generates messages m. Each message m is represented as a vector of k
symbols. The symbols of m can belong to any alphabet, although in digital
communications they are generally considered to be bits.

To minimize the probability of errors during data transmission most
communication systems implement Forward Error Correction (FEC) mech-
anisms. The block responsible of protecting the message m against the
mismatches of the channel is the encoder. The encoder takes the binary
message m and produces an output n bit wide codeword c, where n > k.
The ratio R = k/n is known as the coding rate of the encoder and it can be
seen as a tradeoff between the redundancy added to the original message
and the capacity of detecting errors during transmission: codes with low
R are more redundant and offer more opportunities to detect and correct
erroneous bit sequences, but transmit less source data bits per encoded bit.

The transmitter serializes codeword bits in a parallel-to-serial block so
that a single encoded bit is transmitted per channel use. In figure 2.1
we have assumed a channel that simply adds Additive White Gaussian
Noise (AWGN) to the transmitted signal. At the receiver side, the inverse
process is performed. A serial-to-parallel block takes the detected signal
and generates a received vector r of n bits. Note that due to the AWGN in
the channel, the codeword c and received vector r are not necessarily the
same.

A decoder takes the received vector r and, based on the knowledge of
the coding rules at the encoder, tries to identify which message m was
originally transmitted. The guess generated by the decoder is labelled x in
figure 2.1.

The Bit Error Rate (BER) is a performance metric of such a communi-
cation system. It is the ratio between the number of bits m and x differs
and the length of the message m.

Convolutional codes are one of the earliest codes for which effective de-
coding algorithms were developed. They are viewed as stream codes since
generally they operate on continuous streams of bits not partitioned in dis-
crete message blocks or packets. In practice they are preferred to block
codes (for example, Turbo codes) because, at a comparable encode/decode
complexity, they provide excellent performance [Moo05]. The name convo-

8 CHAPTER 2. State of the art

lutional code comes from the fact that the operation of these codes can be
seen as filtering or convolution.

Let us take for example the architecture of an encoder implementing
a R = 1/2 convolutional code in figure 2.2. Being a R = 1/2 code, every
instant of time the convolutional encoder takes a one-bit input message and
generates a two-bit output codeword. As it can be seen, a convolutional
encoder consists basically of a shift register and a set of n XOR gates.

� �

�

�

��

���� ����

��
���

��
���

Figure 2.2: Example convolutional encoder with R=1/2

The number of registers in the shift register of the convolutional encoder
is known as the constraint length ν of the code. In essence, the convolutional
encoder operates as a Finite State Machine (FSM). Each instant of time
a new input message bit is fetched into the encoder and the content of its
register is shifted one position to the right. The content of the shift register
represents the state of the FSM. For a convolutional code with a constraint
length ν, the total number of possible states in the encoder is 2ν .

The output codeword of the encoder is calculated every time instant as
the XOR operation between the input of the encoder at that time instant
and the logical value of certain positions in the shift register. The transfer
function G(x) of the convolutional code is the matrix representation of the
elements that are taken into account when calculating the output of the
encoder. The elements of the transfer function matrix G(x) are generally
expressed in polynomials of x. The degrees of the terms of the polynomial
indicate the positions in the shift register that are considered to calculate
the codeword. The highest degree of the polynomial is then ν, and the
input to the encoder represents the independent term of the polynomial.

Viterbi decoder 9

For the encoder in figure 2.2 we have that

G(x) = [mk +mk−2 mk +mk−1 +mk−2]

= [1 + x2 1 + x+ x2]
(2.1)

In general, G(x) is a k × n matrix. Since in our example k = 1 and n = 2,
we have that the transfer function matrix in (2.1) is a two-element row
vector.

Not all the convolutional codes can be represented by polynomials. An
encoder that has only polynomial entries in its transfer function matrix
is said to be a feedforward encoder or a Finite Impulse Response (FIR)
encoder. An encoder that has rational functions in its transfer function
matrix is said to be a feedback or Infinite Impulse Response (IIR) encoder.

For feedforward encoders, it is common to indicate the connection poly-
nomials as vectors of numbers representing the impulse response of the en-
coder. The binary representation of the transfer function of equation (2.1)
is represented by the vectors

G(x) = [mk +mk−2 mk +mk−1 +mk−2]

=
[

[101] [111]
] (2.2)

where the Most Significant Bit (MSB) of the binary vector represents the
input to the encoder and the Least Significant Bit (LSB) of the binary
vector indicates the ν-th element of the shift register of the encoder.

These binary vectors are often expressed compactly in octal form, where
the triplets of bits are represented using the integers from 0 to 7. In this
form, the encoder in (2.1) is represented as

G(x) =
[

[101] [111]
]

=
[

5 7
]

(2.3)

A convolutional code is unequivocally represented by the triplet (n, k, ν)
and its transfer function G(x).

For encoding and decoding purposes, there are two helpful representa-
tions of the the transfer function of a convolutional code: the state diagram
and the trellis diagram.

The state diagram of the convolutional code is a graph that depicts the
state transitions and the generated codewords as a function of the input

10 CHAPTER 2. State of the art

bits to the encoder. Figure 2.3 shows the state diagram of the example
convolutional encoder presented in figure 2.2.

��

�� ��

��

������

������

������

������

������������

������ ������

Figure 2.3: State diagram

Each state transition is represented with an arrow connector. Above
each arrow two quantities separated by slashes are annotated. The leftmost
quantity is the input to the encoder at a given time instant that triggers
the state transition. The rightmost quantity is the generated codeword due
to the state transition.

For example, from figure 2.3, we can deduce that when the convolutional
encoder is at state ”01” it will transition to state ”00” when a logical zero
is applied to its input. In this transition the encoder will generate the
codeword ”11”. Otherwise, if a logical one is applied to the encoder, then
it will transition to state ”10” and generate the output codeword ”00”.

The trellis diagram of the convolutional code is a rearrangement of the
former state diagram where the notion of time instant is added to the state
transitions. Let us consider the trellis diagram of our example convolutional
code depicted in figure 2.4.

Viterbi decoder 11

����

��

��

��

����

��

��

��

��

��

��

��

��

��

��

��

������ ������	�

Figure 2.4: One-state Trellis

The diagram shows two sets of all the possible states of the encoder.
The leftmost column is the initial state of the convolutional encoder at
time instant t. The rightmost column is the final state of the convolutional
encoder after the transition has occurred at time instant t+1. In the figure
initial and final states are connected by coloured lines. The color of these
lines represent the logical value of the input to the encoder at the initial
time instant: a red line indicates a logical zero input bit and a blue line
represents a logical one input bit. Above each line the codeword generated
due to the state transition is written.

One-state transition trellis diagrams such as that in figure 2.4 are stacked
one after the other to represent the evolution of the encoder over a specific
time interval. For example, if our example encoder, beginning at the initial
state ”00”, were to encode the message m = [1, 1, 0, 0, 1, 0, 1, 0], the trellis
diagram shown in figure 2.5 would be generated.

In the figure above the binary representation of the states of the encoder
have been substituted by their corresponding unsigned decimal represen-
tation. The colored line in the figure represents a path through the trellis
that unequivocally identifies the encoding of the message m.

As it can be deduced from these diagram representations of the convo-
lutional code, there is a very tight connection between the input message
m to the encoder, the generated output codeword c and the state tran-

12 CHAPTER 2. State of the art

�

�

�

�

����� ����� ����� ����� ����� ����	 ����
 ����� �����

��

��

��

��

��

�� ��

��

Figure 2.5: Example path in the Trellis diagram

sition sequence depicted by the path through the trellis diagram. For a
given initial state condition in the convolutional encoder, knowing any of
the former sequences (input message, output codeword or path through the
trellis) implies the knowledge of the remaining sequences.

Thus, a convolutional decoder is the block that, based on the received
codeword signal r, tries to identify the path in the trellis that originated it.
After the most probable path in the trellis has been identified, the decoder
reconstructs the original message by identifying the state transitions in the
trellis path with the inputs to the encoder that trigger them.

2.2.1.1 Parallelization of convolutional codes

Some decoding algorithms are based on parallel implementation of the
convolutional encoder. Whereas a serial convolutional encoder takes a
binary word of k bits and generates a codeword of n bits, a parallel imple-
mentation of the convolutional encoder takes a block of p consecutive input
binary words of k bits and generates a block of p codewords of n bits.

For the same input message m, both serial and parallel encoder im-
plementations produce identical outputs. Consequently, the two encoder
implementations have identical constraint length ν and number of states
2ν . The implementation of the parallel convolutional encoder is modified
slightly to accommodate to the increased number of inputs and outputs.
For the example convolutional encoder introduced in this chapter, its par-
allel implementation with p = 2 is shown in figure 2.6.

Viterbi decoder 13

� �
	
�� 	
�

�

���

�

�
�

�

���

�

���

�

�

	
��

	

�

�

Figure 2.6: Example convolutional encoder with parallelization in-

dex p = 2

From the figure, input port mk corresponds to the input of the serial
encoder at time instant t and input port mk+1 corresponds to the input of

the serial encoder at time instant t + 1. Similarly, output ports c
(1)
k and

c
(2)
k

of the parallel encoder correspond to the output of the serial encoder

at time instant t and output ports c
(3)
k and c

(4)
k of the parallel encoder

correspond to the output of the serial encoder at time instant t+ 1.

The trellis diagram of the parallel implementation of the convolutional
encoder is obtained by rearranging the states of the serial implementation.
The trellis diagram of the parallel implementation of the example convolu-
tional encoder with p = 2 is shown in figure 2.7.

For the parallel encoder, the lines connecting the initial and final states
of the trellis diagram are split into p colored segments. The color of the
first segment indicates the logical value of the binary message word at time
instant t = 0. A red line indicates that at that time instant a logical zero
was input to the parallel convolutional encoder. A blue line, on the other

14 CHAPTER 2. State of the art

����

��

��

��

����

��

��

��

������ ������	

Figure 2.7: Parallel Trellis diagram

hand, indicates that a logical one was input to the parallel convolutional
encoder. The color of the last segment indicates the logical value of the
message input to the parallel convolutional encoder at time instant t = p−1.

The generated codewords due to the state transitions in the parallel
implementation of the convoluitonal encoder with p = 2 are shown in table
2.1.

There is a limit in the level of parallelization p that can be obtained
in the convolutional code. The parallelization p must never surpass the
constraint length ν of the code. Otherwise, different input messages blocks
would produce identical state transition, and therefore, the decoding pro-
cess would become infeasible.

2.2.2 VITERBI ALGORITHM

The Viterbi algorithm was proposed by Andrew Viterbi [Vit67], but it
was not until [For73] that its optimality as a maximum likelihood sequence
decoder was appreciated. Communication system applications include ex-
amples such as maximum likelihood sequence estimation in the presence
of Inter-Symbol Interference (ISI) [For72] and optimal reception of spread-
spectrum multiple access communications [Ver84]. It has also been used
for hidden Markov modeling [DPH93] and survey applications [MS00].

Viterbi decoder 15

Initial/End state 00 10 01 11

00 0000 0011 1101 1110

10 0111 0100 1010 1001

01 1100 1111 0001 0010

11 1011 1000 0110 0101

Table 2.1: Generated codewords for the parallel convolutional

encoder(p = 2)

The key idea behind the Viterbi algorithm is that a coded sequence
c = [c0, c1, . . .] or its associated received input sequence r = [r0, r1, . . .] in
figure 2.1 corresponds to a single path through the encoder trellis. Due to
mismatches in signal reception, the received sequence r may not correspond
with the same path through the trellis. Moreover, the received sequence
may imply an illegal path through the trellis. A path that includes states
transitions other than those defined by the state diagram of the code.

The Viterbi algorithm tries to find the legal path through the trellis
that is closest to the received sequence r. Instead of taking a brute force
approach, where all the possible paths through the trellis would need to be
compared with the received sequence r, the Viterbi algorithm operates in an
efficient, recursive form. In each decoding time instant the algorithm selects
a set of only 2ν paths among all the possible paths that can be generated
up to that point. The 2ν paths that the Viterbi algorithm selects in each
iteration are known as the survivor paths at that time instant. There is one
survivor path per state in the convolutional code. Every decoding time, all
possible paths that converge to a given state and are not the survivor path
are discarded by the Viterbi algorithm for further analysis.

Competing paths ending at a same state in the encoder are compared
in terms of their metrics. Encoder sequences that differ significantly to the
received sequence have a higher metric cost than encoder sequences that
resemble the received sequence. Consequently, the Viterbi algorithm selects
the paths with minimum metric. Typically, the Hamming distance is the
preferred method when calculating the metrics. The Hamming distance

16 CHAPTER 2. State of the art

000 001 010 011 100 101 110 111

000 0 1 1 2 1 2 2 3

001 1 0 2 1 2 1 3 2

010 1 2 0 1 2 3 1 2

011 2 1 1 0 3 2 2 1

100 1 2 2 3 0 1 1 2

101 2 1 3 2 1 0 2 1

110 2 3 1 2 1 2 0 1

111 3 2 2 1 2 1 1 0

Table 2.2: Hamming distances between all possible 3-bit wide code-

words

between two binary vectors (or points) is the number of positions in which
their logical values differ. Table 2.2 shows the Hamming distance between
all possible 3-bit codewords. The metric of the survivor path ending at a
given state of the encoder is known as the path metric of that state.

When the decoding time advances, the Viterbi algorithm extends the
survivor paths of the previous time instant with the transitions described
by the trellis diagram of the coder. The metrics of the new candidate
paths are calculated by adding the path metric of their precursor state
with the branch metric of the transition: the Hamming distance between
the codeword of the state transition (defined in the trellis diagram) and
the received sequence r at that time instant. For each of the 2ν states, the
algorithm selects, among all the possible transitions defined by the trellis,
the path with minimum accumulated metric.

Let us better illustrate the operation of the Viterbi algorithm by means
of an example extracted from [Moo05]. Consider again the example convo-
lutional encoder described in figure 2.2. The state and trellis diagrams of
this encoder were given in figures 2.3 and 2.4.

Viterbi decoder 17

When the data sequence

m = [1, 1, 0, 0, 1, 0, 1, 0, . . .]

= [m0,m1,m2,m3,m4,m5,m6,m7, . . .]

is applied to the encoder it generates the following codewords:

c = [11, 10, 10, 11, 11, 01, 00, 01, . . .]

= [c0, c1, c2, c3, c4, c5, c6, c7, . . .]

The coded output sequence is transmitted through a channel. Due to the
noisy characteristics of this channel the binary representation of the re-
ceived sequence r and the codewords c differ. Let us assume that during
the signal transmission, the received sequence becomes

r = [11, 10, 00, 10, 11, 01, 00, 01, . . .]

= [r0, r1, r2, r3, r4, r5, r6, r7, . . .]

where the underlined bits in r indicate the positions where the logical values
of the codewords c have toggled their values.

The Viterbi algorithm operates as follows.

At time instant t = 0 the sequence r0 = 11 is received. It is known
that state 0 is the initial state of the convolutional coder. Based on the
trellis diagram (figure 2.4) of the convolutional code, we know that only
states 0 and 1 can be reached at time instant t = 1 from the initial state
of the encoder. The generated codewords due to these transitions are ”00”
and ”11” respectively. The Viterbi algorithm calculates the path metrics
of these hypothetical transitions as the Hamming distance between the
received sequence (r0 = 11) and the generated output codewords. In our
case, the path metrics are 2 and 0 respectively. As a result, at time instant
t = 1 there are only 2 possible paths, with metrics 0 and 2, as shown in the
figure 2.8.

The metric that converges to a specific state in a given instant of time
are known as the branch metric of the state at that time instant.

18 CHAPTER 2. State of the art

�

�

�

�

����� �����

�

�

�������

Figure 2.8: Path extension at time instant t = 1

At time instant t = 1 the sequence r1 = 10 is received. Again, all
existing paths are extended at time t = 2 as defined by the trellis diagram
by adding the path metric to each branch metric. Note that at time t = 2,
a total of 4 paths are available, each ending in one of the 4 possible states
of the trellis

����� �����

�������

�����

�

�

�

�

�

�

�

�

Figure 2.9: Path extension at time instant t = 2

At time instant t = 2 the sequence r2 = 00 is received. Once again,
each path is extended by adding the path metric to each branch metric. In
the figure 2.10, the branch metric of each path is represented by the value
above each state at time instant t = 2, and the branch metrics of all path
possible paths to time instant t = 3 are the value above the doted colored
lines

Viterbi decoder 19

����� �����

�������

����� �����

�

�

�

�

�

�

�

�

�

�

�
�

Figure 2.10: Path extension at time instant t = 3

Note that at time t = 3 there are several possible paths that end up
in the same node of the trellis diagram. The Viterbi algorithm selects the
paths with the best (lowest) accumulated metric at each node, as these are
the paths that are closer to the received sequence r. These paths are known
as the survivor paths at time instant t = 3. The remaining paths will be
discarded for further analysis. After the survivor paths have been selected,
the trellis diagram becomes as follows:

����� �����

�������

����� �����

�

�

�

�

Figure 2.11: Survivor path selection at time instant t = 3

At time instant t = 3 the sequence r3 = 10 is received. The algorithm
continues extending the paths by adding the path metric to each branch
metric

20 CHAPTER 2. State of the art

����� �����

�������

����� �����

�

�

�

�

����	

�

�

�

�

�

�

�
�

Figure 2.12: Path extension at time instant t = 4

As before, the paths with best (lowest) metric at each state are selected.

����� �����

�������

����� ����� ����	

�

�

�

�

Figure 2.13: Survivor path selection at time instant t = 4

If we observe the previous figure, we will notice a fundamental charac-
teristic of the survivor paths: from now on all the survivor paths share an
identical set of state transitions in the trellis. Indeed, all the survivor paths
at time instant t = 4 share a common state transition from state 0 to state
1 at the beginning of the encoding.

The decoding process continues. At time instant t = 4 the sequence
r4 = 11 is received. The paths are extended by adding the path metric to
each branch metric

Viterbi decoder 21

����� �����

�������

����� ����	 �����

�

�

�

�

�

�

�

�

�

�

�
�

����

Figure 2.14: Path extension at time instant t = 5

This time, there are several paths ending in states 2 and 3 with the
same minimum (best) metric of 3. Since only one path must be selected,
the survivor paths can be chosen randomly or using a pre-defined rule. In
this case the selection algorithm has no impact on the decoding capability
and performance of the Viterbi algorithm. The next figure depicts the
selected survivor paths

����� �����

�������

����� ����	 �����

�

�

�

�

����

Figure 2.15: Survivor path selection at time instant t = 5

At time instant t = 5 the sequence r5 = 01 is received.

22 CHAPTER 2. State of the art

����� �����

�������

����� ����	 ����

�

�

�

�

����� �����

�

�

�

�

�

�

�
�

Figure 2.16: Path extension at time instant t = 6

After survivor path selection, the state transition diagram becomes:

����� �����

�������

����� ����	 ����
 ����� �����

�

�

�

�

Figure 2.17: Survivor path selection at time instant t = 6

At time instant t = 6 the sequence r6 = 00 is received.

Viterbi decoder 23

����� �����

�������

����� ����	 ����
 ����� �����

�

�

�

�

�����

�

�

�

�

�

�

�
�

Figure 2.18: Path extension at time instant t = 7

After survivor path selection, the state transition diagram becomes:

����� �����

�������

����� ����	 ����
 ����� ����� �����

�

�

�

�

Figure 2.19: Survivor path selection at time instant t = 7

At time instant t = 7 the sequence r7 = 01 is received.

24 CHAPTER 2. State of the art

����� �����

�������

����� ����	 ����
 ����� ����� �����

�

�

�

�

����

�

�

�

�

�

�

�
�

Figure 2.20: Path extension at time instant t = 8

After survivor path selection, the state transition diagram becomes:

����� �����

�������

����� ����	 ����
 ����� ����� ����� ����

�

�

�

�

Figure 2.21: Survivor path selection at time instant t = 8

The decoding is completed after the reception of sequence r7 by selecting
the state at the last stage with best (lowest) metric.

Viterbi decoder 25

�

�

�

�

����� ����� ����� ����� ����� ����	 ����
 ����� �����

�

Figure 2.22: Survivor path with minimum accumulated metric of

the decode process

Beginning with this last state, the trellis diagram is traversed backwards
along the survivor path until the first stage in the encoding process is
reached, and then it is traversed forwards once more along the survivor
path while the input message sequence that originates the obtained state
transitions is calculated.

The colored line in the figure below represents the reconstructed mes-
sage m after the Viterbi algorithm has been applied to the received message
r. Red lines correspond to a logical zero in the message sequence, while
blue lines represent logical ones in the message sequence.

�

Figure 2.23: Decoded message r

Comparing the previous result with the contents in figure 2.5 we observe
that the Viterbi algorithm can successfully decode an erroneously received
noisy sequence r.

26 CHAPTER 2. State of the art

2.2.2.1 Adaptive Viterbi Algorithm

The adaptive Viterbi algorithm [MW96] is a variation of the classic algo-
rithm. It is aimed at reducing the power consumption and memory require-
ments of decoders implementing the Viterbi algorithm [VPG13, BSK+13,
BSL11b].

The adaptive Viterbi algorithm adds two additional criterions when se-
lecting the survivor paths. First, a threshold T is defined. All candidate
paths whose accumulated branch metric exceeds (is worse than) this thresh-
old are automatically discarded for further analysis. Even the survivor path
of a given state can be discarded if its accumulated metric exceeds this
value. Secondly, the number of survivor paths stored at each decoding it-
eration is reduced from 2ν to a value Nmax. From the set of survivor paths
not exceeding the predefined threshold T , only the first Nmax paths with
best (lowest) accumulated metric are considered for further analysis.

Several Adaptive Viterbi decoders can be found in the literature [STGB02a,
TSR+05a, LDZL11a, CC01, STGB02b].

2.2.3 VITERBI DECODER BUILDING BLOCKS

From the example of the previous section, we deduce that the key op-
erations performed by the Viterbi algorithm are the following:

• To calculate the branch metrics between the input sequence r at a
given time instant t and all the possible codewords generated by the
encoder.

• To extend the survivor paths at time instant t − 1 with the state
transitions defined by the trellis diagram and calculate the metrics of
all these candidate paths as the addition of the branch metric of the
precursor state and the branch metric due to the state transition at
time instant t.

• To select the path with minimum accumulated metric among all the
candidate paths ending at a given state in the encoder at time instant
t and to repeat this setp will all the 2ν states in the code.

• To Store into memory the new set of survivor paths.

Viterbi decoder 27

Figure 2.24 shows the typical block architecture of a Viterbi decoder.
The architecture is divided into the following functional blocks:

BMU

ACS 0

�����
�

��

SPU

...

Figure 2.24: Simplified block diagram of a Viterbi decoder

• The Branch Metric Unit (BMU) is responsible for calculating the
Hamming distances between the received sequence r and all the pos-
sible codewords of the code.

• A set of 2ν Add-Compare-Selects (ACSs) (one per state in the code)
extend the metrics that reach each state in the code by adding the
accumulated path metric to the branch metric associated with the
state transitions defined in the state and trellis diagrams in figures
2.3 and 2.4, compare the resulting metrics and select the survivor
path as the path reaching the state with best (lowest) accumulated
metric.

• The Survivor Path Unit (SPU) updates the historic of survivor paths
with the outcome of the ACSs and regenerates the estimated message
sequence x.

The following sections describe each functional block in detail.

2.2.3.1 Branch Metric Unit

The BMU calculates the branch metrics for all state transitions defined
in the trellis diagram of the code. It does so by calculating the Hamming
distances between the received sequence r and all possible codewords in

28 CHAPTER 2. State of the art

the convolutional code. For binary convolutional codes with coding rates
R = k/n = 1/2 the total number of codewords generated by the encoder is
2n.

The metrics calculated by the BMU can be improved if the functional
blocks in the receiver chain provide the decoder with further information
about the received signal. For this discussion we will need to expand the
initial transceiver architecture first introduced in figure 2.1.

������ ����	��

�������

��
������
�������

����

� �

� �

������ ����

������
��

����������

��

������������������������	�����

���

�

��

Figure 2.25: Block diagram of an OFDM transceiver

Figure 2.25 depicts a basic block diagram of an Orthogonal Frequency
Division Multiplexing (OFDM) based communication system. The key
differences between this architecture and the early transceiver shown in
figure 2.1 are the following:

• The codeword generated by the convolutional encoder is loaded into
a mapper. This unit takes a block of m codeword bits and generates
a symbol s of an M-ary Quadrature Amplitude Modulation (QAM)
constellation, where M = 2m.

• The set of constellation points its loaded into an Inverse Fast Fourier
Transform (IFFT) unit. The IFFT is the core element of OFDM
based communication systems, as it performs both modulation and
frequency multiplexion.

• At the receiver side, a Fast Fourier Transform (FFT) core demod-
ulates the received signal and generates a set of complex symbols.

Viterbi decoder 29

These symbols are affected by the impulse response of the channel.
The channel response is different for all the subcarrier frequencies
of the OFDM modulation. An equalizer is needed to estimate and
compensate this effect.

• Finally, a demapper takes the equalized complex symbols and returns
the binary representation of the constellation points that are closer
in Euclidean distance to them.

Figure 2.26 shows the basic architecture of a BMU. As it can be seen,
an array of 2n elements calculate in parallel all the branch metrics in the
trellis diagram for the input sequence r. An optional input port labelled
CSI provides the BMU the channel estimation on multicarrier transceivers.

������� ��������
� !� "

������� ��������
� !� #$ % &

�
'!���(���!�� � � ��) !� *""+++",

'!���(���!�� � � ��) !� *&&+++&,

�
�
� +++

���

- .�� ��/0

Figure 2.26: Block diagram of the Branch Metric Unit (BMU)

Depending on the encoding of the input sequence r, Viterbi decoders
are classified as hard or soft decoders. On the other hand, Viterbi decoders
that use Carrier Strength Indicator (CSI) are known as CSI-aware decoders.
The following sections describe different BMU implementations depending
on their inputs r and optional CSI.

2.2.3.1.1 Hard decoder

Hard decoders treat the demapped constellation points r as a set of
logical ones and zeros. Let us consider the modulation and demodulation
scheme of a Binary Phase-Shift Keying (BPSK) constellation depicted in
figure 2.27. In the transmitter side, a mapper generates a constellation
point s0 whenever it is given a logical zero input bit. Similarly, it generates
a constellation point s1 when given a logical one input bit. Due to the

30 CHAPTER 2. State of the art

� �

�1�2

�
�� ��

���	

�

�

��
�������������

Figure 2.27: Demap function of a hard decoded bits

noisy characteristics of the channel, the symbols seen by the receiver differ
from s0 and s1. The demapper, however, takes the following assumption:
if the in-phase component of the received constellation point is negative,
then it is considered that a logical zero was transmitted. Similarly, if the
in-phase component of the received constellation point is positive, then
it is considered that a logical one was transmitted. The hard decoding
nomenclature comes from the fact that the demapping function is non-
continuous and changes abruptly in the decision boundary between s0 and
s1.

Hard-decoders have a simpler hardware architecture (the Hamming dis-
tance between 2 input bits is trivial) but are more error prone in noisy
scenarios where the received symbols fall in the decision boundary between
s0 and s1.

2.2.3.1.2 Soft decoder

Soft decoders use a set of demapping functions similar to that depicted
in figure 2.28. Here, the demapper, instead of returning a logical one or
zero, calculates a weight or soft bit, indicating how close the received sym-
bol matches the constellation point s0 or s1: if the received symbol is
close to s0, then, with high probability, the transmitted bit was a logical
zero. Similarly, if the received symbol is close to s1, then, with high prob-
ability, the transmitted bit was a logical one. The certainty of the soft
bits decreases as the received symbol falls in the proximity of the decision
boundary between s0 and s1

Viterbi decoder 31

3 4

5657

8
94 :4

;<=>

3

4

?@ABCD@E 5FGA HIA

Figure 2.28: Demap function of a soft decoded bits

Soft decoders take into account these weight factors to better generate
the branch metrics. Soft-decoders require more hardware resources than
hard-decoders. However, soft-decision decoding is the generally preferred
methods because of its superior performance. It has been determined that
soft-decision decoding provides 2 to 3 dB gain over hard-decision decoding
[Moo05]. The decoding capacity is the difference (in dBs) of the transmitted
signal power required by two different decoders to obtain an identical BER
level.

So far floating point precision has been considered when representing
the soft-bit values. However, real decoders implement fixed-point logic.
By converting the softbit metrics to small integer quantities, it is possible
to efficiently accumulate the metrics. It has been found in [HJ71] that
quantizing each softbit with 3 bits (eight quantization levels) results in a
loss in coding gain of around only 0.25 dB. It is possible to trade metric
computation complexity for performance, using more bits of quantization
to reduce loss or using less bits for faster, smaller implementations.

2.2.3.1.3 Carrier Strength Indicator aware decoders

Multiple carrier communication systems can provide further informa-
tion to improve the calculation of the branch metrics. In a multiple carrier
system such as that in figure 2.25, each element of the received sequence r

is decoded from different, independent carriers. The transmission channel
affects each subcarrier independently. For instance, some carriers are at-
tenuated more than others. At the receiver side the equalizer is necessary
to estimate and compensate the impulse response of the channel. When

32 CHAPTER 2. State of the art

the channel response is provided to the Viterbi decoder, then the decoder
is referred as a CSI aware design.

CSI aware decoders improve their metric calculations by weighting the
branch metrics with the channel impulse response. Bits decoded from very
attenuated subcarriers have a smaller weight on the branch metrics than
those that are decoded from less attenuated subcarriers since they are more
prone to mismatches due to the noise.

According to the results in [ACS+08], an extra decoding capacity gain
of around 2 dB can be expected from Viterbi decoders that implement CSI
over pure softbit based Viterbi decoders. The improvement in the decoding
capacity comes at the expense of further computational requirements in the
ACS units. To the author’s knowledge, CSI aware Viterbi decoder hardware
implementations have not been proposed in the literature.

2.2.3.2 Add-Compare-Select Unit

The ACS unit is the core element of the Viterbi decoder. It is responsi-
ble for extending the path though the trellis by adding the branch metrics
of the survivor paths of the previous decoding time instant with the branch
metrics due to the state transitions, comparing the resulting metrics of all
the candidate paths converging into a given state in the trellis, and selecting
the path with better (lowest) accumulated metric.

ACS units are computationally demanding modules. It has been es-
timated that the Viterbi decoder is the most computationally intensive
module in an OFDM based receiver [MGJ04], even more than the FFT,
synchronization or equalization modules.

The basic architecture of a ACS unit is shown in figure 2.29. From the
convolutional code definitions of section 2.2.1 we know that a convolutional
code with a constraint length of ν has a total of 2ν states. The most
direct approach to the Viterbi algorithm instantiates 2ν ACS units, each
responsible of the add, compare and select operations that occur in a state
of the code. The radix of the ACSs indicates the number of candidate
paths the ACS must analyse to select the survivor path. For the serial
convolutional codes, the Viterbi decoder implements radix-2k ACSs. For
parallel implementations of the convolutional encoder as shown in section
2.2.1.1, the Viterbi decoder implements radix-2pk ACSs.

Viterbi decoder 33

Branch metric 0

Path metric 0

Branch metric JKLM

Path metric JKLM

Survivor Path Metric
Previous State Indicator

C
om

pa
re

S

el
ec

t... ...

Figure 2.29: ACS unit block diagram

As it can be seen in figure 2.29, each ACS unit essentially consists of
a series of adders, comparators and multiplexers. Since in a convolutional
code with R = k/n = 1/2 each state in the trellis can be reached from 2k

precursor states, the hardware requirements of the ACS unit are:

• 2k accumulators that extend the path metrics of the survivor states
with the branch metrics.

• A compare tree that compares the metrics of all candidate paths.

• A 2k:1 multiplexor that identifies the survivor path.

The ACS operation must be completed before new branch metrics are
calculated by the BMU. High throughput Viterbi decoders are generally
operated with a clock frequency equal to the data rate of the communication
link. In this scenario, the ACS operation must be completed in a single clock
cycle, with no possible pipelining opportunities. Consequently, the ACS is
the bottleneck of very high speed Viterbi decoders. On these systems, the
logic of the ACS must be optimized to minimize its propagation delay as low
as possible. A possible way of improving this limitation is by modifying the
order in which the ACS executes its operations: if the compare operation is
executed first followed by the select and add operations, then some authors
[HYS14] suggest that the ACS slightly improves its timing results.

So far the Viterbi decoder has been assumed to decode a continuous data
stream. This implies that the accumulated metrics of the survivor paths

34 CHAPTER 2. State of the art

increase as time advances. On real implementations of Viterbi decoders
this is a severe drawback. The finite precision of the accumulators inside
the ACS will overflow sooner or later if the decoding elapses for a prolonged
period of time. When an accumulator associated to a state on the trellis
overflows its accumulated metric is abruptly reduced. This, in turn, can
introduce decoding errors in the following iterations of the algorithm. The
state that has overflowed will produce paths with lower metrics than those
states that have not overflowed. Since the Viterbi algorithm selects the
paths with minimum accumulated metric, the decoder can mistakenly select
as survivor paths those paths that are generated from a state that has
previously overflowed.

The previous state indicator in figure 2.29 is an identifier of the precur-
sor state in the trellis that originated the survivor path. This information
is needed by the last functional block in the Viterbi decoder: the SPU.

2.2.3.3 Survivor Path Unit

The SPU unit is responsible for updating the historic of survivor paths
in the trellis and generating the estimated transmitted sequence x depicted
in figure 2.1.

In convolutional codes, data is typically encoded in a stream. Once the
encoding begins, it may continue indefinitely. If such a data stream were
to be decoded using the Viterbi algorithm, the paths through the trellis
would have to have as many state transitions as the length of the message
m. For long data stream sequences this could require an extraordinary
amount of data to be stored since the decoder would have to store 2ν paths
whose lengths increase every decode cycle. Additionally, this results in an
enormous decoding latency. Strictly speaking it would not be possible to
output any decoded values until the maximum likelihood path was selected
at the end of the decoding.

However, it is not necessary to wait until the end of the transmission. In
general when the Viterbi algorithm has iterated a sufficiently large amount
of time, the set of survivor paths share a common initial state transitions in
their trellis diagram. This can be seen in the decoding example in section
2.2.2 on page 22. In this example, after time instant t = 5, the state
transitions of all survivor paths are identical between time instants 1 and

Viterbi decoder 35

2. Therefore, at time instant t = 4 it is safe to make a decision about the
message transmitted during time instant t = 1 and t = 2.

The number of decode iterations that are allowed in the Viterbi algo-
rithm before an output decision is made is called the traceback (or decod-
ing) depth τ of the decoder. The value τ can then be seen as the latency
introduced by the Viterbi decoder operation. Consequently, it is only nec-
essary for the Viterbi algorithm to maintain a small window of the trellis
diagram of the survivor paths. This window goes from the current time
instant t back to time instant t− τ + 1

�� �� �� �τ �τ�� �τ��

�� ��

...

t

Decoder input

Decoder output

t=1 t=2 t=3 t=τ... t=τ+1 t=τ+2

Figure 2.30: Viterbi decoder latency

At a system level the Viterbi decoder can be seen as a delay unit. This
delay is represented in figure 2.30. From time instant t = 1 the receiver
chain provides the decoder with new received vectors r. However, the
allowed traceback depth introduces a latency of τ cycles. It is not until
time instant t = τ + 1 where the decoder takes a decision on the code bits
rt−τ , where rt−τ is the received sequence r at time instant t− τ .

Even though it is possible to make incorrect decoding decisions on a
finite decoding depth, this error, known as truncation error, can be min-
imized if the decoding depth of the decoder is sufficiently large. It has
been found in [For74, HC77] that if a decoding depth of about five to ten
times the constraint length of the code is employed, then the performance
loss due to the truncation error is very small compared with the full length
solution.

There are a few options when a decision about the output xt−τ has to
be made at time t [Wic95]:

• Output xt−τ on a randomly selected survivor path.

• Output xt−τ on the survivor path with best metric.

36 CHAPTER 2. State of the art

• Output xt−τ that occurs most often among all the survivor paths.

• Output xt−τ on any path.

However, for sufficiently large values of τ the performance difference
among these alternatives is very small.

According to the way survivor path historic data is managed, the SPU
can be based on a register exchange implementation or a traceback imple-
mentation.

2.2.3.3.1 Register exchange implementation

The register exchange implementation of the SPU operates by storing
the message associated to each survivor path in a structure similar to a
shift register. Each shift register is τ elements wide and there is a total of
2ν shift registers, one per state in the encoder.

For example, the contents of the shift registers of the register exchange
implementation at time instant t = 5 of the convolutional code example in
section 2.2.2 are depicted in figure 2.31.

������� �

���

�

��	

���

���

��

������

 � �

������� �
 �

�������

 �

Figure 2.31: Register exchange implementation example. Register

values at t = 5

The oldest decoded message bit of the survivor path is stored in the
least significant position in the shift register.

When the ACS unit selects the next survivor path in the next decoding
time instant, the contents of all shift registers of the SPU are shifted one
position to the right. This process is illustrated in figure 2.32.

Viterbi decoder 37

������� �

���

�

��	

���

���

��

������

 � �

������� �
 �

�������

 �

Figure 2.32: Register exchange implementation example. Data

shift at time intant t = 6

In figure 2.32, since a decoding latency sufficiently large has been per-
mitted, the output of all shift register converges to an identical decoded
message x at time instant t = 1. This value is the Viterbi decoder output
x for the received vector r at time instant t = 1.

After that, the contents of all shift registers are updated by copying the
values of the state associated to the precursor state as pointed by the ACS
units. In our decode example, the survivor path selection at time instant
t = 6 highlighted in figure 2.17 is as follows: the survivor paths ending at
states 0 and 1 at time instant t = 6 are the extension of the survivor path
ending at state 0 at time instant t = 5. Consequently, the value of the shift
register associated to state 0 is copied into the shift registers associated
to states 0 and 1. Similarly, the survivor path ending at state 2 at time
instant t = 6 is the extension of the survivor path ending at state 1 at time
instant t = 5. Therefore, the values of the shift register associated to state
2 are updated by copying the value of the shift register associated to state
1. Finally, since the survivor path associated to state 3 at time instant
t = 6 is the extension of the survivor path ending at state 3 at time instant
t = 5, the contents of the shift register associated to state 3 is copied in
itself. This update process is illustrated in figure 2.33.

Finally, the transmitted message m that generates the state transitions
indicated by the ACS units are stored in the most significant elements of
the shift registers. This process is illustrated on figure 2.34.

The register exchange implementation of the SPU has the lowest overall
decoding latency of τ cycles [MZMD13].

38 CHAPTER 2. State of the art

������� �

���

�

��	

���

��� ��

������

�������

�������

� �

 � �

 �

Figure 2.33: Register exchange implementation example. Shift reg-

ister content update at time instant t = 6

������� �

���

�

��	

���

��� ��

������

�������

�������

�

�

� �

 � �

 �

Figure 2.34: Register exchange implementation example. Store de-

coded bits at time instant t = 6

2.2.3.3.2 Traceback implementation

Traceback implementations of the SPU are based on Last-In First-Out
(LIFO) memories that store the historic of state transitions estimated by
the ACS units.

Every clock cycle, the LIFO memory is loaded with a vector of 2ν el-
ements. Each element of the vector is associated to a single state of the
convolutional code. During each iteration of the algorithm, the element of
the vector stores a pointer to the precursor state of the survivor path ending
at the state associated to the vector element. Since in a code with 2ν states
and a coding rate of R = k/n 2k different states can be reached from the
same precursor state, the memory of the traceback implementation of the
SPU is organized as a

[

τ × (2ν)k
]

LIFO memory, where τ is the traceback
depth of the decoder.

Viterbi decoder 39

For example, figure 2.35 contains the contents of the memory of a trace-
back implementation at time instant t = 5 of the convolutional code exam-
ple in section 2.2.2

� � � �

� � � �

� � � �

� � � �

� � � �

����	

����

�����

�����

�����

����
�� ����
�� ����
�� ����
��

Figure 2.35: Traceback implementation example. Memory con-

tents

Note that at time instant t = 1, there were no precursor states for states
2 and 3 of the trellis in figure 2.8. Consequently, the elements associated to
states 2 and 3 at time instant t = 1 in the LIFO memory of the traceback
unit in figure 2.35 show null data.

After τ iterations, the decoding process is freezed. The survivor path of
the decoder is reconstructed by identifying the ACS with minimum accu-
mulated metric and by tracing backwards the contents of the LIFO memory
(hence the name of the SPU implementation) from the last decoding iter-
ation to the first decoding iteration.

If in our example, a decision were to be made at time instant t = 5,
figure 2.36 depicts the traceback process. First, the state with minimum
accumulated metric is identified. In our example, we know from figure 2.15
that the survivor path with minimum accumulated metric at time instant
t = 5 ends at state 0. Then, the contents of the LIFO memory is traced
back from this state. At time instant t = 5, the precursor pointer stored at
the vector element associated to state 0 in the LIFO memory is 2. Similarly,
at time instant t = 4 the precursor pointer stored at the the vector element
associated to state 2 in the LIFO memory is 3. The backtrace process
continues until all the addresses of the LIFO memory are read. In figure
2.36, the memory elements accessed are highlighted in red. Finally, all state

40 CHAPTER 2. State of the art

transitions are rearranged in reverse order. For our case, the traced back
state transition sequence associated to the survivor path ending at state 0
at time instant t = 5 is 0 → 1 → 3 → 3 → 2 → 0.

� � � �

� � � �

� � � �

� � � �

� � � �

����	

����

�����

�����

�����

����
�� ����
�� ����
�� ����
��

Figure 2.36: Traceback implementation example. Traceback step

Once the survivor path has been reconstructed the decoded message can
be generated by associating the state transitions in the reconstructed path
with the input messages to the encoder as pointed by the trellis diagram.

In our example, the state transition 0 → 1 → 3 → 3 → 2 → 0 corre-
sponds to the a decoded message x = 11001.

The traceback implementation of the SPU has twice the latency of the
register exchange implementation: τ cycles are necessary to generate the
survivor path and another τ cycles are necessary to output de decoded
message.

In cases where decoding can not be freezed during the traceback state,
the First-In First-Out (FIFO) memory of the SPU is implemented as an ar-
ray of memories in ping-pong configuration (one memory stores the newest
survivor path transitions while the other is being traced backwards) or by
using multiple-port Random Access Memories (RAMs) (one port in the
RAM memory is used as a write pointer of state transitions of the new sur-
vivor paths while the other pointer is used as a red pointer for the traceback
state).

Viterbi decoder 41

2.2.4 VITERBI DECODER IMPLEMENTATIONS

The Viterbi decoder is the most complex element of the receiver in a
digital transceiver [MGJ04]. Consequently, a lot of optimization effort is
carried out during the design stage to obtain an architecture that meets
system requirements such as decoding capacity, data throughput and area
resource utilization.

The decoding capacity is the BER figure that a system can achieve
for a given channel noise levels. On the Viterbi decoders, the constraint
length ν of the convolutional code is the first indicator of the decoding
capacity that can be achieved in the system: decoders with higher values
of ν are more robust against noise in the channel. However, higher values
of ν lead to more complex Viterbi decoder implementations, which require
more hardware resources and, generally, result in slower implementations.

The size of the Viterbi decoder is directly related with the manufac-
turing costs of the design. These costs are the ultimate indicator that will
decide wether a hardware architecture is suitable for mass consumption or
not. The convolutional code implemented by the Viterbi decoder is an ini-
tial gauge of the performance and the cost, in terms of area, of the design.
For example, the constraint length of the code hints about the decoding
capacity of the decoder, while it also expresses the total number of ACS
units required in the design. The traceback depth of the algorithm illus-
trates about the truncation error of the implementation and also gives an
idea about the memory requirements of the SPU and the delay of the core.
The works proposed in the literature try to find a trade-off between the
maximum decoding capacity predicted by the convolutional code and the
costs in terms of area of the implementation of the Viterbi decoder.

In this section the state of the art of Viterbi decoders found in the
literature is presented. Depending on the optimization goal each Viterbi
decoder pursuits, decoders are classified into area efficient decoders, high
data throughput decoders and reduced latency decoders. Finally, reconfig-
urable decoders are introduced.

2.2.4.1 Area efficient Viterbi decoders

The most demanding components of a Viterbi decoder in terms of area
are the ACS units followed by the SPU. In its simplest radix-2 version, an

42 CHAPTER 2. State of the art

ACS unit requires two adders, one comparator and a 2:1 multiplexor. This
hardware resources requirements increase exponentially with the constraint
length of the code. Therefore, minimizing the number of ACS units in the
decoder will reduce the manufacturing cost of the device. The first solution
to narrow the influence on the area resource utilization of the decoder is to
constraint the designs to convolutional codes with manageable constraint
lengths. Keeping the constraint length of the convolutional code as low
as possible has, however, a negative impact on the maximum decoding
capacity achievable by the decoder, as codes with low states are more error
prone than codes with higher constraint lengths.

Another solution that tries to reduce the area cost of the ACSs relies
on instantiating less ACS than the total number of states in the trellis and
sharing the available units between the different states of the convolutional
code. This approach is very popular on Viterbi decoders implementing the
adaptive algorithm.

Table 2.3 summarizes the hardware resource consumption of different
ACS units found in the literature. The authors in [BSK+13] and [BSL11a]
present two sets of results: the initial hardware consumption of a typical
ACS unit and the resource utilization of their modified adaptive ACS unit.
All ACSs in the table are designed for a convolutional code with R =
1/3 and a 3-bit wide softbit word and have been implemented in a Xilinx
xc3s500 Field Programmable Gate Array (FPGA).

As can be seen in table 2.3, adaptive ACSs have higher costs in terms
of area compared to traditional ACSs, requiring two to five times the logic
of traditional ACS. This is because adaptive ACSs need to compare the
resulting survivor path length with the threshold level of the algorithm,
an operation that is not needed on the traditional ACS implementation.
However, adaptive ACSs have four benefits over traditional ACSs. First,
the power consumption of Viterbi decoders based on adaptive ACSs is at
least half the total power of Viterbi decoders based on traditional ACSs.
Second, the memory requirements of the SPU of adaptive Viterbi decoders
is reduced over traditional ACS based Viterbi decoders because in the for-
mer less survivor paths are generated at each decoding cycle. Third, the
more area resource intensive adaptive ACSs lead to faster hardware ar-
chitectures. In [BSK+13] for example, the adaptive ACS unit is at least
three times faster than its traditional counterpart. Note that the authors
in [BSL11a] present no data regarding the register utilization of the tradi-

V
iterb

i
d
eco

d
er

4
3

[BSK+13] [BSK+13] [BSL11a] [BSL11a]

ACS Adaptive ACS ACS Adaptive ACS

4 input LUTs 36 81 8 47

Registers 20 24 - 8

Critical path delay [ns] 18.45 3-6 - -

Power consumption[mW] 45 23.58 143 38

Table 2.3: Comparison of normal and adaptive ACSs with coden =

2, codek = 1 and softbitbw = 3 in Xilinx xc3s50 FPGA

44 CHAPTER 2. State of the art

FPGA ν Clock Decode Speed

[MHz] [Mbps]

[STGB02b] xc4036 7 40.5 0.33

[ZB03] xcv300 8 101 12.5

[TSR+05b] xcv1000 12 13 0.415

[BPBS06] xc2v2000 8 32.26 2

Table 2.4: Summary of adaptive Viterbi decoders found in the liter-

ature implementing hard-decoding with k = 1 and n = 2

tional ACS unit because they consider that its functionality falls beyond
the scope of the ACS unit itself. This does not mean, however, that these
registers are to be omitted in the overall Viterbi decoder architecture. Fi-
nally, the extra area requirements of each adaptive ACS can be overcome by
the fact that adaptive decoders can operate with less ACS units (they only
require up to Nmax units) which in turn reduces the memory requirements
of the SPU and therefore, its size.

Area savings in the Viterbi decoder can be obtained by sharing the
available ACS unit among the states in the trellis. On the one hand, this
solution reduces the number of ACS units that are required on the decoder.
On the other hand, it reduces the decoding throughput of the decoder, as
more clock cycles are required to calculate all the survivor paths in the
code. Table 2.4 summarizes the implementation results of several Viterbi
decoders taking this approach. All the decoders presented in the table
implement a hard-decoding BMU and are based on a R = k/n = 1/2
convolutional code.

As can be seen in table 2.4, sharing ACS units between different states
in the trellis has a penalty on the data throughput that can be achieved
by the design. Indeed, since several clock cycles are required so that the
available ACSs obtain all survivor paths, the ratio between the system
clock speed and decoding throughput is proportional to the reduction in
ACS units.

Viterbi decoder 45

For example, in [STGB02b] a Viterbi decoder with 128 states and a
single ACS unit is generated. Therefore, the decoder requires 128 clock
cycles to generate all the survivor paths at each decoding instant. Since
the decoder is clocked with a 40.5MHz clock, this means that the decod-
ing speed of the solution is reduced to 40.5/128 ≈ 0.33 MHz. A more
extreme case found in the table is [TSR+05b]. Here, a Viterbi decoder for
a convolutional code with 212 = 4096 states is required. Instead of instan-
tiating 4096 ACSs, the authors choose to instantiate a more manageable
quantity of only 128 ACSs. Therefore, each ACS unit is shared between
4096/128 = 32 states and thus, for a clock speed of 13 MHz, the decoding
throughput of the system is reduced to 13/32 ≈ 0.415 Mbps.

Not all adaptive Viterbi decoders implementations found in the lit-
erature reduce the number of available ACS units to minimize the area
resource utilization of the decoder. Since the adaptive Viterbi algorithm
reduces the number of survivor paths generated, the memory requirements
to keep track of these paths is reduced in adaptive decoders, which in turn
reduces the area requirements of their SPU. Since no ACS sharing is done,
these decoders obtain a decoding throughput that matches their system
clock. Examples of these solutions are the proposed works in [CV03] and
[LDZL11a]. The former obtains a Viterbi decoder that reaches a decoding
throughput of 60.5 Mbps on a Virtex-II FPGA, while the latter obtains a
decoder achieving a decoding throughput of 202.587 Mbps on a xc5vlx300
Virtex-5 FPGA.

2.2.4.2 Data throughput enhanced Viterbi decoders

Data throughput is the amount of data that can be decoded per unit of
time. Even if giving a hard value from which a system is considered to be
high throughput is questionable and open to debate, during this research
work we will consider that systems achieving decoding throughputs above
several megabits per second to be high throughput.

High decoding throughput works found in the literature obtain this
goal by using two different techniques: simplifying the architecture of the
decoder, which results in faster implementations, and obtaining parallel
implementations of the decoder architecture.

The work in [GXC+13] belongs to the first group: those that maximize
data throughput by obtaining faster implementations. Here, the Viterbi de-

46 CHAPTER 2. State of the art

coder reaches decoding throughputs of 1.25 Gbps. However, the decoding
throughput is obtained at the expense of a simplified decoder architecture.
For instance, the decoder implements a hard decoding BMU and the con-
straint length of the convolutional code is ν = 2. Hard decoding reduces
the size of the accumulators of the ACS units. This helps increasing the
achievable clock speed of the design, which in turn enhances the decoding
throughput of the decoder. However, as was mentioned in section 2.2.3.1.2,
hard decoders have a 3 dB decoding loss compared to decoders implement-
ing soft decoding. Besides, the reduced constraint length of the decoder
limits the decoding capacity of the convolutional code. Therefore, in this
case, a significant tradeoff between the throughput and decoding capacity
of the decoder is made.

The proposed work in [SV13] is similar to that in [GXC+13]. Here,
the decoder achieves a maximum decoding throughput of 394Mbps with a
system clock rated at the same speed. However, to do so the convolutional
code being implemented in the Viterbi decoder is simplified: the proposed
Viterbi decoder implements a hard-decoding BMU and is based on a four
state (ν = 2) convolutional code with R = k/n = 1/2. Therefore, the
design in [SV13] minimizes the hardware resource utilization and achieves
a very high speed implementation at the cost of lower decoding capacity.
When implemented in a Xilinx Virtex-7 xc7vx330t-ffg1157-3 FPGA, the
decoder requires only 198 registers and 390 Look-up Tables (LUTs) and
achieves a maximum clock speed of 394 MHz. As a reference, a typical
64 state Viterbi decoder such as that in [Xil11c] requires 2573 LUTs on a
Virtex-6 FPGA.

Authors in [SSV14], on the other hand, propose a convolutional code
based communication system that reaches data speeds of 4 Gbps. This high
data throughput is obtained by parallelizing the transceiver architecture:
the total bandwidth of the system is divided into eight parallel, independent
lower speed streams. This property relaxes the constraints on the Viterbi
decoder, as this unit must now only have to deal with data streams of
500 Mbps. Compared to the former [SV13], the reduced data throughput
of the Viterbi decoder in [SSV14] allows implementing much more robust
decoding architectures. For instance, here the decoder implements an 8-
level soft-decoding BMU and a convolutional code with ν = 6. Compared
to [SV13] where a hard Viterbi decoder with ν = 2 was implemented, the
decoder in [SSV14] has a much better decoding capacity at the expense

Viterbi decoder 47

of a higher hardware resource utilization to implement the eight Viterbi
decoder instances.

In [VNS12b] a similar approach to that in [SSV14] is presented: the total
bandwidth requirement of the application is divided into independent lower
speeds streams. In [VNS12b], however, the total number of parallel streams
is not fixed and is a function of the maximum throughput the Viterbi
decoder achieves with different softbit quantization levels: when less bits
are used to represent the softbit values, the achieved Viterbi decoder reaches
higher clock speeds (and slightly worse decoding capacity) and therefore,
less units need to be instantiated in the system.

An opposite technique to obtain data throughputs higher than the sys-
tem clock is the parallelization of the convolutional code. This technique
was introduced in section 2.2.1.1 and basically rearranges the states in the
trellis diagram so that each ACS can generate the survivor paths of due
to consecutive input symbols to the encoder. In this way, if a radix-2k

ACS can generate survivor paths corresponding to k input symbols to the
encoder, a radix-2pk can generate survivor paths corresponding to pk input
symbols to the encoder. As a consequence, the decoding throughput of a
radix-2pk based ACS is p times its base clock speed. However, paralleliza-
tion of the ACS has a significant impact on the area resource utilization of
the parallel ACS. Table 2.5 lists the hardware resource utilization of ACSs
of different radix. As can be seen, the number of adders in a parallel ACS
increases lineally with p, the number of comparators in the ACS increase
exponentially and a p : 1 multiplexor is required. Therefore, we conclude
that parallelization of the convolutional has a high impact on the area uti-
lization of the decoder and it is only suited in scenarios where high data
throughput with respect to the system clock speed is pursuit such as in
[TNHN99] and [NG13].

Following the discussion of the parallelization of the ACS unit, the au-
thors in [BK13] present 3 different architectures that implement radix-2pk

ACSs with p = 2 and k = 1. Type 1 architecture is a straight forward
translation into hardware of the parallel trellis diagram of figure 2.7. Type
2 architecture calculates the maximum value among four input operands
by using LUTs which take six MSBs of each relative comparison results
among two operands. Finally, type 3 architecture reorder the logic ele-
ments of the type 1 architecture as described by [Par99] to obtain a faster

48 CHAPTER 2. State of the art

p Radix-2pk Adders Comparators Multiplexor size

1 radix-2 2 1 2:1

2 radix-4 4 3 4:1

3 radix-8 8 7 8:1

Table 2.5: Resource utilization of ACSs of different radices for con-

volutional codes with k = 1

ACS
Gate count

400 MHz 250 MHz

Type 1 3011 2040

Type 2 3460 2848

Type 3 4173 2703

Table 2.6: Gate count comparison of different radix-4 ACSs at dif-

ferent clock speeds in [BK13]

implementation. Table 2.6 summarizes the area resource utilization of some
implementations of the various ACS architectures at different clock speeds.

The results in table 2.6 indicates that the most area efficient parallel
ACS unit is type-1. The area resource utilization of the type-2 and type-3
ACS implementations differ with the clock frequency: at lower frequencies,
the type-3 has a slight gain in area resource utilization over type-2. How-
ever, as the clock frequency increases, so does the hardware requirements of
type-3 ACSs and it becomes the most demanding implementation in terms
of area resource utilization.

Table 2.7 compares the area resource utilization of all three parallel
ACSs when they have been implemented at their highest achievable clock
speed. As seen in the table, the fastest and most resource intensive parallel
ACS implementation is type-3. On the other side, the ACS implementation

Viterbi decoder 49

Maximum clock speed [MHz] Gate count

Type 1 270 2583

Type 2 263 3242

Type 3 400 4173

Table 2.7: Gate count comparison of different radix-4 ACSs at their

achievable maximum clock speed in [BK13]

with less area resource requirements correspond to type-1, but it achieves a
clock speed a 37.5% slower than that of the type-3 implementation. Type-2
ACS implementation offers an intermediate area resource utilization com-
pared to type-1 and type-3 ACSs, but overall it is the slowest architecture of
all, obtaining a reduction in the operating clock of around 2.5% compared
to type-1 implementation.

The results in the first column in the table were obtained when the
ACSs were implemented to obtain the maximum achievable clock speed.
As can be seen, type-3 ACS offers the minimum path delay of all three
architectures: 2.5ns. Type-1 and type-2 architectures, on the other hand,
have a very similar behaviour in terms of their achievable clock speed of
around 3.7ns. With respect to the area resource utilization, at identical
clock speeds type-1 ACS is the most area efficient architecture for all clock
speeds and depicts an advantage of around 25% over type-2 ACS architec-
ture and 30% over type-3 ACS architecture.

Authors in [VNS12a] explore further more the parallelization of the con-
volutional code and present the implementation results of Viterbi decoders
for various type-1 ACS radix. These implementation results are summa-
rized in table 2.8. As can be seen, for the radix-2 case, the throughput and
clock frequency of the system are identical. When the ACSs are updated
to radix-4 the maximum clock speed achievable by the decoder is reduced
a 44%. However, due to the parallelization of the algorithm, the overall
throughput of the system is increased by a 12% with respect to the radix-
2 based implementation. This increase in the throughput of the decoder
comes at a higher cost in terms of hardware resource utilization: the radix-
4 implementation requires 2.4 times as many LUTs and 58% more registers

50 CHAPTER 2. State of the art

LUT FF Freq [Mhz] Thoughput [Mbps]

Type 1 Radix-2 2253 1550 356 356

Type 1 Radix-4 5498 2450 200 400

Table 2.8: Logic area and throughput comparison of Viterbi de-

coders implementing type-1 ACSs of different radixes in

[VNS12a]

as the radix-2 based implementation. Therefore, we conclude once more
that parallelization of the convolutional code increments the data through-
put of the system at the expense of a higher cost in area of the design.
Consequently, this solution is suited for applications that give preference
to data throughput over area.

2.2.4.3 Latency optimized Viterbi decoders

The decoding latency of the SPU is described as the time (in number of
clock cycles) that the SPU requires from the moment new data is generated
by the ACSs until a decision is validated at the output of the core. Table
2.9 summarizes several Viterbi decoders: [SV13] and [MZMD13] imple-
ment register exchange based SPUs, while references [NBA13] and [HLS14]
implement traceback based SPUs. As can be seen, traceback based imple-
mentation are the only ones that require RAM resources, while the register
utilization is greater on register exchange based implementations. Let us
take for example [SV13] and [HLS14]. The former implements a register
exchange based SPU and the latter implements a traceback based SPU.
Both of them use hard decoding on the BMU and implement convolutional
codes of identical complexity (in both cases k = 1 and n = 2). However,
even if the traceback depth on [SV13] (32) is slightly lower than that on
[HLS14] its register utilization is around 3.5 times that of the traceback
based implementation. With respect to the decoding latency of all imple-
mentations, all register exchange based decoder have a latency of around
τ cycles, while traceback based decoders have a latency in the order of 2τ
cycles. The advantage in the decoding latency of reference [NBA13] over
[HLS14] is because the former uses RAMs with multiple read/write ports
that help obtaining the survivor path transitions much quicker than the

V
iterb

i
d
eco

d
er

5
1

FPGA Softbit SPU ν τ Registers LUTs RAMs Latency Clock

type [MHz]

[SV13] xc7vx33t 1 RE 2 32 198 390 0 τ 394

[MZMD13] xa3s500 - RE 6 18 2356 6261 0 τ + k 118

[NBA13] xa3s500 - TB 6 18 - - 2 1.5τ 97

[HLS14] xc6vcx75t 1 TB 6 35 55 113 2 2τ 165

Table 2.9: Summary of the latency of FPGA Viterbi decoder imple-

mentations found in the literature with R = k/n = 1/2

52 CHAPTER 2. State of the art

single-port RAM based [HLS14]. As can be seen, register exchange based
SPU are preferred over traceback SPU on latency sensitive applications.

Traceback depth based SPUs present better power consumption figures
than register exchange based SPU [CRBD13]. This is because at each
decoding iteration, the contents of all registers in the register exchange
SPU can potentially toogle their logical value, while on traceback based
SPU only a bunch of pointers and the contents of an address in RAM
is updated. To minimize the power consumption, several works [EDE02,
EDE04] propose a modified register exchange array that minimizes toogling.
This modification, once more, comes at an increased cost in terms of area
resources.

Finally, with respect to the BMU, decoders that implement hard de-
coding require less area than those that implement soft-decoding. This
is because, for soft-decoding, the more quantization levels on the received
symbols r require wider adders in the BMU and accumulators in the ACSs.
As has been previously mentioned, soft decoders have a 2 to 3 dB gain
over hard decoders [HJ71]. This increase in the decoding capacity of the
decoder comes at the cost of an increased demand on hardware resources.
Consequently, area sensitive implementations (and, to some extent, time
critical implementations) prefer hard decoders over soft decoders at the ex-
pense of a worse decoding capacity. The same principle could be applied
for BMUs implementing CSI-aware decoding: the extra information due to
the CSI translates in larger adders and wider accumulators in the BMU
and ACSs. Adding CSI information to the BMU can improve the decod-
ing capacity of the decoder by around 2dBs at the expense of more area
resource utilization.

2.2.4.4 Reconfigurable Viterbi decoders

Most of the Viterbi decoder proposals found in the literature are based
on FPGA technology [Min11, EdDLSH+13, ASA+12, MM15, XJMCZYD04].
The reconfigurability of the FPGAs makes it an adequate platform to eval-
uate one of the latest trends in Viterbi decoder implementations: reconfig-
urable Viterbi decoders.

Reconfigurable Viterbi decoders [LDZL11b, PA14a, PN14, CSN14] are
those decoders whose hardware elements (distance calculators in the BMU,
ACS units, . . .) can be dynamically enabled, disabled and rewired on real

Viterbi decoder 53

time so that the convolutional code implemented by the Viterbi decoders
can be adjusted to the noise characteristics of the transmission channel.
This behaviour makes reconfigurable Viterbi decoders an interesting solu-
tion for applications such as Software Defined Radio (SDR). The decoding
capacity achieved by this decoder can be optimized dynamically as well. In
terms of area consumption, these decoders show no improvements because
hardware resources are always allocated for the most demanding configu-
ration of the decoder and can not be released when the decoder operates
on a lighter configuration.

Reconfigurable Intellectual Properties (IPs) are another set of Viterbi
decoders. They offer a wide range of possible configurations and the same
set of source files can be reused to generate Viterbi decoders with different
characteristics. Their behaviour is defined at compile time: once configured
the reconfigurable IPs generate a hardware implementation of a Viterbi
decoder with a fixed architecture. Their greatest advantage is, therefore,
reusability, since the same set of source files can be used to obtain decoders
with different properties. One of the most popular commercial Viterbi
decoder IP is the LogiCORE Viterbi decoder [Xil11c] by Xilinx.

The LogiCORE Viterbi decoder is an IP tied up to Xilinx FPGAs.
Their IP supports feedforward convolutional codes with constraint lengths
ranging from three to nine. It also supports coding rates R ranging from
1/2 to 1/7. The BMU of the IP supports hard and soft decoding. The
soft-decoding BMU supports puncturing and input symbols of up to eight
bits.

The number of ACSs in the IP is governed by what Xilinx defines as
the mode of the decoder. Parallel mode decoders implement a total of 2ν

ACSs. On serial mode decoders, the number of available ACSs is reduced
to one. Therefore, serial mode saves area at the expense of the decoding
throughput of the core.

The IP can generate SPUs based on the traceback algorithm only, and
do not support register exchange based implementations. Using a traceback
based SPU, the IP has a decoding latency of 2τ cycles. However, when the
traceback depth of the IP is set to a multiple of six a reduced latency mode
is available. In this special mode the latency of the core is reduced by half
at the expense of a slight speed penalty.

54 CHAPTER 2. State of the art

The number of necessary dual port RAM elements in the SPU increases
with the constraint length ν of the convolutional code. For constraint
lengths lower than seven a single block RAM is necessary. When the con-
straint length of the code equals nine, then the necessary amount of block
RAMs increases to eight.

The IP also supports what Xilinx denotes as multi-channel decoding.
Multi-channel decoding allows sharing the same Viterbi decoder hardware
with up to three independent data streams that have been encoded using
the same convolutional code. The only restriction is that data from the
three streams must be provided sequentially to the decoder: in the first
clock cycle, a symbol from the first stream is loaded into the decoder. At
the second and third clock cycles, data from the second and third data
stream is loaded. At the fourth clock cycle, the next symbol from the first
stream is loaded into the decoder.

Multi-channel decoding allows reducing the area utilization of a design
by using the same hardware resources with independent data streams. The
only limitation is that the Viterbi decoder must be sourced with a clock
signal whose frequency is, depending on the number of supported channels,
two or three times that of the data rate of each data stream.

Dual rate decoding is another technique supported by the IP aimed at
reducing the area requirements of the system. When the IP is configured in
dual data rate mode, the decoder can decode two independent data streams
coded with different transfer functions G(x) as long as the constraint length
ν and traceback depth τ for both encoders are identical.

Tables 2.10, 2.11 and 2.12 summarize the implementation results of the
Xilinx reconfigurable Viterbi decoder IP when a decoder with R = k/n =
1/2, ν = 6, τ = 96 and 3 soft bits is generated respectively in a Virtex-6,
Spartan-6 and Virtex-5 FPGAs with modes (parallel, serial and 3-channel
decoder).

The serial mode has the lowest resource utilization and can achieve
higher clock speeds than the parallel implementation. However, the data
throughput of the parallel mode is higher than that of the serial mode.
The 3-channel mode, on the other hand, generally uses as many LUTs
as the parallel implementation and twice the registers. It is the mode that
obtains the highest clock speeds, but since the IP decodes three independent

Viterbi decoder 55

Decoder mode

Parallel Serial 3-channel

LUTs 2573 1326 2410

FFs 1863 1497 3434

RAMs 2 2 2

Clock speed [MHz] 347 422 478

Throughput [Mbps] 347 35 159/channel

Table 2.10: Implementation results of the Xilinx Viterbi decoder

[Xil11c] with R = k/n = 1/2, ν = 6, τ = 96 and 3 soft

bits on a Virtex-6 6VLX75T-3 FPGA

Decoder mode

Parallel Serial 3-channel

LUTs 2442 1196 2914

FFs 1980 1590 3507

RAMs 2 2 4

Clock speed [MHz] 126 158 179

Throughput [Mbps] 126 13 59/channel

Table 2.11: Implementation results of the Xilinx Viterbi decoder

[Xil11c] with R = k/n = 1/2, ν = 6, τ = 96 and 3 soft

bits on a Spartan-6 XC6SÑX45T-2 FPGA

56 CHAPTER 2. State of the art

Decoder mode

Parallel Serial 3-channel

LUTs 2457 1326 2410

FFs 1538 1497 3434

RAMs 2 2 2

Clock speed [MHz] 272 364 387

Throughput [Mbps] 272 30 129/channel

Table 2.12: Implementation results of the Xilinx Viterbi decoder

[Xil11c] with R = k/n = 1/2, ν = 6, τ = 96 and 3 soft

bits on a Virtex-5 5VLX30-3 FPGA

data streams, its data throughput is divided by three. Consequently, data
decoding throughput is maximized with the parallel mode of the IP.

As can be seen from the tables, the achievable clock speed of the design
benefits from more modern FPGA technology. The Virtex-6 based imple-
mentation is the fastest design of the three, having a lead of around 11.5%
over the second fastest implementation, the Virtex-5 based design. This
advantage can be explained by the fact that Virtex-6 FPGAs are based on
6 input LUTs while the older Virtex-5 is based on 4 input LUTs. When
compared to the Spartan-6 implementation, the Virtex-6 achieves a de-
sign that is nearly 2.75 times faster. Even if both Virtex-6 and Spartan-6
are based on the same 6 input LUT design, the slices found in Virtex-6
FPGAs have better resource capabilities than those found in the Spartan-6
FPGA. This difference in the routing capabilities of the FPGAs explain he
advantage of the Virtex-6 implementation.

In this section a quick review of Viterbi decoders implementations found
in the literature has been presented. Viterbi decoder implementations dis-
cussed here try to find a trade-off between the complexity of the convolu-
tional code they implement (which indicates the decoding capacity achiev-
able by the decoder), the hardware resource utilization of the decoder and
its achievable clock and data decoding rate. The discussion of platforms

Hardware-in-the-Loop simulations 57

aiming at reducing the verification time necessary to evaluate the perfor-
mance of this architectures will be the subject of the next section.

2.3 HARDWARE-IN-THE-LOOP SIMULATIONS

2.3.1 INTRODUCTION

In the early years of digital design, the time needed to place a new
product into market from scratch was dictated mainly by synthesis and
implementation tools. As design tools became mature the verification
stage, where the design is ensured to behave as expected and its perfor-
mance is analysed, became the most time consuming step in digital design
[KMPR06]. System verification is a very meticulous process. Cases have
been reported where a single misplaced transistor has reduced consider-
ably the performance of entire digital designs [Int11]. In the case of digital
transceivers, testers can be overwhelmed by the total number of transmis-
sion modes the digital transceiver has to comply with and by the number
of real world channel conditions the device must be tested under for each
transmission mode.

With the improvement of the synthesis tools, the verification stage has
become the design bottleneck and can involve around the 60% or the 70%
of the development time [SL97]. As a system’s design matures the need to
prototyping it physically increases. Any reduction in the verification stage
can lead to a considerable shorter time to market.

Many techniques have arisen to speed up simulation and reduce verifi-
cation time. Among them, methodologies involving hardware in the control
loop of the simulation have proven to be the only ones to break the inverse
relationship between accuracy in simulation and performance in verifica-
tion stages [ALR11]. These methodologies are known as Hardware-in-the-
Loop (HiL) simulations.

2.3.2 HIL SIMULATION CHARACTERISTICS

HiL simulations lie in the principle of executing the most complex and
time consuming tasks of the simulation on dedicated hardware while the
lightest ones are executed in software.

58 CHAPTER 2. State of the art

Figure 2.37 shows the basic block diagram of a HiL based simulator . As

������� �����	�
����	���	

������������������

���������	�	������

�����������

�����
��������
�������

��������������

��������	

�
��

�
�

�������	

�
��

�
�

���������
���

Figure 2.37: Simplified block diagram of a HiL simulation

can be seen, the Device Under Test (DUT) being simulated is split in two
different subsystems: the virtual and physical components of the simulator.
The virtual component groups all the elements of the simulation that are
run on software. The physical component groups all the elements that
run on dedicated hardware. Just as in regular pure software simulations,
stimuli to the DUT is fetched to the simulator, and simulation results are
read from it.

The complexity of the subsystems found in the DUT will be the met-
ric by which it will be decided wether they will be implemented in the
physical or virtual components of the HiL platform. This way, subsystems
whose software emulation is a very time consuming task will preferably be
implemented on hardware. Similarly, when obtaining a software model of
the subsystem is infeasible, either due to its complexity or because its be-
haviour with other subsystems in the DUT is not fully understood, it will
be preferably be implemented on hardware.

The communication link depicted in figure 2.37 shares data among the
physical and virtual components of the simulator and synchronizes their
operation. The bandwidth of this communication link is therefore the real
bottleneck of the system and it directly affects the acceleration in simulation
time of the platform [OP05].

HiL simulations are becoming an interesting prototyping tool due to
their many inherent advantages.

With respect to the cost of the simulation, HiL simulations are a more
cost effective solution than physical prototyping because, on the one hand,

Hardware-in-the-Loop simulations 59

they require less hardware and, on the other hand, are quicker to build.
Besides, HiL simulators enable embedded system testing at much earlier
stages of the development process when errors are easier and less expensive
to correct [SI05].

With respect to the verisimilitude of the simulation, HiL simulators of-
ten achieve fidelity levels unattainable through purely virtual simulations.
Obtaining functionally accurate models of the architectures or algorithms
being analysed is essential in any type of simulation. However, during the
design stage of a project, obtaining such models is not an easy task. Some
times, achieving high levels of accuracy requires complex and time consum-
ing models in the simulation. Other times the behaviour of the component
being modelled is not fully understood. In this cases, by prototyping in
hardware, HiL simulators get a competitive advantage over other solutions.

With respect to the simulation speed achievable by the simulation plat-
forms, HiL simulations of complex physical devices run faster than purely
virtual simulations of the same devices. HiL simulations could theoreti-
cally be executed at real-time speeds. However, communication between
the physical (hardware) and virtual (software) layers have shown to be the
limiting factor of these kind of simulators [OP05].

The simulation speed acceleration of the HiL platforms is the basis of
two of their defining characteristics: repeatability and comprehensiveness.
With respect to the repeatability, systems that normally operate in highly
variable environments (for example, communication systems) can generally
be tested in controlled conditions through HiL simulation. With respect to
the comprehensiveness, HiL platforms generally make it possible to simulate
a given system over a much broader range of operating conditions than what
is feasible via purely virtual (software) prototyping.

Finally, HiL simulation allows different teams to develop different parts
of a system in hardware without losing sight of integration issues.

2.3.3 HIL SIMULATION USE CASES

HiL are very common to enhance the capabilities of the control loop
of a simulator platform. In industries such as vehicular and power elec-
tronics the control loop of the simulator is in charge of several hundreds of
subsystems [YPAB14]. The high number of peripherals being controlled,

60 CHAPTER 2. State of the art

along with the bandwidth necessary to transmit control and data signals,
make purely software based control loops unfeasible and thus, HiL sim-
ulators become an interesting alternative. When dedicated hardware is
instantiated in the control loop of the simulator, HiL platforms are known
as Controller-in-the-Loop (CiL).

In the aforementioned work in [LGSB14] a HiL simulator for a Modu-
lar Multilevel Converter (MMC) application is presented. In the words of
the authors, real-time control of MMC applications is difficult due to two
factors: the large number of subsystems involved and amount of measure-
ment and control signals that must be shared with the controlled. These
requirements can exceed the processing capabilities of software based solu-
tions [SOBM+15]. To overcome these difficulties, the authors propose an
FPGA based HiL simulator testbench. The testbench consists of a Virtex-7
FPGA operating at a clock speed of 200 MHz. The FPGA is connected
to the subsystems of the MMC with a fiber optic connection that reaches
communication speeds of 4.25 GBps.

In [JUB+11] another simulator for power electronics is presented. Here,
the controller is described in Register Transfer Level (RTL), which makes
it portable among different FPGA manufacturers and Application Specific
Integrated Circuit (ASIC) technologies, but the HiL platform itself is based
on System Generator, a proprietary toolbox of Xilinx. By adopting vendor
specific IPs, the time necessary to build the HiL simulator is reduced (the
library provides, among others, verified mechanisms to interconnect the
virtual and physical components of the HiL platform) at the expense of a
solutions that is tied to this specific FPGA manufacturer. The authors in
this work have opted for a Joint Test Action Group (JTAG) link between
the physical and virtual components of the HiL platform.

In [ABAAA15], HiL simulator for photovoltaic systems is discussed.
Compared to the early work in [JUB+11], here the authors have opted for
a HiL system that is entirely based on DSP builder, a set of proprietary IP
blocks provided by the FPGA manufacturer Altera. Therefore, both the
controller and the HiL platform rely on technology provided by the FPGA
manufacturer, which, on the one hand, reduces implementation time (no
RTL code has to be hand written) but, on the other hand, reduces the
portability of the solution even more, as all the system is dependent on
Altera technology.

Hardware-in-the-Loop simulations 61

In [YPAB14], another application for power grid environments is de-
scribed. Here, the number of nodes to be controlled is reduced with respect
to the previous references, and thus, this work contains a microprocessor
based CiL platform that measures the power consumption on the network
in real time and makes the best decision about the best routing of the power
resources on the fly.

In [KBJR14] a HiL based flight attitude control unit is described. The
HiL verification platform benefits the design in several ways. First, it re-
duces manufacturing costs because the flight controls are designed and
simulated virtually. Next, defects can be identified in advance and sub-
sequently rectified and then sent for the manufacturing process. Finally,
critical controls can be tested with real time scenarios in advance.

The HiL simulation of the flight controller is done using MATLAB and
Simulink-xPC. The simulink-xPC tool box provides connection with exter-
nal hardware such as aileron, elevators and rudder actuators. The con-
trolled kernel is compiled in Matlab/Simulink and the resulting kernel ex-
ecutable is loaded in a target PC that controls the actuators in the design
by means of data acquisition cards.

HiL CiLs are not limited to power electronics and vehicular applications.
For instance, in [SWJS15] the analysis of a HiL platform for tracking the
headers of a hard disk drive is introduced, and [BKM+15] is an example of
HiL simulators for health application.

The work [SWJS15] is similar to [ABAAA15] in the sense that both
the DUT and the HiL platform rely on building block provided by the
manufacturer (the authors in [SWJS15] rely on Xilinx’s System Generator),
which reduces implementation time but restraints the portability of the
platform.

In [BKM+15] a HiL simulator for cardiac pacemakers is discussed. Here,
the virtual component of the platform consists on a PC running a heart
model in Simulink, while the physical component of the platform consists of
a dedicated microcontroller evaluation board running a prototype version
of the firmware of the pacemaker controller that is being investigated.

The communication link between the physical and virtual component
of the simulator is based on a standard JTAG interface. This interface

62 CHAPTER 2. State of the art

allows a moderate data communication speeds between the components of
the HiL platform.

The control loop of the simulator allows adapting the response of the
pacemaker in realtime. Consequently, the authors can have a better un-
derstanding on the impact several subtle modifications in the pacemaker
control model have on the heart model. The pacemaker controller param-
eter configuration is performed by a slow speed serial UART interface.

The HiL platform has been built using IP building blocks generated by
the authors. Therefore, the proposed platform in [BKM+15] leads to a very
flexible HiL platform, as the design can easily be ported to other hardware
environments.

The increase in simulation speed provided by HiL platforms is also ex-
ploited by some authors such as [AGBL+13] and [LLHW08] to significantly
reduce simulation time.

In [AGBL+13] an HiL based accelerator is presented for linear system
blocks. The physical component of the simulator consists of several cores
capable of computing floating point operations with single, double and
custom precision following the IEEE 754 standard. The HiL platform has
been implemented on a Xilinx Virtex-5 FPGA using the proprietary IPs
found in the System Generator tool of the same vendor. Communication
between the physical and virtual components of the simulator is performed
using a JTAG link.

The authors in [LLHW08] propose a different application for FPGA
based HiL accelerators: verification and performance analysis of wireless
receivers. Similar to [LGSB14], the application in [LLHW08] has a very
demanding communication link bandwidth between its physical and vir-
tual components. Consequently, the authors have opted to implement fast
gigabit ethernet interfaces as the communication link between the compo-
nents. Besides, the description of the DUT of the physical component is
based on hand written RTL code only, which augments the portability of
the DUT to any other hardware platforms.

On the other hand, the receiver implemented on the physical component
of the HiL platform does not fit into a single FPGA. Instead, the DUT is
split into an array of FPGAs. This way, the platform gains expandability.
However, no tools have been found that divide the design into the FPGAs

Hardware-in-the-Loop simulations 63

available in the array. Consequently, this division must be done by hand,
which is a time consuming task and platform specific.

2.3.3.1 Summary of the Hardware-in-the-Loop platform use cases

Table 2.13 summarizes the features of different HiL platform use cases
found in the literature.

The bandwidth provided by standard JTAG and UART interfaces is suf-
ficient for moderately fast HiL platforms. However, in more bandwidth de-
manding scenarios like the receiver architecture in [LLHW08] and [LGSB14]
fast gigabit ethernet or fiber optic interfaces are required.

Concerning the DUT implemented in the physical component of the
simulator, some authors like [JUB+11] and [LLHW08] rely purely on hand
written RTL descriptions. This decision is more time consuming on the
early development stages of the design. However, it offers more portability
and the simulation results are closer to the final implementation of the
DUT than those DUT that have been build around proprietary IP libraries
or automatic code generators such as [SWJS15] and [ABAAA15].

Concerning the HiL platform, two clear groups can be distinguished:
those that rely on a custom generated platforms that allow portability to
different hardware environments, like [BKM+15] and [LLHW08], and those
that rely on the tools provided by the FPGA manufacturers that substan-
tially reduce the implementation time of the HiL platform, like [SWJS15]
and [ABAAA15].

As it can be seen in the table, must use cases are focused at obtaining
a high performance CiL platform, with few exceptions such as [AGBL+13]
and [LLHW08] aimed purely at verification and acceleration purposes.

Some of the works found in the table such as [JUB+11] and [ABAAA15]
perform an initial parametrical analysis of the DUT before its implemen-
tation in the HiL platform. This is done to obtain an optimized DUT
architecture with respect to a certain goal (area requirements, achievable
clock speed, system performance, . . .) before the simulation begins. This
parametrical analysis is done using software models of the DUT, which in
the case of complex DUTs is a time consuming task and can delay the
beginning of the HiL simulation.

6
4

C
H
A
P
T
E
R
2
.
S
ta
te

o
f
th
e
art

[JUB+11] [BKM+15] [SWJS15] [ABAAA15] [LLHW08] [AGBL+13] [LGSB14]

Data link JTAG UART JTAG JTAG Ethernet JTAG Fiber Optic

DUT Portable Portable Proprietary Proprietary Portable Proprietary Portable

code RTL C++ SysGen DSP Builder RTL SysGen RTL

HiL Proprietary Portable Proprietary Proprietary Portable Proprietary Portable

platform SysGen Software System Generator DSP Builder RTL SysGen RTL

Parametrical Software Non Non Software Non Non Non

analysis simulation applicable applicable simulation applicable applicable applicable

Use case Control Control Control Control Verification Acceleration Control

T
a
b
le

2
.1
3
:
S
u
m
m
a
ry

o
f
H
iL

p
la
tfo

rm
s

Concluding Remarks 65

2.4 CONCLUDING REMARKS

In this chapter a review of the state of the art concerning Viterbi de-
coders and HiL based simulators has been presented.

With respect to the Viterbi decoder, a trend has been identified in
the literature that tries to obtain very high speed communication systems
based on convolutional codes. However, in the search of fast communication
systems, the reviewed bibliography makes significants tradeoffs.

On the one hand, hardware architectures that achieve very high de-
coding throughputs do so by opting towards decoding convolutional codes
with low constraint lengths and hard-decoder architectures. Consequently,
the decoding capacity of these high speed decoders is compromised. Sur-
prisingly, the decoders that achieve the highest communication speeds are
those that offer the worst overall BER figures.

On the other hand, communication systems that simultaneously achieve
high communication speeds and provide high levels of FEC do so by split-
ting the total bandwidth of the communication system into independent,
slower parallel links. By reducing the communication speed at each paral-
lel line, more robust convolutional codes are considered, and the decoders
can use more powerful (and resource intensive) techniques such as soft-
demapping for branch metric calculations. However, parallelization of the
communication system has a significant cost on the transceiver architecture.
First, the parallelization of the transceiver architecture must be planned
early on the development stage. Secondly, parallelization comes at a very
high cost in terms of area consumption since the transmission and reception
chains must be duplicated several times.

Most of the Viterbi decoders found in the literature are rigid. This
means that they have defined to decode data from a particular convolutional
code in mid and the optimization techniques applied to them are geared
towards meeting the their system specifications. If the decoder were to
be reused in a different application many of its modules would need to be
required, which increases implementation time. Reconfigurable decoders
give a more flexible solution, but IPs such as [Xil11c] do not provide low
latency options such as register exchange based SPUs.

With respect to the HiL simulation platforms, different software and
FPGA based HiL simulators have been presented. The advantages and

66 CHAPTER 2. State of the art

disadvantages of tools relying on portable or vendor specific technologies
have been discussed. Also, an opportunity for early parametrical system
analysis has been identified that can potentially benefit from the inherent
fast execution time of HiL simulators.

CHAPTER 3

Objectives

Contents

3.1 Introduction . 67

3.2 Figures of merit 68

3.3 Objectives . 70

3.4 Scope of this work 71

3.1 INTRODUCTION

Forward Error Correction (FEC) is a technique that improves the reli-
ability of a communication system by adding structured redundancy to the
message being sent. This redundancy helps the receiver to make a better
decision about the message that was originally transmitted. The Viterbi
algorithm is a maximum likelihood sequence decoder of convolutional codes
that is used in communication standards such as the 802.11 family, UWB,
CDMA, GSM and LTE.

The Viterbi decoder is the most complex component of the receiver
chain in a transceiver [MGJ04]. Therefore, the development time of the
receiver chain is mostly occupied by this module. Most of the Viterbi

67

68 CHAPTER 3. Objectives

decoders found in the literature in section 2.2.4 have a rigid design and
have been optimized towards a very specific goal (area utilization, decoding
throughput or decoding capacity), so if the decoder were to be used in
another application much of the work would need to be re-done.

In this research work the description of a flexible and portable Viterbi
decoder architecture will be proposed. The flexibility of the decoder will
allow to quickly port it to any given application, which will reduce the
implementation time. In addition, a Hardware-in-the-Loop (HiL) platform
will be proposed to perform a fast parametrical analysis on the decoder
architecture. Unlike other proposals found in the literature, this paramet-
rical analysis will be performed over the entire transceiver architecture in
which the decoder is embedded, so that all the effects of the transceiver
implementation are taking into account during the optimization stage.

3.2 FIGURES OF MERIT

When a convolutional code is chosen for the transmitter of a commu-
nication system, its definition gives a raw indicator of the complexity of
the Viterbi decoder that will be instantiated at the receiver. When the
Viterbi decoder is being implemented, the designer will obtain the hard-
ware architecture that better suits its optimization goals (area resource
utilization, achievable maximum clock speed, data decoding throughput,
power consumption, . . .).

In order to compare different Viterbi decoder architectures, we need to
compare at an architectural level and in terms of the performance achieved
by the transceiver in which they will be implemented. In this section, two
different figures of merit will be presented. These metrics will be latter
used to compare different decoder implementations found in the literature
with the one developed in this research work.

3.2.1 PER

Two figures of merit are common when comparing the performance of
a communication system: Bit Error Rate (BER) and Packet Error Rate
(PER). On communication system working on continuous data streams,
BER is the main figure of merit. It calculates, on average, the number of

Figures of merit 69

erroneous received bits and is given by

BER =
Bits in error

Total received bits
(3.1)

Communication systems that operate with data packets like Wireless
Local Area Network (WLAN) 802.11a have mechanism such as Cyclic Re-
dundant Checks (CRCs) that identify packets that have been erroneously
received. If a single bit on such communication systems is received in error,
the entire packet is discarded and, generally, a data retransmission is re-
quested which, in turn, reduces the achievable maximum data throughput
of the system. Therefore, for the WLAN 802.11a standard used during
this research work, PER will be chosen as the main figure of merit of the
communication link.

The 802.11 standards define a maximum tolerable PER for the receiver
and for 802.11a [IEE99] [Roh04] [OP99] this rate is set to 10%. Conse-
quently, during this research work, the only valid implementations will be
those that achieve a PER of 0.1 or more.

3.2.2 METRIC Φ

Comparing different Viterbi decoders is not a trivial task. Depending on
the convolutional code being implemented, the obtained decoder architec-
ture can be more or less complex. In addition to that, the optimization goal
pursuit (area, speed, throughput, . . .) leads to different decoder architec-
tures, and even the technology in which the decoder is being implemented
(Application Specific Integrated Circuit (ASIC), part name of the Field
Programmable Gate Array (FPGA), . . .) produces different results.

In order to give a common reference for the following discussion, in this
research work the metric Φ is proposed. This metric is oriented to FPGA
implementations and provides an estimation of the data throughput that
can be achieved for a given system hardware complexity. It is given by

Φ =
Data Throughput [Mbps]

LUTs+Registers
(3.2)

The data throughput is the amount of data that a single decoder in-
stance can decode per unit of time. As it can be seen, the complexity of the

70 CHAPTER 3. Objectives

system is measured as the number of Look-up Tables (LUTs) and registers
necessary in the FPGA. For traceback based decoder implementations the
number of occupied block Random Access Memories (RAMs) has been left
out of the equation. This decision has been taken because logic elements
(LUTs and registers) are more limited than RAM resources even in mod-
ern FPGAs. Besides, design parts that are implemented solely on block
RAMs can operate at much higher frequencies than those parts that are
implemented using logic resources.

Let us take for example the highest part of the Xilinx Series-7 FPGAs,
the Virtex xc7v200t [Xil15]. This FPGA contains 305400 slices. Since
each slice on the Series-7 products consists of eight registers and four six-
input LUTs, that makes for a total of 2443200 registers and 1221600 LUTs.
This FPGA also contains 1292 36kb block RAMs, which makes a total of
47628288 RAM bits. Therefore, there is nearly a 19.5 to one ratio between
RAM bits and registers, and a 39.5 ratio between total RAM bits and
available LUTs. Besides, block RAMs in these FPGAs can operate with
frequencies as high as 600 MHz, while achieving designs that reach these
frequencies is very difficult [SV13]. For this reason, equation (3.2) does not
take into account the RAM resources taken by the Viterbi implementation.

3.3 OBJECTIVES

In this section we will define several partial objectives to obtain and
analyze the description of a flexible Viterbi decoder architecture.

• A highly parameterizable Viterbi decoder architecture will be de-
signed in VSIC (Very High Speed Integrated Circuits) Hardware De-
scription Language (VHDL). This decoder architecture will be suited
for FPGA and ASIC implementations, although in this research work
we will only focus on the FPGA implementation. The decoder will
provide the following characteristics:

– Support for hard and soft decoding.

– Implementation of Carrier Strength Indicator (CSI) aware Branch
Metric Units (BMUs).

– Support for register exchange and traceback implementations of
the Survivor Path Unit (SPU).

Scope of this work 71

– Support for convolutional codes of various coding rates R = k/n
and transfer function matrixes G(x).

• The Viterbi decoder will be integrated into the receiver chain of a
WLAN 802.11a compliant transceiver developed in this research work
to analyze its performance in terms of PER. The digital transceiver is
functional up to the Medium Access Control (MAC) layer of the IEEE
802.11 standard, and will include complex functional blocks such as
time and frequency synchronization and a channel equalization with
phase offset tracking. In this analysis, the impact integrating the cost-
effective Viterbi decoder has on the overall transceiver architecture
will be discussed.

• A fast verification platform based in HiL simulations will be imple-
mented to quickly obtain performance curves of the overall WLAN
802.11a transceiver under different noise and channel conditions. This
platform will be further used in a parametrical analysis of the Viterbi
decoder to find the best trade-off between area resource utilization
and decoding capacity of the decoder and transceiver.

3.4 SCOPE OF THIS WORK

This research work focuses on obtaining a flexible and cost-effective
Viterbi decoder architecture that fits in the decoding chain of any given
communication system. The following assumptions have been taken:

• Portability of the source files.

The source code of the Viterbi decoder has to be portable to platforms
other than those used in this research work. Therefore, to facilitate
its portability, no vendor specific Intellectual Properties (IPs) will be
used.

• Final implementation.

In this work a functional description of a WLAN 802.11a compli-
ant transceiver will be obtained and analysed. The WLAN 802.11a
transceiver is the result of the combined effort of the research group
in which this research work has been developed. For this dissertation
all the functional blocks of the digital transceiver will be designed

72 CHAPTER 3. Objectives

except the direct and inverse Fast Fourier Transform (FFT) mod-
ule. No external IPs or code generation tools will be used for the
transceiver implementation. The digital transceiver is functional up
to the MAC layer of the IEEE 802.11 standard, and the system anal-
ysis and measurement includes synchronization, channel equalization
and phase offset tracking.

• HiL verification platform.

The interface between the physical and virtual elements is one of
the most critical and complex elements of the HiL platform. Sys-
tem Generator, a tool provided by Xilinx to quickly integrate digital
processing algorithms into a FPGA will serve as the base reference
of the fast verification platform since it provides a seamless integra-
tion with Matlab/Simulink, allows the inclusion of custom Register
Transfer Level (RTL) code into the design and permits the physi-
cal component of the HiL simulator to operate asynchronously with
respect to the virtual component in a free-clock scenario.

CHAPTER 4

Viterbi decoder architecture

Contents

4.1 Introduction . 73

4.2 Top level Viterbi decoder entity 74

4.3 Viterbi decoder components 79

4.4 Concluding remarks 109

4.1 INTRODUCTION

This chapter presents the hardware description of the Viterbi decoder
developed in this research work. A highly parameterizable decoder is de-
sired, so that the decoder can easily fit into a complete transceiver archi-
tecture.

The chapter is structured as follows. First, a quick overview of the
terminology used in the chapter is introduced. Then, the implemented
building blocks of the Viterbi decoder are described. Finally, the concluding
remarks of the chapter are summarized.

73

74 CHAPTER 4. Viterbi decoder architecture

4.2 TOP LEVEL VITERBI DECODER ENTITY

Figure 4.1 depicts the top level view of the Viterbi decoder implemented
in this research work. The description of the Viterbi decoder allows deco-
ding any possible feedforward convolutional code. A feedforward code is
defined by the triplet (n, k, ν) and its transfer function G(x). The para-
meters that control the implementation of the Viterbi decoder are listed in
table 4.1.

���

������	

���
�

����
����	

�����	

�
������	

�	������	�

��������	�

����

�
��������

�����
���������

Figure 4.1: Top level Viterbi decoder

Table 4.2 lists and describes the input ports of the decoder description.

csi in is an optional input port that contains the CSI values associ-
ated with the received vector r. For the Viterbi decoder developed in this
research work the CSI value is normalized. The carrier strength of a subcar-
rier corresponds to the magnitude of the channel estimation for that carrier
divided by the maximum magnitude of the channel estimation. Since the
CSI values are encoded using csibw bits, this means that their fixed point
representation belongs to the range [0 2csibw−1].

Table 4.3 lists and describes the output ports of the decoder description.

Top level Viterbi decoder entity 75

Name Type Description

softbitbw Integer Bitwidth of the elements of the in-
put array softbit in. If softbitbw =
1 hard decoding is implemented. If
softbitbw > 1, soft decoding is im-
plemented.

csibw Integer Bitwidth of the elements of the in-
put array csi in. If csibw ≤ 1, Car-
rier Strength Indicator (CSI) aware
decoding is internally disabled.

coden Integer Parameter n of the convolutional
code.

codek Integer Parameter k of the convolutional
code.

const len Integer Constraint length ν of the convolu-
tional code.

codepol Integer vector Transfer function G(x) of the con-
volutional code in octal form as de-
scribed in (2.3).

acsxtr bw Integer Number of bits the Add-Compare-
Select (ACS) accumulator registers
are extended to avoid overflow.

traceback depth Integer Traceback depth τ of the convolu-
tional code.

compare treepipe Integer Pipeline configuration of the com-
parator tree that identifies the sur-
vivor path with minimum accumu-
lated metric.

Table 4.1: Generics of the top level Viterbi decoder

76 CHAPTER 4. Viterbi decoder architecture

Name Size (bits) Description

clk 1 System clock.

reset n 1 Asynchronous reset, active low.

clear 1 Synchronous clear, active high.

softbit in [coden × softbitbw] Array of binary words containing
the elements of the received message
r.

csi in [coden × softbitbw] Array of binary words containing
the CSI values associated to the re-
ceived message r.

input punc coden Vector that indicates which ele-
ments of the received message r con-
tain dummy bits.

valid din 1 On high validates the values of in-
put ports softbit in, csi in and in-
put punc.

decode end 1 Used on packet/burst communica-
tion schemes. On high indicates
that a complete data packet has
been received and that the decoder
must identify and decode the data
associated with the survivor path
with minimum accumulated metric.

Table 4.2: Input ports of the Viterbi decoder

Top level Viterbi decoder entity 77

Name Size (bits) Description

dout codek Binary representation of decoded message x.

valid dout 1 On high validates the value of port dout.

Table 4.3: Output ports of the Viterbi decoder

Figure 4.2 depicts a basic view of the elements that form the Viterbi
decoder architecture and their interconnection.

As can be seen, the Viterbi decoder consists of three main components:
the Branch Metric Unit (BMU), the ACS cluster and the Survivor Path
Unit (SPU) core. The BMU calculates the branch metrics between the
received message r and all possible 2coden codewords. The data output
of the BMU, branch out, is therefore a vector with 2coden elements that
contains those branch metrics. branch out is the input to the next main
component: the ACS cluster. The ACS cluster contains 2const len instances
of ACS units. There is one ACS instance per state in the trellis in the
ACS cluster, and each ACS is responsible for selecting the survivor path
ending at its corresponding state. The ACS cluster generates two output
vectors of 2const len elements: path metric out and prev state. The former
contains the path metrics of all survivor paths at that decoding iteration,
and the latter is a set of flags that identify the survivor path selections.
Both vectors are used by the last building block of the decoder, the SPU
core. The BMU core is responsible for storing and updating the historic of
survivor paths and calculating the decoded output data.

The complexity and interconnection of each component is very depen-
dent on the convolutional code being implemented. Therefore, the example
four state convolutional code depicted earlier in figure 2.2 will be used dur-
ing the exposition in this chapter to better understand the architecture of
each component of the decoder.

The next section will describe the architecture of each component in
detail.

7
8

C
H
A
P
T
E
R
4
.
V
iterb

i
d
eco

d
er

arch
itectu

re

��������

	�
�����

������
�
��

��������

��������
�

���

���������

��������
��

��
��	�
������

������
�
�

���������

���

���
��
��

�����

��������

�
��
���
�

���
�����

���������

���

����
�

�����

ncode2

lenconst_2

lenconst_2

Figure 4.2: Block diagram of the Viterbi decoder architecture

Viterbi decoder components 79

4.3 VITERBI DECODER COMPONENTS

The global architecture of a Viterbi decoder is divided in three main
functional blocks: the BMU, responsible for calculating the branch met-
rics at each iteration of the algorithm, the ACS units, which select the
survivor paths among all the possible path ramifications in the trellis of
the code, and the SPU, where the historic of survivor paths is stored and
the decoded message is calculated. The following subsections describe the
implementation of each building block in detail.

4.3.1 BRANCH METRIC UNIT (BMU)

The BMU of the Viterbi decoder calculates all the branch metrics due
to the state transition given by the received message r at time instant t.
A convolutional code with a coding rate R = k/n can generate a total
of 2k different codewords c of length n bits. At the receiver, the Viterbi
decoder compares the received sequence r with all possible 2n codewords c
and calculates the associated branch metric.

Table 4.4 lists the generics of the BMU unit. These generics are the
same as the top level generics of table 4.1. Table 4.5 enumerates the input
ports to the BMU. As before, these input ports are directly connected to
the top level input ports of table 4.2. Finally, table 4.6 describes the output
ports of the BMU.

The architecture of the BMU developed in this research work is shown
in figure 4.3. The figure does not show the clk, reset n and clear ports of
the entity, as these are common signals that are routed to every register in
the BMU.

As can be seen in the figure, the BMU consists of a total of n units
that calculate the distance between each of the elements of softbit in and
the most confident representation of a binary one and zero. The distance
between each element of softbit in and the most confident representation
of a bit is given by the quantity dXi, where X is an integer in the range
[0 coden − 1] and i represents the logical value of the bit to which the
distance is being calculated.

input punc is an input vector used to implement depuncturing in the
BMU. Each element of input punc is associated to one of the n distance

80 CHAPTER 4. Viterbi decoder architecture

Name Type Description

softbitbw Integer Bitwidth of the elements of the in-
put array softbit in. If softbitbw =
1 hard decoding is implemented. If
softbitbw > 1, soft decoding is im-
plemented.

csibw Integer Bitwidth of the elements of the in-
put array csi in. If csibw ≤ 1,
CSI aware decoding is internally dis-
abled.

coden Integer Parameter n of the convolutional
code.

codek Integer Parameter k of the convolutional
code.

Table 4.4: Generics of the BMU

Viterbi decoder components 81

Name Size (bits) Description

clk 1 System clock.

reset n 1 Asynchronous reset, active low.

clear 1 Synchronous clear, active high.

softbit in [coden × softbitbw] Array of binary words containing
the elements of the received message
r.

csi in [coden × softbitbw] Array of binary words containing
the CSI values associated to the re-
ceived message r.

input punc coden Vector that indicates which ele-
ments of the received message r con-
tain dummy bits.

valid din 1 On high validates the values of in-
put ports softbit in, csi in and in-
put punc.

Table 4.5: Input ports of the BMU

Name Size (bits) Description

branch out

[2codek × (softbitbw+ Array containing the branch

+log2(coden)+ metrics to the 2codek codewords of

+(csibw − 1))] the convolutional code.

valid dout 1 On high validates the value of port
branch out.

Table 4.6: Output ports of the BMU

82 CHAPTER 4. Viterbi decoder architecture

codeword partial metrics

00 d00 d01

01 d00 d11

10 d10 d01

11 d10 d11

Table 4.7: Calculation of branch metrics in the BMU

calculator units of the BMU. When the input punc element of a distance
calculator unit is set high, the input softbit to that distance unit is con-
sidered a dummy bit. When this condition is met the distance quantities
dXi generated by the distance calculator unit are all set to zero. This way
punctured bits are discarded from the branch metric calculation.

The distance dXi between each element of softbit in and the most confi-
dent representation of a bit is given by softbitbw bits. If softbitbw = 1, the
BMU implements hard-decoding. Otherwise soft-decoding is implemented.

If csibw > 1, then the BMU implements a CSI-aware design. In this
case, a set of 2n multipliers are instantiated. These multipliers weight
the previously calculated dXi distances with the CSI value associated to
element X of the input vector csi in. Since the values of the elements of
csi in fall in the range [0 2csibw−1], then, the weighted distances of dXi

are expressed with softbitbw + (csibw − 1) bits

The branch metric associated to a codeword can then be calculated by
adding the appropriate values of the weighted dXi together. For example,
for a convolutional code with n = 2, table 4.7 summarizes how the different
dXi values are combined together to generate the branch metrics to all
possible 2n codewords.

To generate all branch metrics, the BMU instantiates a total of 2coden

adders of coden inputs. The generated branch metric for a given codeword
is then a binary word of softbitbw + log2(coden) + (csibw − 1) bits.

V
iterb

i
d
eco

d
er

co
m
p
o
n
en
ts

8
3

��� � ����

N O P Q R S T U T R V T W V R Q X Y

Z [\

N O P Q R S T U T R V T W V R Q X Y

Z] \

N O P Q R S T U T R V T W V R Q X Y

Z S ^] \

_ [`
_] `

_ [a
_] a

_ [b c a
_] b c a

����	

��

����	

��

����	

Z d e f g h

���

���

���

P X i Q j O Q k l P X i Q j O Q k l m Z T P O k l ^] \ m V X n o Z S \

���

���

�	
��������
��

��� � ����������

�

�

�

�

�

�

T P O k l

P X i Q j O Q k l m Z T P O k l ^] \P X i Q j O Q k l

��� � ����

�	
��������
��

�	
��������
 d e f g)

����������

����������

�
������� �
��������

Figure 4.3: Block diagram of the CSI aware BMU

84 CHAPTER 4. Viterbi decoder architecture

4.3.2 ADD-COMPARE-SELECT UNIT (ACSU)

During each iteration of the Viterbi algorithm the ACS units estimate
the survivor paths ending at each of the convolutional code’s states. Fol-
lowing the Viterbi algorithm, the operation of the ACS is divided in the
following steps:

1. Extend the paths by adding their path metrics to the branch metrics
due to the state transition.

2. Compare the accumulated metrics of all possible 2codek candidate
paths

3. Select the path with best (lowest) accumulated metric.

Table 4.8 summarizes the generics of the ACS unit. Value databw is
the bitwidth of the accumulator of the ACS. It is given by softbitbw +
(csibw − 1) + log2(coden) + acsxtr bw−1, and corresponds to the bitwidth of
the branch metrics calculated by the BMU extended with acsxtr bw bits.
This last element is a generic of the top level Viterbi decoder and was first
introduced in table 4.1 in section 4.2.

The ACS developed in this research work implements a low complexity
overflow avoiding mechanism on the accumulator registers of the ACSs.
Value overflowval in table 4.8 is the minimum accumulated metric in the
ACS unit that triggers this mechanism.

Table 4.9 lists the input ports of the ACS unit. Input port branch metric
is an array of 2codek vectors containing the branch metrics that converge
in the ACS unit at a given time instant. The bitwidth branchbw of each
element of the array is softbitbw + log2(coden) + (csibw − 1) bits.

As was mentioned during the explanation of the Viterbi algorithm in
section 2.2.2, not all the states in the trellis are active during the decode
process. At the beginning of the decode process only state 0 of the con-
volutional code is active, and the remaining states become active as the
decoding process advances in time. Input port active states in indicates
the ACS unit if its precursor states are active or not. It is necessary to
prevent an inactive state with uninitialized metric to become part of the
survivor path. The ACS unit ignores all metrics coming from inactive
states. An ACS becomes active when any of its precursor states is active.

Viterbi decoder components 85

Name Type Description

codek Integer Parameter k of the convolutional
code.

databw Integer Bitwidth of the accumulator of the
ACS.

overflowval Integer Quantity that enables the overflow
avoiding mechanism of the ACS.

Table 4.8: Generics of the ACS unit

Name Size Description

clk 1 System clock.

reset n 1 Asynchronous reset, active low.

clear 1 Synchronous clear, active high.

path metric in [2codek × databw] Array containing the path metrics of
the survivor paths of the precursor
states.

branch metric [2codek × branchbw] Array containing the branch metrics
for the current received message r.

active states in 2codek On high indicates that the precur-
sor ACS unit is active in the trellis
diagram.

overflow flag in 1 On high enables the overflow avoid-
ing mechanism of the ACS.

valid metric 1 On high validates the data input
ports.

Table 4.9: Input ports of the ACS unit

86 CHAPTER 4. Viterbi decoder architecture

Name Size Description

path metric out databw Accumulated metric of the survivor path.

active state out 1 On high indicates that the ACS unit is active in
the trellis diagram.

prev state codek A pointer indicating the precursor state of the
survivor path.

overflow flag out 1 Overflow flag of the ACS. On high indicates
that the accumulated metric of the survivor path
exceeds the generic value overflowval.

valid dout 1 On high validates the value of the output ports.

Table 4.10: Output ports of the ACS unit

overflow flag in is an indicator that the metrics of all ACS units exceed
the quantity overflowval. When this signal is asserted high, the ACS unit
executes the overflow avoiding mechanism.

Table 4.10 lists the output ports of the ACS unit. active state out is an
active high flag that indicates if the ACS is active on the decoding trellis or
not. At the beginning of the decode process, only the ACS unit associated
to state 0 of the convolutional code is active.

prev state is an indicator that points to the precursor state that origi-
nates the survivor path and is needed by the SPU logic.

overflow flag out is an output flag that on high indicates that the accu-
mulated metric of the survivor path of the ACS unit exceeds the quantity
overflowval.

Figure 4.4 depicts the basic block diagram of the ACS unit core.

The difference between the accumulated metric of survivor and non-
survivor paths is more pronounced on transmission channels with low levels
of noise than on transmission channels with higher levels of noise. Similarly,
as decoding progresses, the accumulated metric of the survivor paths of all

Viterbi decoder components 87

ACS units grows slower on channels with low levels of noise than on channels
with high levels of noise.

As the noise level of the transmission channel grows, the uncertainty
on the survivor path selection increases because the difference between all
candidates paths converging to an ACS unit at a certain instant of time
becomes narrower. Consequently, the accumulated metrics of all ACS units
grows faster.

As the accumulated metrics of the ACS units increases, noisy trans-
mission channels lead to uncertain (high) branch metric values which can
produce overflow errors during the calculation of the metrics of all candi-
date paths. When the metric of a candidate path overflows, its accumulated
metric is reduced compared to the metric of all the remaining candidate
paths, and therefore, with high probability, it will be erroneously chosen
by the ACS as the survivor path.

To prevent this situation the branch metrics generated by the BMU
unit are extended with acsxtr bw bits. The value of acsxtr bw is chosen to
meet the noisy characteristics of the transmission channel.

An overflow compensation mechanism is still necessary to prevent the
accumulated metrics of the ACS units from continuously growing during
signal decoding. It mechanism operates by subtracting a constant amount
overflowval every time the accumulators of all ACS units exceed the same
quantity. For the decoder, the value overflowval is selected as the maxi-
mum value that can be generated on the BMU: softbitwl + log2(coden) +
csibw − 1 .

The overflow avoiding mechanism is simplified by the fact that the value
of overflowval is an integer value that is expressed as a power of two. When
the state overflow flag of the ACS is being calculated, only the databw −
log2(overflowval) Most Significant Bits (MSBs) of the accumulator have
to be considered. Similarly, when the quantity overflowval is subtracted
from the metrics of the survivor paths, only the databw− log2(overflowval)
MSBs of the accumulator are considered.

The ACS unit only takes into account the metrics generated from active
states in the trellis. Candidate metrics originated from inactive states are
automatically discarded by the compare and select modules of the ACS.

88 CHAPTER 4. Viterbi decoder architecture

At the beginning of the decode process (or after the Viterbi decoder
has been cleared), only the ACS unit associated to state 0 is active. The
remaining ACSs become active as they identify survivor paths originated
from active ACSs.

The ACS unit concludes its operation in a single clock cycle. Therefore,
the output validation port valid dout is a registered version of the input
validation port valid din.

To maximize the decoding rate achievable by the architecture, the
Viterbi decoder instantiates a total of 2ν ACS units, one per state in the
convolutional code. All ACS units are then connected according to the
trellis diagram of the convolutional code. After this interconnection has
occurred, the resulting set of ACS units is referred as a ACS cluster. For
example, for the convolutional code introduced in section 2.2.2, the result-
ing ACS cluster is shown in figure 4.5. To simplify its layout , clock, reset
and clear ports have been removed from the diagram in the figure.

The ACS cluster input is directly connected to the output of the BMU.

The overflow flag in input port for all ACS units is calculated as the
AND function of all the overflow flag out output ports of all 2ν ACS units.
Figure 4.5 depicts how the different branch metrics are loaded into the
various ACS units, how the overflow flag signal is generated in the decoder
and how the metrics and active flags are propagated in the cluster according
to the Trellis diagram of the code.

Note that only the output validation port of the ACS unit associated
to state 0 is connected to the output validation port of the ACS cluster
in figure 4.5. Since this is the only state that is active during the entire
decode process, its output serves as the validation of the cluster output.

The output accumulated metrics and the previous state indicators of all
ACS units in the ACS cluster are rearranged in data array structures that
are the input to the final component of the Viterbi decoder architecture,
the SPU.

V
iterb

i
d
eco

d
er

co
m
p
o
n
en
ts

8
9

���������������	

�������
����	

�
�
�
�
�
��

�
�
	�

�

���
�����������	

��������	

����������������

����������

�
�	������
��

����������

���
�
�

���
���� p q r
���
�������������

�

���
���� p q r�

���
���� p q r

�

s

�� ��� �

�

s

�� ��� �

�

s

�� ��� �

�������
������

��������

Figure 4.4: Block diagram of the Add-Compare-Select unit

9
0

C
H
A
P
T
E
R
4
.
V
iterb

i
d
eco

d
er

arch
itectu

re
���������	

���
������

��������
����
���

������
�����
���

����������

����������

����������

������
�����	�

������
�������

������
�������

������
�������

���
������
�����	�

���
�������	�

�����
����

���
������
�������

���
���������

���
������
�������

���
���������

���
������
�������

���
���������

���
������

��������
����
���

������
�����
���

���
������

��������
����
���

������
�����
���

���
������

��������
����
���

������
�����
���

���
������
����	�

������
��������	�

������
������
����	�

��������
����
��

���
������
������

������
����������

������
������
������

���
������
����	�

������
��������	�

������
������
����	�

��������
����
��

���
������
������

������
����������

������
������
������

���
������
����	�

������
��������	�

������
������
����	�

��������
����
��

���
������
������

������
����������

������
������
������

���
������
����	�

������
��������	�

������
������
����	�

��������
����
��

���
������
������

������
����������

������
������
������

�����
����

�����
������

�����
������

�����
������

�����
������

Figure 4.5: ACS cluster. Interconnection of the different ACS units

for the trellis diagram of figure 2.4

Viterbi decoder components 91

4.3.3 SURVIVOR PATH UNIT (SPU)

The SPU is the unit responsible for storing the historic of survivor paths
and decoding the output message x as new data is available by the ACS
units. The SPU designed in this research work is suitable for burst commu-
nication schemes, where the length of the data to be decoded is constrained
or known by the receiver, and for continuous flow communication schemes.

The top level view of the SPU is depicted in figure 4.6. Once again,
clk, reset n and clear ports have not been shown, as they are common
signals for all registers in the unit. As can be seen, the SPU is divided
into two main blocks: the SPU core itself, where the register exchange or
the traceback algorithms are implemented, and the Minimum Path Unit
(MPU), a block that assists the SPU operation by identifying the state
with minimum accumulated path.

tuv

wuv xyz{
|}{~���{z ��x���~{ yz �z�x{��x��

�{�z�x���

�{xy�{�{��
�z{������{
���������

�y��
�������y��

��������{�z{�

{����{

��������{��������������{

Figure 4.6: SPU top level view

Table 4.11 lists the generics of the SPU. The generics of the SPU are
initialized with the generic values of the top entity of table 4.1 with the
exception of data bw, that takes the bitwidth of the accumulators of the
ACS units: softbitbw + log2(coden) + (csibw − 1) + acsxtr bw.

Table 4.12 enumerates and describes the input ports of the SPU unit.
metric in, prev state and valid din are generated by the ACS cluster. The
remaining input ports of the SPU are connected to the counterpart top
level input ports of the Viterbi decoder in table 4.2.

Table 4.13 enumerates and describes the output ports of the SPU unit.
These output ports correspond with the output ports of the Viterbi decoder

92 CHAPTER 4. Viterbi decoder architecture

Name Type Description

codek Integer Parameter k of the convolutional
code.

constr len Integer Constraint length ν of the convolu-
tional code.

databw Integer Bitwidth of the accumulators of the
ACSs.

traceback depth Integer Traceback depth τ of the convolu-
tional code.

compare treepipe Integer Pipeline configuration of the com-
parator tree that identifies the sur-
vivor path with minimum accumu-
lated metric.

Table 4.11: Generics of the SPU

Viterbi decoder components 93

Name Size (bits) Description

clk 1 System clock.

reset n 1 Asynchronous reset, active low.

clear 1 Synchronous clear, active high.

metric in [2constr len × databw] Array of survivor path metrics given
by the ACS units.

prev state [2constr len × codek] Array of pointers of the survivor
path precursors given by the ACS
units.

valid din 1 On high validates the values of input
ports metric in, and prev state.

decode end 1 Used on packet/burst communica-
tion schemes. On high indicates
that a complete data packet has
been received and that the SPU
must identify and decode the data
associated with the survivor path
with minimum accumulated metric.

Table 4.12: Input ports of the SPU

94 CHAPTER 4. Viterbi decoder architecture

Name Size (bits) Description

dout codek Binary representation of decoded message x.

valid dout 1 On high validates the value of port dout.

Table 4.13: Output ports of the SPU

and, consequently, are directly connected to the top level output ports of
table 4.3.

As has been mentioned, SPUs implementing Register Exchange and
Traceback implementations have been written. Due to the innate nature of
both implementations, all SPUs are governed by the Finite State Machine
(FSM) depicted in figue 4.7.

Decoding starts at state Idle, and the SPU remains in this state until
the block of ACSs generates the first set of survivor paths or after the input
port clear is asserted high.

After the first decode iteration, the SPU transitions to state Initial load,
and will remain there until the set of decoded survivor paths have a length
equal to the traceback depth τ of the decoder. After τ decode iterations
have occurred the SPU transitions to state Normal decode. In this state,
every decoding cycle the SPU stores the survivor paths generated by the
ACSs and estimates the decoded message x that occurred τ decoding cycles
earlier.

On continuous flow communication data schemes the decoder remains in
the Normal decode permanently. The continuous data input to the Viterbi
decoder guarantees that input vectors r will be decoded after a quantity
of decoding instant proportional to the traceback depth τ of the decoder
have elapsed. If the decoder were to operate on data packets of limited size,
the data flow entering the decoder would stop at a certain moment, and
the SPU would have in memory the last τ state transitions of the survivor
paths. Since no new data is loaded into the SPU, these last transitions
would not be decoded, and the estimated vector x would be τ elements
short.

Viterbi decoder components 95

����

�������	

�
��

�
�
��	

���
��

�
���	

������

�����	���	�����	
�����

���
������	�	���

 ��
���	��
�
��	�	��������!	����"	

�#$	�
���

Figure 4.7: Global FSM of the SPU

Therefore, a mechanism that decodes the last τ state transitions of the
convolutional code after the last bit is loaded into the decoder must be
implemented. This mechanism is also necessary in case the decoder needs
to decode transmitted messages m whose binary length is much shorter
than its traceback depth τ .

In our implementation, when the input port decode end of the Viterbi
decoder is asserted high, the FSM of the SPU transitions to a new state:
Empty buffer. Here, the SPU identifies the survivor path with minimum
accumulated metric and decodes the last τ state transitions associated to
it. To identify the state with minimum accumulated metric a comparator
tree of 2ν elements is used. This comparator tree is referred as MPU.

96 CHAPTER 4. Viterbi decoder architecture

Name Type Description

databw Integer Bitwidth of the accumulators of the
ACS units.

codek Integer Parameter k of the convolutional
code.

constr len Integer Constraint length ν of the convolu-
tional code.

compare treepipe Integer Pipeline configuration of the com-
parator tree of the MPU.

Table 4.14: Generics of the MPU

4.3.3.1 Minimum Path Unit

The MPU assists the SPU by identifying the state with minimum ac-
cumulated metric at certain decoding instants. An identification process is
initialized whenever the input port decode end of the SPU is asserted high
or when the internal signal min state req is asserted high by the SPU core
as shown in figure 4.6.

Table 4.14 lists the generics used by the MPU. All generics correspond
with the top level generics of the Viterbi decoder shown in figure 4.1 with
the sole exception of databw, which takes the same value as the homologous
ACS unit generic in table 4.8.

Table 4.15 summarizes the input ports of the MPU. In the table, input
port enable is the OR function between the decode end input port of the
top level Viterbi decoder of table 4.2 and the min state req output port of
the SPU core.

Table 4.16 enumerates the output port of the MPU.

For a convolutional code with 2ν states, the MPU can be seen as a
comparator tree with ν levels and

∑ν
k=0 2

k comparators. Figure 4.8 depicts
the architecture of a MPU for a convolutional code with ν = 2.

Viterbi decoder components 97

Name Size (bits) Description

clk 1 System clock.

reset n 1 Asynchronous reset, active low.

clear 1 Synchronous clear, active high.

metric in [2const bw × databw] Array of accumulated metrics of the
ACS units.

enable 1 On high it request the identification
of the state with minimum accumu-
lated metric. This port can be trig-
gered by the input port decode end
of the top level entity or by request
of the SPU core.

Table 4.15: Input ports of the MPU

Name Size (bits) Description

min state constr len Binary representation of the state with mini-
mum accumulated metric.

valid min state 1 On high validates the value of port min state.

Table 4.16: Output ports of the SPU

98 CHAPTER 4. Viterbi decoder architecture

����������

�

	
��
�
�

�����������	
�
	���
�� �����������	
�
	���
��

�
�����������

�
�����������

�
�
�����������
���

	
��
�
��

�

������

����������

�

	
��
�
�

�
�����������

�
�����������

	
��
�
��

�

������

����������

�

	
��
�
�

������

	
��
�
� 	
��
�
�

����

����
���

����������
���

�
�
�����������
���

Figure 4.8: Block diagram of the MPU for constr len = 2

The MPU is splitted into ν levels. At level ǫ, where ǫ belongs to the
range [ν 1], there are a total of 2ǫ−1 groups of comparators and multi-
plexers.

Each group of comparator and multiplexer are loaded with two sets of
data. Comparators are fetched with path metrics of survivor paths, and
the state identifiers of these survivor path metrics are the input to the
multiplexers. The output of each comparator-multiplexer group consists of
the metric of the survivor path with minimum accumulated metric and an
indicator of its state.

The inputs to the last level comparators of the MPU (ǫ = ν) are the
accumulated metrics of the survivor paths of the 2ν ACS units, and the
inputs to the multiplexers at this same level are constants identifying the
states whose metrics are loaded into their associated comparators.

The register exchange and traceback implementation of the SPU do not
require the knowledge of the metric of the survivor path with minimum

Viterbi decoder components 99

compare trepipe Binary value Level ǫ = 2 Level ǫ = 1 lmpu

0 00 Non-registered Non-registered 0

1 01 Non-registered Registered 1

2 10 Registered Non-registered 1

3 11 Registered Registered 2

Table 4.17: Pipeline examples of the MPU for ν = 2

accumulated metric, and therefore, the output generated by the MPU cor-
responds with the state identifier given by the multiplexer at the last state
of the MPU (ǫ = 1).

After each level, an optional register stage can be placed at the output
of all comparators and multiplexers of that level. These registers are used
to minimize the impact the MPU has on the maximum frequency achievable
by the SPU and the Viterbi decoder. However, adding extra pipeline stages
increases the latency of the MPU and the SPU. Let lmpu be the latency of
the MPU.

The pipeline stages of the MPU are controlled by the value of the generic
compare treepipe. If compare treepipe is converted to its binary unsigned
representation, then every comparator level at the positions where the un-
signed representation of compare treepipe have a logical one are registered.
Table 4.17 shows the effects all possible compare treepipe values for a de-
coder with ν = 2.

The output validation port of the MPU, valid min state, corresponds
to a delayed version of the logical value of its input port enable with the
quantity lmpu.

For a generic MPU implementation, the internal signals are arranged in
arrays of length 2ν+1−1 elements inside the Register Transfer Level (RTL)
code. For the comparator at location (ǫ, ζ), where ǫ is the comparator
level and ζ is the identifier of the comparator within the level, the elements
(2constr len+1−1)−(2ǫ+1−1)+2ζ and (2constr len+1−1)−(2ǫ+1−1)+2ζ+1 of
the array behave as inputs to the comparator, while signal (2constr len+1 −

100 CHAPTER 4. Viterbi decoder architecture

Name Type Description

codek Integer Parameter k of the convolutional
code.

constr len Integer Constraint length ν of the convolu-
tional code.

traceback depth Integer Traceback depth τ of the convolu-
tional code.

Table 4.18: Generics of the SPU core

1) − (2ǫ − 1) + ζ behaves as the output of the comparator. The output of
the MPU is obtained in the element position (2constr len+1 − 1)− 1.

4.3.3.2 SPU core

The SPU core is a top level wrapper that provides a common inter-
face between the SPU unit and the specific implementation of the SPU
algorithm (register exchange or traceback).

Table 4.18 lists the generics of the SPU core. As can be seen, the
generics of the SPU core are a subset of those defined for the SPU in table
4.11.

The input ports of the SPU core are enumerated in table 4.19. Three
sources can drive the input ports of the SPU core. Input ports clk, re-
set n, clear and decode end are driven by the homologous ports of the top
level Viterbi decoder input ports of table 4.2. Inputs ports prev state and
valid din are driven by the ACS cluster, and finally, input ports min state
and valid min state are driven by the homologous output ports of the MPU
of table 4.16.

Table 4.20 describes the output ports of the SPU core. Output ports
dout and valid out are the decoded output of the Viterbi decoder, and
thus, are directly connected to the homologous output ports of the top
level Viterbi decoder output ports of table 4.3.

Viterbi decoder components 101

Name Size (bits) Description

clk 1 System clock.

reset n 1 Asynchronous reset, active low.

clear 1 Synchronous clear, active high.

prev state [2constr len × codek] Array of pointers of the survivor
path precursors given by the ACS
units.

valid din 1 On high validates the values of input
ports metric in.

decode end 1 Used on packet/burst communica-
tion schemes. On high indicates
that a complete data packet has
been received and that the SPU
must identify and decode the data
associated with the survivor path
with minimum accumulated metric.

min state constr len Identifier given by the MPU that
points to the survivor path with
minimum accumulated metric.

valid min state 1 Flag given by the MPU. On
high validates the value of port
min state.

Table 4.19: Input ports of the SPU core

102 CHAPTER 4. Viterbi decoder architecture

Name Size (bits) Description

min state req 1 On high request the MPU to calculate which is
the survivor path with minimum accumulated
metric.

dout codek Binary representation of decoded message x.

valid dout 1 On high validates the value of port dout.

Table 4.20: Output ports of the SPU core

The MPU can be activated in two ways: regularly in a controlled
way through the min state req output port of the SPU core or externally
through the decode end port of the SPU. Output port min state req of the
SPU core is asserted high every time the unit has processed traceback depth
new state transitions. On packet based communication systems, when the
decoder has received all the coded bits of the packet input port decode end
of the top level unit is asserted high. When this occurs, it forces the MPU to
calculate the survivor path with minimum accumulated metric and makes
the SPU to validate any remaining data that is may have beginning from
this state.

4.3.3.2.1 Register Exchange implementation

The register exchange implementation of the SPU is based on shift
register. In this implementation, the data stored in the memory of the SPU
is the input to the convolutional encoder that forces the state transitions
estimated by the ACS units. Figure 4.9 depicts an example architecture
of a register exchanged based SPU implementing the convolutional code of
the Trellis diagram in figure 2.4 when traceback depth = 5.

As seen in figure 4.9, the register exchange implementation of the SPU
core consists of 2constr len register rows of traceback depth registers each.
The first register in the row is connected to an input Look-up Table (LUT)
or Read-Only Memory (ROM) that indicates the input message m that
was loaded into the convolutional coder for the state transition indicated
by the input port prev state.

Viterbi decoder components 103

Before each of the following registers in the row a (2codek + 1):1 multi-
plexer is instantiated. The first 2codek inputs of the multiplexer are used to
store the input messages associated to the survivor path indicated by the
ACS unit and to discard the historic of the remaining candidate paths. The
last input to the multiplexer are used to perform the shift right operation
as described in section 2.2.3.3.1.

The output multiplexer of the SPU core selects which shift register will
be used as the output of the Viterbi decoder. This selection is governed by
the minimum state indicated by the MPU. When the FSM shown in figure
4.7 is at state Normal decode, the SPU core selects the shift register associ-
ated to state 0 as the output of the decoder. When the FSM transitions to
state Empty Buffer, first min state req is asserted high and the SPU core
operation is freezed until the MPU sets its output port valid min state high.
After the state with minimum state has been identified by the MPU, the
SPU core begins extracting the contents of the shift register associated to
the state pointed by signal min state.

Output validation signal valid dout is the logical value of input port
valid din delayed by a quantity of traceback depth cycles.

4.3.3.2.2 Traceback implementation

The traceback implementation of the SPU is based on single port Ran-
dom Access Memories (RAMs). Figure 4.10 depicts the block diagram of
the module developed in this research work that implements the traceback
algorithm.

The architecture of this module contains two main memory elements: a
Last-In First-Out (LIFO) memory implemented in single port RAM to store
the historic of state transitions and an output memory buffer implemented
in registers that stores the decoded message.

prev state is an input port containing pointers to the precursors of the
survivor paths generated by the ACS cluster. This set of pointers is re-
arrange as a bit vector and stacked into the LIFO memory. The LIFO
memory can store a maximum of traceback depth vectors. When the LIFO
memory has stored a quantity of vectors equal to traceback depth, the out-
put flag min state req is asserted high and the module stops its operation
until the MPU identifies the state with minimum accumulated metric.

104 CHAPTER 4. Viterbi decoder architecture

Once the MPU returns the state with minimum accumulated metric the
contents of the LIFO memory is read sequentially. First, the state identifier
is loaded in the Previous State register of figure 4.10. This register has two
functions. First, it contains the data to be stored in the output memory
buffer. Secondly, it serves as the pointer of the traceback algorithm. In the
first clock cycle following the validation of the MPU output, the contents
of the Previous State register is loaded into the output memory buffer and
the LIFO memory is read backwards.

The vector read from the LIFO memory contains the state transitions
of the survivor paths in the previous clock cycle. Using the contents of the
Previous State register, the state transition identifier of the survivor path is
extracted. This identifier, along with the Previous State register, is loaded
into a ROM that contains precursor state transitions defined in the trellis
diagram of figure 2.4. The output of the ROM becomes the state of the
survivor path in the previous encode cycle. This new state is loaded into
the Previous State register and its value is loaded into the output memory
buffer.

This process is repeated until the LIFO memory is empty. Once the
LIFO memory is empty, the contents of the output memory buffer are read
backwards. Every time the output memory buffer is read, port dout takes
the codek MSB of the stored state and output port valid dout is asserted
high.

The traceback element can not accept new data samples until the con-
tents of its LIFO and output buffer memories are read, which is a drawback
on continuous flow data transmission systems. To overcome this limitation,
SPU implementing three traceback modules is suggested. Let us assume
decoding a continuous stream of data as shown in figure 4.11.

Each traceback element of the SPU has four associated time windows.
The time window depicted in blue in figure 4.11 is where the traceback ele-
ment stores new precursor data given by the ACS units, and it has a length
equal to τ clock cycles. After this time window has elapsed, the MPU unit
is activated to identify the ACS with minimum accumulated metric. The
time window in green depicts the latency lmpu of the MPU. Ideally, lmpu

would be zero, but high speed implementations of the Viterbi decoder re-
quire pipelining the MPU logic, and consequently lmpu will take values in
the range [0 constr len]. After the survivor path with minimum accumu-
lated metric has been identified, the contents of the traceback element can

Viterbi decoder components 105

be traced back. This stage is depicted by the purple time window in figure
4.11 and has a length of τ cycles.

Consequently, it is not until time instant t = 2τ + lmpu when the trace-
back element begins validating its output. Each traceback element validates
its output for a time window of τ clock cycles (depicted in orange in the
figure).

When three traceback elements are instantiated in parallel as shown in
figure 4.11, the Viterbi decoder implementing a traceback based SPU is
capable of decoding continuous flow data transmissions.

1
0
6

C
H
A
P
T
E
R
4
.
V
iterb

i
d
eco

d
er

arch
itectu

re

�����������	
��

��������

���

�����	�

���

�����	�

���

�����	�

���

�����	�

�����������	
��

�����������	
��

�����������	
��

�����	��������	
��������������
��������� �������� �

�� �

Figure 4.9: Register exchange SPU for constr len = 2 and

traceback depth = 5

V
iterb

i
d
eco

d
er

co
m
p
o
n
en
ts

1
0
7

����������	�
���
 �

����������	�
���
 �

�

�

���

��������	
��
���	
�

����������

��

� � � � � � � � � �

� 1)

����������

���

����������

���
���

���
�
�
�	�����������

����������	�
���
 �

����������	�
���
��

�

�

���

��������� �!�!� �"�#

����������

��

� � � � � � � � � �

� 1)

����������

���

����������

���
���

$���!�%��������"�&!����

�%�
%��������

���������

'�(�"��

�! ������

��)!	��! ������

	���	��� 	

��)!	�	!

���	 *�!�� ���	 *�!��

��)!	�	�%�

�! ���������+

	�%�

Figure 4.10: Block diagram of an element implementing the trace-

back SPU

1
0
8

C
H
A
P
T
E
R
4
.
V
iterb

i
d
eco

d
er

arch
itectu

re

Store path historics MPU Traceback historics

Validate outputs

Store path historics MPU Traceback historics

Validate outputs

Store path historics MPU Traceback historics

Validate outputs

Store path historics MPU Traceback historics

Store path historics MPU

TB element 0

TB element 1

TB element 2

Data from ACS units

Decoded message

t

τ τmpul

0 τ mpul+τ mpul+τ2

Figure 4.11: Timing diagram of the traceback implementation of

the SPU

Concluding remarks 109

4.4 CONCLUDING REMARKS

In this chapter the hardware description of a flexible Viterbi decoder
has been explained. The decoder architecture is highly parameterizable and
can be adapted to decode any feedforward convolutional code. The core
supports both register exchange and traceback based SPU implementations,
and the set of generics of the unit gives the designer the opportunity to make
trade offs between the complexity and area resource utilization of the core
and its achievable system clock speed and decoding capacity.

The design has been described in RTL and contains no vendor specific
Intellectual Properties (IPs), so that it can be easily ported to any Field
Programmable Gate Array (FPGA) manufacturer or Application Specific
Integrated Circuit (ASIC) technology.

The design is currently being sold as a commercial IP. To the author’s
knowledge, it has already been used in satellite Global Positioning System
(GPS) and Global System for Mobile communications (GSM) applications.

CHAPTER 5

Hardware-in-the-Loop
simulations

Contents

5.1 Introduction . 112

5.2 WLAN 802.11a transceiver 112

5.3 Hardware-in-the-Loop simulator 124

5.4 Parametrical study 129

5.5 Results . 135

5.6 Concluding remarks 139

111

112 CHAPTER 5. Hardware-in-the-Loop simulations

5.1 INTRODUCTION

In this chapter the Viterbi decoder designed in this research work is
integrated into a Wireless Local Area Network (WLAN) 802.11a compliant
transceiver. In order to evaluate the performance of the Viterbi and to
evaluate the parameters of the Viterbi decoder have on the transceiver
architecture, the overall transceiver is implemented in a Hardware-in-the-
Loop (HiL) platform.

Opposed to other HiL platforms discussed in section 2.3.3 which focus
only in reducing the simulation time necessary to characterize a Device
Under Test (DUT), the HiL platform developed in this research work will
be used for, first, perform a parametrical analysis of the Viterbi decoder
inside the transceiver architecture to optimize its area utilization with re-
spect to the Packet Error Rate (PER) figure of merit, and, second, quickly
obtain PER curves of the optimized architecture under multipath frequency
selective channels.

The chapter is structured as follows. First, the WLAN 802.11a transceiver
is presented. Then, the HiL platform is introduced and the parametrical
analysis is explained. Finally, the obtained results are compared to those
found in the literature.

5.2 WLAN 802.11A TRANSCEIVER

WLAN 802.11a was one of the first standards to be built upon the now
common Orthogonal Frequency Division Multiplexing (OFDM) scheme.
OFDM distributes the information to be transmitted between a series of
orthogonal carriers so that a single high-speed data stream is divided into
multiple slower data-streams that are transmitted in parallel through a
channel. The inverse and direct Fast Fourier Transform (FFT) algorithms
have proven to be an efficient way to achieve the carrier orthogonality at
the transmitter and receiver sides.

Figure 5.1 shows a simplified block diagram of the WLAN architecture.
As it can be seen, the functionality of the system is divided into several
modules. The Medium Access Control (MAC) layer is the highest abstrac-
tion layer of the WLAN, and provides a common interface to all 802.11
standards. Digital signal processing occurs in the Physical Medium De-

WLAN 802.11a transceiver 113

PMD

DAC

ADC

PLCP
MAC

BBP transceiver

PLME

ANALOG
FRONT-END

Figure 5.1: Block view of the transceiver

pendent (PMD) block, and it provides the means to transmit and receive
information through the channel. Between the MAC and PMD layer a
translation entity known as Physical Layer Convergence Protocol (PLCP)
is instantiated. This element hides the specific implementation delays of the
PMD and gives the MAC a common interface. Finally, the Physical Layer
Management Entity (PLME) provides the means to the PMD, PLCP and
MAC layers to communicate with the analog interfaces of the transceiver
and provides, among others, the Received Signal Strength Indicator (RSSI)
measurements.

The transceiver architecture developed in this research work is func-
tional up to the MAC level of the standard [IEE99]. The top level entity
labelled as Base Band Processor (BBP) in figure 5.1 includes all the build-
ing blocks of the PMD, PLCP and PLME developed in this research work.

ENCODPUNCTMAPIFFT CTRLGI INSERTWINDOW

PREAMB
GEN

M
U

X

FILTER
IFFT

INTERLEA
VER

SCRAM
BLER

DAC

SOURCE

��������	
������
���� ����

Figure 5.2: Transmitter chain block diagram of the PMD

The PMD can be further divided into the transmitter and receiver
chains. Figure 5.2 and 5.3 depict, respectively, the simplified block dia-
gram of the transmitter and receiver chains of the PMD.

The transmitter chain of the PMD operates as follows. Processing be-
gins with the scrambler. Data coming from the MAC is randomized by
means of a Pseudo Random Number Generator (PRNG) so that DC com-

114 CHAPTER 5. Hardware-in-the-Loop simulations

VITERBI
DECOD.

DEPUNCTDEMAPFFT CTRLGI REM FFTSYNCHR EQU
DEINTERL

EAVER
DESCRAM

BLER
ADC SINK

���������	����
��� �
��

Figure 5.3: Receiver chain block diagram of the PMD

ponents are minimized in the modulated signal and the raw unprocessed
source bits have better statistical characteristics. The scrambled signal is
then encoded using a convolutional code. For WLAN 802.11a, a convo-
lutional code with k = 1, n = 2, d = 6 and G(x) = [191121] is used.
Depending on the transmission rate indicated by the MAC, the codewords
generated by the convolutional encoder can be punctured. After puncturing
WLAN 802.11a supports convolutional codes with R = 1/2, R = 2/3 and
R = 4/3. An interleaver shuffles the coded and punctured bits to protect
the data against burst noise.

After interleaving has occurred, the binary data is mapped into complex
constellation symbols. WLAN 802.11a supports BSPK, QPSK, 16-QAM
and 64-QAM modulations. The complex constellation are loaded into a
control unit that distributes them between the available data carriers in
the transmitter. This unit also adds pilot tones for signal acquisition and
null tones to prevent interference between adjacent channels. Data is then
modulated applying the Inverse Fast Fourier Transform (IFFT) operation
to the complex symbols. After the IFFToperation, a guard interval is
appended to each OFDM symbol and the generated signal is filtered by a
Root Raised Cosine (RRC) filter, so that the transmitted signal meets the
spectral mask defined by the standard [IEE99].

The transmitted signal is prepended with a sequence of short and long
training symbols, and the resulting signal is referred as PLCP Protocol
Data Unit (PPDU). Each PPDU can carry between 1 and 4095 bytes
of raw information, and its training sequence aids the receiver chain in
signal detection, frequency and time offset error compensations and channel
equalization.

The receiver chain of the PMD operates as follows. A synchronizer
module is required to detect the beginning of the received signal. This
module also compensates time and frequency offset that originate due to
the mismatches in the sampling clocks of the transmitter Digital to Analog
Converter (DAC) and receiver Analog to Digital Converter (ADC), and the

W
L
A
N

8
0
2
.1
1
a
tra

n
sceiv

er
1
1
5

ENCODPUNCTMAPIFFT CTRL

VITERBI
DECOD.DEPUNCTDEMAPFFT CTRL

GI INSERT

GI REM

WINDOW

PMD CONTROLLER h

IFFT

FFT

PREAMB
GEN

DAC

ADC

P
LC

P

SYNCHR

M
A

C

BBP transceiver

EQU
M

U
X

PMD

PLME

A
N

A
LO

G
 F

R
O

N
T

- E
N

D

INTERLEA
VER

DEINTERL
EAVER

SCRA
MBLE

R
/

DESC
RAMB
LER

FILTER

Figure 5.4: Block diagram of the transceiver architecture

116 CHAPTER 5. Hardware-in-the-Loop simulations

Automatic Gain Control (AGC) amplifier in the analog front-end of the
receiver. The received signal is then equalized. The equalizer developed
in this research work is responsible for estimating the Carrier Strength
Indicator (CSI) values for the decoder and also implements a phase tracking
algorithm that compensates any residual frequency offset that may appear
after signal synchronization.

The guard interval of the received signal is eliminated before it is de-
modulated using the FFT operation. A control unit then extracts the com-
plex coefficients of the data carriers in the OFDM symbol, and a demapper
generates s soft binary representation of the received constellation points.
The binary sequence is then de-interleaved and dummy soft bits are in-
troduced to compensate for the puncturing process. Data is then decoded
using a Viterbi decoder, and the estimated received binary signal is then
de-scrambled.

If the MAC layer detects that all of the bits of the PPDU have been
correctly received it validates the contents of the PPDU. Otherwise it
discards the entire PPDU and a data retransmission is triggered.

WLAN 802.11a operates in a half duplex configuration. These means
that the transceiver can transmit and receive data, but both operations can
not occur simultaneously. This gives the opportunity to share some pro-
cessing elements between the transmitter and receiver chains of the PMD
and, consequently, reduce the area requirements of the transceiver. Figure
5.4 gives a closer look at the architecture of the transceiver developed in
this research work. As it can be seen, both the scrambler, interleaver and
FFT cores are shared between both chains.

The FFT core is the most reused element of the design as it is used
for signal modulation in the transmitter chain, signal demodulation in the
receiver chain and supports the synchronizer during time offset estimation.

The following sections describe some of the receiver chain modules that
have a significant impact on the overall decoding capacity of the receiver.

5.2.1 SYNCHRONIZER

WLAN 802.11a transmits and receives information in data packets known
as as PPDUs. Besides the encoded data, each PPDU contains special head-
ers for signal detection, synchronization, channel equalization and receiver

WLAN 802.11a transceiver 117

configuration. The signal detection and synchronization header consists of
repetitions of short and long training symbols.

The synchronization module is based on the algorithms in [LL04]. It
uses the short training sequence for a first raw estimation of the time and
frequency offsets of the received signal and then further tunes the estimation
with the use of the long training sequence. The estimation stages are mostly
based on signal cross-correlation in the time and frequency domain, so the
existing FFT used in the transmission and receiver chains of the PMD is
employed here to reduce the silicon area.

The algorithm was originally presented with a pipeline structure: the
received signal was consecutively corrected with the estimations at each
stage of the synchronization algorithm and served as the input for the
next estimation stage. This architecture has been modified to reduce the
number of Coordinate Rotation Digital Computer (CORDIC) cores. Figure
5.5 shows the architecture of the synchronizer.

5.2.2 DEMAPPER

Regarding the output they produce, demappers can be classified into
hard demappers and soft demappers. In a hard demapper the I-Q plane
is divided into disjoint regions. Each region contains a single constellation
point, and thus, it is assigned the binary representation of that constella-
tion point. The demapping algorithm checks in which region each received
coefficient falls and returns the binary representation of that region. From
a hardware perspective, they are a simple solution since the output can be
obtained after a number of logical comparisons.

The biggest drawback of this methodology is that it provides no infor-
mation about the certainty of the decision. Since the regions of the I-Q
plane are disjoint, the output of the demapper changes abruptly when a
certain decision threshold is exceeded. This behaviour is depicted in figure
5.6.

In the figure, two constellation points are depicted, x0 and x1. Received
positive symbols are demapped as a logical 1, and received negative symbols
are demmaped as a logical 0. However, as the received symbol gets closer to
zero, one would expect a reduced certainty in the demapping function, as

118 CHAPTER 5. Hardware-in-the-Loop simulations

Raw Freq.
Buffer

CORDIC
Rot.

Raw Time
Buffer

Fine Time
Buffer

Correlator

CORDIC
Vect.

Temporal
Buffer

Threshold
detector

Fr

Ff

Tr

Tf

Training data

To FFT

From FFT

From IFFT To IFFT

Data
out

Data
in

Figure 5.5: Architecture of the synchronizer

�

�

��������	
��
��

��������	������

�� ��

Figure 5.6: Hard demapping

WLAN 802.11a transceiver 119

�

�

��������	
��
��

��������	������

�� ��

�

	�	�

Figure 5.7: Soft demapping

small variations due to channel noise would toogle the logical representation
of the demapped bit.

Information about the confidence in the decision is given by soft demap-
pers. A soft demapper returns a sequence of b-bit wide integers known as
soft-bits. All soft-bit values above 2b−1 − 1 correspond to a logical ‘1’,
while the rest of values correspond to a logical ‘0’. The most certain rep-
resentation of logical ‘1’ is given by the value 2b − 1 while value 0 is the
most confident logical ‘0’. Figure 5.7 summarizes the soft decoding pro-
cess. It has been demonstrated [Moo05] that soft demappers improve the
performance of decoding algorithms, but require more complex hardware
architectures.

Defining the decision thresholds of the I-Q regions and obtaining a prac-
tical hardware architecture that implements them are the most challenging
tasks when designing a soft demapper.

The decision regions of the demapper were obtained after simulating
the dispersion that the WLAN multipath channel model [OP99] [Coo04]
induces to the transmitted mapped symbols and, consequently, to the trans-
mitted binary sequence. Matlab software models were used to simulate the
behaviour of the channel and the transmission and reception chains of the

120 CHAPTER 5. Hardware-in-the-Loop simulations

Constellation

point generator
IFFT Modulation

Multipath

channel
Demodulation IFFT

AWGNDelay Spread

Figure 5.8: Simulation set-up to analyze coefficient dispersion

PMD. The parameters that control the behaviour of the channel model are
the delay spread and the noise variance. The simulation set-up is depicted
in figure 5.8.

A family of demapping functions has been defined after analyzing the
distribution of the transmitted and received constellation points and the
binary sequences they represent. These demapping functions return the
probability of a soft-bit being a logical ‘1’ for an input coefficient xin and a
channel configuration cchan which includes its delay spread and noise levels.
Mathematically this can be written as:

fdemap(xin, cchan) = p(bitout = 1|xin, cchan) (5.1)

As an example, figure 5.9 shows different demapping functions for the
3rd mapped bit in a 64-QAM constellation for a channel with a Signal-to-
Noise Ratio (SNR) level of 30dBs and different values of delay spread.

For an input symbol value to the demapper xin, the demapper function
returns the probability that that symbol is mapped as a logical one. There-
fore, if this probability is quantized with b bits, the output of the operation
becomes the output of the demapper.

The Gray encoding used in the mapping stage leads to the appearance
of trapezoidal regions in the demapping functions. Storing the demapping
functions defined in (5.1) with a sufficient precission is an impractical task
from a memory perspective in an embedded system. Instead, our demapper
uses first-order linear functions to approximate them as shown in green in
figure 5.10. These linear approximation curves can be easily extended to
support any M-QAM constellation. The linear functions have been chosen
to minimize the mean square error.

WLAN 802.11a transceiver 121

−8 −6 −4 −2 0 2 4 6 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Received symbol

P
(b

o
u
t
=

 ’
1
’
|
x in

)

SNR = 30 dB

050 ns

150 ns

Figure 5.9: Example of a demapping function

122 CHAPTER 5. Hardware-in-the-Loop simulations

−8 −6 −4 −2 0 2 4 6 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 Received symbol

P
(b

o
u
t
=

 ’
1
’
|
x in

)

SNR = 30 dB

050 ns

150 ns

Figure 5.10: Linear approximation of the demapping function in

figure 5.9

WLAN 802.11a transceiver 123

¡¢£¤¥¦¤ §¨¢¥©¥¦ª¦¤«

¬­

«®¯°

«®±²

¬®¯° ¬®±² ¬³¯®

´

µ

¶

Figure 5.11: Demapping parameters for softbit 3 and 6 on 64-QAM

Figure 5.11 shows the parameters that define the linear approximation
of the demapping function. These parameters are stored in a Read-Only
Memory (ROM).

Due to the symmetries presented in the trapezoidal functions, they can
be decomposed into a basic function that contains 3 unique intervals: an
interval where the output is fixed to a minimum value, an interval where
the output is fixed to a maximum value and an interval where the output
value linearly varies from the minimum value to the maximum value. The
linear interval is comprised between xmin and xmax in figure 5.11. Any
input smaller than xmin is assigned an output value ymin, while any input
greater than xmax is assigned an output value ymax.

Let x0 be the I or Q component of the data carrier to be demapped. On
a M-QAM constellation, where M = 22m, x0 contains information about
m mapped bits b0, b1, . . . , bm−1. For each bit there is a unique demapping
function and a corresponding basic function. It is possible to transform x0
so that it always falls in the region where the basic function is defined.

Equation (5.2) shows the transformation needed to adapt x0 to demap
bit b1.

124 CHAPTER 5. Hardware-in-the-Loop simulations

x1 =











x0 x0 < 0

−x0 x0 ≥ 0
(5.2)

Equation (5.3) shows the transformation needed to adapt x0 to demap
bit b2.

x2 =











x1 x1 < xsim

2xsim − x1 x1 ≥ xsim

(5.3)

Similar equations can be obtained for constellations denser than 64-
QAM.

Let yout,i be the output of the demapping function for bit bi. yout,i can
then be calculated as

yout,i =























ymin,i xi < xmin,i

ymin,i + αixi xmin,i ≤ xi < xmax,i

ymax,i xmax,i ≤ xi

(5.4)

where xmin,i, xmax,i, ymin,i, ymax,i and αi are the demapping parameters
associated to bit bi. Since the demapping functions were defined so that
they fall in the interval [0,1], then the b-bit wide softbit can be calculated
as:

softbiti = round(yout,i · 2
b) (5.5)

5.3 HARDWARE-IN-THE-LOOP SIMULATOR

The fast verification platform is based on System Generator [Xil11a], a
component of the Xilinx ISE Design Suite that enhances Matlab’s Simulink
platform. Simulink offers a powerful design environment for multi-domain
simulation. System Generator adds a variety of new block libraries specially
designed for digital signal processing.

Hardware-in-the-Loop simulator 125

Among its features, System Generator allows to import custom Intel-
lectual Properties (IPs) in HDL and to compile designs to run them on
real time under Xilinx Field Programmable Gate Arrays (FPGAs). Several
evaluation boards are supported by default, but the environment allows
any board that mets certain hardware requirements if proper configuration
files are supplied by the user. System Generator also provides an Ether-
net or Joint Test Action Group (JTAG) based interface for communication
between the hardware and software layers of the simulation which is trans-
parent to the user.

All these reasons make System Generator an interesting tool when de-
signing hardware-in-the-loop simulations. Figure 5.12 depicts the block
diagram of the platform that was designed to verify the performance of
hardware transceiver implementation.

Virtual Component Physical Component

Random Data
Creation

Channel Model

Simulation Data
Analyze

Communication Interface

Evaluation Board
Configuration and Start-Up

Data Buffering

Transceiver
DUT

Simulation
Results Packing

M
at

la
b

S
im

ul
in

k

S
ys

ge
n

E
va

lu
at

io
n

B
oa

rd

Ethernet

Figure 5.12: Architecture of the fast simulator system

The virtual component of the HiL simulator is run on software in a
PC. It is responsible for creating PPDUs with random data and imple-
menting the WLAN multipath channel with different values of noise and
delay spread. The transceiver architecture is implemented in hardware on
a FPGA evaluation board on the physical component of the HiL simulator.
The FPGA decodes the received PPDU and counts the number of erro-
neous bits so that this overhead is released from the PC. It also returns
information about the status of the transceiver (time and frequency offset
estimations, channel estimation, . . .) to the PC domain.

126 CHAPTER 5. Hardware-in-the-Loop simulations

System Generator is an element of the virtual component of the HiL
simulator that communicates the signal generation and processing on Mat-
lab with the physical component of the FPGA using a fast ethernet link.

Given that the multipath channel model is implemented in software its
statistical properties can get closer to a real channel than those obtained
with embedded implementations. Moreover, it gives the possibility to eval-
uate the design in a more accurate scenario and not only on an Additive
White Gaussian Noise (AWGN) channel like in [SRH+03]. The transceiver
is also provided with an equalizer, so the design is self-sufficient and is
capable of obtaining the channel state information unlike [AFC09].

Figure 5.13 gives more information about the underlying HiL platform.

DUT

Uncoded raw
bit buffer Compare and

error count Data buffering

DUT status

Decoded
message

Physical component

2 Port RAM 2 Port RAM

RAM Read Control

R
E

A
D

R
E

A
D

F
U

LL

F
U

LL

System Generator

Random
Raw Bits

TX Model
Channel
Model

Buffering

Simulation Parameters Data Analyze

MATLAB

Simulation Start –
Next Iteration

Figure 5.13: Simulation flow dissection

The simulation starts on the virtual component of the HiL simulator
in Matlab. First, the simulation parameters (length of the PPDU, channel
model, noise characteristics, WLAN link speed) of the simulation iteration
are loaded into Matlab. Software models of the transmitter chain and
communication channel are used to emulate the PPDU sample values as
seen by the receiver. The PPDU samples are packed in 32 bit words: 12
bits are used for the I-component of the PPDU, 12 bits are used for the Q

Hardware-in-the-Loop simulator 127

component of the PPDU and the remaining 8 bits are used to represent the
RSSI signal. Along with the PPDU, Matlab buffers a copy of the original
uncoded binary message m.

After the PPDU data has been generated, Matlab launches System Gen-
erator. System Generator then programs the FPGA with the description
of the WLAN transceiver to be tested. Data buffering between Matlab
and System generator is performed using doble port Random Access Mem-
ories (RAMs) in the FPGAevaluation board. Each port of the RAM is
controlled exclusively by the the virtual (System Generator) of physical
(the DUT implemented on the FPGA) components of the HiL simulator.
Blocking mechanisms have been provided so that a component of the HiL
simulator can not gain access to the RAM while the component of the HiL
simulator is using it.

At the beginning of the simulation, System Generator loads a copy
of the simulation vector generated by Matlab into the double port RAM
memory of the physical component. The transceiver implementation on the
FPGA then stores the uncoded transmitted message m into a temporary
buffer and decodes the received PPDU signal. The decoded bit stream
sequence is compared on real time with that stored in the temporal buffer
and the number of erroneous bits are counted. The error count along with
other receiver parameters are buffered and loaded into the output dual
port RAM. When this memory is full, System Generator sends a copy of
its contents to Matlab, when PER analysis is executed. After this analysis,
Matlab can launch a new simulation iteration.

Finally, figure 5.14 shows a picture of the HiL simulator under normal
operation. The picture shows both the virtual (computer) and physical
(Spartan-3A DSP Starter Platform [Xil09]) components of the simulator.
The computer is connected to the evaluation board using two connections:
the red box in the picture is the JTAG connection used to download the
*.bit configuration file in the FPGA, and the red cable is the Ethernet con-
nection between the physical and virtual components of the HiL platform.

128 CHAPTER 5. Hardware-in-the-Loop simulations

Figure 5.14: Implementation of the HiL simulation platform

Parametrical study 129

5.4 PARAMETRICAL STUDY

Given a software model of the transceiver architecture, finding a bal-
ance between precision in the operations and area consumption is some-
times a time consuming task. Other times adjusting the size of internal
accumulators depends on the working conditions of the device (channel
characteristics and behaviour of different submodules of the entity). This
section explores the use of the verification platform as a quantization effect
analyzer: due to the time reduction hardware-in-the-loop simulations can
obtain it seems logical to use them in tune-up stages.

An analysis of the quantization effects will be carried out at the follow-
ing points in the Viterbi decoder:

1. Number of bits used to represent the CSI.

2. Number of bits the Add-Compare-Select (ACS) accumulator is ex-
tended.

3. Traceback depth of the decoder.

The first two parameters have a great impact on the logic consumed
by the decoder as they control the size of several adders and comparators
inside the design. The traceback depth parameters controls the memory
requirements of the Survivor Path Unit (SPU) [ACS+08].

The HiL simulation platform will be implemented on a Xilinx Spartan-
3A DSP 1800 evaluation board. This FPGA has limited block RAM re-
sources that are necessary to buffer data between Matlab and the DUT.
Large buffers are necessary to evaluate long PPDU packets. The longer
the PPDU, the more data bits can be crammed on a single simulation
iteration. On low speed transmission modes, large PPDU sequences are
necessary to that the statistical characteristics of the decoded message x

are representative of the communication model. Since register resources
are more common in this FPGA, the SPU of the Viterbi decoder will be
based on a register exchange implementation.

Taking into account the simulation flow introduced in figure 5.13 several
System Generator models have been synthesized, one for each combination
of parameters of the Viterbi decoder that is going to be analyzed. The

130 CHAPTER 5. Hardware-in-the-Loop simulations

methodology employed has been as follows. First, the parameter configu-
ration that maximizes the area consumption in the FPGA while keeping all
parameters at reasonable high levels was chosen. For the Spartan-3A DSP
1800 used in this research work, the maximum values for the quantization
of the CSI, ACS accumulator extension and traceback depth were chosen
respectively 8, 7 and 60. The parameters were analyzed one by one, keeping
the others constant.

The architectures were tested under the highest rate available on the
802.11a standard using a multipath channel with a delay spread of 150ns.
The 20MHz baseband signal of the transmitter signal was oversampled by
a factor of three and the noise level of the channel ranged from 18 to 30dBs.
The frequency offset was randomly selected between ±120ppm for a 20MHz
bandwidth signal. Each SNR point was simulated 103 times. The same set
of PPDUs were given to the different Viterbi decoder architectures being
analyzed.

Only one parameter of the Viterbi decoder was analyzed at a time.
During the analysis of a parameter, the remaining parameters were kept at
a constant value.

The simulation results for the quantization of the CSI valued are de-
picted in figure 5.15.

Table 5.1 summarizes the hardware utilization of the different transceiver
architectures

As shown in table 5.1 the hardware resources consumption of the de-
coder increases linearly with the number of bits used to represent the CSI.
Adding an extra bit requires around 400 extra Look-up Tables (LUTs) and
100 flip-flops from the FPGA. Since no significative decoding capacity is
achieved for CSI quantization levels above 5 bits this quantity has been
used to represent the value of the CSI.

Simulations have shown that no performance boost is obtained if the
registers of the ACS units are extended with more than 2 bits. Consequently
the ACS register size has been increased with only 2 bits.

Finally figure 5.16 shows the influence of the traceback depth τ of the
decoder on the performance of the transceiver. As it can be seen increasing

Parametrical study 131

SNR [dB]
18 20 22 24 26 28 30

P
E

R

10-2

10-1

100
Rate = 54 Mbps Delay Spread = 150 ns

CSI = 2
CSI = 3
CSI = 4
CSI = 5
CSI = 6
CSI = 7
CSI = 8

Figure 5.15: Influence of the precision in CSI over the PER of the

system

132 CHAPTER 5. Hardware-in-the-Loop simulations

SNR [dB]
18 20 22 24 26 28 30

P
E

R

10-2

10-1

100
Rate = 54 Mbps Delay Spread = 150 ns

TBD = 60
TBD = 55
TBD = 50
TBD = 45
TBD = 40
TBD = 35
TBD = 30

Figure 5.16: Influence of the traceback depth of the decoder over

the PER of the system

the traceback length in 5 units supposes a gain in the decoding capacity of
around 0.5 dB.

The influence of the traceback depth value τ on the decoder’s hardware
consumption is depicted in table 5.2. LUT and flip-flop requirements rise
at a similar rate of around 65 extra components per increased unit in the
traceback depth. Due to the impact this parameter has on the overall
performance of the transceiver the traceback of the decoder has been kept
to 60.

Parametrical study 133

csibw
Viterbi decoder WLAN transceiver

Clock Speed [MHz]

Registers LUTs Registers LUTs

8 5824 11048 16237 24906 60.79

7 5667 10581 16081 24469 61.24

6 5573 10189 16046 24113 60.698

5 5477 9797 15949 23716 61.002

4 5395 9403 15866 23319 60.632

3 5278 8993 15751 22906 61.091

2 5184 8617 15656 22526 61.166

Table 5.1: Hardware utilization of the transceiver architectures for

various values of csibw with τ = 60 and acsxtr bw = 7

134 CHAPTER 5. Hardware-in-the-Loop simulations

τ
Viterbi decoder WLAN transceiver

Clock Speed [MHz]

Registers LUTs Registers LUTs

60 5121 8037 15531 21845 60.787

55 4805 7718 15213 21571 61.005

50 4480 7397 14888 21240 60.842

45 4160 7078 14568 20915 60.872

40 3840 6757 14248 20588 60.864

35 3518 6437 13926 20266 60.72

30 3198 6117 13606 19944 61.043

Table 5.2: Hardware utilization of the transceiver architectures for

various values of τ with csibw = 5 and acsxtr bw = 2

Results 135

5.5 RESULTS

The transceiver architecture performance has been thoroughly analyzed
after the optimum decoder parameters were obtained in the previous sec-
tion. 6Mbps, 36Mbps and 54Mbps rates where simulated. The multipath
channel had a random delay spread with a uniform distribution between
50 and 150ns. The frequency offset was also randomly selected from a uni-
form distribution between 0 and ±120ppm with a sampling clock speed of
20MHz. Each point in the PER curves of figure 5.17 was obtained after 105

simulations with PPDUs with 85 OFDM symbols, which results in PPDUs
transmitting 2000 data bits in the 6Mbps transmission mode, 10880 data
bits in the 36Mbps transmission mode and 18360 data bits in the 54MBps
transmission mode.

The mean time to obtain a single PER point is about one hour. In con-
trast, a single Register Transfer Level (RTL) simulation of the transceiver
required around fifty seconds using a Core2-Quad processor at 2.5Ghz with
2GB of RAM. Therefore, the fast verification platform can reduce the sim-
ulation time in a factor around 103.

The performance curves of the system have been compared to those
found in the literature. Table 5.3 summarizes this comparison.

All authors that report the channel conditions in which their transceiver
architectures have been simulated use a Rayleight fading channel [OP99]
with different values of delay spread, which range from 75 to 100ns. In our
case, our transceiver has been tested on a Rayleight fading channel with a
delay spread of 150ns, which is much larger than any of the delay spreads
reported in the literature. Consequently, with respect to the multipath
fading channel our system has been tested under slightly more constraining
characteristics.

The results in table 5.3 are not conclusive. First, the authors listed in
the table give no clear indication about the bandwidth of the channel noise
or how it was measured. Second, the models of the DACs and ADC, which
can further degrade the quality of the transmitted and received signal,
are not mentioned. Finally, some platforms in the table use equalizers
with perfect channel knowledge, which can skew the results in their favor.
However, we observe that the difference in the PER figures between our
implementation and those found in the literature are normally no more

136 CHAPTER 5. Hardware-in-the-Loop simulations

SNR [dB]
0 5 10 15 20 25 30

P
E

R

10-5

10-4

10-3

10-2

10-1

100
PER metric of the optimized transceiver

6Mbps
36Mbps
54Mbps

Figure 5.17: PER of the optimized transceiver

R
esu

lts
1
3
7

[TCW05] [Tro05] [AA04] [JNYK05] [DAB+01] Proposed work

Rayleight fading channel 100ns 100ns 75ns NA NA 150ns

SNR for PER= 10−1 (54Mbps) 29dB - - - - 24dB

SNR for PER= 10−2 (6Mbps) - 6.5dB - - 12dB 7dB

SNR for PER= 10−2 (36Mbps) - - - 28dB 27dB 22dB

SNR for PER= 10−2 (54Mbps) - - 32dB 30dB 32dB 28dB

Table 5.3: PER of different WLAN 802.11a transceivers

138 CHAPTER 5. Hardware-in-the-Loop simulations

than 5 dBs apart, which indicates that all implementations have a similar
behaviour.

Concluding remarks 139

5.6 CONCLUDING REMARKS

In this chapter the Viterbi decoder description has been optimized with
respect to the transceiver architecture in which it has been implemented.

The HiL simulation platform has reduced the time necessary to per-
form the parametrical analysis of the transceiver. Simulation results show
that no significant improvements in the decoding capacity of the system is
obtained when the decoder uses CSI word descriptions of more than 5 bits,
and that increasing the traceback depth of the decoder in five units has an
overall decoding capacity gain of 0.5dBs.

The optimized Viterbi decoder has been been analysed under Rayleight
fading channels, and the PER curves of the resulting transceiver are in line
with those found in the literature.

CHAPTER 6

Results

Contents

6.1 Introduction . 141

6.2 Viterbi decoder implementation results 141

6.3 Concluding remarks 157

6.1 INTRODUCTION

In this chapter the implementation results of the Viterbi decoder ar-
chitecture obtained in this research work are listed. To do so, the Viterbi
decoder itself is compared with other implementations found in the litera-
ture in terms of area, speed (system clock and achievable data throughput)
and the figure of merit Φ defined in section 3.2.

6.2 VITERBI DECODER IMPLEMENTATION RE-

SULTS

The Viterbi decoder architecture presented in this chapter has been
compared to other implementations found in the literature. To make a fair

141

142 CHAPTER 6. Results

comparison, the implementation of our Viterbi decoder must be as close as
possible to the works found in the literature. This is feasible because our
design is highly parameterizable and portable to any platform. Therefore,
we can quickly adapt our description to meet the characteristics of the
proposals found in the literature.

Most of the time, the transfer function G(x) (code pol in table 4.1) of
the Viterbi decoders found in the literature is not given. If all the remaining
parameters of a decoder are kept identical, changing the transfer function
has a negligible impact on the area and timing results of the design. Indeed,
the complexity of the design is governed by parameters such as the con-
straint length ν, the traceback depth τ and the coding rate R = k/n. The
transfer function G(x), however, only dictates the specific state transition of
the Trellis diagram and is used to indicae how the available Add-Compare-
Select (ACS) units are connected in the design. Therefore, we can safely
use a generic transfer function G(x) and make fear comparisons when this
data is not proposed in the literature.

Some Field Programmable Gate Array (FPGA) implementations found
in the literature discuss the FPGA family used to implement their works,
but do not indicate the speed grade of the target devices. In this cases
we have used the same target FPGA family with the slowest available
speed grade. This way we use a worst case scenario when discussing the
implementation results of our design. All our Xilinx FPGA implementation
results will be obtained using PlanAhead at revision 14.7.

Some works found in the literature compare different Viterbi decoders
in terms of their latency. For this research work we will define the latency
of the Viterbi decoder as the number of clock cycles that are necessary to
output the decoded message after the ACS cluster has calculated a set of
survivor paths.

Table 6.1 summarizes the hardware resource utilization of different
Viterbi decoders implementing a R = 1/2 convolutional code with a con-
straint length ν = 6 and a traceback depth τ of 18 states. The decoders
are implemented on a Xilinx xa3s500ecpg132-4 FPGA [Xil11b].

Both the implementation in [MZMD13] and our solutions are based on a
register exchange decoder, while the remaining implementations are based
on a traceback decoder. Therefore, only [NBA13] and the Xilinx Intellectual
Property (IP) decoder require block Random Access Memories (RAMs).

V
iterb

i
d
eco

d
er

im
p
lem

en
ta
tio

n
resu

lts
1
4
3

[MZMD13] [NBA13] Xilinx IP [Xil11c] Proposed work

Registers 2356 - 4581 1979

4 input LUTs 6261 3731 - 4631

Block RAMs 0 2 2 0

Maximum frequency [MHz] 118 97 126 113

Decoding throughput [Mbps] 118 48.5 126 113

Latency τ + codek 1.5τ 4τ τ

ISE version 10.1 13.4 13.1 14.7

Table 6.1: Area and speed comparison of Viterbi decoder imple-

mentations with coden = 2, codek = 1, constr len = 6

and traceback depth = 18 on Xilinx xa3s500-ecpg132-4

FPGA

144 CHAPTER 6. Results

From a hardware consumption perspective, our design consumes the
least resources among all the solutions that disclose their requirements.
The number of necessary Look-up Tables (LUTs) is reduced by around a
26% from the least demanding alternative. Similarly, the necessary register
in our implementation is reduced by around a 16% from the least demand-
ing implementation. Note that part of the registers consumed by our design
are necessary to implement the register exchange logic of the Survivor Path
Unit (SPU) that are embedded in the block RAMs necessary by the de-
coders implementing the traceback algorithm.

Our design also has the shortest latency between all the decoder imple-
mentations. On the other hand, the hardware savings come at the cost of
a slight decrement of the maximum clock speed achievable by our design.
As can be deduced, our design is a 10% slower than the fastest decoder
implementation. However, our design is still 16% faster than the slowest
implementation.

Table 6.2 summarizes the hardware resource consumption of different
ACS units found in the literature. The ACS units are designed for a con-
volutional code with R = 1/3 and a 3-bit wide softbit word. All results are
shown for a Xilinx xc3s500 FPGA.

The authors in [BSK+13] and [BSL11a] present two sets of results: the
initial hardware consumption of a typical ACS unit and the resource uti-
lization of their modified adaptive ACS unit. In the table we compare the
implementation results of our ACS unit with their implementations.

The authors of [BSL11a] do not consider the path metric accumulator
as part of the ACS unit. Therefore, their area results in table 6.2 show no
registers. Taking this in consideration, our ACS implementation requires
less registers than all other implementations in table 6.2. With respect
to the 4-input LUT consumption, the less demanding module is the non-
adaptive ACS approach in table 6.2. Our solution comes second, with an
overall reduction of 27% over the next more demanding implementation.

According to the maximum clock speed achievable by the ACSs, our
design is slightly slower than the adaptive ACS unit presented in [BSK+13].
Whereas the fastest ACS unit has a critical path of around 3-6ns, our
proposal requires 7.3ns. The proposed architecture is, however, 2.5 times
faster than the non-adaptive ACS unit in [BSK+13] .

V
iterb

i
d
eco

d
er

im
p
lem

en
ta
tio

n
resu

lts
1
4
5

[BSK+13] [BSK+13] [BSL11a] [BSL11a] Proposed

ACS Adaptive ACS ACS Adaptive ACS work

4 input LUTs 36 81 8 47 26

Registers 20 24 - 8 7

Critical path delay [ns] 18.45 3-6 - - 7.3

Table 6.2: Area and speed comparison of normal and adaptive

ACSs with coden = 2, codek = 1 and softbitbw = 3

in Xilinx xc3s50 FPGA

146 CHAPTER 6. Results

[HLS14] This work [HLS14] This work

FPGA xc3s200afg320-4 xc6vcx75tff484-1

Slice 65 1537 45 595

Registers 57 1297 55 1103

LUTs 85 2246 113 1245

BRAMs 4 6 2 3

Clock [MHz] 67 100 165 201

Throughput [Mbps] 0,51 100 1,263 201

Table 6.3: Data throughput comparison between Viterbi decoders

with codek = 1, coden = 2, ν = 6, softbitbw = 1 and

τ = 35 on different Xilinx FPGA

Table 6.3 compares the data throughput between an area optimized
Viterbi decoder architecture [HLS14] and our solution. All solutions are
configured to decode a convolutional code with R = 1/2, ν = 6, a trace-
back depth τ of 35 states and are based on a hard-decoding receiver with
traceback based SPUs. Implementation results are given for Xilinx Virtex6
xc6vx75tff484-2 and Spartan-3E xc3s200afg320-4 FPGAs.

The reduction in area resources presented in [HLS14] are obtained by
minimizing the total number of ACS units in the design and by sharing
the available ACS units between the different states in the trellis. Our
solution, on the other hand, instantiates a total of 2ν ACS units. The max-
imum clock speed achievable by the design in [HLS14] is 165MHz, but due
to the reutilization of the ACS units, the maximum decoding throughput
achievable by the core is reduced to 1.263Mbps. In other words, this imple-
mentation decodes one single bit every 130 clock cycles. Our solution, on
the other hand, reaches a maximum clock speed of 214.5MHz on the same
FPGA, and can decode an output bit per clock cycle, so the achievable
decoding rate of our solution is 214.5Mbps (170 times that of [HLS14]).
The penalty of our design in area is less than the penalty of the work in
[HLS14] in decoding capacity reduction.

Viterbi decoder implementation results 147

[SV13] Proposed work

Register 198 123

6-input LUTs 390 179

LUTs used as logic 370 179

LUTs used as memory 20 0

Number of 6-input LUT FF pairs 394 213

Maximum frequency [MHz] 394 487.3

Table 6.4: Implementation results of a Viterbi decoder with

codek = 1, coden = 2, constr len = 2 and τ = 32 in

a Xilinx xc7vx330t-ffg1157-3 FPGA

Table 6.4 compares the implementation results of the Viterbi decoder
presented in [SV13] with our proposal. Both solutions are configured to
decode a convolutional code with R = 1/2, ν = 2, a traceback depth τ of
32 states and are based on hard-decoding receiver. Implementation results
are given for a Xilinx xc7vx33t-ffg1157-3 FPGA

As it can be seen, our proposal consumes 37% less registers and around
half the logic than the work in [SV13]. However, our design reaches a clock
speed of 487.3MHz, a 23% more than the frequency achieved by [SV13].
Both architectures can decode a single bit per clock cycle of the system.

Table 6.5 compares our proposed Viterbi decoder architecture with var-
ious modified adaptive Viterbi decoders found in the literature. The syn-
thesis tools available do not support the oldest FPGAs, and we have only
been able to implement our design on the XCVLX300 FPGA. However,
when we compare ourselves with [LDZL11a], the fastest design in the ta-
ble, our design is 66.93% faster with equal constraint lengths ν, and 66.87%
faster when we increase the constraint length of our design in a unit.

Table 6.6 compares our proposal with that found in [PA14b]. In all
cases a convolutional code with R = 1/2, ν = 6 and τ = 32 has been
implemented. All Branch Metric Units (BMUs) implement hard-decoding,

148 CHAPTER 6. Results

Work ν R FPGA Frequency [Mhz] Troughput [Mbps]

[CC01] 6 1/2 XCV800 - 19.7

[STGB02b] 8 1/2 XC4036 40.5 0.333

[ZB03] 9 1/2 XCV300 101 12.5

[CV03] 8 1/2 Virtex-II 60.5 60.5

[TSR+05b] 13 1/2 XCV1000 13 0.415

[BPBS06] 8 1/2 XC2V2000 32.26 2

[LDZL11a] 8 1/2 XC5VLX300 202.587 202.587

This work 8 1/2 XC5VLX300 338.181 338.181

This work 9 1/2 XC5VLX300 338.066 338.066

Table 6.5: Throughput comparison of adaptive Viterbi decoders

and the proposed implementation on different Xilinx

FPGAs

Viterbi decoder implementation results 149

Work FPGA Area (LUTs) Maximum Frequency [MHz]

[PA14b] xcv5lx20tff3232-2 4379 127.474

[PA14b] xc6vcx75tff484-2 4521 157.149

This work xcv5lx20tff3232-2 3553 326.797

This work xc6vcx75tff484-2 2598 342.936

Table 6.6: Implementation results of a Viterbi decoder with

codek = 1, coden = 2, constr len = 6 and softbitbw = 1

in different Xilinx FPGAs

and the Viterbi decoders have been implemented for the smallest Virtex-5
and Virtex-6 FPGAs.

As it can be seen, our design has an advantage of around 19% on area
consumption in the Virtex-5 implementation, and the design can operate
with clock frequencies 2.5 times that obtained in [PA14b]. The results
improve when the FPGA is switched to the Virtex-6 family. Here, the area
consumption in LUTs is reduced by a 42.5%, while the achievable maximum
clock speed is increased by a factor of 2.18. This makes us assume that our
design is much better suited for 6 input LUTs FPGAs as the Virtex-6 than
the proposed work in [PA14b].

Tables 6.7, 6.8 and 6.9 compare the configurable Xilinx Viterbi decoder
IP with the implementation obtained in this research work when a Virtex-6
xc6vlx75t-3 FPGA, a Spartan-6 xc6slx45t-2 FPGA and a Virtex-5 xc5vl30-
3 FPGA are used respectively. All implementations of the Xilinx IP are
based on a traceback SPU, and in all cases implementation results of our
decoder based on both register exchange and traceback SPUs are given.

In general, our register exchange based Viterbi decoder requires more
logic elements than Xilinx’s reconfigurable IP because the SPU must be
implemented in logic instead of RAM. However, by doing so, our design
reaches clock speeds that are around 7% higher than those achieved by
Xilinx’s IP on Virtex-6 and Virtex-5 (tables 6.7 and 6.9) implementation.
Also, our implementation has half the latency than that of the Xilinx IP.

150 CHAPTER 6. Results

[Xil11c] Proposed work [RE] Proposed work [TB]

LUTs 2573 6604 2656

Registers 1863 6873 1969

BRAMs 2 - 3

Clock [MHz] 347 373.7 361.9

Table 6.7: Implementation results of a Viterbi of the Xilinx recon-

figurable Viterbi decoder with codek = 1, coden = 2,

constr len = 6, τ = 96 and softbitbw = 3 in a Xilinx

xc6vlx75t-3 FPGA

[Xil11c] Proposed work [RE] Proposed work [TB]

LUTs 2442 6708 2624

Registers 1980 6980 1886

BRAMs 2 - 3

Clock [MHz] 126 182.55 176.8

Table 6.8: Implementation results of a Viterbi of the Xilinx recon-

figurable Viterbi decoder with codek = 1, coden = 2,

constr len = 6, τ = 96 and softbitbw = 3 in a Xilinx

xc6slx45t-2 FPGA

Viterbi decoder implementation results 151

[Xil11c] Proposed work [RE] Proposed work [TB]

LUTs 2457 9689 3652

Registers 1538 6867 2053

BRAMs 2 - 3

Clock [MHz] 272 291.3 313.7

Table 6.9: Implementation results of a Viterbi of the Xilinx recon-

figurable Viterbi decoder with codek = 1, coden = 2,

constr len = 6, τ = 96 and softbitbw = 3 in a Xilinx

xc5vl30-3 FPGA

When our traceback based SPU decoder is compared to Xilinx’s IP,
implementation results are much more similar. In table 6.7 it is shown that
our design requires 3% more LUTs and 5% more registers than Xilinx’s
implementation. However, our design achieves 4% higher clock speeds at
the same latency. For the Spartan-6 in table 6.8, our design consumes
7.5% more LUTs and 4.7% less registers and achieves a 40% higher clock
speed than Xilinx’s IP. This advantage in the achievable clock speed can
be explained by the logic distribution inside the FPGAs.

The top level logic element inside a Xilinx FPGA is the Configurable
Logic Block (CLB). In series-6 FPGAs each CLB is divided in two slices,
and each slice contains four 6 input LUTs and eight registers. Virtex-6
slices are classified as SLICEDs and SLICEMs. The LUTs of the for-
mer have standard logic reconfigurability, while the LUTs of the latter
can be configured to produce shift registers and distributed RAM. On the
Spartan-6 there is a third slice type, the SLICEX. Compared to the pre-
vious slices, SLICEX has more limited routing capabilities. On Spartan-6
FPGAs the availbale slices are classified as follows: 50% of the total are
of type SLICEX, 25% of the total are of type SLICEM and the remaining
25% are of the SLICED. On Virtex-6 FPGAs, however, half of the slices
are of type SLICEM and the other half are of type SLICED. Therefore, the
routing resources are more limited on the cheaper Spartan-6. According
to the data shown in table 6.7, our design is less routing resource intensive
than the Xilinx IP. When both designs are ported to a more constrained

152 CHAPTER 6. Results

[PN14] Proposed work [RE]

Slices 17606 13445

Clock [MHz] 197.25 82.974

Table 6.10: Implementation results of a reconfigurable Viterbi de-

coder with maximum parameters defined as codek = 5,

coden = 6, constr len = 8, τ = 96 and softbitbw = 1

in a Xilinx xc5vlx330t-1 FPGA

FPGA such as the Spartan-6, it is logical that our design takes a more
reduced impact.

Finally, for the Virtex-5 implementation in table 6.9 our design reaches
clock speeds 15% higher than those of the Xilinx’s IP at the expense of
nearly 50% more LUTs and 33% more registers.

The advantage in hardware resource utilization of the Xilinx IP over
our implementation can be explained by the fact that our decoder uses
general purpose Hardware Description Language (HDL) code and Xilinx’s
IP explicitly instantiates hardware resources on each FPGA.

Table 6.10 compares the implementation results of a reconfigurable
Viterbi decoder for Software Defined Radio (SDR) with our proposed Viterbi
decoder. Implementation results are given for the most demanding modes
supported by the reconfigurable decoder (k = 5, n = 6, ν = 6, τ = 96 and
hard-decoding) on a Xilinx Virtex-5 FPGA.

As can be seen in table 6.10 requires one fourth of the logic resources
than those of [PN14] at the expense of a reduction in the achievable clock
speed of around 60%. These clock speed results can be explained by the fact
that in 6.10 it is only mentioned that a Xilinx xc5vlx330t FPGA is used,
but no explicit mention of its speed grade is make, so for our comparison
we have opted to analyse the worst case scenario and, therefore, we have
implemented our design in the slowest grade FPGA with that part-name,
the Xilinx xc5vlx330t-1.

Table 6.11 compares the implementation results of a Viterbi decoder
aimed at Ultra Wide Band (UWB) applications with our proposed decoder

Viterbi decoder implementation results 153

[VS12] Proposed work [RE] Proposed work [TB]

softbit LUTs Clock LUTs Clock LUTs Clock

3 2546 256 3891 156 2492 242.6

4 3214 252 4478 147.76 3618 230.097

5 3748 248 4666 150.852 4092 191

Table 6.11: Implementation results of a Viterbi decoder with

codek = 1, coden = 2, constr len = 6, and τ = 120 on a

Xilinx xc6vcx75t-1 FPGAs for different softbit widths

in register exchange and traceback configurations. In all cases, a decoder
code with k = 1, n = 2, ν = 6 and τ = 120 has been implemented on
a Xilinx Virtex-6 xc6vcx75t-1 FPGA. Both decoders used a soft-decision
BMU and the input soft-bits have been quantized with three, four and five
bits.

As can be seen in table 6.11, for all softbit quantization levels all of
our implementations achieve lower clock speeds than [VS12]. The trace-
back based implementation matches, however, more closely the clock speeds
achieved by [VS12] than the register exchange based implementation, with
clock speeds being at least the 92% of those in [VS12] when the input
softbits are quantized with three or four bits. With respect to the logic
resource utilization, our traceback based decoder has identical LUT re-
quirements than [VS12] when the softbits are quantized with 3 bits, but
as this level increases, our design requires around 10% more LUTs than
[VS12].

Table 6.12 compares a Viterbi decoder aimed at 802.15.3c applications
with our proposed implementation. All decoders are based on the traceback
algorithm and are generated with a convolutional code with k = 1, n = 2,
ν = 6 and τ = 64 on a Xilinx Virtex-6 xc6vcx75t-1 FPGA. Two different
ACS units are considered in 6.12: a regular ACS core and a retimed CSA
unit.

As can be seen in table 6.12, compared to the regular ACS in [VNS12b],
our design requires 25% less LUTs and achieves clock speeds 10% higher.

154 CHAPTER 6. Results

[VNS12b] [VNS12b] Proposed

Regular ACS CSA work

LUTs 3110 2344 2362

BRAMs 1 1 3

Data throughput [Mbps] 226 272 247.52

Table 6.12: Implementation results of a Viterbi decoder with

codek = 1, coden = 2, constr len = 6, and τ = 84

on a Xilinx xc6vcx75t-1 FPGAs 802.15.3c applications

When compared with the CSA ACS, however, both implementation require
the same amount of LUTs, but our decoder has a penalty of around 9% on
its achievable clock speed. It is also remarkable the total number of RAMs
required by both designs: whereas [VNS12b] requires only one dual port
RAM our design uses up to three RAMs. The reduced number of RAMs
in [VNS12b] is explained by the fact that the Viterbi decoder operates
with packets of predefined size, whereas our design has been optimized for
continuous data streams.

Finally, tables 6.13 and 6.14 compare our design with most of the de-
coders found in this section in terms of the metric Φ that was introduced
in section 3.2.2. The flexibility of our description has allowed to quickly
adapt our proposal to the specific characteristics of the proposals found in
the literature.

The metric Φ indicates the average data throughput that can be achieved
for a given complexity in the decoder in terms of LUTs and register.
Higher values of Φ indicate that the design is more efficient. Consequently,
only those decoders whose total LUT and register requirements and data
throughput were known have been included in this discussion.

The metric Φ rewards those designs that do not share ACS among
states in the trellis (and therefore, sacrifice data throughput for area re-
source utilization). This explains the penalty in terms of Φ of the area
efficient design in [HLS14] in table 6.13. In general, the Φ normalization
factor indicates that most Viterbi decoder implementations are similar in

V
iterb

i
d
eco

d
er

im
p
lem

en
ta
tio

n
resu

lts
1
5
5

[MZMD13] [NBA13] [HLS14] [SV13] [PA14b] [PA14b] [HLS14]

L
it
er
at
u
re

FPGA xa3s500-4 xa3s500-4 xc6vcx75-1 xc7vx330-3 xc5lx20t-2 xc6vcx75t-2 xc3s200-4

ν 6 6 6 2 6 6 6

LUTs 6261 3731 113 390 4379 4521 85

Registers 2356 - 55 198 - - 57

Clock 118 97 165 394 127.474 157.149 67

Throughput 118 48.5 1.263 394 127.474 157.149 0.51

Φ 0.014 0.013 0.008 0.670 0.029 0.035 0.004

T
h
is

w
or
k

LUTs 4631 4631 1703 179 3553 2598 2246

Registers 1979 1979 1103 123 - - 1297

Clock 113 113 254.065 487.3 326.797 342.936 100

Throughput 113 113 254.065 487.3 326.797 342.936 100

Φ 0.017 0.017 0.090 1.614 0.092 0.132 0.028

Table 6.13: Decoder comparison in terms of Φ comparison 1/2

1
5
6

C
H
A
P
T
E
R
6
.
R
esu

lts

[Xil11c] [Xil11c] [Xil11c] [PN14] [VNS12b] [VNS12b]

L
it
er
at
u
re

FPGA xc6vlx75t-3 xc6slx45t-2 xc5vl30-3 xc5vx300t-1 xc6vcx75t-1 xc6vcx75t-1

ν 6 6 6 8 6 6

LUTs 2573 2442 2457 17606 3110 2344

Registers 1863 1980 1538 - - -

Clock 347 126 272 197.25 226 272

Throughput 347 126 272 197.25 226 272

Φ 0.078 0.028 0.068 0.011 0.073 0.116

T
h
is

w
or
k

LUTs 2656 2624 3652 13445 2362 2362

Registers 1969 1886 2053 - - -

Clock 361.9 176.8 313.7 82.974 247.52 247.52

Throughput 361.9 176.8 313.7 82.974 247.52 247.52

Φ 0.078 0.039 0.055 0.006 0.105 0.105

Table 6.14: Decoder comparison in terms of Φ comparison 2/2

Concluding remarks 157

terms of data throughput to logical resources utilization ratio, with the sole
exceptions of [NBA13], [SV13], [PA14b] and [PA14b] in table 6.13, where
our design shows a significant advantage over the implementations found
in the literature, and [PN14] in table 6.13 where our design shows a worse
behavior.

When comparing to the Xilinx reconfigurable IP [Xil11c], our design
generally requires more hardware resources. However, all our register ex-
change and traceback based implementations obtain higher clocks (and,
therefore, higher data decoding throughputs) than the Xilinx IP. In terms
of Φ, this means that our design is competitive against the proposal of
Xilinx, specially in designs where our architecture achieves much higher
decoding throughputs such as the Spartan-6.

6.3 CONCLUDING REMARKS

In this chapter the Viterbi decoder developed in the research work has
been analyzed and its performance has been compared to other implemen-
tations found in the literature.

The Φ metric, a value that gives an idea of the data throughput that
can be achieved per LUT and register in the decoder, indicates that our
implementation is competitive against other options found in the literature.
In most cases the Φ parameter obtained in this work and other proposals
fall in the same order of magnitude, with a slight advantage to our design
when we obtain a design that achieves higher clock speeds. Compared to the
other works with the literature, this indicates that our design, for a given
value of ν, requires less area to obtain the same decoding rates. Therefore,
ours is a cheaper implementation that offers identical performance to that
of the competing decoders found in the literature.

Compared to the commercial Viterbi decoder IP by Xilinx, the Φ pa-
rameter rewards those designs that favor total system clock speed. This
way, our design has similar performance to that of Xilinx when implement-
ing on a Virtex-6 FPGA. When implemented on a Spartan-6 FPGA our
design becomes more competitive due to the increase in the achievable sys-
tem clock speed.

CHAPTER 7

Conclusions and areas for
further research

Contents

7.1 Conclusions . 159

7.2 Areas for further research 164

7.1 CONCLUSIONS

The Viterbi decoder has a significant impact on the size and decoding
capacity of transceivers based on convolutional codes. In this research work
the hardware description of a flexible Viterbi decoder has been proposed
and optimized taking into account the transceiver in which it will be em-
bedded.

With respect to the Viterbi decoder description it has been concluded
that:

• The design is highly configurable and offers a wide range of input
parameters that can be specified by the designer. This way, the de-
signer can set-up the decoder to comply with any given feedforward

159

160 CHAPTER 7. Conclusions and areas for further research

convolutional code (n, k, ν,G(x)). The Branch Metric Unit (BMU)
can be configured so that it performs hard or soft decoding. In case
soft decoding is selected, the bitwidth of the input softbits is a system
parameter too.

• Depending on the technology and available hardware resources of
the platform in which the decoder will be implemented, two differ-
ent Survivor Path Unit (SPU) architectures have been implemented:
a register-exchange based SPU is highly dependent on register and
multiplexers, while a traceback based SPU relays fundamentally on
single port Random Access Memory (RAM). The former has the
shortest decoding delay possible on Viterbi decoders (τ clock cycles),
while the latter relaxed the utilization of hardware resources at the
expense of a higher decoding latency of 2τ cycles. The two SPU ar-
chitectures have been optimized for both continuous data decoding
flows and burst or packet communications, so that the decoder is fit-
ted for applications such as Wireless Local Area Network (WLAN)
and Code Division Multiple Access (CDMA) or Terrestrial Digital
Video Broadcasting (DVB-T) and Ultra Wide Band (UWB). The
traceback depth of both SPUs is a system parameter as well.

• The BMU can be optionally configured to take into account Car-
rier Strength Indicator (CSI) values of the received symbols r when
calculating the branch metrics. CSI has been proven a cost-effective
solution that, based on the channel estimation performed by an equal-
izer, can extract further information from the received symbol stream.
By using CSI information on the BMU, the decoding capacity of the
receiver has been improved on Rayleight fading multipath channels.
The bitwidth of the optional CSI values is a system parameter as well.

• The decoder has comparable configuration parameters to other re-
configurable decoders found in the literature as the Viterbi decoder
by Xilinx [Xil11c]. Compared to the solution of Xilinx, our proposed
decoder:

– Is not tied to Xilinx Field Programmable Gate Arrays (FPGAs)
and can be implemented on any Application Specific Integrated
Circuit (ASIC) technology or FPGA vendor.

– Supports both register exchange and traceback SPUs.

– Depending on the target FPGA where it is synthesized, both
SPU implementations can be clocked with a system clock 7%

Conclusions 161

higher than that supported by the Xilinx solution. Consequently,
our solution has a 7% higher data decoding throughput than the
Xilinx solution.

– The decoding delay of the register exchange based SPU is half
that of the Xilinx solution

• The high flexibility of the decoder proposed in this research work will
reduce design costs and the time to market of future products devel-
oped in the research group. Since the design is highly reconfigurable,
by means of generics the Viterbi decoder can be set up to decode any
given feedforward convolutional code.

• The Viterbi decoder is currently being sold as a commercial Intel-
lectual Property (IP) and, to the author’s knowledge, it has already
successfully been implemented on Global System for Mobile com-
munications (GSM) and Global Positioning System (GPS) satellite
applications.

With respect to the transceiver designed to evaluate the behaviour of
the Viterbi decoder it has been concluded that:

• A fully functional WLAN 802.11a compliant transceiver architecture
has been obtained that is functional up to the Physical Layer Con-
vergence Protocol (PLCP) layer.

• All building blocks of the transceiver have been implemented in-house
in the research group and. With the exception of the Fast Fourier
Transform (FFT) and Inverse Fast Fourier Transform (IFFT) cores,
all modules of the transceiver have been specifically designed during
this research work.

• To reduce area resource utilization, the FFT/IFFT core is reused
between the modulator and demodulator of both the transmitter and
receiver chains, and also supports in the synchronization algorithm.

• The synchronizer developed in this research work for the WLAN
802.11a transceiver performs time and frequency offset compensation.
The error in the time offset estimation performed by the synchronizer
is negligible for channels with a Signal-to-Noise Ratio (SNR) above 8
dBs, and the frequency offset estimation has a variance of around 1
kHz for channel SNRs above 14 dBs.

162 CHAPTER 7. Conclusions and areas for further research

• The equalizer developed in this research work serves a triple purpose
in the receiver chain. First, it performs channel equalization on the
received complex symbols. Second, it performs a phase tracking algo-
rithm that compensates the spurious frequency offset after synchro-
nization by means of information on the pilot tones of the Orthogonal
Frequency Division Multiplexing (OFDM) symbols. Third, it calcu-
lates the optional CSI values by normalizing the magnitude of the
channel estimation with its maximum value. This way, CSI values al-
ways belong to the set [0, 1]. The hardware resource requirements of
the equalizer are minimized by sharing the necessary Coordinate Ro-
tation Digital Computer (CORDIC) core in rotational mode between
the equalization and phase tracking algorithm and the hardware di-
vider between the equalization process and the CSI value calculation.

• An analysis of the spread transmitted coefficients suffer due to mul-
tipath fading channels has been carried out. With that, a set of
optimal demapping functions have been obtained and an iterative
hardware architecture that implements them has been described in
VSIC (Very High Speed Integrated Circuits) Hardware Description
Language (VHDL) based on comparators and multipliers. The con-
figurable size of the multipliers in the demapper controls the bitwidth
of the softbits at its output, and the hardware architecture of the
demmaper can easily be updated to support any given M-QAM con-
stellation.

• When the transceiver supports CSI decoding, a delay line between
the equalizer and the Viterbi decoder must be implemented so that
the received sequence and estimated CSI values are moved along the
receiver chain simultaneously.

– If the transceiver implements interleaving, its functionality must
be duplicated in the receiver chain so that received bits and CSI
values are synchronized.

– If multi-level Quadrature Amplitude Modulation (QAM) con-
stellations are to be used, the demapper must replicate the CSI
values accordingly.

• A method to increase the data throughput of the transceiver has
been proposed in cases where the system is limited by the maximum
achievable clock frequency of the Viterbi decoder. To do so, the

Conclusions 163

convolutional code has been parallelized and type-1 [BK13] radix-
2pkAdd-Compare-Select (ACS) implementations have been obtained
with p = 1, 2, 3. The entire WLAN transceiver has been synthesized
on a 90nm TSMC mutivoltage process at 0.84 and 1 volts. The paral-
lel Viterbi decoder operates at the power domain with the lowest volt-
age and is clocked by a signal that is 2p−1 times lower than the main
system clock. Even though the hardware resource utilization of the
parallel transceiver archietctures grows exponentially with p, power
estimation carried out with Switching Activity Interface File (SAIF)
files concludes that the power consumption on all cases remains in
simular values.

With respect to the Hardware-in-the-Loop (HiL) verification it has been
concluded that:

• The platform permits to quickly characterize the performance of dif-
ferent transceiver architectures in terms of their Packet Error Rate
(PER).

• The platform reduces substantially the time requirements to simulate
the reception of a data packet. For Joint Test Action Group (JTAG)
based HiL simulators, the simulation time is reduced by a factor of
20 compared to purely based simulations. When Ethernet based HiL
simulators are used, the simulation time is reduced by a factor of
1000.

• The reduction in simulation time allows the possibility of perform-
ing parametrical analysis on the Device Under Test (DUT). In this
research work, the impact several parameters of the Viterbi decoder
(namely, the bitwidth of the CSI values and the traceback depth of
the decoder) have on the performance of the transceiver architecture
has been analyzed. After the analysis, a cost effective transceiver
architecture has been obtained in terms of its PER.

• By means of HiL simulations, a high confidence on the correctness of
the VHDL sources can be obtained early on the design process, which
in turn reduces the number of runs necessary to obtain a working final
implementation of the DUT being developed.

• The increase in the simulation speed provided by the HiL platform
can be used to evaluate multi-mode communication systems such as

164 CHAPTER 7. Conclusions and areas for further research

WLAN 802.11a and detect, early on the development, rare parameter
configuration that cause unexpected behaviour on the design.

• Apart from communication systems, the HiL simulation platform de-
veloped in this research work can be expanded to evaluate DUTs
whose testing relies on the generation and comparison of input and
output data vectors.

7.2 AREAS FOR FURTHER RESEARCH

The aim of this research work was to find and optimize the description
of Viterbi decoders with respect to the transceiver architecture in which
they will be integrated. During this work, several topics have been found
that deserve further research:

Add more parametrization options to the Viterbi decoder

The Viterbi decoder description obtained in this research work has
been optimized so that it decodes a block of k bits per clock tic.
This decision maximizes the system data throughput, but increases
the hardware resource requirements. Some of the proposals found in
the literature reduce their area requirements by reducing or sharing
ACSs between states of the convolutional code at the expense of a
lower data decoding throughput.

In applications with limited area resources, adding the possibility of
sharing ACS units among different states on the trellis can reduce the
hardware resource utilization of our design. This, in turn, will make
our flexible design more competitive against other implementations
that have been designed for low area footprint goal.

Improve the traceback implementation of the SPU

The decoder architecture designed in this research work has been ob-
tained with portability in mind, so that it can be easily implemented
in any platform (ASIC or FPGA). In order to obtain this goal, our
description does not make use of any proprietary IPs.

For traceback implementations of the SPU this means that we have
opted for a standard single port RAM implementation that can be

Areas for further research 165

easily ported to any ASIC technology of FPGA vendor. This, how-
ever, means that we do not make use of more advanced hardware
resources found in FPGAs such as double port RAMs. Consequently,
to achieve a continuous data decoding stream, our solution requires
more RAM resource than other solutions found in the literature which
do not pursuit portability.

Therefore, a new parameter could be added to our flexible design in a
future revision of the decoder that indicates whether using dual port
RAMs is allowed or not.

Obtain the description of a technology independent HiL platform

The HiL platform developed in this research work can implement
DUTs described in Hardware Description Language (HDL). However,
the HiL platform itself relies on libraries provided by Xilinx, so it is
limited to FPGAs of the same vendor. This solution reduces the
initial time necessary to obtain the HiL, but ties the entire platform
to a specific vendor.

In future releases of the HiL verification system it would be interesting
to obtain custom descriptions of its components so that it can be
easily ported to any platform.

Distribute the HiL platform between multiple FPGAs

The HiL platform is limited to a single FPGA. This means that
the logic of both the transceiver and the HiL platform must fit into a
single FPGA. When the transceiver architecture grows in complexity,
the available resources in a single FPGA can not be sufficient to fit the
entire transceiver architecture in the physical layer of the simulator.

Therefore, it would be highly valuable if future revisions of the HiL
platform could distribute its logic between an array of FPGAs.

Dynamic configuration of the HiL platform

The HiL platform developed in this research work evaluates the per-
formance of a transceiver description by generating a data vector
containing the received signal as seen from the analog front-end and
by reading the decoded sequence generated by the transceiver.

166 CHAPTER 7. Conclusions and areas for further research

During each simulation, there is no control mechanisms over the
transceiver architecture itself. It would be interesting if future re-
visions of the HiL platform could provide mechanisms to have control
over certain parameters of the DUT on real time.

Analysis of performance curves with ideal models

The PER performance curves shown in this research work include the
effects of all final implementations of the modules that comprise the
WLAN transceiver. In the future, it would be interesting to obtain
the performance curves of the several iterations of the transceiver.
The analysis would begin with a software model of the transceiver
with perfect channel knowledge, and in each iteration each compo-
nent would be substituted with its real implementation in the HiL
platform. This way we would have a more precise understanding
of the errors introduced by the different modules that comprise the
transceiver and not the whole picture of the system.

ASIC implementation and power consumption of the decoder

The decoder sources developed in this research work make it easy to
implement them in different platforms such as ASIC. Developing for
ASIC technology has the advantage that a project is not constrained
by area resource utilization as much as FPGAs (in theory, area re-
sources can grow as much as necessary in ASIC, while in FPGAs they
are limited to the available logic elements in the device).

Consequently, ASIC technology is an ideal solution to further continue
with the parametrical study carried out in this research work and
analyze, for example, the effects of parallelization of the ACSs has on
overall area resource utilization and power consumption.

References

[AA04] E. Akay and E. Ayanoglu. High performance viterbi de-
coder for OFDM systems. In Vehicular Technology Confer-
ence, 2004. VTC 2004-Spring. 2004 IEEE 59th, volume 1,
pages 323–327 Vol.1, May 2004. 137

[ABAAA15] H. Abbes, M. Ben Ayed, H. Abid, and M. Abid. Design
verification based on hardware-in-the-loop simulation for
photovoltaic system. In Systems, Signals Devices (SSD),
2015 12th International Multi-Conference on, pages 1–6,
March 2015. 60, 61, 63, 64

[ACS+08] F. Angarita, M.J. Canet, T. Sansaloni, J. Valls, and V. Al-
menar. Architectures for the implementation of a OFDM-
WLAN viterbi decoder. Journal of Signal Processing Sys-
tems, 52(1):35–44, 2008. 32, 129

[AFC09] A. Alimohammad, S.F. Fard, and B.F. Cockburn. FPGA-
based accelerator for the verification of leading-edge wire-
less systems. In Design Automation Conference, 2009.
DAC ’09. 46th ACM/IEEE, pages 844–847, July 2009. 126

[AGBL+13] J. Arias-Garćıa, A. Braga, C. H. Llanos, M. Ayala-Rincón,
R. Pezzuol Jacobi, and A. Foltran. FPGA HIL simula-
tion of a linear system block for strongly coupled system
applications. In Industrial Technology (ICIT), 2013 IEEE
International Conference on, pages 1017–1022, Feb 2013.
62, 63, 64

[ALR11] Doug Amos, Austin Lesea, and René Richter. FPGA-Based
Prototyping Methodology Manual. Synopsys Press, 2011. 57

167

168 References

[AMJ+14a] Ranjit Atwal, Kanae Maita, Annette Jump, Lillian Tay,
Roberta Cozza, Tuong Huy Nguyen, Bruno Lakehal,
Mikako Kitagawa, Tracy Tsai, Annette Zimmermann, An-
shul Gupta, Atsuro Sato, CK Lu, and William Lutman.
Forecast: Pcs, ultramobiles and mobile phones, worldwide,
2011-2018, 3q14 update. Gartner, pages 1–12, October
2014. 2

[AMJ+14b] Ranjit Atwal, Kanae Maita, Annette Jump, Lillian Tay,
Roberta Cozza, Tuong Huy Nguyen, Bruno Lakehal,
Mikako Kitagawa, Tracy Tsai, Annette Zimmermann, An-
shul Gupta, Atsuro Sato, CK Lu, and William Lutman.
Forecast: Pcs, ultramobiles and mobile phones, worldwide,
2011-2018, 3q14 update, October 2014. Available online at
http://www.gartner.com/newsroom/id/2875017. 2

[ASA+12] M. W. Azhar, M. Själander, H. Ali, A. Vijayashekar, T. T.
Hoang, K. K. Ansari, and P. Larsson-Edefors. Viterbi ac-
celerator for embedded processor datapaths. In 2012 IEEE
23rd International Conference on Application-Specific Sys-
tems, Architectures and Processors, pages 133–140, July
2012. 52

[BK13] W. Byun and J. H. Kim. High-speed radix-4 add-compare-
select unit for next generation communication systems.
In SoC Design Conference (ISOCC), 2013 International,
pages 1–2, Nov 2013. xv, 47, 48, 49, 163

[BKM+15] C. Barker, M. Kwiatkowska, A. Mereacre, N. Paoletti, and
A. Patane. Hardware-in-the-loop simulation and energy
optimization of cardiac pacemakers. In Engineering in
Medicine and Biology Society (EMBC), 2015 37th Annual
International Conference of the IEEE, pages 7188–7191,
Aug 2015. 61, 62, 63, 64

[BPBS06] L. Bissi, P. Placidi, G. Baruffa, and A. Scorzoni. A multi-
standard reconfigurable viterbi decoder using embedded
FPGA blocks. In Digital System Design: Architectures,
Methods and Tools, 2006. DSD 2006. 9th EUROMICRO
Conference on, pages 146–154, 2006. 44, 148

http://www.gartner.com/newsroom/id/2875017

References 169

[BSK+13] N.D. Bobby, S.K. Srivatsa, L. Kishore, A. Rajiv, and S.S.
Suresh. Comparison of fast radix 2 ACS with adaptive fast
radix 2 ACS in viterbi decoder. In Emerging Trends in
VLSI, Embedded System, Nano Electronics and Telecom-
munication System (ICEVENT), 2013 International Con-
ference on, pages 1–5, Jan 2013. 26, 42, 43, 144, 145

[BSL11a] N. D. Bobby, S. K. Srivatsa, and Lalkishore. Imple-
mentation of radix2 acs in adaptive viterbi decoder. In
Nanoscience, Engineering and Technology (ICONSET),
2011 International Conference on, pages 604–606, Nov
2011. 42, 43, 144, 145

[BSL11b] N.D. Bobby, S.K. Srivatsa, and Lalkishore. Implemen-
tation of radix2 ACS in adaptive viterbi decoder. In
Nanoscience, Engineering and Technology (ICONSET),
2011 International Conference on, pages 604–606, Nov
2011. 26

[CC01] K. Chadha and J. R. Cavallaro. A reconfigurable viterbi
decoder architecture. In Signals, Systems and Comput-
ers, 2001. Conference Record of the Thirty-Fifth Asilomar
Conference on, volume 1, pages 66–71 vol.1, Nov 2001. 26,
148

[CHIW98] D. J. Costello, J. Hagenauer, H. Imai, and S. B. Wicker.
Applications of error-control coding. IEEE Transactions
on Information Theory, 44(6):2531–2560, Oct 1998. 2

[Chu14] Christopher Chute. U.S. SMB Tablet Adoption 2014-2018
Forecast: Primed for Content Creation at the Edge. IDC,
pages 1–11, July 2014. 2

[Cis14] Cisco. White Paper Cisco Visual Networking Index: Global
Mobile Data Traffic Forecast Update, 2013–2018. Cisco,
2014. 2

[CMS14] Melissa Chau, Tom Mainelli, and Michael Shirer. A Future
Fueled by Phablets – Worldwide Phablet Shipments to Sur-
pass Portable PCs in 2014 and Tablets by 2015, September
2014. Available online at http://www.idc.com/getdoc.

jsp?containerId=prUS25077914. 2

http://www.idc.com/getdoc.jsp?containerId=prUS25077914
http://www.idc.com/getdoc.jsp?containerId=prUS25077914

170 References

[Coo04] Todor Cooklev. Wireless Communication Standards. Stan-
dards Information Network IEEE Press, 2004. 119

[CRBD13] D. Chakraborty, P. Raha, A. Bhattacharya, and R. Dutta.
Speed optimization of a FPGA based modified viterbi de-
coder. In Computer Communication and Informatics (IC-
CCI), 2013 International Conference on, pages 1–6, Jan
2013. 52

[CSN14] Y. H. Chen, M. L. Su, and Y. F. Ni. FPGA implementation
of trellis coded modulation decode on sdr communication
system. In Information Science, Electronics and Electrical
Engineering (ISEEE), 2014 International Conference on,
volume 1, pages 89–93, April 2014. 52

[CV03] J. R. Cavallaro and M. Vaya. Viturbo: a reconfigurable
architecture for viterbi and turbo decoding. In Acous-
tics, Speech, and Signal Processing, 2003. Proceedings.
(ICASSP ’03). 2003 IEEE International Conference on,
volume 2, pages II–497–500 vol.2, April 2003. 45, 148

[DAB+01] A. Doufexi, S. Armour, M. Butler, A. Nix, and David Bull.
A study of the performance of HIPERLAN/2 and IEEE
802.11a physical layers. In Vehicular Technology Confer-
ence, 2001. VTC 2001 Spring. IEEE VTS 53rd, volume 1,
pages 668–672 vol.1, 2001. 137

[Doo10] Dave Doody. Deep Space Craft: An Overview of Interplan-
etary Flight. Springer Science and Business Media, 2010.
5

[DPH93] John R. Deller, Jr., John G. Proakis, and John H. Hansen.
Discrete Time Processing of Speech Signals. Prentice Hall
PTR, Upper Saddle River, NJ, USA, 1st edition, 1993. 14

[EdDLSH+13] L. A. L. Espinosa, J. d. D. L. Sánchez, J. I. N. Hipolito,
M. V. Briseño, A. E. P. Ramos, and S. V. Reyes. Viterbi
decoders generation for FPGA platforms. In Mechatronics,
Electronics and Automotive Engineering (ICMEAE), 2013
International Conference on, pages 211–215, Nov 2013. 52

References 171

[EDE02] D. A. F. Ei-Dib and M. I. Elmasry. Low-power register-
exchange viterbi decoder for high-speed wireless commu-
nications. In Circuits and Systems, 2002. ISCAS 2002.
IEEE International Symposium on, volume 5, pages V–
737–V–740 vol.5, 2002. 52

[EDE04] D. A. El-Dib and M. I. Elmasry. Modified register-exchange
viterbi decoder for low-power wireless communications.
IEEE Transactions on Circuits and Systems I: Regular Pa-
pers, 51(2):371–378, Feb 2004. 52

[FBEM96] G. D. Forney, L. Brown, M. V. Eyuboglu, and J. L. Moran.
The V.34 high speed modem standard. IEEE Communi-
cations Magazine, 34(12):28–33, Dec 1996. 2

[For72] G.D. Forney. Maximum-likelihood sequence estimation
of digital sequences in the presence of intersymbol in-
terference. Information Theory, IEEE Transactions on,
18(3):363–378, May 1972. 14

[For73] Jr. Forney, G.D. The viterbi algorithm. Proceedings of the
IEEE, 61(3):268–278, March 1973. 14

[For74] G. David Forney. Convolutional codes iii. sequential de-
coding. Information and Control, 25(3):267 – 297, 1974.
35

[GXC+13] Bo Gao, Zhenyu Xiao, Zhen Chen, Depeng Jin, and
Lieguang Zeng. Multigigabit balanced add-select-register-
compare viterbi decoders architecture in 60 ghz WPAN. In
Communications (APCC), 2013 19th Asia-Pacific Confer-
ence on, pages 531–535, Aug 2013. 45, 46

[HC77] F. Hemmati and Jr. Costello, D.J. Truncation error prob-
ability in viterbi decoding. Communications, IEEE Trans-
actions on, 25(5):530–532, May 1977. 35

[HJ71] J. Heller and I. Jacobs. Viterbi decoding for satellite and
space communication. Communication Technology, IEEE
Transactions on, 19(5):835–848, October 1971. 31, 52

172 References

[HLS14] M. Hiller, L.R. Lima, and G. Sigl. Seesaw: An area-
optimized FPGA viterbi decoder for pufs. In Digital Sys-
tem Design (DSD), 2014 17th Euromicro Conference on,
pages 387–393, Aug 2014. 50, 51, 52, 146, 154, 155

[HYS14] Shaowei Huang, Yuntao Yang, and Zhenquan Sun. Add-
select-delay-compare viterbi decoder for UWB communi-
cations in electronic power systems. In Communication
Problem-Solving (ICCP), 2014 IEEE International Con-
ference on, pages 1–4, Dec 2014. 33

[IEE99] IEEE. IEEE Standard 802.11a-1999, “Supplement to In-
formation Technology—Telecomm. and Information Ex-
change between Systems—Local and Metropolitan Area
Networks-Specific Requirements—Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY)
Specifications: High Speed Physical Layer(PHY) in the 5
GHz Band”. IEEE Std 802.11a-1999, pages 1–102, Dec
1999. 69, 113, 114

[Int11] Intel. Intel identifies chipset design error, implementing
solution, January 2011. Available online at http://

newsroom.intel.com/community/intel_newsroom/

blog/2011/01/31/intel-identifies-chipset-design-

error-implementing-solution. 57

[JNYK05] Yunho Jung, Seungpyo Noh, Hongil Yoon, and Jaeseok
Kim. Implementation of wireless LAN baseband proces-
sor based on space-frequency OFDM transmit diversity
scheme. Consumer Electronics, IEEE Transactions on,
51(2):393–398, May 2005. 137

[Jr.05] G. David Forney Jr. The viterbi algorithm: A personal
history. CoRR, abs/cs/0504020, 2005. 2

[JUB+11] O. Jiménez, I. Urriza, L.A. Barragan, D. Navarro, J.I. Ar-
tigas, and O. Lucia. Hardware-in-the-loop simulation of
FPGA embedded processor based controls for power elec-
tronics. In Industrial Electronics (ISIE), 2011 IEEE Inter-
national Symposium on, pages 1517–1522, June 2011. 60,
63, 64

http://newsroom.intel.com/community/intel_newsroom/blog/2011/01/31/intel-identifies-chipset-design-error-implementing-solution
http://newsroom.intel.com/community/intel_newsroom/blog/2011/01/31/intel-identifies-chipset-design-error-implementing-solution
http://newsroom.intel.com/community/intel_newsroom/blog/2011/01/31/intel-identifies-chipset-design-error-implementing-solution
http://newsroom.intel.com/community/intel_newsroom/blog/2011/01/31/intel-identifies-chipset-design-error-implementing-solution

References 173

[KBJR14] Y. V. P. Kumar, R. Bhimasingu, M. Jyothi, and B. Ra-
makrishna. Real time and high fidelity controller de-
sign for hardware in the loop (HIL) testing of flight atti-
tude control. In Control, Instrumentation, Communication
and Computational Technologies (ICCICCT), 2014 Inter-
national Conference on, pages 1217–1222, July 2014. 61

[KMPR06] A. Kokrady, R. Mehrotra, T.J. Powell, and S. Ramakr-
ishnan. Reducing design verification cycle time through
testbench redundancy. In VLSI Design, 2006. Held jointly
with 5th International Conference on Embedded Systems
and Design., 19th International Conference on, pages 6
pp.–, Jan 2006. 57

[LDZL11a] R. Li, Y. Dou, J. Zhou, and G. Lei. A high-throughput
reconfigurable viterbi decoder. In Wireless Communica-
tions and Signal Processing (WCSP), 2011 International
Conference on, pages 1–6, Nov 2011. 26, 45, 147, 148

[LDZL11b] R. Li, Y. Dou, J. Zhou, and G. Lei. A high-throughput
reconfigurable viterbi decoder. In Wireless Communica-
tions and Signal Processing (WCSP), 2011 International
Conference on, pages 1–6, Nov 2011. 52

[LGSB14] W. Li, L. A. Grégoire, S. Souvanlasy, and J. Bélanger. An
FPGA-based real-time simulator for HIL testing of mod-
ular multilevel converter controller. In 2014 IEEE Energy
Conversion Congress and Exposition (ECCE), pages 2088–
2094, Sept 2014. 60, 62, 63, 64

[LL04] Jianhua Liu and Jian Li. Parameter Estimation and Error
Reduction for OFDM-Based WLANs. IEEE Transactions
on Mobile Computing, 3:152–163, 2004. 117

[LLHW08] Xiang Ling, Zhongqi Li, Jianhao Hu, and Shihong Wu.
HW/SW co-simulation platforms for VLSI design. In Cir-
cuits and Systems, 2008. APCCAS 2008. IEEE Asia Pa-
cific Conference on, pages 578–581, Nov 2008. 62, 63, 64

[MGJ04] K. Maharatna, E. Grass, and U. Jagdhold. A 64-point
fourier transform chip for high-speed wireless LAN appli-
cation using OFDM. Solid-State Circuits, IEEE Journal
of, 39(3):484–493, March 2004. 32, 41, 67

174 References

[Min11] Yang Min. Design optimization of FPGA based viterbi
decoder. In Electric Information and Control Engineering
(ICEICE), 2011 International Conference on, pages 4129–
4131, April 2011. 52

[MM15] A. J. Mandwale and A. O. Mulani. Different approaches for
implementation of viterbi decoder on reconfigurable plat-
form. In Pervasive Computing (ICPC), 2015 International
Conference on, pages 1–4, Jan 2015. 52

[Moo65] G.E. Moore. Cramming more components onto integrated
circuits. Proceedings of the IEEE, 86(1):82–85, Jan 1965.
1

[Moo05] Todd K. Moon. Error Correction Coding: Mathematical
Methods and Algorithms. Wiley-Interscience, 2005. 7, 16,
31, 119

[MS00] Todd K. Moon and Wynn C. Stirling. Mathematical meth-
ods and algorithms for signal processing. Prentice Hall,
Upper Saddle River, NJ, 2000. 14

[MW96] D. W. Matolak and S. G. Wilson. Variable-complexity trel-
lis decoding of binary convolutional codes. IEEE Transac-
tions on Communications, 44(2):121–126, Feb 1996. 26

[MZMD13] B. A. Muhammad, M. A. Zanna, D. A. Mohammed, and
D. Dajab Danjuma. Low complexity FPGA implementa-
tion of register exchange based viterbi decoder. In Emerg-
ing Sustainable Technologies for Power ICT in a Develop-
ing Society (NIGERCON), 2013 IEEE International Con-
ference on, pages 21–25, Nov 2013. 37, 50, 51, 142, 143,
155

[NBA13] Milind Shah Nirmal Bhatt and Bhavesh Asodariya. FPGA
implementation of power efficient low latency viterbi de-
coder. In International Journal of Engineering Research
and Technology, pages 578–581, May 2013. 50, 51, 142,
143, 155, 157

[NG13] P. Narayanasamy and S. Gopalakrishnan. FPGA imple-
mentation of less area overhead radix4 Threshold Viterbi

References 175

decoder with trace forwarding for OFDM based cognitive
radio. In Emerging Trends and Applications in Computer
Science (ICETACS), 2013 1st International Conference
on, pages 236–241, Sept 2013. 47

[OP99] Bob O’Hara and Al Petrick. 802.11 Handbook. A designer’s
Companion. Standards Information Network. IEEE Press,
1999. 69, 119, 135

[OP05] Jingzhao Ou and V.K. Prasanna. MATLAB/simulink
based hardware/software co-simulation for designing us-
ing FPGA configured soft processors. In Parallel and Dis-
tributed Processing Symposium, 2005. Proceedings. 19th
IEEE International, pages 148b–148b, April 2005. 58, 59

[PA14a] R. V. W. Putra and T. Adiono. A configurable and low
complexity hard-decision viterbi decoder in VLSI archi-
tecture. In Information and Communication Technology
(ICoICT), 2014 2nd International Conference on, pages
182–186, May 2014. 52

[PA14b] R. V. W. Putra and T. Adiono. A configurable and low
complexity hard-decision viterbi decoder in VLSI archi-
tecture. In Information and Communication Technology
(ICoICT), 2014 2nd International Conference on, pages
182–186, May 2014. 147, 149, 155, 157

[Pad05] R. Padovani. Ten years of progress in CDMA. Viterbi
Conference, Univ. So. Calif., Los Angeles, 2005. 2

[Par99] Keshab K. Parhi. VLSI digital signal processing systems
: design and implementation. Wiley, New York, 1999. A
Wiley-Interscience publication. 47

[PN14] A. K. Pradhan and S. K. Nandy. A reconfigurable viterbi
decoder for SDR and mobile communications. In High Per-
formance Computing and Applications (ICHPCA), 2014
International Conference on, pages 1–6, Dec 2014. 52, 152,
156, 157

[Roh04] Rohde & Schwarz. 802.11 Packet Error Rate Testing, Jan-
uary 2004. Application Note. 69

176 References

[SI05] S.M. Shah and M. Irfan. Embedded hardware/software
verification and validation using hardware-in-the-loop sim-
ulation. In Emerging Technologies, 2005. Proceedings of
the IEEE Symposium on, pages 494–498, Sept 2005. 59

[SL97] S. Sjoholm and L. Lindh. The need for co-simulation in
ASIC-verification. In EUROMICRO 97. New Frontiers
of Information Technology., Proceedings of the 23rd EU-
ROMICRO Conference, pages 331–335, Sept 1997. 57

[SOBM+15] H. Saad, T. Ould-Bachir, J. Mahseredjian, C. Dufour,
S. Dennetière, and S. Nguefeu. Real-Time Simulation of
MMCs Using CPU and FPGA. IEEE Transactions on
Power Electronics, 30(1):259–267, Jan 2015. 60

[SRH+03] V. Singh, A. Root, E. Hemphill, N. Shirazi, and J. Hwang.
Accelerating Bit Error Rate Testing Using a System Level
Design Tool. Proceedings of the 11th Annual IEEE Sym-
posium on Field-Programmable Custom Computing Ma-
chines, 2003. 126

[SSV14] N.V. Sugur, S.V. Siddamal, and S.S. Vemala. Design and
implementation of high throughput and area efficient hard
decision viterbi decoder in 65nm technology. In VLSI De-
sign and 2014 13th International Conference on Embed-
ded Systems, 2014 27th International Conference on, pages
353–358, Jan 2014. 46, 47

[STGB02a] Sriram Swaminathan, Russell Tessier, Dennis Goeckel, and
Wayne Burleson. A dynamically reconfigurable adaptive
viterbi decoder. In Proceedings of the 2002 ACM/SIGDA
Tenth International Symposium on Field-programmable
Gate Arrays, FPGA ’02, pages 227–236, New York, NY,
USA, 2002. ACM. 26

[STGB02b] Sriram Swaminathan, Russell Tessier, Dennis Goeckel, and
Wayne Burleson. A dynamically reconfigurable adaptive
viterbi decoder. In Proceedings of the 2002 ACM/SIGDA
Tenth International Symposium on Field-programmable
Gate Arrays, FPGA ’02, pages 227–236, New York, NY,
USA, 2002. ACM. 26, 44, 45, 148

References 177

[SV13] P. Singh and S. K. Vishvakarma. RTL level implementa-
tion of high speed-low power viterbi encoder amp; decoder.
In Information Science and Technology (ICIST), 2013 In-
ternational Conference on, pages 345–349, March 2013. 46,
50, 51, 70, 147, 155, 157

[SWJS15] K. Sengchuai, W. Wichakool, N. Jindapetch, and P. Smith-
maitrie. FPGA-based hardware-in-the-loop verification of
dual-stage HDD head position control. In Micro and Na-
noelectronics (RSM), 2015 IEEE Regional Symposium on,
pages 1–4, Aug 2015. 61, 63, 64

[TCW05] Wei-Hsiang Tseng, Ching-Chi Chang, and Chorng-Kuang
Wang. Digital VLSI OFDM transceiver architecture for
wireless SoC design. In Circuits and Systems, 2005. ISCAS
2005. IEEE International Symposium on, pages 5794–5797
Vol. 6, May 2005. 137

[TNHN99] K. Tsukano, T. Nishiya, T. Hirai, and T. Nara. Simpli-
fied EEPR viterbi detector based on a transformed radix-4
trellis for a disk drive. IEEE Transactions on Magnetics,
35(5):4387–4401, Sep 1999. 47

[Tro05] M. G. Troulis. A low complexity, fixed point channel es-
timator for 802.11a transceivers. In Global Telecommuni-
cations Conference, 2005. GLOBECOM ’05. IEEE, vol-
ume 4, pages 5 pp.–2223, Dec 2005. 137

[TSR+05a] R. Tessier, S. Swaminathan, R. Ramaswamy, D. Goeckel,
and W. Burleson. A reconfigurable, power-efficient adap-
tive viterbi decoder. IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, 13(4):484–488, April
2005. 26

[TSR+05b] R. Tessier, S. Swaminathan, R. Ramaswamy, D. Goeckel,
and W. Burleson. A reconfigurable, power-efficient adap-
tive viterbi decoder. IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, 13(4):484–488, April
2005. 44, 45, 148

[Ver84] S. Verdu. Optimum multi-user signal detection. PhD thesis,
University of Illinois, 1984. 14

178 References

[Vit67] Andrew James Viterbi. Error bounds for convolutional
codes and an asymptotically optimum decoding algorithm.
Information Theory, IEEE Transactions on, 13(2):260–
269, April 1967. 5, 14

[VNS12a] M. Véstias, H. Neto, and H. Sarmento. Design of High-
Speed Viterbi Decoders on Virtex-6 FPGAs. In Digital
System Design (DSD), 2012 15th Euromicro Conference
on, pages 938–945, Sept 2012. xv, 49, 50

[VNS12b] M. Véstias, H. Neto, and H. Sarmento. Sliding block viterbi
decoders in FPGA. In 22nd International Conference on
Field Programmable Logic and Applications (FPL), pages
595–598, Aug 2012. 47, 153, 154, 156

[VPG13] M. Veshala, T. Padmaja, and K. Ghanta. FPGA based
design and implementation of modified viterbi decoder for
a Wi-Fi receiver. In Information Communication Tech-
nologies (ICT), 2013 IEEE Conference on, pages 525–529,
April 2013. 26

[VS12] M. Véstias and H. Sarmento. Tradeoffs in the design of
sliding block Viterbi decoders for MB-OFDM UWB sys-
tems. In Consumer Electronics - Berlin (ICCE-Berlin),
2012 IEEE International Conference on, pages 173–177,
Sept 2012. 153

[Wic95] Stephen B. Wicker. Error Control Systems for Digital
Communication and Storage. Prentice-Hall, Inc., Upper
Saddle River, NJ, USA, 1995. 35

[Xil09] Xilinx. Spartan-3A DSP Starter Platform User Guidew,
January 2009. User Guide. 127

[Xil11a] Xilinx. System Generator for DSP. User Guide. Xilinx,
2011. 124

[Xil11b] Xilinx. XA Spartan-3A Automotive FPGA Family Data
Sheet, April 2011. User Guide. 142

[Xil11c] Xilinx Inc. LogiCORE IP Viterbi Decoder v7.0, March
2011. Product Specification. xvi, 46, 53, 55, 56, 65, 143,
150, 151, 156, 157, 160

References 179

[Xil15] Xilinx. 7 Series FPGAs Overview, May 2015. Product
Specification. 70

[XJMCZYD04] Qin Xiang-Ju, Zhu Ming-Cheng, Wei Zhong-Yi, and Chao
Du. An adaptive viterbi decoder based on FPGA dynamic
reconfiguration technology. In Field-Programmable Tech-
nology, 2004. Proceedings. 2004 IEEE International Con-
ference on, pages 315–318, Dec 2004. 52

[YPAB14] N. Yousefpoor, B. Parkhideh, A. Azidehak, and S. Bhat-
tacharya. Convertible static transmission controller
(CSTC) system model validation by controller hardware-
in-the-loop-simulation. In 2014 IEEE Energy Conversion
Congress and Exposition (ECCE), pages 2960–2966, Sept
2014. 59, 61

[ZB03] Y. Zhu and M. Benaissa. Reconfigurable viterbi decoding
using a new ACS pipelining technique. In Application-
Specific Systems, Architectures, and Processors, 2003. Pro-
ceedings. IEEE International Conference on, pages 360–
368, June 2003. 44, 148

APPENDIX A

Publications

Contents

A.1 International Conference papers 183

A.2 National Conference papers 223

Papers in conferences and journals results of the research time of the
author are included in chronological order in this appendix.

181

International Conference papers 183

A.1 INTERNATIONAL CONFERENCE PAPERS

• A. Alonso, A.Irizar, J.R. Mart́ın, I. Vélez, A. Cortés and N. Arrue.
Hardware Implementation of a Low-Complexity Synchronizer for a
WLAN 802.11a Transceiver. XXIV Conference on Design of Circuits
and Integrated Systems, Zaragoza, November 2009.

• A. Alonso, A. Irizar, A. Cortés and I. Vélez. Impact of algorithms
over the PER of aWLAN 802.11a based transceiver. XXV Conference
on Design of Circuits and Integrated Systems, Lanzarote, November
2010.

• A. Alonso, J.F. Sevillano and I. Vélez. Parallel Implementation of
a Sample Rate Conversion and Pulse-Shaping Filter for High Speed
Backhauling Networks. XXIX Conference on Design of Circuits and
Integrated Systems, Madrid, November 2014.

• A. Alonso and A. Irizar. Fast hardware-in-the-loop verification plat-
form: a case study for convolutional decoders. XXIX Conference on
Design of Circuits and Integrated Systems, Madrid, November 2014.

• A. Rezola, A. Alonso, J.F. Sevillano, I. Gurutzeaga, R. Berenguer
and I. Vélez. Implementation of a Zero-Second-IF Transmitter for
Wide-Band Millimeter-Wave Links. XXX Conference on Design of
Circuits and Integrated Systems, Estoril, Nov 2015

184 APPENDIX A. Publications

Hardware Implementation of a Low-Complexity Syn-

chronizer for a WLAN 802.11a Transceiver

A. Alonso, A.Irizar, J.R. Mart́ın, I. Vélez, A.
Cortés and N. Arrue
XXIV Conference on Design of Circuits and Inte-
grated Systems, Zaragoza, Nov 2009

International Conference papers 185

186 APPENDIX A. Publications

International Conference papers 187

188 APPENDIX A. Publications

International Conference papers 189

190 APPENDIX A. Publications

International Conference papers 191

Impact of algorithms over the PER of a WLAN

802.11a based transceiver

A. Alonso, A. Irizar, A. Cortés and I. Vélez
XXV Conference on Design of Circuits and Inte-
grated Systems, Lanzarote, Nov 2010

192 APPENDIX A. Publications

International Conference papers 193

194 APPENDIX A. Publications

International Conference papers 195

196 APPENDIX A. Publications

International Conference papers 197

198 APPENDIX A. Publications

International Conference papers 199

Parallel Implementation of a Sample Rate Conversion

and Pulse-Shaping Filter for High Speed Backhauling

Networks

A. Alonso, J.F. Sevillano and I. Vélez
XXIX Conference on Design of Circuits and Inte-
grated Systems, Madrid, Nov 2014

200 APPENDIX A. Publications

International Conference papers 201

202 APPENDIX A. Publications

International Conference papers 203

204 APPENDIX A. Publications

International Conference papers 205

206 APPENDIX A. Publications

International Conference papers 207

Fast hardware-in-the-loop verification platform: a

case study for convolutional decoders.

A. Alonso and A. Irizar
XXIX Conference on Design of Circuits and Inte-
grated Systems, Madrid, Nov 2014

208 APPENDIX A. Publications

International Conference papers 209

210 APPENDIX A. Publications

International Conference papers 211

212 APPENDIX A. Publications

International Conference papers 213

214 APPENDIX A. Publications

International Conference papers 215

Implementation of a Zero-Second-IF Transmitter for

Wide-Band Millimeter-Wave Links

A. Rezola, A. Alonso, J.F. Sevillano, I. Gu-
rutzeaga, R. Berenguer and I. Vélez
XXX Conference on Design of Circuits and Inte-
grated Systems, Estoril, Nov 2015

216 APPENDIX A. Publications

International Conference papers 217

218 APPENDIX A. Publications

International Conference papers 219

220 APPENDIX A. Publications

International Conference papers 221

222 APPENDIX A. Publications

National Conference papers 223

A.2 NATIONAL CONFERENCE PAPERS

• A. Alonso, A.Irizar, A. Cortés, J.A. Paredes and M. Turrillas. Hardware-
in-the-Loop based fast system verification and parameter fine tuning
platform. 50TH ANNIVERSARY CONFERENCE - ENGINEER-
ING: SCIENCE AND TECHNOLOGY, Donostia-San Sebastián, May
2012.

• A. Alonso and A. Irizar. An FPGA based OFDM baseband proces-
sor platform for fast high and low level system receiver algorithm
prototyping: a case study for 802.11a. Celebration of the 500th PhD
Dissertations of TECNUN, Donostia-San Sebastián, November 2013.

224 APPENDIX A. Publications

Hardware-in-the-Loop based fast system verification

and parameter fine tuning platform.

A. Alonso, A.Irizar, A. Cortés, J.A. Paredes and
M. Turrillas
50TH ANNIVERSARY CONFERENCE - EN-
GINEERING: SCIENCE AND TECHNOLOGY,
Donostia-San Sebastián, May 2012

National Conference papers 225

226 APPENDIX A. Publications

National Conference papers 227

228 APPENDIX A. Publications

National Conference papers 229

230 APPENDIX A. Publications

National Conference papers 231

An FPGA based OFDM baseband processor platform

for fast high and low level system receiver algorithm

prototyping: a case study for 802.11a.

A. Alonso and A. Irizar
Celebration of the 500th PhD Dissertations of
TECNUN, Donostia-San Sebastián, November
2013

232 APPENDIX A. Publications

234 APPENDIX A. Publications

	Acknowledgement
	Summary
	Contents
	List of Figures
	List of Tables
	List of Abbreviations
	1 Introduction
	1.1 Introduction
	1.2 Outline of the research work

	2 State of the art
	2.1 Introduction
	2.2 Viterbi decoder
	2.2.1 Convolutional codes
	2.2.1.1 Parallelization of convolutional codes

	2.2.2 Viterbi algorithm
	2.2.2.1 Adaptive Viterbi Algorithm

	2.2.3 Viterbi decoder building blocks
	2.2.3.1 Branch Metric Unit
	2.2.3.1.1 Hard decoder
	2.2.3.1.2 Soft decoder
	2.2.3.1.3 Carrier Strength Indicator aware decoders

	2.2.3.2 Add-Compare-Select Unit
	2.2.3.3 Survivor Path Unit
	2.2.3.3.1 Register exchange implementation
	2.2.3.3.2 Traceback implementation

	2.2.4 Viterbi decoder implementations
	2.2.4.1 Area efficient Viterbi decoders
	2.2.4.2 Data throughput enhanced Viterbi decoders
	2.2.4.3 Latency optimized Viterbi decoders
	2.2.4.4 Reconfigurable Viterbi decoders

	2.3 Hardware-in-the-Loop simulations
	2.3.1 Introduction
	2.3.2 HiL simulation characteristics
	2.3.3 HiL simulation use cases
	2.3.3.1 Summary of the Hardware-in-the-Loop platform use cases

	2.4 Concluding Remarks

	3 Objectives
	3.1 Introduction
	3.2 Figures of merit
	3.2.1 PER
	3.2.2 Metric

	3.3 Objectives
	3.4 Scope of this work

	4 Viterbi decoder architecture
	4.1 Introduction
	4.2 Top level Viterbi decoder entity
	4.3 Viterbi decoder components
	4.3.1 Branch Metric Unit (BMU)
	4.3.2 Add-Compare-Select Unit (ACSU)
	4.3.3 Survivor Path Unit (SPU)
	4.3.3.1 Minimum Path Unit
	4.3.3.2 SPU core
	4.3.3.2.1 Register Exchange implementation
	4.3.3.2.2 Traceback implementation

	4.4 Concluding remarks

	5 Hardware-in-the-Loop simulations
	5.1 Introduction
	5.2 WLAN 802.11a transceiver
	5.2.1 Synchronizer
	5.2.2 Demapper

	5.3 Hardware-in-the-Loop simulator
	5.4 Parametrical study
	5.5 Results
	5.6 Concluding remarks

	6 Results
	6.1 Introduction
	6.2 Viterbi decoder implementation results
	6.3 Concluding remarks

	7 Conclusions and areas for further research
	7.1 Conclusions
	7.2 Areas for further research

	References
	A Publications
	A.1 International Conference papers
	A.2 National Conference papers

