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Acevedo, Miguel López, Ana Simic, Celia Lozano, Raheema M. Aslam, Hugo J. Bello, Karol V.
Asencio, Sara M. Rubio e Iván Cortés; Sin olvidarme de los doctorandos visitantes, Gerardo y
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por habérmelos presentado.
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Preface

Since L. Zadeh introduced fuzzy logic in 1965 as a model to the uncertainty and vagueness
inherent in the human reasoning, it has been largely developed. Fuzzy sets appeared as imprecise
statements or propositions, fuzzy operators were developped in order to transform these state-
ments into others and fuzzy relations were defined as vague connections between the concepts
behind the statements. From then, fuzzy logic has been useful in a variety of fields such as ap-
proximate reasoning, fuzzy mathematical morphology, image processing, fuzzy control or decision
making.

Fuzzy consequence operators and fuzzy interior operators are an essential tool in most of the
different frameworks were fuzzy logic appears. As prominent examples, we find approximate
reasoning and fuzzy mathematical morphology. In approximate reasoning, fuzzy consequence op-
erators are used to obtain conclusions from certain fuzzy premises and relations and fuzzy interior
operators appear as their dual notion. In fuzzy mathematical morphology, fuzzy consequence and
interior operators are called fuzzy closings and openings respectively and they act as morphologi-
cal filters used for image processing. There is a widely studied relationship between the concepts
of fuzzy operator and fuzzy relation. One can obtain fuzzy operators from fuzzy relations and
viceversa through different means. As we shall see, it is specially interesting the case of fuzzy
operators induced by fuzzy preorders or indistinguishabilities using Zadeh’s compositional rule
and the inf − → composition.

In all these contexts there is a need of concatenating two or more operators and it is important
to know when this composition preserves their properties. In this work, we have studied when
the order of composition of either two fuzzy consequence operators or two interior operators does
not change the result. As it will be shown, it turns out that permutability is completely con-
nected with the preservation of the properties. That is, whether the composition of two fuzzy
consequence (interior) operators is such an operator. We have analyzed the particular case of
fuzzy operators induced by fuzzy relations through Zadeh’s compositional rule and the inf − →
composition. We have characterized when permutability is transfered from the inducing relations
to the induced operators. A deeper study has been been done for the case of preorders and
indistinguishabilities.

This work is structured as follows. In Chapter 1 we briefly introduce some background and we
recall the main definitions and results that will be needed. In Chapter 2 we collect several results
that show connections between fuzzy relations and fuzzy operators. We also extend some of the

ix



X Preface

known definitions to a more general ones. Chapter 3 is devoted to the analysis of permutability.
We start analyzing certain cases of fuzzy relations and fuzzy operators. In particular, fuzzy
preorders and indistinguishabilities and fuzzy consequence and interior operators. Then, we
relate permutability of fuzzy relations with permutability of the operators that they induce using
the different processes defined in Chapter 2. We focus in the cases of fuzzy operators induced by
fuzzy preorders and similarities.

Finally, we present the conclusions and the possible future work.



Chapter 1

Introduction

1.1. Background

Let X be a non-empty classical set and let (L,∨,∧) be a complete lattice. A fuzzy set µ

defined on X is a map µ : X −→ L which assigns to every element x ∈ X its degree of truth (or
degree of belonging to the set µ). In general, L is called the structure of truth values.

The most common structure of truth values is the [0, 1] interval. In this structure, µ(x) = 0
represents being completely false and µ(x) = 1 completely true. The inclusion of fuzzy sets is
defined by the pointwise order, i.e. µ ⊆ ν if and only if µ(x) ≤ ν(x) for all x ∈ X. Intersection
of fuzzy sets (conjunction) in this structure is usually defined by the use of a t-norm.

Definition 1 A t-norm ∗ is a map ∗ : [0, 1]× [0, 1] −→ [0, 1] satisfying for all a, b, c ∈ [0, 1]:

1. Commutativity a ∗ b = b ∗ a

2. Monotonicity: a ∗ b ≤ a ∗ c for all b ≤ c.

3. Associativity: a ∗ (b ∗ c) = (a ∗ b) ∗ c.

4. Identity element: a ∗ 1 = a.

There are generalizations of t-norms to more general lattices. Different properties can be
required to the t-norms. We are interested in left-continuity, since it allows to define a residuum.

Definition 2 A t-norm is called left-continuous when it preserves the supremum. That is, when

(sup ai) ∗ b = sup(ai ∗ b)

for any collection of subindices i ∈ I.

We will use the notation sup or ∨ for the supremum and inf or ∧ for the infimum, indistinctly.

Let [0, 1]X denote the set of all fuzzy subsets of X with truth values in [0, 1] endowed with
the structure of complete commutative residuated lattice (in the sense of Bělohlávek [1]). That
is, 〈[0, 1],∧,∨, ∗,→, 0, 1〉 where:

1. ∧ and ∨ are the usual infimum and supremum

1



2 Introduction

2. ∗ is a left-continuous t-norm

3. → is the residuum of ∗ defined for ∀a, b ∈ X as

a → b = sup{γ ∈ [0, 1] | a ∗ γ ≤ b}

Recall that ∗ and → satisfy the adjoiness property

x ∗ y ≤ z ⇔ y ≤ x → z

and that ∗ is monotone in both arguments while→ is antitone in the first argument and monotone
in the second one.

Let us recall some properties of 〈[0, 1],∧,∨, ∗,→, 0, 1〉. Detailed proofs can be found in [1].

Proposition 1 The residuated lattice 〈[0, 1],∧,∨, ∗,→, 0, 1〉 satisfies the following conditions for
each index set I and for all x, xi, y, yi, z ∈ [0, 1] with i ∈ I:

1. 1 → x = x

2. x ≤ y ⇔ x → y = 1

3. x ∗ 0 = 0

4. x ∗ (x → y) ≤ y

5. (x ∗ y) → z = x → (y → z)

6. (x → y) ∗ (y → z) ≤ (x → z)

7. x ∗∨
i∈I yi =

∨
i∈I(x ∗ yi)

8. x → ∧
i∈I yi =

∧
i∈I(x → yi)

9.
∨

i∈I xi → y =
∧

i∈I(xi → y)

10. x ∗∧
i∈I yi ≤

∧
i∈I(x ∗ yi)

Recall that every partially ordered set P , and therefore every lattice, gives rise to a dual (or
opposite) partially ordered set which usually denoted P δ. P δ is defined to be the set P with the
inverse order, i.e. x ≤ y holds in P δ if and only if y ≤ x holds in P . It is easy to see that this
construction allows us to translate every statement from P to a statement P δ by replacing each
occurrence of ≤ by ≥. Notice that if P is a lattice, every occurrence of ∨ gets replaced by ∧ and
viceversa [2].

1.2. Fuzzy operators

A fuzzy operator is a map C : [0, 1]X −→ [0, 1]X . We denote Ω′ the set of all fuzzy operators
on the referential set X. Recall that Ω′ is a lattice with order given by C ≤ C ′ if and only if
C(µ) ⊆ C ′(µ) for all µ ∈ [0, 1]X . All the operations are pointwise inherited from the structure
given to [0, 1].

Definition 3 A fuzzy operator C ∈ Ω′ is called a fuzzy consequence operator or fuzzy closure
operator (FCO for short) when it satisfies for all µ, ν ∈ [0, 1]X :

(C1) Inclusion µ ⊆ C(µ)

(C2) Monotonicity µ ⊆ ν ⇒ C(µ) ⊆ C(ν)
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(C3) Idempotence C(C(µ)) = C(µ)

Ω will denote the set of all fuzzy consequence operators of [0, 1]X .

Definition 4 A fuzzy operator C ∈ Ω′ is called a fuzzy interior operator (FIO for short) when it
satisfies for all µ, ν ∈ [0, 1]X :

(I1) Anti-inclusion C(µ) ⊆ µ

(I2) Monotonicity µ ⊆ ν ⇒ C(µ) ⊆ C(ν)

(I3) Idempotence C(C(µ)) = C(µ)

Λ will denote the set of all fuzzy interior operators of [0, 1]X .

Fuzzy consequence operators were introduced by Pavelka in 1979 as an extension of Tarski’s
consequence operators to fuzzy sets [3]. In approximate reasoning, they perform the role of
deriving consequences from certain premises and relations [3–6].

From an algebraic point of view, fuzzy consequence operators are the closure operators the
lattice [0, 1]X [7]. Fuzzy interior operators appear as a dual notion of fuzzy closure operators [8].
They can be seen as fuzzy consequence operators in the dual lattice Ω′δ. One can prove that Ω′

and Ω′δ are isomorphic through the function ϕ : Ω′ −→ Ω′δ defined as ϕ(C) = 1−C where 1−C is the
fuzzy operator defined as (1 − C)(µ)(x) = 1 − C(µ)(x) for every µ ∈ [0, 1]X and x ∈ X. Notice that
C is a fuzzy consequence operator in Ω′ if and only if ϕ(C) is a fuzzy consequence operator in
Ω′δ. The same is true for fuzzy interior operators, C is a fuzzy interior operator in Ω′ if and only
if ϕ(C) is an fuzzy interior operator in Ω′δ. Therefore, every result stated for fuzzy consequence
operators in Ω′ have its dual statement, true for fuzzy interior operators in Ω′δ which becomes
also true for fuzzy interior operators in Ω′ via ϕ−1.

In fuzzy mathematical morphology, both kinds of operators act as morphological filters for
image processing [9, 10]. They have been extensively studied in several contexts [11–13] and they
have been used to transfer results from the field of approximate reasoning to the field of fuzzy
mathematical morphology [14].

Let us recall the definition of the fuzzy closure of a fuzzy operator. This notion was first
defined for general lattices [7] and later translated to the fuzzy context by Pavelka [3]. It can be
thought as the best upper approximation by a fuzzy consequence operator to a given operator.

Definition 5 Let C : [0, 1]X −→ [0, 1]X be a fuzzy operator. We define the fuzzy closure C of C

as the fuzzy operator given by
C = inf

φ∈Ω
C≤φ

{φ} . (1.1)

The fuzzy closure is a fuzzy consequence operator and it is uniquely determined since the
infimum of fuzzy consequence operators so is. Dually, one can consider the greatest fuzzy interior
operator which is smaller than or equal to a given operator; that is the best lower approximation
of a fuzzy operator C by a fuzzy interior operator.

Definition 6 Let C : [0, 1]X −→ [0, 1]X be a fuzzy operator. We define the fuzzy interior C of C

as the fuzzy operator given by
C = sup

φ∈Λ
C≥φ

{φ} . (1.2)
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1.3. Fuzzy relations

Fuzzy (binary) relations on X are fuzzy subsets of the cartesian product X × X. For every
pair (x, y) ∈ X ×X, R(x, y) represents the degree in which x is related to y. We denote Γ′ the
set of fuzzy binary relations defined on X.

Definition 7 A fuzzy relation R : X ×X −→ [0, 1] is called a fuzzy ∗-preorder if it satisfies:

1. Reflexivity: R(x, x) = 1 ∀x ∈ X

2. ∗-Transitivity: R(x, y) ∗R(y, z) ≤ R(x, z) ∀x, y, z ∈ X

A fuzzy preorder is called a fuzzy ∗-indistinguishability relation or fuzzy ∗-similarity if it also
satisfies

3. Symmetry: R(x, y) = R(y, x) ∀x, y ∈ X

Recall that for R and S ∈ Γ′, we say that R ≤ S if R(x, y) ≤ S(x, y) for all x, y ∈ X.

Fuzzy preorders and indistinguishabilities are interesting since they are the fuzzy generalization
of preorder and equivalence relations respectively. ∗-Indistinguishability relations model how
similar the objects in the universe are. ∗- preorders establish a kind of previouness between the
elements. As we shall see in the next section, there is a strong connection between this previouness
that preorders model and the consequences that FCOs describe.

Observe that both definitions depend on the definition that we choose for the conjunction
(the t-norm) since we need it to define transitivity. If certain element a is somehow previous to
a certain other element b and this b is previous to another element c, we need to add up both
statements in order to find how previous is a to c. This adding up is what clearly depends on the
definition of the t-norm.

The importance of transitivity gives rise to the definition of the transitve closure of a fuzzy
relation. The transitive closure of a fuzzy relation R is the smallest upper approximation of R

which is ∗-transitive [15]. More precisely,

Definition 8 Let R be a fuzzy relation. We define the transitive closure R of R as the fuzzy
relation given by

R = inf
S∈Γ̂
R≤S

{S} (1.3)

where Γ̂ denotes the set of all ∗-transitive fuzzy relations on X.

The explicit formula for the transitive closure is given by R = supn∈NRn where the power of R

is defined using the sup-∗ composition [15]. It is the smallest transitive relation greater than or
equal to R. The ∗-transitive closure preserves reflexivity and symmetry. Hence, the transitive
closure of a reflexive fuzzy relation is fuzzy preorder and the transitive closure of a reflexive and
symmetric relation is an indistinguishability relation.

We can define certain kind of compatibility between fuzzy relations and fuzzy sets. This allows
to select which fuzzy sets respect the relation.
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Definition 9 Let R ∈ Γ′ be fuzzy relation and µ ∈ [0, 1]X a fuzzy subset of X. Then, µ is called
∗-compatible with R if

µ(x) ∗R(x, y) ≤ µ(y)

for all x, y ∈ X.

From its logical implications, these sets are also called true-sets or closed under modus ponens.
This notion gets special interest when R is a preorder [16]. When R is not only a preorder but also
an indistinguishability relation, these sets are called extensional sets and they have been largely
studied since they represent the fuzzy equivalence classes under the chosen indistinguishability
[17].

We will consider an operation in Γ′. The sup-∗ composition between fuzzy relations was
introduced by L. Zadeh [18].

Definition 10 Let R, S ∈ Γ′ be fuzzy relations on a set X and ∗ a t-norm. The sup-∗ composition
of R and S is the fuzzy relation defined for all x, y ∈ X by

R ◦ S(x, y) = sup
w∈X

{R(x,w) ∗ S(w, y)} (1.4)
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Chapter 2

Connections between fuzzy relations

and fuzzy operators

Concepts of fuzzy relations and fuzzy operators are closely related. There are several ways to
obtain fuzzy operators from fuzzy relations. We shall focus on the fuzzy operators C∗

R and C→
R

induced by a fuzzy relation R.

2.1. The operator C∗
R

Every fuzzy relation induces a fuzzy operator through the well-known Zadeh’s rule of inference
[19].

Definition 11 Let R ∈ Γ′ be a fuzzy relation on X. The fuzzy operator induced by R through
Zadeh’s compositional rule is defined by

C∗
R(µ)(x) = sup

w∈X
{µ(w) ∗R(w, x)} (2.1)

Notice that from a logical point of view, C∗
R can be understood as the operator that sends every

fuzzy set µ to the fuzzy set containing all the elements which are related to some element w in µ

by means of the relation R. This operator is widely used as the IF-THEN rule in fuzzy control.

Proposition 2 [4] Let σ : Γ′ −→ Ω′ be the function that sends every fuzzy relation R to the
operator C∗

R induced by means of equation (2.1). Then, σ is injective.

In other words, injectivity of σ states that for any two fuzzy relations R and S, we have C∗
R = C∗

S

if and only if R = S. The relationship between fuzzy preorders and fuzzy consequence operators
was well established [6] [16].

Proposition 3 Let R be a fuzzy relation. Then C∗
R is a fuzzy consequence operator if and only

if R is a fuzzy ∗-preorder.

It is worth recalling that not all FCO can be obtained from fuzzy preorders by means of
Zadeh’s compositional rule. When the starting relation is a fuzzy indistinguishability relation,
the induced operator is not only a FCO but satisfies the following properties [17].

7



8 Connections between fuzzy relations and fuzzy operators

Proposition 4 Let E be a fuzzy ∗-indistinguishability relation and let C∗
E be the fuzzy operator

induced through Zadeh’s compositional rule. Then,

1. C∗
E is a fuzzy consequence operator.

2. C∗
E(

∨
i∈I µi) =

∨
i∈I C∗

E(µi) for any index set I and all µi ∈ [0, 1]X .

3. C∗
E({x})(y) = C∗

E({y})(x) for all x, y ∈ X where {x} denotes the singleton of x.

4. C∗
E(α ∗ µ) = α ∗ C∗

E(µ) for any constant α ∈ [0, 1] and µ ∈ [0, 1]X .

Moreover, every operator satisfying the previous properties can be obtained from a fuzzy indis-
tinguishability relation by means of Zadeh’s compositional rule.

Proposition 5 There is a bijection between the set of ∗-indistinguishability relations and the set
of fuzzy operators satisfying the conditions of Proposition 4.

2.2. The operator C→
R

Instead of using the supremum and the t-norm, one can induce a fuzzy operator from a fuzzy
relation using the infimum and the adjoined implication (residuum).

Definition 12 Let R ∈ Γ′ be a fuzzy relation on X. We define the fuzzy operator induced by R

through the inf- → composition as

C→
R (µ)(x) = inf

w∈X
{R(x,w) → µ(w)} (2.2)

Given a fuzzy set µ, C→
R (µ) is the fuzzy subset containing the elements x such that whenever x

is in relation through R with an element w, then w belongs to µ [20].

Proposition 6 The mapping θ : Γ′ −→ Ω′ that sends every fuzzy relation R to the operator C→
R

induced by means of equation (2.2) is decreasing. That is, if R ≤ S then C→
R ≥ C→

S .

Proof It follows from the fact that → is antitone in the first argument.

The map that sends every fuzzy relation to its induced operator is an injective map also in
this case.

Proposition 7 The function θ : Γ′ −→ Ω′ that sends every fuzzy relation R to the operator C→
R

induced by means of equation (2.2) is injective. That is, if C→
R = C→

S then R = S.

Proof We shall prove the contra-positive form that is, if R 6= S necessarily C→
R 6= C→

S . Assume
R 6= S. Then, there exists x, y ∈ X such that R(x, y) 6= S(x, y). We can suppose without loss of
generality that R(x, y) > S(x, y). Let us define the fuzzy set µx as µx(w) = S(x,w). Then,

C→
S (µx)(x) = inf

w∈X
{S(x,w) → µx(w)} = inf

w∈X
{S(x,w) → S(x,w)} = 1

but

C→
R (µx)(x) = inf

w∈X
{R(x,w) → µx(w)}

= inf
w∈X

{R(x,w) → S(x,w)} ≤ R(x, y) → S(x, y) < 1
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by property 2 from Proposition 1.

Again, fuzzy operators induced by fuzzy preorders or fuzzy indistinguishabilities satisfy certain
special properties. It is known that the operator C→

R is a FIO whenever R is a ∗-indistinguishability
relation. The following result shows that it is enough that R is a fuzzy preorder.

Proposition 8 Let R be a preorder, then C→
R defined as in (2.2) is a fuzzy interior operator.

Proof Let us first proof anti-inclusion and monotonicity.

C→
R (µ)(x) = inf

w∈X
{R(x,w) → µ(w)} ≤ R(x, x) → µ(x) ≤ 1 → µ(x) = µ(x)

Let µ, ν ∈ [0, 1]X and assume µ ≤ ν. Since → is monotone in the second argument, we have

R(x, w) → µ(w) ≤ R(x, w) → ν(w) ∀w ∈ X.

Therefore

C→
R (µ)(x) = inf

w∈X
{R(x,w) → µ(w)} ≤ inf

w∈X
{R(x,w) → ν(w)} = C→

R (ν)(x)

To prove idempotence notice that

C→
R (C→

R (µ))(x) = inf
w∈X

{ R(x,w) → C→
R (µ)(w) }

= inf
w∈X

{ R(x,w) → ( inf
y∈X

{R(w, y) → µ(y)}) }

= inf
w∈X

inf
y∈X

{ R(x,w) → (R(w, y) → µ(y)) }

= inf
w∈X

inf
y∈X

{ (R(x,w) ∗R(w, y)) → µ(y) }

≥ inf
w∈X

inf
y∈X

{R(x, y) → µ(y)}

= inf
y∈X

{R(x, y) → µ(y)} = C→
R (µ)(x).

The other inclusion follows from the anti-inclusion property.

Again, operators induced by fuzzy ∗-indistinguishability relations behave specially well.

Proposition 9 [17] Let E ∈ Γ′ be a fuzzy ∗-indistinguishability relation and let C→
E be the fuzzy

operator induced by means of equation 2.2. Then C→
E (µ)(x) satisfies the following properties:

1. C→
E is a fuzzy interior operator.

2. C→
E (

∧
i∈I µi) =

∧
i∈I C→

E (µi) for any index set I and all µi ∈ [0, 1]X .

3. C→
E ({x} → α)(y) = C→

E ({y} → α)(x) for all x, y ∈ X and any constant α ∈ [0, 1] where {x}
denotes the singleton of x.

4. C→
E (α → µ) = α → C→

E (µ) for any constant α ∈ [0, 1] and µ ∈ [0, 1]X .

The converse of Proposition 9 also holds.

Proposition 10 [17] There exists a bijection between the set of fuzzy ∗-indistinguishability re-
lations and the set of fuzzy operators satisfying all the properties from proposition 9. That is,
if C ∈ Ω′ is a fuzzy operator satisfying all the properties from proposition 9, then there exists a
fuzzy ∗-indistinguishability relation E such that C = C→

E .
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2.3. Generalization of C∗
R and C→

R

We generalize the operator induced by a fuzzy relation through Zadeh’s compositional rule to
a fuzzy operator induced by a fuzzy relation and another fuzzy operator.

Definition 13 Let g ∈ Ω′ be a fuzzy operator and let R ∈ Γ′ be a fuzzy relation on X. We define
the operator Cg

R induced by g and R as

Cg
R(µ)(x) = sup

w∈X
{g(µ)(w) ∗R(w, x)} (2.3)

R and g are called the generators of Cg
R.

The operator g used as generator performs a selection in order to apply Zadeh’s usual operator
only to the fuzzy subsets of its image. Notice that taking g = id, where id denotes the identity
operator on [0, 1]X , we obtain Cid

R = C∗
R.

Proposition 11 For every g ∈ Ω′, the mapping σg : Γ′ −→ Ω′ that sends every fuzzy relation
R to the operator Cg

R induced by R and g by means of equation (2.4) is increasing. That is, if
R ≤ S then Cg

R ≤ Cg
S.

Corollary 1 The mapping σ : Γ′ −→ Ω′ that sends every fuzzy relation R to the operator C∗
R

induced by Zadeh’s compositional rule (equation (2.1)) is increasing.

Our interest lies in the obtention of fuzzy consequence operators. For this, we need certain
individual properties of the generators and also some conditions involving both generators, oper-
ators and relations. More precisely, let us define the concordance between a fuzzy operator and
a fuzzy relation.

Definition 14 Let g be a fuzzy operator and R a fuzzy relation. We will say that g is ∗-concordant
with R if all the subsets from the image of g are ∗-compatible with R. That is,

g(µ)(x) ∗R(x, y) ≤ g(µ)(y)

for all x, y ∈ X and all µ ∈ [0, 1]X .

Theorem 1 Let R ∈ Γ′ be a reflexive fuzzy relation and let g ∈ Ω′ be a FCO. Suppose that g is
∗-concordant with R. Then, the operator Cg

R induced by g and R is also a FCO.

Proof Let us start proving the inclusion and monotonicity properties. From the reflexivity of R,
it follows that

Cg
R(µ)(x) = sup

w∈X
{g(µ)(w) ∗R(w, x)} ≥ g(µ)(x) ∗R(x, x) = g(µ)(x).

Since g is a FCO and therefore inclusive, we get

Cg
R(µ)(x) ≥ g(µ)(x) ≥ µ(x)
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Let µ1, µ2 ∈ [0, 1]X such that µ1 ⊆ µ2. From the monotonicity of g it follows that g(µ1)(x) ≤
g(µ2)(x) for all x ∈ X. Therefore,

Cg
R(µ1)(x) = sup

w∈X
{g(µ1)(w) ∗R(w, x)}

≤ sup
w∈X

{g(µ2)(w) ∗R(w, x)} = Cg
R(µ2)(x).

It only remains to prove the idempotence. To prove the first inclusion notice that, since g(µ)
belongs to Im(g), it is ∗-compatible with R. That is,

g(µ)(y) ∗R(y, x) ≤ g(µ)(x)

for all y, x ∈ X. Hence,

sup
y∈X

{g(µ)(y) ∗R(y, x)} ≤ g(µ)(x)

for all x ∈ X. Using this fact, the monotonicity and idempotence of g and the monotonicity of ∗
we get

Cg
R(Cg

R(µ))(x) = sup
w∈X

{g(Cg
R(µ))(w) ∗R(w, x)}

= sup
w∈X

{g(sup
y∈X

{g(µ)(y) ∗R(y, w)}) ∗R(w, x)}

≤ sup
w∈X

{g(g(µ)(w)) ∗R(w, x)}

= sup
w∈X

{g(µ)(w) ∗R(w, x)} = Cg
R(µ)(x)

The other inclusion follows immediately from the inclusion property.

Following the same idea of using an operator in order to perform a previous selection to the
fuzzy sets to which we shall apply an operator, we generalize the operator induced by a fuzzy
relation through the inf-→ product to a fuzzy operator induced by a fuzzy relation and another
fuzzy operator.

Definition 15 Let g ∈ Ω′ be a fuzzy operator and let R ∈ Γ′ be a fuzzy relation on X. We define
the operator C̃g

R induced by g and R as

C̃g
R(µ)(x) = inf

w∈X
{R(x,w) → g(µ)(w)} (2.4)

R and g are called the generators of C̃g
R.

Again, taking g = id we obtain Cid
R = C→

R .

However, we shall leave the study of the properties of this operator for future work.



12 Connections between fuzzy relations and fuzzy operators



Chapter 3

Permutability

In general, neither the usual composition of fuzzy operators nor the sup-∗ composition of
fuzzy relations is a commutative operation. Therefore, it is interesting to know when the order of
composition does not change the result. As we shall see throughout this chapter, there are cases
where permutability appears. That is, cases for which the order of composition does not change
the outcome. We characterize some of them here.

3.1. Permutability of fuzzy preoders and fuzzy indistinguishabil-

ity relations

Definition 16 Let R, S ∈ Γ′ be fuzzy relations. We say that R and S are permutable or that R

and S permute if R ◦ S = S ◦R where ◦ is the sup-∗ composition defined as in equation (1.4).

Permutability of preorders is closely related to the transitive closure of a fuzzy relation. It was
proved in [21] that two fuzzy ∗-indistinguishability relations defined on a finite set X permute
if and only if E ◦ F is an ∗-indistinguishability relation. In this case, E ◦ F coincides with the
∗-transitive closure of their maximum, that is E ◦ F = max (E,F ). We extend this result to
general fuzzy preorders and any set X, finite or not. We need the following lemma.

Lemma 1 Let R and P be two fuzzy ∗-preorders on a set X. Then, R ◦ P ≤ max (R, P ).

Proof R ◦ P ≤ max (R, P ) ◦max (R, P ) ≤ supn∈N (max (R, P ))n = max (R, P ).

Theorem 2 Let R and P be two fuzzy ∗-preorders on X. Then, R and P are permutable if and
only if R ◦ P and P ◦R are fuzzy ∗-preorders. Moreover, R ◦ P is a fuzzy ∗-preorder if and only
if it coincides with the ∗-transitive closure max (R, P ) of max (R, P ).

Proof Let us first prove the second statement. That is, R ◦ P is a fuzzy ∗-preorder if and only
if it coincides with max (R, P ). Suppose that R ◦ P is a fuzzy ∗-preorder. Since R ◦ P ≥ R

and R ◦ P ≥ P we have that R ◦ P ≥ max(R, P ). As R ◦ P is a fuzzy preorder, it follows that
R ◦ P ≥ max (R, P ). From Lemma 1, we get R ◦ P = max (R, P ). The other implication follows
from the fact that max (R, P ) is reflexive and therefore max (R,P ) is a preorder.

Now, let us prove that R and P are permutable if and only if R ◦ P and P ◦ R are fuzzy
∗-preorders. Assume that R ◦ P = P ◦R and let us show that they are fuzzy preorders.

13
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- Reflexivity:
R ◦ P (x, x) = supw∈X{R(x, w) ∗ P (w, x)} ≥ R(x, x) ∗ P (x, x) = 1

- ∗-Transitivity: Since R is ∗-transitive, supw∈X{R(x, w) ∗ R(w, y)} ≤ R(x, y). The same
holds for P . Thus,

R ◦ P (x, y) ∗R ◦ P (y, z) =

= sup
w∈X

{R(x,w) ∗ P (w, y)} ∗ sup
h∈X

{R(y, h) ∗ P (h, z)} =

= sup
w,h∈X

{R(x,w) ∗ P (w, y) ∗R(y, h) ∗ P (h, z)} =

≤ sup
w,h∈X

{R(x,w) ∗ (P ◦R)(w, h) ∗ P (h, z)} =

= sup
w,h∈X

{R(x,w) ∗ (R ◦ P )(w, h) ∗ P (h, z)} =

= sup
w,h,y∈X

{R(x,w) ∗R(w, y) ∗ P (y, h) ∗ P (h, z)} =

= sup
y∈X

{ sup
w∈X

{R(x,w) ∗R(w, y)} ∗ sup
h∈X

{P (y, h) ∗ P (h, z)}} =

≤ sup
y∈X

{R(x, y) ∗ P (y, z)} = R ◦ P (x, z).

Hence, it follows that R ◦ P = max (R, P ) = P ◦R .
The other direction is straightforward.

For fuzzy indistinguishability relations, the symmetric property facilitates the way. We need
just to find that one of the compositions is an indistinguishability relation to get both of them.

Corollary 2 Let E and F be two ∗-indistinguishability relations on X. Then, E and F are
permutable if and only if E ◦ F is a ∗-indistinguishability relation. Moreover, this occurs if and
only if E ◦ F coincides with the ∗-transitive closure max (E, F ) of max (E, F ).

Proof Since E and F are fuzzy preorders, Theorem 2 ensures that they permute if and only
if E ◦ F = max (E,F ) = F ◦ E. Since max (E, F ) is reflexive and symmetric, max (E,F ) is an
indistinguishability relation.

Let us illustrate with some examples that there exist fuzzy indistinguishabilities and preorders
that do permute and others that do not permute.

Example 1 Let R and P be fuzzy min-preorders (but not similarities) defined as follows:

R =




1 0.3 0.6
0.7 1 0.75
0.4 0.3 1


 P =




1 0.7 0.8
0.55 1 0.7
0.4 0.4 1




R and P permute.

Example 2 Let Q and S be fuzzy min-preorders (but not similarities) defined as follows.
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Q =




1 0.4 0.5
0.6 1 0.5
0.3 0.3 1


 S =




1 0.3 0.6
0.7 1 0.75
0.4 0.3 1




Their compositions are given by

Q ◦ S =




1 0.4 0.6
0.7 1 0.75
0.4 0.3 1




S ◦Q =




1 0.4 0.6
0.7 1 0.75
0.4 0.4 1




Notice that max(S,Q) = S ◦Q but Q and S do not permute.

Example 3 Let E and F be fuzzy min-indistinguishability relations defined as follows.

E =




1 0.8 0.7 0.7
0.8 1 0.7 0.8
0.7 0.7 1 0.7
0.7 0.8 0.7 1




F =




1 0.6 0.5 0.8
0.6 1 0.5 0.6
0.5 0.5 1 0.5
0.8 0.6 0.5 1




Notice that E and F permute.

max(E, F ) = E ◦ F = F ◦E =




1 0.8 0.7 0.8
0.8 1 0.7 0.8
0.7 0.7 1 0.7
0.8 0.8 0.7 1




Example 4 Let E and F be fuzzy min-indistinguishability relations defined as follows.

E =




1 0.4 0.4 0.4
0.4 1 0.8 0.7
0.4 0.8 1 0.7
0.4 0.7 0.7 1




F =




1 0.5 0.7 0.8
0.5 1 0.5 0.5
0.7 0.5 1 0.7
0.8 0.5 0.7 1






16 Permutability

E and F do not permute.

F ◦E =




1 0.7 0.7 0.8
0.5 1 0.8 0.7
0.7 0.8 1 0.7
0.8 0.7 0.7 1




E ◦ F =




1 0.5 0.7 0.8
0.7 1 0.8 0.7
0.7 0.8 1 0.7
0.8 0.7 0.7 1




3.2. Permutability of FCO and FIO

The aim of this section is to study when two fuzzy consequence operators or two fuzzy interior
operators permute. Permutability of fuzzy operators is considered with the usual composition.
That is,

Definition 17 Let C, C ′ be fuzzy operators. We say that C and C ′ are permutable or that C and
C ′ permute if C ◦ C ′ = C ′ ◦ C where ◦ denotes the usual composition.

In order to study permutability for these two cases we need to recall the definition of the power
of a fuzzy operator and several of its properties.

Definition 18 Let C : [0, 1]X −→ [0, 1]X be a fuzzy operator. We define Ck for k ∈ N as the
fuzzy operator defined recursively as:

1. C1 = C i.e. C1(µ)(x) = C(µ)(x) ∀µ ∈ [0, 1]X and ∀ x ∈ X.

2. Ck = C(Ck−1) i.e. Ck(µ)(x) = C(Ck−1(µ))(x) ∀µ ∈ [0, 1]X , ∀x ∈ X and k ≥ 2.

That is, Ck is the usual composition of the operator C with itself k times.

The following lemma is straightforward. It allows us to define the limit operator for the
sequence of powers of either an inclusive or anti-inclusive operator.

Lemma 2 Let C : [0, 1]X −→ [0, 1]X be a fuzzy operator. Then,

1. If C is inclusive, then Ck is inclusive for all k ∈ N.

2. If C is anti-inclusive, then Ck is anti-inclusive for all k ∈ N.

3. If C is monotone, then Ck is monotone for all k ∈ N.

Proposition 12 Let C : [0, 1]X −→ [0, 1]X be a fuzzy operator.

1. If C is inclusive, then the sequence
{
Ck

}
k∈N is increasing and convergent. That is , Ck ≤

Ck+1 for all k ∈ N and there exists a fuzzy operator U ∈ Ω′ such that U = limn∈NCn =
supn∈NCn.
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2. If C is anti-inclusive, then the sequence
{
Ck

}
k∈N is decreasing and convergent. That is ,

Ck+1 ≤ Ck for all k ∈ N and there exists a fuzzy operator L ∈ Ω′ such that L = limn∈NCn =
infn∈NCn.

Proof

1. Since 1 is an upper bound for Ck(µ)(x) for all µ ∈ [0, 1]X , all x ∈ X and all k ∈ N, the
sequences

{
Ck(µ)(x)

}
k∈N are increasing and bounded, thus they converge. Hence, the limit

operator exists and it is pointwise defined by

U(µ)(x) = lim
n→∞Cn(µ)(x) = sup

n∈N
Cn(µ)(x) . (3.1)

2. Dual to the previous one. In this case, 0 is a lower bound for Ck(µ)(x) for all µ ∈ [0, 1]X ,
all x ∈ X and all k ∈ N. Therefore, the limit operator exists and it is pointwise defined by

L(µ)(x) = lim
n→∞Cn(µ)(x) = inf

n∈N
Cn(µ)(x) . (3.2)

Permutability of fuzzy consequence operators

Now we are ready to characterize permutability for fuzzy consequence operators. We shall see
that the closure of an operator plays an essential role for permutability. Similarly to the transitive
closure of a fuzzy relation, the closure of certain operators can be defined from its sequence of
powers.

Theorem 3 Let C : [0, 1]X −→ [0, 1]X be an inclusive and monotone fuzzy operator. Then,
lim

n→∞Cn = C.

Proof First of all, let us show that Ck ≤ C for all k ∈ N by induction on k.

- For k = 1 it is clear that C ≤ C.

- Assume that Ck ≤ C for a certain k. Then, Ck(µ) ⊆ C(µ) for all µ ∈ [0, 1]X . Since C ≤ C

and C is monotone and idempotent, it follows that

C(Ck(µ)) ⊆ C(Ck(µ)) ⊆ C(C(µ)) = C(µ) .

Since Cn ≤ C for all n ∈ N, it follows that limn∈NCn ≤ C.
To prove that limn→∞Cn ≥ C let us show that limn→∞Cn is a closure operator. Since C is

inclusive and monotone, Lemma 2 ensures the inclusion and monotonicity of limn→∞Cn. For the
idempotence, it is straightforward that

lim
n→∞Cn( lim

n→∞Cn(µ))(x) = lim
n→∞Cn(µ)(x) .

Therefore, lim
n→∞Cn = sup

n∈N
Cn = C.
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Lemma 3 Let C, C ′ : [0, 1]X −→ [0, 1]X be fuzzy consequence operators. Then,

C ◦ C ′ ≥ max(C, C ′) .

Proof It directly follows from the inclusion and monotonicity properties. Since C is inclusive
C ′(µ) ⊆ C(C ′(µ)) for all µ ∈ [0, 1]X and C ◦C ′ ≥ C ′. Since C ′ is inclusive µ ⊆ C ′(µ) and adding
the monotonicity of C we get that C(µ) ⊆ C(C ′(µ)) for all µ ∈ [0, 1]X and C ◦C ′ ≥ C. Therefore,
C ◦ C ′ ≥ max(C, C ′).

Lemma 4 Let C, C ′ : [0, 1]X −→ [0, 1]X be two fuzzy consequence operators. Then, max(C, C ′)
is an inclusive and monotone fuzzy operator.

Proof The proof is straightforward. As C and C ′ are inclusive, max(C, C ′) is also inclusive. For
the monotonicity, note that µ1 ⊆ µ2 implies C(µ1)(x) ≤ C(µ2)(x) and C ′(µ1)(x) ≤ C ′(µ2)(x) for
all µ ∈ [0, 1]X and x ∈ X. Hence, max(C,C ′)(µ1)(x)) ≤ max(C,C ′)(µ2)(x)) for all µ ∈ [0, 1]X

and x ∈ X.

Remark 1 Notice that the two lemmas above hold even if C and C ′ are not FCO, but only
inclusive and monotone. We did not use idempotence at any point of the proof.

The importance of the closure arises from the fact that preservation of the operator type through
composition is the key for permuting two operators. We are ready to prove that there is only
one case where the composition of two fuzzy consequence operators is again a fuzzy consequence
operator.

Proposition 13 Let C, C ′ be fuzzy consequence operators. Then, C ◦ C ′ is a fuzzy consequence
operator if and only if C ◦ C ′ = max(C, C ′).

Proof It is sufficient to prove that if C ◦ C ′ is a FCO then C ◦ C ′ = max(C, C ′). The other
implication follows from the the fact that the closure of an operator is a FCO.

Assume that C ◦ C ′ is a FCO. From Lemma 3, C ◦ C ′ ≥ max(C,C ′). Therefore, C ◦ C ′ ≥
max(C, C ′). In addition, we have

C ◦ C ′ ≤ max(C, C ′) ◦max(C,C ′) = max2(C, C ′) ≤ max(C, C ′)

where the last inequality holds due to Theorem 3 and Lemma 4. Hence, C ◦C ′ = max(C, C ′).
At this point, we are ready to characterize permutability of fuzzy consequence operators.

Theorem 4 Let C, C ′ be fuzzy consequence operators. Then, C and C ′ permute if and only if
C ◦ C ′ and C ′ ◦ C are fuzzy consequence operators.

Proof First, let us show that if C and C ′ permute, then C ◦ C ′ and C ′ ◦ C are FCO.

- Inclusion: From Lemmas 3 and 4, C ◦ C ′ ≥ max(C, C ′) which is inclusive.

- Monotonicity: Suppose µ1 ⊆ µ2. From the monotonicity of C ′ it follows that C ′(µ1) ⊆
C ′(µ2) and from the monotonicity of C, C(C ′(µ1)) ⊆ C(C ′(µ2)).



Section 3.2 19

- Idempotence:

(C ◦ C ′)((C ◦ C ′)(µ))(x) = (C ◦ C ′)((C ′ ◦ C)(µ))(x) = C(C ′(C ′(C(µ))))(x)

= C(C ′(C(µ)))(x) = C(C(C ′(µ)))(x) = C(C ′(µ))(x) = (C ◦ C ′)(µ)(x) .

The same arguments hold for C ′ ◦ C.
The other implication directly follows from Proposition 13.

Let us see an example of two FCO that permute.

Example 5 Let X be a non empty classical set. Let x1, x2 ∈ X with x1 6= x2 and let C ′ and C

be defined as

C ′(µ)(x) =





1 if x = x1

µ(x) otherwise

C(µ)(x) =





1 if x = x2

µ(x) otherwise

Notice that C and C ′ are FCO and they permute, i.e.

C ◦ C ′ = C ′ ◦ C(µ)(x) =





1 if x = x1 or x = x2

µ(x) otherwise

Therefore, C ◦ C ′ = C ′ ◦ C is a FCO.

Remark 2 Observe that there are cases of fuzzy consequence operators C and C ′ such that C ′◦C

is a FCO (and therefore C ′ ◦ C = max(C, C ′)) but C and C ′ do not permute.

Let us illustrate this fact with an example.

Example 6 Let X be a non empty classical set and let α, β ∈ R such that 0 < β < α < 1.
Let C ′ and C be FCO defined as follows:

C ′(µ)(x) =





1 if µ(x) > β

β if µ(x) ≤ β

C(µ)(x) =





1 if µ(x) > α

α if µ(x) ≤ α .

Note that C ′ ◦ C = max(C, C ′) = X where X(x) = 1 for all x ∈ X, but C ′ ◦ C 6= C ◦ C ′. Indeed,
one has

(C ◦ C ′)(µ)(x)





1 if µ(x) > β

α if µ(x) ≤ β

which is not a FCO.
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Permutability of fuzzy interior operators

Dual results can be obtained for fuzzy interior operators. In this case, preservation of the type
of operator is related to the interior of the minimum.

Theorem 5 Let C : [0, 1]X −→ [0, 1]X be an anti-inclusive and monotone fuzzy operator. Then,
lim

n→∞Cn = C.

Proof The proof is dual to Theorem 3, therefore we will only give a sketch of it. By induction
on k, it can be proved that Ck ≥ C for all k ∈ N. Thus, limn→∞Cn ≥ C.

To prove the other inequality we need to show that limn→∞Cn is an interior operator. Lemmas
2 and 3 ensure the anti-inclusion and monotonicity properties. The idempotence is obtained using
the definition of limit as done in Theorem 3. Hence,

lim
n→∞Cn = inf

n∈N
Cn = C

.

Lemma 5 Let C, C ′ : [0, 1]X −→ [0, 1]X be fuzzy interior operators. Then,

C ◦ C ′ ≤ min(C, C ′) .

Lemma 6 Let C, C ′ : [0, 1]X −→ [0, 1]X be fuzzy interior operators. Then, min(C,C ′) is an
anti-inclusive and monotone fuzzy operator.

Again, permutability is connected to the preservation of the type of operator through compo-
sition. The composition of two fuzzy interior operators is again a fuzzy interior operator in one
case. This determines when permutability appears.

Proposition 14 Let C,C ′ be fuzzy interior operators. Then, C ◦ C ′ is a fuzzy interior operator
if and only if C ◦ C ′ = min(C,C ′).

Proof The proof is analogous to Proposition 13. It is sufficient to prove that if C ◦ C ′ is a FIO
then C ◦ C ′ = min(C, C ′) . The other implication follows from the fact that the fuzzy interior
of an operator is a FIO.

Suppose that C ◦ C ′ is a fuzzy interior operator. From Lemma 5, we know that C ◦ C ′ ≤
min(C, C ′). Therefore, C ◦ C ′ ≤ min(C, C ′) .
In addition, one has,

C ◦ C ′ ≥ min(C, C ′) ◦min(C,C ′) = min2(C,C ′) ≥ min(C, C ′)

where the last inequality holds due to Theorem 5 and Lemma 6. Hence,

C ◦ C ′ = min(C,C ′)

Theorem 6 Let C, C ′ be fuzzy interior operators. Then, C and C ′ permute if and only if C ◦C ′

and C ′ ◦ C are fuzzy interior operators.
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Proof The proof is analogous to the proof of Theorem 4. First of all, let us show that if C and
C ′ permute, then C ◦C ′ and C ′ ◦C are fuzzy interior operators. Monotonicity and idempotence
are proved exactly in the same way than in Theorem 4. Inclusion follows from Lemmas 5 and
6. Since C ◦ C ′ ≤ min(C, C ′) and min(C, C ′) is anti-inclusive, so is C ◦ C ′. The same argument
holds for C ′ ◦ C.

The other implication directly follows from Proposition 14.

3.3. Permutability of fuzzy operators induced by fuzzy relations

It is natural to think that permutability of fuzzy relations is connected to the permutability
of their induced operators. We shall study these connections for the fuzzy operators C∗

R and C→
R

introduced in Chapter 2. Let us start with the study of the operator induced through Zadeh’s
compositional rule.

Permutability of fuzzy operators induced by fuzzy relations through Zadeh’s

compositional rule

The composition of two fuzzy operators induced through Zadeh’s compositional rule can be
expressed in terms of the sup-∗ composition of the inducing relations.

Proposition 15 Let R, S be two fuzzy relations and let C∗
R and C∗

S be the corresponding fuzzy
operators induced through Zadeh’s compositional rule. Then,

C∗
R ◦ C∗

S = C∗
S◦R = C

C∗S
R (3.3)

where S ◦R denotes the sup-∗ product composition of fuzzy relations.

Proof For all µ ∈ [0, 1]X and all x ∈ X we have

C∗
R ◦ C∗

S(µ)(x) = C∗
R(C∗

S(µ))(x) = sup
w∈X

{ C∗
S(µ)(w) ∗ R(w, x) } = C

C∗S
R

which gives us the second equality. For the first one,

C
C∗S
R = sup

w∈X
{ C∗

S(µ)(w) ∗ R(w, x) }

= sup
w∈X

{ sup
z∈X

{ µ(z) ∗ S(z, w)} ∗ R(w, x) }

= sup
w,z∈X

{ µ(z) ∗ S(z, w) ∗ R(w, x) }

= sup
z∈X

{ µ(z) ∗ sup
w∈X

{ S(z, w) ∗ R(w, x) } }

= sup
z∈X

{ µ(z) ∗ S ◦R(z, x) } = C∗
S◦R(µ)(x).

The relation between permutability of fuzzy relations and permutability of their induced op-
erators can be summarized in the following theorem.
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Theorem 7 Let R, S be two fuzzy relations and let C∗
R and C∗

S be the corresponding fuzzy opera-
tors induced through Zadeh’s compositional rule. Then, C∗

R and C∗
S permute if and only if R and

S permute.

Proof It follows directly from the fact that the function that sends each fuzzy relation R to its
induced operator C∗

R is injective. Hence,

C∗
S◦R = C∗

R◦S ⇔ S ◦R = R ◦ S

As we have shown in the previous section, permutability of fuzzy consequence operators is
related to the preservation of the type of operator. For fuzzy consequence operators induced by
fuzzy preorders by means of equation (2.1) this occurs if and only if composition of the fuzzy
preorders also preserves the type, i.e. it is again a fuzzy preorder.

Theorem 8 Let R,P be fuzzy ∗-preorders and let C∗
R and C∗

P their corresponding fuzzy conse-
quence operators induced through Zadeh’s compositional rule. Then, C∗

R and C∗
P permute if and

only if R ◦ P and P ◦R are fuzzy ∗-preorders.

Proof From Theorem 7, C∗
R ◦ C∗

P = C∗
P ◦ C∗

R ⇔ R ◦ P = P ◦ R and from Theorem 2,
R ◦ P = P ◦R if and only if both are fuzzy preorders.

Corollary 3 Let R, P be fuzzy ∗-preorders and let C∗
R and C∗

P their corresponding fuzzy conse-
quence operators induced through Zadeh’s compositional rule. Then, C∗

R and C∗
P permute if and

only if R ◦ P = P ◦R = max(P, R).

For permutability of fuzzy operators induced by fuzzy indistinguishability relations the following
result holds.

Theorem 9 Let E, F be fuzzy ∗-indistinguishability relations and let C∗
E and C∗

F be their corre-
sponding fuzzy consequence operators induced through Zadeh’s compositional rule. Then, C∗

E and
C∗

F permute if and only if E ◦ F is a fuzzy ∗-indistinguishability relation.

Proof It directly follows from Corollary 2 and Theorem 8.

Corollary 4 Let E, F be fuzzy ∗-indistinguishability relations and let C∗
E and C∗

F be their corre-
sponding fuzzy consequence operators induced through Zadeh’s compositional rule. Then, C∗

E and
C∗

F permute if and only if E ◦ F = max(E, F ).

Corollary 5 Let C,C ′ be fuzzy operators satisfying all the conditions of Proposition 4. That is,

1. They are fuzzy consequence operators.

2. They satisfy C(
∨

i∈I µi) =
∨

i∈I C(µi) for any index set I and all µi ∈ [0, 1]X .

3. They satisfy C({x})(y) = C({y})(x) for all x, y ∈ X where {x} denotes the singleton of x.

4. They satisfy C(α ∗ µ) = α ∗ C(µ) for any constant α ∈ [0, 1] and µ ∈ [0, 1]X .

Then, C and C ′ permute if and only if C ◦ C ′ also satisfies all these conditions.
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In Proposition 15, two different ways of writing the composition of fuzzy operators were pre-
sented. We shall see another approach to permutability that can be obtained using the second
expression. This allows a sufficient condition for permutability in terms of the concordance be-
tween fuzzy relations and fuzzy operators, notion that we introduced in Definition 14.

Proposition 16 Let R, P be fuzzy preorders and let C∗
R and C∗

P be their respective induced FCO
by means of equation (2.1). If C∗

R is ∗-concordant with P and C∗
P is ∗-concordant with R, then

P and R permute and therefore C∗
R and C∗

P also permute.

Proof It directly follows from Theorems 1 and 8.

The following theorem is adapted from [22]:

Theorem 10 Let {µi}i∈I ⊆ [0, 1]X be an arbitrary family of fuzzy subsets. Then,

R(x, y) = inf
i∈I
{µi(x) → µi(y)} (3.4)

is the largest fuzzy preorder for which every fuzzy subset of the family {µi}i∈I is ∗-compatible with.

Notice that {µi}i∈I is also ∗-compatible with S for every fuzzy relation S smaller than or equal
to (3.4). Using this result, we define the largest fuzzy preorder for which a given operator C can
be ∗-concordant with.

Definition 19 Let C be a fuzzy operator in Ω′. The fuzzy relation Rc
c induced by C is given by

Rc
c(x, y) = inf

µ∈[0,1]X
{C(µ)(x) → C(µ)(y)} (3.5)

According to Theorem 10, the fuzzy preorder Rc
c defined above gives an upper bound which is

sufficient for a relation to be ∗-concordant with the given operator C. Hence, if a fuzzy relation
S is smaller than or equal to Rc

c for a certain fuzzy operator C, every fuzzy subset of the image
of C will be compatible with S.

Proposition 17 Let S be a fuzzy relation such that S ≤ Rc
c for a certain C ∈ Ω′. Then, C is

∗-concordant with S.

Proof Straightforward.

Corollary 6 Let R, P be fuzzy preorders and let C∗
R and C∗

P be their respective induced FCO. If

R ≤ R
c∗P
c∗P

and P ≤ R
c∗R
c∗R

,

then R and P permute. Therefore, so do C∗
R and C∗

P .

Proof It directly follows from Propositions 16, 17 and corollary 3.
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Permutability of fuzzy operators induced by fuzzy relations through inf − →
composition

Composition of operators induced by means of the inf-→ composition as defined by (2.2) can
be written in terms of the sup-∗ composition of the inducing relations.

Proposition 18 Let R,S be two fuzzy relations and let C→
R and C→

S be the corresponding fuzzy
operators induced through the inf − → composition. Then,

C→
R ◦ C→

S = C→
R◦S (3.6)

where S ◦R denotes the sup-∗ product composition of fuzzy relations.

Proof For all µ ∈ [0, 1]X and all x ∈ X we have

C→
R ◦ C→

S (µ)(x) = inf
w∈X

{R(x,w) → C→
S (µ)(x)}

= inf
w∈X

{ R(x, w) → { inf
y∈X

{S(w, y) → µ(y)}} }

= inf
w,y∈X

{R(x, w) → {S(w, y) → µ(y)}}

= inf
y∈X

inf
w∈X

{{R(x,w) ∗ S(w, y)} → µ(y)}

= inf
y∈X

{ sup
w∈X

{R(x,w) ∗ S(w, y)} → µ(y)}

= inf
y∈X

{(R ◦ S)(x, y) → µ(y)} = C→
R◦S(µ)(x)

where most of the equalities follow from the properties in Proposition 1.
As a consequence, we obtain similar results to the ones obtained for the operators induced by

Zadeh’s compositional rule.

Theorem 11 Let R, S be two fuzzy relations and let C→
R and C→

S be the corresponding fuzzy
operators induced through the inf- → composition. Then, C→

R and C→
S permute if and only if R

and S permute.

Proof One the one side, assume that S ◦ R = R ◦ S. Then, from the previous proposition it
follows that

C→
R ◦ C→

S (µ)(x) = C→
R◦S(µ)(x) = C→

S◦R(µ)(x) = C→
S ◦ C→

R (µ)(x)

On the other side, from Proposition 7, C→
R◦S = C→

S◦R implies R ◦ S = S ◦R.

Theorem 12 Let R,P be fuzzy ∗-preorders and let C→
R and C→

P their corresponding fuzzy interior
operators induced through the inf- → composition by means of (2.2). Then, C→

R and C→
P permute

if and only if R ◦ P and P ◦R are fuzzy ∗-preorders.

Proof It directly follows from Theorems 2 and 11.

Corollary 7 Let R, P be fuzzy ∗-preorders and let C→
R and C→

P the corresponding fuzzy interior
operators induced by means of (2.2). Then, C→

R and C→
P permute if and only if R◦P = P ◦R =

max(P, R).
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For permutability of fuzzy operators induced by fuzzy indistinguishability relations the following
holds.

Theorem 13 Let E, F be fuzzy ∗-indistinguishability relations and let C→
E and C→

F be their
corresponding fuzzy interior operators induced by means of (2.2). Then, C→

E and C→
F permute if

and only if E ◦ F is a fuzzy ∗-indistinguishability relation.

Proof It directly follows from Corollary 2 and Theorem 12.

Corollary 8 Let E, F be fuzzy ∗-indistinguishability relations and let C→
E and C→

F be their
corresponding fuzzy interior operators induced by means of (2.2). Then, C→

E and C→
F permute if

and only if E ◦ F = max(E, F ).

Corollary 9 Let C,C ′ be fuzzy operators satisfying all the conditions of Proposition 9. That is,

1. They are fuzzy interior operators.

2. They satisfy C(
∧

i∈I µi) =
∧

i∈I C(µi) for any index set I and all µi ∈ [0, 1]X .

3. They satisfy C({x} → α)(y) = C({y} → α)(x) for all x, y ∈ X and any constant α ∈ [0, 1]
where {x} denotes the singleton of x.

4. They satisfy C(α → µ) = α → C(µ) for any constant α ∈ [0, 1] and µ ∈ [0, 1]X .

Then, C and C ′ permute if and only if C ◦ C ′ also satisfies all these conditions.
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Conclusions and Outlook

Conclusions

Permutability of fuzzy consequence operators and fuzzy interior operators does not always
occur. However, we have proved that there are cases for which the order of composition does not
affect the result. We have shown that this fact is completely connected to the preservation of
the operator type through composition. That is, when the composition of two fuzzy consequence
(interior) operators is again a fuzzy consequence (interior) operator.

For the particular cases of fuzzy consequence operators induced through Zadeh’s compositional
rule and fuzzy interior operators induced using the inf-→ composition we proved that permutabil-
ity of the relations is connected to permutability of the induced operators. In fact, pemutability
of the starting relations appears to be a necessary and sufficient condition in order to obtain
permutability of the induced operators.

To conclude, we summarize the most important results that we have obtained. First of all,
we enumerate the results about permutability of fuzzy preorders and fuzzy indistinguishability
relations that have been the key to analyze permutability of their induced fuzzy operators:

1. R, P fuzzy ∗-preorders. Then, R ◦ P = P ◦R ⇔ R ◦ P and P ◦R are fuzzy ∗- preorders.

2. E, F fuzzy ∗-similarities. Then, E ◦ F = F ◦ E ⇔ E ◦ F is a fuzzy ∗-similarity.

3. R ◦ P preserves type (similarity or preorder) ⇔ R ◦ P = max(R, P ).

Permutability of general fuzzy consequence and interior operators can be summarized in the
following two results.

4. C, C ′ FCO. C and C ′ permute if and only if C ◦ C ′ = C ′ ◦ C = max(C, C ′).

5. C, C ′ FIO. C and C ′ permute if and only if C ◦ C ′ = C ′ ◦ C = min(C,C ′).

Several results about permutability of fuzzy operators induced by fuzzy relations have been
obtained. Results about permutability of fuzzy preorders and similarities allow some of the fol-
lowing characterizations. The notion of concordance between fuzzy relations and fuzzy operators
also plays a relevant role (see item 11).

6. R, S fuzzy relations. C∗
R ◦ C∗

S = C∗
S◦R = C

C∗S
R .

7. R, S fuzzy relations. C→
R ◦ C→

S = C→
R◦S .

8. R, S fuzzy relations. Then, C∗
R ◦ C∗

S = C∗
S ◦ C∗

R ⇔ R ◦ S = S ◦R.
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9. R, S fuzzy relations. Then, C→
R ◦ C→

S = C→
S ◦ C→

R ⇔ R ◦ S = S ◦R.

10. R, S fuzzy ∗-preorders. Then, C∗
R ◦ C∗

S = C∗
S ◦ C∗

R ⇔ R ◦ S and S ◦ R are fuzzy
∗-preorders.

11. R, P fuzzy ∗-preorders. C∗
R and P ∗-concordant. C∗

P and R ∗-concordant. Then, C∗
R ◦C∗

P =
C∗

P ◦ C∗
R.

12. E, F fuzzy ∗-indistinguishabilities. Then, C∗
E ◦ C∗

F = C∗
F ◦ C∗

E ⇔ E ◦ F is a fuzzy
∗-indistinguishability.

13. R, S fuzzy ∗-preorders. Then, C→
R ◦ C→

S = C→
S ◦ C→

R ⇔ R ◦ S and S ◦ R are fuzzy
∗-preorders.

14. E, F fuzzy ∗-indistinguishabilities. Then, C→
E ◦ C→

F = C→
F ◦ C→

E ⇔ E ◦ F is a fuzzy
∗-indistinguishability.

Outlook

In this work, we have studied permutability of the composition of two operators of the same
nature. For instance, two FCO or two FIO. From the theoretical point of view, it would be inter-
esting to analyze permutability in a wider range of operators. For example, when the composition
of one FCO with one FIO is permutable. Other kinds of operators could be also introduced in
the study.

The analysis of how permutability is translated from the inducing relations could be extended
to other operators induced by fuzzy relations using different definitions. As we already said, more
properties of the operator induced by a fuzzy relation through the inf − → composition should
be studied.

From a more practical point of view, further analysis of the applicability of these results into
image processing should be done. The aim would be to concatenate several morphological filters
controlling how the order of application affects the outcome.
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Summary

Fuzzy operators are an essential tool in many fields and the operation of composition is often
needed. In general, composition is not a commutative operation. However, it is very useful to
have operators for which the order of composition does not affect the result. In this work, we have
analyzed when permutability appears. That is, when the order of application of the operators
does not change the outcome. We have characterized permutability in the case of the composition
of two fuzzy consequence operators and the dual case of fuzzy interior operators. We have proved
that for these cases, permutability is completely connected to the preservation of the operator
type through composition. That is, when the composition of two FCO is again a FCO or the
composition of two FIO gives again a FIO.

We have also studied the particular case of fuzzy operators induced by fuzzy relations through
Zadeh’s compositional rule and the inf- → composition. For this cases, we have connected per-
mutability of the fuzzy relations with permutability of the induced operators. We have showed
that permutability of the fuzzy relations is a necessary and sufficient condition to obtain per-
mutability of the induced operators. Special attention has been paid to the cases of operators
induced by fuzzy preorders and similarities since the operators obtained are FCO and FIO.
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