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ABSTRACT  

Ochratoxin A (OTA) is a thermostable mycotoxin that contaminates a great variety of 

foodstuffs. It is nephrotoxic in all of the mammalian species tested, being the pig the most 

sensitive one; among rodents, rats are the most susceptible to OTA carcinogenicity. Kinetics, 

by studying the absorption, distribution, metabolism and excretion of xenobiotics, is an 

important tool for the extrapolation of animal toxicity data. The most important kinetic studies 

performed with OTA in rats have been reviewed, together with the different methods used for 

OTA quantification in biological matrices. Thirteen studies in Wistar, Sprague-Dawley or 

F344 rats, using radiolabeled OTA or TLC, HPLC-FLD or HPLC-MS have been summarized. 

Very often methods validated for food have been directly applied to tissues.  Strain, sex and 

age differences have been detected but the interpretation is difficult due to the different 

experimental conditions, and the connection of the several factors that may account for these 

differences. 
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INTRODUCTION 

Ochratoxin A (OTA) is a mycotoxin produced by fungi of the genera Aspergillus and 

Penicillium that contaminates a great variety of foodstuffs, such as cereals, coffee, cocoa, 

beans, grapes and dried fruit. Due to the fact that OTA is not destroyed by common food 

preparation procedures, humans and farm animals are continuously exposed to OTA through 

the consumption of contaminated food and feed. Ochratoxin A is nephrotoxic in all of the 

mammalian species tested to date. Regarding OTA nephrotoxicity the pig is the most sensitive 

species; risk assessment is currently based on this animal (EFSA, 2006; WHO, 2008). 

However, with regard to OTA carcinogenicity, rodents are much more sensitive (NTP, 1989) 

(Bendele et al., 1985), being rats considered as more sensitive than mice, and rat males more 

sensitive than rat females (EFSA, 2006). 

The main concern regarding ochratoxin A toxicity is its potential carcinogenicity to humans. 

The lack of human epidemiological data and the fact that the mode of action of OTA as a 

carcinogen is still unknown, make risk assessment difficult. Direct genotoxic (DNA binding 

of OTA moiety) and epigenetic mechanisms (non-genotoxic; thus, without any direct DNA 

binding of OTA moiety), have been proposed and evidence has been generated in support of 

each mechanism of action. This debate appears to be a key question for the selection of 

relevant studies and methods to be used for risk assessment (WHO, 2008). Understanding the 

mechanism underlying renal diseases in experimental animal will aid, not only in the 

elucidation of the mechanism of action, but also in the extrapolation to human situation and 

risk assessment.  

An important tool that aids in the interpretation of toxicologic findings in animals and 

extrapolation of the resulting data to humans is kinetics, which is the science that studies the 
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absorption, distribution, metabolism and elimination of a substance in the body. The 

relevance of toxicokinetics in toxicity evaluation and interpretation of animal toxicology data 

and its importance for a correct risk assessment has been reviewed by Dixit et al. (2003).  

Thus, this article will briefly review the most important kinetic studies performed with OTA 

in rats; the most sensitive species regarding OTA carcinogenicity (EFSA, 2006) as well as the 

preferred species for toxicokinetic studies as it has been used extensively for toxicological 

studies of OTA and other xenobiotics (OECD, 2010). Moreover, due to the relevance of using 

sensitive, accurate and precise analytical methods in obtaining reliable kinetic data, the 

different extraction and quantification methods used for the measurement of OTA in 

biological matrices from rats in the different kinetic studies have also been reviewed. 

Analytical techniques for ochratoxin A toxicokinetic studies 

There are numerous methods for quantifying OTA, particularly in food matrices, that have 

been reported in the reference literature (EFSA, 2006; WHO, 2001). However, very few 

analytical techniques have been specifically validated for application in biological samples 

obtained from rats (Han et al., 2013, Vettorazzi et al., 2008; Zepnik et al., 2003). In many 

cases, the entire validation data has not been reported or the methods have been developed 

and validated in other animal species, such as a pig, or even in food commodities, and then 

applied to rat samples (Alvarez et al., 2004; Aoudia et al., 2008; Domijan et al., 2005; 

Kerkadi et al., 1998; Li et al., 1997; Mantle, 2008; Miljkovic et al., 2003). This could be 

acceptable for some objectives but, as reported in the S3A ICH Guideline for drugs (ICH 

S3A), the analytical technique method used in kinetic studies should always be validated in 

each type of sample and in each animal species in order to investigate possible interferences 

by endogenous components. This would also be relevant to other xenobiotics, especially in 

the case of OTA, in which several species-related differences have been observed. The need 
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for a specific validation for each matrix has been demonstrated for OTA in a European 

intercomparison study (Entwisle et al., 1997), where several laboratories reported that, when 

using a method adapted from cereals, recoveries from the freeze-dried pig kidney material 

were lower than those obtained from cereals.  

The main chromatographic methods for determination of OTA in animal and human tissues 

and fluids have been extensively reviewed by Valenta (1998). In the present review, only the 

methods used for quantifying OTA in kinetic studies performed in rats to date will be 

presented. Table 1 shows the extraction procedure and the detection method used on each 

organ of each kinetic study performed. Some important aspects regarding the analytical 

technique that may affect the interpretation of the kinetic results are mentioned below. 

As can be observed in table 1, the former kinetic studies (Galtier et al., 1979; Kane et al., 

1986; Suzuki et al., 1977) have quantified OTA in different biological matrixes either by thin 

layer chromatography (TLC) or by administering radiolabelled OTA to the experimental 

animals. The main advantage of the aforementioned studies is that OTA has been determined 

in a high number of organs. However, the analytical techniques used in these studies present 

some disadvantages when compared to newer analytical techniques, such as HPLC-FLD or 

HPLC-MS, used in the more recent studies. In the case of using radiolabelled OTA, not all of 

the radioactivity detected necessarily represents OTA because a certain proportion must also 

originate from degradation products, such as phenylalanine or OTα. Moreover, the use of this 

method makes it more difficult to determine the absolute amounts per tissue weight (Schwerdt 

et al., 1996), as can be observed in table 2. Generally, TLC methods have higher detection 

limits and higher relative standard deviations in quantitative analysis than HPLC (Valenta, 

1998). 
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The most recent kinetic studies have used HPLC-FLD or HPLC-MS/ for OTA quantification 

in different rat biological samples. HPLC-FLD is the most widely used procedure for OTA 

determination in biological matrices due to the low detection limits and the high sensitivity 

that can be achieved, as OTA is a substance with high natural fluorescence (Valenta, 1998). 

Liquid chromatography detection methods and mass spectrometry are becoming more and 

more important for OTA in biological samples, especially for OTA metabolite detection 

(Muñoz et al., 2009; Schaut et al., 2008). In the main rat kinetic studies performed to date 

with HPLC-FLD or HPLC-MS, complete data from the validation for each matrix is not given 

or the extraction and/or detection methods were developed for other species (Li et al., 1997; 

Mantle et al., 2008; Zepnik et al., 2003). In some kinetic studies in which a specifically 

validated method was used, only plasma, kidney and liver levels were measured (Vettorazzi et 

al., 2009, 2010, 2011). Recently a new validated HPLC-MS method has been developed for 

uncovering in vivo kinetics of OTA in rats in plasma, heart, liver, spleen, lung, kidney and 

brain (Han et al., 2013).  

Several aspects must be taken into account when determining OTA in biological samples 

(Valenta, 1998). Extraction from the biological sample is one important part of OTA 

quantification. Due to its protein binding properties, it is convenient to extract OTA in acidic 

conditions. Several authors have recommended that the pH of the sample solution should be 

adjusted to less than 2 in order to ensure a complete extraction of OTA from matrices rich in 

proteins (Pfohl-Leszkowicz and Manderville, 2007; Valenta, 1998). However, it should be 

mentioned that these acidic conditions were not reached in other studies using HPLC-MS and 

where high OTA recoveries were also obtained (Zepnik et al., 2003; Han et al., 2013). Han et 

al. (2013) compared three extraction solvents (methanol, acetonitrile and acetone) in absence 

of acidic conditions, and concluded that all three performed well (recoveries higher than 70 
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%) as long as the ratio extraction solvent:sample was higher than 1:1 for methanol and 

acetonitrile; and 3:1 for the acetone..  

However, the use of acidic extraction is under debate, especially regarding OTA metabolites 

extraction. In the study performed by Zepnik et al., 2003, no OTA metabolites (OTQ, OTHQ, 

open OTA lactone, hidroxilated OTA or glutathione metabolites) were detected in urine, liver, 

kidney and blood. Only OTα was detected in urine (no acidic extraction) and feces (acidic 

extraction); as well as  traces of hexose and pentose OTA conjugates in urine. Some authors 

(Pfohl-Leszkowicz and Manderville, 2007) by using the same detection method, HPLC-

spectrofluorimetry, compared the method of extraction used by Zepnik et al. (2003) (only 

based on ethanol precipitation of proteins and the classical one that uses chloroform after 

acidification, finding that OTA metabolites were most probably lost during the ethanol 

deproteinization step. With the acidified chloroform extraction, they were able to detect 

compounds corresponding to the elution time of the 4-hydroxy derivatives (4(R) and 4(S)-

OH-OTA), ochratoxin B (OTB), ochratoxin α (OTα), ochratoxin β (OTβ) and the lactone 

opened ring of OTA (OP-OTA). However, it has been reported by Li et al. (2000) that low pH 

does not allow the detection of some lactone-opened forms of ochratoxins. In a more recent 

study (Han et al., 2013), by using LC-TOF/MS, metabolites such as phenylalanine, OTβ or 

OTB methyl ester, were detected in different tissues after methanol extraction. Thus, it seems 

there is lack of consensus regarding OTA metabolite extraction/detection. Moreover, even if 

practically all of the studies have synthesized the metabolites following similar protocols 

(mainly Dai et al., 2002; Xiao et al., 1996a; and Xiao et al., 1996b), there is a need for OTA 

metabolite standards. Finally, it would also be interesting to validate simple methods, either 

for OTA or its metabolites, for obtaining comparable data among different matrices. This was 

performed for OTA, and the complete validation results were published for HPLC-FLD by 

Vettorazzi et al. (2008) for plasma, kidney and liver and for many other tissues in HPLC-MS 
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by Han et al. (2013). To validate the method for each individual matrix is especially relevant 

when HPLC-MS methods are used, as matrix effects can significantly affect the accuracy of 

the results. For this purpose, the use of internal standards is highly recommended. This aspect 

was also taken into account in the method validated by Han et al., (2013).  

Another important aspect when dealing with biological matrices is the procedure used for 

spiking the samples. At present, there is a lack of certified reference materials for the 

determination of OTA. There is only certified material for blank wheat (European Union Joint 

Research Centre, Institute for Reference Materials and Measurements, Geel, Belgium). In 

recovery experiments, blanks samples must be spiked with a standard solution of the toxin 

prior to extraction. For biological samples, Valenta (1998) recommended spiking the sample 

with a small volume of standard solution in a solvent which is miscible with water, and 

mixing the sample to ensure good distribution of OTA in the sample. However, the author 

highlighted the fact that the results of recovery experiments cannot be applied to naturally 

contaminated samples without restrictions. Frequently, OTA recovery from samples has not 

been calculated and/or results have not been corrected by it. This, together with the fact that 

the spiking procedure is only described in a few methods, makes the comparison among 

different studies quite difficult.  

Finally, even if in the most recent kinetic studies, the volume of sample needed for OTA 

extraction is low (table 1), it would be interesting to validate techniques in which smaller 

volumes, especially for plasma, are needed. This would allow obtainment of a better 

description of the kinetic curve with a reduction in the number of animals. The more data 

points that are obtained from one single animal, the more accurate the kinetic modeling is. 

Furthermore, it would enable the estimation of both inter-animal and residual variability when 

a population modeling approach is applied (Vettorazzi et al., 2009). 
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A very common practice in kinetic analysis of OTA is the no inclusion of control animals. In 

all of the kinetic analyses performed to date with OTA, only Kane et al. (1986), Suzuki et al. 

(1977) Vettorazzi et al. (2009, 2011) and Han et al. (2013), included control animals. As 

stated by the EMEA/CPMP/SWP/1094/04 Guideline, control sampling and analytical 

procedures should be integrated into the toxicokinetic evaluations in order to check for 

possible contamination between samples during the in vivo experiment or during sample 

preparation. Significant contamination of controls with the test substance may ultimately 

invalidate the study. However, it is important to point out that, in the case of OTA, detectable 

levels can be observed in plasma from animals that were never in contact with OTA-treated 

animals (Vettorazzi et al., 2008). These low levels of OTA were also found in blank samples 

(Aoudia et al., 2008; Mantle, 2008) and have been attributed to the OTA contamination 

normally present in the standard diet of the animals.  

Thus, it would be very interesting to give at least the same relevance to the analytical 

techniques used for toxicokinetic and toxicology studies as to the ones used in food matrices 

(EFSA, 2006; WHO, 2001; WHO, 2008), in order to assure reliable and comparable data 

among studies and consequently, a more accurate interpretation of the results. 



 

OCHRATOXIN A KINETIC STUDIES IN RAT 

Absorption 

It has been reported that OTA is rapidly absorbed after oral ingestion in several animal 

species (EFSA, 2006; WHO, 2001). In rats, Galtier et al. (1979) described a rapid 

absorption phase (18 min) for oral administration. OTA is mainly considered to be 

passively absorbed through the GI tract (reviews of Pfohl-Leszkowicz and Manderville, 

2007; Ringot et al., 2006), through the stomach (Galtier, 1977) and particularly, through 

the proximal jejunum (Kumagai and Aibara, 1982). The passive absorption is highly 

favored by the high binding affinity of OTA to plasma proteins (Ringot et al., 2006). 

However, absorption from the jejunum can also take place against a concentration gradient 

and depends on the pH at the mucosal surface of the jejunum (Kumagai, 1988; WHO, 

2001). Several substances, such as cholestyramine (Madhyastha et al., 1992) or micronized 

wheat fibers (Aoudia et al., 2008), have been shown to reduce the bioavailability of OTA 

when administered in the feed.  

Only two studies have been specifically designed to allow comparison between oral and 

intravenous administrations, and thus allowing bioavailability calculation for OTA after 

oral administration. Galtier et al. (1979) calculated a bioavailability of 67.3% while 

Hagelberg et al. (1989) obtained a 44 %. However, it is important to note that the dose 

administered by Galtier et al. (1979) was 50 times higher than the dose administered by 

Hagelberg et al. (1989). It is well known that OTA can alter barrier and absorption 

functions of the intestinal epithelium, and even potentiate its own absorption through 

paracellular pathways (Maresca et al., 2001; Subramanian et al., 1991). Moreover, Suzuki 
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et al. (1977) observed catarrhal enteritis produced by OTA or OTα through small intestine 

after a single oral dose of 15 mg/kg b.w. of OTA. They stated that the patterns of 

absorption, tissue distribution and excretion were affected by the enteritis. Breitholtz-

Emanuelsson et al. (1995), after a single intratracheal administration of OTA, calculated 

(by comparing their results with the ones obtained after intravenous administration by 

Hagelberg et al., 1989) a bioavailability of 98 %. The authors stated that the toxicokinetics 

of the toxin when given intratracheally, orally or intravenously were comparable.  

In general, for a same dose, F344 females tend to reach higher plasmatic concentration than 

males (Vettorazzi et al., 2009; Zepnik et al., 2003) (table 3). The concentration of OTA in 

plasma also tends to be influenced by the age of the rats; younger rats (10 weeks old) 

reached higher OTA concentrations than older rats (15 weeks old) (Vettorazzi et al., 2009). 

The lower OTA plasma levels obtained in males coincide with other studies in which the 

higher maximum concentrations were found in Fischer X Sprague Dawley females after 5 

months of OTA administration via diet (Mantle, 2008). Moreover, within 96 h after oral 

administration, Zepnik et al. (2003) detected a higher OTA fecal excretion in males than in 

females. This may suggest a possible less efficient gastrointestinal absorption in males; 

however, more experiments, in which biliar excretion can be compared between males and 

females, are needed. 

Regardless of the administered doses, the maximum OTA concentrations observed after 

oral administration were between 1 and 7 hours in all of the studies in which OTA was 

administered dissolved in an aqueous vehicle (tables 2 and 3). Upon comparing two 

toxicokinetic studies in which a same dose of OTA was administrated in corn oil (Zepnik et 

al., 2003) or in NaHCO3 (Vettorazzi et al., 2009), similar OTA concentrations in plasma 
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were reached at 48 h in males and at 24 h in females. However, in Zepnik et al. (2003) 

these levels were the maximal concentrations reached in the curve, whereas in Vettorazzi et 

al. (2009) the maximal OTA concentrations were attained 2 h (for males and young 

females) and 6 h (for mature females) after the oral administration (table 3). This difference 

could be due to the possibility that the corn oil might delay absorption of OTA or to the 

lack of data in earlier timepoints after administration where higher OTA levels could have 

been detected. 

Another factor that may influence OTA absorption is the presence of food in the stomach of 

the animals before the administration. In Vettorazzi et al. (2010), after performing a 24 h 

kinetic study in fasted rats and comparing the results with fed rats, it was found that fasting 

tends to increase the maximum plasma concentrations and the rate of absorption in both 

males and females.  This difference was only statistically significant in male rats that 

consumed more food than the rest of the groups (females and young males). However, food 

ingestion was proportional to body weight in all experimental groups. The reason why the 

OTA bioavailability is more affected in the presence of food only in males is unknown. 

Some possible consequences of this higher amount of food in the stomach of males, such as 

delayed gastric emptying or the trapping effect of the food contents towards the mycotoxin 

have been commented in Vettorazzi et al. (2010, 2011). The fact that food in the stomach 

may lead to less OTA absorption coincides with the fact that OTA appears to be less toxic 

when acquired as a dietary component (Mantle et al., 2005; Miljkovic et al., 2003).  

Finally, another factor to be taken into consideration is the possibility of a carrier-mediated 

transport in gastro-intestinal tract. Even if it has been demonstrated in Caco-2-cells that 

organic anion transporters (OAT) are not involved in OTA transport across the cells 
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(Berger et al., 2003), the fact that absorption from the jejunum can also take place against 

concentration gradient (Kumagai, 1988) suggests the presence of transporters with the 

capacity to transport OTA in the jejunum (Dietrich et al., 2005). This, together with the fact 

that OTA may be a substrate for the ATP-Binding Cassette efflux-proteins MRP2 

(multidrug resistance-associated protein) and BCRP (breast cancer resistance protein) in 

Caco-2-cells (Schrickx et al., 2006) (see “elimination” section), may influence the 

bioavailability of OTA. 

Distribution  

Once OTA is absorbed, it binds to serum albumin (Galtier et al., 1981) and other 

macromolecules (Stojković et al., 1984). The unbound fraction is as low as 0.02 % in rats 

and in humans, indicating an extent of plasma protein binding of 99.98 % (Hagelberg et al., 

1989). This binding facilitates its passive absorption in the non-ionized form and partly 

explains its long half-life in the body (Dietrich et al., 2005; Ringot et al., 2006). Hagelberg 

et al. (1989) also studied the relationship between plasma binding properties of OTA and 

its toxicokinetics in several animal species; considerable differences were found between 

species. Indeed, care should be taken when interpreting OTA kinetic data from different rat 

strains, as marked strain-differences in binding affinity of albumin to other xenobiotics 

have already been described (Ito et al., 2007).  

Stojkovic et al. (1984) found that in human and porcine serum, OTA binds more 

specifically to small proteins (molecular mass around 20 KDa) than to albumin. Due to the 

fact that such small proteins can pass through the glomerular membrane, the authors 

concluded that this binding could be relevant to the OTA predominant nephrotoxic effect 
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on mammals. More recently, Mantle and Nagy (2008) suggested that the low molecular 

weight protein α2u-globulin (with a molecular mass also around 18 KDa) may be involved 

in some of the OTA differences found between male and female rats. The α2u-globulin is a 

male rat-specific protein that is synthesized in the liver of males under androgenic control 

and reaches very high levels in plasma and urine of adult male rats. It is known that many 

chemicals that only cause renal tumors in male rats, such as d-limonene or 2,2,4-

trimethylpentane, induce accumulation of the α2u-globulin in the kidney (for a review see 

Swenberg, 1993). This accumulation initiates a sequence of events that appears to lead to 

nephropathy and renal tumor formation (Rodgers and Baetcke, 1993). Even though it has 

been demonstrated that OTA kidney lesions are different from the α2u-nephropathy in all 

characteristic points (Rasonyi et al., 1999) and that OTA also causes renal tumors in male 

mice (Bendele et al., 1985), Mantle and Nagy (2008) suggested that the α2u-globulin could 

act as a specific OTA carrier that increases proximal tubule exposure to the mycotoxin in 

male rats. However, this has not been demonstrated experimentally. 

The fraction of OTA bound to serum albumin and other macromolecules constitutes a 

mobile reserve of mycotoxin that can be made available for release to the tissues for a long 

time and partially explains the long half-lives obtained in different OTA kinetic studies 

(tables 2 and 3). Some authors considered that half-life after oral ingestion is shorter than 

after intravenous injection (Pfohl-Leszkowicz and Manderville, 2007; Ringot et al., 2006). 

However, this has been observed in rats in only one study (Hagelberg et al., 1989). In 

another study performed with both routes of administration (Galtier et al., 1979), this 

difference in half-lives was not observed. Moreover, the aforementioned authors explained 

the shorter elimination half-life found in orally dosed rats, as a reflection of the first pass 
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effect with primary biliar and subsequent fecal excretion. However, a high first pass effect 

may explain the low bioavailability of OTA after oral ingestion rather than differences in 

half-life between i.v. and p.o administrations. The half-life is a kinetic parameter which 

directly depends on the volume of distribution and clearance, parameters that are not 

generally affected by any loss of the substance (such as in the first pass effect) before 

entering to the systemic circulation. Dietrich et al. (2005) stated that the observed 

differences in elimination half-lives between oral and i.v application routes most likely 

stem primarily from analytical limitations rather than from real biological effects.  For 

example,  the half-lives obtained by Galtier et al. (1979) were shorter than the ones 

reported in the rest of the studies, probably due to the different technique that was used to 

quantify OTA in the biological matrices or to the lack of timepoints (samples were only 

collected during the first 48h). However, it should be noted that the majority of the OTA 

kinetic studies performed with Sprague-Dawley rats obtained shorter half-lives than the 

studies carried out with other rat strains (table 3).  The impact of the different rat strains in 

OTA kinetics remains unclear.  

Another factor that should be taken into account is the body weight of the animals used in 

the different studies. In a study in which kinetic analysis were performed in F344 rats of 

different ages and sexes (Vettorazzi et al., 2009), a statistically significant impact of body 

weight on volume of distribution, which increased linearly with body weight, was found.  

Due to the fact that the half-life is governed by both plasma clearance and volume of 

distribution, it was concluded that the differences observed in the half-lives between the 

different groups of rats were due to differences in body weight; no differences in the 

clearance between groups were observed. This study highlighted the importance of taking 
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into account the age, weight and sex, when studying OTA toxicokinetics in F344 rats. This 

coincides with one of the studies performed by Mantle (2008) in which Dark Agouti and 

F344 males of the same age were administered the same OTA dose. The body weight and 

OTA half-life (2.16 days) of Dark Agouti rats were less than those of F344 (8.64 days). 

However, again, other strain differences, and not only body weight, may be involved in 

such a big difference between half-lives.   

With regard to tissue distribution, previous data from in vivo experiments had indicated that 

OTA accumulates in the kidney, its main target organ (EFSA, 2006). The tissue distribution 

of OTA in rats follows a different order, depending on the technique used to quantify OTA 

and the experimental design of the kinetic study (Galtier et al., 1979; Han et al., 2013; 

Kane et al., 1986; Li et al., 1997; Suzuki et al., 1977). Studies in rats by Chang and Chu 

(1977) and Suzuki et al. (1977) also demonstrated accumulation of the toxin in the 

gastrointestinal tissues. OTA has also been found in brain (Belmadani et al., 1998; Han et 

al., 2013) and is able to cross the placenta (Hallen et al., 1998). In general, kidney, heart 

and liver are the organs in which higher amounts of OTA are found. OTA concentrations in 

liver and kidney tend to be similar between both organs (in some cases higher in liver than 

kidney) after both single and repeated exposure (Aoudia et al., 2008; Arbillaga et al., 2008; 

Breitholtz Emanuelsson et al. 1991; Domijan et al., 2005; Galtier et al., 1979; Han et al., 

2013; Kane et al., 1986, Suzuki et al., 1977, Tozlovanu et al., 2012, Vettorazzi et al., 

2011). However, Zepnik et al. (2003) found much higher OTA concentrations in kidney 

than in liver (40-, 100- and 270-fold higher in kidney than in liver in male rats at 24 h, 48 h 

and 72 h) after the single oral dose administration. The main difference between Zepnik et 

al. (2003) and the aforementioned studies is that an acidification step was not used in the 
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extraction method (see “Analytical techniques for ochratoxin A toxicokinetic studies” 

section). However, when the same analytical method was applied in samples from repeated 

dose studies (Mally et al., 2005; Rached et al., 2007), similar levels of OTA were found 

between both organs. The authors explained the similar concentration between both organs 

at higher doses as being due to an effect of redistribution and deposition of OTA in all 

lipid-rich organs. Similar results were obtained in the study performed by Han et al., 2013 

after extraction with methanol: a higher concentration of OTA in kidney than in liver after a 

single oral dose was found, but almost equal between both organs after a repeated oral 

dose. However, in this case, the authors attributed this finding to the higher amount of 

vascular tissue in liver than in kidney and to the fact that the concentrations in the different 

tissues were positively related to plasma concentrations after the single oral dose, in 

agreement with other studies (Vettorazzi et al., 2011) 

With regard to sex differences, in Vettorazzi et al. (2011), it was observed that the 

differences found in kidney and liver concentrations between males and females of 

different ages and in different fast/fed conditions before the OTA oral administration 

correlate with the plasma profiles of each different group. This demonstrates the parallel 

concentrations of OTA in plasma and tissues and therefore, reveals that the sex differences 

observed in organs are both a reflection of the differences in bioavailability observed and 

the significant increment that occurs in V and VL,K when body weight increases. However, 

Zepnik et al. (2003) observed a much higher OTA accumulation in kidney of male rats than 

in females. Once again, this contradiction between results highlights the need of taking into 

account the analytical technique used for OTA quantification: non-acidic conditions may 

produce inefficient protein separation, leading to an underestimation of OTA concentration 
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and yet, the deproteinisation step with ethanol/acidic conditions may interfere with some 

metabolites detection.  

As commented above, the kidney is the main target organ of OTA. However, OTA has 

been detected in many other organs (mainly liver, lung and heart) at similar or even higher 

levels after OTA administration. Thus, as stated by Han et al. (2013), OTA toxicity is not 

only driven by tissue distribution and kinetics, but also by organ-specific toxicodynamics. 

It had been suggested that the marked differences in the relative sensitivity of individual 

species and sexes towards OTA might be due to variations in the transport mechanisms and 

cellular uptake in renal cells (EFSA, 2006). Furthermore, species- and sex-specific 

expression of OTA-specific transporters could modulate organ and cellular OTA 

concentrations and kinetics and therefore, have a direct influence on toxicodynamics 

(Dietrich et al., 2005). It is known that OTA is a substrate for the family of organic anion 

transporter proteins (OATs) and organic anion transporting polypeptide (OATP) (Anzai et 

al., 2005; Babu et al., 2002; Takeuchi et al., 2001; Tsuda et al., 1999) and that it can even 

regulate the expression of these transporters in rat kidney cortex (Zlender et al., 2009) or 

impair the activity of the organic anion transporters (Sauvant et al., 1998). The localization, 

molecular and functional characteristics, and substrate and inhibitor specificity of the main 

organic anion transporters have been extensively reviewed (Russel et al., 2002; Wang and 

Sweet, 2013). These specific transporters may also be involved in the accumulation of OTA 

in organs other than kidney (Anzai et al., 2010, Eckhardt et al., 1999; Kontaxi et al., 1996, 

O'Brien and Dietrich 2005). It is also important to highlight that OTA kidney uptake and 

handling of OTA by OATs is dependent on the OTA bound to plasma protein (Bow et al., 

2006). 
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Metabolism  

The information regarding the metabolism of OTA remains unclear and controversial. The 

complete biotransformation pathways of OTA are still unknown. Some of the metabolites 

have been characterized in vitro and/or in vivo, while other metabolites remain to be 

characterized (Ringot et al., 2006). As commented above, there is a need to develop good 

and validated analytical techniques for quantifying OTA metabolites in the different tissues 

and biological fluids. The metabolism of OTA has been extensively reviewed by Ringot et 

al. (2006), Pfohl-Leszkowicz and Manderville (2007) and Wu et al. (2011). An important 

aspect to take into account when studying the OTA metabolites in rats is the controversial 

interpretation of the results observed among studies (Mally and Dekant, 2009; Pfohl-

Leszkowicz and Manderville, 2007). While some authors have observed the formation of 

several different OTA metabolites in the rat (Castegnaro et al., 1989; Li et al., 2000; Xiao 

et al., 1996a; Xiao et al., 1996b) and considered them to be reactive metabolites (Dai et al., 

2002; Obrecht-Pflumio et al., 1996; Pfohl-Leszkowicz et al., 1998; Pfohl-Leszkowicz and 

Castegnaro, 2005), others have considered that the biotransformation of OTA is very low 

(Gautier et al., 2001; Gross-Steinmeyer et al., 2002; Zepnik et al., 2001; Zepnik et al., 

2003) and unlikely to form reactive metabolites. The reason for these differences still 

remains an open question. The different metabolites identified in the different studies may 

stem from the different analytical techniques used: radiolabeling + TLC; HPLC-FLD or 

HPLC-MS and if a complete validation of the method has been carried out (see section ¨ 

Analytical techniques for ochratoxin A toxicokinetic studies¨). Indeed, HPLC-FLD does 

not allow structural identification of the metabolites compared with methods using HPLC-

MS.  However, some authors using HPLC have used a second confirmation step 
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(conversion of the metabolites into other forms) (Li et al., 2000) while only one study (Han 

et al., 2013) using HPLC-MS have applied internal standards to take into account the 

matrix effect (which directly affects the accuracy of the HPLC-MS results). On the other 

hand, as commented previously (in section Analytical techniques for ochratoxin A 

toxicokinetic studies), the use of acidic or non-acidic extraction might directly affect the 

recoveries of certain metabolites. Finally, another factor that should also be taken into 

account is the origin of the samples used for metabolites identification: organs and tissues 

collected and in vivo experimental design. Some studies used samples from single oral 

administration studies but using different vehicles and rat strains:  0.5 mg/kg bw in corn oil 

in F344 rats (Zepnik et al., 2003) and 0.2 mg/kg b.w in water/ethanol solution in Sprague 

Dawley rats (Han et al., 2013). Others used a single intravenous administration 0.33 mg/kg 

b.w in saline/ethanol solution in Sprague Dawley rats (Li et al., 2000) or repeated oral 

doses by gavage 2 mg/kg b.w in corn oil for 2 weeks in F344 rats (5 days/week) (Mally et 

al, 2004) or in OTA diet for 28 days in Dark Agouti rats (Tozlavanu et al. (2012). These 

different experimental designs should also be taken into account when interpreting the 

different metabolites obtained, as the vehicle, the dosage regimen and the rat strain used 

may affect the type and the amount of metabolite detectable by each analytical technique. 

Thus, more studies that take into account the aforementioned variables are needed. .Figure 

1 shows the most important metabolites detected in OTA-treated rats throughout different 

in vivo studies. 

The major metabolite pathway of OTA consists in its detoxification by hydrolysis into OTα 

(figure 1), a much less toxic compound, as well as easily eliminated from the body. OTα is 

the dihydroisocoumarin derivative produced by the cleavage of the peptide bond of OTA. 

19 

 



 

In rats, the hydrolysis to OTα is a function of the bacterial microflora of the caecum. The 

enzymes responsible for the hydrolysis to OTα are carboxypeptidase A, and possibly 

trypsin, α-chymotrypsin and cathepsin C (Galtier, 1991). OTα is mainly excreted in feces, 

however the metabolite was also found in urine (table 2 and Storen et al., 1982). Its 

presence in the urine can be explained by reabsorption from the intestine (WHO, 2001).  

Suzuki et al. (1977) showed that the duodenum, ileum and pancreas have greater capacity 

for hydrolyzing OTA, whereas the activity in the kidney and liver was low. Galtier et al. 

(1979) also confirmed this result. OTα was also detected in plasma, urine and feces in a 

more recent kinetic study performed by Zepnik et al. (2003). However, the metabolite OTα 

was not present in solid organs in some studies (Zepnik et al., 2003; Han et al., 2013), but 

detected in liver and kidney in others (Tozlavanu et al., 2012).  

A small percentage of absorbed OTA is also detoxified, mainly in the liver through the 

action of CYP450, into the hydroxylated derivatives 4(R)- and 4(S)-OH-OTA through 

phase I detoxification reactions (figure 1). The 4(R)-OH-OTA epimer is mainly formed by 

human and rat liver microsomes whereas 4(S)-OH-OTA epimer is mostly formed by pig 

liver microsomes (Ringot et al., 2006). Several studies in different experimental systems 

pointed out that different CYP450 isoforms may be involved in the formation of each 

epimer and other metabolites (for a review check Pfohl-Leszkowicz and Manderville, 2007, 

WHO, 2001). OTA hydroxylated derivatives have also been produced in rat kidney (WHO, 

2001). 

Other OTA metabolites have also been found in the rat. Ochratoxin B (figure 1), the 

dechloro derivative of OTA that is much less toxic than OTA (Mally et al., 2005) has been 

detected in urine of OTA-treated rats (Mally et al., 2004).  Li et al. (2000) demonstrated the 
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presence of a lactone-opened OTA (OP-OTA) (figure 1) in urine and bile of female 

Sprague-Dawley rats administered OTA intravenously. It has been demonstrated that the 

OP-OTA is highly toxic when administered i.v. in rats (Xiao et al., 1996a). The OTA-

derived quinones (OTQ/OTHQ) (figure 1) and their glutathione conjugate (OTHQ-GS) 

have been hypothesized as possible reactive metabolites (Dai et al., 2002; Gillman et al., 

1999) and related with the genotoxic effects of OTA (Pfohl-Leszkowicz and Manderville, 

2012). The presence of O-labile ester conjugates of OTA (figure 1) was also found in the 

urine of F344 rats after a single oral dose of OTA (Zepnik et al., 2003). The authors 

suggested that these two compounds could be formed in an enzymatic process in which 

alpha-glucosidases of the liver may be involved. However, in this study, except for OTα, 

other OTA metabolites such as OTQ, OTHQ, OP-OTA and glutathione conjugates and 

glucuronides of OTA were not present in urine, liver, kidney, or blood samples. However, 

the OTHQ metabolite was detected in trace amounts in urine of male F344 rats treated with 

a repeated (2 weeks) oral dose of 2 mg/kg b.w of OTA (Mally et al., 2004). It should be 

highlighted that the mass spectra of the hydroquinone derivative (detected by Mally et al., 

2004) might be very similar to that of hydroxylated ochratoxin B (related to the OTB 

detected by Han et al., 2013). Thus more studies are needed to understand the possible 

commonalities among the few studies evaluating in vivo metabolism of OTA. In a more 

recent study (Tozlavanu et al., 2012) in which Dark Agouti rats were fed various 

concentrations of OTA in wheat for a period of 28 days, several glutathione conjugates, 

such as OTHQ-GSH and OTB-GSH were detected by HPLC-fluorescence detection. 

Indeed, the glutathione conjugates were proposed by the authors as good biomarkers of 

exposure. In another recent study (Han et al., 2013) the only metabolites detected by LC-
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TOF-MS in all the tissues analyzed after a single oral dose administration of OTA, were 

phenylalanine in heart and kidney; OTβ in kidney and OTB methyl ester in spleen. The fact 

that some metabolites can be formed during sample workup and not in vivo, should also be 

taken in account. For example, it has been demonstrated that overnight exposure to 2M HCl 

can change OTA into OTα or that the lactone ring of OTA can be hydrolyzed after adition 

of NaOH in DMSO for 2h at 25ºC (Valenta et al., 1998). In the case of methyl- or 

ethylesters of OTA it has been demonstrated that OTA standards in methanol were stable 

for at least 5 h at room temperature, and for at least three weeks at 4 ºC (Jiménez et al., 

1998), and that standards or processed samples extracted with a solution 1:5:8 (20% 

trichloroacetic acid: saline solution or sample: absolute ethanol) were stable for 7 h in the 

autosampler carousel (plasma samples) or for at least 24h (standards and kidney or liver 

extracts) (Vettorazzi et al., 2008).  

Thus, as commented previously, the different types and yields of metabolites found in the 

different in vivo studies may be mainly due to the different analytical techniques and 

approached used for the metabolite detection. However, the involvement of the different 

metabolic capacities of the different rat strains used, as well as the different in vivo 

experimental designs (single vs repeated doses; routes of administration) may be affecting 

the results as well.   

For example, in a two-year gavage study performed with Dark Agouti (DA) (males: 

extensive debrisoquine (DB) metabolizers; females: poor DB metabolizers) and Lewis rats 

(both sexes considered to be extensive DB metabolizers), a different susceptibility to OTA-

induced tumorogenesis was found (Castegnaro et al. 1998).  In another study (Pfohl-

Leszkowicz et al. (1998) demonstrated that the strain- and sex-specific genotoxic response 
22 

 



 

of OTA found in Castegnaro et al. (1998) was partially controlled by CYP-mediated 

metabolic reactions that convert OTA into a DNA-reactive intermediate. They found that in 

male DA rats, the OTA-toxifying enzymes (CYP450 2C11, 1A2, and 3A) were highly 

expressed in the liver while little of the detoxifying isoforms (CYP450 1A1 and 2A) was 

detected. They also suggested that the induction of CYP2C11, a debrisoquine metabolizing 

phenotype in rat, may also be relevant in the higher susceptibility to OTA carcinogenesis of 

DA male rats. They concluded that the strain- and sex-specific genotoxic response of OTA 

is controlled, in part, by CYP-mediated metabolic reactions that convert OTA into DNA-

reactive intermediates in kidney and liver. 

However, it is also important to point out that basal CYP expression of untreated rats also 

showed great strain and sex differences. These sex and strain-related differences could be 

highly problematic, not only in kinetic studies of OTA, but also in toxicological tests. There 

is a need to provide insights into important aspects of the genetic background of animals to 

the researchers who use these experimental models (Sakai and Ishizuka, 2009). 

Excretion 

Fecal, biliar and renal excretion play an important role in plasma clearance of OTA (Ringot 

et al., 2006; WHO, 2001). Some authors considered that the biliar route is the predominant 

OTA excretion route in the rat while in humans and non-human primates the primary route 

of excretion is via the kidney (Dietrich et al., 2005). This statement is supported by the 

results obtained in F344 rats of both sexes (Vettorazzi et al., 2011) in which one of the 

models that best fitted to data was the one which assumed that OTA elimination occurs 

mainly from the liver compartment. In mammals, OTA can also be excreted via milk, and 
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this has also been studied in the rat (Breitholtz-Emanuelsson et al., 1993; Hallen et al., 

1998). The contribution of each route of excretion depends on factors such as the route of 

administration, the dose, the degree of serum macromolecular binding and differences in 

degree of enterohepatic circulation (Kuiper-Goodman and Scott, 1989). Storen et al. (1982) 

found that the major excretory products in urine and feces of rats were OTα, OTA and 

4(R)-OTA. Regardless of the route of administration (i.p. or p.o., 6 mg/kg b.w. of OTA 

dissolved in NaHCO3), 6 % of the dose was excreted as OTA, 1 to 1.5 % as 4(R)-OTA, and 

25 to 27 % as OTα in the urine. However, only traces of OTA and OTα were identified in 

feces after i.p. administration, whereas after oral administration, 12 % OTA and 9 % OTα 

were found. After an oral administration, Suzuki et al. (1977) detected up to 33 % of 

radiolabelled OTA in the bile of rats up to 6h after dosing. OTα was not detected in the 

bile. Galtier et al. (1979) obtained higher OTA elimination via feces than via urine after an 

i.v administration of 2.7 mg/kg b.w. of 14C-OTA (table 2). After a single iv administration 

of OTA, Li et al. (1997) (table 3) estimated a biliar clearance which was lower than renal 

clearance. However, they reported a high metabolic clearance, which may, partially involve 

the liver. After calculating the clearance of OTA by renal filtration, Hagelberg et al. (1989) 

also considered that most of the OTA is eliminated by another route. In a more recent 

study, in which F344 rats of both genders were orally administered 0.5 mg/kg b.w. of OTA 

dissolved in corn oil, Zepnik et al. (2003) found that the recovery of unchanged OTA 

within 96 h in urine was only 2.1 % and 5.2 % of the dose in males and females, 

respectively. The highest concentrations of OTA and OTα in urine of male and female rats 

were reached in the interval between 12 h and 24 h after administration. The excretion of 

OTα in urine of male rats was more than three times higher than in females, but excretion 
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of OTA of female rats in this interval was up to three times higher than in male rat. In 

feces, the percentage of the dose recovered was 5.5 % and 1.5 % in males and females, 

respectively.  

With regard to fecal excretion, both OTA and OTα have been detected in feces. However, it 

is difficult to distinguish whether or not the levels of OTA and OTα detected in feces are 

due to non-absorbed OTA, to the intestinal OTA secretion or to biliar excretion. Berger et 

al. (2003) suggested that the absorption of OTA across the intestinal mucosa would be 

limited thanks to its excretion through MRP2 at the apical pole of enterocytes. Ringot et al. 

(2006) suggested that the MRP2 may also be involved in hepatobiliary elimination of OTA 

conjugates. Chandra and Brouwer, (2004) stated that MRP2 is responsible for the biliary 

excretion of organic anions including glutathione, glucuronide, and sulfate conjugates of 

xenobiotics. 

Enterohepatic circulation of OTA has been demonstrated in several studies with rats (Fuchs 

and Hult, 1992; Kane et al., 1986; Kumagai and Aibara, 1982). This means that OTA or 

OTA-metabolites are secreted into bile which is excreted into duodenum via the common 

bile duct. Subsequently, they are excreted into the feces or they are reabsorbed and become 

systematically available. It is known that some substances can be excreted into bile as 

conjugates, and then hydrolyzed in the gut back to the parent substance through the action 

of the intestinal microflora. In this case, the substance becomes available for reabsorption. 

This has been demonstrated for OTA in mice (Roth et al., 1988). One enzyme that could be 

involved in this process is the β-glucuronidase which is produced by intestinal bacteria. 

Studies have shown that intestinal glucuronidase in the rat is extremely high in comparison 

with other species. Fuchs and Hult (1992) stated that differences in effectiveness of 
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enterohepatic circulation of OTA among animal species might be partially responsible for 

the differences in the retention of the toxin in plasma among the species.  

With regard to the influence of plasmatic proteins in the elimination of OTA, it has been 

demonstrated that the half-life of OTA in albumin-deficient rats is much shorter than in 

normal rats (Kumagai, 1985), and that the concentration of OTA in bile and urine was 20- 

to 70-fold times higher in the albumin-deficient rats than in control animals. As stated by 

Dietrich et al. (2005), these observations demonstrate the importance of plasma/protein 

binding for the biological half-life of OTA. Thus, differences in OTA affinity binding to 

proteins between sexes or strains, may lead to differences in OTA elimination. An example 

is the shorter OTA half-life obtained in Dark Agouti (DA) rats in relation to F344 rats 

(Mantle, 2008) or in Sprague-Dawley rats in relation to the other strains (Table 3).  

However, Mantle et al., (2008) stated that both, DA (Castegnaro et al., 1998) and F344 rats 

(NTP, 1989) developed renal tumors after 2 years of OTA exposure and considered that the 

rate of elimination from plasma may not be an important factor per se in determining renal 

disease due to OTA (Mantle, 2008).  

CONCLUSIONS AND RECOMMENDATIONS REGARDING THE ANALYTICAL 
METHODS AND IN VIVO EXPERIMENTAL DESIGNS USED FOR OCHRATOXIN A 
KINETIC STUDIES IN RATS 

Based on the revision of 13 scientific publications in which OTA kinetics have been 
evaluated it can be concluded than:  

• Number of studies evaluated. From a total of 13 studies, 5 studies were performed 
before 1995 using techniques considered nowadays as not meeting current modern 
scientific quality standards (at least for quantification) such as  radiolabeled OTA, 
TLC or spectrofluorimetry detection. As from 1997, all the studies reviewed (8) 
used HPLC-FLD or HPLC-MS for OTA quantification. The latter allows 
unequivocal identification of OTA and its metabolites, while the former needs some 
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confirmation methods. HPLC-FLD is the most used technique until date for OTA 
quantification.  
 

• Validation of the method. From these 8 studies only 3 of them studies have used an 
analytical technique validated for the specific type of sample analyzed (biological 
matrix and animal species). Only 2 of these 3 studies have reported the entire 
validation data: one for HPLC-FLD and one for HPLC-MS. Validation should 
consider at least the following criteria: selectivity, linearity, precision (within- and 
between-day variability), limits of detection (LOD) and quantification (LOQ), 
recovery, stability of the samples (during storage and after extraction when kept in 
the autosampler carousel). In the specific cases of HPLC-MS matrix effect should 
also evaluated and taken into account in the quantification of the samples. For that 
purpose, the use of internal standards is highly recommended. Finally, for a correct 
quantification (and comparison among studies) it is very important to calculate the 
recovery from the extraction procedure and to indicate if results have been or not 
corrected by recovery values. As nowadays there is still absence of OTA certified 
reference materials for biological matrices the spiking procedure should also be 
clearly described.  
 

• Metabolites identification and quantification. Until date some efforts have been 
performed to identify OTA metabolites in vivo. However, there is still a need of 
validated methods for OTA metabolites quantification. For that purpose: 
 

‐  the influence of the extraction method for the different metabolites should 
be further studied.  

‐ metabolite standards or biological certified reference materials for 
metabolites should be available. 

‐ The vehicle used for OTA administration, the dosage regimen (dose, single 
versus repeated administration, oral versus iv administration) and the rat 
strain/sex should be carefully selected. These factors might directly affect 
the type and the amount of metabolite detectable by each analytical 
technique.  
 

• Volume of samples. When validating new analytical methods is important to use 
low volume of biological samples. This will allow OTA/metabolites quantification 
in each sample individually, preventing the need to mix plasma or tissues from 
different animals and allowing a more accurate kinetic analysis of the data.  
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• Strain. The in vivo studies evaluated in the present review seems to indicate that 
Sprague-Dawley rats have shorter half-lives than other strains (F344 or wistars). 

 



 

This should better characterized in order to better understand OTA toxicity in the 
different rat strains. 
 

• Sex. Sex differences at different dosage should be further explored. When sexes 
differences are studied the age of the animals should also be carefully taken into 
account. Body weight differences increases with age between male and female rats 
and it has been found that there is a statistically significant impact of body weight 
on OTA volume of distribution. 
 

• Fast/Fed conditions. The fasted or fed condition of the animals should be clearly 
stated in all the kinetics studies. Food intake has a direct effect on OTA kinetics, 
especially for male rats. The effect of food might interfere as well with the yield and 
type of metabolites produced in vivo.  
 

• Kinetic timepoints. Early timepoints should be selected in order to evaluate the 
entire absorption process.  
 

• Controls. Control animals (non-treated) should always be included in kinetic 
experiments in order to confirm that no contamination of control samples had 
occurred during animal administration or analytical sample preparation. 
 

•  Toxicodynamics. It is clear that OTA toxicity is not only driven by tissue 
distribution, as the mycotoxin has been detected at similar levels in other non-target 
organs (liver, heart and lung) than in the main toxicity target organ (the kidney). 
More studies, focused on understanding the kidney-specific toxicodynamics should 
be performed. The role of kidney transporters and  plasmatic proteins (small 
proteins) on OTA kinetics at kidney level should be also be further explored for 
understanding sex and strain differences.  

 

 

CONCLUSION 

Strain and sex-differences in OTA kinetics in rats have been described, but they are 

complex and not easy to summarize. The wide variety of analytical techniques applied for 

OTA measurements, the different experimental designs used, and the fact that raw data is 
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generally not published, makes comparison among studies difficult. Moreover, the age, 

weight and fasting/fed conditions of the animals could act as confounding factors and 

thereby, they should be taken into account when gender differences are studied. To aid in 

this analysis, three tables with the most relevant data obtained from the different published 

kinetic studies until now, have being prepared for this review. 

Only the first kinetic studies, which used radiolabelling and TLC to quantify OTA in 

tissues, have analyzed OTA in a large number of organs. In general, later studies have 

included fewer tissues and timepoints, and one or two compartment models have been 

applied in all of them. Quantifying OTA in more tissues would allow the use of more 

complex models which could consider three or four compartments. Moreover, there is a 

lack of studies using more complex physiologically-based pharmacokinetic models in order 

to take into account the presence of active transport and protein binding.  

Regarding sex differences, some studies in Wistar or Sprague-Dawley rats have used only 

males or only females and the different conditions make impossible the comparison; in 

F344 rats, four studies carried out with males and females have detected sex differences, 

but the reason behind this observation is not clear at all. 

In order to obtain accurate results, the analytical technique used to quantify a xenobiotic in 

a biological matrix should be specifically validated in that matrix. Unfortunately, very few 

OTA kinetic studies have used specifically validated methods for each tissue and very often 

methods validated for food matrices have been directly applied to biological ones. 

Moreover, due to the high controversy regarding the mechanism of action of OTA, there is 

also a need for developing good analytical techniques to quantify OTA metabolites in 
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biological matrices. However, great caution should be taken in the choice of the 

species/strain due to the known interspecies and inter-individual genetic variations on 

xenobiotic metabolism. 

In conclusion, there are data that indicate strain, sex and age differences in OTA kinetics in 

rat, but a clearer understanding is needed to elucidate if this factor may account for the 

different sex and species sensitivities to OTA. Well designed kinetic studies, using 

validated analytical techniques for proper matrices, are necessary to aid in the interpretation 

of the toxicity studies.    
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Figures: 

 

Figure. 1. Ochratoxin A metabolites detected in different biological matrices of rats. 

(Figure modified from Pfohl-Leszkowicz and Manderville, 2007). Biological matrices 

in which metabolites were detected appear indicated in parenthesis. Only metabolites 

detected by HPLC-FLD or HPLC-MS are shown. 

 References: 1(Galtier et al., 1979; Storen et al., 1982; Suzuki et al., 1977; Xiao et al., 1996b ; Zepnik 

et al., 2003 ; Mally et al., 2004 ; Tozlavanu et al., 2012); 2(Storen et al., 1982; Xiao et al., 1996b); 
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