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1- MORPHOLOGICAL AND FUNCTIONAL CHARACTERISTICS OF 

LYMPHATIC ENDOTHELIUM. 

 

1.1 Introduction to the biology of lymphatic system. 

The lymphatic vessels form a vascular network independent of blood vasculature 

that is responsible for the normal maintenance of fluid balance in tissue. Besides, it is 

devoted to the transport of fat from the gut and of immune cells from tissues to the 

lymph nodes. Up to 50% of the protein that extravasates from blood vessels cannot be 

directly reabsorbed by these capillaries and has to be taken back to blood through the 

lymphatic network (Pepper and Skobe, 2003). 

This vascular system was first documented by ancient Greeks. Hipocrates 

described lymph as “white blood”. But, surprisingly, the research on the molecular 

structures and physiology of this circulatory system has been hampered due to the lack 

of appropriate specific markers.  

Relatively recently, a number of molecules have been described that allowed us 

to specifically distinguish lymphatic vessels from blood vessels. These are: the tyrosin 

kinase receptor VEGFR-3 (Kaipainen et al., 1995), the membrane glycoprotein 

Podoplanin (Breiteneder-Geleff et al., 1999), the hyaluronan receptor LYVE-1 (Banerji 

et al., 1999), and the transcription factor Prox-1 that specifically determines lymphatic 

endothelial lineage during embryonic development (Wigle and Oliver, 1999). 

Furthermore, the lymphatic endothelium does not express the transcription factor PAL-

E, normally expressed on blood vasculature (Sleeman et al., 2001). These molecular 

tools have made possible the isolation and culture of primary lymphatic endothelial 

cells (LEC) and their labeling for microscopy-based analysis of these vessels (Hirakawa 

et al., 2003; Podgrabinska et al., 2002). Additionally, some cell lines of mouse 

lymphatic endothelial cells have been established (Ando et al., 2005; Sironi et al., 

2006).  

The anatomical structure of the lymphatic vessels has been compared to a tree 

composed of a wide trunk, which drains fluid back into the blood. This trunk branches 

in smaller vessels, that in turn branch into thinner ramifications, that finally terminate 
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into blind-ended capillaries (Skobe and Detmar, 2000). Therefore, the lymphatic 

network constitutes a one-direction system of vessels that initiates in blind-ended 

capillaries. These blind-ended capillaries drain fluid into vessels of increased caliper 

until the thoracic ducts, where lymph is poured into the blood vascular system through 

subclavian veins. 

In order to accomplish its draining function, the lymphatic capillaries form an 

intricate network inside the tissue, in close contact with blood vessels, but without 

anastomose with them. The main surface of these capillaries is deprived of perycites and 

myocites that can be found in wider vessels. Myocite’s contraction helps these vessels 

to pump lymph, which enters in wider lymphatic vessels, known as collecting vessels 

with increased amounts of smooth muscle cells. These smooth muscle covered surfaces 

originate small areas, that act as pumps located between two bulb-like sections of the 

lymphatic vessel (Randolph et al., 2005). Besides, in order to avoid retrograde lymph 

flow, small valves are located on larger lymphatic vessels. The collecting vessels finally 

drain fluid to thoracic ducts that are directly connected to both left and right subclavian 

veins.  

The lymphatic system forms part of the immune system, since lymph nodes are 

integrated in the lymphatic network. The lymph nodes are part of the secondary 

lymphoid tissues where immune responses are 

started and shaped. Lymph nodes are highly 

organized and dynamic organs grossly divided 

into a fibrous capsula, subcapsular sinus, a 

cortex, and a central medulla. The cortex 

harbors in its most external part the B cell 

follicles, and has an inter-follicular part rich in 

T cells. The medulla is traversed by vessel-like 

structures called sinusoids that separate, 

medulla cords enriched in macrophages and 

reticular cells (Mak and Saunders, 2006). 

Lymph enters into the lymph node through 

several afferent collecting lymphatic vessels that drain fluid into the trabecular and 

medullary sinuses that converge in the hillium where lymph leaves the node through the 

efferent lymphatic vessel (Fig 1) (Belz and Heath, 1995). Furthermore, there are also 

Figure 1. Schematic representation of 

the lymph node. Adapted from von 

Andrian and Mempel (2003) 
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blood vascular vessels inside the node, coated by an endothelial layer functionally 

specialized in leukocyte migration. These structures known as High Endothelial 

Venules (HEV) are critical for the formation of lymphoid tissue (Girard and Springer, 

1995). 

The lymph nodes are the tissue scenario where immune responses are 

orchestrated. Antigen presenting cells (APC) present cognate antigen to specific T and 

B lymphocytes. Antigens and cell debris may arrive from tissue to the lymph nodes 

directly via the afferent lymph (Sixt et al., 2005) or ferried by dendritic cells travelling 

also via afferent lymphatics. 

 

1.2 Morphological characteristics of the lymphatic endothelium 

The morphological differences that discriminate lymphatic capillaries from their 

blood counterparts have been reviewed by Mihaela Skobe (Skobe and Detmar, 2000). In 

summary, the lymphatic vessels present an irregular lumen that is wider than that of 

blood capillaries. The mean diameter of blood capillaries is up to 22 µm diameter, 

whereas that of lymphatic vessels can rise up to 60 µm. Besides, the endothelial cells 

that line the lymphatic capillaries present an extremely thin cytoplasm and are covered 

by a poorly developed or even absent basal membrane. This along with the lack of 

pericytes, results in vessels that are more labile than blood capillaries (Fig 2).  

Figure 2. Schematic representation of a lymphatic vessel displaying its specific morphological 

characteristics, both under steady steate and under interstitial pressure. Adapted from (Skobe 

and Detmar, 2000) 

file:///C:/Users/ateijeira/Documents/tesis/intro%20v2.docx%23_ENREF_227
file:///C:/Users/ateijeira/Documents/tesis/intro%20v2.docx%23_ENREF_227
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The lymphatic endothelial cells (LEC) are fastened to the extracellular matrix 

(ECM) by specialized anchoring filaments which contain elastic fibers. As shown in 

figure 2, increments of pressure in the tissue promote the traction of EC by the anchored 

filaments that are pulled by the fibers of the ECM. This event leads to the opening of 

small gaps, formed between specialized overlapping cell-cell junctions that allow the 

entrance of the fluid attracted to the negative pressure of the vessel. The filling of the 

lymphatic vessel induces fiber relaxation and the closure of the gaps when the pressure 

returns to normal values. This mechanism originates small unidirectional propels of 

fluid in the capillaries that are directed exclusively by the interstitial pressure. However, 

wider lymphatic vessels present smooth muscle cells that give contractility and pushes 

fluid along the vessel by peristaltism.  

Figure 3. Scheme of the microanatomy and LEC disposition of a lymphatic capillary. In figure 

A an schematic representation of a lymphatic vessel is shown exhibiting button like junctions on 

capillaries but not on wider collecting vessels which exhibit zipper- like junctions. B shows a 

detailed view of the shape of LEC and the distribution of button-like junctions as represented on C 

and D for two different cells with membrane flaps between each other. Baluk et al. (2007). 
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The anatomical dissimilarities between lymphatic and blood capillaries are 

highly related to their different physiology and become more evident when these vessels 

are analyzed at the subcellular level (Baluk et al., 2007). LEC present an oak-tree-leaf 

morphology in which the overlapping flaps of cytoplasm interdigitate between different 

endothelial cells (Fig 3). These flaps present discrete regions in which tight intercellular 

junctions enriched in JAM a and VE-cadherin are formed in a button-like disposition 

that leaves entire sections of the remaining intercellular junctions bound by loose 

adhesive forces (Fig 3). This is in sharp contrast with the zipper-like distribution of tight 

junctions on the inter-endothelial contacts of blood capillaries. The presence of these 

button-like structures in the lymphatic capillaries supports the specialized clearance of 

the excess of fluid by the lymphatic vessels and the passive transport of macromolecules 

via these flaps (Fig 3D). These membrane zones deprived of tight junctions also provide 

an entrance route for leukocytes into lymphatic vessels. 

Besides the afore-mentioned, other morphological studies reported the existence 

of different specialized structures that would allow cell migration across the endothelial 

capillaries via small microchannels formed across the lymphatic endothelial layer that 

directly connect the tissue with the lumen of the vessel in a continuous way (Azzali, 

2007a; Azzali, 2007b). 

All the above mentioned anatomical and molecular differences between blood 

endothelium and the lymphatic endothelium may be important not only for fluid and 

macromolecule transport, but also for the migration of leukocytes to the lymph nodes. 

Indeed, flux interference on lymph vessels also impairs leukocyte migration to the 

lymph nodes (Liao et al., 2011). 

 

1.3 Lymphatic vessels under inflammation 

Inflammation is a physiological response to pathogens or mechanical harm in 

order to remove and/or combat the damaging agent. This local vascular response often 

starts by the secretion of soluble mediators such as prostaglandins, TNFα or IL-1β 

among others (Wilting et al., 2009). The main features that characterize an 

inflammatory response are: vasodilatation and arrival of leukocyte (infiltrate) and fluid 

(exudate) to the tissue (Wilting et al., 2009). These changes in the tissue 
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microenviroment promote immune responses to control potential pathogens. LEC, as 

many other cell types, can sense inflammatory cytokines through a wide range of 

cytokine receptors and respond to inflammation (Alitalo, 2011). These pro-

inflammatory stimuli can be delivered locally or reach the lymphatic vessels from 

distant sites. For example, it has been described how mast cells are able to secrete 

TNFα-containing microparticles, upon inflammation. These particles may either deliver 

high local concentrations of this cytokine to the nearest lymphatic capillary or be 

transported inside the lymphatic vessels to reach the lymph nodes were they also elicit 

inflammatory functions (Kunder et al., 2011; Kunder et al., 2009). 

Early studies performed on TNFα-treated human LEC showed that these vessels 

have a similar transcriptomic response to inflammation compared to blood vascular 

endothelium. This response is characterized by the increased expression of chemokines 

such as CCL21 and several surface adhesion molecules (Johnson et al., 2006; Johnson 

and Jackson, 2010). Recently, a similar transcriptomic result was observed using 

models of Contact Hipersensibilty (CHS) in lymphatic vessels from inflamed ears in 

mice (Vigl et al., 2011).  

Furthermore, a very similar response to that observed upon TNFα treatment of 

LEC can be observed when LEC are treated with TLR ligands such as POLY I:C and 

LPS, showing the ability of LEC to promote a direct response of the lymphatic 

endothelium to microorganisms (Pegu et al., 2008).  

On the contrary, when complete Freund adjuvant (CFA) injection was used as a 

model of inflammation this inflammatory response was not as effectively induced (Vigl 

et al., 2011), indicating that the response to inflammation of the lymphatic vessels 

depends on the original stimuli that causes it. 

Under inflammation, hydrostatic tissue pressure that is locally increased 

promoted a clear upregulation of CCL21. Furthermore, CCL21 was dramatically 

reduced under very low flow conditions corresponding to induced lymphedema in mice 

(Miteva et al., 2010). Interestingly, lymphatic endothelium activation on inflamed tissue 

is also able to control inflammation by increasing the flow and reducing interstitial 

edema (Huggenberger et al., 2011).  
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Lymphatic endothelial cells also respond to inflammation by increasing 

proliferation and lymphangiogenesis (Flister et al., 2010). This is accompanied by 

lowering their permeability through the replacement of the button-like intercellular 

junctions characteristic of mature lymphatic capillaries by continuous zipper-like tight 

junctions (Kajiya et al., 2012, Yao et al., 2012).  

In conclusion, lymphatic vessels have shown to have a dynamic, complex and 

varied response to inflammation, which includes increased promotion of leukocyte 

migration as a result of the expression of chemotactic factors and adhesion molecules on 

LEC surface. Such a response helps leukocyte transit through lymph and to lymph 

nodes and improved clearance of fluid excess. 

  



Introduction 

- 19 - 
 

2- DENDRITIC CELLS AND THEIR MIGRATORY CAPACITIES 

 

2.1 Introduction to the biology of DCs, the Langerhans Cell paradigm. 

Dendritic cells are a leukocyte population firstly identified by Steinmann and 

colleagues in early seventies (Steinman and Cohn, 1973; Steinman et al., 1983). These 

cells showed different from macrophages since they can present antigen and activate 

resting T lymphocytes. 

The identification of DCs was centered into the discovery of a cell type of the 

skin known as Langerhans cell (LC). These cells were identified as a probable neural 

cell type due to its morphology. 

The main function of DC is to process antigen and present it to other cells of the 

immune system. In fact, these cells constitute a very potent subset of APC, due to their 

high expression of co-stimulatory molecules such as CD80 and CD86 on their 

extracellular membrane, their high efficiency in antigen processing and the concomitant 

production of cytokines (Banchereau and Steinman, 1998).  

 Figure 4. Schematic picture representing the Langerhans cell paradigm of DC 

migration. Adapted from Heath and Carbone (2009)  
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DC process and present the antigen on their surface bound to MHC molecules. 

The MHC-bound antigen is recognized by T cell specific receptors (TCR). Antigen 

recognition by T lymphocytes, promotes the specific functions of these cells against 

pathogens, such as increased proliferation, activation of cytotoxic machinery, or the 

activation of other neighboring leukocytes (Mak and Saunders, 2006). The accessibility 

of skin LC made this particular DC subtype a good model to investigate DC biology. 

All the early research in DC biology was performed using LCs and lead to the 

development of what has been named the “Langerhans cell paradigm”. 

As shown in figure 4, the paradigm tries to reflect the behavior of DCs on 

peripheral tissues and their response against a pathogen invasion. DCs are usually found 

in the peripheral tissue, in a steady-state known as immature DC. Immature DCs are 

phenotypically characterized by a low surface expression of MHC class II and co-

stimulatory molecules, while they exhibit very efficient phagocytosis functions. 

Nevertheless, DC have an enormous ability to respond to a great number of pathogens. 

This is due to the expression on their surface of pathogen associated molecular pattern 

receptors (PARPs) such as Toll-like receptors (TLRs) (Iwasaki and Medzhitov, 2004), 

nucleotide-binding oligomerization domain (NOD) proteins (Meylan et al., 2006), RIG-

I-like receptors (Meylan et al., 2006) and C-type lectin receptors (Figdor et al., 2002). 

Therefore, after a pathogen is detected by binding to one of the above-mentioned 

receptors, DCs change their repertoire of chemokine receptors and enhance their 

migration towards chemokine gradients established in the damaged tissue. During the 

migration process, DCs mature and upregulate the surface expression of both MHC-

Class II and I molecules and co-stimulatory molecules such as CD80 receptors that 

promote T cell activation in the lymph nodes. The microbial signals can cooperate in 

this maturation by acting on DC receptors.  

 

2.2 The Langerhans cell paradigm extended. Functional and migratory 

complexities of dendritic cell network.  

A number of recent publications have introduced interesting complexities in this 

model, as different DC subsets are identified, and as a consequence, a variety of 

specialized functions are attributed to them (Sporri and Reis e Sousa, 2005; Villadangos 
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and Heath, 2005; Villadangos and Schnorrer, 2007). DCs can be also isolated from a 

number of tissues going from blood to the majority of epithelium-associated tissues. 

The most comprehensive DC classification divides DC into plasmacitoid DC (pDC), 

conventional (cDC), and monocyte derived DCs (moDC). This classification is valid 

for both human and mouse species (Table 1) (Heath and Carbone, 2009). 

Plasmacitoid DCs (pDC) can be derived from Myeloid, lymphoid or a common 

Pre-DC precursor dependent on the tissue that they are colonizing (Ardavin, 2003). 

pDC do not exhibit the dendrite-rich morphology characteristic of skin DCs. pDC are 

specialized in the secretion of type I IFN, after viral infections (Perussia et al., 1985). 

Conventional DCs (cDC) derive from a bone marrow specialized precursor 

called common DC progenitor (CDP) which evolves into a pre-DC progenitor that can 

be found in blood, although at low frequency (Belz and Nutt, 2012). These cells present 

dendrite-like membrane extensions. cDCs as well, can be subsequently classified into 

migratory and lymphoid subtypes. Migratory cDCs can be found under steady state 

conditions in lymph nodes and in some peripheral tissues such as epidermis 

(Langerhans cells), lung and intestine. Different subpopulations of migratory cDC can 

be defined depending on the organ that colonize and the surface markers they exhibit. 

For example, the skin is colonized by several different subsets of migratory cDCs: such 

as Langerhans cells, and at least two populations of cDCs. Meanwhile, dermis exhibit 

two different populations: a majoritarianone composed of dermal DCs, and a 

minoritarian population of cells that express Langerin. Besides, migratory cDCs exhibit 

the expression of chemokine receptors such as CCR7 which guide them into the lymph 

nodes (Segura et al., 2012). Lymphoid cDCs, however, are found in most lymphoid 

tissues, including spleen and lymph nodes, although they can also be found in blood in 

relative low numbers. As happened with migratory cDC, many lymphoid cDCs 

subpopulations can be identified attending the expression of different membrane 

markers (Table 1). The arrival of these different subsets to the lymph nodes is not 

completely defined. Since lymphoid DCs have been detected in blood, they are thought 

to enter to the lymph nodes through an hematogenous route. In fact, this has been 

demonstrated for pDCs (Diacovo et al., 2005), but the entry route for other important 

DC subsets, such as CD8α (that participate in antigen crosspresentation (Dudziak et al., 

2007)), is yet to be described (Randolph et al., 2008).  
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Lastly, monocyte derived DC (moDCs) are originated from a monocytic 

common precursor known as CMP. These cells also exhibit a characteristic dendritic 

morphology. Interestingly, moDCs cannot be found in the lymph nodes or in blood 

under steady-state conditions. However, they can be found in the lymph nodes under 

inflammation. Monocytes migrate into a number of tissues and differentiate to moDC 

under inflammatory stimuli (Domínguez and Ardavín, 2010). Once transformed into 

inflammatory DC, they migrate from these peripheral tissues to lymph nodes (Belz and 

Nutt, 2012). Due to its easy accessibility and fairly high numbers in blood, moDC are 

easily derived from their blood precursors and used as a model for human DC studies. 

Besides, ex-vivo differentiated moDCs are widely used in protocols of adoptive transfer 

in animal models and in clinical assays (Gilboa, 2007). Most of the studies based on this 

models point to lymphatic vessels as their entrance route to the lymph nodes.  

All these subsets of DCs have been identified mainly under steady state 

conditions. The changes in DCs populations in the lymph nodes under inflammation 

have not been deeply explored, with the exception of some studies that demonstrated 

increased numbers of tissue-resident DCs under inflammation (Jakubzick et al., 2008). 

Table 1. Summary of both mice (A) and human (B) DC subsets under steady state conditions.  

Specific markers, migratory phenotypes and specificities for antigen presentation are shown in each 

table heading. Regarding migratory phenotype the word mixed specifies that both hematogenous and 

lymphatic routes have been suggested for moDCs.* Each tissue origin exhibit different combination 

of these markers. +/- Subpopulations of these subsets do express the marker. 

A 

B 



Introduction 

- 23 - 
 

As shown above, the increased knowledge of DC origin and biology has 

definitely overcome the Langerhans cell paradigm, as new complexities emerged. For 

example, Langerhans cells had been described to be not only immunostimulatory but 

also act as immunomodulatory in some circumstances such as hapten induced 

inflammation (Kissenpfennig et al., 2005). Besides, lymph node resident DCs have also 

been described to cross-present peripheral antigens to T lymphocytes in the lymph 

nodes. These antigens may reach the nodes inside migratory DCs that merely as cargo 

cells (Allan et al., 2006). 

Therefore, the nature of the pathogen or stimuli that promotes DC response, the 

peculiarities of the tissue where the response starts, along with the subsets of DCs 

mobilized as well as other immune phenomena, may shape the phenotype and function 

of a specific DC population, in a far more complex way than firstly envisioned. Thus, 

understanding the migration of DCs may contribute to clarify the phenomena and to 

point at key steps susceptible of intervention, in order to modulate the immune response 

against different pathogens.   
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3- DENDRITIC CELL MIGRATION ACROSS LYMPHATIC VESSELS 

 

3.1. The essential role of lymphatic chemokines in driving DC migration. 

DCs express a broad range of chemokine receptors that guide and help them 

during their migration and maturation. Immature DC express chemokine receptors 

related to their extravasation from blood to damaged tissue (Alvarez et al., 2008). Some 

examples of these receptors and their ligands are CXCR3-CXCL10 (Flier et al., 2001), 

CCR4-CCL17, CCR4-CCL22 (Katou et al., 2001), CCR2-CCL2 (Dieu-Nosjean et al., 

2000) among others. 

Once DC mature by sensing pro-inflammatory cytokines or/and pathogen 

denoting moieties, they change their repertoire of chemokine receptors. In these 

situations the axis CCR7/CCL21, CXCR4/CCL12 and SP1PR/S1P plays a determinant 

role. 

CCL21/CCL19-CCR7 chemokine-chemokine receptor axis is a determinant 

component of DC migration towards the lymph nodes during steady-state conditions 

(Schumann et al., 2010) and under inflammation. CCR7 receptor is expressed on DC 

surface at low levels under steady-state conditions, but upon DC maturation its 

expression significantly increases (Sallusto et al., 1998). In fact, studies performed in 

CCR7 knock-out mice have demonstrated that this receptor is necessary for DC 

migration from tissue to the lymph nodes. This has been illustrated in experiments using 

both adoptive transferred DCs and endogenous skin dermal DCs in animal experiments 

performed both, under inflammation and steady state conditions (Martin-Fontecha et al., 

2003; Ohl et al., 2004). 

The CCR7 ligands, CCL21 and CCL19 are highly homolog proteins that are 

different only in 40 Aa located in its C terminus (de Paz et al., 2007; Hirose et al., 2002; 

Patel et al., 2001). CCL19 is a soluble ligand produced by dendritic cells (Ngo et al., 

1998), among other cell types, and it is present in tissue in a soluble form. CCL21 is 

encoded by two different genes (Vassileva et al., 1999), that produce two CCL21 

variants known as CCL21Leu and CCL21Ser. CCL21Leu is expressed by lymphatic 

capillaries and CCL21Ser is mainly expressed in the lymph nodes (Randolph et al., 

2005). To date no functional differences have been reported between these two forms of 
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CCL21. CCL19 is a soluble cytokine, while CCL21 appears mostly bound to heparan 

residues on endothelial cells and to the ECM (Gunn et al., 1998), promoting what has 

been called haptotactic migration (Bao et al., 2010; Schumann et al., 2010) 

Interestingly, it has been shown that the in vivo truncation of CCL21 C- terminal 

amino acids, that are involved binding to ECM, produces a soluble form of CCL21 and 

severely impairs lymphocyte intravasation through HEV (Stein et al., 2000). 

CCL21 is produced by lymphatic vessels under steady-state conditions 

(Kriehuber et al., 2001) and is further increased upon inflammation (Johnson and 

Jackson, 2010; Martin-Fontecha et al., 2009; Vigl et al., 2011). Under inflammation 

DCs increase CCR7 expression, fostering their migration towards CCL21 gradients 

produced by inflamed lymphatic vessels. Interestingly, CCL21 is distributed and 

exposed in a dotted pattern on lymphatic vessels close to the intercellular flaps (Johnson 

and Jackson, 2010; Tal et al., 2011). DCs have been found directly in contact with this 

CCL21 patches located in the gaps of the endothelial basal membrane. Finally, DCs 

lacking CCR7 do not dock to CCL21 patches nor crawl into lymphatic vessels (Tal et 

al., 2011). 

The CXCR4/CXCL12 chemokine-receptor axis is also upregulated upon DC 

maturation (Sallusto et al., 1998). CXCL12 is expressed by lymphatic vessels upon 

inflammation. The implications of CXCL12 in DC migration have been demonstrated in 

in vivo experiments where the inhibition of CXCR4 impaired DC migration in animal 

models of FITC and CHS-induced inflammation (Kabashima et al., 2007). Interestingly, 

CXCL12, has also been proposed to enhance survival and to promote maturation on DC 

(Kabashima et al., 2007), suggesting other functions that may be added to its 

chemotactic properties. 

The function of Sphingosine-1-P (S1P) and of its receptors in immunity has been 

explored in depth. S1P is a sphingolipid, mainly generated by phosphorylation of 

sphingosine by two kinases (Sphingosine kinases 1 and 2). S1P signals intracellularly, 

and can also be secreted and act in a paracrine fashion. There exist at least five different 

G-protein coupled receptors (S1PR1-5) able to bind S1P and induce intracellular 

signaling (Maceyka et al., 2009). First reports on the intervention of S1P in DC 

migration addressed its implication in lymphocyte egress from the lymph nodes 

(Matloubian et al., 2004; Pappu et al., 2007). Besides, S1P have been demonstrated to 
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direct mature dendritic cell migration in a number of studies using bone marrow derived 

DCs (Czeloth et al., 2005), skin DCs (Gollmann et al., 2008), and many other DC 

subsets (Rathinasamy et al., 2010). Treatment of DCs with FTY720, a potent drug that 

induces internalization of some S1PRs (Graler and Goetzl, 2004), block DC migration 

across LEC and to lymph nodes in many models (Czeloth et al., 2005). On the contrary, 

lack of expression of CD69, which is known to sequestrate S1PRs in lymphocytes 

(Bankovich et al., 2010; Shiow et al., 2006), enhances the effects of S1P on DC 

migration (Lamana et al., 2011). Lymphatic vessels had been described to express 

Sphingosine kinases (SPHKs) and secrete S1P (Pham et al., 2010), which has been 

found to be augmented upon tissue inflammation (Ledgerwood et al., 2008). 

 

3.2 DC migration across lymphatic vessels under non-inflammatory 

conditions. 

DC migration under steady-state conditions (Merad et al., 2002) and 

inflammation (Martin-Fontecha et al., 2009) has been a subject of intense research 

during the past decade. From these studies it has become clear that DC show important 

differences in terms of the mechanism and molecules governing cell movement under 

these conditions. DC migration in non-inflammatory conditions has been elegantly 

described in two studies performed by the group lead by M. Sixt. In their first piece of 

work, DCs migration across tissue and lymphatic vessels is explored using integrin 

deficient DC. Surprisingly, both interstitial migration and transendothelial migration 

were integrin independent. (Lammermann et al., 2008). In their second work, the same 

authors described by confocal microscopy the preferential entry of DCs to the lymphatic 

vessels by traversing “portals” formed in the discontinuous basal membrane, followed 

by fast squeezing through the valve-like gaps observed in the microanatomy of the 

lymphatic capillaries (Pflicke and Sixt, 2009). These data suggested an integrin and 

metalloprotease independent migration of DCs under steady state (Fig 5).  
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3.3 Surface molecules involved on DC migration into lymphatic vessels.  

A number of surface molecules have been identified due to their implication in 

DC transmigration across LEC. The great majority of them have been described to be 

present under inflammation, reinforcing the existence of different mechanisms at work 

in non-inflammatory versus inflammatory conditions. The main integrin receptors 

involved in leukocyte trafficking across blood endothelium are ICAM/CD54 and 

VCAM/CD106 surface receptors (Diacovo et al., 1996). Knowledge on the role of these 

receptors in DC traffic across lymphatic vessels is nonetheless relatively recent. Studies 

of DC transendothelial migration across TNFα treated LEC demonstrated that ICAM 

and β-integrin blockade dramatically reduced DC transendothelial migration and DC 

arriving to lymph nodes. (Johnson and Jackson, 2010). This study was probably the 

Figure 5. Schematic representation of DC migration across lymphatic vessels. Dendritic cells 

(purple) migrate across LEC in an integrin independent manner. Firstly, they avoid the basal 

membrane of the capillaries traversing through existing discontinuities in its structure. Subsequently 

DC cross the endothelial layer squeezing through the intercellular flaps. Adapted from Pflicke and 

Sixt (2009). 
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clearest evidence on the differential mechanisms in DC migration to lymph nodes under 

inflammation versus non-inflammatory conditions. This study was supported by later 

studies, implying also the leukocyte integrin Mac-1 (Podgrabinska et al., 2009). 

Other integrin receptors have been implicated in DC migration across lymphatic 

vessels. One of these is PECAM/CD31 a molecule expressed on the surface of almost 

all endothelial cell types. Its participation in leukocyte transmigration across blood 

vessels has been known for long (Nourshargh et al., 2010). Lymphatic vessels also 

express CD31 (Hirakawa et al., 2003), albeit at lower densities than their blood 

counterparts. This molecule is distributed mainly in endothelial lateral cell-cell 

interactions (Johnson et al., 2006). Interestingly, recent studies showed, that blocking of 

CD31 and CD99 in CXCL12 treated LEC was able to reduce DC transmigration both in 

vitro and ex-vivo (Torzicky et al., 2012).  

L1-CAM, another adhesion molecule belonging to the immunoglobulin 

superfamily, has been involved in DC adhesion to LEC. Although its relevance in this 

process is far from being clear. L1-CAM is a membrane protein widely described in 

nervous system (Maness and Schachner, 2007) and is known to mediate both 

homophilic (Wei and Ryu, 2012) and heterophilic interactions with a number of 

integrins (Felding-Habermann et al., 1997). L1-CAM receptor is also expressed by 

many leukocytes (Pancook et al., 1997), on LEC, and on inflamed lymphatic vessels 

(Maddaluno et al., 2009). Recent studies showed the participation of L1-CAM in DC 

adhesion and transmigration across LEC, presumably by homophilic binding 

(Maddaluno et al., 2009).  

Other surface molecules with different chemical nature have been described in 

leukocyte adhesion to lymphatic vessels. For example, Clever-1/Stabilin is a molecule 

which has been involved on in-vitro (Salmi et al., 2004) and in vivo (Karikoski et al., 

2009) migration of lymphocytes. Besides, the mannose receptor known to participate in 

the endocytic functions of both macrophages and some DC subsets (Gazi and Martinez-

Pomares, 2009) has been also proposed to participate in these events. Lymphocytes 

transferred to mice lacking the expression of the mannose receptor failed to arrive to 

lymph nodes. Although mannose receptor expression has been described on lymphatic 

vessels (Hirakawa et al., 2003; Irjala et al., 2001), works of Marttila-Ichihara and co-

workers only explored the adhesion of lymphocytes to lymphatic sinuses in lymph 
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nodes (Marttila-Ichihara et al., 2008). Junctional adhesion molecules (JAMs) have also 

been widely explored as responsible for leukocyte transmigration across vascular 

endothelium. The expression of these proteins have also been reported on lymphatic 

vessels and LEC in culture (Ueki et al., 2008). JAM-A participates in the button-like 

structures that constitute the inter-endothelial junctions of the lymphatic endothelium 

(Baluk et al., 2007). Interestingly, knocking down JAM-A expression in mice increased 

trafficking to lymph nodes in CHS models (Cera et al., 2004). This effect, although 

consistent, needs to be investigated in more detail.  

Overall, the molecular interplay that results in leukocyte transmigration across 

LEC has not been studied with the same detail as it has been done in the blood vessels. 
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4- ROLE OF INTEGRINS ON LEUKOCYTE TRANSENDOTHELIAL 

MIGRATION ACROSS BLOOD VESSELS 

 

4.1 Sequential role of selectins and integrins in diapedesis. 

The process of extravasation of leukocytes to inflamed tissues from blood 

vessels was first documented in 19
th

 century. More than 150 years later, the discovery of 

selectins and integrins and their implication in this process led to the proposal of a three 

step model of leukocyte extravasation, including rolling, tethering and endothelial arrest 

(Butcher, 1991). These steps are illustrated in figure 6.  

Briefly, upon cytokine activation of the vessel, blood leukocytes are captured on 

the luminal side surface of the vascular capillary first, by selectins that are specifically 

expressed on the endothelial surface. Once leukocytes tether to the endothelial layer, 

they roll over the endothelial surface following flow direction and guided by chemokine 

gradients located on the surface of the endothelium. Signaling from these chemokine 

receptors in turn activate integrins on the surface of the leukocytes. Integrin activation 

mediates firm arrest on the endothelial surface by interacting with the correspondent 

ligands present on inflamed endothelium. Once arrested, as the adhesive force increases, 

the leukocyte flattens on the endothelial surface and reduces its silhouette exposed to 

blood flow. At this moment leukocytes crawl on the endothelium in search for a 

particular favorable spot for transendothelial migration (TEM). Finally, TEM may occur 

Figure 6. Representation of the sequential steps of leukocyte adhesion and transendothelial 

migration across blood inflamed endothelium.  Adapted from Ley et al. (2007). 
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through two different mechanisms: either leukocytes cross the endothelial cytoplasm, in 

what has been called transcellular diapedesis (Ley et al., 2007; Muller, 2011) or they 

traffic along the cell-cell contacts between two adjacent endothelial cells (paracellular 

transmigration) (Muller, 2011). 

Integrins expressed on the surface of leukocytes as well as their counter-

receptors on the endothelial cell do participate in several of these steps (Nourshargh et 

al., 2010).  

Integrins are a large family of 24 surface molecules formed as heterodimers of α 

and β subunits that are non-covalently associated. However, surface expression needs α 

and β subunits pairing. At least 18 different α subunits and 8 different β subunits have 

been described. Many integrin dimers are promiscuous and also many ligands can join 

different integrins (Avraamides et al., 2008). These surface proteins allow cell 

interactions with components of the extracellular matrix and/or with cell surface 

receptors that belong to the immunoglobulin superfamily. The so-called “leukocyte 

integrins” that are mainly β2 heterodimers can mediate adhesion between different 

leukocytes (Zhang and Wang, 2012). However, different leukocyte subsets may exhibit 

important differences in the use of adhesion molecules (Ley et al., 2007). 

Under inflammation, ICAM and VCAM integrin receptors are upregulated and 

clustered in microdomains on the surface of endothelial cells along with other 

molecules such as tetraspanins (mostly CD9, and CD151) (Barreiro et al., 2005; 

Barreiro et al., 2008). The formation of membrane domains enriched in integrin 

receptors was firstly described in endothelial microvilli projections that were highly 

enriched on ICAM-1 and VCAM. These microvilli surrounded leukocytes and served as 

cell docking places on the inflamed endothelium. (Barreiro et al., 2002). Besides, these 

locations were also enriched on proteins that functionally bridge surface adhesion 

molecules with the leukocyte actin cytoskeleton such as moesin and ezrin (Barreiro et 

al., 2002).  

These endothelial microvilli-like structures were initially related to the capture 

of the leukocytes under flow. Carman and co-workers demonstrated how these 

structures participate not only in leukocyte capture but also in initial TEM (Carman et 

al., 2003). This group showed how the microvilli-endothelial structures enriched in 

ICAM-1 and VCAM could be found around leukocytes undergoing TEM and renamed 
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these endothelial membrane projections as “transmigratory cups”. They also showed 

interesting rearrangements of integrins, particularly Lymphocyte function associated 

antigen 1 (LFA-1), when leukocytes were eliciting the formation of these 

“transmigatory cups” (Carman and Springer, 2004). Nonetheless, it was not until the 

discovery of ICAM/VCAM nanoplatforms that integrins were definitely implicated in 

the formation of these projections (Barreiro et al., 2008). ICAM and VCAM were 

showed to be joined by tetraspanins under inflammation and only the blockade of both 

ICAM and VCAM integrin ligands inhibited the formation of these structures. To avoid 

confusing terms that are still under debate, we will generally use the term “microvilli-

like projections” in this thesis work to refer to these structures as described in blood 

vasculature.  

Following integrin ligation, leukocytes acquire a more flattened morphology 

presenting a 2D migration that polarizes the cell into a leading edge and a rear-end 

uropod (Ridley et al., 2003). Besides, lymphocytes have been reported to protrude 

podosome-like structures into endothelial cytoplasm. This has been interpreted as a first 

step for transcellular diapedesis (Carman et al., 2007) or as a way of sensing 

chemokines located in intracellular vesicles in the endothelial cell that drive leukocyte 

active transmigration (Shulman et al., 2012).  

 

4.2. Signaling cascades triggered upon integrin-mediated leukocyte 

adhesion to endothelial surfaces. 

The adhesion of leukocytes to the endothelial cells under flow, cytokine 

exposition or inflammation, promotes biochemical signals on both the leukocytes and 

the endothelium that facilitate leukocytes extravasation into the inflamed tissues. 

In leukocyte transmigration across endothelial layers, the integrins VLA-4 

(α4β1) and LFA-1 (αLβ2) and their respective counter receptors VCAM (CD106) and 

ICAM-1 (CD54) on the endothelial side, play a most prominent role. Integrin binding to 

their ligands is highly regulated in terms of the affinity (the ability of each single 

receptor to interact with its ligand), and of avidity (that describes the combined strength 

of multiple bond interactions). Changes in integrin affinity are associated with three 

different conformations of the β chain. This issue has been studied in depth for the 
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integrin LFA-1 that mediates DC adhesion to endothelial cells. LFA-1 is one of the 

three integrins that leukocytes express in form of dimmers of the β2 integrin (CD18) 

and different α chains. The α chain in LFA-1 is an αL subunit also known as CD11a. β2 

monomers can also be found on leukocytes forming dimmers with αX (named also 

CD11c) and αM (CD11b). LFA-1 can be found in leukocytes in three different affinity 

conformations. The first one is the low affinity form, in which the integrin chain is 

folded over, resembling a closed penknife. This low affinity isoform is characteristic of 

non-stimulated leukocytes. The second conformation is the so called intermediate 

affinity isoform, in which the integrin is partially open. Finally, when the integrin is 

completely extended, leukocytes exhibit LFA-1 in a high affinity conformation (Figure 

7). High and intermediate affinity conformations appear only upon leukocyte 

stimulation. Indeed, in a population of activated leukocytes all the three different 

integrin conformations co-exist, in a very dynamic way depending on the environmental 

stimuli (Springer and Dustin, 2012). 

In fact, many stimuli drive integrin activation and increased affinity such as 

PMA (Hogg et al., 2011). Between the physiological stimulus, chemokines are known 

to induce integrin active conformations prior to the adhesion of lymphocytes to ICAM-1 

expressed on inflamed endothelium (Salas et al., 2006; Shamri et al., 2005). Besides, it 

seems that shear force and preliminary union to ICAM-1 on the endothelial surface is 

also able to induce active conformations in a quick way mediated by cytoskeleton 

tracking forces (Alon and Dustin, 2007; Chen et al., 2010) (Fig 7B). Additionally, 

although TCR signaling has been shown to induce integrin active conformations, 

subsequent ICAM-1 engagement is needed to preserve them. 

Only high affinity conformations allow adhesion stabilization and efficient force 

transduction towards cytoskeleton components such as kindling and talin. (Alon and 

Shulman, 2011). Integrin cytoplasmic tails allow both an inside-out and outside-in 

signaling that in many ways trigger the high affinity state of the integrin.  

Once stable integrin- integrin-ligand binding occurs, outside–in signaling causes 

the reinforcement of the adhesion complex and changes the cytoskeletal dynamics. 

Besides, chemokine signaling seems to induce long lasting high affinity conformations 

of integrins (Feigelson et al., 2010). For example, CCL21, is able to induce the high 

affinity conformation of LFA-1 on DC (Eich et al., 2011; Johnson and Jackson, 2010).  
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The cytoplasmic signaling induced after integrin activation has been explored 

recently. As shown in figure 7C Rap1 (Katagiri et al., 2003; Shimonaka et al., 2003), 

PLD1(Bolomini-Vittori et al., 2009), VAV1(Garcia-Bernal et al., 2009) and probably 

Kindlin 3 (Malinin et al., 2009) are the main molecular elements involved in the inside-

out activation of the integrin. Outside-in signaling after ICAM-1 ligation can also 

promote high affinity conformations. 

 

Figure 7. LFA-1 integrin conformation and signaling. (A) Schematic representation of the 

αL and β2 integrin chains of LFA-1 heterodimer. Starts represent the area of epitope 

recognition for both KIM127 and 24 monoclonal antibodies. (B) Different activation status of 

LFA-1 integrin regarding on the stimuli used. (C) Chemokine-driven inside-out signaling 

involved in the formation of high affinity LFA-1 epitopes. (D) Ligand driven outside-in 

signaling after integrin LFA-1 activation. Adapted from (Hogg et al., 2011).  
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In addition to affinity regulation, the avidity of the integrins can also be 

modulated to enhance the binding of their ligands on the endothelial surface. Avidity is 

mainly regulated in leukocytes by changes in the distribution of the integrin. LFA-1 has 

been shown to be included in lipid rafts, and therefore can be rapidly mobilized along 

the plasma membrane (Leitinger and Hogg, 2002). The formation of microclusters of 

active LFA-1 has been demonstrated to appear when lymphocytes crawl over 

endothelial cells and seems to be important for this kind of motility (Shulman et al., 

2009; Smith et al., 2005). In fact, chemokines trigger integrin clustering and this has 

been demonstrated to be important at least with regard to adhesion to endothelial cells 

expressing low densities of integrin ligands (Constantin et al., 2000). Nonetheless, 

macro clustering of the molecules has been elegantly showed to occur only after 

cognate ligation of integrin ligand (Kim et al., 2004). However, integrin redistribution 

seems to be less important than the affinity state of the integrin for leukocyte adhesion 

to endothelial cells (Kim et al., 2004). 

Signaling events downstream of ICAM on the endothelium involve multiple 

small GTPases. On the one side, integrin ligand mediated signaling enhances 

cytoskeleton contractility. On the other side, adhesion molecule triggering induces 

changes in the inter-endothelial junctions to increase endothelial permeability for 

leukocytes which transmigrate following a paracellular route, as shown in figure 8 

(Cernuda-Morollon and Ridley, 2006). These signaling events also induce mobilization 

of PECAM and other adhesion molecules in small vesicles from lateral borders of the 

endothelial cells towards sites of diapedesis. This event takes place in a kinesin and 

microtubule dependent fashion, both for para- and transcellular TEM (Mamdouh et al., 

2003; Mamdouh et al., 2008; Mamdouh et al., 2009).  
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Figure 8. Schematic representation signaling cascades activated by integrin ligation on 

endothelial cells. Adhesion molecules have been reported to induce signaling through small 

GTPases. Signalling transduction of these molecules drives to augment ROS and eNOS 

activity that, in turn increases vascular permeability. Rho family of proteins also mediates 

increments in the contractility of the cytoskeleton. Adapted from (Nourshargh et al., 2010) 
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5- DC MIGRATION IMPACT IN IMMUNOTHERAPY: CD137 

IMMUNOSTIMULATORY MONOCLONAL ANTIBODIES AND DC 

VACCINATION  

 

5.1 Dendritic cells in immunotherapy 

As mentioned above, since monocytes can be easily differentiated in-vitro to 

DCs by stimulation with IL4 and GMCSF, has made of moDCs one of the most 

convenient models to study DC biology, especially in human. In fact, therapeutic 

vaccines are being developed using this cell population that are assayed in clinical trials 

in many hospitals. Therefore, understanding the specifics of artificially generated moDC 

migration is a key step for developing better strategies leading to the optimization of 

these therapies  

As shown in figure 9, DC vaccines are based on obtaining CD14
+
 monocyte 

precursors from the blood of patients. DC maturation can be instigated by adding a 

number of cytokines. Once DC have matured, they are exposed to tumor antigens. There 

exist different strategies to provide tumor antigen to mature DC. These include: adding 

apoptotic tumoral cells, tumor lysates or gene therapy. Defined protein antigens or 

synthetic peptides can be used to load antigen-presenting MHC molecules. After that, 

mature antigen-loaded DCs can be re-injected into the patient in order to induce specific 

immune responses against tumors (Palucka and Banchereau, 2012). 

Figure 9. Schematic representation of the generation of antitumoral DC based vaccines 

from blood monocytes. Adapted from (Berzofsky et al., 2004) 
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Different strategies are being implemented in order to improve DC-based 

vaccines including the use of defined DC subsets or expansion of CD34 precursors by 

exposure to FLT-3 ligands (Banchereau et al., 2001; Fong et al., 2001; Mackensen et 

al., 2000). Other strategies rely on the activation of specific DC subsets already present 

in the organism by antigen targeted delivery to DCs specific receptors. In these 

approaches tumor antigens are conjugated to specific ligands or specific antibodies that 

are exposed by surface molecules on tissue resident DCs such as for example, lectin 

receptors (Tacken and Figdor, 2011).  

Up to date, an important number of clinical studies using DC vaccines have been 

performed, especially against cancer (Palucka and Banchereau, 2012). The majority of 

these studies used DC derived from CD14
+
 precursors by GMCSF and IL-4 treatment. 

Up to now these studies have obtained some objective clinical responses (Geiger et al., 

2001; Nestle et al., 1998; Thurner et al., 1999) and in some cases of tumor relapse, they 

presented incremented long-term survival (Palucka et al., 2006; Salcedo et al., 2006). 

Despite being promising in preclinical models, these clinical trials have also shown 

some disappointing outcomes. For example, DC-based clinical trials against melanoma 

have not been as effective as originally expected (Schadendorf et al., 2006). One of the 

main causes for these is the relative low numbers of DC reaching the lymph nodes after 

subcutaneous injection, around 4% of the injected DC (Gilboa, 2007). This problem can 

be partially derived from the maturation stage of DCs (De Vries et al., 2003a; de Vries 

et al., 2003b) and should be overcome by the application of different maturation 

protocols. However, deeper understanding of the migration events from the intradermal 

injection is needed to improve these therapeutical approaches. 

 

5.2 IFN-DC as possible improvement for DC vaccination procedures. 

As mentioned above, enhancing the migratory capacities of DC is very 

important to improve the therapeutic effects of these treatments. The incorporation of 

different cytokines to the development of DCs from monocytes can be a way to achieve 

a more migratory phenotype on DC.  

IFN was discovered in 1957 by Isaacs and Linderman (Isaacs and Lindenmann, 

1957) as a soluble protein factor which was able to interfere with viral replication. Type 
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I IFNs (IFNs α and β) are the most abundant members of this family. IFNα family of 

interferons (13 subtypes in human) are encoded by separate genes while all the different 

IFN type I species are encoded by a single gene. IFNα is a pleiotropic cytokine secreted 

by almost every cell type upon viral infection, being pDC the highest IFNα-producing 

cell upon viremia. IFNα mediates direct effects on T lymphocytes and NK cells. 

Besides, it is a potent antiviral molecule that has also a number of other functions which 

include the blocking of proliferation or the enhancement of cytotoxicity on T-cells 

(Pestka et al., 2004). IFNα also participates in direct anti-effector responses such as 

blocking viral and tumor proliferation (Hervas-Stubbs et al., 2011). IFNα also indirectly 

mediates a number of effects as the secretion of second wave cytokines that regulate 

other immune cell functions as IL-15 (Nguyen et al., 2002).  

Regarding DC function, IFNα is involved in T cell crosspriming in response to 

viral pathogens (Le Bon et al., 2003) and can also modulate, DC differentiation, 

maturation, and migration. It has been described how IFNα can act as a stimulus that 

promotes the differentiation towards a moDC called IFN-DC. These DC exhibit a 

phenotype of partially mature DCs, while showing a strong capability to induce a 

primary human antibody response and CTL expansion. This has been observed in IFN-

DC pulsed with antigen and injected into humanized severe combined 

immunodeficiency (SCID) mice (Lapenta et al., 2003; Parlato et al., 2001). These IFN-

DCs exhibit a more migratory phenotype acquired because of the upregulation of CCR5 

and CCR7 (Parlato et al., 2001). Other effects have been described for IL4 DCs treated 

short term in vitro with IFNα, showing upregulation of costimulatory and MHC 

molecules among others (Gallucci et al., 1999; Ito et al., 2001).  

 

5.3. CD137 in immunotherapy. 

Monoclonal antibodies (mAb) are emerging as potent immunomodulatory agents 

that help patients to control cancer disease. Co-stimulatory molecules such as CD137 

and co-inhibitory ones as CTLA-4, or PD-L1 have shown to be interesting targets for 

mAb-based therapies. Among them, CD137 is considered a very promising target as it 

is only expressed after leukocyte activation. 
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CD137, also known as 4-1BB or TNFRSF9, is a membrane glycoprotein of the 

TNFR family expressed in most immune cells, including activated T cells, NK cells 

(Melero et al., 1998), monocytes (Kienzle and von Kempis, 2000), DCs (Heinisch et al., 

2000) and neutrophils (Heinisch et al., 2001). Human CD137 was firstly identified on 

activated T lymphocytes and originally named ILA (Induced by Lymphocyte 

Activation). To date, one cognate ligand has been identified in mouse and human that is 

termed CD137L (4-1BBL). This ligand is mostly expressed on APCs (Alderson et al., 

1994; Pollok et al., 1994) although a soluble form of the ligand has also been described 

(Salih et al., 2001). CD137 has been classified as a co-stimulatory molecule that 

receives the signals from APCs in the immune synapse (Watts, 2005). Ligation of this 

molecule on T lymphocytes promotes a number of signaling events that involve 

TRAF2-mediated nuclear translocation of NFκB (Arch and Thompson, 1998; Jang et 

al., 1998), and also p38 MAPK activation (Cannons et al., 2000), and increased IFNγ 

secretion (Croft, 2009). Other CD137 signaling events promote enhanced viability of T 

cells by modulating the expression and activity of members of the BCL superfamily 

including downregulation of Bim and upregulation of BCL-XL (Lee et al., 2002; 

Sabbagh et al., 2008).  

Treatment of mice bearing transplanted tumors with agonistic antibodies resulted 

on a reproducible anti-tumor effect (Melero et al., 1997). Since then, these models have 

been used to elucidate the molecular mechanism mediating its anti-tumor effect such as 

the enhancement of effector functions of cytotoxic CD8 T cells (May et al., 2002; 

Wilcox et al., 2004). Anti-CD137 agonistic antibodies are currently in a number of 

clinical trials, both as a single agent and in combination with other therapies (Ascierto et 

al., 2010). Phase II trials using agonistic antibodies against CD137 (NCT00612664) in 

melanoma showed signs of clinical activity.  

There are scarce studies addressing the role of CD137 in endothelial cells. It has 

been described its expression in tumor vessels (Broll et al., 2001). Other authors 

observed CD137 in inflamed atherosclerotic lesions, where ligation of the molecule 

promoted chemo-attraction and adhesion of leukocytes by upregulating molecules such 

as MCP-1, ICAM and VCAM (Jeon et al., 2010). CD137 expression has been described 

in in vitro inflamed Human Umbilical Vascular Endothelial Cells (HUVEC) (Drenkard 

et al., 2007). Results recently published in our group showed how CD137 ligation by 
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mAb on tumor endothelium promoted increased lymphocyte accumulation on tumors 

dependent on ICAM-1 and VCAM upregulation (Palazon et al., 2011).  

The importance of pathway is highlighted by recent results in adoptive T cell 

therapy with T lymphocytes provided with artificial CD137 costimulation that exhibit 

interesting antitumoral results (Kalos et al., 2011). However, the effects of CD137 on 

DCs or endothelium need still to be addressed (Wilcox et al., 2002). 

CD137 manipulation will help to better design of the treatments, find the 

limitations of its use and discover its possible uses against other pathologies or its 

combination with existing therapies. 

 

 



 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

OBJECTIVES 

 

 



 

 
 



Objectives 

- 44 - 
 

 

 

 

 

 

1. To study the effects of IFNα in DC migration across lymphatic endothelium. 

 

2. To describe some of the mechanisms that underlay the participation of integrins 

and integrin receptors in DC transendothelial migration across inflamed lymphatic 

vessels. 

 

3. To analyze the expression of CD137 on lymphatic vessels under inflammation 

and its role in DC migration. 
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This thesis compiles three related projects focused on the interplay of DC and 

LEC. The interest in investigating the immuno-modulatory capabilities of DC has 

incremented enormously, since Steinmann and co-workers firstly grasped their 

prominent role in promoting T lymphocyte responses (Steinman and Cohn, 1973; 

Steinman et al., 1983). Besides, the relatively easy culture protocol for differentiating 

DC from the circulating blood monocytes, enabled the establishment of pre-clinical 

protocols to study the efficacy of DC vaccination in mice. These protocols have been 

rapidly adapted for their use in clinical trials (Palucka and Banchereau, 2012). However, 

DC vaccination has not been as successful as predicted. One of the main limitations in 

DC vaccination-based therapies emanates from the relatively low numbers of DC 

reaching the lymph nodes, never higher than 4% of the total injected DC (De Vries et 

al., 2003a; Feijoo et al., 2005). The most used route of DC administration to the patients 

is by intradermal injection (Palucka and Banchereau, 2012). Following this procedure, 

DC migration towards the lymph nodes occurs mainly through the lymphatic vessels 

(Martin-Fontecha et al., 2009). Therefore, exploring the molecular dialogue between 

DC and the lymphatic endothelium in this process is particularly interesting to define 

mechanisms that would increment DC transit towards the lymph nodes. As DC 

migration through lymphatic vessels is not a route exclusively followed by adoptively 

transferred moDC, other DC-based therapies can also be improved through research on 

this specific step of migration. Therapies based on direct antigen delivery into the tissue 

in order to activate tissue-resident DC may be an example, since these DC ought to 

migrate to lymphoid tissue. 

In the present work, we have identified at least two mechanisms that may 

improve DC migration across lymphatic vessels: the first one consists in differentiating 

DC in the presence of type I IFN and the second one consists on the agonistic activation 

of inflammation-induced receptors on the surface of the lymphatic endothelium, in order 

to increment its adhesive properties. Additionally, we have characterized some of the 

molecular structures that participate in DC transmigration across lymphatic endothelial 

cells under inflammation. We chose to explore leukocyte migration under inflammatory 

conditions, because several pre-clinical models have demonstrated that inflammatory 

pre-conditioning of the injection site increments the arrival of DC towards the lymph 

nodes. (Martin-Fontecha et al., 2003; Tripp et al., 2010).  



Discussion 

- 139 - 
 

Interestingly, as already mentioned in the introduction, under steady state 

conditions DC transendothelial migration has been reported to be an integrin-

independent process (Lammermann et al., 2008). In addition, our results and those from 

others (Johnson et al., 2006) suggest that under inflammation this situation changes with 

an important involvement of integrins and their ligands. These statements are sustained 

in our work by demonstrating the incremented expression of the integrins with the 

concomitant exposure of their active conformational epitopes under inflammatory 

conditions. These increments correlated with increased transmigration across LEC. 

These observations have been made both, using IFN-DC, or conventionally 

differentiated DC (IL-4-DC). Importantly, blocking integrins in in vitro and in vivo 

approaches impaired TEM and DC arrival to the lymph nodes. We have added confocal 

image studies in which the participation of integrin ligands is demonstrated in 3D 

structures that clearly resemble those described by the groups of Sanchez-Madrid 

(Barreiro et al., 2002) and Carman (Carman and Springer, 2004). Such structures are 

clearly involved in leukocyte transmigration across blood capillaries. In our hands, 

integrin ligands guide DC that are following para- and transcellular TEM under 

inflammatory conditions. These highly specialized structures are dependent on their 

interaction with active-β2 integrins and are able to induce strong phosphorylated 

Tyrosine signaling in LEC upon DC contact. Interestingly, we report that CCL21 

participates in the formation of these structures. We also provide means to increase 

CCL21 expression by inflamed LEC through the agonistic activation of CD137 

receptor, which is unexpectedly exposed on the surface of inflamed LEC. Finally, we 

present the first evidences on the appearance of integrin-ligand enriched structures in ex 

vivo tissue samples obtained from human and mouse skin. 
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1- EXPERIMENTAL MODELS IN LYMPHATIC RESEARCH 

The research on the biology of lymphatics is relatively recent and therefore, 

some issues remain to be discovered. For instance, cell transit across this endothelium 

under inflammation is clearly understudied (Pepper and Skobe, 2003). Some limitations 

have to be taken into consideration when working with this vascular system:  

1-One of them emanates from the difficulty of LEC purification and culture. 

Although primary cultures are already commercially available, in vitro LEC culture is 

still laborious, cells are not obtained in elevated numbers and, as occurs with other 

primary cultures, cell phenotype changes after cell passage. In fact, analyses of the LEC 

transcriptome in culture presents over-expression of genes involved in cell survival and 

energetic metabolism (Wick et al., 2007). However, important characteristics as for 

example, inflammation-induced secretion of CCL21, are diminished (Johnson and 

Jackson, 2010). Therefore, it is needed to work with early passages of these cells in 

order to maintain cell phenotype.  

2- In our hands it is important to work in cell microenvironments that resemble 

its natural niche by growing LEC on ECM proteins such as fibronectin and collagen 

mixtures, in order to fully investigate LEC heterotypic interactions. Although it has 

been reported that LEC monolayers show no polarity (Johnson et al., 2006), 

lymphocytes have been demonstrated to shown polarized migration across mice LEC 

(Ledgerwood et al., 2008). Therefore, basal to apical models must be implemented to 

study DC TEM through LEC. We have set up models of reverse transmigration in 

Boyden chambers which allows us for quantitative measurements and microscopical 

imaging of DCs undergoing LEC migration. In this work, we have developed two in 

vitro models to resemble apical-to-basal, and basal-to-apical cell migration, and 

observed for instance that integrin ligands are clustered around an adhered leukocyte 

regardless of the direction they follow. More interestingly, we have also cultured LEC 

monolayers inside collagen gels to perform assays that resemble the disposition of 

lymphatic vessels on the matrix. These models allow us to investigate DC/LEC 

interaction in a more physiological setting, but we still face some of the limitations 

stated for in vitro studies with LEC such as the absence of the capillary structures and 

other stromal cells. 
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Additional in vivo experimental systems are important to unravel the 

mechanisms that underlay lymphatic vessel biology. In this sense, interesting models 

are implemented to study DC transit in in vivo animal settings such as FITC skin 

painting or footpad injection of DC. We have chosen footpad injection to corroborate in 

vivo the data obtained in vitro. In addition, direct imaging of fixed or alive whole 

mounted skin (from mouse ear skin explants) has permitted us the direct visualization of 

lymphatic vessels networks and the binding of DC to their surface (Tripp et al., 2008). 

These experiments worked unexpectedly in spite of constrains of whole tissue 

incubations under culture conditions. This model can also be used for investigating 

other dynamic processes of leukocyte migration (Lammermann et al., 2008; Pflicke and 

Sixt, 2009). Intravital microscopy of vessels has also been achieved (Tal et al., 2011) 

and can be an interesting tool for the study of lymphatics. The recent development of 

new knock-in mice models with fluorescent proteins selectively expressed on lymphatic 

vessels may also be useful for this kind of imaging approaches (Choi et al., 2011; 

Martinez-Corral et al., 2012). In any case it is important to note that, as we observed in 

this work for CD137 expression on lymphatic endothelium, there are some differences 

between mice and human species. For these reason complementary human models as 

for example, ex vivo explanted tissue culture, may help to reach definitive results. 

Although these ex vivo models have important limitations, in our hands short term 

culture of skin is possible and early events on DC migration such as adhesion to 

lymphatic vessels can be observed while maintaining the tissue architecture. 
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2- DC TRANSENDOTHELIAL MIGRATION ACROSS LYMPHATIC 

VESSELS UPON INFLAMMATION 

 

2.1 Differential mechanisms that underlay DC migration under 

inflammatory conditions. 

Under physiological conditions, a low but continuous traffic of tissue dendritic 

cells towards lymph nodes exists. These DC are the responsible of the maintenance of 

peripheral tolerance to self-antigens (Vitali et al., 2012) and enter the lymphatic vessels 

through a mechanism in which integrins do not participate (Lammermann et al., 2008). 

Once an inflammatory insult occurs, the lymphatic capillaries respond by incrementing 

the transcription and expression of cytokines and adhesion molecules (Johnson et al., 

2006; Vigl et al., 2011). This complex response of the lymphatic endothelium to 

inflammation is heavily related to the massive traffic of DC towards the lymph nodes 

under inflammation, and the onset of immunomodulatory functions. In fact, there are 

evidences for higher ICAM-1 and VCAM expression in inflamed vessels as well as of 

impaired DC arrival to lymph nodes when antibodies blocking integrins or their 

corresponding ligands are used (Johnson et al., 2006; Podgrabinska et al., 2009). 

Accordingly, we observed decreased DC recovery in the lymph nodes when pre-

incubating DC with anti-LFA-1 blocking antibodies under inflammatory conditions in 

mouse experiments. We also observed inhibition of DC adhesion and transmigration 

across monolayers of LEC in in vitro experiments performed under inflammatory 

conditions. All these lines of evidence support the idea that under inflammation 

integrin-dependent mechanisms come to aid in order to regulate DC transit towards the 

lymph nodes. We support this on the following evidences.  

I. We and other have demonstrated incremented CCL21 secretion by 

inflamed lymphatic vessels. These increments are accompanied by increased 

chemokine receptor expression. CCL21 depots presented on the endothelial 

surface would increase leukocyte crawling (Tal et al., 2011). As a result, 

faster mobility of DCs in inflamed tissue towards the lymph nodes has been 

reported (Tal et al., 2011). Besides, it has been described how CCR7 
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occupation promotes LFA-1 high affinity conformations 1 (Eich et al., 2011; 

Johnson and Jackson, 2010) resulting in increased ICAM-1 mediated binding 

and endothelial microvilli projection. 

II. Under non-inflammatory conditions DC migration is independent 

of MMP activity as described by Sixt and colleagues (Lammermann et al., 

2008) In fact, there is no directional MMP activity and secretion without 

integrin engagement. In contrast, other published results sustained that the 

lack of MMP9 and MMP2 impairs the migration of mature LC and dermal 

DC in ex vivo experiments performed under steady state conditions 

(Ratzinger et al., 2002). Consistently, maturation of DC is accompanied by 

the inhibition of TIMP (tissue inhibitor of metalloproteinases) (Darmanin et 

al., 2007) and by the upregulation of MMP9. These results mean that DC 

migration requires MMP, depending on their maturation status. Most 

probably tissue architecture, and ECM density may also condition the need 

of MMPs. Regarding to the specific entrance of DC to the lymphatic vessels, 

the status of the basal membrane under inflammatory conditions with regard 

to base-line has not been addressed yet, but would constitute an interesting 

area of research.  

III. Lymphatic endothelial cells express on their surface low but 

detectable amounts of ICAM-1 under normal conditions and almost 

negligible VCAM. But, under inflammation, the intensity of both integrin 

receptors on LEC surface increases dramatically. In fact, as we and others 

have demonstrated, blockade of these molecules (Johnson et al., 2006) 

correlates with impaired migration to lymph nodes. We have observed that 

ligation of adhesion molecules; mainly by β2 integrin promotes supra-

molecular adhesion structures that help DC crawling and migration across 

LEC. In fact these structures do not participate in DC transit under non-

inflammatory conditions. More interestingly, we could not detect any event 

of transcellular migration across non-inflamed LEC monolayers and all the 

observed transcellular TEM observed across inflamed LEC occurred through 

ICAM-1 enriched 3D structures. Besides, integrin blockade impaired lateral 

DC crawling on LEC monolayers. Therefore, integrin ligands aid DC 
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adhesion and lateral migration of DCs as described for vascular endothelium 

(Carman et al., 2003)  

It is not yet explored if these key changes can be extrapolated to the lymphatic 

vessels from other tissues and under every inflammatory condition. Of note, it should be 

really interesting to analyze this process in inflamed skin as it is the most common 

model on the study of DC migration. In terms of DC therapy, morphology of the 

lymphatic vessels that are present in tumors would also be interesting to address the 

type of migration that DC adopt in the malignant tissue. If this inflammation-driven 

phenomenon could also be observed in most tissues, this would mean that DC migration 

across lymphatic vessels could be radically different from the migration observed under 

steady-state conditions and support our findings. 

 

2.2 Microvilli projections enriched in integrin ligands and their function in 

adhesion and TEM across lymphatic vessels 

In 2002 Sanchez-Madrid and coworkers identified special structures enriched in 

inflammation induced adhesion molecules (ICAM and VCAM) that surrounded 

leukocytes undergoing adhesion to endothelial monolayers (Barreiro et al., 2002). These 

structures had a characteristic spike shape and were enriched in a number of EZRM 

(Ezrin-moesin-radixin moieties) proteins. This finger-shaped morphology and the 

increased expression of integrin ligands were suggestive of a role in leukocyte capture 

under flow. Shortly afterwards, the role of these membrane structures was broadened by 

results published by Carman and colleagues (Carman et al., 2003). In their work these 

authors demonstrated the participation of the microvilli-like membrane protrusions in 

the preparation of leukocyte TEM and, importantly, that these structures were also 

formed in the absence of flow. We have described the same kind of structures formed 

on the surface of LEC in the absence of flow. As already stated, DC migration towards 

the lymphatic vessels occurs, contrarily to what happens in blood vessels, from the 

tissue side towards the lymphatic lumen. In this situation, DC migrate in 3D 

environment in a chemokine-guided way until they encounter the endothelial wall. To 

our surprise we found that lymphatic endothelial cells protruded 3D finger-shaped 

microvilli-like structures into ECM made of laminin and collagen. Therefore, the 

function of these structures is not just capturing leucocytes that are under flow, but 
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somehow they sense leukocyte surface, guide them towards endothelial passage and 

usher them across the endothelial layer. This last issue was especially clear in those 

experiments in which LFA-1 integrin was blocked. We observed that DC indeed 

adhered to LEC surface but hesitated in their lateral movements and failed in cell 

transmigration. In fact, we have also observed that microvilli projections are very 

dynamic structures that assemble and disassemble as DC crawl in an integrin dependent 

manner, as proposed by Barreiro and co-workers for blood endothelial cells (Barreiro et 

al., 2005). Interestingly, all the transcellular TEM events observed were preceded by the 

formation of these microvilli protrusions and showed ICAM-1 enrichments 

accompanying DC while crossing the endothelial body.  

Up to date there is no in vivo evidence on the formation of these tridimensional 

structures neither in blood or lymphatic vessel. Electron microscopy studies of 

neutrophil migration across blood vessels demonstrated the presence of endothelial 

flaps that surrounded neutrophils before TEM (figure 1). These flaps turned into a dome 

as diapedesis progressed, suggesting that these endothelial extensions could form a 

“pressurized hatch” to enable neutrophil diapedesis (Petri et al., 2011; Phillipson et al., 

2008). But this mechanism, however, is not acting on every event of diapedesis, since 

Figure 1. Transmision electronic microscopy microphotograph of neutrophils adhered to 

avenular wall and correspondent drawing of the same microphotograph. L indicates the 

lumen of the vessel, n indicates neutrophils and e1, e2 and e3 indicate the cytoplasm of three 

different endothelial cells. Flaps of the endothelial cells embrace neutrophils, at different 

extension suggesting different time points of the same process. These structures have been 

identified as dome structures, at least, enriched on PECAM and dependent on PSGL-1 protein 

on the endothelium. From Petri et al. (2011). 



Discussion 

- 146 - 
 

transendothelial migration of neutrophils which do not need to form these endothelial 

domes has been reported in vivo (Woodfin et al., 2011).  

In this work we present evidence for the formation of zones enriched in integrin 

ligands on LEC that surround adhered DC and protrude out of the endothelial plane. Ex 

vivo inflamed tissue samples obtained from the skin of mice and humans strongly 

indicates that these structures are not a culture artifact. This is to our notice the first 

evidence of these structures in vivo. Despite of the technical limitations, the structures 

observed in vivo are very similar to the ones that we observed in our in vitro setups. No 

ICAM-1 enrichment was observed if DC were not interacting with vessels and the 

formation of these structures could be inhibited by blocking LFA-1 on DC. The 

appearance of these structures correlates with integrin polarization towards LEC surface 

and cannot be observed under basal conditions. Further research in the detailed 

composition of these supramolecular structures is warranted. The connections to the 

cytoskeleton, to secretory granules and to intercellular communication promises to be a 

fertile area of work. Moreover visualization of these microvilli-like structures in living 

mice by two-photon microscopy would be of great interest taking advantage of mice 

whose lymphatic vessels express fluorescent proteins. 
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3-  IFNα AND CD137 AS PROMOTERS OF DC MIGRATION 

 

3.1 CD137 functions on LEC 

We and others (Johnson et al., 2006) have shown that ICAM-1 is expressed on 

LEC under inflammation, and that these integrin receptors are directly implicated on the 

active promotion of DC migration across them via an integrin-adhesion molecule 

mechanism. 

Besides, other LEC functions related to immunity have been shown under 

inflammation. ICAM-1 does not only promote TEM, but also can modulate DC 

functions following Mac-1 ligation. Interestingly, lymphatic endothelium can block 

maturation of DCs by this mechanism, but only under inflammation induced by non-

infectious agents (Podgrabinska et al., 2009). This discovery suggests a role in 

preventing autoimmunity in contexts of non-microbial inflammation. Interestingly, we 

have observed phosphorylated Tyr and phosphorylated Src on the contact area of DC 

with adhesion molecules forming microvilli like projections. These signaling events 

may regulate other functions on DC such as migration or maturation. Therefore, it could 

be interesting to explore the bidirectional immunomodulatory effects of lymphatic 

endothelium and DC under different inflammatory conditions. 

To our knowledge, there are no previous reports on leukocyte-LEC interactions 

that result in immunity enhancement. A possible modulation of DC function may be 

transduced from the outside by the integrins upon ligation of adhesion molecules 

(Ramgolam et al., 2010). The effect of this stimulus may depend on the general context 

in which inflammation is occurring, on the duration of this exposition or on the 

concentration of the pro-inflammatory agent.  

In this sense we provide evidence for increased expression of CD137 by the 

lymphatic vessels under inflammation. CD137 facilitates DC chemotactic attraction and 

transit across LEC monolayers. The unique ligand of this molecule, CD137L is 

expressed on DC. Therefore the interaction between LEC and DC may promote 

CD137/CD137L interactions. We have shown that the natural ligand is able to induce 
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CD137 triggering and increased chemoattraction for myeloid cell. Therefore, in a way, 

it is expected that upon DC interaction with LEC, CD137/CD137L would increase 

chemoattraction of other DCs in a CCL21 dependent mechanism. Furthermore, reverse 

signaling via CD137L, at least in moDC, has been demonstrated to enhance migratory 

capacities (towards CCL21 and CXCL12). CD137L crosslinking on myeloid cells also 

increases co-stimulatory functions for T cells (Lippert et al., 2008). Therefore, CD137 

ligation could be a mechanism to enhance migration of DC towards lymph nodes by 

increasing CCR7 and CXCR4 on DC and the secretion of CCL21 on the endothelial 

side. Interestingly, CD137 needs an important and established inflammation to be 

clearly expressed on LEC (i.e: 48 hour with at least 50 ng/ml TNFα usually) and other 

inflammatory cues cannot modulate it with the same effectiveness.  

Interestingly, as we have shown, CD137 can be pharmacologically activated by 

agonistic mAb. Treatment with these antibodies promoted increased DC migration 

across LEC both in a VCAM and CCL21 dependent manner. Therefore, CD137 ligation 

may promote DC migration when the antibody is given as an immunotherapeutic agent. 

As we have also shown, CD137 agonistic antibodies promote lymphocyte entrance in 

tumors by upregulating integrin ligands. Therefore, CD137 activators that are being 

used for the treatment of tumors in clinical and pre-clinical models, may also favor the 

traffic of leukocytes to the tumor milieu in addition to the activation of CD8 responses 

(Melero et al., 2008). 

 

3.2 IFNα Treatment for the enhancement of DC migratory capacities 

In the search of better immunotherapy strategies against tumors using vaccines, 

different protocols for preparing DCs from the patients are being assessed. Tumor 

microenvironment is complex and tends to provide many immunoregulatory 

mechanisms that weaken immune responses. As the most adequate immune responses 

against tumors should resemble the ones performed against viral infections many 

strategies try to induce an antiviral-like response against tumors. For example, treatment 

with POLY I:C of tumors would mimic the presence of virus and induce responses that 

attack tumors as if they were infected cells (Okada, 2009).  
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Another cytokine that promotes anti-viral responses is IFNα. In our group we 

have successfully used IFNα in the treatment of tumors in preclinical models (Dubrot et 

al., 2011). IFNα is also capable of inducing differentiation of monocytes into DCs 

(Parlato et al., 2001) and to provide them with increased antiviral capabilities. 

Additionally, it has been stated that effective antiviral responses rely on a rapid access 

of DCs to LN (Le Bon et al., 2003; Montoya et al., 2002).  

Direct effects of IFNα/β on DC are well described (Lapenta et al., 2003; Le Bon 

and Tough, 2008; Parlato et al., 2001; Santini et al., 2003; Santodonato et al., 2003). In 

vitro differentiation of monocytes in the presence of IFNα and GM-CSF renders DC 

that strongly stimulate antiviral lymphocytes in vitro and in vivo (Lapenta et al., 2003; 

Santini et al., 2003) 

In our work, we showed for the first time that type I IFNs also change the 

adhesion and migratory activities of DC in their interplay with lymphatic endothelium. 

The adhesion and transmigration effects were much more evident when lymphatic 

endothelial monolayers had been pre-exposed to TNFα to mimic lymphatic vessels from 

inflamed tissue (Johnson et al., 2006; Johnson and Jackson, 2008). Previous studies 

performed on human cultured lymphatic endothelium clearly showed that TNFα 

selectively induced ICAM-1 and VCAM (Johnson et al., 2006). 

We have observed that the differentiation of DC in the presence of type I IFN, 

augments LFA-1 expression levels on DC and promotes the appearance of an epitope on 

the integrin chain that indicates its active molecular conformation (Cabanas and Hogg, 

1993). Moreover, interference with LFA-1 with specific mAb decreased the arrival of 

mouse IFN-DC injected in the footpad to draining LN. 

The importance of our findings with IFN-DC arises from the fact that IL-4-DC 

are the most widely used DC in immunotherapy (Melief, 2008), although the 

appropriateness of this particular cytokine combination for differentiation of DC has 

been questioned (Palucka et al., 2006). In addition, when IL-4-DC are intradermally 

injected into humans, they show limited migration to LN (de Vries et al., 2005a). IFN 

type I inclusion in clinical-grade cultures has been proposed for DC production and 

maturation (Mailliard et al., 2004; Santodonato et al., 2003), due to the fact that IFNα 

(i) enhances crosspriming, (ii) improves the expansion of CTL and (iii) favours DC 
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adhesion/migration properties. Therefore, IFNα could be artificially provided upon 

local release of antigens to improve vaccines (Bracci et al., 2008; Gallucci et al., 1999; 

Sangro, 2005). Our findings suggest the inclusion of these type of treatments in DC 

maturation protocols could be interesting. We are currently including IFNα in the 

maturation protocol of DCs for cancer vaccination in clinical trials as previous results 

showed that migration could be also enhanced in patients (Alfaro et al., 2011). 

Additionally, other groups have also proposed similar strategies, as the pretreatment of 

DC with CCL21 (Eich et al., 2011). 
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4- DC MIGRATION MODEL AND IMPLICATIONS FOR 

IMMUNOTHERAPY 

On a whole, from the data obtained in this work in conjunction with previous data 

obtained from a number of different groups we propose a sequential model of DC 

migration across lymphatic vessels under inflammation. Although many of the 

processes and molecules involved in this mechanism are in need of further 

investigation. We suggest that, under inflammation, increased CCL21 produced by LEC 

may massively chemoattract CCR7 expressing mature DCs (Martin-Fontecha et al., 

2003). CCR7 engagement during interstitial migration and more importantly the 

activation of CCR7 upon DC docking to CCL21 enriched deposits on LEC, should 

activate the leukocyte integrins (Eich et al., 2011; Schumann et al., 2010; Tal et al., 

2011). Activated integrins, especially LFA-1 would then direct the formation of 

adhesion molecule-rich microvilli projections (Barreiro et al., 2005; Carman and 

Springer, 2004). These ICAM-1 and VCAM enriched structures would dynamically 

lead DCs to sites of diapedesis, proactively favoring TEM. This route is slower than the 

fast squeezing through endothelial flaps described under non-inflammatory conditions, 

but is envisioned as very efficient in promoting transendothelial migration. Intimate 

contact between LEC and DC permits subsequent signaling. Upon DC-LEC 

interactions, CD137 would be induced on LEC and if ligated would increase CCL21 

secretion and hence further DC chemotaxis (Figure 2). 

We also propose two immunotherapeutic strategies that could boost DC 

vaccination by the increasing of DC migration (Figure 3).  

(I) We think that the inclusion of clinical grade IFNα in DC differentiation 

protocols would enhance migratory capacities.  

(II) We advocate for combinations of DC vaccines with CD137 agonists will not 

only better CTL responses in tumors but also increase the number of DCs 

trafficking to/from lymph nodes and the number of lymphocytes that recirculates 

from tumors.  
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Figure 2. Schematic model of inflammation dependent dendritic cell migration across 

lymphatic vessel. Sequential processes of DC lymphatic intravasation. 1- DC 

chemoattracted by CCL21 gradient towards the lymphatic capillaries. 2- DC docking to a 

CCL21 accumulation on LEC surface. 3- DC adhered and captured by adhesion molecule 

enriched microvilli projections. 4- DC crawling over the LEC surface accompanied by 

microvilli projections. 5- DC traversing lymphatic endothelium following a paracellular 

route. 6- DC performing transcellular intravasation. 1’ DC interacting with inflamed LEC 

and activating CD137 on endothelium. 2’ Increased secretion upon CD137 activation 

induces augmented DC chemoatraction. 
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Figure 3. Schematic model of the effects induced by the two treatments proposed          

1-Agonistic antibody treatment of CD137 induces increased CCL21 secretion and 

chemotaxis. 2- IFNα induces upregulation of CCR7 and LFA-1. Activation of LFA-1 is also 

strongly induced. As a result inflammation dependent adhesion and TEM is enhanced. 
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1- Dendritic cells differentiated from monocytes in the presence of IFNα migrate 

more efficiently across inflamed lymphatic endothelium in in vitro and in vivo 

than conventionally differentiated DCs 

2- This increased migration observed for IFN-DC is a result of: 

I. The surface upregulation of CCR7 and CCR5 chemokine receptors. 

II. The increased expression, affinity and avidity of the integrins LFA-1 and 

VLA-4. 

3-  Inflamed LEC are able to protrude microvilli-like 3D structures enriched in 

integrin ligands upon DC adhesion.  

4- For these structures to be formed, integrin receptor binding to high affinity 

integrin epitopes expressed on DC surface is mandatory. 

5- These structures are involved in enhancing DC adhesion, crawling and 

transmigration across inflamed LEC. 

6- We demonstrate for the first time, by confocal microscopy, the existence of 

these 3D microvilli-like structures in ex vivo human and mice inflamed 

lymphatic endothelial vessels. 

7- CD137 is expressed on lymphatic endothelium in in vitro primary LEC culture 

and ex vivo inflamed samples. It is also detected in clinical samples obtained 

from inflamed tissue. 

8- In vitro activation of CD137 by agonistic mAbs promotes DC migration across 

LEC by incrementing the secretion of CCL21 cytokine and by the upregulation 

of VCAM expression on LEC surface. 
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