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Flow and clogging of a sheep herd passing through a bottleneck
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We present an experimental study of a flock passing through a narrow door. Video monitoring of daily routines
in a farm has enabled us to collect a sizable amount of data. By measuring the time lapse between the passage of
consecutive animals, some features of the flow regime can be assessed. A quantitative definition of clogging is
demonstrated based on the passage time statistics. These display broad tails, which can be fitted by power laws
with a relatively large exponent. On the other hand, the distribution of burst sizes robustly evidences exponential
behavior. Finally, borrowing concepts from granular physics and statistical mechanics, we evaluate the effect of
increasing the door size and the performance of an obstacle placed in front of it. The success of these techniques
opens new possibilities regarding their eventual extension to the management of human crowds.
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I. INTRODUCTION

Collective behavior of human crowds has attracted the
attention of physicists in recent years, because it has been
shown that the dynamics of people can be represented, at least
in some situations, by simple models [1,2]. New approaches
have allowed us to consider the dynamics of large amounts of
people from a vantage point, with the aim of avoiding or allevi-
ating dangerous situations such as clogging and stampedes of
panicking persons. It is evident that the potential benefits that
can be derived from these studies are particularly valuable. But
these efforts are hindered by the plain difficulty of gathering
data against which theories and models can be checked. Three
sources can be pointed out. First, data from actual catastrophes
have been analyzed [3]. The problem with these data is, of
course, that they are collected in a serendipitous way and
cannot be rehearsed at will. Second, controlled evacuation
drills, as reported for instance in Refs. [4,5], can be performed.
But these experiments are not carried out in a competitive
situation because of obvious ethics considerations. And, third,
computer simulations [6–9] are inspiring and useful, but the
rules embodied in the underlying models are difficult to test
with controlled experiments, thus limiting their value.

In this framework, studies concerning the motion of large
numbers of living beings (see, for instance, Refs. [4,10–12])
are extremely interesting. It must be pointed out that animals
move routinely in a much more violent fashion than people
use to do, and the dynamics of flocks and herds are relatively
easy to observe. Apart from its own interest, the motion of
active matter (i.e., self-propelled particles, of which animals
are a particular case) can provide an intermediate step between
inert particles and humans. Indeed, some ideas used to describe
the dynamics of active matter have been borrowed from the
fields of granular matter and colloidal suspensions. Carrying
out experiments with inert grains in the laboratory is certainly
easier than gathering data from a panicking crowd, and animals
provide a convenient intermediate step. Nevertheless, as far as
we know, only experiments with mice [13] and ants [14,15]
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have been performed. Apart from those, experiments on
woodlice have been recently reported by Sobhani et al. [16].
Ants tend to follow one another [17] and are not a good model
for humans [15]. Many mammals (such as dogs or horses) do
have a leader; others, such as cats, do not flock.

In this context, we have resorted to sheep. In most of the
experiments and observations carried out under controlled
conditions, persons are instructed not to shove one another.
Sheep, on the other hand, push the others vigorously. They
are used to competitively hack their way through a dense
gathering without getting hurt, and so these situations are
not so dangerous for them as they would be for humans.
The use of this animal was suggested to be highly useful for
testing pedestrian egress conditions [18]. Sheep have many
advantages: an all-female herd does not have a leader; sheep
are gregarious; their size is in the same order of magnitude
than humans; and their running and walking velocity are close
to that of a person. In this framework, the aim of this paper is
to study whether some concepts that have been demonstrated
in granular matter are applicable to the case of active matter,
in particular, to sheep.

Bottlenecks are a main concern because a clog can easily
form and lead to casualties, if people are involved [19], or to a
flow arrest, in the case of granular matter [20–24]. In a recent
work [25], strong analogies have been identified in the flow
through a constriction of a pedestrian model, sheep, colloidal
suspensions, and grains in a vibrated silo. In all cases, the
passage between consecutive particles was shown to exhibit
a power law decay. In some conditions, anomalous statistics
were evidenced as the exponent α of the power law decreased
below two, and the first moment of the distribution could not
be calculated. From this, a transition was identified from an un-
clogged state (α > 2, with well-defined averages) to a clogged
state (where α � 2 and the average flow rate tends to zero as the
measuring time increases). After this definition, all the systems
were encompassed in a tentative state diagram of clogging.

In this work we will investigate, for the case of sheep,
aspects such as the flow rate through the door [26], the burst
duration, the time lapse between two consecutive individuals,
and the relationship among all these parameters. In addition,
we will analyze the effect of some strategies that have already
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been successfully implemented in granular flows to enhance
the flow properties. Presumably this will lead to improved
knowledge that could eventually be extended to the case of
people. Obviously humans and sheep are utterly different in
many aspects, such as body constitution, navigation capa-
bilities, communication skills, and intelligence. In addition,
people and sheep usually behave in a very different way,
because of politeness. But in some cases, for instance, in com-
petitive situations, it is conceivable that people would shove
one another selfishly. In those scenarios, the improvements
we propose in Sec. IV may be worth checking, with the
same methodology we put forward. Of course, this possibility
remains to be tested.

In the next section we will explain how we carried out
our observations, the methods we implemented, and the data-
processing techniques. The third section will be devoted to
the flow rates and the features of the probability distributions.
Then we will provide results for the influence of the door size
and the placement of an obstacle before the bottleneck. Finally,
a summary of our conclusions is offered.

II. EXPERIMENTAL PROCEDURES

We have been granted access to a farm where a sheep
herd is kept and to install there the necessary means to
observe the animals in their everyday conditions. This has
been supervised by two authors (L.M.F. and J.J.R.) who are
veterinarian doctors. In order to collect a sizable amount of
data and check for repeatability, we have restricted ourselves
to the observation of a subset of the sheep flock: young mothers
of the same age (so their body mass and size is very similar;
the relevant dimension is the width at their hip, about 35 cm).
The sheep are Rasa Aragonesa breed, and those of the subset
are separated from the flock and are kept in a barn. Every
morning, they exit the barn and the door is closed. Feeders
inside the barn are stocked with grain, and after some time the
door (77 cm wide) is open. As the sheep are eager to feed, they
enter the barn in haste. We have installed several video cameras
to register this entrance every day. Let us remark that this is the
usual procedure in the farm, therefore this is just an observation
of animal behavior in their regular routines. We have carried
out this observation over several months. A new batch of sheep
is drafted each month. These batches comprise between 60 and
110 sheep. Thus we have been able to check for repeatability
between different days and groups of individuals. In addition,
we have tested the validity of some approaches to ease clogging
(as explained below) by comparing the data sets coming
from different days of the same batch, with and without the
improvements and the geometrical modifications considered.

The main objective of these observations is to obtain
an accurate time log of the moment at which each sheep
crosses the entrance. To do this, we have installed a zenithal
camera inside the barn just above the door [Fig. 1(a)]. It is
a standard video surveillance camera recording 704 × 576
pixels at 25 frames/sec. The timing is obtained by means
of a procedure akin to the photo finish used in sport events.
An image [such as the one shown in Fig. 1(c)] is built from
the video frames in the following way. A line of pixels is
sampled from every frame and stacked vertically; therefore,
the horizontal dimension is the distance along the line, and the

FIG. 1. (Color online) (a) A video frame obtained from the
camera inside the barn when sheep are passing through a 77-cm-wide
door. The green (light gray) line marks the pixels sampled to build
the spatiotemporal diagram. (b) A photograph of the same entrance
taken from above, at the outer side of the barn. (c) A spatiotemporal
diagram of the sheep as they enter the barn. The head of each animal
is marked with red (dark gray) dots in order to obtain the passage
time.

vertical dimension is the time, in units of sampling period. In
our case, we have taken a line at about a body length from the
door [see Fig. 1(a)]. This is done because we are interested in
counting animals that have crossed the door: as they can get
stuck precisely at the door, it is reasonable to count them once
they are at a body length from the door. The line is drawn with
a segment parallel to the door line and two circular segments
centered at the door side ends. We have checked that the
outcomes are quite insensitive to this particular choice and to
other details of the procedure. A subtlety we have introduced
is to actually sample a thick line (five pixels wide), effectively
multiplying by five the temporal scale of the image.

The second step is to mark every animal in the spatiotempo-
ral diagram obtained as indicated [see Fig. 1(c)]. To this end,
one has to choose a feature of the animal that can be identified
in the photographs. After some trials, we have decided to
mark the sheep head, as it is easily distinguishable. Again,
we have made some tests adopting other rules, but the data
are insensitive to the details of the method. The marks are
done by hand, because we have found that the task of feature
recognition is very difficult to automate in a reliable way.
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Once sheep are marked in the spatiotemporal diagrams,
a simple image-processing program can produce a file with
the passage time for every animal in the pack. The passage
time information is processed to obtain the results presented
in the following section. In Sec. IV, we will describe some
modifications we have introduced in the entrance in order to
improve the flow. In addition, we also installed cameras in
another similar barn, where another pack of sheep of the same
characteristics and size was fed, and recorded some entrances
with the same method. We did this for control purposes, in
order to be assured that our results do not depend on the
specific features of a particular environment, and these data
are not used in this paper.

III. FLOW AND CLOGS

With the data obtained as explained in the previous section,
it is straightforward to plot the entrance time of each animal: in
Fig. 2 these plots are displayed for 18 days of a particular pack,
comprising 86 sheep. Near horizontal segments mark time
lapses during which no individual crossed the door. A salient
feature is the large variation from one day to another. This
happens in all the packs and with all the entrance conditions we
have implemented. A caveat is therefore pertinent, as several
studies have focused almost exclusively on the evacuation
time. With such a dispersion, it is difficult to describe the
situation or to gauge the details of the evacuation process
with just the average evacuation time. Moreover, one can
ponder whether the evacuation time is the relevant piece of
information. The answer, in our opinion, is in the negative.
The fact that a given number of individuals (of the order of
100 in our case) can go through a door in 45 sec instead of
40, may be acceptable. Nevertheless, trouble may appear if a
clog develops at the door, regardless of the total evacuation
time. Casualties are often the result of asphyxiation due to a
long clog, and from average evacuation times, clog durations
cannot be straightforwardly calculated.

In order to quantify the magnitude of clogging events, we
have resorted to the measurement of the time lapse �t between
two consecutive individuals. We have recently argued [25]
that the signature of a system prone to clogging is a power
law tail in the probability distribution of the time lapses
between elements. Indeed, if P (�t) ∼ t−α , with α smaller
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FIG. 2. (Color online) The number of sheep crossing the door as
a function of time; each line corresponds to a different day.

than two, then the average will not converge. This means that
extreme events can occur, and that the mean is not a good
descriptor of the system. More generally, in these situations,
average quantities will probably be essentially determined by
the largest event [27]. In our observations of sheep we have
never measured an exponent α smaller than two, but in other
conditions this could eventually happen.

A strict and rigorous data fit to obtain the exponent of a
power law is not a straightforward procedure. It is not enough
to visually establish a linear trend in a logarithmic-scaled
histogram: instead, a more precise method has been put
forward [28] that yields accurate results. It requires us to
compute the complementary cumulative distribution, i.e., the
probability that the time interval is greater or equal that a given
value. The tail is then fitted to find α, and the goodness of the
fit is obtained (for instance, a p value is given to assess the
legitimacy of the result). The software described in Ref. [28]
has been used for the power law fits given in this paper.

The statistics of the cumulated variable T is revealing: a
power law fits the tail nicely, giving in this case an exponent
α = 3.0 (Fig. 3). This particular value of α indicates that the
probability of finding long clogs decays rather quickly, so that
the average converges, and therefore this is not an instance of
the abovementioned anomalous statistics.

Let us now confront the problem of the definition of a
clogging event. A power law in the probability distribution
of �t means that there is not a typical parameter, viz., a
characteristic scale to separate the time lapses between two
animals into jammed and nonjammed situations. Then, in
principle, the choice of the �t used to define clogging events
(i.e., the time lapse between two consecutive animals above
which the system is considered jammed, called here �tc)
would be completely arbitrary. Nevertheless, some nuances
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FIG. 3. (Color online) Power law tail of the time lapses �t :
complementary cumulative distribution (also called survival function
or reliability function) for the 77-cm-wide door. The fit of the power
tail (black line) has been calculated with the method described in
Ref. [28]. The particular values obtained for this fit are α = 3.0,
xmin = 0.82. Inset: A normalized histogram representing the same
data, with logarithmic bin widths. Note that increasing the number
of bins will produce a noisier plot and the logarithmic scale in both
graphs.
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must be discussed regarding this point. There is at least a
typical time scale, which is given by the length of the animals
l divided by their velocity v, times the number of sheep that
can go simultaneously through the door shoulder to shoulder
(which is related to the ratio between door length and the
animal width). A reasonable approximation for our case yields
a time of about 0.5 sec. Time lapses much lower than this
value are not actual clogs: they just occur naturally because
of finite size effects. Another figure that can point to a good
value for defining clogs is the place where the power law tail,
as displayed in Fig. 3, begins in earnest. This number can
be obtained from the algorithm used; we have consistently
obtained values around 0.7 or 0.8 sec. Indeed, the straight line
representing the fit in Fig. 3 is plotted from this value on. These
two indicators suggest that a figure of the order of 1 sec is a
sound choice for �tc. Additional support for this will be given
later.

Once �tc is chosen, with the degree of arbitrariness
explained, the passage of animals can be described as a
continuous alternation between two regimes, “flowing” if
�t < �tc, and “interrupted” if �t � �tc. We will describe
the flowing regime by the burst size, which is the number of
animals between two clogging events (or alternatively, a burst
is a group of animals in which the largest time lapse is smaller
than �tc). The interrupted regime is described by the duration
of the clogging events, i.e., the distribution of the time lapses
larger than �tc (Fig. 3).

In Fig. 4(a) we represent the PDF of the burst size S [29]
divided by the mean burst size 〈S〉 obtained for �tc = 1 sec. It
is evident that the distribution is exponential, a behavior that
can be explained if there is a constant probability of clogging
during the whole burst. In addition, the exponential distribution
implies that a well-defined characteristic burst size can be
obtained from the data. Hence the flowing regime features
are well described, in a statistical sense (the moments of the
distribution converge). The dangers of anomalous statistics
are not present here. Let us note that burst duration also has
an exponential distribution, a fact that should not come as a
surprise, because as the average flow rate within the burst is
well defined, as explained below, the burst can be indistinctly
quantified in terms of size or duration.

We have previously stated that there is not a typical time
scale in �t that allows us to select a neat and clear �tc to split
the flowing and interrupted regime. Therefore it is entirely
admissible to take another value for �tc. We have found that
for all the values explored the distribution of burst sizes S is
always exponential. The only change is the value of the mean
burst size 〈S〉. As could be expected, 〈S〉 grows monotonously
with �tc for values above 0.8 sec (a longer �tc means that
some bursts that where considered before as two different ones
are now bound together). It is not possible to go much beyond
�tc � 2 due to the lack of statistics (the mean burst size grows
so large that only a few burst are available to calculate the
mean). These results are displayed in Fig. 4(b).

Finally, we can calculate the mean flow rate within the
bursts. In order to do this, we take the burst size divided by
the burst duration for all the bursts and calculate the weighted
average (the weight being the number of animals in the burst).
As the value of �tc decreases, the length of the bursts becomes
shorter because smaller time lapses are considered clogs. As
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FIG. 4. (a) Histogram of the burst size normalized by the mean
burst size. The line is a linear fit (note the semilogarithmic scale). For
the definition of bursts, �tc = 1s has been used. (b) The mean burst
size 〈S〉 as a function of �tc. (c) The mean flow rate inside bursts as
a function of �tc.

the number of animals is fixed (we always consider all the
sheep), the mean flow rate necessarily increases: the same
number of sheep are distributed in smaller, more compact
bursts. From Fig. 4(c) it can be seen that below �tc ≈ 1 sec
the mean flow rate grows rapidly. This is still another indication
of the limit for finite size effects. For �tc � 1 sec the average
flow within the bursts quickly approaches the value that is
obtained when dividing the total number of sheep by the mean
evacuation time, which is about two sheep per second.

IV. ENHANCEMENTS

Let us now consider whether some strategies that have been
successfully used to prevent or reduce the clogging probability
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in inert granular media are also beneficial for active matter.
Two checks have been performed: a change in the door size,
and the placement of an obstacle before the door. Both will be
analyzed in the light of the results presented in Sec. III.

The first modification we will discuss is the change of the
entrance width (see Ref. [26] for an analysis of pedestrian
flow when changing the door size). As explained before, the
exponent α = 3.0 obtained for a 77-cm-wide door implies
that the average converges. In order to attain a situation with
α < 2, the door size should be decreased, but this is unfeasible
for ethical reasons (it could cause injuries to the animals).
What we have done instead is to widen the door and see if the
inverse effect is observed, i.e., if α grows larger. If this is so,
then it is expected that a narrower door would make α decrease,
eventually reaching a clogged state as defined in Ref. [25]. We
therefore changed the door to a similar one but 94 cm wide
(in the following, this door will be referred to as the large
door, while the preceding one, 77 cm wide, will be called the
small door). We implemented the procedure explained above
and calculated the burst size and the lapse time probability
distribution function.

The second modification introduced is the placement of an
obstacle (as reported, for instance, in Ref. [30]) before the door.
This obstacle is a cylinder with a diameter of 114 cm and higher
than the sheep, so it hides the door from the animals. It is a
section of a concrete drainpipe, and it was placed in such a way
that its nearest point was at 80 cm from the door, and centered
in the middle of the opening. The aim of this test was to check
whether this arrangement will reduce the clogging probability.
An experiment with inert granular media [31] demonstrated
how this strategy could reduce clogging by a factor of more
than one hundred. In the case of animals, it is not feasible to
collect such a large amount of data as in the laboratory, so only
the analysis of the burst size and the PDF of �t is available.
Again, experiments were carried out following the procedure
explained previously. We took care to do this with several
packs of sheep, and for each pack we recorded the entrance
without obstacle for about 2 weeks, then with the obstacle for
another 2 weeks. In this way, we checked that the behavior of
the animals was similar and we were confident to aggregate
all the data.

The analysis of �t reveals power law tails in all the
situations investigated (small and large door, with and without
obstacle), as shown in Fig. 5 (see also Table I). In the case of
the larger door, a higher exponent α = 3.4 is found, meaning
that the system is less prone to clogging. One can therefore
make the educated guess that a smaller door would lead to a
distribution with a lower α, eventually reaching the threshold
α < 2. The precise door size corresponding to this threshold
can not be estimated, because it would involve an extrapolation
and α could depend on the door size in a nonlinear fashion
(some indications come from experiments in granular flows
through an orifice [21]).

The placement of the obstacle leads to an increase of the
exponent in the distribution of �t : from 3.4 to 4.8 for the large
door, and from 3.0 to 4.0 in the case of the small door. It is
therefore quite natural to assume that an obstacle lessens the
tendency of the system to clog. Of course, we have explored a
system only in a state where α > 2, but it is not risky to assume
that this enhancement will also work for α < 2 (a clogged
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FIG. 5. (Color online) Complementary cumulative distributions
of �t corresponding to the following cases: small door, no obstacle
(pink ◦); small door, with obstacle (cyan �)); large door, no obstacle
(red �); large door, with obstacle (blue �). Note that the slopes
indicated in the graphs differ from α in 1, as they correspond to
cumulative distributions.

state [25]). Let us also remark that we have only performed this
experiment with the obstacle at a fixed position. In order to find
the optimal reduction of the clogging probability, the distance
to the door is crucial [32–34]. This exploration is costly in
terms of the time needed and we have not attempted it.

The burst size distribution remains exponential when an
obstacle is present and the door is enlarged. The only change
is the value of the characteristic parameter of the exponential,
which of course can be related to 〈S〉. In Fig. 6(a) we reproduce
the same data as in Fig. 4 (the values of 〈S〉 versus �tc for
the four scenarios investigated: with and without an obstacle,
for large and small doors). It provides evidence that for both
door sizes the obstacle is beneficial in terms of the burst sizes,
because 〈S〉 is bigger in this case, regardless of the particular
value chosen for �tc. In addition, the larger the door the bigger
〈S〉. Note that we cannot calculate 〈S〉 for arbitrarily long �tc
because bursts become extremely long and eventually take the
whole lot of individuals recorded.

In Fig. 6(b) we plot the ratio r of the mean burst sizes with
and without obstacle both for the small and the large doors.
Note that below a certain �tc the mean burst size is almost
unaffected by presence of the obstacle (alternatively, r ≈ 1).
For the large door this value is �tc ≈ 0.4 and for the small
door �tc ≈ 0.8. These numbers are to be compared with the

TABLE I. Values of some parameters for the different enhance-
ments: α is the exponent of the power law tail, tmin is the value of
�t above which the fit is valid, N is the total number of animals
recorded, and t1 is the average evacuation time per animal.

Door Obstacle α tmin (s) N t1 (s)

Small (77 cm) No 3.0 0.82 2535 0.50
Small (77 cm) Yes 4.0 0.75 2025 0.47

Large (94 cm) No 3.4 0.48 1742 0.30
Large (94 cm) Yes 4.8 0.51 1922 0.27
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FIG. 6. (Color online) (a) Mean burst size 〈S〉 as a function of
the value �tc chosen for the definition of clogs. The symbols are the
same that in Fig. 5: small door, no obstacle (pink ◦); small door, with
obstacle (cyan �); large door, no obstacle (red �); large door, with
obstacle (blue �) (b) Ratio r of mean burst size with and without
obstacle as a function of �tc for the large door (◦) and the small
door(�). (c) The mean flow rate within bursts as a function of �tc
[symbols correspond to the same cases as explained in (a)].

values of tmin provided in Table I. This is yet another indication
of the finite size effects limit, which can be used as a threshold
for the definition of clogs. Above this value, indeed, if one
decides to take a more stringent value of �tc, i.e., a larger one,
meaning that only long clogs will be considered, then the burst
size will increase, so the improvement gained by placing an
obstacle would be still bigger.

Finally, let us consider the mean flow rate inside bursts
[as was done in Fig. 4(c)] for both door sizes, with and

without obstacles. These are displayed in In Fig. 6(c). As
explained above, the limit for large �tc must tend to the
mean flow rate (the inverse of t1 in Table I). Note that even
though the obstacle changes the likelihood of long clogs, its
presence does not change the mean flow rate within bursts
noticeably.

V. CONCLUSIONS

We have observed the behavior of a sheep herd when
going through a door in a competitive fashion. From the
recorded passage time of the animals as they cross the door,
we have studied basically the burst size (groups of animals
passing uninterruptedly between clogs) and the distribution
of time lapses between consecutive animals. As the burst
sizes are exponentially distributed, the mean burst size can be
easily obtained, thus providing a characteristic parameter that
correctly describes the flowing regime. On the other hand, the
distribution of lapse times displays a power law tail. Care must
be taken when providing averages if the exponent of the power
law is smaller than two, because in this case the first moment of
the distribution would not converge and the mean will be dom-
inated essentially by the largest event. This condition has been
avoided in the present work, but if it were the case, the possi-
bility of extreme events (very long clogs) should be carefully
considered. Therefore, emphasis on the duration of clogging
events instead of averages such as evacuation time is pertinent.

We have checked that some procedures that reduce the
clogging probability in the case of inert granular media can be
successfully applied to active matter, at least in principle. The
obvious action of widening the orifice has a beneficial effect, as
well as placing an obstacle before the door. The effectiveness
of these approaches can be gauged by measuring the exponent
of the power law tail in the time lapse distribution.

It is fitting to point out that this work may lead to a
better understanding of how to avoid the dangers of clogging
in people crowds going through emergency exits or narrow
passages. The relevance that this could have in architectural
design is of course noteworthy. The choice of sheep is quite
sound as an intermediate step between inert grains and humans,
and the scope of the present analysis can eventually be
broadened and help to better manage human throngs. This is,
however, something that remains to be analyzed and checked.
Whether the placement of an obstacle is beneficial for a
group of people shoving one another will be difficult to check
experimentally, but perhaps computer simulations could shed
light on this issue.
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and Tomás Yagüe, at whose farm we recorded the films.
Financial support from PIUNA (Universidad de Navarra),
Project FIS2011-26675 from Ministerio de Economı́a y Com-
petitividad (Spanish Government) and Mutua Montañesa is
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