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Several theoretical predictions of the mass flow rate of granular media discharged from a silo are based
on the spontaneous development of a free-fall arch region, the existence of which is still controversial. In
this Letter, we study experimentally and numerically the particle flow through an orifice placed at the
bottom of 2D and 3D silos. The implementation of a coarse-grained technique allows a thorough
description of all the kinetic and micromechanical properties of the particle flow in the outlet proximities.
Though the free-fall arch does not exist as traditionally understood—a region above which particles have
negligible velocity and below which particles fall solely under gravity action—we discover that the kinetic
pressure displays a well-defined transition in a position that scales with the outlet size. This universal
scaling explains why the free-fall arch picture has served as an approximation to describe the flow rate in
the discharge of silos.
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The hourglass is a paradigmatic example of the complex
behavior emerging in granular flows. In these devices, the
mass flow rate is mainly controlled by the orifice size, and
details like particle shape and dissipation have no great
significance [1,2]. In fact, the velocity of the grains when
passing through the outlet scales only with

ffiffiffiffiffiffi
gD

p
, where g is

the gravity acceleration and D the outlet aperture [3]. This
correlation has been historically associated with the exist-
ence of a singular region above the outlet, which was called
the dynamic vault by Hagen in 1852 [4]. Brown and
Richards revisited Hagen’s idea and introduced the concept
of free-fall arch as a well-defined spherical surface where
the energy dissipation decreases to a minimum [5]: above
this region, grains are mainly subjected to the contacting
stress; below, the material is loose and moves only under
the gravity action—i.e., the stress in the flow direction
vanishes just at this hypothetical surface [6]. The same
concept was used by other authors [7,8] to develop an
alternative approach, commonly known as the hourglass
theory, which qualitatively predicts the mass flow rate in
the discharge of a silo (see [6] for a review).
Despite the popularity that the free-fall arch idea has

achieved in relation to the Beverloo correlation [1], it
implies the strong formal inconsistency of assuming a
spatial stress discontinuity, which is difficult to justify [9].
In addition, recent experimental efforts aimed at proving
the existence of such a transition have provided incon-
clusive outcomes [10,11]. For instance, Vivanco et al.
conducted experiments on the flow of photoelastic disks in
a two-dimensional silo [10]. Examining the intensity of the
force chains that appear during the discharge, they detected
a well-defined boundary below which force chains were
very weak. Nevertheless, this region was only identified for
small orifices where the flow is intermittent and clogging is

frequent [12–16]. Van Zuilichem et al. measured the
density patterns in a cylindrical silo using gamma-
adsorption techniques [11]; they found a dilatation of the
bulk close to the orifice, but a clear transition was not
appreciated.
In this Letter, we present an extensive experimental and

numerical study of the micromechanical properties dis-
played by granular media flowing through an orifice placed
at the bottom of 2D and 3D silos. Using a mathematically
consistent coarse-grain averaging technique (introduced by
Goldhirsch [17]) we describe the velocity, density, and
stress fields of the bulk close to the aperture. Hence,
distinguishing between the kinetic and contact components
of the stress tensor, we accurately identify a singular region
where the granular flow changes its nature and scales with
the size of the orifice. Furthermore, the mean acceleration
shows the same scaling, which is totally compatible with
the velocity profiles obtained at the silo outlet [3,18]. As a
result, the mass flow rate correlations previously introduced
[1–3] can be consistently derived.
The experimental setup consists of a quasi-two-

dimensional silo built with two glass sheets (height
800 mm and width 200 mm) separated by a steel frame
which also conforms the lateral walls. The gap between the
glass sheets is slightly larger than the particles diameter
(d ¼ 2rp ¼ 1.0 mm) so the beads can only arrange them-
selves in a single layer. The particles flow out through a
horizontal slit of a tunable aperture D ¼ 2R located at the
flat bottom of the silo. The discharge process is recorded by
means of a high-speed camera. The videos were analyzed
using image processing techniques allowing for a precise
determination of the instantaneous position ~r and velocity ~v
of each particle. A more detailed description of the
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experimental setup and image analysis techniques can be
found in [15] and [3], respectively.
In order to get access to the micromechanical properties

of the system and extend the experimental findings in two
dimensions to a more realistic 3D silo, we have resorted to
numerical simulations. A hybrid CPU-GPU discrete
element algorithm [19,20] has been developed for a system
of spheres with diameter d ¼ 2rp ¼ 1

32
m and density

ρ ¼ 7520 kg=m3. The contact interaction has been simu-
lated using a linear-dashpot model with normal and
tangential elastic constants, kn ¼ 108 N=m and kt ¼ 2

7
kn,

respectively. The ratio between normal and tangential
damping coefficients was taken as νn=νt ¼ 3 with
νn ¼ 103 s−1. Accordingly, the equations of motion were
integrated with Δt ¼ 10−6 s (more details can be found in
[18,20]). A flat-bottom cylindrical container is imple-
mented with a radius W ¼ 32rp and walls with equivalent
mechanical properties to those of the particles. We generate
a granular column from a granular gas of N ¼ 262 144
spheres that are initially located within the cylinder at
random locations. Then, they settle under the effect of
gravity and are allowed to leave the system through a
circular outlet centered at the bottom of the column. After
certain time, a steady state is reached with a column height
of around hmax ¼ 112d.
The kinetic and dynamic properties of the particle flow

have been examined using a consistent coarse-graining
methodology [17,21]. First, we have accessed to the exact
positions and velocities of the particles in the experiments
and numerical simulations. Then, the coarse-grained mass
density of a granular flow, ρð~rÞ, at time t is obtained as
ρð~rÞ ¼ P

N
i¼1miϕ(~r − ~riðtÞ) where the sum runs over all

particles within the system and ϕ(~r − ~riðtÞ) is an integrable
coarse-graining function [17]. In the same way, the coarse-
grained momentum density function Pð~r; tÞ can be defined
by Pð~r; tÞ ¼ P

N
i¼1mi~viϕ(~r − ~riðtÞ), where ~vi represents

the velocity of particle i. The macroscopic velocity field
~Vð~r; tÞ is then defined as the ratio of momentum and
density fields, Vð~r; tÞ ¼ Pð~r; tÞ=ρð~r; tÞ.
The macroscopic stress field σαβ can be decomposed

into a contact stress field (σcαβ) related with particle-
particle interactions, and a kinetic stress field (σkαβ) which
depends on the velocity fluctuations of a single particle
with respect to the macroscopic flow [17]. The contact
stress reads

σcαβ ¼ −
1

2

XN
i¼1

XNci

j¼1

fijαrijβ

Z
1

0

ϕð~r − ~ri þ s~rijÞds; ð1Þ

where the first sum runs over all the particles and the
second accounts for the Nci contacting particles of i.
Moreover, ~fij accounts for the force exerted by particle
j on particle i and ~rij ≡ ~ri − ~rj. The kinetic stress reads

σkαβ ¼ −
XN
i

mi~v0iα~v
0
iβϕð~r − ~riÞ; ð2Þ

where ~vi0ð~r; tÞ ¼ ~viðtÞ − ~Vð~r; tÞ.
Based on these definitions, we have implemented a

postprocessing tool to resolve the kinetic fields in the
2D (experimental) and 3D (numerical) discharge
processes. In complement, all the micromechanical proper-
ties of the simulated flow have been explored in detail.

We use a Gaussian coarse-graining function, ϕð ~RÞ ¼
½1=ð ffiffiffiffiffiffi

2π
p

wÞ3� expð−j ~Rj2=2w2Þ, with ~R ¼ ~r − ~ri, and
where the coarse-graining scale has always been kept as
w ¼ rp. The fields are explored at a region close to the
outlet for a range of apertures 8rp < R < 26rp, thus
guaranteeing the absence of clogging. In all cases, the
temporal averaging of the variables is computed along the
whole measurement time. In the 3D silo, cylindrical
averaging around the vertical axis is also performed.
Thus, the magnitudes are displayed as 2D azimuthal
averages where r represents the radial distance to the
center of the outlet.
First, we show the spatial dependence of the vertical

velocity, vz, and volume fraction fields within the 2D and
3D silos (Fig. 1). In both situations the coarse-graining
magnitudes display monotonic behavior with height: When
approaching the orifice, velocity increases and volume
fraction decreases. For completeness we have checked that
the kinetic profiles at z ¼ 0 are coherent with previous
results [3,18].
Next, we investigate the micromechanical details of the

particle flow by focusing on the changes in the mean kinetic
and contact tensors. The spatial profile of the contact
pressure, defined as the trace of σcαβ, is illustrated in
Fig. 2(a). As the height is reduced, the contact stress
monotonically decreases due to dilatation of the bulk [11],
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FIG. 1 (color online). Vertical velocity fields in (a) 3D
numerical and (c) 2D experimental silos. Solid fraction fields
in (b) numerical and (d) experimental silos. In all cases R ¼ 16rp
and a Gaussian coarse-graining function ϕð ~RÞ with w ¼ rp has
been used. In the figures, the vertical coordinate, z, indicates the
height from the bottom of the silo, and the horizontal coordinate,
r, the distance to the center of the silo.
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which is compatible with the density fields shown in Fig. 1.
Additionally, the correlation between the traction trans-
mission and the velocity fluctuations can be outlined
examining the kinetic stress. Importantly, this magnitude
is also accessible for the experimental case as it only
depends on the fluctuations of the particle’s velocity respect
to the macroscopic flow. As in the case of σcαβ, we quantify
the strength of the kinetic pressure with the trace of σkαβ
[Eq. (2)]. The obtained values [Figs. 2(b)–2(c)] are several
orders of magnitude smaller than the contact pressure, but
the spatial pattern looks very different. Both experimental
and numerical outcomes show nonmonotonic trends indi-
cating the existence of a region where the kinetic pressure is
maximum. Note that the existence of a low-pressure cavity
above the outlet was already observed by implementing a
plastic rheology in a 2D Navier-Stokes solver following the
μðIÞ rheology [22].
For sake of simplicity, we focus on the evolution of the

contact and kinetic pressure along the vertical direction z at
the center of the orifice. As evidenced in Fig. 2(a), the
contact pressure decays monotonically when approaching
the bottom of the silo [Fig. 3(a)]. Remarkably, the gradient
of contact pressure is constant [typically of the same order
of magnitude than the gravity body force ρgϕðr; zÞ] and
nearly independent on the outlet size. Consequently, a
region resembling a free-fall arch (that should scale with R)
cannot be inferred from these findings. Meanwhile,
the kinetic pressure shows a nonmonotonic behavior
[Fig. 3(b)]. Far from the outlet, particles follow a global
macroscopic laminar flow where advection dominates their
movements and, as consequence, the kinetic pressure is
negligible. As the height decreases, the kinetic pressure
grows exponentially until it reaches a well-defined maxi-
mum the location of which, zc, depends on R. Indeed, the
kinetic pressure profiles can be collapsed normalizing the

vertical coordinate with R [Fig. 3(b), inset]. Hence,
although the kinetic stress is much smaller than the contact
stress, the scaling of its spatial profile with R suggests its
importance in the discharge process.
In order to unveil the relationship between the spatial

dependence of kinetic pressure and the shape of velocity
profiles at the outlet, Fig. 4 illustrates the vertical position,
zc, for which the kinetic pressure is maximum, as a function
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FIG. 2 (color online). (a) Contact pressure tr½σcαβ� profile
obtained from simulations. At the bottom, spatial profiles of
the (b) numerical and (c) experimental kinetic pressure. The line
is a parabolic fitting of the local maximum position. All graphs
correspond to R ¼ 16rp, and the data have been calculated with a
Gaussian coarse-graining function ϕð ~RÞ and w ¼ rp.

(a)

(b)

FIG. 3 (color online). Vertical profiles of (a) contact pressure,
tr½σcαβ�, and (b) kinetic pressure, tr½σkαβ�, at the center of the silo
(r ¼ 0), for different outlet sizes R as indicated in the legend. The
inset shows the data collapse when normalizing the vertical
coordinate z with the size of the outlet R.
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FIG. 4 (color online). Position of the local maximum of the
kinetic stress as a function of the radial distance for (a) 3D
(numerical) and (b) 2D (experimental) silos. All the data have
been collapsed normalizing the vertical and horizontal distances
with the radius of the outlet. The red lines correspond to a
parabolic fit which can be associated to the modified concept of
the free-fall arch.
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of the radial distance, r. All curves obtained for different
outlet sizes can be collapsed by rescaling both zc and r by
the outlet size, R. More importantly, the collapsed data can
be fitted by a parabolic dome. Although the height of these
domes seems to depend on the dimensionality, the collapse
prompts us to reframe the concept of free-fall arch as the
region where the collisional part of the stress tensor starts to
diminish and the dynamics becomes gradually dominated
by the external field. This picture contrasts with the
traditional view of a location where the velocity is
negligible and grains start a free fall.
The unsuitability of this historical idea can be confirmed

by examining the effective acceleration profiles aeff ¼
dvz=dt. The experimental and numerical outcomes of
aeffðzÞ at the center of the orifice (r ¼ 0) and along the
vertical direction (h ¼ z=R) are shown in Fig. 5. The values
of aeffðzÞwere calculated finding the finite difference of the
velocity vector of a single particle in two consecutive times
(in simulations Δts ¼ td=8, and in experiments Δte ≈ td=4,
where td ¼

ffiffiffiffiffiffiffiffiffiffi
2d=g

p
). The data shown correspond to aver-

ages over square (2D) or cubic (3D) regions of width
Δ ¼ 2rp. Similar to the kinetic stress, the vertical accel-
eration profiles collapse into a single master curve when z is
normalized by R. Remarkably, for both the 2D and 3D
silos, the collapse is very robust and the curve trends are
similar: As particles move down, acceleration increases,
and it only equals the gravity at the outlet. For comparison,
the acceleration profiles expected from the traditional

picture of the free-fall arch are illustrated by a Heaviside
function (shadowed region in Fig. 5). Incidentally, accel-
eration values slightly greater than g seem to appear close to
the aperture. We speculate that the origin of such an excess
of acceleration is caused by particles being ejected down-
wards, which indicates that the system compression is still
significant at this location.
The observations reported in Fig. 5 seem to challenge the

validity of the scaling vc ¼
ffiffiffiffiffiffiffiffiffiffi
2γgR

p
, where γ ¼ 1.07�

0.015 was a fitting parameter experimentally obtained from
the dependency of vc on R [3]. Far from that, the self-
similarity of the acceleration profiles is the key that
provides the argument to analytically calculate the scaling
function vc as follows. First, the vertical evolution of the
acceleration is generally written as F ðhÞ ¼ aðhÞ=g, where
F ðhÞ is a self-similar function of h ¼ z=R. After a simple
change of variables, this expression can be rewritten as
vdv ¼ gRF ðhÞdh. Then, we integrate assuming that the
silo expands over the upper half plane, with the outlet
centered at the origin,

Z
vc

0

vdv ¼ v2c
2
¼ gR

Z
0

∞
F ðhÞdh ¼ γgR: ð3Þ

Straightforwardly vc ¼
ffiffiffiffiffiffiffiffiffiffi
2γgR

p
, where γ accounts for the

area under the curves of Fig. 5. We have obtained γ ¼ 1.10
and γ ¼ 1.09 for the 2D experimental and 3D numerical
cases, respectively. Following the original hypothesis of the
free-fall arch, the value of γ would be equal to 1. As a
consequence, the scaling ansatz introduced in [3] is totally
justified, as it is founded on the self-similarity of the
dynamical fields inside the silo. Indeed, it can be stated
that the scaling vc ∝

ffiffiffiffiffiffi
gR

p
is imposed by the fact that R is

the only relevant length scale in the system, and the
asymptotic evolution of the acceleration towards the
gravity value g.
In summary, our findings disentangle the paradoxical

ideas associated with the free-fall arch in the discharge of a
silo, which has historically served to justify the dependence
of the flow rate on the outlet size. As suggested earlier [4],
there exists a singular region above the outlet where certain
dynamical features decide the resulting velocity profile.
Nevertheless, by no means does this region meet the naive
picture of an arch where particles lose all their kinetic
energy and start to fall freely under gravity. In the same
way, discontinuities in the stress field [5,7,8] have not been
identified either. We have shown that the stress decom-
position into contact and kinetic parts [17] provides a
suitable theoretical framework to distinguish between the
different role of force chains and velocity fluctuations. The
contact pressure displays a constant decrease as one
approaches the exit. This behavior is practically indepen-
dent of the aperture size, indicating that the pressure inside
the silo does not have a one-to-one relationship with the
velocity profile at the exit, as was already suggested in [23].

(a)

(b)

FIG. 5 (color online). Effective acceleration normalized by the
gravity as a function of the normalized vertical distance z=R in
(a) a 2D experimental silo and (b) a 3D numerically simulated
silo. In both cases, the measurements have been performed at
r ¼ 0. The shadow region corresponds to the Heaviside function
compatible with the historical idea of the free-fall arch.
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Meanwhile, the kinetic pressure displays a well-defined
maximum near the outlet that defines a transition surface.
The scaling of this surface with the size of the aperture links
the microscopic dynamics observed for the discharge
process with the stress fields, suggesting that the only
relevant length scale in the problem is R. At this point, the
independence of contact pressure with R might be a
surprising result. However, it is important to remark that
all the fields examined represent a continuum description of
our granular system in stationary conditions. In fact, the
advective motion of a representative volume element (RVE)
is governed by the momentum balance in terms of the
gravity, the gradient of contact pressure, and the dissipative
shear stress. For symmetry reasons, the shear stress
diminishes at the center of the silo and maximum values
of the vertical velocity Vmax are developed. As the gradient
of contact stress is constant, regardless the outlet size, it is
plausible to accept that Vmax is controlled by the distance
from the RVE to the border of the orifice, which is in
agreement with the role of R as the only characteristic
length of the discharge process. Finally, based on the
acceleration profiles collapsed with R, we explain the
scaling of the exit velocity with

ffiffiffiffiffiffi
gR

p
[3,18] as well as

the traditional mass flow rate correlations used in engineer-
ing [1,2].
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