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Abstract

Background: Relapsing-remitting dynamics are a hallmark of autoimmune diseases such as Multiple Sclerosis (MS). A clinical
relapse in MS reflects an acute focal inflammatory event in the central nervous system that affects signal conduction by
damaging myelinated axons. Those events are evident in T1-weighted post-contrast magnetic resonance imaging (MRI) as
contrast enhancing lesions (CEL). CEL dynamics are considered unpredictable and are characterized by high intra- and inter-
patient variability. Here, a population approach (nonlinear mixed-effects models) was applied to analyse of CEL progression,
aiming to propose a model that adequately captures CEL dynamics.

Methods and Findings: We explored several discrete distribution models to CEL counts observed in nine MS patients
undergoing a monthly MRI for 48 months. All patients were enrolled in the study free of immunosuppressive drugs, except
for intravenous methylprednisolone or oral prednisone taper for a clinical relapse. Analyses were performed with the
nonlinear mixed-effect modelling software NONMEM 7.2. Although several models were able to adequately characterize the
observed CEL dynamics, the negative binomial distribution model had the best predictive ability. Significant improvements
in fitting were observed when the CEL counts from previous months were incorporated to predict the current month’s CEL
count. The predictive capacity of the model was validated using a second cohort of fourteen patients who underwent
monthly MRIs during 6-months. This analysis also identified and quantified the effect of steroids for the relapse treatment.

Conclusions: The model was able to characterize the observed relapsing-remitting CEL dynamic and to quantify the inter-
patient variability. Moreover, the nature of the effect of steroid treatment suggested that this therapy helps resolve older
CELs yet does not affect newly appearing active lesions in that month. This model could be used for design of future
longitudinal studies and clinical trials, as well as for the evaluation of new therapies.
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Introduction

Multiple sclerosis (MS) is a prototypic autoimmune disease that

affects the central (CNS) with a relapsing-remitting (RR) disease

progression [1]. Clinical relapses in MS, acute symptoms that

appear in episodic periods, are considered to be the reflection of

focal inflammatory events in the white matter that disrupts neural

conduction by damaging axons [2]. Clinical relapses are used to

categorize different forms of the disease, i.e. RR versus progressive

MS, as a marker to define the disease’s disease progression and to

measure the success of new therapies [2].

Magnetic Resonance Image (MRI) is a useful tool for

understanding and following the disease progression in patients

with MS [3–5]. The focal inflammatory events of the CNS that

accompany a clinical MS relapse are evident on MRI recordings

as contrast enhancing lesions (CELs) on T1-weighted images [6].

This kind of MRIs shows CELs four to ten times more frequently

compared with clinically defined relapses [7]. That is, clinical
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relapses may not occur even if a CEL is observed. Therefore,

CELs are more informative biomarker for disease progression than

the Expanded Disability Status Score (EDSS). The natural history

of a CEL is highly variable both within and between patients

(Figure 1). In MS, CELs and associated clinical relapses generally

last for a month with spontaneous partial or full recovery

afterwards. The CEL distribution over time has not been

associated with any specific pattern or cause to date [2,8].

However, in one third of cases, relapses are preceded by either a

stressful events and/or infections [9,10].

The number of CELs measured every month is a discrete

response variable that can take only non- negative integer values

(Figure 1). Modelling such count data has been applied to different

processes including anticonvulsant responses [11,12], incontinence

[13], neonatal apnea [14] and epileptic seizures [15,16]. Com-

monly the Poisson distribution (PS) model is used to describe the

data. The mean counts in an arbitrary time interval for the PS

model can be denoted as l which can be influenced by several

factors as drug effect, covariates (sex, weight, age…), disease

progression, etc. The PS model has two restrictions: the mean (l) is

equal to the variance of the data and the numbers of events

occurring in non-overlapping intervals of time are assumed

independent. This is a significant challenge as many counting

outcomes show (i) bigger or smaller variability than that predicted

by the Poisson model, a phenomenon called over-dispersion or

under-dispersion respectively and (ii) lack of independence in the

counts observed in previous intervals. Therefore, discrete distri-

bution models other that the Poisson should be explored to

evaluate this heterogeneity along with the evaluation of Markovian

elements to adjust for correlation in counts between intervals.

Identification of models that better characterize the distribution of

CELs is relevant for two reasons. First, it provides a predictive

framework for the relapsing-remitting dynamic observed in

patients with MS. Second, it can serve to inform the design of

longitudinal studies of this disease. While several count distribu-

tions have been proposed to model this type of data, the negative

binomial (NB) distribution has been consistently found to provide

one of the better fits to the data [17–20]. Although the NB has

already demonstrated a very good fitting with this kind of count

data, it might be the case that the election of a smaller interval

period for the MRI acquisitions had produced a different analysis

outcome. The best scanning interval and analysis for this outcome

is not clear since monthly scans generally provided more

prediction power but they are more expensive [21]. In this study

we analysed the distribution of CELs developed by nine MS

patients whom underwent monthly MRI for 48 months. Here we

used the unique high resolution of this dataset for the exploration

of other distributions adding other factors that might effect

changes in the disease dynamic. Concretely, Markovian effects on

the model parameters have been explored and quantified. In

addition, how corticosteroids affect the lesions counts was also

included during the model exploration and development. The

short interval between MRI acquisitions (one month) shows an

adequate time resolution to capture the relapsing-remitting

dynamics of this disease.

Figure 1. Number of contrast-enhancing lesions (CELs). CEL counts are represented with circles and dashed lines (left Y axis). Some patients
were treated with intravenous methylprednisolone at 1 g/day for 3–5 days, or oral prednisone taper for clinical relapses (arrows). Changes in the
EDSS are plotted on the right Y axis (red line).
doi:10.1371/journal.pone.0073361.g001
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Results

Several models were evaluated, resulting in sixteen key

structural models based on seven different probability distribu-

tions. Based on the number of model parameters, the objective

function (table 1) and the precision of the parameters the best

fitting distribution was the negative binomial (equation 10)

overcoming the other explored distributions like (Poisson model,

Poisson model with mixture distribution, Zero-Inflated and

Generalized Poisson models and the Zero-Inflated Negative

Binomial model). When the variance and the mean of number

of CELs were calculated from the raw data by subject, the

variances were greater in magnitude than the means for all but 1

patient (Figure 2). A statistically significant difference in the

objective function value (OFV) was observed when a first order

Markov parameter hPDV, which modified the mean counts (l)

parameter based on the counts observed from the previous MRI,

was incorporated (NB MAK2 model, equation 4). When a second

order Markov parameter hPPDV was included (NB nested MAK2

model, equation 5) relating the current mean count to the observed

count two months prior, the statistical difference also significant,

but the magnitude of the second order effect was less

(hPDV.hPPDV ). The same decreasing pattern, hPDV.hPPDV.

hPPPDV, was observed although the fit improvement was not

significant when a third order Markov parameter was also

included (NB nested nested MAK2 model, equation 6). Therefore,

the best model was the negative binomial model (equation 10) with

first and second order Markov parameters (equation 5): NB nested

MAK2 model.

Table 1 shows the parameter differences among models as well

as the corresponding objective function values. Selected model (NB

nested MAK2) estimates are listed in table 2 with the corresponding

relative standard error (RSE %). The fixed effects parameters were

estimated with adequate precision, however the RSE associated

with the random effects was high as we expected (N = 9 subjects).

All parameters and random effects variables for the sixteen models

are listed in Table 1 with the objective function values.

The goodness of fit of the models was evaluated using

simulation-based methods (see methods). Figure 3 shows the

results for visual numerical predictive checks (VNPC) of several

dynamic descriptors: (i) probability of having of 0, 1, 2, 3, 4, 5, 6, 7

and .8 CELs (Figure 3A), (ii) maximum and mean elapsed time

without lesions during the four years (Figure 3 B) and (iii)

cumulative number of CELs per year (Figure 3C). We compared

the prediction performance of selected models explored in this

manuscript: Poisson model (PS), Poisson model with first order

Markov factor (PMAK2) and Negative Binomial model with first

and second order Markov factors (NB nested MAK2). In general the

NB nested MAK2 performed better for most of the descriptors. None

of the models adequately capture the stiff dynamic along the

percentiles for the probability of having no CELs.

In order to evaluate better the predictive capacity of the NB

nested MAK2, the prediction intervals for the dynamic descriptors

previously defined were calculated (Figure 4). The model captures

the observed percentiles for a majority of the descriptors

reasonably well. The CEL count distributions for the raw and

simulated data for the selected model were also compared for

model evaluation (Figure 5). Figure 6 shows the prediction interval

for variance versus mean of number of CELs with the patient data.

The model is able to capture the relationship between the mean

number of CELs and the variance of those counts. Based on these

visual model evaluations it was concluded that the NB nested MAK2

model describes the observed data and better than other explored

distributions.

The model was also validated with data from a second cohort.

Model simulations for the maximum, median and mean of the

number of CELs during 6 months were compared with fourteen

patients with RRMS whom underwent monthly MRIs during a 6-

month pre-therapy phase (Figure S1). The model captured

reasonably well the median and mean although slightly under-

predicted (Figure 7A). The maximum number of active lesion was

clearly under-predicted (Figure 7A). The predicted interval for

variance versus mean of number of CELs for a 6 month time

window was slightly under-predicted for smaller means (Figure 7B).

The disease activity in the group of patients used for the model

validation was higher than the group used for the model building;

for example, the number of CELs per patient per month in

average was 4.08 and 3.26 for model validation and model

building respectively.

During the study, six patients were treated with immunomod-

ulatory or immunosuppressive drugs (intravenous methylprednis-

olone at 1 g/day for 3–5 days or oral prednisone) for alleviation of

clinical relapses. The months in which these patients received

steroids are indicated in figure 1. A parameter for the effect of

steroids was evaluated on: l0, OVDP, hPDV and hPPDV. Although

the use of immunosuppressive drugs occurred infrequently, a

steroid administration effect on the CEL events was quantifiable.

A statistically significant improvement in OFV was observed when

the effect was included on hPDV instead in l0. This relationship

was further evaluated utilizing a randomization test approach (see

methods); figure 8 shows 99.3% of the randomized schemes

resulted in a higher OFV, highlighting the impact of the steroid

effect (p-value = 0.007). Table 3 shows the estimates with the

corresponding relative standard error (RSE %) for the selected

model with the steroid covariate effect. Comparing values, the

parameter values for l0, hPDV and hPPDV changed slightly to:

21.80%; 3.80%; and 2.75% respectively. The OVPD parameter

dropped 14.86%, indicating that part of the over dispersion

observed in the data might be due to the immunomodulatory

treatment. The parameter hPDV, is diminished 66.44% when the

patient was treated with immunosuppressive drugs for that month

(hPPDV_S). This result suggests that the use of steroids contributes

to the inflammatory resolution of persistent CELs but does not

affect the new CELs generated that month. Other implications of

this result are indicated in the discussion section. The steroid

covariate inclusion into the model, that is a within subject effect,

did not explain the ISV associated to l0 and hPDV. All fixed effects

parameters were estimated with adequate precision except hPPDV.

The RSE associated with the random effects were similar to the

selected model with no steroid effect. The steroid effect was also

evaluated for the following month that the patient received the

treatment; however no significant effect was identified.

Discussion

The disease progression of CEL dynamics is highly variable

both within and between patients. In this study we identified a

discrete distribution model from a pool of candidate models that

best described the distribution of CELs in these patients. Although

several models were able to describe the data reasonably well, the

negative binomial resulted in the best fit. The identified over-

dispersion indicates the presence of greater intra-patient variability

(variance) in the number of CELs during a period of time (48

month, 48 points) than what is expected based on the mean.

All of the models had significant improvements in fit when the

information about what happened in the previous months was

incorporated (i.e., Markovian elements). Nevertheless the impor-

tance of previous observations diminishes with increasing time
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from the observation. This may be attributable to the fact that the

CEL counts noted every month were the total number of CELs,

and thus, older lesions observed in previous months might persist

in the current one. Working under this hypothesis, the results

suggest that such persistent CELs may last up to 2 months. In

other words, this indicates that although the clinical relapse

(symptoms that appear in episodic acute periods) usually last less

than a month, the active inflammatory event might persist for a

longer time.

It is well known that the focal inflammatory events in the CNS

that accompany a clinical multiple sclerosis relapse show complex

dynamics. There is the potential for a great deal of insight to be

generated if mechanistic elements, e.g. balance between effector

and regulatory T cell, were incorporated to these kinds of

probabilistic models [22]. The idea would be to identify latent

variables that explain variations in the mean counts (l).

Unfortunately, with data available, we were not able to develop

a more mechanistic model.

The selected model (called NB nested MAK2) describes the

observed data well and better than other explored distributions

(Figure 3, Figure 4). Although all the parameters were estimated

with adequate precision, the RSE associated with the random

effects were high. Therefore, the estimated values for the ISV of

the parameters l0 and, hPDV are not well determined. However, as

shown in figure 4, the prediction intervals simulated from the

model for all descriptors of CEL response captured the observed

response percentiles well.

The model was externally validated with data from a second

cohort. Model predictions were adequate for the median and

mean numbers of events, but the maximum number of events was

under-predicted. The predicted interval for variance versus mean

of number of CELs was also slightly under-predicted for smaller

means. These under-predictions are probably due to the disease

being more active in the data set used for the validation than in the

group of patients used for the model building (the average number

of CELs per patient per month was 4.08 in the validation set and

Table 1. Summary of the discrete-distribution models evaluated.

MODELS PARAMETERS 22LL(D model)

PS hl vl 2068.725

0.744 0.442

PMAK1 hl1 hl2 vl1 2001.0 (267.55 PS)

0.932 2.76 0.542

PMAK2 hl0 hPDV vl0 vPDV 1725.51 (2343.212 PS)

1.18 0.418 0.562 0.187

nested PMAK2 hl0 hPDV hPPDV vl0 vPPDV 1713.88 (211.63 PMAK2)

1.03 0.388 0.124 0.501 0.164

nested nested PMAK2 hl0 hPDV hPPDV hPPPDV vl0 vPDV 1711.49 (214.02 PMAK2)

0.956 0.396 0.0974 0.0595 0.487 0.143

PMIX hl1 hl2 hPM vl1 vl2 1867.23 (+141.72 PMAK2 )

2.72 1.81 0.413 0.529 1.89

ZIP hl1 hP0 vl1 2036.40 (+310.49 PMAK2)

2.4 0.0375 0.91

GP hl hdisp vl 1808.41 (+82.9 PMAK2)

1.53 0.393 0.663

GP_MAK2 hl0 hdisp hPDV vl0 vPDV 1665.50 (260.01 PMAK2)

0.902 0.371 0.232 0.451 0.0932

GP_nested_MAK2 hl0 hdisp hPDV hPPDV vl0 vPDV 1654.96 (270.55 PMAK2)

0.742 0.347 0.121 0.23 0.365 0.058

NB hl hOVDP vl vOVDP 1758.92 (+33.41 PMAK2)

2.32 0.254 0.898 0.829

ZINB hl hOVDP hP0 vl vOVDP 1758.63 (+33.12 PMAK2)

2.32 0.254 0 0.898 0.829

NB_MAK2 hl hOVDP hPDV vl vPDV 1642.85 (282.66 PMAK2)

1.11 0.161 0.462 0.524 0.155

NB_nested MAK2 hl hOVDP hPDV hPPDV vl vPDV 1634.36 (28.49 NB_MAK2)

0.94 0.155 0.43 0.141 0.44 0.121

NB_nested nested MAK2 hl hOVDP hPDV hPPDV hPPPDV vl vPDV 1630.77 (23.59 NB_nested MAK2)

0.817 0.157 0.448 0.104 0.0955 0.401 0.0849

NB_nested MAK2 steroids hl hOVDP hPDV hPDV_S hPPDV vl vPDV 1624.048 (210.312 NB_nested MAK2)

0.923 0.132 0.447 0.15 0.145 0.438 0.127

Values between parentheses are the decreases/increases in the objective function value relative to a specified reference model.
doi:10.1371/journal.pone.0073361.t001
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3.26 in the model building set). In theory, the level of over-

dispersion of the 6 months simulated data should be identical to

that use to simulate 48 months of data. However, when comparing

both simulated data sets (6 and 48 months), we realized that this is

not the case. The lower overdispersion found in 6 months

simulated data is an effect of the number of months (or number of

observations) within the subject. As a matter of fact, the same

phenomenon also occurs if we select any 6 consecutive months of

the 48 months in the observed data. Therefore, higher over-

dispersion is expected for both simulated and observed data when

larger time windows are used for the calculation of the mean and

corresponding variance of the number of active lesions.

During the course of the study, six of the nine patients were

treated with corticosteroids for clinical relapses. We explored a

steroid effect on all model parameters: l0, OVDP, hPDV and

hPPDV. A significant improvement in fit was found when the effect

was included on hPDV instead of l0. This result suggests that the

use of steroids contributes to the inflammatory resolution of

persistent CELs (older CELs) but that it is not affecting to the

newer CELs generated in the month after administration.

Specifically, the model suggests that the use of steroids would

help to resolve approximately the 66% of the persistent CELs.

This result was further evaluated utilizing a randomization test

strategy. One thousand randomized ensembles of the dose event

architecture (see methods) were simulated to test this. Figure 8

shows the histogram of the OF values calculated (22LL) from the

simulations. 99.3% of the randomized schemes resulted in a higher

OF, highlighting the statistical relevance of steroid effect

(p,0.007). The steroid drug effect was evaluated not only for

the month in which the patient received steroids, but also for the

following month. Although a decrease for l0 when patients

received steroids in the previous month was identified, this result

was not significant. These results reflect the utility of this modelling

approach for drug effect evaluation, providing a quantitative

framework that can support the informed design of future

longitudinal studies and other clinical trials.

The best probabilistic model, fitting the distribution of CELs

developed by nine MS patients undergoing monthly MRI

evaluations over 48 months, was developed. The information that

can be extracted from this kind of count data depends on the

resolution with which data are collected as well as the coincidence

of the measurement paradigm with the CEL cycle. Other

approach/methodologies have been applied with relative similar

purposes [17–21,23–24]. Although in general the number of

patients analysed in those studies was larger; the recording timings

for the MRIs was not of sufficient resolution for capturing the

CELs dynamic. The short interval between MRI acquisitions (one

month) provides an appealing time resolution to capture the

relapsing-remitting complex dynamics of the CELs. In this data

analysis, an additional step was taken by applying the nonlinear

mixed effect modelling approach. This provides a quantitative

analysis of the data allowing the incorporation and quantification

of both fixed and random effects. This approach takes into

account the information from all patients simultaneously, defining

both the population tendency for each parameter and the inter-

patient variability in that parameter. This methodology has been

widely applied and evaluated in research fields such as pharmaco-

metrics. It is an approach that is especially well suited for the

analysis of repeated measurements. The selected model was

comprehensively evaluated (OFV comparisons, goodness of fit

plots, visual/numerical predictive checks, parameter precision…)

and externally validated using data from a second cohort.

Materials and Methods

Patients and MRI Scans
The study was performed at the National Institutes of Health in

Bethesda, MD, USA. The Intramural Research Board of the

National Institute of Neurological Disorders and Stroke approved

the study. Informed written consent was obtained from each

patient. The MRIs were performed on a 1.5-T magnet (General

Electric Medical Systems, Milwaukee, Wisconsin) using a standard

head coil as previously described. At each monthly MRI, the total

number of contrast-enhancing lesions (CELs) on T1-weighted

post-contrast scans was identified by experienced radiologists

(Figure 1). Clinical and imaging details about this cohort are

described in detail elsewhere [25]. Nine patients with MS were

sequentially enrolled. Patients were enrolled in the study if they

had never been treated with immunomodulatory or immunosup-

pressive drugs, except for intravenous methylprednisolone at 1 g/

day for 3–5 days, or oral prednisone taper for a clinical relapse. In

addition, patients were required to be able to complete monthly

MRI scans and to have been steroid-free for at least 1 month at

study entry. After a complete neurological examination, including

rating disability using the Expanded Disability Status Score

(EDSS) and initial MRI scan at baseline, patients were

Table 2. NB nested MAK2 model parameters.

Parameters Estimate RSE(%) ISV (CV%) RSE(%)

l0 0.940 24.14 66.33 60.90

OVDP 0.155 22.19

hPDV 0.430 23.72 34.78 71.57

hPPDV 0.141 30.99

RSE (%) relative standard error.
doi:10.1371/journal.pone.0073361.t002

Figure 2. Variance versus mean of number of CELs obtained
from the raw data. Each observation represents one patient and is
represented by dots. Solid black line represents the identity line.
Dashed red line is the linear data fit.
doi:10.1371/journal.pone.0073361.g002
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subsequently examined and imaged monthly. The number of total

CELs in each month was calculated as the sum of all the CELs

that were enhancing at that month for the last time. Thus, each

CEL considered for the analysis was counted only once.

Data Analysis
Data were analysed employing the population approach using

the Laplacian integral approximation method implemented in the

software NONMEM version VII (Icon Development Solutions,

Hanover, Maryland).

Models for Count Data
Sixteen models based on seven different probability distributions

were explored: (i) Poisson model, (ii) Poisson model with Markov

elements, (iii) Poisson model with mixture distribution, (iv) Zero-

Inflated Poisson model, (v) Generalized Poisson model, (vi)

Negative Binomial model and (vii) Zero-Inflated Negative

Binomial model.

i. Poisson model (PS). The Poisson distribution is used to model

the number of events occurring within a given time interval.

The PS model is expressed by the probability P (likelihood)

that the random variable Y is equal to the number of counts n

(equation 1). The parameter lambda l represents the mean

number of counts in a given time period and is the unique

parameter of this model. The use of a PS model implies the

assumption of equi-dispersion, meaning equality between the

mean and the variance of the data (equation 2). Another

important assumption of this model is that the number of

Figure 3. Visual Numerical Predictive Check (VNPC). Different dynamic descriptors were calculated for the observed data (black solid line) and
the simulated data from the different selected models (dashed lines). Those descriptors were evaluated at different percentiles from 5th to 95th with
an increasing step of 5.
doi:10.1371/journal.pone.0073361.g003
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counts (l) occurring in non-overlapping intervals of time is

independent.

P Yi~nð Þ~ e{l|ln

n!
, n~ 0,1,2,3,:::½ � ð1Þ

E Yið Þ~Var Yið Þ~l ð2Þ

ii. Poisson model with Markov elements (PMAK). The Markov-

ian element provides for the dependence of events across

Figure 4. Predicted Interval of Visual Numerical Predictive Check. Different dynamic descriptors were calculated for the observed data (black
solid line) and simulated data NB nested MAK2 model. The 95% predicted interval is represented red area. Dashed red represented the simulated
median. Those descriptors were evaluated at different percentiles from 10th to 90th with an increasing step of 5.
doi:10.1371/journal.pone.0073361.g004

Figure 5. Probability distribution for CEL. Observed data (A) versus the probability distribution of simulated data (B) generated by NB nested
MAK2 model.
doi:10.1371/journal.pone.0073361.g005
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time-points. Markov elements were explored for Poisson

model in two different ways: PMAK1 and PMAK2. Stating

that an observation is conditional on the previous one, and

not the one before, is permitted by the inclusion of a first order

Markovian component. Higher orders were also incorporated.

a. PMAK1 model (equation 3). A binary covariate PDV1 was

included in the data file taking the value 1 or 0 depending on

whether there was at least one CEL or not at the previous

month

P Yi~nð Þ~

e{l1|ln
1

n!
, forPDV1~0

e{l2|ln
2

n!
, forPDV1~1

8>><
>>: ð3Þ

b. PMAK2. The covariate PDV was created and incorporated

taking the value of the previous dependent variable. In this

case, the parameter l is modified by the PDV term (equation

4). Higher orders were also explored: second (equation 5) and

third (equation 6) order Markovian component, called nested

PMAK2 and nested nested PMAK2 respectively.

Figure 6. Predicted Interval for variance versus mean of number of CELs. Variance and mean of number of CELs in each patient (observed –
simulated) were calculated and represented in natural logarithmic scale. Solid line in black corresponds to the identity line. Blue dots are the
observations. Blue dashed lines correspond to the 5th and 95th quartiles of simulated data and solid blue line corresponds to the median of simulated
data. Black solid line is the identity line.
doi:10.1371/journal.pone.0073361.g006
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l~l0zPDV|hPDV ð4Þ

l~l0zPDV|hPDVzPPDV|hPPDV ð5Þ

l~l0zPDV|hPDVzPPDV|hPPDVzPPPDV|hPPPDV ð6Þ

iii. The Poisson model utilizing a mixture distribution for

individual observations (PMIX) (equation 7) incorporates an

additional parameter, the mixture probability (MP) for an

observation to belong to one of the two mixture distribution

(characterized by two different ls) within an individual [26]:

P Yi~nð Þ~MP|
e{l1|ln

1

n!
z 1{MPð Þ| e{l2|ln

2

n!
) ð7Þ

iv. Zero-Inflated Poisson model (ZIP) is a mixture model adapted

for data presenting an excess of zero values and therefore

needing an adaptation of the distribution that is otherwise

extremely skewed. ZIP is a special case of PMIX where l1 is

equal to 0. It is composed of two equations depending on

whether the random variable is a zero or a greater value and

they include the probability P0 of the observation being zero

(equation 8). If P0 is equal to zero, the ZIP model reduces to

the PS model. The mean monthly CEL count and the

variance will be given by the following expressions [(1 – P0)

6l] and [(1 – P0) 6l6 (1+ P06l)], respectively.

P Yi~nð Þ~

e{l|ln

n!
| 1{P0ð ÞzP0, for n~0

e{l|ln

n!
| 1{P0ð Þ, for nw0

8>><
>>: ð8Þ

v. Generalized Poisson model (GP) (equation 9) possesses the

twin property of over dispersion and under dispersion [27].

This is contained in the dispersion parameter d that can be

positive or negative within the adaptive range [max (21, 2l/

4), 1]. First (equation 5) and second (equation 6) order Markov

elements were explored for this distribution models affecting

to the l parameter, called GP PMAK2 and GP nested

PMAK2 respectively.

P Yi~nð Þ~ e{l{nd|l| lzndð Þn{1

n!
ð9Þ

vi. Negative Binomial model (NB) is used when there is over

dispersion due to latent heterogeneity (equation 10). The NB

model is a mixture of the Poisson distribution when the mean

follows a Gamma distribution [28] and is a function of l and a

parameter which accounts for the degree of over dispersion

called here OVDP. The mean is still l, but the variance

becomes l6(1-OVDP6l). As OVDP approaches zero the

NB model approaches the PS model. OVPD is restricted to be

positive. First (equation 4), second (equation 5) and third

(equation 6) order Markov elements were explored for this

distribution models affecting to the l parameter, called NB

PMAK2, NB nested PMAK2 and NB nested nested PMAK2

respectively.

P Yi~nð Þ~
C nz 1

OVDP

� �
n!|C 1

OVDP

� �
" #

|
1

1zOVDP|l

� � 1
OVDP

|
l

1
OVPD

zl

 !n
ð10Þ

vii. Zero-Inflated Negative Binomial model (ZINB). Equation 11

corresponds to the zero-inflated negative binomial. The

parameters P0 and OVDP have the same meaning as in the

ZIP model. The ZINB model reduces to the ZIP, NB or PS

model when P0, OVDP or both approaches zero, respectively

Figure 7. Model validation. A. Three descriptors were compared: (i) maximum, (ii) median and (iii) mean of the number of CELs during the 6
months. Green dots represented the observed data; dotted lines are the observed median; black dashed lines are the predicted median and grey
areas the 95% PI by the model. B. Variance versus mean for a 6 time window. Green dots are observations. Green dashed lines correspond to the 5th

and 95th percentiles of simulated data and the solid green line corresponds to the median of simulated data. Black solid line is the identity line.
doi:10.1371/journal.pone.0073361.g007
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|
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1

OVPD
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 !n
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(1{P0)|
C nz 1

OVDP

� �
n!|C 1
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1
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� � 1
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|

l
1
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 !n

, nw0

8>>>>>>>><
>>>>>>>>:

ð11Þ

Once the basic structure of the model was identified, the effect

of the steroid treatments on the model parameters was

evaluated. This was done for every model parameter, i.e., l0,

OVDP, hPDV and hPPDV. The drug effect was evaluated not

only for the month in which the patient received steroids, but

also for the following month to evaluate longer-term or

delayed effects.

Model Development and Selection Criteria
The minimum value of the objective function (OFV) provided

by NONMEM, which corresponds approximately to 226log(li-

kelihood) [22LL], served as a criteria for model comparison

during the model development process. A decrease in 22LL of

6.63 points for one additional parameter, was regarded as a

significant model improvement corresponding to p-value of

0.01 for nested models. The Akaike information criteria (AIC),

calculated as AIC = 22LL+26NP, where NP is the number of

parameter in the model, was used for selection among non-nested

models [29]. The choice of the final model was based also on the

OFV value, the precision of parameter estimates, and the results

from model predictive performance where raw data and data

obtained from model simulations were compared.

Model Evaluation
Models were evaluated in more detail as follows: (i) Visual

Numerical Predictive Checks (VNPC). One thousand individuals

were simulated using the selected models and their model

parameter estimates. For the observed data and each simulated

dataset the following descriptors were calculated: probability of

having of 0, 1, 2, 3, 4, 5, 6, 7 and .8 CELs, maximum and mean

elapsed time without lesions during the four years and number of

cumulative CELs per year. For every descriptor, the increasing

percentiles from 5th to 95th were calculated. The results for the raw

and simulated data with the different models were plotted where X

axis represent the different percentiles (Figure 3). (ii) Predicted

interval of VNPC. One thousand studies with 9 individuals per

study were simulated using the selected model. The same dynamic

descriptors that were described for the VNPC were used here. For

every descriptor, the increasing percentiles from 10th to 90th were

Figure 8. Analysis of the significance of the steroid effect by randomizing the dose events. One thousand new data files were generated
by randomizing the doses event architecture while preserving the total number of dose events and the patient observations. The histogram shows
the distribution of the OF values obtained using the selected model with the steroid effect when drug administrations were randomly generated. The
OF value of the selected model with no steroid effect is marked in green. The OF value of the selected model with the covariate steroid effect, using
the real dose moments is highlighted in red.
doi:10.1371/journal.pone.0073361.g008

(11)

Table 3. NB nested MAK2 with steroid effects model
parameters.

Parameters Estimate RSE(%) ISV (CV%) RSE(%)

l0 0.923 26.54 66.18 59.58

OVDP 0.132 25.37

hPDV 0.447 21.40 35.63 73.85

hPDV_S 0.145 32.06

hPPDV 0.150 48.00

RSE (%) relative standard error.
doi:10.1371/journal.pone.0073361.t003
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calculated. The 95% prediction interval by model was plotted with

the data (Figure 4). (iii) Probability CEL distribution; observed

data was compared to the probability distribution of simulated

data generated by the selected model (Figure 5). (iv) Predicted

interval for variance versus mean of number of CELs; one

thousand simulated individuals with the selected model were

generated. The individual mean CELs counts and the individual

variance for every patient were computed from the raw data. The

same computations were then made for each simulated individual

and year; for a total of 1000. The results were divided into 20

intervals for the mean of CELs, with each interval containing 50

simulated subjects. For each interval, variances were binned, and

the median and 5th–95th percentiles were calculated. Finally, the

overall median and percentiles were represented graphically

together with those corresponding to the raw data (Figure 6).

Model Validation
Fourteen patients with relapsing-remitting multiple sclerosis

underwent monthly MRIs during a 6-month pre-therapy phase.

None of these patients were treated with any immunosuppressive

therapy before the first scan. On each MRI, the total number of

CELs was noted (Figure S1). This open-label study was performed

at the National Institutes of Health, Bethesda, Maryland, with

approval from the institutional review board [30]. Three

descriptors were used for model validation (Figure 7A): (i)

maximum number of CELs, (ii) median of the CEL counts and

(iii) mean of the number of CELs collected during the 6 months

pre-therapy phase. Moreover, the predicted interval for variance

versus mean number of CELs for a 6 time window by the selected

model was compared with the same values from the data set

(Figure 7B).

Randomization of the Steroid Dose Administrations
A randomization test to calibrate the false positive rate for the

evaluation of the steroid effect was conducted. Specifically, one

thousand new data files were generated by randomizing the dose

event architecture while preserving the total number of dose events

and the patient observations.

Supporting Information

Figure S1 Cohort for model validation. CEL counts are

represented with circles and dashed lines (left Y axis).

(TIF)
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