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Abstract 

Two series of pyrazol and propenone quinoxaline derivatives were tested for parasiticidal activity 

(against amastigotes of Leishmania peruviana and trypomastigotes of Trypanosoma cruzi) and for 

toxicity against proliferative and non-proliferative cells. The pyrazol series was almost inactive against 

T. cruzi but, 2,6-Dimethyl-3-[5-(3,4,5-trimethoxy-phenyl)-4,5-dihydro-1H-pyrazol-3-yl] - quinoxaline 

1,4-dioxide inhibited 50% of Leishmania growth at 8.9 µM with no impact against proliferative kidney 

cells and low toxicity against Thp-1 and murine macrophages. The compounds of the propenone series 

were moderately active against T. cruzi. Among them, 2 compounds were particularly interesting: (2E)-

1-(7-Fluoro-3-methyl-quinoxalin-2-yl)-3-(3,4,5-trimethoxy-phenyl)-propenone, that showed a selective 

activity against proliferative cells (cancer and parasites), being inactive against normal murine 

peritoneal macrophages and (2E)-3-(3,4,5-Trimethoxy-phenyl)-1-(3,6,7-trimethyl-quinoxalin-2-yl)-

propenone that was only active against Leishmania and inactive against the other tested cells. 

Furthermore in silico studies were performed for ADME properties and docking studies, both series of 

compounds respected the Lipinski’s rules and show linear correlation between tripanosomaticidal 

activities and LogP. Docking studies revealed that compounds of the second series could interact with 

the poly (ADP-ribose) polymerase protein of Trypanosoma cruzi. 
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Introduction 

Leishmaniasis is a parasitosis occurring in visceral, cutaneous and mucocutaneous forms, affecting 

millions of people all around the world. Unfortunately, chemotherapy is limited to pentavalent 

antimonials, amphotericin B and pentamidine, that require injections, are toxic, expensive for most 

people in affected countries and have restricted therapeutic range in different clinical types of the 

disease1. Although miltefosine has been shown to be active by oral route in the treatment of Bolivian 

mucosal leishmaniasis2, it is weakly active against other forms of leishmaniasis3. 

Chagas disease is also a public health problem but restricted to the South American continent. The 

acute phase of the disease causes severe myocarditis or meningitis while the chronic form may induce 

fatal heart failure4. Only few drugs are commercially available, but they are not consistently effective 

and all have serious side effects (including cardiac and/or renal toxicity). 

As a result, the search for new trypanosomaticidal compounds remains essential to control and 

prevent the dramatically consequences of those parasitosis. 

In a previous study5 we showed that quinoxaline could pave the way to innovative antileishmanial 

drug candidates. We describe herein the Structure- Activity Relationship (SAR analysis) of trimethoxy-

phenyl quinoxaline derivatives on amastigotes of L. peruviana (MHOM/PE/LCA08) infected peritoneal 

murine macrophages and on trypomastigotes of Trypanosoma cruzi (Tulahuen C4). Finally, we also 

studied in silico their ADME properties, putative mode of union and principal interactions with some 

essential trypanosomatidae protein targets. 

Results and discussion 

Biological activities 

In this study, eleven quinoxaline derivatives were tested for their activity against various cell lines: 

three cancer cell lines (Vero, LLc-Mk2 kidney epithelial cell, and Thp-1 monocytic cells), one non-

tumorogenic cell line (Murine Peritoneal Macrophages: MPM) and two parasites: amastigotes of L. 

peruviana (MHOM/PE/LCA08), responsible for cutaneous and sometimes mucocutaneous new world 

leishmaniasis and trypomastigotes of Trypanosoma cruzi (Tulahuen C4) responsible for Chagas disease, 
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a parasitosis only distributed through the American continent. The structure and biological activity of 

series 1 and 2 are presented in Table 1. 

In a previous SAR study against L. amazonensis5, with a series of ring substituted 3-phenyl-1-(1,4-di-

N-oxide quinoxalin-2-yl)-2-propen-1-one derivatives (figure 1), we showed that the radical methoxy at 

position R3’, R4’ and R5’ was crucial to get leishmanicidal activity. Interestingly, the most active 

compound of the Burguete’s series, i.e. (2E)-3-(3,4,5-trimethoxy-phenyl)-1-(3,6,7-trimethyl-1,4-dioxy-

quinoxalin-2-yl)-propenone, was also the most lipophilic, had 3 methoxy radicals on the phenyl group 

and the R7 and R6 positions were occupied by methyl substituents. Cytotoxicity on macrophages 

revealed that this product was almost six times more active than toxic.  

These observations led us to synthesize and test two closely related series: (1a-f) trimethoxy-phenyl 

pyrazol and (2a-f) trimethoxy-phenyl propenone quinoxaline derivatives. 

As showed by Burguete et al.5, the substitution in the R6 and R7 played a significant role in the 

lipophilicity and leishmanicidal activity of the studied compounds. In the first series (1a-f), when R6 

and R7 positions were free (1a), cancer cells and MPM presented the same level of sensitivity, being 3 

times less sensitive than amastigotes of Leishmania while trypomastigotes of T. cruzi were insensitive at 

doses up to 25 µM. On the contrary, when positions R6 and 7 were both occupied by a methyl (1f) the 

cytotoxicity increased on all the tested cells. Interestingly, whatever the substituent in R7 in the first 

series, MPM were almost insensitive. 1f was the only one of the series showing some (although 

moderate) activity against T. cruzi but it was also the most toxic on proliferative (and non) cell lines. 1b 

with a fluor in R7 (an electronegative atom), was two times more active than 1a against L. peruviana 

(Ic50:13.7 µM). A methyl (1d and 1f) or a carbonyl (OCH3) (1e) led to non-toxic compounds against 

those cells. Interestingly, 1d (that was 2 times less lipophilic than 1f) was 2 times less effective on MPM 

and Thp-1 cells than 1f, and totally inactive against kidney cancer cell lines. 1d was the most active 

compounds of that series against Leishmania (Ic50: 8.9 µM). Interestingly, this compound was inactive 

against Vero and LLc-Mk2 cells and almost 6 to 13 times more efficient on Leishmania than on Thp-1 
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or MPM. That is favourable in terms of selectivity. 1e was the lowest toxic (and also the lowest active 

against L. peruviana). 

Globally, the first series of trimethoxy phenyl pyrazol quinoxaline (1a-f) derivatives showed a 

moderate activity against L. peruviana and was almost inactive against T. cruzi (except 1f slightly 

active). 

The second series of trimethoxy phenyl propenone quinoxaline derivatives (2a-f) showed some 

moderate activity against T. cruzi. This series exhibited interesting activity against L. peruviana. 2a was 

the most toxic on all the tested cells and also the less lipophilic compound of the second series with the 

lowest selectivity index. On macrophages, a Cl (2c) or a F (2b) in R7 dropped the activity (almost 30 

times less toxic than 2a). Compound 2b showed an interesting selective activity against proliferative 

cells (cancer and parasites) saving normal cells. It presented the best selectivity index, being 20 and 100 

times more active against T. cruzi and Leishmania respectively than against MPM. In the case of 

Leishmania it was 2 times more selective than the control drug, Amphotericine B. A methyl (2d) also 

decreased the cytotoxicity but to a lesser extend (7 times less toxic than 2a): it showed a good activity 

against L. peruviana (Ic50=5µM), and six-fold less toxic against MPM (Cc50 ~60µM). When the 

compound had a methyl in R6 and R7 (2f), i.e. a steric congestion on the benzenic cycle, the toxicity 

was restricted to L. peruviana (Ic50=12.7 µM) and Thp-1 cells (Cc50 =38µM). On Thp-1 a Cl (2c) and a 

F (2b) decreased the toxicity. On that cells 2 methyl (2f) were much less cytotoxic (around 20 times). 

Vero and LLC-Mk2 cells reacted similarly, Cl (2c) did not affect the cells (while F in 2b, was almost 50 

times more toxic). A R7-methoxy (2e) lead to a nine fold increased activity against L. peruviana with 

Ic50 values around 1µM and 10µM against T. cruzi but it was also the most cytotoxic (Cc50 ≤ 10µM). 

The very good activity of 2e, could be due to the highest number of free rotable bonds allowing a better 

spatial layout (table 2). Compounds 2b and 2e were the most active against L. peruviana (Ic50 ≤ 3µM) 

and T.cruzi (Ic50 ≤ 15µM).  However, compound 2e was twenty times more toxic on MPM, compared to 

2b. That one, with a fluor in R7 exhibited a good activity against both L. peruviana (Ic50~3µM) and T. 

cruzi (Ic50~15µM) but it was quite toxic on the cancer lines (Thp-1, Vero and LLc-Mk2; Cc50~20µM). 
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Interestingly it was not toxic against MPM (Cc50 >250µM). This specific activity against different cells 

in replication is probably due to a similar mode of action. Comparing L. peruviana and MPM, this 

compound, 2b, was almost 100 times more active against the parasite than against the MPM, turning it 

into the most interesting compound of the series. The compounds of the series 1 had a miLogP < 1, that 

means that these molecules are more hydrophilic than those of the series 2 with miLogP > 3.5. 1f was 

the most lipophilic and also the most toxic compound of the series 1, while 2f was the most lipophilic 

compound and the most selective of the series 2. 

Correlations between LogP and the activities of the quinoxaline derivates 

Simple Pearson correlation values, which are useful for measuring the association between two 

variables, were measured between Biological activities reported in table 1 and physical chemical 

property miLogP reported in table 2 for new quinoxaline derivates. As for the Burguete’s series, among 

the newly synthesized compounds, an important element for the activity was also conferred by their 

lipophilicity, a crucial property for the crossing of cellular membranes. This is reflected in the 

correlation values reported for each activity and miLogP. Values reported clearly show a correlation 

between lipophilicity and Trypanosomaticidal activities expressed as Log (1/Ic50) . Compounds in serie 

1 followed a positive linear relationship (r = 0.94 in L.peruviana and not determinated in T.cruzi) while 

serie 2 a negative (r = -0.70 and r = -0.81) respectively.  

LogP plays a fundamental role in the activity of the compounds and must be considering crucial such 

molecular descriptor in future sysntesis and QSAR studies. Predict computational analisis show the 

interactions between a protein and the compound 2b. 

Computational analysis 

General considerations  

In a first In silico approach to discover a possible therapeutic target for this family of quinoxaline 

derivatives, the first priority was to find structural information related with complexes involving 

proteins and quinoxaline derivates, which means they share the same core quinoxaline and hence the 

same interactions characteristic of inhibitory capacity. In an exhaustive search, the Protein Data Bank 



 

7

(PDB) screening showed three crystallized proteins complexing with quinoxaline-type compounds: The 

human poly (ADP-ribose) polymerase protein (PARP-1) (PDB ID: 1wok), the human c-Met Kinase 

(PDB ID: 3f66), and the human Kinase domain (PDB ID: 2zm4)6, 7. The above simple method has 

proved its usefulness providing numerous structural informations about potentially targets such human 

PARP-1 and conserved interactions reported in the bibliography for a typical PARP inhibitor. This and 

other information are detailed throughout the article. 

A catalytic domain of PARP homologue in T. cruzi was found in the Sanger Institute Database 

(accession number Q4PQV7), and in the Genbank (accession number DQ061295). The T. cruzi catalytic 

domain of PARP is a 343 amino acids protein with 44% identity and 64.9% similarity with the human 

catPARP-18. After blasting the T. cruzi databases against the two human kinases (PDB ID: 3f66 and 

2zm4) meet in the protein search with quinoxaline inhibitor, no significant homologues were found. 

Only putative proteins with a partial low identity (29%) were detected. Alternatively, we only found 

two T. cruzi kinases, resolved by X-ray (1.9 Å and 2.1 Å resolution), of Arginine Kinase and 

glucokinase respectively (PDB ID: 2j1q and 2q2r)9, 10. 

Active site residues and typical interactions for PARP inhibitors.  

The quality of the modeled T. cruzi catPARP-1 (figure 2a) passed through the multiple tests from the 

What-if and Prochek servers. The RMSD (root mean square deviation) between the T. cruzi catPARP-1 

homologue model and the human catPARP-1 used as template was 0.07 Å. 

It has been suggested that human catPARP-1 has a two-domains active site: a proton acceptor and a 

proton donor site11. Several inhibitors have been shown to bind to the donor site of the human 

catPARP-1, sharing a conservative pattern of interactions12. These interactions include hydrogen bonds 

with Gly863 (Gly446 in the T. cruzi catPARP-1) and stacking hydrophobic interaction consisting of a 

(π-π) interaction with Tyr907 and Tyr869 (Tyr490 and Tyr472 in T. cruzi). These amino-acids are 

highly conserved, in both sequence and structure 13 (figure 2b).  

Analysis of potential candidate targets for 2a-f Quinoxalines  
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In previous studies12, especially those on QSAR for PARP-1, it has been shown that molecular 

descriptors that better described the compound’s activity were the Van der Vaals forces and the number 

of rotatable links. Van der Vaals reflects that the larger the surface of contact between ligand and active 

site the more potent could be the inhibition; while the number of rotable links was the opposite in view 

of the unfavourable entropy change after the ligand-active site interaction. The negative docking energy 

scores indicated more stable interaction between compounds 2a-2f and enzymes catPARP-1, Arginine 

Kinase and Glucokinase of T.cruzi (Table 3).  

In the majority of cases, the conformations calculated for compounds are in agreement with the 

interactions9 reported in different studies8, 12, 13. Nevertheless, the compounds 2d and 2e did not 

reproduce the typical interactions of an inhibitor of catPARP-1; related compounds 2f and 2e did not 

report the typical interactions with their substratum. The affinity values observed for the tested 

compounds (Gibbs free energy change, Table 3) to the respective proteins, showed more affinity for 

catPARP-1, followed by the Arginine Kinase and finally Glucokinase.  

Conclusion 

Against trypomastigotes forms of T. cruzi, the series 1 was almost inactive while the second series 

presents a moderate activity.  The low activity of the tested compounds against T. cruzi compared with 

Leishmania could be explained because trypomastigotes are not reproductive forms instead of 

amastigote that are proliferative forms.  

Against Leishmania parasite, 1d and 2f showed interesting selective activity with no impact against 

proliferative kidney cells and low toxicity against Thp-1 and MPM. For the second series (2 a-f), the 

hydrophilicity-lipophilicity balance seems to play an important role. The more hydrophilic the 

substituants were, the higher the antiparasitic activity and toxicity were (2e and 2b); the more lipophilic 

the substituants were, the more specific the antiparasitic effect was (2c and 2f). The electronegativity of 

substituants in R7 and R6 position played also a crucial role on selectivity, the most electronegative 

radicals (F, 2b and O-CH3, 2e) being the strongest but also the least selective activities. Both series of 

compounds respected the Lipinski’s rules as they all have a molecular weight under 500 Daltons, 
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a limited lipophilicity (expressed by Log P < 5, with P = [drug] org./[drug]aq.), far less than 5 H-bond 

donors (expressed as the sum of OHs and NHs), and also far less than 10 H-bond acceptors (expressed 

as the sum of Os and Ns). Both series presented also a high percentage of absorption (%ABS), all 

compounds being then potentially able to cross biological membranes. 

Although screening of proteins co-crystallized with quinoxaline family compounds threw 10 possible 

proteins, only 3 were taken into account, because they are of much interest for our laboratory. In the 

modeled protein, we observed that the cavity corresponding to the active site is larger than the one 

found in the human catPARP-1 (PARP-1 human : 790.67 Å2, 1306.67 Å3 ; PARP-1 T.cruzi: 965.09 Å2, 

1560.37 Å3, calculated using CASTp server14) that could explain the selectivity of the T. cruzi 

catPARP-1.  

The correlation between the Gibbs free energy and Ic50 was negative (r = -0.79), although the 

homology model was done at low resolution (3Å), the calculated Gibbs free energies suggest that 

catPARP-1 T. cruzi could be a potential target for the studied quinoxalines derivatives.  

Finally, because of their property and selectivity, three molecules (1d, 2b and 2f) should be 

considered as good candidates for oral administration and should be evaluated in vivo against 

Leishmania infected mice. These results corroborate the results described by Burguete et al.5 in L. 

amazonensis infected macrophages, as the most active compounds were a (R6-R7) dimethyl and a fluor 

(R7) substituted propenone quinoxaline. 

 

 

Figure 1.  
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Left: 3-phenyl-1-(1,4-di-N-oxide quinoxalin-2-yl)-2-propen-1-one derivatives described in Burguete 

and al. 20085. 

 

 

 

 

 

 

 

 

Figure 2. 

(a).Molecular surface and secondary structure of catalytic domain of T. cruzi catPARP-1 modeled in 

complex with compound 2b. Alpha helix and beta sheets of the protein are in blue and yellow 

respectively. The backbone is green. In the centre is the quinoxaline derivative. (b) Main interactions 

between compound 2b (purple lines) and active site of T.cruzi catPARP-1 homologous protein (orange 

lines). Hydrophobic sandwich conformed by Tyr490 and Try479 residues, where plain lines show π-π 

stacking interactions. In green doted lines, hydrogen bonds and distances between oxygens of the 

carbonyl group (C=O- -H), methoxy (CH3-O- -H) and residues Gly446, Lys 355 and Asn451. In red 

lines hydrophobic residues. 
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Experimental section  

Chemistry 

The IR spectra were performed on Thermo Nicolet FT-IR Nexus Euro (Madison, USA) using KBr 

pellets; the frequencies are expressed in cm-1. The 1H NMR spectra were recorded on a Bruker 400 

UltrashieldTM (Bruker BioSpin GmbH, Rheinstetten, Germany), using TMS as the internal standard 

and with CDCl3 and DMSO-d6 as the solvents; the chemical shifts are reported in ppm (d) and the 

coupling constant (J) values are given in Hertz (Hz). Elemental microanalyses were obtained on an 

Elemental Analyzer LECO CHN-900 (Michigan, USA) from vacuum-dried samples. The analytical 

results for C, H, and N were within ± 0.4 of the theoretical values. 

Alugram® SIL G/UV254 (Layer: 0.2 mm) (Macherey-Nagel GmbH & Co. KG. Postfach 101352. D-

52313 Düren, Germany) was used for Thin Layer Chromatography and Silica gel 60 (0.040-0.063 mm) 

for Column Flash Chromatography (Merck). 

All reagents and solvents were purchased from commercial sources. E. Merck (Darmstadt, Germany), 

Scharlau (F.E.R.O.S.A., Barcelona, Spain), Panreac Química S.A. (Montcada Reixac, Barcelona, 

Spain), Sigma-Aldrich Química, S.A., (Alcobendas, Madrid), Acros Organics (Janssen 

Pharmaceuticalaan 3a, 2440 Geel, België) and Lancaster (Bischheim-Strasbourg, France). 

 

Synthesis of quinoxaline and quinoxaline 1,4-di-N-oxide derivatives. 

The compounds 1a-f were synthesized according to Burguete and al. (2007)15. The synthesis of 

compounds 2a-f was carried out as shown in the scheme 1. The synthesis of compounds 2a-f was 

carried out by previously described procedures16.  

N
+

N
+

R7

O

O

O

R6 N

NR7

O
O

O

O
R6N

NR7

O

R6

i ii

2a-fIa-f IIa-f

(i) Na2S2O4, methanol, 70ºC; (ii) 3,4,5-Trimethoxy-benzaldehyde, 3% NaOH/methanol, r.t  
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Scheme 1. Synthesis of compounds 2a-f  

 

Parasite and cell culture.  

 

All chemicals were from Sigma Aldrich. 

L. peruviana (MHOM/PE/LCA08) was maintained in the promastigote stage in a biphasic medium 

(blood agar with 0.89 % NaCl, pH 7.4) at 24 °C, with sub-passage every 3 - 4 days17. Axenic 

amastigotes transformation was then induced increasing the temperature to 34 °C and incubating during 

96 h18.  

THP-1 monocytic cells (ATCC TIB-202) were maintained in 25 cm² tissue culture flasks with RPMI 

1640 supplemented with 5 mM L-Glutamine, 100 U/ml penicillin, 100 µg/ml streptomycin, and 10 % 

foetal bovine serum (FBS) at 37 °C and 5 % CO2 

Trypanosoma cruzi (Tulahuen C4) transfected with β-galactosidase (Lac Z) gene was prepared using 

previously described methodology19. Nifurtimox was used as control. 

Monolayer VERO (African Green Monkey kidney epithelial cells) and LLc-Mk2 (primary monkey 

kidney cells) were maintained in complete RPMI 1640 without phenol red (Sigma company, St. Louis 

MO), supplemented with 10% heat inactivated foetal bovine serum at 37 °C and 5% CO2. 

Murine macrophages were harvested from peritoneal cavities of 6-8 week-old female BALB/c mice in 

ice-cold M199 medium supplemented with 10 % FBS20. 

 

Screening on infected macrophages.  

Extracted macrophages were immediately deposited on sterile 4 x 4 mm cover glasses and placed in 

each well of a 96-well plate. Plates were incubated for 24 h at 37°C, 5% CO2 to allow cell adhesion. 

Pre-warmed complete M199 medium was used twice to remove non-adherent cells. Macrophages were 

infected according to Gonzalez et al., (2009); Ic50 was also calculated as the dose capable of a 50% 

reduction in the number of infected cells (calculated using the Excel trend formula). All experiments 
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were performed in triplicate. ANOVA was used to test for statistical significance of differences (Epi-

Info, Statview student program). Amphotericine was used as control. 

 

Toxicity Assay.  

Differentiated murine peritoneal macrophages were treated with drugs and the trypan blue dye 

exclusion method was used20. Dilutions in complete medium were then added to achieve a final volume 

of 100 µl. The culture was continued for another 48 h. After this incubation, the number of viable cells 

was scored by hematocytometer using 0.4 % trypan blue solution in PBS. The half-maximal cytotoxic 

concentration 50 (Cc50) was determined.  

For the cells lines (THP-1, VERO and LLc-Mk2), effect of the drugs was determinate using the 3-(4,5-

dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) viability assay. THP-1, VERO and LLc-

Mk2 cells in complete RPMI 1640 medium without phenol red were added (5x105 cells/ml, 100µl/well) 

to the 96-well flat-bottom plates and incubated for 48h at 37°C, 5% CO2 with different concentrations 

of drugs. The MTT (25µl) was added for an additional 4h. To stop the reaction, 100µl of lyses buffer 

(acetic acid 1%, absolute ethanol (50/50), 20% SDS) was incubated for 15min under agitation, at room 

temperature. Finally, the optical density was read at 590 nm with a 96-well scanner (Bio-Rad). The 

experiments were repeated 3 times. 

 

Computational Details. 

Physicochemical Parameters Calculation.  

Molinspiration online property calculation toolkit21 was used to calculate Topological Polar Surface 

Area (TPSA)22, the solubility expressed as the miLogP and violations of Lipinski’s rule of five23 for 

each of the tested compound. Absorption (%ABS) was calculated by: %ABS = 109 - (0.345 × TPSA)24. 
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Screening of proteins co-crystallized with quinoxaline family compounds and T.cruzi 

crystallized proteins. 

The Protein Data Bank database was screened for the presence of crystallized proteins in complex with 

quinoxaline-type compounds. The search was performed manually using “quinoxaline” as advance 

mode keyword. In the same way, a search of T.cruzi crystallized proteins was performed (reported until 

05/2009). 

 

T. cruzi homologue proteins. 

T. cruzi homologues of the PDB-proteins crystallized in complex with quinoxaline-type compounds 

were identified in the Sanger Institute T. cruzi genome database and in the Genebank using Blastp. An 

E-value less than 1e-10 was used as the critical point to establish homology. In case a homologue was 

not found, we looked for other available T. cruzi proteins that belonged to the same protein family.  

 

Homology modeling of T. cruzi PARP-1. 

An homology structure model of the catalytic domain of T. cruzi PARP-1 was obtained by submitting 

a manually edited pair wise sequence alignment of the human PARP-1 to the Swiss-model server25-27. 

The sequence alignment was made with T-coffee26 server following the structure information reported 

in previous works11-13. The 44% identical human PARP-1 crystal structure (PDB ID: 1wok, 3 Å 

resolution) was used as template. To refine the structure model, energy minimization using the steepest 

descent method was performed, followed by 50 ps of stabilization at constant temperature (310 K), and 

1 ns of molecular dynamics (MD) using the software GROMACS28. The accuracy of the model was 

evaluated with the PROCHECK29 and WHAT-CHECK30 servers. 

 

Ligand preparation. 

The three-dimensional structures and atomic coordinates of the second series of quinoxalines (2a-f) 

were obtained using the molecular modeling software, Hyperchem 7.531 (see supporting information). 
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Analysis Detection of potential candidate targets for 2a-f Quinoxalines. 

The molecular docking program Autodock 4.0 32 was used to determine the most likely configuration 

of the binding of each compound with the selected quinoxaline candidate targets.The best binding 

configuration was selected by choosing the conformation with conserved interactions as previously 

described7, 11-13 and the minimum Gibbs free energy associated. Further details on computational 

protocols are in supporting information. 
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 Computational Details.  

Ligand structures were sketched using Hyperchem 7.5 and minimized with an implemented version of 

MM+ force field kindly using the steepest descent and Polak-Ribiere conjugated gradient method 

(0.001 kJ/mol·Å convergence). MM+ is an all-atom force field based on the MM2 functional form. The 

resulting minimized conformation was then submitted to molecular docking simulations. To be exported 

to Autodock, the minimized structures were converted into the pdb file format using Hyperchem 

software. 

Autodock calculations.  

To prepare the input structures for Autodock calculations, the structures of catPARP-1, arginine 

kinase and glucokinase of T. cruzi were further manipulated by adding Kollman partial charges and 
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solvent parameters. Similarly to the protein, the structure of the inhibitors was also prepared by deleting 

their nonpolar hydrogen atoms and adding Gasteiger atomic charges. Finally, the rigid root and rotatable 

bonds were defined using AutoDockTools.  

Autogrid 4.0, as implemented in the Autodock 4.0 software package, was used to generate grid maps. 

The Lamarckian genetic algorithm (LGA) was employed to generate orientations/conformations of the 

ligand within the binding site. The crystallographic complex between 1WOK and CNQ was used to 

check the ability of the program Autodock to investigate the binding mode of inhibitors into the binding 

site of the enzyme. For this purpose, the complex was manipulated to extract the inhibitor, which was in 

turn computationally re-docked by means of Autodock within the binding site. A grid point spacing of 

0.375 Å and 80 × 80 × 80 points were used. The grid was centered on the mass center of the 

crystallographic inhibitor. The program successfully reproduced the X-ray coordinates of the inhibitor’s 

binding conformation with a rmsd (0.8 Å). Different Autodock parameter files were set to choose the 

optimal conformation. 

outlev 1                   diagnostic output level 

rmstol 2.0                 cluster_tolerance/A 

extnrg 1000.0             external grid energy 

e0max 0.0 10000           max initial energy; max number of retries 

ga_pop_size  150            number of individuals in population 

ga_num_evals 250000       maximum number of energy evaluations 

ga_num_generations 27000  maximum number of generations 

ga_elitism 1              number of top individuals to survive to next generation 

ga_mutation_rate 0.02     rate of gene mutation 
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ga_crossover_rate 0.8     rate of crossover 

ga_cauchy_alpha 0.0       Alpha parameter of Cauchy distribution 

ga_cauchy_beta 1.0        Beta parameter Cauchy distribution 

set_ga                     set the above parameters for GA or LGA 

sw_max_its 300            iterations of Solis & Wets local search 

sw_max_succ 4             consecutive successes before changing rho 

sw_max_fail 4             consecutive failures before changing rho 

sw_rho 1.0                size of local search space to sample 

sw_lb_rho 0.01         lower bound on rho 

ls_search_freq 0.06   probability of performing local search on individual 

set_psw1                   set the above pseudo-Solis & Wets parameters 

ga_run 100                do this many hybrid GA-LS runs 

analysis                   perform a ranked cluster analysis  
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Table 1. Biological activities of quinoxaline derivatives 

 Cc50 (µM)a Ic50 (µM)b 

Compounds R7 R6 M.P.Mc Thp-1d VEROe LLc-Mk2f L. peruviana T. cruzi 

1a - - 116.2 98.1 93.8 134.0 27.5 >25 
1b F - 130.2 40.0 112.0 78.2 13.7 >25 
1d CH3 - 113.9 53.2 >235.6 >235.6 8.9 >25 
1e O-CH3 - 136.6 107.8 >227.0 >227.0 28.5 >25 
1f CH3 CH3 63.2 28.9 61.6 75.3 NDg 22.8 
2a - - 9.3 2.7 7.9 11.9 9.4 18.3 
2b F - 279.5 15.2 21.3 16.3 2.8 14.3 
2c Cl - 332.5 19.7 117.7 99.4 21.4 >25 
2d CH3 - 61.8 4.4 16.5 22.0 11.9 16.5 
2e O-CH3 - 11.3 1.4 7.6 10.1 1.2 11.5 
2f CH3 CH3 287.9 38.0 >254.8 >254.8 12.7 >25 

Amp Bh   5.5 >50 24.4 ND 0.10 - 
Nifurtimox       - 4.5 

aIc50: concentration that produces 50% inhibitory effect. bCc50: concentration that produces 50% 
cytotoxic effect. cMurine Peritoneal Macrophages. dhuman monocytic cells. e,fmonkey kidney cells.gND: 
Not Determined. hAmphotericin B was used as control.Values represent the average of three 
determinations (one determination of three independent experiments).Errors for individual 
measurements differed by less than 50%. 
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Table 2. Physical Chemical Properties of derivatives Quinoxalinesa 

ID %ABS 
TPSA 

n-RT 
Molecular 

miLogP Lipophilicity
(Σπ)b 

N H-bond N H-bond Lipinski's 

(Å) weight donors acceptors violations 

rule  ≤140  <500 <5 ≤5 ≤10 ≤1 

1a 73.47 103 5 410.43 -0.06 0 1 9 0 

1b 73.47 103 5 428.42 0.08 0.14 1 9 0 

1d 73.47 103 5 424.46 0.37 0.42 1 9 0 

1e 70.29 112.2 6 440.46 -0.03 0.03 1 10 0 

1f 73.47 103 5 438.49 0.74 0.8 1 9 0 

2a 84.68 70.5 6 364.4 3.70 0 0 6 0 

2b 84.68 70.5 6 382.39 3.84 0.14 0 6 0 

2c 84.68 70.5 6 398.85 4.35 0.65 0 6 0 

2d 84.68 70.5 6 378.43 4.12 0.42 0 6 0 

2e 81.50 79.7 7 394.43 3.73 0.03 0 7 0 

2f 84.68 70.5 6 392.46 4.50 0.8 0 6 0 
a %ABS, percentage of absorption, calculated by: %ABS = 109 – (0.345 x TPSA); TPSA, topological 
polar surface area; n-RT, number of rotable bonds; miLogP, logarithm of compounds partition 
coefficient between n-octanol and water. b Relative lipophilicities determined by computation of π 
values for all 1 or 2 and nuclear substituents using the fragment constant method33. These calculations 
are for the free base forms of potentially cationic side chains. 

 

Table 3. Autodock binding energies between quinoxalines derivates serie 2 and potential targets in 

T.cruzi. 

 

 

 

 

 

a No conserved interactions with inhibitors or substrates. Only energies associated with best docking 
conformation. 

 

 

 

Enzyme Total Autodock energy (Kcal/mol) for compounds 2a-2f 
  2a 2b 2c 2d 2e 2f  

catPARP-1 -4.8 -4.78 -5.48 -5.27a -4.95a -5.6
Arginine Kinase -3.99 -3.96 -4.34 -4.28 -4.02 -3.77 

Glucokinase -4.05 -4.03 -3.84 -3.81 -3.60a -4.44a


