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ABSTRACT 

Adipose tissue often becomes poorly oxygenated in obese subjects. This feature may 

provide cellular mechanisms involving chronic inflammation processes such as the 

release of proinflammatory cytokines and macrophage infiltration. In this context, the 

purpose of the present study was to determine whether a hyperoxia exposure on 

mature adipocytes may influence the expression of some adipokines and involve 

favorable changes in specific metabolic variables. 3T3-L1 adipocytes (14 days 

differentiated) were treated with 95% oxygen for 24 h. Cell viability, intra and 

extracellular reactive oxygen especies (ROS) content, glucose uptake and lactate and 

glycerol concentrations were measured in the culture media. Also, mRNA levels of 

HIF-1, leptin, IL-6, MCP-1, PPAR-, adiponectin, and ANGPTL-4 were analyzed. 

Hyperoxia treatment increased intra and extracellular ROS content,  reduced glucose 

uptake and lactate release and increased glucose release. It also led to an upregulation 

of the expression of IL-6, MCP-1 and PPAR-, while ANGPTL4 was downregulated 

in the hyperoxia group with respect to control. The present data shows that hyperoxia 

treatment seems to provoke an inflammatory response due to the release of ROS and 

the upregulation of pro-inflammatory adipokines, such as IL-6 and MCP-1. On the 

other hand, hyperoxia may have an indirect effect on the improvement of insulin 

sensitivity, due to the upregulation of PPAR- gene expression as well as a possible 

modulation of both glucose and lipid metabolic markers. To our knownledge, this is 

the first study analyzing the effect of hyperoxia in 3T3-L1 adipocytes. 
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INTRODUCTION 

Obesity is a major metabolic disorder associated to an excessive fat accumulation [4]. 

The most common causes for the increase in the prevalence of this disease are over-

nutrition and a reduction in physical activity, leading to a chronic positive balance 

between energy intake and energy expenditure. However, other factors such as 

endocrine disruptions, perinatal malnutrition, environmental effects or epigenetic 

dysregulations, can also contribute to obesity [6, 36]. This disease often courses with 

a low-grade chronic inflammation [33], characterized by changes in the release of 

inflammation-related adipokines and macrophage infiltration within the white adipose 

tissue, which may play an important role in the onset and development of obesity-

related diseases [23, 55, 63]. This could be a target for understanding the etiology and 

complications of some causes of obesity [20]. Indeed, several hypotheses have been 

proposed as the cause for the initiation of inflammatory processes during obesity, 

including oxidative stress [14, 23], endoplasmic reticulum stress [21, 24, 38], and 

adipose tissue hypoxia [48, 59]. Therapies trying to manage and counterbalance some 

of these adipose tissue pro-inflammatory conditions are under investigation [16, 39, 

50]. Nevertheless, to our knowledge there are no studies trying to ameliorate the 

hypoxic state within adipose tissue. Indeed, recent investigations have suggested that 

adipose tissue hypoxia provides a cellular explanation for chronic inflammation and 

macrophage infiltration in white adipose tissue in obesity [22, 60], which have been 

associated to some complications accompanying obesity-related diseases.  

In this context, oxygen is used in current medicine as a treatment for several 

conditions such as apnea, migraine and wounds [2, 29, 31]. Moreover, some animal 

studies have demonstrated that treatment with hyperoxia might produce beneficial 

effects in different metabolic disorders, such as protecting the rat brain tissue against 

ischemia reperfusion injury [5], reducing severity of colitis [11] or ameliorating 

hemorrhagic shock-induced renal failure by decreasing intrarenal hypoxia and 

improving renal functions [10]. Additionally, several studies have shown that 

hyperoxia can decrease the expression of some pro-inflammatory genes in different 

organs and cell types. Hence, Desmarquest et al. observed a decrease in several 

inflammatory markers in alveolar macrophages exposed to hyperoxia [9]. This effect 

seems to be consistent with hypobaric oxygen therapy (HBOT) studies carried out in 

ex vivo cell cultures [3, 30, 54]. These findings are also in agreement with studies 
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demonstrating that HBOT attenuates pro-inflammatory cytokine production of 

systemic inflammation in animal models [32, 57, 58]. 

Taking all this information into account, and in relation to the hypothesis 

exposed by our group in 2010 [43] where we proposed hyperoxia as a novel 

therapeutic intervention for the improvement of obesity state, we performed the 

current study to determine whether an exposure of mature adipocytes to hyperoxia 

may regulate the expression of some adipokines and involve favorable changes in 

specific metabolic variables.  

 

MATERIAL AND METHODS 

Cell culture and treatment 

3T3-L1 mouse preadipocytes were cultured with Dulbecco’s minimal essential 

media (DMEM) containing 4.5 g/L glucose and supplemented with 10% calf bovine 

serum (CBS) as described elsewhere [13]. Two days after full confluence, cells were 

cultured in twelve-well plates. Their differentiation into adipocytes was induced by 

treating cells for 2 days with 0.5 mM isobutylmethylxanthine (IBMX), 1 μM 

dexamethasone (Dex) and 10 μg/ml insulin, in DMEM supplemented with 10% fetal 

bovine serum (FBS), and then for 2 days with 10 μg/ml insulin in the same media. 

Thereafter, cells were maintained and re-fed every 2 or 3 days with FBS without any 

hormones until 14 days after differentiation induction, when between 80 and 90% of 

the cells exhibited the adipocyte phenotype. Media had 100 units/ml penicillin, and 

100 µg/ml streptomycin, and cells were always maintained at 37ºC in a humidified 

atmosphere containing 5% CO2. 

 Twenty-four hours before treatment, cells were serum-deprived. After 14 days 

post-differentiation, cells were exposed to 95% O2 for up to 24 hours. The cells 

exposed to hyperoxia were placed in an MIC-101 incubator chamber (Billups-

Rosenberg, Del Mar, CA, USA) with an inside concentration of 95% O2/5% CO2 at 

37ºC. Control cells were cultured in a standard incubator (21% O2/5% CO2) at 37ºC. 

Culture media were collected and stored at -80ºC for further measurements. 
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Cell viability assay and ROS determination  

Cell viability was measured with the lactate dehydrogenase (LDH) 

Cytotoxicity Assay Kit at 24 h according to manufacturer`s instructions (Cayman 

Chemical Company, Ann Arbor, USA). 

For intracellular and extracellular reactive oxygen species (ROS) 

concentration determinations, 2',7'-dichlorfluorescein (DCFH) was used following a 

protocol described elsewhere [15]. Briefly, cells were incubated with 10 mM DCFH 

for 40 min at 37ºC in 5% CO2, frozen for at least 1 h at -80ºC, and then lysed with 

1000 μl lysis buffer (150 mM NaCl, 0.1% Triton, and 10 mM Tris). Finally, 200 μl of 

each lysate were loaded on a 96-well black plate. For extracellular ROS 

determinations, after treatment 300 μl of culture media of each sample were also 

incubated with 10 mM DCFH at 37ºC in 5% CO2 for 40 min, frozen for at least 1 h at 

-80ºC, and then 200 μl of this incubation mix was loaded on to a 96-well black plate. 

Finally, fluorescence intensity was measured using a POLARstar spectrofluorometer 

plate reader (BMG Labtechnologies, Offenburg, Germany) at an excitation 

wavelength of 485 nm and at an emission of 530 nm. 

Measurement of metabolic markers 

 The glucose (HK-CP kit; Horiba, Montpellier, France), lactate (ABX 

Diagnostic, Montpellier, France) and glycerol (GLY 105; Randox Laboratories, 

Antrim, UK) concentrations were measured from culture medium samples with a 

PENTRA C200 auto-analyzer (Horiba, Montpellier, France) after the 24 h treatment. 

The adipocyte glucose uptake was estimated by the difference between the content of 

glucose in the culture media at the beginning and at the end of the experiment. 

RT-PCR analysis 

Total RNA was isolated from all samples using Trizol (Invitrogen, Paisley, 

UK), according to the manufacture’s instructions. Thus, purified total RNA from 

adipocytes was then treated with DNAse (DNAfree kit; Ambion Inc., Austin, USA) 

and used to generate cDNA with M-MLV reverse transcriptase (Invitrogen, Paisley, 

UK). Real-time PCR was performed in an ABI PRISM 7000 HT Sequence Detection 

System (Applied Biosystems, California, USA). Taqman probes for mouse HIF-1, 

leptin, IL-6, MCP-1, PPAR-, adiponectin, and ANGPTL-4 were also supplied by 
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Applied Biosystems (California, USA). All the expression levels of the target genes 

studied were normalized by the expression of 18s as the selected internal control, as it 

demonstrated that no significant changes in its expression were detected after 95% O2 

exposition against control (data not shown). All procedures were performed according 

to a previous described protocol [16].  

Statistical analysis 

The results are expressed as mean ± SD. Statistical significance between 

groups was assessed by U Mann-Whitney test. A probability of p<0.05 was set up for 

determining statistically significant differences. The statistical analyses were 

performed using SPSS 20.0 (Chicago, USA) and Graphpad Prism 5.0a (San Diego, 

USA) software for Mac. 

 

RESULTS 

Cell viability and ROS  

The activity of LDH was determined in the conditioned cell media in order to 

investigate the potential cytotoxicity of the applied treatment. The 24 h hyperoxic 

treatment did not decrease significantly cell integrity with respect to control (Fig. 1). 

Furthermore, intracellular and extracellular ROS secretions were both significantly 

increased by the hyperoxia exposure (Fig. 2a, b). Both ROS measurements were 

corrected by cell viability. 

Culture media determinations  

 Glucose uptake, lactate production, and glycerol release of isolated adipocytes 

from both groups were determined after the 24 h treatment. Glucose uptake as well as 

lactate production were significantly reduced (p<0.05 and p<0.01, respectively), 

while glycerol release was significantly increased (p<0.01) in the hyperoxia group 

when compared to the control one (Fig. 3). These results were corrected by cell 

viability. 

Gene expression 

 Regarding gene expression, a significant increase in the expression of IL-6, 

MCP-1 and PPAR-γ (p<0.05, p<0.01 and p<0.01, respectively) and a significant 

decrease in the expression of ANGPTL4 (p<0.01) were observed. No statistically 
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significant differences were found in HIF-1, leptin and adiponectin mRNA 

expression between the experimental groups (Fig. 4). 

 

DISCUSSION 

It is widely recognized that obese subjects often present a low-degree chronic 

inflammation within the adipose tissue [27, 33]. Furthermore, it has been reported that 

this tissue is under chronic hypoxic conditions during the development of obesity [22, 

48], although a situation of decreased adipose tissue oxygen tension in obese 

compared to lean men may not always occur [18], which would be explained by a 

lower adipose tissue oxygen consumption. This hypoxic state is linked to an increase 

in pro-inflammatory cytokine release in adipocytes, while anti-inflammatory 

adipokines such as adiponectin are often decreased [60]. In the current study, the 

effects of hyperoxia in adipocytes were investigated as a potential approach trying to 

counteract the hypoxic state within an excessively expanded adipose tissue. 

Several studies have reported a positive relationship between low oxygen 

concentrations and cell death in adipocytes and other cell types [61, 64]. In our 

experiment, 3T3-L1 adipocytes incubated under hyperoxic conditions (95% O2) did 

not show a significant decrease or increase in cell death. However, an enhanced 

generation of both intracellular and extracellular ROS was observed after a 24-hour 

exposure. This finding seems to be consistent with another study that found an 

increase of ROS production in 3T3/J2 fibroblasts exposed to HBOT [8], where it was 

suggested that intracellular ROS generation could be directly related to cell apoptosis.  

In adipocytes, it has been reported that low oxygen concentrations induce an 

increase on lipolysis [61]. In our study, hyperoxia also increased glycerol release, an 

episode that perhaps may lead to pro-inflammatory responses inducing ROS 

production, as it has been shown in other studies [53]. Furthermore, Yin et al. [61] 

demonstrated that hypoxia increases glucose metabolism in adipocytes through both 

insulin–dependent and -independent pathways. In our experiment, glucose uptake was 

significantly inhibited by hyperoxic conditions compared to control. Thus, decreased 

glucose utilization in hyperoxia would be expected to result in a lower production and 

release of lactate, as it was observed in the present results. This seems to go in the 

same direction as some studies have observed in blood and other tissues [19, 34, 47]. 
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A possible explanation for this finding could be that an excessive amount of oxygen 

might induce the adenosine-5’-triphosphate production fully through mitochondrial 

respiration, leading to suppression of the anaerobic pathway and therefore resulting in 

a minor lactate release. In obesity, it has been found that adipocyte-derived lactate by 

the hypoxic state may constitute another link between this disease and its associated 

pathologies [40]. In this sense, hyperoxia might decrease lactate release in hypoxic 

adipocytes and, therefore, ameliorate some obesity-associated complications. 

Several groups have investigated the effects of normobaric (NBOT) and 

hypobaric (HBOT) oxygen therapy in both, animal and cell culture models, regarding 

the expression of some inflammatory genes. Thus, Desmarquest et al. [9] observed a 

decrease in TNF-, IL-1 and IL-6 expression in alveolar macrophages exposed to 48 

h hyperoxia. This effect seems to be consistent with HBOT studies carried out in ex 

vivo cell cultures. In this context, macrophages were isolated from patients with 

Crohn’s disease treated with 90 min of HBOT, secreting less IL-1, IL-6 and TNF- 

than cells obtained prior to the treatment [54]. Moreover, Lahat et al. [30] also 

observed a decrease in the secretion of TNF- in macrophages of rats exposed to 

HBOT for 90 min. Furthermore, in a study by Benson et al. [3], IL-1 and TNF- 

synthesis in macrophages was inhibited by a 90-min HBOT exposure. All these 

findings are also in agreement with studies demonstrating that HBOT attenuates pro-

inflammatory cytokine production in animal models of systemic inflammation. Thus, 

Yamashita and Yamashita [57] observed that HBOT reduced inflammatory cytokine 

induction by improving liver ischemia. In another study, TNF- levels were reduced 

in rats after the treatment of an inflammatory state with HBOT [32]. Furthermore, 

Yang et al. [58] also demonstrated the inhibition of TNF- production in a rat model 

of intestinal injury treated with HBOT. However, significant increases in the 

expression of IL-6, IL-1 and TNF- have been also reported [1, 25, 26, 41, 49]. 

Interestingly, these effects were not evident until the animals were treated for at least 

48 h of hyperoxia, suggesting that inflammation is dependent on the duration of the 

oxygen exposure. Overall, these studies suggest that oxygen availability may improve 

oxygen utilization by body organs.  

In adipose tissue, there is no data apparently available regarding the effect of 

hyperoxia on gene expression of isolated adipocytes. However, in adipose cells 

exposed to hypoxia, it has been shown that pro-inflammatory adipokines are 
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increased, while anti-inflammatory adipokines are decreased [28, 60, 62]. In our 

study, mRNA levels of pro-inflammatory markers IL-6 and MCP-1 were upregulated 

by hyperoxia. In this context, it has been demonstrated that lipolysis can produce 

inflammatory responses in endothelial cells [52]; it is therefore possible that FFA may 

induce the expression of pro-inflammatory markers in 3T3-L1 adipocytes. 

Interestingly, a strong correlation between MCP-1 mRNA expression and ROS 

release was found, which is in accordance with other observations that showed ROS 

production could increase MCP-1 expression [42]. It is known that IL-6 suppresses 

adiponectin gene expression [7, 12, 51]. However, mRNA levels of this anti-

inflammatory adipokine did not show a significant change. Adiponectin is also an 

important selective controlled modulator of insulin sensitivity and it has been 

demonstrated that its expression is enhanced by PPAR- [46]. In our experiment, we 

could observed an increase of PPAR- mRNA expression and perhaps this may 

prevent the decrease of adiponectin expression by IL-6. Indeed, PPAR- is a 

transcription factor preferentially expressed in adipose tissue [37] and it is known that 

its activation, as we have observed in adipocytes exposed to hyperoxia, could improve 

insulin resistance [46]. HIF-1 leptin are important regulators of hundreds of target 

genes involved in several biological functions, such as cellular metabolism, cell 

growth and apoptosis and restoration of the oxygen supply [44, 45]; nevertheless, 

their expression was not modified by hyperoxia. Finally, ANGPTL4 is a gene 

involved in glucose and lipid metabolism, mainly involved in the regulation of plasma 

triacylglycerides metabolism by inhibition of LPL [35]. It has been observed that 

hypoxia stimulates its expression and secretion in human adipocytes [17]. In contrast, 

a significant decrease in ANGPTL4 mRNA expression was observed in mouse 

adipocytes exposed to hyperoxia. This outcome proves that oxygen negatively 

regulates ANGPTL4 mRNA expression in adipocytes. Yamada et al. also 

demonstrated a down-regulation of ANGPTL4 induced by insulin [56], suggesting the 

possibility that elevated ANGPTL4 expression might be involved in 

hypertriglyceridemia in insulin resistant states within 3T3-L1 cells. Thus, a down-

regulation in ANGPTL4, as it occurs with hyperoxia, might contribute to ameliorate 

these metabolic disorders. 

In summary, the current study shows for the first time the effect of hyperoxia 

on 3T3-L1 adipocytes. The exposure to 95% O2 seemed to provoke an inflammatory 
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response due to the release of ROS and the upregulation of pro-inflammatory 

adipokines such as IL-6 and MCP-1. Perhaps, these toxic effects were produced by 

the high amount of oxygen used. On the other hand, hyperoxia may play an indirect 

role in the improvement of insulin sensitivity, due to the upregulation of PPAR- gene 

expression, as well as a possible modulation of both glucose and lipid metabolism. A 

possible explanation for these contradictory effects might be that hyperoxia could 

have a beneficial effect on glucose metabolism, which may contribute to understand 

and treat the inflammatory processes associated to obesity. 
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Figure 1. Cellular integrity in control and treated (95% oxygen) 3T3-L1 adipocytes 

(14 days post-differentiation) was measured at 24 h. White bars show control group  

and grey bars hyperoxia group. Data (n=6) are expressed as mean ± SD. U Mann 

Whitney test was performed to identify statistical effects. 

 

Figure 2. Intracellular and extracellular ROS content in control and hyperoxia 

treatments  at 24 h in 3T3-L1 adipocytes (14 days post-differentiation). White bar 

shows control group and grey bar hyperoxia group. Data (n=6) are expressed as mean 

± SD. U Mann Whitney test was performed to identify statistical effects. **P<0.01 vs 

untreated cells. 

 

Figure 3. Effect of 95% oxygen exposure on glucose uptake, glycerol and lactate 

release in 3T3-L1 adipocytes (14 days post-differentiation). White bars show control 

group and grey bars hyperoxia group. Data (n=6) are expressed as mean ± SD. U 

Mann Whitney test was performed to identify statistical effects. *P<0.05 and 

**P<0.001 vs untreated cells. 

 

Figure 4. Gene expression analysis of HIF-1α, leptin, IL-6, MCP-1, PPAR-γ, 

Adiponectin and ANGPTL4 at 24 h of 95% oxygen treatment in 3T3-L1 adipocytes 

(14 days post-differentiation). White bars show control group and grey bars hyperoxia 

group (HPx). A mean value of triplicates was used for relative mRNA level. Data 

(n=6) are expressed as mean ± SD. U Mann Whitney test was performed to identify 

statistical effects. *P<0.05 and **P<0.001 vs untreated cells. 
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