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Summary

In order to defeat cancer, we need to understand its biology. The study
of metabolism is an active area of research in cancer nowadays. Some Sys-
tems Biology techniques used for analyzing cancer metabolism contextualize
prior biological knowledge with experimental data before further analysis
aimed at �nding weak points in cancer cells is conducted. Not only cancer
but also bacterial communities living in our bodies have an impact on our
health, hence methods for their study are also needed. The purpose of this
doctoral thesis is to improve automated network reconstruction techniques
and apply them to obtain new insights from experimental data and �nd es-
sential genes for cancer survival. It also aims to �nd new methods that can
be used to integrate experimental data and improve the prediction accuracy
of therapeutic targets.

This thesis introduces two novel fast network reconstruction algorithms.
One of them is focused on bacterial communities and the use of metapro-
teomic and taxonomic data. The other is focused on gene expression data
coming from cancer samples. The latter algorithm allows us to evaluate a
current in-silico approach used for �nding essential metabolic genes against
experimentally obtained high-throughput gene essentiality data. Finally, a
new method that answers the question of what other reactions in a metabo-
lic network make a given one essential is developed, opening the possibility
to new methods of integrating experimental data with metabolic networks.
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Chapter 1

Introduction

Our knowledge of cancer biology has experienced a signi�cant growth
during the last decades, but the decline in cancer mortality has been rela-
tively modest. This decrease has been mainly attributed to screenings and
preventive measures. It is therefore a clinical need to develop new treat-
ments with a direct impact on survival rates. At the same time, there is
an increasing interest in the study of bacterial communities, because they
play an important role in human health. Emerging Systems Biology tech-
niques grow on the huge existing biological knowledge trying to reconcile
apparently separated observations into a whole and providing new interpre-
tations that can reveal new treatment strategies.

In both cases, the study of cellular metabolism is of paramount impor-
tance. Particularly, in cancer, recent �ndings show that cancer cells adapt
their metabolic processes to enhance proliferation (Kaelin and Thompson,
2010; Vander Heiden et al., 2009). To that end, cancer cells consume ad-
ditional nutrients and divert those nutrients into macromolecular synthe-
sis pathways. Apart from alterations in glucose metabolism, the so called
Warburg e�ect, more have been reported in the synthesis of nucleotides,
amino acids and lipids (Vander Heiden, 2011; Vander Heiden et al., 2010).
In addition, relevant mutations in metabolic genes and accumulations of key
metabolites have been detected in cancer cells (Dang et al., 2009). In light
of these evidences, the study of cellular metabolism in cancer research has
been actively reawakened. Holistic systems biology approaches, based on
genome-scale metabolic networks and high-throughput �omics� data, open
new avenues to exploit metabolic disorders of tumour cells, particularly for
addressing di�erent unmet clinical needs in cancer.

1



2 Chapter 1. Introduction

1.1. Metabolism

Metabolism describes the chemical reactions that convert nutrients and
other molecules into the energy and building blocks that sustain an orga-
nism's life (Kaelin and Thompson, 2010). Most of these reactions require
the intervention of a particular set of proteins, known as enzymes, to occur
at a high enough rate. Without the enzymes catalyzing these reactions, they
would occur naturally at very low rates.

Enzymes, like any other protein, are composed by a sequence of aminoa-
cids that fold in space to form three dimensional structures. They are built
by ribosomes (a protein complex), that assemble the aminoacid chain follo-
wing the instructions contained in messenger RNA (mRNA) in a process
known as translation. mRNA molecules are, in turn, a sequence of nucleo-
tides that convey information from the DNA contained in the nucleus. The
process of obtaining mRNA from DNA is known as transcription. Those
regions of the DNA that give rise to mRNA that encode proteins are known
as genes. This explanation on how the information �ows from DNA to RNA
to proteins receives the name of the central dogma of molecular biology.

Going back to the description of metabolism, it is usually divided into
two main characteristic processes: anabolism and catabolism. Anabolism is
the process by which the cell builds large and complex molecules from simple
precursors. This process consumes energy, usually in the form of adenosine
triphosphate (ATP), the main energy currency of the cell. Catabolism, on
the other hand, is the process by which the cell obtains its required energy.
The process involves breaking down nutrient molecules into simpler com-
pounds, storing the energy released in the form of ATP and reduced electron
carriers (NADH, NADPH and FADH2).

The study of metabolism has been traditionally accomplished using the
concept of pathways, since the biochemical reactions that constitute it de-
pend on each other. Pathways help to understand how a given metabolite
can be transformed into another one, the di�erent steps that take part in
the process and the additional requirements and byproducts. Some exam-
ples of well studied pathways are glycolysis, the TCA cycle or the pentose
phosphate pathway. However, pathways are also interrelated, as they may
share reactions or metabolites (Figure 1.1). The novel behaviours that may
arise from pathway interactions may be overlooked if they are studied in
isolation. Hence, during the last years, the study of metabolism using the
concept of networks has gained popularity. In particular, the development
of genome-scale metabolic networks (GSMNs) containing all the reactions
and pathways (or at least a great part of them) known to be part of an
organism's metabolism, and the emergence of new analysis methods, such
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Figure 1.1: A general overview of metabolic pathways (Kanehisa et al., 2012).

as constraint based modeling, have expanded the possibilities and scope of
metabolic research.

1.2. Systems Biology

Systems Biology (SB) aims at a system-level understanding of biological
systems (Kitano, 2002a,b), i.e. it tries to understand how biological compo-
nents interact to give rise to the observed phenotypes. There are four steps
in this process (Palsson, 2006). First, the list of biological components part
of the system to be studied should be identi�ed. Second, the way these com-
ponents interact between them should be described. Third, mathematical
models are used to describe and analyze the properties of these systems.
Fourth, computer models are generated to analyze, interpret and predict
the behaviours that can arise from these systems. This process generates
hypothesis that can be experimentally tested, and the results obtained from
experiments can be used to improve the model.

The �rst use of the term Systems Biology can be traced back to the 1960s
(Noble, 1960), although the origins of the �eld may go as back as to 1885
(Schneider, 2013). However, it was not until the beginning of the 90s that
the �eld really took o�, following the development of high-throughput tools,
the generalization on the use of the Internet and increased computational
power (Schneider, 2013). Ever since, the need to put the big amount of
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generated data into context and extract useful insights as well as testable
predictions has boosted the interest on Systems Biology research.

1.2.1. Constraint Based Modeling

Several mathematical approaches exist in the �eld of Systems Biology.
For the case of metabolic systems, constraint-based modelling (CBM) tech-
niques have gathered a great deal of attention. These techniques revolve
around the stoichiometric matrix (Llaneras and Picó, 2008) and have been
fostered by the progress in reconstruction of genome-scale metabolic net-
works (GSMNs).

An stoichometric matrix SC×R is a mathematical representation of a
metabolic network with C metabolites and R reactions. Each element scr
of the stoichiometric matric S represents the stoichiometric coe�cient with
which compound c participates in reaction r. More speci�cally, substrates
of a reaction are represented by negative stoichiometric coe�cients, while
products are represented by positive coe�cients.

In this framework, the activity of each reaction is represented by a �ux
variable vr (r = 1, ..., R). By multiplying the stoichiometric coe�cient scr by
the �ux of the reaction vr, we obtain the number of molecules of metabolite
c that are consumed (if scr < 0) or produced (if scr > 0) by the reaction.

The stoichiometric matrix and the �ux vector are the core elements of
the CBM techniques. Upon these, the two basic constraints of most CBM
methods are de�ned, namely the steady-state assumption and the ther-
modynamic feasibility of �uxes (Figure 1.2).

The steady-state rises from the mass balance assumption within the
cell, i.e. that the concentration of metabolites remains constant over time.
The consumption rate of a metabolite c must equal its production rate, so
that no accumulation or depletion of metabolites is given inside the system
boundaries. Those metabolites that happen to accumulate or deplete do not
need to ful�ll this constraint, but they can be included in this constraint by
including reactions with only products or only educts that model inputs and
outputs to the system, respectively. Exchange reactions (not to be confused
with transport reactions), demand reactions and sink reactions are some
examples of this type of reactions.

R∑
i=1

Scivi = 0 ∀c ∈ C (1.1)

Thermodynamic feasibility constraints impose limits on the values that
�uxes can take. In their simplest form, they limit some of the �uxes to being
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Figure 1.2: Toy metabolic network that illustrates the basics of constraint-based mo-
delling. Reproduced with permission from Rezola-Urquía (2013).

non-negative in order to represent the irreversibility of some reactions un-
der physiological constraints. Many GSMN reconstructions already provide
information on whether a reaction should be considered reversible (Rev) or
irreversible (Irr).

0 ≤ vi ∀i ∈ Irr (1.2)

Flux Balance Analysis (FBA) (Orth et al., 2010) is one of the most
important CBM techniques. Together with the steady-state and thermody-
namic feasibility constraints, it introduces an objective function to be op-
timized, as well as capacity bound constraints on the reaction �uxes. The
mathematical representation of thermodynamic feasibility constraints and
capacity bound constraints is very similar, and usually they are simply re-
presented as bound constraints on the values of �ux variables. It is the
objective function, however, the most prominent aspect of FBA. A typical
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example is the biomass objective function (Feist and Palsson, 2010), which
is used to calculate the theoretical maximum rate at which the organism
or cell represented by the metabolic network can grow under speci�c condi-
tions (growth medium can be described through the �ux bound constraints).
Overall, an FBA problem is a linear programming optimization problem of
the following form:

maximize cT v (1.3)

subject to:

Sv = 0 (1.4)

vlbi ≤ vi ≤ vubi ∀i ∈ R (1.5)

The solution to an FBA problem is a �ux distribution v that optimizes
our objective, but this solution may not be unique (Mahadevan and Schi-
lling, 2003). Flux Variability Analysis (FVA) (Mahadevan and Schilling,
2003; Gudmundsson and Thiele, 2010) was designed as a tool to �nd the
maximum and minimum �ux values that a reaction can take under some
network state (e.g. while the biomass production stays above a 90% of the
maximum). For each reaction, a maximization and a minimization problem
is solved, where the objective function is the �ux through the reaction of
interest. Although linear programs can be e�ciently solved, a direct im-
plementation of FVA, which iterates through all the reactions solving one
maximization and one minimization each time, can take a good amount of
time. Fortunately, the process can be sped up by leveraging the way op-
timization solvers handle the solution process (Gudmundsson and Thiele,
2010).

A widespread application of FBA is the search of essential genes (Ed-
wards and Palsson, 2000; Folger et al., 2011). Essential genes are de�ned
as those genes whose removal render the cell unable to produce biomass.
If this happens, the cell is unable to meet its requirements for growth and
it will ultimately die. Using Boolean gene-protein-reaction rules that relate
the reactions of the metabolic network to the genes of the organism, we can
evaluate which reactions will stop working after a particular gene is deleted.
Thus, a gene knock-out is simulated by setting the upper and lower bounds
of the corresponding reactions to zero in an FBA calculation, and checking
whether the remaining network is still able to produce biomass or not.

1.2.2. Pathway analysis

Metabolic pathway analysis (Schilling et al., 1999) is another approach
for the study of genome-scale metabolic networks. The idea of pathways is
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very attractive from a biological point of view, because they reveal essential
functioning parts of metabolism and aid in their understanding. It is very
common among biologists to be interested in a speci�c pathway, such as
in a chemical producing pathway, so that they can study it in more detail
and engineer it. The emergence of genome-scale networks opened up the
possibility to discover novel pathways aided by computational tools followed
by experimental validation.

In this framework, the concept of Elementary Flux Mode (EFM) (Schus-
ter and Hilgetag, 1994; Zanghellini et al., 2013) has gained popularity. These
can be described as minimal steady-state �ux distributions of a metabolic
network. A key property of EFMs is that they ful�ll the non-decomposability
condition, i.e. they cannot be decomposed into smaller �ux distributions
without contradicting the steady-state condition. This translates into EFMs
having a single degree of freedom, i.e. once the �ux through one of its reac-
tions is known, the �uxes through the rest of the reactions in the EFM are
automatically set. Mathematically, in a network composed of only irreversi-
ble reactions (any reversible reaction can be separated into two irreversible
reactions), EFMs are de�ned as the extreme rays of the �ux cone P .

P = {v|Sv = 0, vr ≥ 0,∀r} (1.6)

As can be observed, the �ux cone P is also present in FBA constraints.
Likewise, linear programming techniques can be used to compute EFMs.

The concept of Elementary Flux Mode is not the only one in meta-
bolic pathway analysis, but it is probably the one that is most extended.
Other alternatives include Generating Flux Modes (GFMs) (Pfei�er et al.,
1999), extreme currents (ECs) (Clarke, 1988), extreme pathways (ExPas)
(Schilling et al., 2000), or Carbon Flux Paths (CFPs) (Pey et al., 2011).

One of the problems with EFMs is that their number increases expo-
nentially with network size. This poses computational and methodological
challenges for their computation. During the last years, several methods ha-
ve been developed to compute EFMs (de Figueiredo et al., 2009; Kaleta et
al., 2009; Kamp and Schuster, 2006; Machado et al., 2012; Pey and Planes,
2014; Pey et al., 2015; Rezola et al., 2011; Terzer and Stelling, 2008; Urban-
czik and Wagner, 2005; Quek and Nielsen, 2014), many of which centered
around calculating as many as possible. In some cases, however, EFMs of
some speci�c characteristics are the ones we are interested in. In those cases,
it would be desirable to have a method that directly calculates them instead
of having to compute a large set �rst and then applying a �ltering criterion.
A solution to this problem was proposed very recently, using a MILP model
that directly calculates EFMs satisfying a desired set of constraints (Pey
and Planes, 2014).
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One possible way of using EFMs is to integrate them with experimental
data (Rezola et al., 2015). This way, we can understand the data in a mea-
ningful biological context without being limited to the classical canonical
pathways.

1.2.3. Gene-Protein-Reaction rules

We have mentioned previously that Boolean gene-protein-reaction rules
(GPR rules) relate reactions of the metabolic network to the genes of the
organism. In this section, we explain these rules that allow us to go from ge-
nes to reactions and map experimental gene expression data onto reactions
in our metabolic network models.

The theoretical background of these rules comes from the central dogma
of molecular biology, which explains how the information contained in the
DNA is transcribed into RNA and then translated into proteins. When
those proteins are enzymes, which catalyze reactions, we can establish a
link between those genes and the reactions being catalyzed. However, the
reality is that the relation is not always one-to-one, as di�erent enzymes
may catalyze the same reaction and some other reactions may be catalyzed
by enzymes complexes (more than one enzyme that bind together to form
a new complex with the ability to catalyze the reaction). On top of that,
a single enzyme or enzymatic complex may have the ability to catalyze
di�erent reactions.

We can encode these occurrences using boolean rules. If the reaction is
only catalyzed by one enzyme and that enzyme is only coded by one gene,
the relation is straightforward. If the relation is catalyzed by a enzyme
complex, the relation is given by an AND rule, where the participants in
this AND rule are the genes that contain the sequences for the di�erent
subunits of the enzymatic complex. Finally, if the reaction can be catalyzed
by di�erent enzymes, we use an OR rule involving the genes that code the
di�erent enzymes capable of catalyzing the reaction. Of course, an GPR
rule may contain a mix of OR and AND operators, as one reaction may
be catalyzed by single enzymes or enzymatic complexes and the enzymatic
complexes may, in turn, be composed of alternative subunits (Figure 1.3).

To translate gene classi�cation or expression values into reaction classi-
�cation or expression values, we can make use of the GPR rules by substitu-
ting the AND operator by a min() function and the OR operator by a max()
function. The reason is simple, if the rule is of type AND, the element that
has the lowest value will be setting an upper bound on the result, whereas
if the rule is of type OR, the highest value will be setting a lower bound on
the �nal result.
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Figure 1.3: Gene Protein Reaction (GPR) rules for two di�erent reactions: SPHK21c
and PAFH (Schellenberger et al., 2010). Genes (in red) lead to proteins (in green) that
catalyze reactions (in blue). A metabolic pathway can be active if one of the gene sets
(in purple) related to it is expressed. Reproduced with permission from Rezola-Urquía
(2013).

1.3. Omics technologies

Systems Biology approaches have been greatly promoted by the genera-
tion of huge amounts of data at di�erent levels of cell biology. The develop-
ment of new experimental techniques with a high-throughput data output
during the last decades have completely changed the biological research
landscape. High-throughput molecular data technologies are sometimes re-
ferred to as -omics technologies (e.g. genomics, transcriptomics, proteomics
or metabolomics).

1.3.1. Transcriptomics

Transcriptomics aims to study all the di�erent kinds of RNA molecules
present in a cell, such as mRNA and non-coding RNA. One of its most ex-
tended uses is the quanti�cation of gene expression using DNA microarrays
(Schena et al., 1995). Microarray technologies are based on the arti�cial
hybridization of cDNA sequences obtained from mRNA of the studied sam-
ples in a matrix �lled with complementary sequences. These complementary
sequences receive the name of probes, and a group of them, targeting all
the same sequence, are known as probe-sets. One gene may be interrogated
by a group of di�erent probe-sets, but one probe-set may hybridize against
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Figure 1.4: Overview of -omics data that can be interrogated at di�erent levels of cell
biology. Adapted with permission from Rezola-Urquía (2013).

several genes if its sequence is non-speci�c. A wide array of methods have
been developed to deal with these and other experimental issues inherent
to microarrays in order to correctly interpret the data they generate.

The popularity of cDNAmicroarrays has been enhanced by standardized
processing pipelines and public repositories such as Gene Expression Omni-
bus or ArrayExpress, with thousands of experiments readily downloadable.
During the last years, however, RNA sequencing (RNA-Seq) technologies
are starting to take over, due to their capacity to interrogate the samples at
a �ner level of detail. Notwithstanding, the use of microarray experimental
data remains attractive thanks to the aforementioned enormous quantity of
freely available experimental data.

1.3.2. Proteomics

Proteomics deals with the quanti�cation of all the proteins present in
a sample. Unfortunately, the coverage of proteomics technologies is not as
wide as that of transcriptomics technologies. High-throughput proteomics
experiments normally use mass-spectrometry techniques to quantify them
(Aebersold and Mann, 2003).

A mass spectrometer consists of an ion source, a mass analyser and a
detector. To use it for detecting proteins, these must be �rst fragmented and
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ionized to generate charged molecule fragments. The mass analyser records
the mass-to-charge ratio (m/z) of the ionized analytes while the detector
keeps track of the number of ions at each m/z value. The result of the expe-
riment is a complex spectrum that must undergo a deconvolution process.
Groups of peaks in the spectrum can be related to speci�c fragments, and
it is known how each protein gives rise to a di�erent set of fragments. This
way, knowing the abundance of each fragment, proteins in the sample can
be identi�ed and quanti�ed.

Proteomics data are not as common as microarray expression data. One
of the few centralized databases is the Human Protein Atlas (HPA) (Uhlen
et al., 2010), where information about the presence of proteins in several
normal and tumoral tissues can be found. The data in HPA however is based
on immunohistochemistry assays, an alternative to mass-spectrometry for
the measurement of protein expression pro�les.

1.3.3. Metabolomics

Metabolomics aims to characterize and quantify the metabolites or small
molecules present in a given sample. Like in proteomics, mass-spectrometry
related techniques are regularly used (Dettmer et al., 2007). However, me-
tabolomics experiments pose substantially higher challenges because they
deal with much smaller molecules, with a great diversity in any given sample
and present in concentrations that may vary orders of magnitude between
each other. As if this was not enough, residual enzymatic activity after
sample collection or oxidation processes may lead to unwanted formation
or degradation of metabolites. On top of that, a sample preparation step is
usually required, which can cause unwanted losses or the discrimination of
some metabolite classes.

An alternative to mass-spectrometry is nuclear magnetic resonance (NMR)
spectroscopy (Powers, 2009). NMR is based on the application of magnetic
�elds to the sample, which play with the magnetic spin con�guration of
the atomic nucleus. The output of the technique is again an spectrum that
must be deconvoluted to infer the identity and amount of the metabolites
present in the sample. More than a competitor technique, NMR should be
considered as a complementary technique to the mass-spectrometry based
methods.

Despite these di�culties, metabolomics is a very necessary technology,
as is the closest level to the observed phenotype.
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1.4. Goals and outline of this thesis

This thesis aims to improve and develop novel constraint based mo-
deling techniques to reconstruct and contextualize genome-scale metabolic
networks using -omics data. Given the importance of metabolism in dif-
ferent areas of biotechnology and human health, this question is receiving
much attention in Systems Biology. In addition, we aim to evaluate and im-
prove current methods to conduct FBA-based Gene Essentiality Analysis
in cancer, a promising approach for identifying novel therapeutic strategies.
The speci�c objectives are:

Develop new metabolic network reconstruction and contextualization
algorithms. These algorithms will take into account what are the resul-
ting networks going to be used for (what type of data feeds them and
what insights would we like to extract from it) and perform much
faster than existing algorithms, so that large-scale and computer-
intensive studies can be carried out.

Evaluate the in�uence of expression data in the obtention of essen-
tial genes with constraint based modeling techniques. Evaluate also
the accuracy of the results using experimental high-throughput gene
silencing data.

Develop the theoretical basis to design new methods for the direct
integration of experimental data with metabolic networks useful for
the prediction of essential genes.

The thesis is organized as follows. After Chapter 1, which has provided
an overview of some basic concepts the work presented in this thesis relies
on, Chapter 2 gives an overview of di�erent network reconstruction met-
hods, providing a general view of how the problem has been approached,
and introduces a new fast reconstruction algorithm that uses gene expres-
sion data to contextualize metabolic networks amenable to FBA. Chapter
3 introduces a second reconstruction algorithm tailored towards metapro-
teomic data obtained from bacterial communities. It also provides an in-
teresting study case of samples coming from contaminated soil. Chapter 4
uses the reconstruction algorithm introduced in Chapter 2 to evaluate the
results of FBA based Gene Essentiality Analysis and compares them with
experimental high-throughput gene essentiality data. Chapter 5 develops a
new algorithm for �nding reactions that make a speci�c reaction become
essential in an FBA based Gene Essentiality Analysis. This method opens
up new possibilities for the integration of experimental data in the con-
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text of essentiality analysis. Finally, Chapter 6 summarizes the work and
conclusions of the thesis, and outlines possible future lines of research.





Chapter 2

Metabolic Network

Reconstruction

In this chapter, we provide a general view of di�erent methods used
for network reconstruction. After that, we introduce a new fast reconstruc-
tion algorithm that uses gene expression data to contextualize metabolic
networks that can be directly analyzed using FBA.

2.1. Introduction

The main input to any CBMmethod is a metabolic network. The process
of building the metabolic model representation of an organism or cell of
interest is known as network reconstruction or network contextualization.

Sometimes, the starting point to build the network is an annotated ge-
nome and a reference metabolic database. This is common when dealing
with bacteria, for example. Thiele and Palsson (2010), described the steps
for accurately building a metabolic network, which can be time-consuming,
easily taking from 6 months to 2 years. Given the number of existing or-
ganisms, methods that help in this process are more than welcome. For
instance, the Model SEED provides an integrative and automatic approach
that substantially speeds up the time required to obtain a �rst network
draft (Henry et al., 2010).

Other times, we have a good representation of the metabolism of an
organism, but we need to contextualize it for a particular situation (Becker
and Palsson, 2008). For example, in the case of human metabolism, we have
a bunch of models that gather the reactions known to take place in human
cells, but it is obvious that each cell type uses only a subset of all those
reactions. Thus, in order to capture cell-speci�c metabolic features, the

15
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reference network must be contextualized with available experimental data.
Again, the manual process of building a reliable context-speci�c metabolic
network is complex and time consuming, and this has led to research in
automatic network reconstruction algorithms.

Given the wealth of transcriptomic data, mRNA expression data is the
most frequent type of data used in the di�erent reconstruction methods
available in the literature. A non-exhaustive list of this type of methods
includes: GIMME (Becker and Palsson, 2008), iMAT (Shlomi et al., 2008),
E-Flux (Colijn et al., 2009), MBA (Jerby et al., 2010), PROM (Chandrase-
karan and Price, 2010), MADE (Jensen and Papin, 2011), INIT (Agren et
al., 2012), or MIRAGE (Vitkin and Shlomi, 2012).

In this chapter, we �rst give an overview of some of the metabolic net-
work reconstruction and contextualization algorithms available. We show
that they follow a similar line of thought in the way they understand that
reactions should be included or excluded from the reconstruction based on
the available experimental data. However, each one of them possess their
own subtleties, given mainly because of the application their authors had
in mind when designing them. Next, we introduce a novel fast reconstruc-
tion algorithms designed during this thesis. This algorithm was motivated
by the need of a fast reconstruction algorithm for the assessment of gene
essentiality based FBA that will be discussed in chapter 4. In addition, in
Chapter 3 we will introduce a second algorihtm, motivated by the need to
integrate metaproteomic data from two bacterial communities in order to
discern di�erences between them.

2.2. Network Reconstruction

Network reconstruction algorithms address the problem starting with a
group of reactions that should be present based on previous experimental
evidence, typically gene or protein expression levels. These reactions do not
usually form a coherent network (Satish Kumar et al., 2007). Indeed, they
are not necessarily connected to each other, may form separated clusters
or even be isolated from the rest. Thus, reconstruction algorithms �ll in
the gaps until a coherent network is obtained. Hypothesized reactions co-
me from a database of known biochemical reactions, generally associated
with the organism under study. In addition, it is also typical to avoid some
reactions in the reconstruction because of experimental evidence of their
absence (Shlomi et al., 2008).

Current reconstruction algorithms typically rely on Mixed Integer Linear
Programming (MILP). It is also the case that each reconstruction algorithm
is usually focused towards the integration of a di�erent type of one or more
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input experimental information. Because of this, in most cases, the results
obtained from each one of them are not easily comparable. Although recons-
tructed networks are normally used in CBM analysis, not every algorithm
returns a network directly amenable to the analysis of interest. For instance,
networks to be used in FBA based GEA should be able to produce biomass
while they ful�ll the steady state condition. However, most reconstruction
algorithms are designed to guarantee the latter but not the former.

2.2.1. iMAT

Shlomi et al. (2008) designed an algorithm to integrate tissue speci�c
gene- and protein-expression data with the global human network recons-
truction. We refer to it as iMAT because of the web-based tool that im-
plements it (Zur et al., 2010). This method starts by classifying genes into
signi�cantly highly and lowly expressed. The ones that do not fall in any
of those two groups are considered as moderately expressed. Subsequently,
gene-to-reaction boolean rules are used to classify reactions in the network
in one of those three groups. Highly expressed reactions are denoted as RH
and lowly expressed reactions as RL. After that, a mixed-integer linear pro-
gramming formulation is used to �nd a steady-state �ux distribution that
maximizes the number of reactions whose activity is consistent with their
expression state (using y+ and y− binary variables) and at the same time
satis�es stoichiometric and thermodynamic constraints.

max
v,y+,y−

(
∑
i∈RH

(y+i + y−i ) +
∑
i∈RL

y+i ) (2.1)

subject to

S · v = 0 (2.2)

vmin ≤ v ≤ vmax (2.3)

vi + y+i (vmin,i − ε) ≥ vmin,i i ∈ RH (2.4)

vi + y−i (vmax,i + ε) ≤ vmax,i i ∈ RH (2.5)

vmin,i(1− y+i ) ≤ vi ≤ vmax,i(1− y+i ) i ∈ RL (2.6)

v ∈ Rm (2.7)

y+i , y
−
i ∈ [0, 1] (2.8)

As the solution to the MILP problem may not be unique, i.e. there may
be several di�erent solutions with the same objective function value, the
authors suggested to use a variant of Flux Variability Analysis to account
for them (Shlomi et al., 2008). The proposed approach consists in solving
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the iMAT problem twice for each reaction, one with the reaction forced
to be active and another one with the reaction forced to be inactive. The
objective values obtained in these two runs of the algorithm are compared
and their di�erence give a con�dence score on whether the reaction should
be active or not. If both objective values turn out to be the same, the
reaction is considered to be in an undetermined activity state.

2.2.2. MBA

The model-building algorithm (MBA) (Jerby et al., 2010) was desig-
ned to generate tissue-speci�c models from the generic human model by
integrating di�erent molecular data sources. These data sources can inclu-
de literature-based knowledge, transcriptomic, proteomic, metabolomic or
even phenotypic data. It was conceived as an alternative to iMAT that
could overcome the high computational demands imposed by the many
tissue-speci�c data sources on a mixed-integer linear programming formu-
lation. The core idea is to heuristically prune the generic human metabolic
network to obtain a sub-network as consistent as possible with the available
tissue-speci�c data.

The method begins by de�ning a core set of reactions with help from
the tissue-speci�c data. Reactions in this core may have a high probability
of actually happening in the target tissue network (CH) or a moderate
probability (CM ). Once these sets are de�ned, the goal is to �nd a consistent
subnetwork of the initial generic metabolic model that includes all the high-
probability reactions (CH), as many moderate probability reactions (CM )
as possible, and the minimal number of extra reactions required to allow
non-zero �ux through all the reactions in the �nal model. A parameter in
the objective function weights the parsimoniousness of the model against
the inclusion of moderate-probability reactions.

The problem is solved using a greedy heuristic based on iteratively pru-
ning reactions from the generic model. The prunning is done in a random
order and consistency is checked after every step. A reaction is only remo-
ved if its elimination does not block any high-probability reaction and the
model's score is increased. The algorithm is executed several times with
di�erent random pruning orders. Finally, all the models are aggregated to
obtain the �nal model. Speci�cally, the fraction of models in which each
reaction appears gives an indication on the con�dence with which that reac-
tion should be included in the �nal model. Starting from CH , reactions are
added iteratively, based on their con�dence scores, until a minimal but con-
sistent model is obtained.
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2.2.3. GIMME

Becker and Palsson (2008) presented the Gene Inactivity Moderated by
Metabolism and Expression (GIMME) method to produce context-speci�c
reconstructions that are most consistent with the experimental data at
hand. In addition, one or more Required Metabolic Functionalities (RMF)
that the cell is assumed to be able to perform are requested to the contex-
tualized network. Gene expression data is used to guide the reconstruction
process.

The method has two steps. First, the maximum �ux through all the
RMF of interest is computed allowing the use of all the reactions in the
network. Second, the set of reactions that best �ts the experimental data is
obtained through an optimization model, while the RMFs are constrained
to operate at above a percentage of the maximum found in the �rst step.

min
∑

ci · |vi| (2.9)

subject to

S · v = 0 (2.10)

vmin ≤ v ≤ vmax (2.11)

ci =

{
xcuto� − xi, if xcuto� ≥ xi
0, otherwise

∀i (2.12)

In this model, xi is the normalized expression mapped to each reaction,
and xcuto� is a value selected by the user above which a reaction is considered
as present. For those reactions with no expression available, the conservative
approach of considering them as being above the threshold is taken.

The result of GIMME is a list of reactions predicted to be active (those
that surpass xcuto� plus the ones activated by the optimization model) and
an inconsistency score (IS) re�ected in the objective function value (coming
from reactions that are below the cuto� value but are necessary for the cons-
traints of the optimization model). The strategy of trying to leave reactions
out of the �nal model that the optimization model performs is the reason
why the method is called �gene inactivation�.

2.2.4. INIT

The Integrative Network Inference for Tissues (INIT) algorithm was de-
veloped by Agren et al. (2012) in order to obtain cell-type speci�c models
using protein abundance data available at the Human Protein Atlas databa-
se (Uhlen et al., 2010). The method can also leverage gene expression data
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or metabolomic data, e.g. from the Human Metabolome Database (HMDB)
(Wishart et al., 2007).

max (
∑
i∈R

wiyi +
∑
j∈M

xj) (2.13)

subject to

S · v = b (2.14)

|vi| ≤ 1000yi (2.15)

|vi|+ 1000(1− yi) ≥ ε (2.16)

vi ≥ 0, i ∈ Irr (2.17)

bj ≤ 1000xj (2.18)

bj + 1000(1− xj) ≥ ε (2.19)

bj ≥ 0 (2.20)

xj = 1, j ∈ present (2.21)

yi, xj ∈ {0, 1} (2.22)

An interesting feature of this method is that, instead of imposing the
steady-state condition for all the internal metabolites, it allows a small net
positive accumulation (Eq. 2.20). If the metabolite has been experimentally
measured, a positive net production is imposed (Eq. 2.19 and Eq. 2.21),
otherwise, the model tries to maximize the amount of metabolites that
the network can produce taking into account the evidence available for
each reaction (Eq. 2.13). At the same time, the inclusion of each reaction
(controlled by binary variables yi) is weighted (with weights wi) according
to the experimental evidence. When this evidence is against the presence of
a reaction, its weight is negative. It is also negative for reactions for which
no evidence is available in order to obtain a model that is as parsiomonious
as possible.

2.2.5. MADE

Metabolic Adjustment by Di�erential Expression (MADE) (Jensen and
Papin, 2011) seeks to obtain a functional metabolic network that re�ects
metabolic adjustments between two conditions. It formulates a MILP mo-
del to decide on a functional network that re�ects the most statistically
signi�cant changes in the measured gene expression data. There is one set
of independent constraints for each experimental condition (i = 1, ..., n).
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max
n−1∑
i=1

fi→i+1(x) (2.23)

subject to

S · v = b (2.24)

lb ≤ v ≤ ub (2.25)

vobj ≥ vmin (2.26)

N

(
v
x

)
= b (2.27)

The last constraint (Eq. (2.27)) is the representation of the GPR ru-
les (following the SR-FBA formalism introduced in Shlomi et al. (2007))
and their coupling to metabolic �uxes. GPR rules are translated into li-
near constraints and they are used to allow or block the �ux through each
reaction. Equation (2.27) is in a very generic form, and details of how it is
implemented in detail can be found in Shlomi et al. (2007). Hence, while ot-
her methods deal with the GPR rules and the mapping of gene expression
values onto reaction values before the optimization step, MADE directly
integrates those into the problem formulation. The objective function the
problem maximizes is:

fi→i+1(x) =
∑
x∈I

w(pxi→i+1)(xi+1 − xi)

+
∑
x∈D

w(pxi→i+1)(xi − xi+1)

−
∑
x∈C

w(pxi→i+1)∆xi,xi+1

(2.28)

where ∆xi,xi+1 is a binary variable that takes the value 0 when xi = xi+1

and 1 otherwise, and xi are binary variables related to each gene represen-
ting their expression state. The sets I, D and C partition the x variables
into increasing, decreasing and constant expression between two conditions,
respectively. The weighting function w(pxi→i+1) assigns larger weights to
more signi�cant p-values (e.g. w(p) = − log p). The objective function thus
measures the discrepancy between the selected changes and the measured
expression changes.
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2.2.6. FASTCORE

Recently, a fast algorithm for context-speci�c network reconstruction
was presented in Vlassis et al. (2014) under the name of FASTCORE. It
takes as input a core set of reactions that should be present in the desired
network and searches a subnetwork of the initial network that contains all
those reactions de�ned in the core set and a minimal number of additional
reactions so that all the reactions can carry �ux in the steady-state. In this
aspect, FASTCORE is conceptually similar to MBA.

FASTCORE builds the context-speci�c networks by iteratively adding
a set of sparse �ux modes of the global network. At every iteration, two
linear programs are solved, one for �nding a �ux distribution with maximal
support on the reactions part of the core set (J) and another one to minimize
the number of reactions that do not belong to the core set (P ) in the
obtained �ux mode.

As the algorithm aims to include all the reactions that are part of the
core set, the reference network must be able to carry �ux through all of
its reactions. For this, the authors developed a fast network consistency
checking algorithm (FastCC).

max
v,z

∑
i∈J

zi (2.29)

subject to:

S · v = 0 (2.30)

vlbi ≤ vi ≤ vubi ∀i (2.31)

vi ≥ zi ∀i ∈ J (2.32)

zi ∈ [0, ε] (2.33)

This LP (Eqs. 2.29 - 2.33) favours �ux �splitting� over �ux �concen-
trating� to maximize the number of reactions belonging to the core set
participating in the solution. It is enough to solve this problem once in or-
der to know the maximum number of irreversible reactions in J that are
able to carry �ux while ful�lling the steady-state condition. For reversible
reactions, however, it is necessary to take an iterative approach, considering
them in one direction �rst and then in the opposite. This can be achieved
by changing the sign of the columns in the stoichiometric matrix that co-
rrespond to these reactions. This LP (Eqs. 2.29 - 2.33) is also the �rst of
the two LPs solved by FASTCORE at each iteration.
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min
v,z

∑
i∈P

zi (2.34)

subject to:

SN · v = 0 (2.35)

vlbi ≤ vi ≤ vubi ∀i (2.36)

vi ≥ ε ∀i ∈ K (2.37)

vi ∈ [−zi, zi] ∀i ∈ P (2.38)

zi ≥ 0 ∀i (2.39)

This second LP (Eqs. 2.34 - 2.39) minimizes the L1 norm of the �uxes
in a penalty set P (formed by reactions not included in the core), subject
to a minimum �ux through reactions in the set K. This set K is formed by
reactions of the core activated in a single run of the FastCC LP. This is the
second LP solved by FASTCORE at each iteration.

The FASTCORE algorithm deals �rst with the irreversible reactions
in the core and then focuses in the reversible ones. Eventually, it goes over
some remaining reversible reactions one by one. The speed of this algorithm
is remarkable, obtaining reconstructions in a matter of seconds.

2.2.7. The Model SEED

The Model SEED (Henry et al., 2010) is an addition to the SEED frame-
work (Overbeek et al., 2014) that provides genome-scale metabolic network
reconstruction capabilities. More than a reconstruction model, it is a re-
construction pipeline that covers the process from the annotation of the
genome to the generation of a functioning metabolic model. The steps co-
vered are the following: (i) annotation; (ii) preliminary reconstruction; (iii)
auto-completion; (iv) FBA analysis; (v) Biolog consistency analysis; (vi) ge-
ne essentiality consistency analysis; and (vii) reaction network optimization
(Henry et al., 2010).

The Model SEED is geared towards the reconstruction of bacterial meta-
bolic networks starting from their assembled genome sequences. Depending
on the data available, it may be di�cult to complete all the steps. Here, we
want to focus on the preliminary reconstruction and auto-completion steps,
which follow a similar strategy to other reconstruction algorithms already
explored in this chapter.

The preliminary reconstruction consists in assembling a preliminary me-
tabolic model composed of spontaneus reactions, transport reactions and
enzymatic reactions, according to the annotated genome information. A set
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of GPR rules linking genes to reactions is also included, as well as a draft
biomass reaction.

In the auto-completion step, a minimal set of reactions from the databa-
se is identi�ed to be added to the preliminary model, so that the resulting
network is capable to produce biomass under the minimal medium growth
conditions known for the organism being modeled. The Model SEED uses a
database of 12,000 reactions and 15,000 compounds to select the reactions
from.

min
R∑
i=0

(1 + PT,i + PKi + PSS,i + PF,i − fSS,i − fp,i)zi (2.40)

subject to:

S · v = 0 (2.41)

0 ≤ vi ≤ 1000zi ∀i = 1, ..., r (2.42)

vbio ≥ 10−3 g/gCDWh (2.43)

The greatest novelty of this approach is its objective function (Eq. 2.40).
The inclusion of any reaction not yet in the model (linked to binary varia-
bles zi) is weighted according to di�erent criteria in order to complete the
network with the most likely set of reactions. PT,i is a penalty on the ad-
dition of transport reactions. PK,i is a penalty to favour the addition of
reactions listed in KEGG. PSS,i favours the addition of reactions mapped
to SEED functional roles and subsystems. Pf,i penalizes the addition of
reactions in a thermodynamically unfavourable direction. fSS,i is a bonus
term that favours the addition of reactions involved in subsystems already
well represented in the preliminary model. Finally, fp,i is a bonus applied to
reactions involved in short linear pathways already well represented in the
preliminary model. Thus, the optimization is designed to use known biolo-
gical components (e.g. pathways, subsystems or functional roles) to guide
the reconstruction process.

2.2.8. Other algorithms

So far we have brie�y seen some of the network reconstruction algorithms
available, but many more exist. Some are modi�cations of the already men-
tioned ones, while others integrate more types of data and expand beyond
metabolism to also include signaling or regulatory networks or even take a
di�erent approach to the integration of the data.

For instance, GIM3E (Schmidt et al., 2013) is an evolution of GIMME
(Becker and Palsson, 2008) to also make use of metabolomics data and gua-
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rantee that the resulting network uses the detected compounds. The name
stands for Gene Inactivation Moderated by Metabolism, Metabolomics, and
Expression. MIRAGE (Vitkin and Shlomi, 2012) is similar to MBA (Jerby
et al., 2010), but it also looks for the production of biomass components and
for the growth-associated dilution of all network metabolites (guaranteeing
that all the metabolites in the network can be obtained through transport
reactions or synthesis pathways). On top of that, it assigns a continuous
score to each reaction based on the input data instead of just classifying
them in some prede�ned sets. These scores aim to re�ect the probability of
retaining each reaction in the �nal model and allow for a better use of the
data.

Taking another approach to the data integration problem, PROM (Chan-
drasekaran and Price, 2010) and E-Flux (Colijn et al., 2009) adjust the
maximum allowed �ux through each reaction using gene expression da-
ta. In particular, PROM integrates metabolism with regulatory networks,
requiring a large gene expression dataset with genetic and environmental
perturbations. Another recently presented algorithm, PRIME (Personalized
Reconstruction of Metabolic models) (Yizhak et al., 2014a), on the other
hand, explores the idea of modifying reaction bounds using gene expression,
but only for those reactions whose expression shows a signi�cant correla-
tion with the growth rate. This way, the algorithm tries to also leverage
phenotypic data.

2.3. Fast Network Reconstruction

In this section, we present a multistep strategy based on a linear pro-
gramming formulation to contextualize a metabolic network with gene ex-
pression data, which substantially reduces the computation time found in
competing algorithms. This enables more demanding studies requiring a
large number of reconstructions. In particular, this algorithm will be used
in Chapter 4 to analyze the in�uence of expression data and random data
in the contextualized networks that are used in gene essentiality analysis.
The di�erent steps of our reconstruction algorithm are detailed below.

2.3.1. Reaction classi�cation

The �rst thing to do is to classify the reactions according to the expe-
rimental data. The input of the reconstruction algorithm is the reaction
classi�cation as highly (H), moderately or medium (M) and lowly (L)
expressed. This information can be obtained from gene expression expe-
riments, for example the ones available at the GEO database (Edgar et al.,
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2002).
In this thesis, we focused on A�ymetrix HGU133plus2 arrays, which can

be processed using Barcode (McCall et al., 2011). This method is designed
to be able to work with just one sample and make it comparable to ot-
hers, instead of needing several samples at the same time. We preprocessed
the data using Barcode's R script, using one sample at a time. We retrie-
ved the z-score values obtained from this algorithm, which is equivalent to
processing each sample with fRMA (McCall et al., 2010).

Using gene-probe relationships annotated in hgu133plus2.db R package,
the gene value was obtained as the median value of the corresponding probe
sets. Each gene value was transformed into present (1) and absent (0) calls
using Barcode's criteria. Then, present genes were classi�ed as high (+1)
and absent genes as low (-1).

Finally, reactions are classi�ed as highly (H), medium (M) or lowly (L)
expressed using gene-protein-reaction rules and the gene expression classi-
�cation mentioned above (Rossell et al., 2013). Those reactions for which
no gene expression is available or that are not related to any gene (e.g.
spontaneous reactions) are classi�ed as medium expressed.

2.3.2. Basic Network

Consider a general metabolic network with C compounds and R reac-
tions represented by its stoichiometric matrix S (Palsson, 2006). We denote
Irr the set of irreversible reactions. For convenience, each reversible reac-
tion contributes two di�erent irreversible reactions to the total number R.
These two irreversible reactions are denoted f and b, forward and back-
ward, respectively, each of which represents the original reversible reaction
in one di�erent direction (de Figueiredo et al., 2009). The set of forward
and backward steps that arise from reversible reactions are denoted Rev.

The �ux through each reaction i (i = 1, ..., R) is represented by a conti-
nuous variable vi. After the split of reversible reactions, �uxes can only take
non-negative values, bounded by a maximum �ux value, vmaxi (Eq. 2.44).
To later apply FBA-based GEA, we also enforce the steady state condi-
tion (Eq. 2.45) and a minimum �ux v∗biomass through the biomass reaction
(Eq. 2.46). For those compounds taken from or excreted to the medium,
exchange reactions were added appropriately.

0 ≤ vi ≤ vmaxi i = 1, ..., R (2.44)
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Table 2.1: Weighting schemas used for the reconstruction algorithm (α = 1000).

Schema WH WM WL

1 α 1 α2

2 α 1 α

3 α2 1 α

R∑
i=1

Scivi = 0 ∀c ∈ C (2.45)

vbiomass ≥ v∗biomass (2.46)

To properly de�ne vmaxi for each reaction, we perform a Flux Variabi-
lity Analysis (FVA) (Gudmundsson and Thiele, 2010) under constraints in
Eqs. (2.44)-(2.45). Uptake reaction bounds from the growth-medium under
consideration are included in Eq. (2.44).

We also de�ne a continuous variable zi for each reaction, bounded bet-
ween 0 and 1 (Eq. 2.47), which may force a minimum �ux through its
associated reaction, vi (Eq. 2.48). δ is a constant between 0 and 1 that �xes
the lower bound on vi in relation with the value of zi with respect to vmaxi .
The inclusion of vmaxi in Eq. (2.48) as calculated by FVA allows us to set an
activation threshold independent of the stoichiometric representation. We
remark that this set of variables is continuous, as in Vlassis et al. (2014),
and not binary, as in a number of previous works (Jerby et al., 2010; Shlomi
et al., 2008).

0 ≤ zi ≤ 1 i = 1, ..., R (2.47)

δvmaxi zi ≤ vi i = 1, ..., R (2.48)

Our objective is to minimize the number of reactions in L while ma-
ximizing those in H. For that, our objective function minimizes the sum
of �uxes through reactions belonging to L with a weight WL, as well as
the �ux through reactions in M with a weight WM , while maximizing the
number of reactions in H using z variables with a weight WH (Eq. 2.49).
The term δvmaxi in Eq. (2.49) allows us to avoid the �ux bias introduced
by the speci�c stoichiometric representation of reactions. A proposal for the
weights in the model is presented in Table 2.1 and discussed in Section 2.4.
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min WL
R∑

i=1|i∈L

vi
δvmaxi

+WM
R∑

i=1|i∈M

vi
δvmaxi

−WH
R∑

i=1|i∈H

zi (2.49)

As noted above, it is common to set zi as a binary variable, but relaxing
that constraint, as done here, achieves the same ��ux diversi�cation� e�ect
desired (Vlassis et al., 2014). Minimizing the sum of �uxes for L and M
is not the same as minimizing the number of reactions in L and M , but
it allows us a linear formulation of the problem without negatively in�uen-
cing the �nal solution in terms of quality. Overall, with these features, we
avoid a mixed binary formulation, harder to solve because of the integrality
constraints on some of the variables (Vanderbei, 1996).

Since we have split the reversible reactions into two irreversible steps,
but have added no constraint guaranteeing that only one of them is active at
a time, solving this problem (Eq. 2.49 subject to Eqs. 2.44-2.48) will give us a
solution where all forward and backward steps from reversible reactions inH
are active, even if their net �ux (vf−vb) is zero. Note that this does not occur
with reversible reactions in L or M , because minimizing the sum of �uxes
already enforces the usage of reversible reactions, if necessary, only in one
direction. For this reason, we need an iterative procedure that disentangles
whether these reversible reactions in H can certainly be included in the
reconstructed network.

On the other hand, the solution resulting from this step directly provides
us with the subset of irreversible reactions from H that will be involved in
our �nal reconstruction. For this reason, the �ux of irreversible reactions
from H that have not been activated in this �rst step is set to zero for the
rest of the iterative process (Eq. 2.50).

vi = 0 ∀i | i ∈ H, i ∈ Irr, i /∈ D (2.50)

Overall, this �rst step provides a �rst draft network D that will be
expanded in the next steps. Reversible reactions in H with net �ux equal
to zero cannot be directly included in D and require further analysis to
evaluate their presence in the �nal reconstruction.

2.3.3. Iterative Re�nement

The aim of this iterative process is to determine which reversible reaction
in H will be part of the �nal reconstructed network, in particular those with
net �ux equal to zero in the previous step. During the iterative process,
we will gradually increment the number of reactions included in our draft
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network D. In each iteration, we will set the penalty WL and WM of those
reactions already included in the solution in previous iterations to zero,
as once a reaction is included in the draft, there is no need to penalize it
further. Similarly, we will set the WH bonus of reversible reactions in H
already included in the draft from previous iterations to zero. Note that the
WH bonus of irreversible reactions in H is kept to guide the addition of
reactions in D. These variations lead to a new objective function, which is
represented by Eq. (2.51).

min WL
R∑

i=1|i∈L,i/∈D

vi
δvmaxi

+WM
R∑

i=1|i∈M,i/∈D

vi
δvmaxi

−WH
R∑

i=1|i∈H,i∈Irr

zi −WH
R∑

i=1|i∈H,i∈Rev,i/∈D

zi

(2.51)

In order to evaluate whether a reversible reaction from H, currently not
in D, must be added into the reconstruction, we need to solve the linear
program de�ned by Eq. (2.51) subject to Eqs. (2.44)-(2.48) and (2.50) in
two di�erent scenarios: one with �ux equal zero in the forward direction,
vf = 0, f ∈ H, f ∈ Rev, f /∈ D, and the other with �ux equal zero in the
backward direction, vb = 0, b ∈ H, b ∈ Rev, b /∈ D. If vb > 0 in the �rst
scenario and/or vf > 0 in the second scenario, then this reversible reaction
takes part in the �nal reconstruction, as well as additional reactions from
the sets H,M and L required to perform in steady state. We may also need
to add other reversible reactions from H currently not in D and, therefore,
their analysis will not be further required. In case that vb = 0 in the �rst
scenario and vf = 0 in the second scenario, this reaction is discarded from
the �nal reconstruction. We will refer to this process as Iteration A.

The strategy described above, though general, may require a large num-
ber of linear programs, as we need to individually check each reversible
reaction. In order to reduce computation time, we introduce an interme-
diate algorithmic step, based on the concept of reduced cost from linear
programming, which allows us to minimize the number of linear programs
to be solved. Full details are provided below.

2.3.4. E�cient Implementation

If we knew in which direction was going to work each reversible reaction
in a possible solution, we could block the reactions in the opposite direction
and solve the previous problem to recover that solution. However, as this is
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not the case, we will make a guess and then use linear programming theory
to further improve it.

We will �rst solve the linear program de�ned by Eq. (2.51) subject to
Eqs. (2.44)-(2.48) and (2.50) in two di�erent scenarios. In particular, for
all the reversible reactions in H not included in D, we will set their �uxes
to zero in one direction �rst (vf = 0 ∀f ∈ H, f ∈ Rev, i /∈ D) and later
in the other (vb = 0 ∀b ∈ H, b ∈ Rev, b /∈ D), similarly to what is done
in the FastCC algorithm in Vlassis et al. (2014). In addition, we will relax
the bounds in the other direction, as observed in Eq. (2.52). The solution
to this linear program may provide new reactions to the draft network D,
but the solution might have been better if we had selected some reversible
reactions in the opposite direction.

vf = 0,−vmaxf ≤ vb ≤ vmaxb

∀(f, b) ∈ H,∀(f, b) ∈ Rev,∀(f, b) /∈ D (2.52)

Here, we can make use of linear programming theory to improve upon
our solution and eventually reduce the number of reactions that will need
to be checked individually. Speci�cally, we will make use of the concept
of reduced cost of a variable. This value indicates how much the objective
value would theoretically change if we modify the value of a variable by one
unit.

It is important to clarify that, for the determination of reduced costs, it
was assumed that the proposed linear problem is solved handling the bounds
on variables implicitly. In fact, most available linear programming solvers
implicitly handle variable bounds, meaning that those bound constraints are
not explicitly added to the constraint matrix. Under these circumstances,
the non-basic variables are no longer necessarily zero and their reduced cost
can take any real value.

For readers unfamiliar with linear programming, variables are classi�ed
as basic or non-basic. Non-basic variables are independent variables and
their value is set equal to their upper or their lower bound. By constrast,
basic variables are dependent variables and their value is obtained by solving
the corresponding system of equations (Vanderbei, 1996).

In the optimal solution, reduced cost of basic variables is zero, while it is
usually nonzero for non-basic variables, unless the problem has alternative
solutions, where non-basic variables may have a reduced cost of zero. For
a minimization problem, the reduced cost of non-basic variables at their
lower bound will be positive, and for non-basic variables at their upper
bound, it will be negative. These reduced costs can also be interpreted as
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the shadow prices of the lower and upper bound constraints, respectively,
of these variables.

With the solution to our modi�ed problem in our hand, we set the focus
on the reduced costs of zb variables associated to vb variables, for which we
have relaxed the lower bounds. If their reduced cost is positive, a decrease
in their value implies a reduction in the objective function value. In this
case, if we allow a small negative value for zb, the corresponding vb would
be able to take a negative value (see Eq. 2.52). This may be su�cient to
activate another reaction from H, allowing another z variable to take a
positive value and, thus, improving the objective function value. If their
reduced cost is zero and they are non-basic variables, we have alternative
optimal solutions, implying that a small change in the lower bound of that
variable could lead to a di�erent optimal solution and, therefore, we also
need to look at these variables.

These backward reactions b (with b ∈ H, b ∈ Rev, b /∈ D) that are
non-basic and have a non-negative reduced cost are stored in the set J .
Then, backward reactions in J are �xed to zero, and a positive �ux for
their associated forward reactions is enabled, as shown in Eqs. (2.53) and
(2.54).

vf = 0, 0 ≤ vb ≤ vmaxb

∀(f, b) ∈ H,∀(f, b) ∈ Rev,∀(f, b) /∈ D, b /∈ J (2.53)

vb = 0, 0 ≤ vf ≤ vmaxf

∀(f, b) ∈ H,∀(f, b) ∈ Rev,∀(f, b) /∈ D, b ∈ J (2.54)

Therefore, we solve the following optimization problem: Eq. (2.51) sub-
ject to Eqs. (2.44)-(2.48), (2.50), (2.53) and (2.54). We repeat this process
but starting with the reactions in the opposite direction, this is, switching
f and b in Eqs. (2.52), (2.53) and (2.54). The whole procedure is repeated
until no new reaction from H is added to the network. We refer to this
procedure as Iteration B.

Once Iteration B has ended, we may have reactions in J not included in
D. However, some of them could possibly be included in the reconstruction.
The reason for not having them included during Iteration B is that we should
have reversed only a subset of them. Thus, the �nal step is to apply the
procedure described in Iteration A for those reactions that remain included
in J but not in D.
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2.4. Performance evaluation

The approach presented in Section 2.3 is used here to reconstruct 174
metabolic networks corresponding to cancer cell lines from the Cancer Cell
Line Encyclopedia (CCLE) (Barretina et al., 2012). The technical perfor-
mance of our approach is evaluated and compared with that of iMAT, the
most similar approach to the one introduced here (details of the implemen-
tation of iMAT used can be found in Appendix A).

To carry out this analysis, we used the human metabolic network Recon
2 (Thiele et al., 2013) as reference network. We also carried out a similar
analysis for Recon 1 (Duarte et al., 2007). Both networks provide a bio-
mass reaction, which is directly used in this study. The growth medium was
RPMI1640, de�ned as in (Folger et al., 2011). In addition, reactions were
classi�ed as highly (H), medium (M) or lowly (L) expressed using gene-
protein-reaction rules and the gene expression classi�cation as described in
Subsection 2.3.1.

We implemented the fast network reconstruction algorithm in Matlab,
using Cplex optimization software as the underlying software in charge of
solving the corresponding linear programs. The computation time needed
to solve a single reconstruction problem is in the order of seconds, in par
with the performance of FASTCORE (Vlassis et al., 2014). On the instances
our method was applied, computation time is generally below 10 seconds
on a 64 bit Intel Xeon E5-1620 v2 at 3.70 GHz (4 cores) and 16 GB of
RAM (Figure 2.1, Figure 2.2 and Table 2.2). This sets our algorithm as
substantially faster than iMAT, where the median time to obtain a solution
was around 57 seconds (stopping with a 0.5% optimality gap).

In our reconstruction algorithm we have several parameters that require
being �xed. The most relevant parameters are the weights WH , WM and
WL, as there is a con�icting trade-o� between reactions in H and L. In
particular, the use of all reactions in H may involve a signi�cant number
of reactions in L; similarly, a minimum use of reactions in L may imply
a limited use of reactions in H. In order to study this trade-o� between
reaction in H and L, we propose the schemas in Table 2.1, with α = 103.
Schema 1 gives more weight to the minimization of reactions in L over
the maximization of reactions in H; Schema 2 provides equal weight, while
Schema 3 is the opposite of Schema 1.

When classifying reactions from gene expression data, avoiding the in-
clusion of reactions in L as much as possible might be more meaningful than
trying to force the presence of all reactions in H, as a high gene expression
signal does not necessarily translate into a high enzymatic activity. Howe-
ver, the identi�cation of non-expressed genes constitutes a more di�cult
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Figure 2.1: Boxplot showing the computation times for reconstructed context-speci�c
networks of selected cancer cell lines using our algorithm under schema 1, 2 and 3, with
Recon 2 as the reference metabolic network.

Figure 2.2: Boxplot showing the computation times for reconstructed context-speci�c
networks of selected cancer cell lines using our algorithm under schema 1, 2 and 3, with
Recon 1 as the reference metabolic network.
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Table 2.2: Average computation time, percentage of includedH reactions and percentage
of included L reactions under di�erent parameter settings.

Setup Schema Time [s] H% L%

α = 102
1 2.14 34.73 1.84
2 2.99 56.17 8.36
3 1.8 69.04 20.47

δ = 0,01
1 2.57 41.68 1.65
2 3.51 57.54 8
3 2.91 70.11 18.53

v∗biomass = 0,10 · vmaxbiomass

1 2.26 34.63 1.65
2 3.06 56.22 8.36
3 1.8 69.06 21.2

General growth medium
1 2.22 41.3 0.42
2 3.16 61.55 7.98
3 2.47 75.2 23.7

task (Åkesson et al., 2004). For this reason, an approach closer to Schema
3 has been typically preferred. Notwithstanding, if we had data where non-
expressed reactions were identi�ed with high reliability, Schema 1 would be
the preferred option.

We compared the performance of our reconstruction approach using the
di�erent schemas with iMAT. As can be seen in Figure 2.3, which shows the
percentage of reactions classi�ed as H and L that were included using each
reconstruction algorithm, the avoidance of L reactions in Schema 1 has an
impact on the number of reactions in H included in the model, providing a
signi�cantly di�erent solution than Schema 3. We also experimented with
other parameters for our algorithm (Figure 2.3, Figure 2.4 and Table 2.2),
observing that the conclusions achieved were robust to changes of these
parameters.

As expected, Schema 2 is the most similar to iMAT, as both provide
equal weight to reactions in H and L. It can be observed that the number of
L reactions included is very similar and the number of H reactions included
by our algorithm is somewhat lower (Figure 2.5). Overall, both methods
obtain similar reconstructions in terms of the number of H and L reactions
they include. Thus, we consider our algorithm a valid tool for the task at
hand. Note that the maximum possible percentage of H reactions included
in the reconstruction does not necessarily reach 100% as there might be
reactions that cannot operate in steady state under the imposed medium
conditions.
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Figure 2.3: Boxplots showing the percentage of H and L reactions included in the
reconstructed context-speci�c networks of selected cancer cell lines using our algorithm
under schema 1, 2 and 3 and iMAT, with Recon 2 as the reference metabolic network.



36 Chapter 2. Metabolic Network Reconstruction

Figure 2.4: Boxplots showing the percentage of H and L reactions included in the
reconstructed context-speci�c networks of selected cancer cell lines using our algorithm
under schema 1, 2 and 3, with Recon 1 as the reference metabolic network.
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Figure 2.5: Comparison between the percentage of L and H reactions included with
iMAT or with our reconstruction algorithm with schema 2 in networks reconstructed
starting from Recon 2. The �gure shows the di�erence between the percentage of L
reactions included with iMAT and the percentage included with our algorithm versus the
di�erence between the percentage of H reactions included with iMAT and the percentage
included with our algorithm. It can be observed that both include a similar percentage
of L reactions and iMAT includes a slightly higher percentage of H reactions.
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2.5. Conclusion

In this chapter we have given an overview of di�erent metabolic network
reconstruction and contextualization algorithms, and we have introduced a
novel fast reconstruction method. All these methods have a similar concep-
tual approximation to the problem, but each one of them includes its own
subtleties given by the requirements of their application. Our new method
has been designed with speed and FBA compatibility in mind, and it takes
advantage of linear programming theory to design a fast iterative approach
to network contextualization.

The development of our Fast Network Reconstruction algorithm was
motivated by the study done in Chapter 4. To achieve the objective of that
study, the need of a fast reconstruction algorithm was a must. The Fast
Network Reconstruction algorithm proposed in Section 2.3 builds on the
reasoning present in previous approaches (Folger et al., 2011; Jerby et al.,
2010; Vlassis et al., 2014). Our approach is conceptually similar to iMAT
(Shlomi et al., 2008), but, in line with FastCore (Vlassis et al., 2014), it
provides us with network reconstructions in much less time, thanks to the
iterative LP strategy used. Figure 2.5 shows that this advantage in compu-
tation time does not compromise the quality of obtained contextualized
metabolic networks.

In Section 2.4 we have evaluated the behaviour of our algorithm. We
observe a clear role of the schema (parameters WH , WM and WL) in the
reconstruction, which illustrates the need to decide over the treatment of
highly and lowly expressed reactions. Systematic procedures as Barcode
(McCall et al., 2011), which was used in this study to process gene expression
data (see Chapter 4), are an essential part in this debate. Barcode, for
example, is very restrictive for expressed genes and it is more likely to have
false negatives. If that is the case, Schema 3 could be the preferred option,
as it biases the reconstruction towards including reactions classi�ed as H.
However, if we had data that gave us a high con�dence on the reactions
that should be absent in the �nal reconstruction (RNA-Seq data could be
an example), Schema 1 would be the preferred option, as it makes more
di�cult to include reactions classi�ed as L in the �nal network.

Finally, this Fast Network Reconstruction algorithm will allow us to
reconstruct in Chapter 4 a high number of networks in order to assess the
frequency with which genes appear as essential in randomly generated data.



Chapter 3

Bacterial Community

Metabolic Network

Reconstruction

In this chapter, we present a novel computational procedure for deter-
mining a functional, context-speci�c metabolic network for bacterial com-
munities using metaproteomic and taxonomic data. The method described
herein was motivated by the need to rapidly gain insights on two di�e-
rent bacterial communities obtained from contaminated soil (Tobalina et
al., 2015). Besides, recent interest in the study of gut microbiota and its
relation with human health also motivates the development of reconstruc-
tion methods tailored towards bacterial communities. This study allows us
to show the potential of metabolic network reconstruction approaches to
increase the insights that can be extracted from the generated data.

3.1. Introduction

Microbes are shaping the world and, by forming communities, are cau-
sal of geochemical cycles (Mascarelli, 2009), human health (Kinross et al.,
2011) and biotechnological processes (Beloqui et al., 2008). Thus, it is not
surprising to �nd increasing interest in studying how these consortia lead
to function (Carter et al., 2012).

The analysis of microbial communities begins by assessing the structu-
re of the population, which is currently often achieved using metagenomic
data (Röling et al., 2010). The next step consists of characterizing the me-
tabolic capacity of the microbial community, but this has proven to be a
considerable challenge, even when using metatranscriptomic data (Moran
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et al., 2013). This need has led to the development of metaproteomics, by
which at least the abundance of metabolically active molecules can be de-
tected (Seifert et al., 2013). In parallel, methods for analysing these data
have arisen and evolved.

From the outset, computational methods have been essential for capi-
talizing on data to obtain clear and novel insights (Guazzaroni and Ferrer,
2011). Traditional approaches described in the literature typically map data
for genes, proteins or metabolites onto well-known pathways or Gene Onto-
logy (GO) terms (Yamada et al., 2011). This enables identifying molecular
functions of identi�ed proteins in light of metabolic pathways. However, the
high connectivity among biological pathways has shifted the focus to net-
works (Letunic et al., 2008; Palsson, 2009), which allows us to capture more
global properties (McCloskey et al., 2013). Molecular networks integrate dif-
ferent pathways and constitute a more general framework for interpreting
�omics� data (Bordbar and Palsson, 2012).

On the single-species level, di�erent computational methods have been
developed to analyse �omics� data using genome-scale metabolic networks.
In particular, a number of approaches have been speci�cally designed to
incorporate gene and protein expression data, as reviewed in Chapter 2.
These approaches start from genome-scale metabolic networks, which are
reconstructed from the annotated genome of an organism (Bachmann et al.,
2013; Zomorrodi et al., 2012) and a reference metabolic database as input
information.

For microbial communities, the reconstruction of metabolic networks is
more complicated and faces new challenges. Ideally, each organism can be
represented by its own metabolic network and its input/output metabolites
de�ne its possible interaction with other members of the consortia. Should
this information be available, recently developed constraint-based modelling
approaches could be applied. In this situation, methods mentioned above
to incorporate �omics� data for single organisms could be extended to deal
with bacterial communities.

However, in complex bacterial communities the number of organisms
could be extremely high, most typically lacking a high-quality, genome-
scale metabolic network, which makes the identi�cation of shared compo-
nents between organisms even more complicated. For this reason, current
approaches have been applied to well-known microbial consortia, including
only a limited number of organisms, typically 2 or 3 (dos Santos et al., 2013;
Khandelwal et al., 2013; Zomorrodi and Maranas, 2012).

To overcome this issue, the use of a supraorganism or metanetwork has
been proposed (Borenstein, 2012), which ignores boundaries for each orga-
nism, but models community-level metabolism. In an early work (Green-
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blum et al., 2012), using a graph theoretical approach, metagenomic data
were used to reconstruct the human gut microbiome metanetwork in di�e-
rent conditions, �nding key variations in patients with obesity and in�am-
matory bowel disease.

In this study, we exploit this metanetwork strategy and present a no-
vel computational procedure for obtaining a context-speci�c metabolic net-
work for a bacterial community using metaproteomic data. In contrast with
the work presented in Greenblum et al. (2012), we did not use a graph-
theoretical approach, but a constraint-based one, which takes into account
stoichiometric relationships. In particular, our approach takes some ingre-
dients from the mathematical optimization model presented in the Model
SEED (Henry et al., 2010). However, our approach is fundamentally dif-
ferent: it is designed for bacterial communities, not for a single organism,
and focuses on the usage of metaproteomic data, which directly leads to a
contextualized network that gives cohesion to identi�ed proteins. We also
use the taxonomic assignment of the identi�ed proteins to favour the in-
clusion of enzymes annotated in the genomes of those organisms in cases
where such information is available.

3.2. Methods

Here, we present our computational procedure for determining a fun-
ctional, context-speci�c metabolic network for bacterial communities using
metaproteomic data. Based on a reference metabolic database (Henry et
al., 2010), we seek a functional network that includes the maximum num-
ber of measured proteins (highly likely set, H) in a given sample. We may
have evidence that some proteins are not expressed (lowly likely set, L)
and, therefore, their participation is minimized. Then, we complete the net-
work using enzymes in the database, preferably those annotated in active
organisms in the community (medium likely set, M) (Guazzaroni et al.,
2013).

We denote the set of enzymes from the reference database not included in
H, L, and M as D, namely D involves the subset of non-identi�ed enzymes
that are currently annotated for organisms not present in the community.
By linking proteins to reactions via Enzyme Commission (EC) numbers
(Bairoch, 2000), sets H, L, M and D may also refer to reactions.

When we refer to a functional network, we mean a subset of reactions
that are able to produce biomass at steady state under the speci�ed me-
dium conditions. We describe these conditions in detail and introduce the
mathematical notation below.
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We denote the sets of reactions and compounds in the reference me-
tabolic database as R and C, respectively. The set of reactions is typically
classi�ed into reversible and irreversible reactions. For convenience, both re-
versible and irreversible reactions are divided into two non-negative steps:
forward and backward reactions. We de�ne the set B = {(f, b) | reaction
f and reaction b are the reverse of each other, f < b}. For each reaction
i ∈ R we de�ne a �ux variable, vi, and a binary variable, zi, where zi = 1
if vi > 0, 0 otherwise. We denote the stoichiometric coe�cient associated
with the metabolite i ∈ C and reaction j ∈ R as sij . This information is
stored in the stoichiometric matrix, S.

The steady-state assumption implies mass balancing and, therefore, the
accumulation/depletion of metabolites inside the system is not possible, as
observed in Eq. (3.1). The de�nition of the boundaries of the system is
an important issue. As noted above, in complex bacterial communities, the
previous knowledge of shared input/output metabolites is typically not avai-
lable. For the sake of simplicity, we only include boundaries for the whole
community and remove boundaries between individual organisms. Therefo-
re, we obtain a metanetwork in which the identi�ed proteins from various
organisms in the community are coexpressed. Using exchange reactions, we
then de�ne metabolites that can be taken up from outside (the boundaries
of) the system (culture medium conditions) and those that can be excre-
ted outside (the boundaries of) the system, which may prevent the network
from utilizing unavailable nutrient sources.

Sv = 0 (3.1)

As our aim is to obtain a metabolic network that supports growth, we
must de�ne a biomass reaction. Given that we are using a metanetwork
strategy, the biomass reaction represents a consensus equation for all or-
ganisms in the community. Note that determining an appropriate biomass
reaction is a challenging task, even for single organisms (Feist and Pals-
son, 2010). However, using an existing biomass reaction from a di�erent
organism is a common practice (Nogales et al., 2008), as many constituti-
ve compounds are shared across a wide range of organisms. Equation (3.2)
forces a minimum �ux through the biomass reaction (vbiomass).

vbiomass ≥ 1 (3.2)

As �uxes are non-negative, their lower bound is 0, as observed in Eq.
(3.3). We also �xed a su�ciently large value for their upper bounds.

0 ≤ vi ≤ 1000 ∀i ∈ R (3.3)
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Figure 3.1: Proposed bacterial community metabolic network reconstruction work�ow.
The context-speci�c metabolic network reconstruction algorithm starts from a database
of reactions, experimental (metaproteomic) data and knowledge about growth medium
as input data. It involves 3 steps: 1) construction of a basic network capable of using
the available nutrients to produce the compounds necessary for growth; 2) addition of
alternative pathways for biomass production; 3) network expansion with pathways not
necessarily involved in biomass production.

As noted above, our approach takes some elements of the mathemati-
cal optimization model presented in the Model SEED (Henry et al., 2010).
However, our purpose is di�erent, as we aim to obtain a context-speci�c
reconstruction for bacterial communities, not for a single organism, based
on metaproteomic data. Instead of a general metabolic reconstruction, our
aim is to build a network as speci�c to the observed phenotype as possible,
given the measured data. To this end, we include important technical dif-
ferences. In particular, we use a 3-step iterative procedure based on linear
programming and mixed integer linear programming. We describe each of
these three steps below. A graphical summary of the complete work�ow of
our approach can be found in Figure 3.1.

3.2.1. Step 1: basic functional network

Due to regulatory e�ects, the experimental measurement of proteins is
not su�cient to guarantee their activity (Seifert et al., 2013). This is typi-
cally observed in the con�icting trade-o� between enzymes in the H and L
sets (Agren et al., 2012; Becker and Palsson, 2008; Shlomi et al., 2008). In
other words, the use of all enzymes in H may involve a considerable number
of enzymes in L, whose participation in the reconstruction must be in ge-
neral avoided (Åkesson et al., 2004). For this reason, we prefer to leave the
decision of selecting enzymes in H and L to the optimization model, which
incorporates evidence from metaproteomic data in the objective function.
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This allows metaproteomic data to in�uence the resulting network, without
directly constraining it.

The objective function is presented in Eq. (3.4). In particular, the �ux
activity is guided by its penalization, pi, and bonus, bi, terms, similar to
what is performed in the Model SEED (Henry et al., 2010).

min
∑
i∈R

(pi − bi)vi (3.4)

where pi and bi are the sums of various concepts. Weights are de�ned
such that, by minimizing Eq. (3.4), which is subject to Eqs. (3.1)-(3.3), we
obtain a functional metabolic network in which �uxes in H will prevail,
followed by those in M , then those in D and, �nally, those in L. As in the
Model SEED (Henry et al., 2010), we penalized reversibility changes and
favoured the completion of KEGG modules that were substantially covered
with metaproteomic data. Finally, in order to avoid the �ux bias introduced
by the speci�c stoichiometric representation of each reaction (Brochado et
al., 2012), weights were rescaled using maximum �ux values obtained from
�ux variability analysis (Mahadevan and Schilling, 2003). See Appendix B
for further details.

It should be noted that the introduction of continuous �uxes in Eq. (3.4),
in contrast to the Model SEED (Henry et al., 2010), which includes binary
variables (z), does not guarantee the optimal use of metaproteomic data,
i.e. the reactions in H. The removal of binary variables converts a highly
expensive, mixed integer linear program into a linear program, which can be
easily solved; however, optimal solutions obtained from linear programming
are extreme points, which, in conjunction with our minimization objective
function, generate networks involving a limited number of degrees of free-
dom. Through Steps 2 and 3 described below, we aim to further exploit
experimental evidence from protein expression data.

3.2.2. Step 2: alternative pathways for biomass production

Once Step 1 is solved, we obtain a list of active reactions, N1. In this
second step, we aim to capture alternative pathways for biomass production
that are not included in N1 using the reactions in H, but not in L. To this
end, we block each of the reactions in N1, one-by-one, and resolve the linear
program posed in Step 1, i.e. Eq. (3.4), which is subject to Eqs. (3.1)-(3.3).
As a result, we obtain a number, card(N1), of functional networks. The rule
here is to merge N1 with those networks that include additional reactions
in H, but not in L. Therefore, we obtain a functional network (N2) that
makes better use of the metaproteomic data for biomass production.
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Note that the solution from Step 1 is the result of solving a linear pro-
gram, whose optimal solution is an extreme point, a solution with zero
degrees of freedom. For that reason, all the reactions involved in N1 are
necessary to produce biomass. As relevant alternative routes for biomass
production are added into the model using Step 2, the number of degrees
of freedom of the resulting solution is increased, while reducing the number
of essential reactions/enzymes.

3.2.3. Step 3: network expansion

Once Step 2 is concluded, we may not have included all measured enzy-
mes in N2. We denote K as a particular set of these enzymes that we aim
to include in the reconstruction. Note that K will typically involve all enzy-
mes from H that are not included in N2, possibly obtaining a maximum
use of the metaproteomic data. However, if our purpose is to emphasize the
metabolic di�erences between two conditions under study, K could involve
a subset of them, namely, those that are di�erentially expressed. To achieve
this goal, we address one further optimization problem.

We begin from Eq. (3.1) and Eq. (3.3). The constraint on biomass pro-
duction, Eq. (3.2), is removed, as it is currently satis�ed in N2. We now
make use of binary variables, zi. In particular, Eq. (3.5) relates v and z
variables, where M is the maximum �ux, and the minimum (non-zero) �ux
is 1. Equation (3.6) prevents reaction f and its reverse b from being active
simultaneously.

zi ≤ vi ≤Mzi ∀i ∈ R (3.5)

zf + zb ≤ 1 ∀(f, b) ∈ B (3.6)

Then, for each enzyme, j ∈ K, we introduce a continuous variable, ej ,
with a value between 0 and 1, as observed in Eq. (3.7). In Eq. (3.8), if
any of the set of reactions, Rj , that are associated with enzyme j ∈ K
cannot be activated, then ej is necessarily 1; therefore, to maximize the use
of the enzymes in K, we must minimize the ej variables. This is achieved
by amending the objective function as in Eq. (3.9). In particular, for the ej
variables, we assign the maximum overall penalty, wj .

0 ≤ ej ≤ 1 ∀j ∈ K (3.7)

∑
i∈Rj

zi + ej ≥ 1 ∀j ∈ K (3.8)
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min
∑
i∈R

(pi − bi)vi +
∑
j∈K

wjej (3.9)

Equation (3.9), which is subject to Eqs. (3.1), (3.3), and (3.5)-(3.8), is
a mixed linear integer program and empirical evidence shows that it is not
an expensive problem (less than 100 seconds in the instances considered in
Section 3.3). Active reactions from this optimization problem are added to
N2 and de�ne the �nal resulting metabolic network, N3.

3.3. Results

Our approach is applied to draft the metabolic networks of two di�e-
rent, naphthalene-enriched communities (Guazzaroni et al., 2013) derived
from an anthropogenically in�uenced, polyaromatic hydrocarbon (PAH)-
contaminated soil with (CN2) or without (CN1) bio-stimulation with cal-
cium ammonia nitrate, NH4NO3 and KH2PO4 and the commercial surfac-
tant Iveysol R©. Naphthalene, a model PAH compound, is a common, persis-
tent pollutant in crude oil and industrial chemical manufactures that can
be released into the environment (i.e. soils) through anthropogenic activi-
ties (Kästner, 2008). Current treatments for naphthalene- and other PAH-
contaminated sites involve the use of bio-surfactants and additional electron
acceptors as well as nitrogen sources (nitrate and ammonia) to improve the
bioavailability and bioremediation of these compounds. It has also been ob-
served that many bacteria are capable of degrading and growing on napht-
halene (Guazzaroni et al., 2013; Lu et al., 2011), and their activities might
only be limited by environmental conditions. Thus, gaining insight into the
mechanisms underlying naphthalene degradation can aid in the design of
better remediation strategies.

3.3.1. Reconstruction of CN1 and CN2 functional networks

In our analysis, we only considered proteins with an annotated meta-
bolic function, i.e. with an EC number, namely 570 out of 1234 measured
proteins, collectively involving 327 unique EC identi�ers. Based on the re-
lative protein concentrations, we classi�ed enzymes found in CN1 and CN2
(Guazzaroni et al., 2013) into the H, L, M and K sets as follows. For one
scenario, enzymes listed in that sample were included in the H set, while
enzymes that did not appear in that sample, but did appear in the other
scenario, were included in the L set. As we were interested in obtaining
networks that emphasized the di�erences between both scenarios, the K
set involved up-regulated enzymes in each scenario. In particular, enzymes
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showing a 1.5-fold change in their relative protein concentrations in one
sample compared with the other were considered up-regulated.

Using full-length and partial 16S rRNA gene sequences obtained through
a metagenomic approach (Guazzaroni et al., 2013), it was found that 13 and
12 distinct species constituted the CN1 and CN2 communities, respectively,
with only two species (Achromobacter and Azospirilum) conforming to the
common set. While Azospirillum, Comamonas, Achromobacter and Pseu-

doxanthomonas species dominated CN1, Pseudomonas and Achromobacter

species dominated CN2. This information was used to aid in the context-
speci�c network reconstruction process. In particular, the set of related
genome annotations for CN1 and CN2, which was established on the basis
of phylogenetic a�liations (Guazzaroni et al., 2013), was obtained from the
KEGG website. The enzymes (ECs) from these genome annotations, which
were neither included in H nor L, were included in the M set.

The list of reactions and metabolites was downloaded from the Model
SEED database (Henry et al., 2010). The above enzyme lists were translated
into reactions lists using their EC numbers annotated in this database.
The D set comprised ECs (enzymes) from the Model SEED database not
included in H, M and L. When a reaction was associated with more than
one EC belonging to di�erent sets, the reaction was assigned to the most
favourable set. For example, if a reation could be catalyzed by one enzyme
from H and one from L, then the reaction was assigned to H.

A minimal medium based on naphthalene as the only carbon source
(as was used in the enrichment cultures; Guazzaroni et al. (2013)) was
de�ned for the reconstruction process. The biomass reaction was taken from
a Pseudomonas reconstruction that was provided by SEED (rxn12834), as
this specie plays a major role in CN2. We also used annotated modules from
KEGG.

The computation time for both CN1 and CN2 reconstruction was less
than 200 seconds. All computations were performed on a 64-bit Windows
XP machine with an Intel Core 2 CPU at 2.4 GHz and 8 GB of RAM. The
code was written in MATLAB and CPLEX was used to solve the linear
optimization problems.

Randomly perturbing the selected weights with a 10% uniform noise
only changed a few reations, giving rise to very similar networks. For CN1,
we used 148 of the 206 enzymes form H and 21 enzymes from L, and we
completed the network with 274 and 165 enzymes from M and D, respecti-
vely. Similarly, for CN2, we employed 259 of the 311 enzymes from H and
1 enzyme from L, and we completed the network with 267 and 282 enzy-
mes from M and D, respectively. In both cases, the use of enzymes from
H was remarkable, corresponding to > 70 % of the measured data, which
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was increased to ∼ 90 % for up-regulated enzymes (K set). In contrast, the
number of enzymes in L required a more careful reading.

As noted above, there are reactions in the Model SEED database that
involve more than one EC number and are, therefore, catalyzed by di�erent
enzymes. For example, if a reaction is catalyzed by one enzyme from H
and one from L, we assume that the �ux through this reaction is suppor-
ted by the enzyme from H, which is consistent with the experimental data.
An inconsistency arises when reactions that are exclusively catalyzed by
enzymes in L are included in the reconstruction. We found four reactions
of this type in CN1, which collectively involved three enzymes of 21. In
particular, two of these inconsistent reactions in CN1 were associated with
EC 2.5.1.9 (ribo�avin synthase) and are required to produce FAD (�avin
adenine dinucleotide), an essential metabolite for biomass production. The
third reaction was linked to EC 2.4.1.227 and is required to produce the
peptidoglycan subunit of P. putida KT2440, which is involved in biomass
production. As this metabolite is speci�c for Pseudomonas, which is not in-
volved in CN1, the need for this enzymes is unlikely. The fourth reaction is
associated with EC 3.5.1.18 and is activated to support up-regulated enzy-
mes. There is only one inconsistent reaction in CN2, which is associated
with EC 2.7.7.38 and their activation is due to the same reason as for EC
3.5.1.18. The inclusion of these enzymes in CN1 is not in accord with the
evidence from metaproteomic data, which may be attributed to three possi-
ble causes: (i) incompleteness of the Model SEED database; (ii) inaccuracy
of the biomass reaction or (iii) a lack of resolution in the metaproteomic
data. To address this issue, further experimental evidence is required.

With the resulting context-speci�c networks for CN1 and CN2, we de-
cided to evaluate how single-reaction deletions could hamper their ability
to produce biomass. CN2 turned out to be more resilient, as only 22 single-
reaction deletions prevented its biomass production capacity, in contrast
with 42 single-reaction deletions in CN1. However, the overlap was signi�-
cant, as 19 of those reactions a�ected both networks. When deleting enzy-
mes related to a given EC number, 31 instances a�ected growth in CN2
and 42 in CN1, with 23 of them being the same in both cases. In addi-
tion, we substituted naphthalene as the only carbon source with each of the
compounds present in the reconstructed networks. CN1 was able to take
advantage of 26 compounds to produce biomass, while CN2 exhibited theo-
retical ability to use 446 compounds. We conducted the same analysis with
the nitrogen, phophorus and sulphur sources, �nding that CN1 could make
use of 166, 114 and 34 compounds, respectively, while CN2 could make use
of 270, 212 and 104 compounds, respectively. Although these results should
be taken with caution, they suggest that the metabolism of CN2 is more
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robust and varied than CN1. The fact that the availability of substrates
is promoted during the bio-stimulation process used for obtaining a CN2
community (Guazzaroni et al., 2013) might agree with this hypothesis.

3.3.2. CN1 and CN2 pathway analysis

To obtain a global picture of the pathways characterized in the CN1
and CN2 contextualized networks, we resorted to the use of KEGG maps.
In particular, to extract the functional di�erences between CN1 and CN2,
we compared the KEGG maps using a score, Jp, derived from the Jaccard
distance. In particular, for each KEGG map, we �rst calculated the Jaccard
index, J , between CN1 and CN2, with Eq. (3.11), where A and B represent
the set of reactions involved in CN1 and CN2, respectively, in a given KEGG
map. Then, we determined the Jaccard distance (Eq. 3.11), which measures
the dissimilarity between CN1 and CN2 for a particular pathway. Finally,
we multiplied the Jaccard distance by the maximum between the number of
reactions that belonged to CN1, but not to CN2, and vice versa (Eq. 3.12).
This score gives more importance to pathways where the CN1 and/or CN2
networks show high coverage and share few reactions. An illustration of this
process can be found in Appendix B for the �Histidine metabolism� KEGG
map. Functional di�erences between CN1 and CN2 can be analysed via Jp,
where the higher the value of Jp, the greater the di�erence between CN1
and CN2 and, hence, the more relevant the pathway.

J =
|A ∩B|
|A ∪B|

(3.10)

Jδ = 1− J (3.11)

Jp = Jδ ·máx(|A ∩ B̄|, |Ā ∩B|) (3.12)

We ranked the KEGG pathways according to this measure for the CN1
and CN2 metabolic networks. Table 3.1 shows some of the top most di�erent
KEGG pathways between CN1 and CN2. We repeated the same analysis
in two additional cases: (1) direct use of metaproteomic data form CN1
and CN2, neglecting our network reconstruction approach (�Rank only me-
taproteomics�); (2) removal of metaproteomic data, only considering CN1
and CN2 taxonomic data and their annotated genomes in our network re-
construction approach (�Rank taxonomics�). As observed in Table 3.1, subs-
tantial di�erences can be found among them, which emphasize the e�ect of
our reconstruction approach, showing a clear contribution of proteomics to
genomics data.
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Table 3.1: Ranking of KEGG pathways after reconstruction using functional network
data for CN1 and CN2. The columns �CN1� and �CN2� indicate the number of reactions
involved in CN1 and CN2 reconstructions active in the KEGG pathway under consi-
deration. The �Rank� column indicates the position of KEGG pathways according to
descending order of the obtained score. The �Rank only metaproteomics� column indica-
tes the rank obtained for KEGG pathways before the reconstruction process, namely with
the score exclusively calculated from metaproteomic data of CN1 and CN2. The �Rank
taxonomics� indicates the rank obtained after the reconstruction only with taxonomic
data, i.e. with empty H, L and K sets.

KEGGID Name CN1 CN2 Score Rank Rank
only
meta
proteo-
mics

Rank
taxono-
mics

map00071 Fatty acid metabolism 4 27 19.5926 1 22 1
map00062 Fatty acid elongation 0 15 15 2 42 12
map00330 Arginine and proline metabolism 17 31 14.0541 3 19 10
map00540 Lipopolysaccharide biosynthesis 3 18 12.5 4 54 39
map00760 Nicotinate and nicotinamide metabolism 13 25 12.4667 5 24 31
map00230 Purine metabolism 42 57 12 6 5 23
map00281 Geraniol degradation 0 12 12 7 37 -
map00260 Glycine, serine and threonine metabolism 14 26 9.31034 8 33 21
map00400 Phenylalanine, tyrosine and tryptophan biosynthesis 12 24 8.61538 9 14 79
map00500 Starch and sucrose metabolism 5 10 8.35714 10 62 8
map00523 Polyketide sugar unit biosynthesis 0 8 8 11 20 6
map00620 Pyruvate metabolism 12 23 7.8 12 36 28
map00130 Ubiquinone and other terpenoid-quinone biosynthesis 2 9 7.2 13 2 7
map00364 Fluorobenzoate degradation 7 0 7 14 102 -
map00650 Butanoate metabolism 14 12 6.85714 15 43 33

Table 3.1 shows clear di�erences between CN1 and CN2. The geraniol
degradation pathway (map00281) was predicted to be completely functional
in CN2, but inactive in CN1. In CN2, enzymes from H in this pathway were
complemented with enzymes form M and D. In contrast, in CN1, enzymes
fromH were discarded from the reconstruction. On the other hand, the �uo-
robenzoate degradation pathway (map00364) was �lled in to some extent
in the CN1 reconstruction, whereas it was inactive in CN2. Note that these
di�erences between CN1 and CN2 cannot be easily obtained from the other
two cases considered (see �Rank only metaproteomics� and �Rank taxono-
mics�). This is particularly relevant since these di�erences between CN1 and
CN2 are experimentally validated below, which shows the predictive power
and need of the approach presented here.

3.3.3. Experimental analysis of �uorobenzoate and geraniol

metabolism in CN1 and CN2

Given the high rank obtained by the �uorobenzoate and geraniol de-
gradation pathways and its speci�city for CN1 and CN2, respectively, we
evaluated the correctness of these hypotheses. First, in silico stoichiome-
tric analysis showed that CN1 was capable of growing with �uorobenzoate
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Table 3.2: Summary of sensitivity analysis to the inclusion of �uorobenzoate and gera-
niol with di�erent biomass equations. An X indicates that the corresponding compound
is part of the reconstruction computed using the corresponding biomass reaction from
the Model SEED reaction database.

CN1 CN2
Reaction Fluorobenzoate Geraniol Fluorobenzoate Geraniol
rxn12828 X - - X
rxn13762 X - - X
rxn12821 X - - X
rxn13777 X - - X
rxn11733 X - - -
rxn11918 X - - X
rxn11928 X - - X
rxn12830 - - - X

as the sole carbon source, and the same was observed for CN2 and gera-
niol, after some minor corrections to the obtained networks. In particular,
for CN1 to produce biomass from �uorobenzoate, we needed to allow for
the net production of �uoride (F-), which is found in abundance in soils
(McQuaker and Gurney, 1977), and in bacterial cultures as cellular degra-
dation by-product (Hidde Boersma et al., 2004). In the case of CN2 and
geraniol, we needed to change the direction of reaction rxn07886 (geranic
acid CoA-transferase) in the SEED Database, which converts geranic acid
into trans-geranyl-CoA and was originally de�ned to act in the opposite
direction. Based on KEGG (map00281) and existing literature (Clemente-
Soto et al., 2014), we found that this reaction is commonly annotated in
the direction proposed. Note here that the opposite is not possible, i.e. the
growth of CN2 and CN1 on �uorobenzoate and geraniol, respectively, as
they are not active in CN2 and CN1, respectively. It is important to cla-
rify that these issues come from inaccuracies in The SEED Model database
and not from the algorithm presented here. When doing this modi�cation
prior to the reconstruction process, the resulting networks directly grow on
�uorobenzoate in CN1 and geraniol in CN2.

Secondly, in order to discard that the relevance of �uorobenzoate in
CN1 and geraniol in CN2 is an artefact derived from an inaccurate biomass
equation, we conduct a sensitivity analysis with di�erent existing biomass
equations, �nding that the major conclusions achieved are conserved in most
cases (Table 3.2).

Experimental validation assays were conducted to prove the extent of
agreement with our computational predictions. For that, we set up CN1 and



52 Chapter 3. Bacterial Community Metabolic Network Reconstruction

Figure 3.2: Growth curve of CN1 and CN2 enrichment cultures in Bushnell Hass mini-
mal medium in the presence of 0.1% (w/v) 3/4-�uorobenzoate and geraniol, respectively
at 30◦C and 250 rpm. As shown, within the examined time frame, no appreciable growth
was observed in clutures of the CN1 and CN2 consortia in the presence of geraniol and
�uorobenzoate, respectively.

CN2 enrichment cultures using previously described conditions (Guazzaroni
et al., 2013); instead of naphthalene as the carbon source, geraniol and 3/4-
�uorobenzoate (0.1% w/v) were used, and samples were taken at di�erent
time points (see Appendix B). Fingerprinting by Gas Chromatography-Mass
Spectrometry (GC-MS) was used to con�rm the presence of the initial subs-
trates as well as the existence of degradation intermediates in both cultures.
A careful inspection of the MS signatures of the initial metabolites known
to participate in geraniol (map00281) and 3/4-�uorobenzoate (map00364)
degradation (see Appendix B) con�rmed the presence of 3/4-�uorocatechol
in CN1 and citral and geranic acid in CN2. These �ndings demonstrated
that the �uorobenzoate-degradation pathway occurred or was active in CN1,
while the geraniol-degradation pathway is active in CN2. This was also con-
�rmed by measuring the OD600 of the enrichment cultures at di�erent time
intervals (Fig. 3.2). As shown, CN1 grew only in the presence of �uoroben-
zoate (0.1% w/v), whereas CN2 grew only in the presence of geraniol (0.1%
w/v).
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3.3.4. Contributions of bacteria to the CN1 and CN2 fun-

ctional networks

We also attempted to quantify the contributions of particular sets of
microbes to the entire reconstructed, context-speci�c metabolic network,
where multiple proteins from multiple organisms are coexpressed. This is an
important advance because the complement of proteins used to metabolize
recalcitrant pollutants and the speci�c roles of di�erent bacterial members
within a consortium in pollutant (or other potential carbon/energy sources)
deconstruction are not well explored.

As the population diversity and structures of the two enrichment cul-
tures were relatively low and well characterized, the taxonomic a�liations
of the proteins quanti�ed in the shotgun metaproteomes could be unambi-
guously established (Guazzaroni et al., 2013). Based on this, for CN1 and
CN2, we knew which members of the community were actually expressing
the enzymes used to catalyse each reaction in H.

To evaluate the role of each bacterial member in CN1 and CN2 at the
functional level, we determined its contribution to each KEGG map. The
contribution was determined as the number of times a bacterium appeared
in a KEGG map divided by its total number of active reactions. For this
analysis, we only took into account the reactions in H and M that were
involved in the CN1 and CN2 reconstructed networks. As noted above, the
taxonomic a�liation was known for the reactions in H. In contrast, for
the reactions in M , di�erent members of the community might be involved
in a rection. For simplicity, in these situations, if possible, we assigned an
organism that was previously included in the KEGG map via the reactions
from H. Full details as to the taxonomic assignment of reactions involved in
the the CN1 and CN2 metabolic networks can be found in Supplementary
Material IV of Tobalina et al. (2015).

Figure 3.3 shows the contribution of each organism found in both CN1
and CN2 to each KEGG map. Pathways were reconstructed for the most
abundant populations, which included composite genomes for populations
closely related to sequenced strains of Achromobacter, Azospirillum, Coma-

monas, Mesorhizobium, Microbacterium, Planctomycetes, Pseudoxanthomo-

nas, Singulisphaera and Pseudomonas.
Identi�cation of genes for naphthalene processing (map00626) and meta-

bolic reconstructions suggested Achromobacter followed by Mesorhizobium

and Pseudoxanthomonas in CN1 and mainly Achromobacter in CN2 as key
groups for naphthalene degradation. In addition, we identi�ed Achromo-

bacter, Azospirillum, and Comamonas in CN1 and Azospirillum as well as
Pseudomonas in CN2 as groups that might primarily metabolize low mole-
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Figure 3.3: Heatmap showing the contributions of the most relevant bacterial members
of CN1 and CN2 to the KEGG maps. Relative contributions of each of the 13 distinct
species found to constitute the CN1 and CN2 communities (Guazzaroni et al., 2013) are
di�erentiated by a colour code. A high-resolution image can be found in Supplementary
Material V of Tobalina et al. (2015).
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cular weight molecules produced from naphthalene. It could also be obser-
ved that, while metabolic reconstructions indicated a central role played by
Achromobacter in naphthalene degradation, multiple bacteria participated
in the active pathways (see Appendix B for further details; Figs. B.2-B.4).
A careful examination of the data presented in Fig. 3.3 clearly leads to a
di�erent pathway organization at the organismal level.

3.4. Conclusion

In this study, we make use of the novel computational procedure for
obtaining a context-speci�c functional metabolic network for a bacterial
community using metaproteomic data introduced in Section 3.2. Our ap-
proach was based on the mathematical optimization model presented in the
Model SEED (Henry et al., 2010). However, we adapt this model to incor-
porate metaproteomic data and obtain a context-speci�c metanetwork in
which the identi�ed proteins from the multiple organisms making up the
community are coexpressed. To this end, we also include important techni-
cal di�erences. In particular, we use a 3-step iterative procedure based on
linear programming and mixed integer linear programming.

Our approach is an alternative to previously reported methods (dos San-
tos et al., 2013; Khandelwal et al., 2013; Zomorrodi and Maranas, 2012),
where the role of each organism is explicitly represented in a di�erent meta-
bolic compartment and, therefore, their relationships can be directly analy-
sed. These methods require the genome-scale metabolic network of each
organism in the community as input data, which, in consortia involving a
high number of species as we have here, is typically not available; therefore,
we turn to a metanetwork approach, which involves several assumptions.
First, we need a consensus biomass equation that represents the metabolic
requirements of the community to support growth. With metametabolomics
approaches being developed, it is expected that consensus biomass equations
will be re�ned in the near future. Second, a free exchange of metabolites
between species is allowed, as boundaries between individual organisms are
not de�ned. However, a metanetwork could serve as a basis to disentan-
gle the role of each organism in the community, as suggested in Section
3.3.4. More sophisticated approaches need to be developed for this task, for
example, analysing the role of a single organism in the context of the entire
metanetwork.

Our approach was applied to draft the context-speci�c metabolic net-
works of two di�erent naphthalene-enriched communities (Guazzaroni et
al., 2013). Analysis of the resilience to single-reaction elimination and the
ability to grow on di�erent sources suggests that CN2 metabolism is more
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varied than CN1. Then, we used KEGG maps to obtain a global picture
of the reconstructed draft networks. We were able to capture the overall
functional di�erences between CN1 and CN2 at the metabolic level. We
showed that CN1 and CN2 utilize di�erent metabolic pathways to synt-
hesize essential metabolites for growth. In particular, we hypothesized an
important role for the �uorobenzoate degradation pathway in CN1 and for
geraniol metabolism in CN2. Experimental validation was conducted and
good agreement with our computational predictions was observed.

On the other hand, we showed that these metabolic di�erences lead to
a di�erent pathway organization at the organismal level. For example, whi-
le naphthalene degradation (map00626) seems to be supported by Achro-

mobacter in both CN1 and CN2, Mesorhizobium septentrionale and Pseu-

doxanthomonas japonensis may be involved in an alternative pathway in
CN1. In addition, while metagenomic sequences outlined the broad meta-
bolic capabilities of the abundant populations present in an adapted com-
munity, proteomics-guided metabolic reconstructions allowed us to focus on
the pathways that were actually expressed and re�ne the assignment of ro-
les for community members not only in naphthalene degradation but also
in the assimilation of the low molecular weight compounds produced from
it.

These results show that network-based methods represent a promising
strategy for exploiting the value of data and the available bioinformatics
tools, allowing us to obtain a better understanding of biological systems.
As the available meta-omics data from scienti�c studies at di�erent levels
are increasing, reconstruction procedures will play an important role in di-
sentangling contexts-speci�c metabolic phenotypes. The approach presen-
ted here can be extended to meta-genomic and meta-transcriptomic data
and will clearly bene�t from the availability of meta-metabolomic data,
mainly to address the failure to detect all di�erent enzymes (ECs) that ca-
talyze di�erent reactions. Amending our approach to include these data is
straightforward.



Chapter 4

Assessment of FBA based

Gene Essentiality Analysis

Gene Essentiality Analysis based on Flux Balance Analysis (FBA-based
GEA) is a promising tool for the identi�cation of novel therapeutic targets in
cancer. The reconstruction of cancer speci�c metabolic networks, typically
based on gene expression data, constitutes a sensible step in this approach.
However, to our knowledge, no extensive assessment on the in�uence of the
reconstruction process on the obtained results has been carried out to date.

In this chapter, we aim to study context-speci�c networks and their
FBA-based GEA results for the identi�cation of cancer speci�c essential
genes. To that end, we used gene expression datasets from the Cancer Cell
Line Encyclopedia (CCLE), evaluating the results obtained in 174 cancer
cell lines. In order to more clearly observe the e�ect of cancer-speci�c expres-
sion data, we did the same analysis using randomly generated expression
patterns. Our computational analysis showed some essential genes that are
fairly common in the reconstructions derived from both gene expression and
randomly generated data. However, we also found essential genes that are
very rare in the randomly generated networks, while recurrent in the sam-
ple derived networks, and, thus, would presumably constitute relevant drug
targets for further analysis. In addition, we compare the in-silico results to
high-throughput gene silencing experiments with con�icting results, which
leads us to raise several questions. Notwithstanding, there are �ndings in
the literature that indicate some of the predictions are in the right track.

57
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4.1. Introduction

The results obtained from FBA-based GEA are dependent on the di�e-
rent elements involved in this network reconstruction process, i.e. reference
network, de�ned growth medium, gene expression data and reconstruction
algorithm. However, to our knowledge, no extensive assessment evaluating
the in�uence of the metabolic reconstruction process and expression data
on the results of gene essentiality analysis has been carried out to date in
cancer. To that end, in this chapter, we conducted an extensive study for
di�erent types of cancers from the Cancer Cell Line Encyclopedia (CCLE)
(Barretina et al., 2012) so as to disentangle the e�ect of some of these
factors in the resulting list of essential genes. In order to more clearly ob-
serve the e�ect of cancer-speci�c expression data, we did the same analysis
using randomly generated expression patterns. In addition, we used high-
throughput gene silencing data (Cowley et al., 2014) to extensively test the
predictions of the FBA-based GEA approach. Finally, we contrasted litera-
ture data about predicted essential genes in two Glioblastoma Multiforme
(GBM) cell lines.

4.2. Methods

4.2.1. Gene Essentiality Analysis

Essential genes are de�ned here as those genes whose removal render the
cell unable to produce biomass. Using the Boolean gene-protein-reaction
rules incorporated in Recon 2 (Thiele et al., 2013), we can evaluate which
reactions will stop working after a particular gene is deleted. Thus, a gene
knock-out is simulated by setting the upper and lower bounds of the corres-
ponding reactions to zero in an FBA calculation, and checking whether (or
not) the remaining network is still able to produce biomass.

In order to reduce the number of FBA calculations required to check
the essentiality of every single gene, we �rst calculated the maximum bio-
mass possible in the wild-type network and searched for a �ux distribution
with minimum sum of �uxes through reactions for which gene-to-reaction
mapping is de�ned. If a particular gene knock-out does not a�ect any reac-
tion in that optimal �ux distribution, we can be certain that a new FBA
calculation will give us the same solution as in the wild-type network and
we can therefore skip such gene knock-out.
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4.2.2. Network contextualization

The FBA based GEA is done using context speci�c metabolic networks.
The reference human metabolic network is contextualized using cancer ge-
ne expression data by means of the fast network reconstruction algorithm
introduced in Section 2.3.

As explained in Section 2.3, the input of the reconstruction algorithm is
the reaction classi�cation as highly (H), medium (M) or lowly (L) expres-
sed. This information is obtained from gene expression experiments, in our
case collected from GEO database (Edgar et al., 2002).

We used the Gene Expression Barcode (McCall et al., 2011), a robust
statistical method developed to predict expressed and non-expressed genes
in microarrays, to treat the expression data. This expression processing tool
allowed us to build one network from each sample, since it is designed to be
able to work with just one sample and make it comparable to others, instead
of needing several samples at the same time. In particular, we focused on
A�ymetrix HGU133plus2 arrays. We preprocessed the data, one sample at
a time, using Barcode's R script and retrieved the z-score values obtained
from this algorithm. The process is equivalent to processing each sample
with fRMA (McCall et al., 2010), an algorithm that is at the core of Barcode.

Because the z-scores retrieved from Barcode were given at the probe-
set level, using gene-probe relationships annotated in hgu133plus2.db R
package, we obtained the gene value as the median value of the correspon-
ding probe sets (one gene may be interrogated in a microarray by di�erent
probes, and taking the median value is a robust way of summarizing that
information). Each gene value was transformed into present (1) and absent
(0) calls using Barcode's criteria. Subsequently, present genes were classi�ed
as high (H) and absent genes as low (L). Finally, we used the GPR rules
to convert the gene classi�cation into a reaction classi�cation.

If a reaction is associated to a single gene, it is classi�ed as H, M or L
depending on the classi�cation of the corresponding gene. If it involves an
OR rule, it is classi�ed as H if one of the genes is classi�ed as H. On the
contrary, it is classi�ed as L if all the genes are classi�ed as L. If a reaction
involves an AND rule, it is classi�ed as H if all the genes are classi�ed
as H, while as L if any of the genes is classi�ed as L. Those reactions
for which no gene expression is available or that are not related to any
gene (e.g. spontaneous reactions) are classi�ed as medium expressed (M).
A systematic way to perform this conversion is to assign a numerical value
to each category (+1 to H, 0 toM and -1 to L) and to substitute AND and
OR rules by min() and max() functions respectively, after which we only
need to evaluate the resulting mathematical expression.
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4.2.3. Comparison to experimental data

A systematic e�ort to identify essential genes in di�erent cancer cell
types is being carried out in what is known as project Achilles (Cowley
et al., 2014). The coverage of this project has grown during the last years
(Cowley et al., 2014; Cheung et al., 2011; Luo et al., 2008). They performed
high-throughput gene silencing experiments to identify vulnerabilities in
di�erent cell lines using a library of lentivirally encoded short hairpin RNAs
(shRNAs). The method consisted in infecting cultured cells with a pool of
shRNAs, allowing them to proliferate for a period of time and measuring
the relative abundance of the shRNAs at the end of the experiment (Luo
et al., 2008). Underrepresented shRNAs would target more essential genes
than the rest, as surviving cells will only be carrying shRNAs silencing
genes not related to proliferation. Comparison of computationally obtained
essential genes with the results coming from this type of experiments have
been previously used to assess the validity of the approach (Folger et al.,
2011).

The processing and interpreting of the data generated by these experi-
ments is quite challenging. In each new paper, new ways of looking into the
data are presented. Luo et al. (2008) used the RIGER score to analyze the
observed fold changes, while Cheung et al. (2011) and Cowley et al. (2014)
used the ATARiS score. The later gives a relative score of essentiality for
each gene in one cell line with respect to that gene in the rest of cell lines.
This means that a better ATARiS score for a gene in a cell line with respect
to the rest of the genes in that same cell line does not necessarily mean that
that gene is more essential than the others.

Recently, Hart et al. (2014) proposed to use gold standards of essential
and nonessential genes to classify the genes depending on their correspon-
ding observed shRNA fold changes as belonging to essential or nonessential
genes. Their approach �ts a probability density function for each type of
gene using the gold standards that is later used to classify the rest of the
genes not included in the gold standards. Speci�cally, a bayes factor is com-
puted for each gene, indicating how more likely is it to be essential with
respect to being nonessential according to the observed fold changes. It is
this processing method that we use for the data here.

In order to assess the accuracy of our approach to predict essential ge-
nes, we used the high-throughput silencing experiments taken from project
Achilles (Cowley et al., 2014). We derived a score for each gene in each cell
line following the method introduced in Hart et al. (2014). However, we
multiplied the obtained scores by −1 so that the lower the score, the more
essential the gene is supposed to be, as it happens with the shRNA fold
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changes in the high-throughput silencing experiments. We then compared
the distribution of the scores of the obtained essential metabolic genes versus
the nonessential metabolic genes using a one-sided two-sample Kolmogorov-
Smirnov test, as suggested in Folger et al. (2011). This test helps us to see
if the obtained essential genes are biased towards lower, more essential sco-
res. However, the bias may be signi�cant but not su�ciently large so, in
addition, we measured the proportion of obtained essential genes with a
negative score in each scenario.

4.3. Results

4.3.1. Gene essentiality analysis

With the fast reconstruction algorithm introduced in Section 2.3 in our
hands, we can address the question of the extent to which the set of essen-
tial genes is being a�ected by context-speci�c expression data. To further
explore this issue, we permuted the metabolic gene expression classi�cation
of each sample 10 times and reconstructed the corresponding networks fo-
llowed by the calculation of their corresponding essential genes, leading to
a background of almost 2000 random results.

The cancer gene expression data used for this study comes from the
Cancer Cell Line Encyclopedia (CCLE) (Barretina et al., 2012). The selec-
ted CCLE cell lines include samples from 20 di�erent cancer types: bladder,
bone sarcoma, breast, colon, endometrial, esophageal, glioblastoma, gastric,
leukemia, liver, lung mesothelioma, lung NSCLC, lung SCLC, melanoma,
multiple myeloma, ovarian, pancreas, prostate, renal cell carcinoma and soft
tissue sarcoma. The choice of this subset of cell lines was made taking in-
to account the available high-throughput gene silencing data from project
Achilles (Cowley et al., 2014) (see Table D.1). We also selected some other
U251 and U87 samples from GEO to perform an analysis more focused on
a speci�c type of cancer, GBM in this case (Appendix D).

Figure 4.1 shows the result of this experiment for schema 3. As partially
expected, there are some genes that are fairly common in any reconstructed
network. The most extreme cases are genes that appear as essential wha-
tever the input expression is. These are a direct consequence of the input
reference network, the �xed growth medium conditions and the selected
biomass reaction. This analysis con�rms the extent to which these factors
can a�ect the results.

Note that there also exist some essential genes very frequent in the
individual samples but less frequent in the random networks. These would
be, a priori, the most interesting ones, as they are more related than the
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Figure 4.1: Essential gene frequency for reconstructed context-speci�c networks of selec-
ted cancer cell lines using our algorithm with schema 3 and Recon 2 as the base network.
The horizontal axis contains the ENTREZ Symbols of the obtained essential genes. The
height of the bars indicates the fraction of randomly reconstructed networks in which the
corresponding gene appears as essential.

other genes to the particular expression of the samples.
Figure 4.2, Figure 4.3 and Figure 4.4 are analogous to Figure 4.1, but

focusing on the GBM samples present in CCLE, U251 samples from GEO
and U87 samples from GEO, respectively. As can be observed, very similar
conclusions can be extracted.

The most striking fact is that the list of obtained essential genes exclu-
sive of each cancer type is fairly short. Only 6 genes appeared in one cancer
type when using our algorithm with schema 3, 22 and 21 if we used schema
1 and 2, respectively. We expected a more diverse set of essential genes for
each cancer type. Changing the parameter settings of the reconstruction
algorithm, the base network or the culture medium did not signi�cantly
a�ect this observation (see Table 4.1).

Some previous work explored the essentiality concept under very diverse
growth medium conditions (Almaas et al., 2005) for some bacterial metabo-
lic networks. They concluded the existence of a core set of reactions needed
for biomass production independent of the selected growth medium. Our
study leads to very similar insights for the case of network contextualiza-
tion. The same conclusion was achieved for other parameter settings.

4.3.2. Comparison to high-throughput gene silencing expe-

riments

The results for the Achilles experiments are summarized per gene as
explained before, so that the more negative the score is, the more essential
the gene is considered. Focusing on samples from the CCLE with matched
Achilles experiments, we used a two-sample one-tailed Kolmogorov-Smirnov
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Figure 4.2: Essential gene frequency in networks reconstructed from GBM samples
in CCLE with matched Achilles experiments using our algorithm with schema 3 and
Recon2 as the reference network. The horizontal axis contains the ENTREZ Symbols of
the obtained essential genes. The height of the bars indicates the fraction of samples in
which the gene appears as essential. The height of the black line indicates the fraction of
randomly reconstructed network in which the corresponding gene appears as essential.

Figure 4.3: Essential gene frequency in networks reconstructed from U251 samples using
our algorithm with schema 3 and Recon2 as the reference network. The horizontal axis
contains the ENTREZ Symbols of the obtained essential genes. The height of the bars
indicates the fraction of samples in which the gene appears as essential. The height of
the black line indicates the fraction of randomly reconstructed network in which the
corresponding gene appears as essential.
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Figure 4.4: Essential gene frequency in networks reconstructed from U87 samples using
our algorithm with schema 3 and Recon2 as the reference network. The horizontal axis
contains the ENTREZ Symbols of the obtained essential genes. The height of the bars
indicates the fraction of samples in which the gene appears as essential. The height of
the black line indicates the fraction of randomly reconstructed network in which the
corresponding gene appears as essential.

Table 4.1: Number of genes that appear as essential exclusively in samples from one
single cancer type. Default settings are α = 1000, δ = 0,10 and v∗biomass = 0,01 · vmax

biomass.
If parameters are not explicitly stated, default values are assumed.

Setup Schema Number of genes
exclusive of one
cancer type

Default settings
1 22
2 21
3 6

α = 102
1 20
2 34
3 11

δ = 0,01
1 30
2 20
3 14

v∗biomass = 0,10 · vmaxbiomass

1 29
2 24
3 4

General growth medium
1 19
2 19
3 18

Recon 1
1 21
2 17
3 7
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Figure 4.5: KS test p-value of essential genes obtained from the networks reconstructed
from CCLE samples with matched Achilles experiment using our algorithm under schema
1, 2 and 3, with Recon 2 as the reference metabolic network.

test between the metabolic essential genes obtained from our in-silico ap-
proach and the rest of metabolic genes to see if the former had generally
lower scores than the later. Figure 4.5 shows the results for this analysis,
where our algorithm (under di�erent schemes) does not seem to obtain a
high number of results below the 5% value (which should be later corrected
for multiple hypothesis testing using, for example, the false discovery rate
(FDR)). Figure 4.6 provides results using Recon 1, where results below the
5% value are more common. However, we expected the FBA based GEA
to give signi�cant results with almost all the samples we tried it on.

In addition, we decided to count the fraction of genes predicted as essen-
tial in our in-silico approach with a negative score. The reason is that when
the score becomes negative, the gene starts to have a higher probability of
being essential than non-essential. If the FBA based GEA methodology is
capturing essentiality correctly, the list of essential genes obtained should be
enriched in genes with negative scores. We observed in Figure 4.7 that the
proportion is around 10 to 20%, regardless of the reconstruction method
used. Around 8 to 16% of all the metabolic genes represented in Recon 2
had a negative score. In other words, the list of essential genes returned by
the FBA based GEA approach did not provide a signi�cantly higher num-
ber of genes with negative (more essential) scores. Using Recon 1 instead
of Recon 2 (Figure 4.8) or trying with di�erent parameter settings for the
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Figure 4.6: KS test p-value of essential genes obtained from the networks reconstructed
from CCLE samples with matched Achilles experiment using our algorithm under schema
1, 2 and 3, with Recon 1 as the reference metabolic network.

reconstruction algorithm (Table 4.2) did not alter this conclusion. While
Almaas et al. (2005) found that the core reactions in bacterial metabolic
networks were enriched in experimentally proven essential genes, our results
do not allow us to make the same claim.

Knowing that some genes appear similarly in both random and cancer-
speci�c expression based networks, while others are clearly tied to the
cancer-speci�c expression pattern, we tried to identify a relationship bet-
ween this and the corresponding experimental essentiality score. However,
we were unable to �nd a signi�cant correlation.

4.3.3. Findings in the literature

Despite the results of our comparison with project Achilles data, we
decided to take a look into the essential genes obtained for the glioblastoma
multiforme (GBM) type cell lines. Since the data used only considered a
single sample for each cancer cell line, we applied the same approach to an
additional set of U251 and U87 GBM cell line samples (see Appendix D).

We found interesting the case of the gene PLD2 (ENTREZ ID 5338).
This gene appears as essential in 84% of the networks reconstructed from
GBM samples with schema 3, while it only appears in 27% of the networks
reconstructed from random expression data and in 32% of the networks re-
constructed from all the CCLE selected samples. This gene has been shown
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Figure 4.7: Percentage of essential genes obtained from the reconstructed context-
speci�c networks of selected cancer cell lines using our algorithm under schema 1, 2 and
3 that have a negative score, indicating a higher probability of being essential. The base
network is Recon 2. The last boxplot indicates this percentage when all the metabolic
genes are taken into account.

Figure 4.8: Percentage of essential genes obtained from the reconstructed context-
speci�c networks of selected cancer cell lines using our algorithm under schema 1, 2 and
3 that have a negative score, indicating a higher probability of being essential. The base
network is Recon 1. The last boxplot indicates this percentage when all the metabolic
genes are taken into account.
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Table 4.2: Median KS test p-value and percentage of essential genes with negative
score under di�erent parameter settings. Default settings are α = 1000, δ = 0,10 and
v∗biomass = 0,01 · vmax

biomass. If parameters are not explicitly stated, default values are
assumed.

Setup Schema KS test p-value Percentage of
essential genes
below threshold

α = 102
1 0.1508 0.1403
2 0.3852 0.14
3 0.1373 0.1852

δ = 0,01
1 0.105 0.1505
2 0.3 0.153
3 0.3276 0.15

v∗biomass = 0,10 · vmaxbiomass

1 0.1275 0.1509
2 0.3694 0.1429
3 0.1068 0.2034

General medium
1 0.4331 0.1429
2 0.4863 0.1429
3 0.3638 0.2

to play an important role in cancer (Kang et al., 2014) and to inhibit the
proliferation of U251 cells when suppressed (Chen et al., 2014). However,
its Achilles score in the U251 cell line is 20.03 and 12.70 in the U87 cell
line, which, in principle, would have not attracted our attention (because
positive scores predict the gene to be non-essential).

Other interesting genes are RRM1 (ENTREZ ID 6240), RRM2 (EN-
TREZ ID 6241), FDPS (ENTREZ ID 2224) and HMGCR (ENTREZ ID
3156), although these also appear as essential in many of the networks re-
constructed from all the CCLE selected samples (but not in the randomly
reconstructed networks). RRM1 and RRM2 form the enzyme ribonucleotide
reductase, whose inhibition via GTI-2040 has been shown to have a potent
antitumor activity in di�erent cell lines, including U87 (Lee et al., 2003). On
the other hand, FDPS inhibition has shown an increased paclitaxel-induced
apoptotic cell death in U87 glioblastoma cells (Woo et al., 2010). Finally,
inhibition of HMGCR through simvastatin reduced cell growth in U87 cells
(Gliemroth et al., 2003) and increased apoptosis in an in vivo mouse GBM
model (Bababeygy et al., 2009).

The Achilles score for RRM1 in U251 and U87 is -17.8360 and -7.416,
respectively; 5.6092 and 8.7197 for RRM2; -4.08 and 6.74 for FDPS; 14.85
and 5.16 for HMGCR. Again, except for RRM1 and FDPS in U251, these
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genes would probably have not called our attention, but there is literature
in their favour.

4.4. Conclusion

In this chapter, we have evaluated the accuracy of the results obtai-
ned from Flux Balance Analysis based Gene Essentiality Analysis (FBA
based GEA) when networks contextualized with gene expression are used.
In order to carry out this research, we have used a new fast metabolic net-
work reconstruction algorithm introduced in this thesis (see Chapter 2.3).
We focused on the reconstruction of networks from samples in the Cancer
Cell Line Encyclopedia (CCLE) that had an available high-throughput gene
silencing experiment in project Achilles.

Current methods that apply gene essentiality analysis, to our knowled-
ge, lack an assessment of their results against random input, which would
allow us to distinguish them from those obtained because of algorithmic
artifacts or the rigidity or incompleteness of the reference network. Here,
we directly addressed this issue by evaluating the impact of cancer-speci�c
gene expression in GEA in comparison with randomly generated expression
patterns.

The results show that the resulting list of essential genes has a varying
degree of dependence on the reference network, the reconstruction algo-
rithm and context-speci�c expression data. Most relevant conclusions are
discussed in the following paragraphs.

On the one hand, we emphasize the need of a robust gene essentia-
lity analysis, as the general results seem insensitive to the reconstruction
process, at least when transcriptomic data is exclusively used. In particular,
using randomly generated expression patterns, we found essential genes that
are more likely to appear than others, which illustrate a higher dependence
on the reference network than on the context-speci�c expression data.

On the other hand, we found essential genes that are rare in the ran-
domly generated networks and recurrent in cancer samples. These can be
considered as highly dependent on the context-speci�c expression data and
are presumably the ones we would �nd more interesting at �rst glance.
However, the comparison to experimental high-throughput silencing data
cannot be considered to agree with the computational results, suggesting
the need to consider additional factors.

We believe the selection of the appropriate biomass reactions, or an
appropriate metabolic task function, is key in the whole process, as it plays
a central part in the de�nition of essentiality. In fact, the selection of an
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appropriate biomass function is probably one of the biggest challenges ahead
in the FBA based GEA methodology. The use of the biomass function is
well founded in bacterial metabolism, but it may not be the best option for
modeling some types of cancer. Furthermore, it is likely that this function
will di�er between di�erent cell lines. More than a biomass reaction we
will be probably looking for a cancer-speci�c metabolic task or objective
function, as recently proposed in Agren et al. (2014) and Yizhak et al.
(2014b).

Another possibility is that the reference network (from which our re-
constructions are derived) misses several reactions that would allow us to
capture more di�erences at the reconstruction level. It is known that the
central metabolism and some major pathways are well studied and repre-
sented in these networks, but a big part of the real metabolic possibilities
of the cells might still be missing. It is also important to note that this
approach does not consider in any way the cell rearrangement that may fo-
llow a knock-out intervention, which could provide an explanation for some
false-positive predictions.

It should also be noted that high-throughput gene essentiality experi-
ments are far from trivial, and their analysis is also complicated. Hence,
lists of essential genes based on the analysis of those experimental results
would also likely need follow-up experiments to con�rm them.

We would like to point out that the p-value of the KS-test does not seem
a good strategy to test the relevance of the obtained list of essential genes as
it may change depending on the number of obtained essential genes. This
can be seen in the results obtained with Recon 1, where the number of
obtained essential genes is higher and the p-values of the KS-test are lower.
However, checking the proportion of obtained essential genes with a score
below a de�ned threshold, it can be observed that it does not di�er much
from the proportion taking into account all the metabolic genes.

Despite these discrepancies between the predicted genes and the Achilles
data, we were able to �nd a number of genes in GBM with a higher frequency
in the samples than in the random networks which have been shown to
e�ectively reduce its proliferation when targeted (Chen et al., 2014; Lee et
al., 2003). We also found some additional genes with interesting references
in the literature (Woo et al., 2010; Gliemroth et al., 2003; Bababeygy et al.,
2009).

Constraint based modeling approaches have had a great success in the
microbial metabolic modeling research. The success has been possible in
part thanks to the great number of experiments and information that has
been gathered in those organisms. As cancer cell lines are less well charac-
terized than some microorganisms, data from projects like Achilles consti-
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tute a very valuable resource to boost the models' performance. Until now,
data on the real essentiality of metabolic genes was scarce. Although high-
throughput silencing experiment data is complex and may contain inaccu-
racies, it is our best chance to improve these models.

Overall, we believe that constraint based approaches hold great promise
in the study of cancer metabolism. Notwithstanding, for its application
towards the identi�cation of essential genes, the technique needs to carefully
consider the assumptions it makes and identify the correct formulation of
the question at hand. Our framework exposes these issues and can be a key
component to solve the �nal puzzle.





Chapter 5

Minimal Cut Sets through

speci�c reaction knock-outs

In this chapter, we establish the theoretical basis to design new methods
for the direct integration of di�erent sources of experimental data (e.g. gene
expression or gene silencing data) with metabolic networks aimed at the
prediction of essential genes and synthetic lethals. Speci�cally, we develop a
novel mathematical method able to directly evaluate which reactions should
be eliminated (if necessary) together with another speci�c reaction selected
by the user in order to completely eliminate the �ux through a given target
reaction, e.g. the biomass reaction. This method opens the door to new
ways of integrating experimental data with metabolic networks in order to
obtain information about essentiality without the need to contextualize the
network.

5.1. Introduction

The concept of Minimal Cut Sets was introduced in Klamt and Gilles
(2004) and re�ned in Klamt (2006). MCSs were de�ned as a minimal set of
reactions whose removal would render the functioning of a given objective
reaction impossible. Their relationship with Elementary Flux Modes and
the dualization of the main problem was mentioned in Klamt (2006) and
formally exploited in Ballerstein et al. (2012). With this theoretical breakth-
rough, it became possible to calculate MCSs using algorithms designed to
calculate EFMs. For example, the K-shortest EFM enumeration algorithm
(de Figueiredo et al., 2009) was used to enumerate MCSs in von Kamp and
Klamt (2014).

E�cient calculation of EFMs has been an active area of research in
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the last years (de Figueiredo et al., 2009; Kaleta et al., 2009; Kamp and
Schuster, 2006; Machado et al., 2012; Pey and Planes, 2014; Pey et al.,
2015; Rezola et al., 2011; Terzer and Stelling, 2008; Urbanczik and Wagner,
2005; Quek and Nielsen, 2014). Most of the algorithms have focused the
attention on calculating as many EFMs as possible. However, one may only
be interested in some EFMs that ful�ll some constraints. While, in theory,
a valid approach would be to calculate all the EFMs and then �lter them
according to the desired criteria, in practice it is currently impossible in large
networks, as the number of EFMs grows exponentially with network size.
It is this question that was addressed in a recent paper by Pey and Planes
(2014), where a Mixed Integer Linear Programming (MILP) formulation was
introduced to directly calculate EFMs satisfying a desired set of constraints.
For example, an EFM containing several reactions of interest can be now
directly calculated.

For the metabolic modeling community, it will be very valuable to di-
rectly calculate MCSs of certain characteristics. For instance, a MCS invol-
ving a speci�c reaction knock-out can be used to determine if it is possi-
ble to couple growth with the synthesis of a speci�c product (Klamt and
Mahadevan, 2015). In fact, strain design for the optimization of chemical
production, such as biofuels (Erdrich et al., 2014), is one of the main appli-
cations of MCSs. It is not necessary to solve a MCS problem to know if the
production of a chemical is coupled to growth but, in case it is not, a MCS
suggests the modi�cations necessary to make the coupling a reality. Another
possible application of MCSs in the �eld of human health involves �nding a
complementary target to an already druggable reaction. Here, MCSs would
be viewed as synthetic lethals for treating cancer or other diseases (Folger
et al., 2011; Frezza et al., 2011; Kaelin, 2005; Suthers et al., 2009).

In this chapter, we adapt the formulation in Pey and Planes (2014) to
achieve this goal. In the process, we stress that not all the EFMs in the dual
problem correspond to correct MCSs of the original network (Ballerstein
et al., 2012), which implies that not all the algorithms designed for the
calculation of EFMs can be directly applied to the calculation of MCSs
without careful consideration. The modi�cations made to the algorithm
in Pey and Planes (2014) are mathematically justi�ed and bring interesting
insights between the primal and the dual problem of the MCS computation.

5.2. Methods

A metabolic network of m metabolites and n reactions can be represen-
ted by an m × n stoichiometric matrix S, where each column represents a
reaction with negative coe�cients for the educts and positive coe�cients for
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the products. The activity of the reactions is represented by the �ux vector
v. Under the steady-state assumption, the sum of �uxes that produce a
compound are equal to the sum of �uxes that consume it (Eq. 5.1). Irre-
versible reactions can only carry positive �uxes (Eq. 5.2), while reversible
reactions can carry negative and positive �uxes.

S · v = 0 (5.1)

vi ≥ 0, ∀i ∈ Irrev (5.2)

We would like to be able to perform a given task, in our case, to carry
�ux through a given reaction (usually, this reaction is the biomass reaction):

tT · v ≥ v∗ (5.3)

where t is a vector of all zeros except for a 1 in the position of the
reaction we want to carry �ux through, and v∗ is the minimum amount of
�ux that the reaction should carry.

We are interested in a minimal group of reactions that, if blocked, would
render this task impossible. To �nd those, we de�ne the possible reaction
knockout constraints we could impose (Eqs. 5.4 and 5.5).

vi = 0, ∀i ∈ Rev (5.4)

vi ≤ 0, ∀i ∈ Irrev (5.5)

Note that for the knock-out of irreversible reactions we only limit their
upper bound (Eq. 5.5), as their lower bound is already zero because of the
irreversibility constraint (Eq. 5.2).

Following the theory in Ballerstein et al. (2012) and von Kamp and
Klamt (2014), we formulate the dual problem of the infeasible primal pro-
blem de�ned by the previous constraints (Eqs. 5.1-5.5), to obtain a new
feasible and unbounded problem (Eqs. 5.6-5.9).
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N ·


u
rp
rn
w

 =
[
ST I −I −t

]
·


u
rp
rn
w

 = 0 (5.6)

− v∗ · w ≤ −c (5.7)

rp ≥ 0, rn ≥ 0, w ≥ 0, c > 0 (5.8)

u ∈ Rm, rp ∈ Rn, rn ∈ Rn, w ∈ R (5.9)

This dual problem can be viewed as a new stoichiometric matrix N with
new �ux variables u, rp, rn and w, with their respective reversibility cons-
traints. When these variables take values di�erent from zero, they indicate
that their associated constraints in the primal problem are active. In par-
ticular, u variables are related to steady-state constraints, rp variables are
related to constraints limiting the upper bound of a reaction, rn variables
refer to constraints limiting the lower bound of a reaction and w variable is
linked to Eq. (5.3). An MCS is an EFM in this dual problem that contains
w and has minimal support in rp and rn, with the exception of rn variables
related to the irreversibility constraints (Eq. 5.2), which do not count for
the minimal support (Ballerstein et al., 2012).

Constraint in Eq. (5.7) forces w to have a value di�erent from zero, mea-
ning that its associated constraint (Eq. 5.3) must take part in the solution.
This constraint is forcing �ux through w, as c is a positive constant that
rules out the trivial solution. If we want a MCS involving a speci�c reaction
knock-out, we must also force �ux through its related variable.

Recently, Pey and Planes (2014) formulated an optimization model to di-
rectly obtain EFMs ful�lling several biological constraints, such as carrying
�ux through a group of speci�c reactions. The key insight was to acknowled-
ge in the problem formulation that an EFM has a single degree of freedom.
When we have an EFM and the �ux through one of its reactions is set, the
rest of the �uxes of that EFM are automatically and univocally determined.

Certainly, if we add one reaction activation constraint to the steady-
state constraint in a network composed of only irreversible reactions, the
extreme points of the feasible region they de�ne coincide with EFMs. In
an n-dimensional space, extreme points lie on n linearly independent and
binding constraints. They are mathematically represented as basic solutions,
where variables are divided into basic and non-basic variables. The value
of non-basic variables is set by their binding constraints (for example, a
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non-basic variables with a non-negative binding constraint will be set to
zero). The value of basic variables results from solving the system of linear
equations that is obtained once the value of non-basic variables has been
�xed.

An EFM can always be described with the steady-state constraints and
�ux inactivation constraints for those reactions that are not part of the
EFM, collectively de�ning n − 1 linearly independent and binding cons-
traints. Once we add one �ux activation constraint to this system, all the
�uxes are fully determined. Hence, if we want to include a second �ux acti-
vation constraint and obtain EFMs as solutions, we need to ensure that the
new constraint is redundant with respect to the binding constraints that
describe the EFM. Redundancy is guaranteed by forcing that this second
�ux activation constraint can be written as a linear combination of the rest
of the linearly independent and binding constraints. The tricky part here is
that we do not know a priori which reactions are active in the EFM and
which ones are not. In Pey and Planes (2014), mixed-integer linear program-
ming was used to select active reactions in the EFM and properly apply the
linear combination requirement.

The direct application of the method described in Pey and Planes (2014)
to our MCS problem would involve considering N as the initial network,
and w and our knock-out related variable rp and rn the reactions we want
to activate. Thus, we would make all the variables irreversible, splitting the
u variables into two other irreversible variables and follow the implemen-
tation described in that work (see Appendix C for the full formulation of
the optimization problem obtained following this strategy). The solutions
provided by this model constitute Elementary Flux Modes in the network
N . However, not all the EFMs in N correspond to MCSs in the original net-
work S (Ballerstein et al., 2012) and, more importantly, not all the EFMs
that contain our two target variables correspond to MCSs in the original
network S (see Section 5.3 for a toy example illustrating these events).

Following that approach, we obtain solutions that have minimal support
in u, rp, rn and w, but MCSs are de�ned as solutions with minimal support
in rp and rn variables related to knock-outs of reversible reactions, that in-
clude w. Hence, MCSs correspond to a subset of all the possible EFMs.
Interestingly, we realize that MCSs are closer to the concept of Generating
Flux Modes (GFMs) than EFMs. GFMs are elements of a convex basis
and have minimal support with respect to the set of irreversible reactions
(Larhlimi and Bockmayr, 2009; Rezola et al., 2011). In our case, irreversible
reactions are rp, rn and w; however, MCSs are minimal with respect to w,
rp, and the subset of rn variables related to knock-outs of reversible reac-
tions. This implies that not all the GFMs of the dual problem correspond to
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MCSs of the original network (see Section 5.3 for a toy example illustrating
this event).

In order to limit the solutions of the dual problem to proper MCSs,
we introduce two main modi�cations. The �rst one is to force the linear
combination constraint for all the columns related to u variables, regardless
of their value being di�erent to zero or not. This means that we no longer
need to split the u variables into two irreversible variables. As a bonus, the-
se variables no longer need related binary z variables, which are now only
associated with rp, rn and w variables. The second modi�cation consists in
treating the x variables, which represent the coe�cients of the linear com-
bination, as if they were the reaction �ux variables of the original problem
and constraining their reversibility accordingly. We present below the full
mathematical model:

minimize
∑
i

zpi +
∑
i∈Rev

zni (5.10)

subject to:
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rprn
w

 ≤M ·
zpzn
zw

 (5.14)

zpi + zni ≤ 1, ∀i ∈ Rev (5.15)
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
S 0
I 0
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−tT v∗

 · x =
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0
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0 + εw − δw
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M ·
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 (5.17)

rprn
w

 ≥ 0,

εpεn
εw

 ≥ 0,

δpδn
δw

 ≥ 0 (5.18)

xi ≥ 0, ∀i ∈ Irrev (5.19)zpzn
zw

 ∈ {0, 1} (5.20)

u ∈ Rm, rp ∈ Rn, rn ∈ Rn, w ∈ R (5.21)

x ∈ Rn+1 (5.22)

εp ∈ Rn, εn ∈ Rn, εw ∈ R (5.23)

δp ∈ Rn, δn ∈ Rn, δw ∈ R (5.24)

c > 0, b > 0 (5.25)

where α and M represent a su�ciently small and large constants, res-
pectively, and dp and dn are vectors of all zeros except for a single 1 in the
position related to the knock-out constraint that we want to activate. If the
knock-out we want to enforce involves an irreversible reaction we will only
set a 1 in dp and leave dn as a vector of all zeros. As in Pey and Planes
(2014), variables εp, εn, εw, δp , δn and δw allow the linear combination
constraint (Eq. 5.16) to be applied only to active variables with the help of
variables zp, zn and zw and their linking constraints (Eqs. 5.14 and 5.17).
The optimal solution of this optimization problem corresponds to a MCS
that includes our desired reaction knock-out.

The formulation of the problem can be simpli�ed (see Appendix C), but
we have written it here in a way that the similarities and di�erences with
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the formulation in Pey and Planes (2014) are easier to spot with the aim
to ease the understanding of the model.

The reasons why these modi�cations work have a mathematical under-
pinning that we proceed to explain in the following paragraphs.

In contrast with Pey and Planes (2014), u variables are not split into
two irreversible steps and, therefore, the linear combination (Eq. 5.16) must
always apply to them. In particular, since the value 0 is not a bound for u
variables and they can take any real value, they should always be considered
as basic variables and thus, they must take part in the linear combination
constraint. With this modi�cation alone, the algorithm goes from calcula-
ting EFMs to obtaining GFMs satisfying several constraints (see Appendix
C). However, as noted above, this is not su�cient to obtain MCSs.

The justi�cation for the second modi�cation is somewhat more di�-
cult to grasp. It has its roots in duality theory and it involves the correct
manipulation of equality constraints in Eq. (5.11). Dual variables of equa-
lity constraints are always unrestricted sign variables, but dual variables of
inequality constraints are always either non-negative or non-positive varia-
bles. In this context, and because we do not care about their value in the
optimal solution, rn variables related to the irreversibility constraints are
actually explicit excess variables in Eq. (5.11) and, in order to directly obtain
MCSs, they can be removed without altering the solution space, transfor-
ming the equalities where they appear into greater than or equal inequalities
(see Appendix C). This action has consequences in the linear combination
requirement introduced in Pey and Planes (2014), here Eq. (5.16), as now
the linear combination coe�cient variables x cannot be of unrestricted sign
type by default and must be non-negative in these inequalities (see Appen-
dix C). In fact, those x variables are dual variables of the corresponding
constraints and they must abide by duality theory. Eventually, we have
that the x variables must obey the same irreversibility constraints that the
r variables of the original problem do.

These modi�cations have a surprising consequence in the interpretability
of the problem. First, x variables can be assimilated to the �ux variables of
the original problem and, second, we are forcing S ·x = 0, which assimilates
to the steady-state constraint of the original model. This means that the
values of the x variables in a valid solution of our direct MCS problem
formulation can be interpreted as a valid �ux distribution in the original
network.

Finally, we can iteratively enumerate MCSs ful�lling our conditions by
introducing a new constraint that eliminates previously obtained solutions
(de Figueiredo et al., 2009; von Kamp and Klamt, 2014).
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∑
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5.3. Results

In this section, we �rst introduce a toy example where it can be seen
that not every EFM in the dual network corresponds to a MCS in the
primal network (Ballerstein et al., 2012) and check that our algorithm is
capable of correctly identifying MCSs for each reaction. Then, we apply
our algorithm to two networks of di�erent sizes, namely the E. coli core
metabolic network and the iAF1260 E. coli model, comparing the behaviour
of our algorithm with that of the enumeration approach presented in von
Kamp and Klamt (2014). The model was implemented in Matlab, using
CPLEX as the underlying optimization software. The computations were
carried out on a 64 bit Intel Xeon E5-1620 v2 at 2.70 GHz (4 cores) and 16
GB of RAM.

5.3.1. Toy example

Figure 5.1 shows a primal toy network and the dual network arising
from its corresponding MCS problem. This network has only one reversible
reaction (v2) and we will consider v8 as the target reaction. The network
includes an irreversible reaction, v9, that is not related in any way to the
target reaction v8, hence, there is no MCSs containing v9 that blocks the
activity of v8. However, there exists an EFM containing the input reaction
for node v9 in the dual network (e.g. rp9, rp6, rn5, uB), but that EFM does
not contain our target related variable w.

Now we draw the attention to v6. This reaction participates in a MCS
with v2 and v4. It is easy to see that the dual network contains an EFM
composed of the inputs to v2, v4 and v6 (rp2, rp4 and rp6 respectively), the
arcs uC , uD and uE and the target w. However, there is also another EFM
that contains the input to node v6 (rp6) together with the input to node
v1 (rp1), the output to node v5 (rn5), the arcs uA, uC , uD and uE and the
target w. This EFM would correspond to a MCS composed of v1 and v6,
which is incorrect because v1 is already a MCS on its own. It turns out that
this second EFM involves less knock-out related dual variables than the
former (2 vs. 3, because the output of node v5, rn5, does not count), which
implies that the direct application of the formulation in Pey and Planes
(2014) to the dual network asking for the shortest EFM containing w and
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Figure 5.1: Example metabolic network illustrating an original network in the primal
and the associated dual network of its MCS problem. The original network only has one
reversible reaction, v2. The target reaction we want to block the �ux through is v8. The
external input reactions to the reaction nodes in the dual network correspond to rp va-
riables and the external output reactions to rn variables. MCSs of this network are: {v1},
{v7}, {v2, v3}, {v2, v4, v5} and {v2, v4, v6}. Two dual EFMs of v1 knock-out that include
w are {rp1, rn9, uA, uB , uC , uD, uE , w} and {rp1, rp6, rn5, uA, uC , uD, uE , w}. The former
corresponds to a MCS, while the latter does not.

the input to v6 would obtain this EFM �rst. This invalidates the direct
use of their formulation for obtaining MCSs involving a speci�c reaction
knock-out.

However, the new model introduced in this work correctly captures the
MCS, as the incorrect MCS solution is infeasible for it. In particular, the
values of the x variables (corresponding to the coe�cients of the linear
combination in Eq. 5.16) in the case of the invalid EFM are all non-negative
except for x9, which has a negative value that our new formulation forbids.
We can assimilate the values of the x variables to a �ux distribution in the
primal network, resulting in reactions v6, v3, v7 and v8 carrying �ux in the
forward direction and reaction v9 carrying �ux in the backward direction.
Obviously, this �ux distribution is not a valid one, because v9 is irreversible.
Our new model takes this into account and renders this solution infeasible.

Because of the way that MCSs are enumerated using k-shortest in von
Kamp and Klamt (2014), from smallest to largest and taking into account
only variables related to knock-out constraints, EFMs in the dual network
that are not MCSs in the primal network are avoided. In the case of the
network in Figure 5.1, the EFM corresponding to the MCS that contains
only v1 is obtained before the invalid EFM that contains v1 and v6. Hence,
the solution enumeration constraint avoids the calculation of the invalid
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EFM, as it contains an already calculated MCS, v1.

5.3.2. Application to E. coli core metabolism

Here, we apply our algorithm to the E. coli core network available in
the COBRA Toolbox (Schellenberger et al., 2011). This network contains
72 metabolites and 95 reactions. We conducted structural analysis of the
reported network, so we did not take into account possible growth medium
constraints (e.g. glucose and oxygen supply) or compound production re-
quirements (e.g. ATP maintenance).

As with any other MILP, the time needed to �nd the optimal solution
may widely vary depending on the chosen reaction. This disparity in pro-
blem di�culty can already be experienced in this simple network. Taking
the biomass reaction as our target for the MCSs, we calculated one MCS
for each reaction. We used the reduced formulation, presented in Appendix
C, which deals with a lower number of variables than the one introduced in
the Section 5.2. The median time to obtain a solution was 0.08, but a small
number of reactions required more than 15 seconds to reach the optimal
solution. All the MCSs were obtained in less than 60 seconds nonetheless.

We also enumerated 1000 MCSs using a custom implementation of the
approach described in von Kamp and Klamt (2014). The median time in this
case was 0.28 seconds, but it steadily increased as the number of reactions
participating in the MCSs increased (the median time needed to obtain the
last 200 MCSs was 0.80 seconds).

If one is interested in collecting many short MCSs, the enumeration
approach could be more appropriate than our method. However, if one is
interested in the MCSs in which a particular reaction participates, our ap-
proach will be more suited. Among the 1000 MCSs calculated with the
enumeration approach, there were 18 MCSs involving only 1 reaction, 111
involving 2, 223 involving 3, 396 involving 4, and 252 involving 5. On the
other hand, when asking one MCSs for each of the 95 reactions in the E.

coli core metabolic network, 18 where MCSs on their own, 36 participated
in a 2 reaction MCS, 11 in a 3 reaction MCSs, 7 in a 4 reaction MCSs, 10 in
a 5 reaction MCS, 2 in a 6 reaction MCS, and 3 in a 8 reaction MCS, while
8 reactions did not participate in any MCS. If our knock-out of interest
only participates in high-order MCSs, with the enumeration approach we
would have needed a lot of time to obtain it. If it does not participate in
any MCS, we would need to enumerate all the possible MCSs to �nd it out.
Our method clearly poses an advantage in these situations.
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5.3.3. Application to E. coli iAF1260 metabolic network

The E. coli iAF1260 (Feist et al., 2007), available for download at the
BiGG database (Schellenberger et al., 2010), contains 1668 metabolites and
2382 reactions. As before, structural analysis of the reported network was
conducted. We calculate 1000 MCSs with the enumeration approach (von
Kamp and Klamt, 2014) and one MCS for each reaction with the reduced
formulation of our method (2382 MCSs in total). These MCSs are all rela-
ted to the biomass reaction. In this case, we only allowed our algorithm a
maximum of 5 minutes to �nd each MCS.

The increased complexity of a genome-scale model evidenced numerical
di�culties on the implementation of the MILP models (see Appendix C).
Using a custom implementation of the enumeration approach, 42% of the
calculated 1000 MCSs were not actual MCSs. With our method, focusing
only in those solutions that were obtained in less than the 5 minute time
limit (1508 out of 2382), only 6.76% were not correct MCSs (but 61.14%
did not have any associated MCS, leaving only 32.1% MCSs). The E. coli
core network is already capable of showing incorrectly calculated MCSs in
some cases, which can be shown to be artifacts of limited computational
precision and not due to a �aw in the theory of MCSs enumeration in von
Kamp and Klamt (2014) or in our method. Note however that devising an
implementation that can broadly deal with these di�culties is out of the
scope of this Chapter and will be addressed in the future.

The enumeration approach yielded MCSs with a maximum of 3 reaction
knock-outs, while our approach was capable of discovering MCSs involving
up to 5 reaction knock-outs among the solutions returned in less than 5
minutes. More importantly, the size of the MCSs can go as far as to include
121 reactions if one analyzes the solutions returned by the algorithm after
hitting the 5 minute time limit that correspond to correct MCSs. These
solutions are not guaranteed to be optimal and thus they may not be correct
MCSs (although some of the reactions included in that solution will form
a proper MCS) or a guarantee that the reaction has no associated MCS if
no solution was returned. However, 59.84% of the solutions returned after
hitting the time limit turned out to be correct MCSs (17.73% of them
contained no MCS and 22.43% were incorrect MCSs). A histogram of the
sizes of these MCSs is shown in Figure 5.2.

The median time to obtain each one of the 1000 MCSs using the enume-
ration approach was 22.5 seconds. In contrast, the median time to obtain
a solution with our method was 15.4 seconds. Focusing only on solutions
obtained in less than 5 minutes, the median time was 18.5 seconds if the
reaction of interest participated in a MCS and 0.05 seconds if it participated
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Figure 5.2: Histogram of the number of reaction knock-outs participating in the MCSs
returned by the direct MCS calculation algorithm when hitting the time limit on the E.

coli iAF1260 metabolic network case study.

in none. This case shows that our algorithm is applicable to the genome-
scale setting.

5.4. Applications

We envision several applications for the method presented here. In this
section, we outline some of them.

In metabolic engineering, it can be used to determine what modi�cations
are necessary to couple the production of a desired compound with the
growth of the organism. Note that, in order to know if the production of
a compound is coupled to the biomass production, it is not necessary to
calculate a MCS that involves the production reaction but, if the answer
is negative, calculating such a MCS will suggest modi�cations to enforce
the coupling. If the production reaction goes with some other reactions in a
MCS for the production of biomass, blocking those other reactions will force
the coupling between the production reaction and the biomass production,
since if the production reaction happens to have zero �ux, the MCS will be
completed and no biomass will be possible.

This method can also aid in metabolic network curation. If information
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about experimentally obtained essential genes do not match the predictions
made by the network, the method will suggest the elimination of reactions
that will make the experimentally observed genes also essential in the model.

In the �eld of human health, if we have a drug that we know limits the
activity of a speci�c reaction, we can search for other reactions that we can
also limit in order to strengthen its e�ect. In other words, we can use MCSs
to �nd synergistic targets of an already druggable reaction.

Finally, and the idea that originally motivated this development, is to
use MCSs to determine the essentiality potential of a reaction given experi-
mental evidence of the reactions in the network. Until now, as we have seen
in this thesis, in the framework of constraint based modeling, gene essentia-
lity is assessed after network contextualization. Our aim is to �nd a way to
circumvent the need to contextualize the network, so that possible alterna-
tive networks to the contextualization problems do not bias our results. The
hypothesis is that, if the genes coding the reactions that go in the MCS of
a speci�c reaction have low expression values, that reaction might be more
essential than if the expression of the accompanying reactions is higher.

To do this, we can weight the objective function of our method with
scores derived from gene expression data or other experimental sources (Eq.
5.27).

minimize
∑
i

wi · zpi +
∑
i∈Rev

wi · zni (5.27)

Obtaining essentiality potential scores for each reaction in the network
would allow us to rank them and compare the ranking to experimental gene
essentiality data, such as the one provided by project Achilles (Cowley et
al., 2014). Moreover, given the importance of the biomass reaction de�nition
for an accurate gene essentiality prediction using constraint based modeling
techniques, we can use known essential genes and the essentiality potential
approach outlined in this section to test and �nd an appropriate biomass
function.

5.5. Conclusions

In this work, we have introduced an optimization model to calculate
MCSs involving a speci�c reaction knock-out. We have emphasized that
not all the EFMs in the dual problem correspond to valid MCSs in the
primal problem (Ballerstein et al., 2012). Also, we acknowledge that MCSs
are closer to the de�nition of GFMs of the dual problem than to EFMs,
although not all the GFMs in the dual problem correspond to valid MCSs in
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the primal problem either. As a side e�ect, this work extends the formulation
in Pey and Planes (2014) to the calculation of GFMs satisfying several
constraints and deepens in the mathematical understanding of the model.

This formulation is important because it makes possible to �nd if each
reaction can participate in a MCS or not. Without it, the only possible way
would be to enumerate all the MCSs (using the method in von Kamp and
Klamt (2014), for example) until one incorporating the reaction of inter-
est is found. This may become impractical, as the enumeration process is
currently limited by memory and time constraints. Given that some reac-
tions may participate in very high order MCSs, this drawback is evident.
Our formulation can also be used to enumerate those MCSs that include a
particular reaction knock-out.

Looking at the model and the solution a bit more in depth, we can realize
that, whenever the model chooses to activate a particular reaction knock-
out, the x variable associated to that reaction that has been knocked-out
gets equal to zero. This is in line with interpreting the x variables as �uxes
in the primal network: if the reaction has been knocked-out it cannot carry
any �ux. As an exception, the x variable associated to the reaction whose
knock-out we are interested in gets a �xed value di�erent from zero. Thus, all
the possible knock-outs of reactions that participate in the �ux distribution
(x value di�erent from zero) are discarded, except for the one we were
interested in. Then, the algorithm chooses the minimal number of knock-
outs that make all the other remaining knock-out constraints redundant.

Regarding non-optimal solutions to the MCS problem formulation, if we
stop the solution process before reaching optimality, the last feasible solution
calculated will not necessarily be a MCS, although it will contain one. The
MCS contained in that solution will not be necessarily optimal according
to our objective function either. It may exist another MCS involving less
reaction knock-outs than the MCS contained in the non-optimal solution.

Future work will include considering how to deal with more general
reaction bounds as well as considering multiple reaction knock-out or ge-
ne knock-out constraints. The formulation can also be easily extended to
consider the calculation of MCSs including several speci�c reaction knock-
outs constraints. Importantly, we will adapt the approach to incorporate
experimental data and use it to rank reactions according to an essentiality
potential score.

In summary, we believe that this work will boost new research in meta-
bolic engineering around MCSs, including its applications in strain design
and human health. Moreover, the insights brought by our formulation could
lead to more e�cient algorithms for the calculation of MCSs.





Chapter 6

Conclusion

This brief chapter provides a summary of the work presented in this
thesis, highlights its main conclusions and discusses future lines of research.

The research carried out in this thesis has been focused on the deve-
lopment of new constraint-based modeling methods that would integrate
experimental data with prior knowledge about metabolism. The goal was
to gain new insights on the data and improve the prediction of targets for
the treatment of cancer. We have developed two new fast metabolic network
contextualization algorithms and a new algorithm capable of identifying Mi-
nimal Cut Sets that involve a speci�c reaction knock-out. All these three
contributions open up new possibilities of analysis, some of which exempli-
�ed in this thesis.

After giving an overview of di�erent metabolic network contextualiza-
tion approaches, we have introduced a novel fast reconstruction method in
Chapter 2. As other reconstruction algorithms, ours was motivated by some
speci�c needs: speed and FBA compatibility of the contextualized network.
This new reconstruction algorithm is conceptually similar to iMAT (Shlomi
et al., 2008) in the way it reasons about the inclusion or exclusion of each
reaction depending on its experimental evidence, and achieves similar speed
performance to FastCore (Vlassis et al., 2014), a recently published fast re-
construction algorithm. Additionally, the use of Barcode (McCall et al.,
2011) for processing gene expression data allowed us to use our algorithm
for deriving one contextualized network from each sample we had access to,
while other algorithms generally summarize the data from di�erent samples
and build a single network for a group of samples. This fast reconstruction
algorithm has made possible the study described in Chapter 4.

In Chapter 3 we have introduced a new metabolic network reconstruc-
tion method focused on metaproteomic data and geared towards the re-
construction of bacterial communities. We have applied this method to
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gain insight into the data obtained from two di�erent naphthalene-enriched
bacterial communities. One of the most interesting insights gained by our
approach was the discovery of only one of the communities being able to
metabolize geraniol while the other was the only one able to metabolize
�uorobenzoate. This observation was experimentally validated after noti-
cing it when analyzing the contextualized networks using KEGG pathways,
showing that network-based methods present a promising strategy for ex-
ploiting the value of experimental data. Given the recent interest on gut
microbiota and the study of other bacterial communities in their associa-
tion with human health, we anticipate this and similar approaches to have
a profound impact on future discoveries.

One of the core questions we wanted to address in this thesis has been
covered in Chapter 4. There, we have evaluated the accuracy of the re-
sults obtained with the FBA based Gene Essentiality Analysis methodo-
logy when networks contextualized with cancer gene expression data are
used, and compared it to the results obtained from networks contextuali-
zed with random expression data. Key to this study has been the network
contextualization algorithm introduced in Chapter 2 and the availability
of high-throughput gene essentiality experimental data. The results showed
that the in-silico obtained essential genes did not have a satisfactory degree
of agreement with the high-throughput experimental data. We pointed out
to the de�nition of the biomass reaction as critical in obtaining accurate
results. Similarly, we emphasized the need of taking into account cellular
rearrangement, which may be neglected when network contextualization al-
gorithms are used in the pipeline. However, as analyzing high-throughput
essentiality data presents its own challenges, we also searched in the lite-
rature some of the obtained genes, and found some of them to be indeed
related with essentiality. These �ndings, as well as the successful study in
Chapter 3, maintains this constraint-based modeling approach as a valuable
tool for the study of cancer metabolism and the search of new therapeutic
targets that still needs some development in order to be fully functional.

Finally, in Chapter 5 we have developed a new formulation to obtain Mi-
nimal Cut Sets that involve a speci�c reaction knock-out. The new insights
obtained in the process, such as the relation between the MCS solution and
a related �ux distribution that is obtained at the same time, will allow to
have a better understanding of the problem and lead to new and better al-
gorithms to solve it. Despite the very theoretical nature of the chapter, the
method opens up new possibilities to the integration of experimental data
with metabolic networks in order to characterize the importance of each
reaction with respect to a given phenotypic objective (e.g. cellular prolife-
ration in the case of cancer) without the need of network contextualization.
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6.1. Future lines

The contributions of this thesis pave the way to further developments in
constraint-based modeling analyses. On the one hand, it will be interesting
to use the Bacterial Community Reconstruction algorithm for analyzing
data coming from di�erent samples of gut microbiota, where, given the ele-
vated number of organisms, a meta-network approach is currently the most
sensible option. On the other hand, the Fast Reconstruction algorithm in
Chapter 2 has been used only with gene expression data, but it can be
easily adapted to handle RNA-Seq data, which is becoming more preva-
lent nowadays. In addition, the fast nature of the reconstruction algorithm
would allow us to extend the FBA based Gene Essentiality Analysis done
in Chapter 4 to other candidate biomass reactions, including the de�nition
of reactions that describe a given metabolic task di�erent from growth. The
comparison of the results to the high-throughput gene essentiality experi-
ments would inform what biomass de�nitions better represent the cancer
metabolic phenotype.

Finally, the method for the direct calculation of MCSs involving a spe-
ci�c reaction knock-out presented in Chapter 5 provides a solid mathema-
tical ground for the development of new approaches, necessary because of
the complexity of the problem and its potential applications. Among all
the possible applications for the method outlined in Chapter 5, we would
like to highlight the one involving the integration of expression data. This
idea proposes to rank the reactions in a network according to an essentiality
potential score obtained by weighting the objective function of the problem
with experimental data. The hypothesis is that, if the genes coding the reac-
tions that go in the MCS of a speci�c reaction have low expression values,
that reaction might be more essential than another one for which the reac-
tions that go with it in the MCS have a higher expression. Furthermore,
we could use the information on known essential and non-essential genes to
design or test a biomass reaction de�nition that leads to results that agree
with the experimental observations. Adapting current algorithms for this
task, given the increasing size of human genome-scale metabolic networks
and numerical issues reported in Chapter 5, will be a necessary research
direction in the future.

In conclusion, with the growing availability of heterogeneous �omics
data, extending the mathematical models presented in this doctoral thesis
to make a synergistic use of them will constitute a major goal in the future.
This is particularly relevant for understanding molecular basis of complex
diseases, such as cancer, where a complete understanding requires multi-
omics approaches.





Appendix A

iMAT modi�cation

As discussed in Chapter 2, there are several proposals of reconstruction
algorithms in the literature, like MBA (Jerby et al., 2010), MIRAGE (Vitkin
and Shlomi, 2012), GIMME (Becker and Palsson, 2008), GIM3E (Schmidt
et al., 2013), INIT (Agren et al., 2012), iMAT (Shlomi et al., 2008), MADE
(Jensen and Papin, 2011). Most of these algorithms rely on Mixed Integer
Linear Programming (MILP) in order to select the active reactions for the
contextualized reconstruction according to some prede�ned optimality cri-
teria. Usually, each reaction is assigned a score as to how likely it is to be
present in the reconstruction under consideration. This score can be obtai-
ned from genomics, transcriptomics, proteomics or other sources of data,
or even from a combination of some or all of them. All the reconstruction
methods have their place as some may be better suited for the integration of
one type of data than others. Likewise, the results obtained from each one
of them are not easily comparable, as each one aims for slightly di�erent
things.

In our case, our algorithm is closest (in the way it treats the inclusion of
reactions) to iMAT (Shlomi et al., 2008). The original optimization model
proposed by iMAT for network reconstruction is described in Chapter 2 by
Eqs. (2.1)-(2.8).

These optimization problem aims to strike a balance between the inclu-
sion of H reactions and the exclusion of L reactions. It does not directly
consider the inclusion of reactions that are not H or L. Our algorithm (Sec-
tion 2.3) includes a term to control the inclusion of those reactions (M set)
and promote compact solutions.

Aware of the possible existence of alternative solutions, iMAT proposes
an iterative solution scheme to assign a con�dence score for the inclusion
or exclusion of each reaction. This step, however, is not compulsory for our
task, and we will only solve the optimization problem once.

93



94 Appendix A. iMAT modi�cation

iMAT does not require a de�nition for the growth medium nor the spe-
ci�cation of a biomass function, although they can be included into the
formulation if desired (Shlomi et al., 2008). When comparing iMAT to our
algorithm, we will set the same medium conditions and ask for a minimum
biomass production in order to have them in the same conditions. Another
modi�cation we will introduce to iMAT is in the de�nition of ε, which will
be selected depending on the reaction bounds, as we do in our algorithm.

max
v,y+,y−

(
∑
i∈RH

(y+i + y−i ) +
∑
i∈RL

y+i ) (A.1)

subject to:

S · v = 0 (A.2)

vmin ≤ v ≤ vmax (A.3)

vbiomass ≥ v∗biomass (A.4)

vi + y+i (vmin,i − ε) ≥ vmin,i i ∈ RH (A.5)

vi + y−i (vmax,i + ε) ≤ vmax,i i ∈ RH (A.6)

vmin,i(1− y+i ) ≤ vi ≤ vmax,i(1− y+i ) i ∈ RL (A.7)

v ∈ Rm (A.8)

y+i , y
−
i ∈ [0, 1] (A.9)

εvmax,i = δ · |vmax| (A.10)

εvmin,i = δ · |vmin| (A.11)

We select δ = 0,10, the same value we use in our algorithm. When
retrieving the solution, we consider as active any reaction with �ux greater
than 10−8. If ε is lower than 10−8, we set it to that quantity instead.

We use Cplex to solve the optimization problem. In addition, we exit
the optimization process when the relative optimality gap is below 0.5%
(gap between the relaxed problem solution and the best integer solution
found), as closing the gap completely can be extremely memory and time
consuming and adds little to the solution quality.
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Supplementary Material for

Reconstruction of a

naphthalene-degrading

bacterial community

This appendix gives additional details on the reconstruction model intro-
duced in Section 3.2 and its application on the reconstruction of a naphthalene-
degrading bacterial community analyzed in Chapter 3.

B.1. Objective function weights

Penalty (pi) and bonus (bi) terms in Eq. (3.4) of Section 3.2 are the
sum of various concepts. All of the reactions in the reference database start
from a penalty value of 10. Reactions in set D are penalised with 90 units.
In addition, as we treat all reactions as being potentially reversible, the
reconstruction algorithm is able to use irreversible reactions in the less fa-
vourable annotated direction; however, this choice implies a penalty of 1000.
Penalised reversibility changes were also used in the Model SEED approach
(Henry et al., 2010). Finally, a penalty of 10000 is given to reactions in the
lowly likely set (set L). We do not force their �ux to be zero because their
absence is always hypothesised with a certain p-value, and with very low
probability, they may therefore be active. It should be noted that we also
add a small penalty (5) to exchange reactions and transporters that do not
act via di�usion.

Concerning bonus terms, reactions in the highly likely set (H set) re-
ceive a bonus of 9. We also add a small bonus (5) for reactions de�ned as
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Table B.1: Summary of the penalty and bonus used in Eq. (3.4).

Penalty (pi) Value Description

i ∈ R 10 Default penalty for all reactions
i ∈ D 90 Penalty for using reactions in D
i ∈ Irrb 1000 Penalty for using an irreversible

reaction in the backward direction
i ∈ L 10000 Penalty for using reactions from the

lowly likely set
Bonus (bi) Value Description

i ∈ H 9 Bonus for using reactions from the
highly likely set

spontaneous or described as being guided by di�usion.
Finally, as in the Model SEED approach (Henry et al., 2010), we take

into account the coverage of experimental data in annotated modules, e.g.,
from the Kyoto Encyclopedia of Genes and Genomes (KEGG) (Kanehisa
et al., 2012). These modules group a small number of reactions into com-
mon metabolic functions and can be used to provide additional information
for the reconstruction. In particular, completion of modules that are well
represented with metaproteomic data is favoured during the reconstruction
process, which is realised by providing a bonus to the reactions in D equal
to 90 multiplied by the average coverage of its related modules. Module
coverage is determined by the percentage of reactions from the H set that
are active in the module.

A summary of the penalty and bonus terms can be found in Table B.1.
In particular, the weights for �uxes in Eq. (3.4) are roughly as follows:
(pi−bi) ≈ 1 for reactions in H; (pi−bi) ≈ 10 for reactions inM ; (pi−bi) ≈
100 for reactions in D; (pi − bi) ≈ 1000 for backward irreversible reactions;
and (pi − bi) ≈ 10000 for reactions in L.

B.2. Reaction classi�cation example

In order to obtain a context-speci�c metabolic network for our metapro-
teomic data, we need a collection of reactions from which to build the draft
network. All those reactions are automatically assigned to the set D. Then,
according to the data we have measured, that classi�cation may change.

Assume we have the data in Table B.2. Each enzyme has been identi�ed
with a di�erent value in each of the samples. In addition, the enzymes
have been assigned to some organism taxonomy in each sample. It can be
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Table B.2: Toy example of metaproteomic data.

Enzyme CN1 CN2 Taxonomy CN1 Taxonomy CN2
E1 1.1 0.9 Organism1 Organism1
E2 0.7 0 Organism2 None
E3 2 1.2 Organism3 Organism2

observed that enzymes both E1 and E3 have measures in CN1 and CN2,
so the reactions associated to those enzymes are assigned to the set H in
both scenarios. On the other hand, E2 has only been identi�ed in CN1,
thus it is classi�ed as H in CN1 but as L in CN2. We can also see that E3
has a value more than 1.5 times higher in CN1 than in CN2, so E3 is also
assigned to the set K in CN1, but not in CN2. Lastly, we can observe that
the enzymes identi�ed in CN1 have been assigned to Organism1, Organism2
and Organism3, while the enzymes identi�ed in CN2 have been assigned to
Organism1 and Organism2. With this information, we check the genome
annotation of those organisms and see which reactions can be associated to
the enzymes encoded in them. Reactions that are still classi�ed as D but
can be found in the genomes of Organism1, Organism2 and Organism3 will
be assigned to the set M in CN1, while only the ones found in genomes of
Organism1 and Organism2 will be assigned to M in CN2.

B.3. Genome information

As noted in Chapter 3, using full-length and partial 16S rRNA gene
sequences obtained through a metagenomic approach (Guazzaroni et al.,
2013), 13 and 12 distinct species were found to constitute the CN1 and CN2
communities, respectively. This information was used to re�ne the network
reconstruction process. In particular, we downloaded a set of related genome
annotations from the KEGG website for CN1 and CN2, established on the
basis of phylogenetic a�liations (Guazzaroni et al., 2013). Full details can
be observed in Table B.3 and Table B.4.

B.4. Culture medium

Full details for the minimal medium based on naphthalene used in Chap-
ter 3 can be found in Table B.5. The maximum input �ux for these com-
pounds was set to 100 units.
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Table B.3: KEGG genomes used to help in the reconstruction of CN1.

Taxonomy KEGG abbreviation

Achromobacter axy

Azospirillum

azl
ali
abs

Comamonas ctt

Mesorhizobium

mlo
mci
mop
mam

Microbacterium mts

Planctomycetes

rba
psl
plm
pbs
ipa
phm

Pseudoxanthomonas
psu
psd

Singulisphaera acidiphila saci

Table B.4: KEGG genomes used to help in the reconstruction of CN2.

Taxonomy KEGG abbreviation

Achromobacter axy

Acidovorax

aav
ajs
dia
aaa
ack

Azospirillum

azl
ali
abs

Pseudomonas stutzeri GV 1

psa
psz
psr
psc
psj
psh

Pseudomonas sp. ppuu
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Table B.5: Allowed medium for the reconstruction process.

SEED ID Name

cpd00618 Naphthalene
cpd00254[e] Mg2+

cpd00048[e] Sulfate
cpd00209[e] Nitrate
cpd00013[e] NH3

cpd10516[e] Fe3+

cpd00099[e] Cl−

cpd00063[e] Ca2+

cpd00205[e] K+

cpd00009[e] Phosphate
cpd00001[e] H2O
cpd00007[e] O2

B.5. CN1 and CN2 pathway examination

We used KEGG pathways to analyze CN1 and CN2 reconstructed meta-
bolic networks. KEGG o�ers the possibility to colour reactions using KEGG
reaction identi�ers or EC numbers. We decided to use KEGG reaction iden-
ti�ers, since KEGG is not an organism speci�c database and, therefore, ECs
may involve more reactions than required for the reconstruction (Thiele and
Palsson, 2010). It should be noted that as CN1 and CN2 reconstructions we-
re based on the Model SEED database, reactions need to be �rst translated
into their corresponding KEGG reaction identi�ers.

As noted in Chapter 3, reactions in H that were included in the re-
construction were coloured red; reactions in M that were included in the
reconstruction were coloured green; reactions in D that were included in
the reconstruction were coloured blue; and reactions in L that were inclu-
ded in the reconstruction were coloured grey. In addition, metabolites can
also be coloured using KEGG compound identi�ers. We coloured all the
compounds included in the reconstructed network green.

It should be noted that, despite the advantages of using KEGG maps,
the colouring process is not straightforward and may include some mistakes.
The reason is mainly because an EC number is potentially related to more
than one reaction. Therefore, di�erent results can be obtained colouring the
pathway using EC numbers or KEGG reaction identi�ers.

As an illustration of this process, Figure B.1 shows the KEGG pathway
�Histidine metabolism� in CN1 and CN2.

As detailed in Chapter 3, we compared the KEGG maps in CN1 and
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Figure B.1: The KEGG histidine metabolism pathway in A) CN1 and B) CN2.
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Table B.6: Ranking of the KEGG pathways prior to and after reconstruction using
metaproteomic data for CN1 and CN2. Note: �NaN� implies that no reactions from a
map have been included in the CN1 and CN2 metabolic network, and therefore, the
score is not applicable

KEGGID Name CN1 CN2 Score Rank Rank after
map00061 Fatty acid biosynthesis 15 33 9.81818 1 58
map00130 Ubiquinone and other terpenoid-quinone biosynthesis 5 17 8.47059 2 73
map01040 Biosynthesis of unsaturated fatty acids 5 17 8.47059 3 13
map00905 Brassinosteroid biosynthesis 5 15 6.66667 4 NaN
map00230 Purine metabolism 29 46 6.28261 5 6
map00240 Pyrimidine metabolism 17 27 5.7931 6 17
map00040 Pentose and glucuronate interconversions 0 5 5 7 55
map00680 Methane metabolism 13 23 4.34783 8 16
map00402 Benzoxazinoid biosynthesis 1 6 4.16667 9 87
map00480 Glutathione metabolism 8 14 3.73333 10 40
map00670 One carbon pool by folate 5 11 3.27273 11 24
map00030 Pentose phosphate pathway 8 10 3.07692 12 42
map00290 Valine, leucine and isoleucine biosynthesis 9 16 3.0625 13 46
map00400 Phenylalanine, tyrosine and tryptophan biosynthesis 6 12 3 14 9
map00521 Streptomycin biosynthesis 0 3 3 15 25

CN2 using a score, Jp, derived from the Jaccard distance (Eqs. 3.10-3.12).
For illustration, in the case of the KEGG pathway �Histidine metabolism�
shown in Figure B.1, the total number of reactions that are active in the
CN1 and CN2 reconstructions is 22, with only 7 being common to both.
Hence, the corresponding Jaccard index is ∼ 0,32, and the Jaccard distance
is ∼ 0,68. The number of reactions in CN1 that are not present in CN2 is
7, while the number present in CN2, but not in CN1, is 8, and, thus, the Jp
score assigned to this pathway is 8 · (∼ 0,68) =∼ 5,45.

The same analysis was conducted for each KEGG map in CN1 and CN2.
For completeness, we also analysed di�erences prior to the reconstruction,
only considering and mapping the metaproteomic data from CN1 and CN2
onto the KEGGmaps. Table B.6 and Table B.7 show the top ranking KEGG
pathways before and after the reconstruction of both CN1 and CN2. Full
details can be found in Supplementary Material III of Tobalina et al. (2015).

In Table B.6 and Table B.7, the CN1 and CN2 columns indicate the num-
ber of reactions involved in a particular pathway before and after the recons-
truction, respectively. After the reconstruction, some pathways maintained
a similar position in the ranking, e.g., map00230, while others occupied
completely di�erent positions, e.g., map00071, map00062 and map00281.
This illustrates the e�ect of our reconstruction approach. The reasons for
these changes are varied and, therefore, are discussed in the following sec-
tion in more detail. The �rst example is the fatty acid elongation pathway
(map00062), which was given a rank of 42 prior to reconstruction and was
ranked second following reconstruction. Although there are 15 reactions
from H in CN1 in this map, the reconstruction algorithm decided to exclu-
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Table B.7: Ranking of the KEGG pathways after reconstruction using functional net-
work data for CN1 and CN2.

KEGGID Name CN1 CN2 Score Rank Rank before
map00071 Fatty acid metabolism 4 27 19.5926 1 22
map00062 Fatty acid elongation 0 15 15 2 42
map00330 Arginine and proline metabolism 17 31 14.0541 3 19
map00540 Lipopolysaccharide biosynthesis 3 18 12.5 4 54
map00760 Nicotinate and nicotinamide metabolism 13 25 12.4667 5 24
map00230 Purine metabolism 42 57 12 6 5
map00281 Geraniol degradation 0 12 12 7 37
map00260 Glycine, serine and threonine metabolism 14 26 9.31034 8 33
map00400 Phenylalanine, tyrosine and tryptophan biosynthesis 12 24 8.61538 9 14
map00500 Starch and sucrose metabolism 5 10 8.35714 10 62
map00523 Polyketide sugar unit biosynthesis 0 8 8 11 20
map00620 Pyruvate metabolism 12 23 7.8 12 36
map00130 Ubiquinone and other terpenoid-quinone biosynthesis 2 9 7.2 13 2
map00364 Fluorobenzoate degradation 7 0 7 14 102
map00650 Butanoate metabolism 14 12 6.85714 15 43

de all of them from this pathway. This does not mean that the measured
enzymes are not listed in the corresponding reconstruction; it only means
that other reactions associated with those enzymes have been chosen.

We also found that the TCA cycle (map00020) was not complete af-
ter reconstruction, despite the fact that all of its enzymes were experi-
mentally identi�ed. In particular, fumarate reductase (EC 1.3.99.1) and 2-
oxoglutarate dehydrogenase (EC 1.1.1.42) were absent, although they were
certainly part of the reconstructed networks. The problem is that the SEED
reaction database does not link these reactions to the corresponding KEGG
identi�ers because they are written with generic acceptors in KEGG. As
noted above, the colouring process applied in KEGG is not straightforward,
and it may involve some mistakes.

The reconstruction process can also emphasise di�erences that were dis-
cernible before the reconstruction. A remarkable example of this is pro-
vided by the purine metabolism pathway (map00230). Before the recons-
truction, the pathway from D-ribose-1P to 1-(5'-phosphoribosyl)-5-amino-
4-imidazolecarboxamide (AICAR) in this map was nearly complete in CN2,
and it was complete after the reconstruction. In contrast, in CN1, only 3
enzymes in this pathway were measured experimentally but were neglected
once the network was reconstructed.

Another interesting fact is that some pathways that are known to be
inoperative in CN1 and CN2 did not appear after the reconstruction, as is
the case for �Carotenoid biosynthesis� (map00906), �Insect hormone biosynt-
hesis� (map00981) or �Drug metabolism - cytochrome P450� (map00982),
among others. These pathways were coloured according to the ECs that
were measured, but they were discarded after the reconstruction. It should
also be noted that the names of the KEGG maps might be misleading. For
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example, �Methane metabolism� appeared at the 16th position after the re-
construction (see Table B.6), which seems to contradict the experimental
evidence that methane production is not possible in either CN1 or CN2. A
more detailed examination veri�ed that the active reactions in this map are
not related to methane production.

Additionally, the reconstruction can provide attractive hypotheses for
further study. For instance, for the nicotinate and nicotinamide metabolism
pathway (map00760), activity associated with the conversion of nicotinate
to pyruvate and propanoate was predicted in our CN2 reconstruction to
involve only enzymes present in D, and not in H or M .

B.6. Contribution of bacterial members to CN1

and CN2 functional network

As noted in Chapter 3, in order to evaluate the role of each bacterial
member in CN1 and CN2 at the functional level, we determined its con-
tribution for each KEGG map. The contribution was determined as the
number of times a bacterium appears in a KEGG map divided by its total
number of active reactions. Figure 3.3 in Chapter 3 shows the contribution
of each organism found in both CN1 and CN2 to each KEGG map.

For this analysis, we only took into account the reactions in H and M
involved in the CN1 and CN2 reconstructed network. As noted above, the
taxonomic a�liation is known for the reactions in H. In contrast, for the
reactions in M , we may have di�erent members of the community involved
in a reaction. For simplicity, in these situations, if possible, we assign an
organism that was previously included in the KEGG map via the reactions
from H. Full details as to the taxonomic assignment of reactions involved in
CN1 and CN2 metabolic networks can be found in Supplementary Material
IV of (Tobalina et al., 2015).

Here, we present 3 bar graphs that complement the heatmap in the main
text. Figure B.2 shows the number of KEGG maps including a particular
number of organisms. Figure B.3 shows the number of pathways in which
each organism takes part. Finally, Figure B.4 details the number of reactions
of CN1 and CN2 metabolic network that can be related to each organism.

We repeated the same analysis but taking into account the reactions in
H and not the ones inM to evaluate the role of di�erent bacterial members
in CN1 and CN2. Figure B.5 shows that the pathways appear less popula-
ted. In particular, no organism is assigned to the naphthalene degradation
pathway, which shows the need of reconstruction methods. Figure B.6 and
B.7 con�rm that the predictions made by the reconstruction algorithm com-
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Figure B.2: Number of pathways that involves a particular number of organisms as
computed in the heatmap in Figure 3.3 in Chapter 3.

Figure B.3: Number of pathways where an organism takes part as computed in the
heatmap in Figure 3.3 in Chapter 3.
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Figure B.4: Number of reactions associated to each organism in the reconstructed
networks.

plements experimental data, as the number of interactions among bacterial
members in di�erent pathways is substantially decreased when reactions in
M are removed.

B.7. Enrichment and mineralization experiments

Chemicals and reagents: The following reagents have been used: O-
methoxyamine hydrochloride (Sigma-Aldrich - Taufkirchen, Germany) 15
mg/mL in pyridine (Silylation grade - Taufkirchen, Germany), N,O-Bis(tri-
methylsilyl)tri�uoroacetamide (BSTFA) with 1% of trimethylchlorosilane
(TMCS; Pierce Chemical Co, Rockford, IL, USA), C18:0 methyl ester (Sigma-
Aldrich - Taufkirchen, Germany) in heptane (GC-MS grade � Sigma-Aldrich
- Taufkirchen, Germany), isopropanol (HLPC-MS grade � Sigma-Aldrich -
Taufkirchen, Germany) in addition to standards: 3-�uorobenzoic acid, 4-
�uorobenzoic acid, 3-�uorocatechol, 4-�uorocatechol, geraniol, geranial and
geranic acid (Sigma Chemical Co.; St Louis, MO, USA or TCI Fine Che-
micals, Eschborn, Germany).

The ability of the consortia to grow on 3/4-�uorobenzoate and geraniol
(Sigma Chemical Co.; St Louis, MO, USA) as the sole carbon and energy
sources was evaluated in 250-ml Erlenmeyer �asks containing 100 ml of
Bushnell Hass minimal medium (Sigma Chemical Co.) and supplemented



106
Appendix B. Supplementary Material for Reconstruction of a

naphthalene-degrading bacterial community

Figure B.5: Heatmap showing the contributions of the most relevant bacterial members
of CN1 and CN2 to the KEGG maps, taking only into account reactions in H included
in the reconstructions.
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Figure B.6: Number of pathways that involves a particular number of organisms as
computed in the heatmap in Figure B.5.

Figure B.7: Number of pathways where an organism takes part as computed in the
heatmap in Figure B.5.
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with the substrates to 0.1% (w/v). Inocula (1% (v/v) of the culture pre-
viously grown and maintained in naphthalene; Guazzaroni et al. (2013),
used were cells grown in the same medium with 0.1% (w/v) of naphthale-
ne (Guazzaroni et al., 2013) and washes three times prior to use with the
same medium. Enrichment cultures were incubated at 30◦C and 250 rpm
and growth was measured spectrophotometrically (using a Take3TM micro-
volume plate and a BioTek Eon spectrophotometer; Izasa, Madrid, Spain)
by taking measurements of the culture medium periodically at an optical
density of 600 nm. The extent of mineralization was quanti�ed on a solution
containing 1 ml of the culture medium (previously separated by centrifu-
gation at 13000 g for 5 min) and 1 ml of a methanol solution prepared
as follows. Brie�y, microbial cells obtained at time 0, 1 week and 2 weeks
were centrifuged from enrichment at 13000 g for 5 min; then, metabolite
extraction was performed by adding 1.2 ml of cold (-80◦C) methanol using
conditions previously described (Pérez-Cobas et al., 2012).

The presence of 3/4-�uorobenzoate and geraniol as well as their pu-
tative initial degradation products, e.g. 3/4-�uorocatechol, citral, geranic
acid, was determined by using Gas Chromatography-mass analyzer (GC-
MS). Samples for GC-MS analysis were prepared from 150 µL volumes of
the methanol extract obtained as above. Blanks were prepared to re�ect
the matrix of samples; they were subsequently treated in the same way
as samples. Standards were prepared at a concentration of 100 ppm. All
samples were evaporated to dryness using a Speedvac Concentrator (Ther-
mo Fisher Scienti�c Inc., Waltham, MA) and derivatised using a two stage
process: methoxymation and silylation. For methoxymation, 10 µL of O-
Methoxyamine hydrochloride (15 mg/mL) in pyridine was added to each
sample, following which samples were subjected to three cycles of vortex
mixing and ultra-sonication and kept in the dark at room temperature for
16 h. For silylation, 10 µL of BSTFA with 1% TMCS was added to the
solution and samples were again subjected to three cycles of vortex mixing
and ultra-sonication before being placed in 70◦C for 1 h. Finally, 75 µL of
10 ppm C18:0 Methyl Stearate in heptane (internal standard) was added to
each sample and all samples were vortex mixed for 2 min.

The analytical run started with the injection of C18 (10 ppm) followed
by four blanks, in order to equilibrate the column. Subsequently, samples
were analysed in a randomised order followed by the standards. The run
terminated with the injection of the �nal blank.

The GC-MS system (Agilent Technologies 7890A) consisted of an au-
tosampler (Agilent Technologies 7693) and an inert MSD with Quadrupole
(Agilent Technologies 5975). Derivatised samples were injected at volumes
of 2 µL through a GC-Column DB5-MS (30 m length, 0.25 mm i.d., 0.25
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Table B.8: Metabolomic target analysis of key chemical species participating in the 3/4-
�uorobenzoate and geraniol-degradation pathway. The separation and quanti�cation was
performed by GC-MS. The average fold-change (F2 vs F0 cultures) corresponding to the
area of the peak (calculated on the basis of appropriate standards) per metabolite is given.
Note: 3- and 4-�uorochatechol were indistinguishable used assay conditions. Abbrevia-
tions as follows: F2: cultures after 2 weeks cultivation in the present of the corresponding
chemical; F0: cultures after 1 h cultivation in the present of the corresponding chemical;
NC: no change observed (no production of the chemical species).

Fold change (FC)

Name CN1 (F2 vs F0) CN2 (F2 vs F0)
3/4-Fluorocatechol 283,49 NC
Citral NC 23
Geranic acid NC 6

µm �lm 95% dimethyl/5% diphenylpolysiloxane) with a pre-column (10 m
J&W integrated with Agilent 122-5532G). The helium carrier gas �ow rate
was set at 1 mL/min and the injector temperature at 250◦C. The split ratio
was 1:10 �owing into a Restek 20782 deactivated glass-wool split liner. The
temperature gradient was programmed as follows: the initial oven tempe-
rature was set at 60◦C (held for 1 min), then it was increased to 325◦C at
the rate of 10◦C/min. Finally a cool-down period was applied for 10 min
before the following injection. The total analysis time for each sample was
37.5 min. The detector transfer line, the �lament source and the quadrupole
temperature were set at 290◦C, 230◦C and 150◦C respectively. The electron
ionization (EI) source was operated at 70 eV. The mass spectrometer was
operated in scan mode over a mass range of m/z 50-600 at a rate of 2
spectra/s. Peak detection and spectra processing were obtained using the
Agilent ChemStation Software (G1701EA E.02.00.493, Agilent).

The compound identi�cation was performed by using the NIST 08 Li-
brary (National Institute of Standards and Technology, U.S. Department of
Commerce), with the ChemStation software (G1701EA E.02.00.493, Agi-
lent). As soon as they were properly characterised in the chromatograms
of standards (retention time and spectrum) a target analysis method was
created in the ChemStation software (G1701EA E.02.00.493, Agilent) that
was used to identify and integrate the corresponding peaks in the chroma-
tograms of samples.

The fold change of the abundance level of the degradation intermedia-
tes 3/4-�uorocatechol (for 3/4-�uorocatechol) and citral/geranic acid (for
geraniol) in CN1 and CN2 enrichment cultures can be found in Table B.8.
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Direct calculation of Minimal

Cut Sets involving a speci�c

reaction knock-out

C.1. Direct calculation of Elementary Flux Modes

involving two speci�c reactions

In this section, we apply the formulation of Pey and Planes (2014) to
the MCS problem without modi�cations to the set of constraints. We only
modify the objective function to minimize the variables relevant to MCSs.

The reversible u variables are separated into two irreversible variables,
up and un, as shown in Eqs. (C.1) and (C.2). These new variables will have
related binary variables, zup and zun.

ui = upi − uni, i = 1, ...,m (C.1)

upi ≥ 0, uni ≥ 0, i = 1, ...,m (C.2)

We want to activate two reactions, w and one speci�c rp or rn. Equa-
tion (C.5) forces w to be active and Eq. (C.6) does the same with the
rp or rn of interest. For the solution to be an EFM, it must ful�ll the
non-decomposability condition (NDC), i.e. it must have a single degree of
freedom. As explained in Chapter 5, this can only be achieved if the se-
cond �ux activation constraint can be written as a linear combination of
the equations that describe the EFM. However, because we do not know
what reactions will become active beforehand, we need to introduce binary
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variables that will force the linear combination only when necessary (Eq.
C.10).

Overall, the problem to be solved is the following:

minimize
∑
i

zpi +
∑
i∈Rev

zni (C.3)

subject to:

N ·
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·


up
un
rp
rn
w

 = 0 (C.4)

− v∗ · w ≤ −c (C.5)

(
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)
·
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α ·
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 (C.7)

zupi + zuni ≤ 1, i = 1, ...,m (C.8)

zpi + zni ≤ 1, ∀i ∈ Rev (C.9)


S 0
−S 0
I 0
−I 0
−tT v∗

 · x =


0 + εup − δup
0 + εun − δun
dp + εp − δp
dn + εn − δn
0 + εw − δw

 (C.10)
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M ·
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
zup
zun
zp
zn
zw

 ∈ {0, 1} (C.13)

up ∈ Rm, un ∈ Rm, rp ∈ Rn, rn ∈ Rn, w ∈ R (C.14)

x ∈ Rn+1 (C.15)

εup ∈ Rm, εun ∈ Rm, εp ∈ Rn, εn ∈ Rn, εw ∈ R (C.16)

δup ∈ Rm, δun ∈ Rm, δp ∈ Rn, δn ∈ Rn, δw ∈ R (C.17)

c > 0 (C.18)

where dp and dn are vectors of all zeros except for a single 1 in the
position related to the knock-out constraint that we want to activate. If the
knock-out we want to enforce involves an irreversible reaction we will only
set a 1 in dp and leave dn as a vector of all zeros. Note that, as explained in
Chapter 5, the solutions obtained from this formulation are not necessarily
MCSs of the original problem.

C.2. Direct calculation of Generating Flux Modes

involving two speci�c reactions

Elements of a convex basis of EFMs are termed Generating Flux Mo-
des (GFMs). As introduced in Larhlimi and Bockmayr (2009), GFMs have
minimal support with respect to the set of irreversible reactions. We can
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adapt the formulation in Pey and Planes (2014) to �nd GFMs by not split-
ting reversible reactions into two irreversible reactions and not taking them
into account in the objective function. As a consequence of not splitting re-
versible reactions, the linear combination constraint must always apply to
them. Since the value 0 is no longer a bound for those variables and they can
take any real value, they must always be considered as being active, which
forces them to participate in the linear combination constraint. Reversible
reactions do not have a constraint capable of intersecting the solution space
and, consequently, cannot reduce the degrees of freedom of the solution,
only irreversible reactions do.

C.3. From GFMs to MCSs

GFMs do not correspond one-to-one to MCSs since GFMs have minimal
support with respect to the full set of irreversible reactions (w, rp and
rn variables in our case) while MCSs have it with respect to a subset of
irreversible reactions (w, rp and rn variables related with the knockout of
reversible reactions).

In the toy example illustrated in Chapter 5, for instance, we have one
GFM involving the following irreversible dual reactions g1 = {rp1, rn9, w}
and other involving g2 = {rp1, rp6, rn5, w}. These GFMs are minimal with
respect to the full set of irreversible reactions. However, as rn5 and rn9 are
not dual variables related with knockouts of reversible variables, it can be
shown that g2 does not correspond to an MCS. If we map the solutions
with respect to the dual variables related with knockouts, we would have
g∗1 = {rp1, w} and g∗2 = {rp1, rp6, w}, and it is clear now that g∗1 is contained
in g∗2, thus g

∗
2 cannot be minimal as g∗1 is already an MCS on its own.

Therefore, we need to �nd a way to remove GFMs that do not correspond
to MCSs.

Consider the following example network in Figure C.1, which involves
4 irreversible reactions (this network does not correspond to the dual of
any MCS problem, but that does not a�ect the discussion that follows).
As all the reactions are irreversible, in this case the set of GFMs is equiva-
lent to the set of EFMs. The network involves 2 GFMs: e1 = {v1, v3} and
e2 = {v1, v2, v4}. Assume now that we want to discuss the subset of GFMs
that are minimal with respect to the subset of reactions K = {v1, v2} and,
additionally, involve reaction v1.

First, as v3 and v4 are non-negative variables and we are not interested
in their value, we can view them as excess variables that appear explicitly
in the constraints. We can remove them from the set of constraints without
altering the solution space as long as we modify the constraint type ac-
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Figure C.1: Example network to illustrate the e�ect in the formulation of removing
variables that can be considered as explicit excess variables (v3 and v4).

cordingly. Equality constraints become greater than or equal to constraints
after the removal of v3 and v4, as can be seen in Figure C.1. This is similar
to what is done in Eq. (C.19) in the next section, where rn variables associa-
ted with irreversible reactions are removed. The resulting feasible region is
shown in Figure C.2A by the shaded region. We have 2 extreme points that
corresponds to the 2 GFMs mentioned above (w1 = {v1}, w2 = {v1, v2}).

Under these constraints, there are only two possible basic solutions for
the problem posed: i) either v1 is active on its own or ii) v1 and v2 are both
active. Now, we are interested in knowing if the second option would be
part of the subset of GFMs that we are looking for (minimal with respect
to K and involving the activity of v1). It is easy to see in this example that,
as we have one extreme point (w1) that exclusively involves v1, w2 is not
minimal with respect to K and, therefore, the answer to our question is
negative. Note the analogy with the example introduced in Chapter 5 and
discussed above with GFMs g1 and g2.

In order to systematically answer this question, we add the constraint
v2 ≥ 1, further imposing that it must be redundant with respect to the
rest of constraints. A redundant constraint can be obtained as a linear
combination of the rest, with non-negative coe�cients for greater than or

equal to inequalities, unrestricted coe�cients for equalities and non-positive
coe�cients for less than or equal to inequalities. Note that the coe�cients of
this linear combination follow the same rules of the dual variables associated
to these constraints.

Given that in our example we have greater than or equal to constraints,
the coe�cients used for the linear combination must be non-negative (see x
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Figure C.2: Solution space (shaded region) generated by the constraints related to the
network in Figure C.1 and a �ux activation constraint (solid line). An additional �ux
activation constraint (dashed line) may or may not intersect the existing solution space
(case A and B, respectively). We want the additional constraint to be redundant. Only
if the additional constraint does not intersect the existing solution space (case B), it is a
redundant constraint with respect to the others, i.e. it does not eliminate already existing
extreme points nor generate any new ones.
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variables in Figure C.2A). In this case, v2 ≥ 1 is not redundant with respect
to the rest of constraints and the solution is infeasible. Visually, this has the
e�ect of v2 ≥ 1 intersecting the feasible region (Figure C.2A, dashed line).
This justi�es the use of non-negative coe�cients (Eq. 5.19) in the linear
combination constraints (Eq. 5.16), adapting the methodology presented in
Pey and Planes (2014) for computing MCSs.

Assume now that we want to �lter the subset of GFMs that is mini-
mal with respect to the subset of reactions K = {v1, v2} and, additionally,
involve the reaction v2. Again, we treat v3 and v4 as explicit excess varia-
bles. The resulting feasible region is shown by the shaded region in Figure
C.2B. We only have 1 extreme point that corresponds to one of the 2 GFMs
mentioned before (w2).

We would like to consider again whether v1 and v2 can be both active
and the result be minimal with respect to K. For that, we impose v1 ≥ 1
and the linear combination constraint to force its redundancy (see Figure
C.2B). In this case, as v2 cannot operate on its own, we certainly have that
v1 ≥ 1 is a redundant constraint and, therefore, we obtain a feasible set
of x variables. Visually, a redundant constraint does not eliminate already
existing extreme points or generate new ones.

The reader should note the analogy of this problem with the formulation
presented in this article for MCSs enumeration. In the second example,
v1 ≥ 1 is implied by the rest of constraints and, therefore, it is redundant.
This does not occur in the �rst case. Certainly, v2 can also be equal to
zero, since v1 can be active on its own. Therefore, by imposing redundancy,
we are removing from the solution space GFMs that are non-minimal with
respect to the subset of dual variables related with knockouts.

C.4. Reduced formulation

As stated in Chapter 5 (and discussed above), rn variables related to
the irreversibility constraints can be viewed as excess variables explicitly
stated in the formulation. Thus, we can remove them from the formulation,
transforming the equality constraints in which they appear in Eq. (5.11)
into greater than or equal inequalities (Eq. C.19).

[
STirr Iirr 0 0 −tirr
STrev 0 Irev −Irev −trev

]
·


u

rpirr
rprev
rnrev
w

≥=
(

0
0

)
(C.19)
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, where subindices irr and rev refer to the appropriate columns or rows
related to the irreversible and reversible reactions respectively. We now only
have rp and rn variables related to knock-out constraints (Eqs. 5.4 and 5.5).
We denote |Irr| and |Rev| the number of irreversible and reversible reactions
in the primal system respectively.

u ∈ Rm, rpirr ∈ R|Irr|, rprev ∈ R|Rev|, rnrev ∈ R|Rev|, w ∈ R (C.20)

rpirr ≥ 0, rprev ≥ 0, rnrev ≥ 0, w ≥ 0 (C.21)

(
0 dpirr dprev dnrev 0

)
·


u

rpirr
rprev
rnrev
w

 ≥ b (C.22)

We also adapt the remaining constraints.



Sirr Srev 0
Iirr 0 0
0 Irev 0
0 −Irev 0

−tTirrev −trevT v∗

0 0 c

 ·
xirrxrev
xw

 =



0
dpirr + εpirr − δpirr
dprev + εprev − δprev
dnrev + εnrev − δnrev

0
b

 (C.23)

− v∗ · w ≤ −c (C.24)

xirr ∈ R|Irr|, xrev ∈ R|Rev|, xw ∈ R (C.25)

εpirr ∈ R|Irr|, εprev ∈ R|Rev|, εnrev ∈ R|Rev| (C.26)

δpirr ∈ R|Irr|, δprev ∈ R|Rev|, δnrev ∈ R|Rev| (C.27)

xirr ≥ 0 (C.28)

εpirr ≥ 0, εprev ≥ 0, εnrev ≥ 0 (C.29)

δpirr ≥ 0, δprev ≥ 0, δnrev ≥ 0 (C.30)
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α ·

zpirrzprev
znrev

 ≤
rpirrrprev
rnrev

 ≤M ·
zpirrzprev
znrev

 (C.31)

zprev,i + znrev,i ≥ 1, ∀i ∈ Rev (C.32)

M ·

1− zpirr
1− zprev
1− znrev

 ≥
 εpirr + δpirr
εprev + δprev
εnrev + δnrev

 (C.33)

zpirrzprev
znrev

 ∈ {0, 1} (C.34)

Note that Eq. (C.23) has an extra row that comes from the right-hand
side of Eqs. (C.19), (C.22) and (C.24). Because the only requirement for the
values of b and c is that they must be strictly positive, we can substitute
that last row in Eq. (C.23) by the following constraint:

xw ≥ φ, φ > 0 (C.35)

This allows the solver to decide if b is greater than c or not.
Finally, we adapt the objective function and the solution enumeration

constraint (Eqs. C.36 and C.37, respectively).

minimize
∑

i∈Irrev
zpirr,i +

∑
i∈Rev

zprev,i +
∑
i∈Rev

znrevi (C.36)

∑
i∈Irrev

zpkirr,i · zpirr,i +
∑
i∈Rev

zpkrev,i · zprev,i +
∑
i∈Rev

znkrev,i · znrevi ≤

(
∑

i∈Irrev
zpkirr,i +

∑
i∈Rev

zpkrev,i +
∑
i∈Rev

znkrev,i)− 1, k = 1, ...,K (C.37)

C.5. Limiting the maximum size of the MCSs

Although not used in this work, we can add an additional constraint to
limit the maximum size (C) allowed for a MCS (Eq. C.38 or C.39).
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∑
i

zpi +
∑
i∈Rev

zni ≤ C (C.38)

∑
i∈Irrev

zpirr,i +
∑
i∈Rev

zprev,i +
∑
i∈Rev

znrev,i ≤ C (C.39)

C.6. Computational di�culties

As with any other MILP, numerical di�culties can arise during the
solution process. For this reason, we recommend checking the correctness of
each MCS. This can be done by calculating the maximum �ux through the
target reaction with all the reactions included in the MCS set to zero, which
should give a maximum �ux of zero, and then recalculating this quantity
after setting free one of the reactions included in the MCS, which should
give a maximum �ux greater than zero. If the maximum �ux through the
target reaction is still zero after setting free one of the reactions included
in the MCS, then the solution is not really a MCS. This process is not
computationally expensive, as only linear programming FBA simulations
are involved.

Whenever we found that the solution to our problem was not a real
MCS, we were able to obtain a correct solution by adjusting some of the
solver parameters (e.g. the integrality tolerance) or modifying the values of
some of the constants in the formulation (e.g. the M value).

Regarding the computation time, as shown in Chapter 5, it can be very
variable. It might be desirable to set a time limit for obtaining a solution. By
the time the limit is reached, we may or may not have found a solution. If
no solution has been found, we cannot assure that the problem is infeasible.
If a solution has been found, it will contain an MCS in case it is not already
one, but we cannot assure that it is optimal as measured by our objective
function. Depending on our application, we may decide to increase the time
available to the solution process or to continue the analysis with the answer
we got within our time limit.



Appendix D

Table of samples

This appendix contains the list of samples used in the study described
in Chapter 4. The �Accession� column contains the GEO database accession
number of the selected cell line sample in the Cancer Cell Line Encyclopedia
(CCLE). The �Name� column corresponds to the cell line name. Those with
�fail� beside the name correspond to experiments that did not pass the
quality control in Project Achilles and were not taken into account in this
work. Finally, the column �Type� describes the cancer type associated to
each cancer cell line.

Table D.1: List of samples used in Chapter 4.

Accession Name Type
GSM886837 22-RV1 Prostate
GSM886843 697 Leukemia
GSM886845 786-O Renal Cell Carcinoma
GSM886850 A172 GBM
GSM886851 A-204 Soft Tissue Sarcoma
GSM886853 A2780 (fail) Ovarian
GSM886858 A549 Lung NSCLC
GSM886859 A-673 Bone sarcoma
GSM886863 ACHN Renal Cell Carcinoma
GSM886864 AGS Gastric
GSM886866 AM-38 GBM
GSM886867 AML-193 Leukemia
GSM886870 AsPC-1 Pancreas
GSM886891 BT-20 Breast
GSM886892 BT-474 Breast
GSM886894 BT-549 (fail) Breast
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Table D.1: (continued)

Accession Name Type
GSM886896 BxPC-3 Pancreas
GSM886897 C2BBe1 Colon
GSM886898 C32 Melanoma
GSM886901 CADO-ES-1 Bone sarcoma
GSM886902 Caki-1 (fail) Renal Cell Carcinoma
GSM886904 CAL-120 Breast
GSM886909 CAL-51 Breast
GSM886914 Calu-1 Lung NSCLC
GSM886918 CaOV-3 Ovarian
GSM886919 CaOV-4 Ovarian
GSM886922 CAS-1 GBM
GSM886925 CFPAC-1 Pancreas
GSM886940 COLO 205 Colon
GSM886947 COLO-704 Ovarian
GSM886948 COLO 741 Melanoma
GSM886949 COLO-783 Melanoma
GSM886956 COR-L23 Lung NSCLC
GSM886962 COV318 (fail) Ovarian
GSM886963 COV362 Ovarian
GSM886964 COV434 Ovarian
GSM886965 COV504 Ovarian
GSM886966 COV644 Ovarian
GSM886974 DBTRG-05MG GBM
GSM886978 DK-MG GBM
GSM886979 DLD-1 Colon
GSM886989 DU4475 (fail) Breast
GSM886997 EFE-184 Endometrial
GSM886999 EFM-19 Breast
GSM887000 EFO-21 Ovarian
GSM887001 EFO-27 Ovarian
GSM887003 EJM (fail) Multiple Myeloma
GSM887010 F-36P Leukemia
GSM887014 FU-OV-1 (fail) Ovarian
GSM887021 GCIY (fail) Gastric
GSM887025 GMS-10 (fail) GBM
GSM887027 GP2d Colon
GSM887035 HCC1187 Breast
GSM887037 HCC1395 Breast
GSM887046 HCC1954 Breast
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Table D.1: (continued)

Accession Name Type
GSM887049 HCC2218 Breast
GSM887056 HCC-44 Lung NSCLC
GSM887058 HCC70 Breast
GSM887060 HCC827 Lung NSCLC
GSM887062 HCT116 Colon
GSM887069 HEC-1-A Endometrial
GSM887080 Hey-A8 Ovarian
GSM887083 HL-60 Leukemia
GSM887086 HLF Liver
GSM887089 HPAC Pancreas
GSM887090 HPAF-II Pancreas
GSM887106 Hs 683 GBM
GSM887117 Hs 766T Pancreas
GSM887132 Hs 944.T Melanoma
GSM887138 HT-1197 Bladder
GSM887141 HT-29 Colon
GSM887142 HT55 Colon
GSM887145 HuG1-N Gastric
GSM887155 HuTu80 Colon
GSM887159 IGR-39 Melanoma
GSM887160 IGROV1 Ovarian
GSM887175 JHOC-5 Ovarian
GSM887176 JHOM-1 Ovarian
GSM887179 JHOS-4 (fail) Ovarian
GSM887193 K-562 Leukemia
GSM887194 KALS-1 GBM
GSM887197 Kasumi-1 Leukemia
GSM887212 KM12 Colon
GSM887220 KMS-11 (fail) Multiple Myeloma
GSM887221 KMS-12-BM Multiple Myeloma
GSM887223 KMS-20 (fail) Multiple Myeloma
GSM887225 KMS-26 (fail) Multiple Myeloma
GSM887228 KMS-34 (fail) Multiple Myeloma
GSM887230 KNS-60 GBM
GSM887232 KNS-81 GBM
GSM887235 KP-2 Pancreas
GSM887237 KP4 Pancreas
GSM887248 KYSE-150 Esophageal
GSM887251 KYSE-30 Esophageal
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Table D.1: (continued)

Accession Name Type
GSM887253 KYSE-450 Esophageal
GSM887254 KYSE-510 Esophageal
GSM887258 L3.3 Pancreas
GSM887259 L-363 Multiple Myeloma
GSM887262 LAMA-84 Leukemia
GSM887267 LK-2 Lung NSCLC
GSM887270 LN-229 GBM
GSM887274 LoVo Colon
GSM887276 LP-1 (fail) Multiple Myeloma
GSM887280 LS411N Colon
GSM887281 LS513 Colon
GSM887291 MCF7 Breast
GSM887300 MDA-MB-453 Breast
GSM887320 MIA PaCa-2 Pancreas
GSM887326 MKN7 Gastric
GSM887328 MM1-S Multiple Myeloma
GSM887329 MOLM-13 Leukemia
GSM887337 MONO-MAC-1 Leukemia
GSM887338 MONO-MAC-6 Leukemia
GSM887344 MV-4-11 Leukemia
GSM887347 NALM-6 Leukemia
GSM887349 NB-4 Leukemia
GSM887355 NCI-H1299 Lung NSCLC
GSM887364 NCI-H1437 Lung NSCLC
GSM887373 NCI-H1650 Lung NSCLC
GSM887382 NCI-H1792 Lung NSCLC
GSM887392 NCI-H196 Lung SCLC
GSM887393 NCI-H1975 Lung NSCLC
GSM887398 NCI-H2052 Lung Mesothelioma
GSM887407 NCI-H2122 Lung NSCLC
GSM887411 NCI-H2171 Lung SCLC
GSM887421 NCI-H23 Lung NSCLC
GSM887424 NCI-H2452 Lung Mesothelioma
GSM887428 NCI-H441 Lung NSCLC
GSM887431 NCI-H508 Colon
GSM887435 NCI-H524 (fail) Lung SCLC
GSM887440 NCI-H660 Prostate
GSM887441 NCI-H661 Lung NSCLC
GSM887443 NCI-H716 Colon
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Table D.1: (continued)

Accession Name Type
GSM887447 NCI-H82 (fail) Lung SCLC
GSM887448 NCI-H838 Lung NSCLC
GSM887453 NCI-N87 Gastric
GSM887456 NIH:OVCAR-3 Ovarian
GSM887458 NOMO-1 Leukemia
GSM887465 OAW42 Ovarian
GSM887468 OCI-AML2 Leukemia
GSM887469 OCI-AML3 Leukemia
GSM887470 OCI-AML5 Leukemia
GSM887476 OE33 Esophageal
GSM887478 OPM-2 Multiple Myeloma
GSM887482 OV7 Ovarian
GSM887483 OV-90 Ovarian
GSM887484 OVCAR-4 Ovarian
GSM887485 OVCAR-8 Ovarian
GSM887488 OVMANA (fail) Ovarian
GSM887496 Panc 03.27 Pancreas
GSM887499 Panc 08.13 Pancreas
GSM887500 Panc 10.05 Pancreas
GSM887521 PSN1 Pancreas
GSM887522 QGP-1 Pancreas
GSM887530 Reh Leukemia
GSM887540 RKN Soft Tissue Sarcoma
GSM887541 RKO Colon
GSM887544 RMG-I Ovarian
GSM887545 RMUG-S Ovarian
GSM887548 RPMI 8226 (fail) Multiple Myeloma
GSM887552 RT-112 Bladder
GSM887563 SEM Leukemia
GSM887565 SF126 GBM
GSM887566 SF-295 GBM
GSM887574 SJSA-1 Bone sarcoma
GSM887576 SK-CO-1 Colon
GSM887589 SK-MEL-5 Melanoma
GSM887591 SK-MM-2 Multiple Myeloma
GSM887598 SK-OV-3 Ovarian
GSM887606 SNU-1105 GBM
GSM887615 SNU-201 (fail) GBM
GSM887640 SNU-840 Ovarian
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Table D.1: (continued)

Accession Name Type
GSM887643 SNU-C1 Colon
GSM887644 SNU-C2A Colon
GSM887650 SU.86.86 Pancreas
GSM887667 SW1417 Colon
GSM887671 SW1783 GBM
GSM887672 SW 1990 (fail) Pancreas
GSM887674 SW480 Colon
GSM887675 SW48 Colon
GSM887687 T98G GBM
GSM887689 TC-71 Bone sarcoma
GSM887691 TE10 Esophageal
GSM887694 TE-15 Esophageal
GSM887702 TE-9 Esophageal
GSM887706 THP-1 Leukemia
GSM887710 TOV-112D Ovarian
GSM887711 TOV-21G Ovarian
GSM887714 T.T Esophageal
GSM887718 TYK-nu Ovarian
GSM887720 U-251 MG GBM
GSM887723 U-87 MG GBM
GSM887731 VCaP Prostate
GSM887748 YKG1 GBM
GSM887751 ZR-75-30 Breast
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Table D.2: U251 glioblastoma cell line samples from GEO Database used in Chapter 4

Accession
GSM713416
GSM713417
GSM844718
GSM844719
GSM803632
GSM803691
GSM803750
GSM697600
GSM697601
GSM697602
GSM697603
GSM697604
GSM697605
GSM502019
GSM502020
GSM502021
GSM502037
GSM502038
GSM502039

Table D.3: U87 glioblastoma cell line samples from GEO Database used in Chapter 4

Accession
GSM887723
GSM795820
GSM795821
GSM795822
GSM795824
GSM795825
GSM795827
GSM862922
GSM862923
GSM862924
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Journal Publications

Luis Tobalina, Jon Pey and Francisco J. Planes (2015) Direct Calcu-
lation of Minimal Cut Sets Involving a Speci�c Reaction Knock-out. (under
review)

Luis Tobalina, Jon Pey, Alberto Rezola, Francisco J. Planes (2015)
Assessment of FBA Based Gene Essentiality Analysis in Cancer with a
Fast Context-speci�c Network Reconstruction Method. (under review)

Luis Tobalina, Rafael Bargiela, Jon Pey, Florian-Alexander Herbst,
Iván Lores, David Rojo, Coral Barbas, Ana I. Peláez, Jesús Sánchez, Mar-
tin von Bergen, Jana Seifert, Manuel Ferrer and Francisco J. Planes (2015)
Context-speci�c metabolic network reconstruction of a naphthalene-degrading
bacterial community guided by metaproteomic data. Bioinformatics 31 (11):
1771-1779

Jon Pey, Juan A. Villar, Luis Tobalina, Alberto Rezola, José Ma-
nuel García, John E. Beasley and Francisco J. Planes (2015) TreeEFM:
calculating elementary �ux modes using linear optimization in a tree-based
algorithm. Bioinformatics 31 (6): 897-904

Alberto Rezola, Jon Pey, Luis Tobalina, Ángel Rubio, John E. Beas-
ley and Francisco J. Planes (2014) Advances in network-based metabolic
pathway analysis and gene expression data integration. Brie�ngs in Bioin-

formatics 16 (2): 265-279
Jon Pey*, Luis Tobalina*, Joaquín Prada J. de Cisneros and Francis-

co J. Planes (2013) A network-based approach for predicting key enzymes
explaining metabolite abundance alterations in a disease phenotype. BMC

Systems Biology 7:62 (* equal contribution)
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Conference contributions

Luis Tobalina, Jon Pey and Francisco J. Planes. Direct Calculation of
Minimal Cut Sets Involving a Speci�c Reaction Knock-out. 4th Conference

on Constraint-Based Reconstruction and Analysis (COBRA 2015) Septem-
ber 16-18, 2015 - Heidelberg (Poster Presentation)

Luis Tobalina, Jon Pey, Joaquín Prada J. de Cisneros and Francisco
J. Planes. Detecting key enzymes responsible for metabolite accumulation
using Carbon Flux Paths and Connectivity Curves. Libro de Actas XXX

CASEIB 2012 � 19 a 21 de noviembre � San Sebastián. (ISBN 978-84-616-
2147-7) (Oral Presentation)
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