# Synthesis and antimycobacterial activity of new quinoxaline-2carboxamide 1,4-di-*N*-oxide derivatives.

Elsa Moreno<sup>a</sup>, Saioa Ancizu<sup>a</sup>, Silvia Pérez-Silanes<sup>a,\*</sup>, Enrique Torres<sup>a</sup>,

Ignacio Aldana<sup>a</sup> and Antonio Monge<sup>a</sup>

<sup>a</sup>Unidad de Investigación y Desarrollo de Medicamentos, Centro de Investigación en Farmacobiología Aplicada (CIFA), University of Navarra, C/ Irunlarrea s/n, 31008 Pamplona, Spain.

## Abstract:

As a continuation of our research and with the aim of obtaining new antituberculosis agents which can improve the current chemotherapeutic antituberculosis treatments, forty-three new quinoxaline-2-carboxamide 1,4-di-*N*-oxide derivatives were synthesized and evaluated for *in vitro* antituberculosis activity against *Mycobacterium tuberculosis* strain  $H_{37}Rv$ . Active compounds were also screened to assess toxicity to a VERO cell line. Results indicate that compounds with a methyl moiety substituted in position 3 and un-substituted benzyl substituted on the carboxamide group provide an efficient approach for further development of antituberculosis agents.

*Keywords:* quinoxaline, *N*-oxides, anti-tuberculosis agents, *Mycobacterium tuberculosis*.

Abbreviations: BFX, benzofuroxans; *M.Tbc., Mycobacterium tuberculosis;* NIAID, National Institute of Allergy and Infectious Disease; N.T., Not Tested; RIF, Rifampin; SI, Selectivity Index; TAACF, Tuberculosis Antimicrobial Acquisition & Coordinating Facility.

<sup>\*</sup>Corresponding author: Prof. Silvia Perez-Silanes. Centro de Investigación en Farmacobiología Aplicada. Universidad de Navarra. E-31008 Pamplona. SPAIN. +34 948 425653 (Telephone); +34 948 425652 (Fax). e-mail: <u>sperez@unav.es</u>

## 1. Introduction

Tuberculosis (TB) is an infectious bacterial disease caused by *Mycobacterium Tuberculosis (M.Tbc)*. The report published by WHO in 2009 established that there were an estimated 9.27 million incident cases of TB in 2007. This means an increase from the 9.24 million cases in 2006, the 8.3 million cases in 2000 and the 6.6 million cases in 1990. Although the total number of incident cases of TB is increasing, it must be said that the number of cases per capita is slowly decreasing.[1] Nevertheless, the continuing emergence of multidrug-resistant strains of *M. tuberculosis* (MDR-TB) will inevitably make it more difficult in the future to control TB.

The global epidemiology of drug-resistant TB, particularly extremely drugresistant TB (XDR-TB), is unknown and the true magnitude of the problem is probably quite underestimated. MDR-TB, which is defined as TB caused by organisms that are resistant to isoniazid and rifampicin, continues to threaten the progress being made in controlling the disease. The emergence of XDR-TB, defined as a less common form of MDR-TB that is resistant not only to isoniazid and rifampicin but also to any one of the fluoroquinolones and to at least one of the second-line drugs (amikacin, capreomycin or kanamycin), has heightened this threat.[2] The recent influx of immigrants from countries endemic for disease and co-infection with human immunodeficiency virus (HIV) turns TB into a serious problem in developed countries.[3,4] The development of HIV co-infection with MDR-TB and XDR-TB highlights the urgent need for new drugs to extend the range of effective TB treatment options.

Quinoxaline derivatives are a class of compounds that show very interesting biological properties and the interest in these compounds is growing within the field of medicinal chemistry. Quinoxaline 1,4-di-*N*-oxide derivatives even improve the biological results shown by their reduced analogues and are endowed with antiviral, anticancer, antibacterial and antiprotozoal activities.[5-9] There are many publications regarding 1,4-di-N-oxide derivatives, and more specifically alkyl and arylcarboxamide derivatives, in which their antibacterial and antimicrobial activities [10-14] have been reported or their capability to act as antitumoral agents [15, 16] has been clearly demonstrated, thereby reflecting the growing interest in these structures over the past forty years.

As a result of the anti-tuberculosis research project, our group has published several papers reporting a wide range of quinoxaline-1,4-di-*N*-oxide derivatives (Figure 1) including a great variety of substituents in positions 2, 3, 6 and 7. With regard to position 2, carbonitrile derivatives appeared to be quite toxic [17-21]. Moreover, ketone,

carboxylate and carboxamide quinoxaline-1,4-dioxydes derivatives were actually patented in the 70's for their antibacterial activity.[12-15]

These studies have facilitated a wide structure-activity relationship (SAR) analysis which lead us to design a group of thirty-six 3-methylquinoxaline-2-carboxamide 1,4-di-*N*-oxide derivatives that were prepared and tested against *M.Tbc* and to justify the design of the compounds presented in this paper.[22]

Continuing with the antituberculosis project and in an attempt to establish the structural requirements necessary for the development of anti-tuberculosis drugs, nine series of quinoxaline-2-carboxamide 1,4-di-*N*-oxide derivatives were proposed (Figure 2). Several structural modifications were designed and can be summarized as follows: a) variation in the length of the aliphatic linker between the carboxamide group and the aromatic ring; b) modification of the substituent in position 3 by a phenyl (Series 1-3) and a methyl moiety (Series 4-9); c) substitution of a variety of aromatic rings (Series 4-9).

# 2. Chemistry

Forty-three new 1,4-di-*N*-oxide-quinoxaline-2-carboxylic acid aryl amide derivatives were prepared according to the synthetic process illustrated in Scheme 1:

#### Scheme 1.

The synthesis of the new 1,4-di-*N*-oxide-quinoxaline derivatives (Series 1-9) was carried out by a variation of the Beirut reaction [23], where the appropriate benzofuroxanes (BFX) react with the corresponding  $\beta$ -ketoamide in the presence of calcium chloride and ethanolamine as catalysts.[22,24]

The starting compounds, BFX, were obtained by previously described methods.[18,25] Compound **1** was commercially available whereas the rest of the  $\beta$ -ketoamides were synthesized as follows: compound **2** was synthesized by Passerini reaction between the appropriate glyoxal and isocyanide [26]; compound **3** was synthesized by condensation of the corresponding ester and the appropriate aryl amine.[27] Compounds **4-9** were obtained through the acetoacetylation of corresponding aryl amines by diketene.[22,28]

Quinoxaline derivatives were unsubstituted or substituted in positions 6 and 7 by chloro, fluoro or trifluoromethyl moiety as electron-withdrawing groups and by methyl or methoxy moiety as electron-releasing groups. When quinoxalines were prepared from monosubstituted-BFX, the formation of isomeric quinoxalines 1,4-di-*N*-oxide was observed. In most cases, the 7-substituted isomer prevailed over 6-substituted isomer, and when the methoxy substituted quinoxalines were prepared, only the 7-isomer was obtained, as previously described.[29,30]

## 3. Pharmacology

*In vitro* evaluation of the antituberculosis activity was carried out within the Tuberculosis Antimicrobial Acquisition & Coordinating Facility (TAACF) screening program for the discovery of novel drugs for the treatment of tuberculosis.[31] The Southern Research Institute coordinates the overall program under the direction of the U.S. National Institute of Allergy and Infectious Disease (NIAID).

The purpose of the screening program is to provide a resource whereby new experimental compounds can be tested for their ability to inhibit the growth of virulent *Mycobacterium tuberculosis (M.Tbc.)*. Biological tests have been performed according to previously described methods.[32]

## 4. Results and discussion

Structure and biological values of new synthesized quinoxaline 1,4-di-*N*-oxide derivatives are reported in Table 1. Compounds are assayed against *M.Tbc*. H<sub>37</sub>Rv in order to determine the IC<sub>90</sub>. Compounds showing values of  $\leq 10\mu$ g/mL are considered as active and move on to the secondary screening. Cytotoxicity is assayed in VERO cells and the CC<sub>50</sub> is determined from the dose-response curve. Next, the IC<sub>90</sub> and CC<sub>50</sub> values are formed into a ratio termed Selectivity Index (SI). Compounds showing a SI $\geq$ 10 are considered active for antitubercular activity.

#### Table 1.

As can be observed in Table 1, thirteen of the forty-three evaluated compounds passed the cut off established by the TAACF at the primary screening level and moved on to the secondary screening level. Compounds **2b** and **4d** were identified as the most interesting with a SI higher than 10.

Some structure-activity relationships were established. Looking at the values of compounds **1b**, **1g**, **2b**, **4b**, **4c**, **4d**, **4g**, **6b**, **6g**, **7b** and **9b**, it can be said that the insertion of a halogen moiety, increases the anti-tubercular activity. Taking into account the biological values reported in Table 1, it can be concluded that the insertion of a electron-withdrawing moiety, especially that of chlorine atom, is an essential requirement for the anti-tubercular activity, as previously established by our group.[21,22]

With the aim of corroborating previous preliminary structure-activity relationship observed by our group and identifying the most suitable length for the aliphatic chain between the carboxamide group and the aromatic ring, three series of compounds (**Series 1, 2** and **3**) were prepared. Comparing the biological values shown by these compounds, it can be said that the preferred length for the aliphatic chain is one

methylene group. This data corroborates the hypothesis established in a previous report on analogue structures published by our group.[22]

In previous investigations carried out by our group, three series of 1,4-di-*N*-oxide-quinoxaline-2-carboxylic acid aryl amide derivatives were synthesized, containing a methyl moiety in position 3.[21,22] To further explore the SAR of these types of compounds, a phenyl group was substituted in position 3 of the quinoxaline ring (**Series 1, 2** and **3**) and reported in this paper. This modification led to a reduction of the anti-tubercular activity as can be observed by comparing the biological values of compounds from **Series 1, 2** and **3** with their analogues containing a methyl group in position 3, described in previous reports.[21,22]

Taking into account the biological values of the structures which present a phenyl group substituted in position 3 and the compounds with a methyl group in this position, [22] we decided to keep the methyl moiety in position 3 and modify the substitution on the aromatic ring. Different substituents were introduced on *para* position of the phenyl ring considering chloro, bromo or trifluoromethyl moiety as electron-withdrawing groups and methyl as electron-releasing group (**Series 4, 5, 6, 7**). In this fragment of the structure other substituents as byphenyl or a benzodioxol have been considered (**Series 8, 9**). Taking into account the biological values showed by these derivatives, it can be said that the insertion of a substituent on *para* position of the phenyl group did not improve the anti-tubercular activity suggesting that the most suitable aromatic ring is the un-substituted phenyl.

## 5. Conclusions

Forty-three new 1,4-di-*N*-oxide-quinoxaline-2-carboxylic acid aryl amide derivatives were synthesized using a variation of the Beirut reaction. All of the compounds were evaluated against *M.Tbc*.  $H_{37}Rv$  stain; thirteen were active in the primary screening, showing an  $IC_{90} \le 10 \mu g/mL$ , and were then moved on to the secondary screening level. Two of the compounds were active at this level, showing a SI $\ge$ 10.

Taking into account the biological values obtained, it can be said that the lead general structure for developing new anti-tubercular agents should consider the 1,4-di-*N*-oxide quinoxaline ring with a carboxamide functionalized on position 2 and a methyl moiety on position 3. The most suitable substituent on positions 6 or/and 7 should be an electron-withdrawing group and a methyl moiety on position 3. With regard to the linker and the aromatic ring attached to it, one methylene group and an unsubstituted phenyl ring are considered to be the most appropriate substituents.

#### 6. Experimental protocols

## 6.1. Chemistry

## 6.1.1. General remarks

All of the synthesized compounds were chemically characterized by thin layer chromatography (TLC), infrared (IR), proton nuclear magnetic resonance (<sup>1</sup>H-NMR) and elemental microanalyses (CHN).

Alugram SIL G/UV254 (Layer: 0.2 mm) (Macherey-Nagel GmbH & Co. KG., Düren, Germany) was used for TLC, and Silica gel 60 (0.040-0.063 mm, Merck) was used for Conventional Flash Column Chromatography. Flash Column Chromatography was developed on a CombiFlash® R<sub>f</sub> (TELEDYNE ISCO, Lincoln, USA) instrument with Silica RediSep® R<sub>f</sub> columns. The <sup>1</sup>H NMR spectra were recorded on a Bruker 400 Ultrashield instrument (400 MHz), using TMS as internal standard and with DMSO-d<sub>6</sub> as solvent; the chemical shifts are reported in ppm ( $\delta$ ) and coupling constant (J) values are given in Hertz (Hz). Signal multiplicities are represented by: s (singlet), bs (broad singlet), d (doublet), dd (double doublet), ddd (double double doblet), t (triplet), tt (triple triplet) and m (multiplet). The IR spectra were recorded on a Nicolet Nexus FTIR (Thermo, Madison, USA) in KBr pellets. Elemental microanalyses were obtained on a CHN-900 Elemental Analyzer (Leco, Tres Cantos, Spain) from vacuum-dried samples. The analytical results for C, H and N, were within  $\pm$  0.4 of the theoretical values. Chemicals were purchased from Panreac Química S.A. (Barcelona, Spain), Sigma-Aldrich Química, S.A. (Alcobendas, Spain), Acros Organics (Janssen Pharmaceuticalaan, Geel, Belgium) and Lancaster (Bischheim-Strasbourg, France).

6.1.2. General procedure of the synthesis of 3-oxo-*N*-benzyl-3-phenylpropanamide (2).

Acetic acid (5.0 mmol) and phenylglyoxal were diluted in diethyl ether (25 mL) under  $N_2$  atmosphere. Once dissolved, the benzylisocyanide (5.0 mmol) was added dropwise and the reaction mixture was stirred at room temperature for 72 hours. The residue obtained was filtered and washed with isopropanol. The solid was dissolved in methanol (32.0 mL) and added dropwise to a solution of Zn dust (8.0 mmol) in saturated aqueous NH<sub>4</sub>Cl (8.0 mL) previously activated in a sonication bath for 5 minutes. The mixture was stirred at room temperature for 30 minutes and filtered in order to eliminate the Zn. Water (100 mL) was added to the mixture and the solid obtained was filtered and washed with water. The solid was used without further purification.[26]

6.1.2.1. *3-oxo-N-benzyl-3-phenylpropanamide* (**2**). Yield: 25%. IR (KBr): 3290 (m, v<sub>N-</sub> H); 3060 (w, v<sub>arC-H</sub>); 1687 (s, v<sub>C=O ketone</sub>); 1635 (s, v<sub>C=O amide</sub>). <sup>1</sup>H NMR (400 MHz, DMSO-<sub>d6</sub>) δ ppm: 8.66 (bs, 1H, N**H**); 7.99 (d, 2H, **H**<sub>2</sub>+**H**<sub>6-phCO</sub>, *J*<sub>2-3</sub>= 7.2 Hz); 7.66-7.52 (m, 3H, **H<sub>3</sub>-H<sub>5-phCO</sub>**); 7.37-7.25 (m, 5H, **H<sub>2</sub>-H<sub>6-phCH2</sub>**); 4.32 (d, 2H, C**H<sub>2</sub>-NH**,  $J_{CH2-NH}$ = 5.9 Hz); 3.92 (s, 2H, CO-C**H<sub>2</sub>-**CO).

6.1.3. General procedure of the synthesis of 3-oxo-*N*-(2-phenylethyl)-3-phenyl propanamide (**3**).

Ethyl benzoylacetate (6.0 mmol), 2-phenethylamine (15.0 mmol) and 2hydroxypyridine (6.0 mmol) were refluxed at 130°C under N<sub>2</sub> atmosphere for 48 hours. The mixture reaction was dissolved in dichloromethane and quenched with water. The organic phase was dried with anhydrous sodium sulphate and filtered. The solvent was removed in vacuo and precipitated with cold isopropanol in order to obtain a white solid. The solid was used without further purification. [27]

6.1.3.1. 3-oxo-N-(2-phenylethyl)-3-phenylpropanamide (3). Yield: 62%. IR (KBr): 3336 (s,  $v_{N-H}$ ); 3032 (w,  $v_{arC-H}$ ); 1614 (s,  $v_{C=O}$ ). <sup>1</sup>H NMR (400 MHz, DMSO-<sub>d6</sub>)  $\delta$  ppm: 9.01 (bs, 1H, NH); 7.43-7.35 (m, 2H, H<sub>2</sub>+H<sub>6-phCO</sub>); 7.30-7.25 (m, 2H, H<sub>3</sub>+H<sub>5-phCO</sub>); 7.24-7.14 (m, 5H, H<sub>4-phCO</sub>+H<sub>2+3+5+6-phCH2</sub>); 7.05-7.03 (m, 1H, H<sub>4-phCH2</sub>); 3.82 (s, 2H, CO-CH<sub>2</sub>-CO); 3.30-3.21 (m, 2H, CH<sub>2</sub>-NH); 3.08-2.67 (m, 2H, CH<sub>2</sub>-ph).

6.1.5. General procedure of the synthesis of 3-oxobutanamide derivatives (4-9)

The corresponding aryl amines (20.0 mmol) were diluted in methanol (10 mL) under  $N_2$  atmosphere and cooled in an ice bath until 0° C. Next, diketene (25.0 mmol) was added dropwise and the reaction was stirred for 1-3 hours. The residue obtained was precipitated with cold diethyl ether and filtered in order to obtain a red-brown solid. The compound was used without further purification.[28]

6.1.4.1. 3-oxo-N-(*p*-(*trifluoromethyl*)*benzyl*)*butanamide* (**4**). Yield: 84%. IR (KBr): 3259 (m,  $v_{N-H}$ ); 3090 (w,  $v_{arC-H}$ ); 1716 (s,  $v_{C=O ketone}$ ); 1644 (s,  $v_{C=O amide}$ ); 1106 (m,  $v_{arC-CF3}$ ); 1111 (s,  $v_{arC-CF3}$ ); 1069 (m,  $v_{arC-CF3}$ ). <sup>1</sup>H NMR (400 MHz, DMSO-<sub>d6</sub>)  $\delta$  ppm: 8.64 (t, 1H, NH,  $J_{NH-CH2}$ = 5.5 Hz); 7.70 (d, 2H,  $H_{3'}$ + $H_{5'}$ ,  $J_{3'-2'}$ = 7.9 Hz); 7.50 (d, 2H,  $H_{2'}$ + $H_{6'}$ ); 4.38 (d, 2H, CH<sub>2</sub>-NH); 3.41 (s, 2H, CO-CH<sub>2</sub>-CO); 2.16 (s, 3H, CH<sub>3</sub>-CO).

6.1.4.2. 3-oxo-N-(*p*-chlorobenzyl)butanamide (**5**). Yield: 59%. IR (KBr): 3253 (s,  $v_{N-H}$ ); 3085 (m,  $v_{arC-H}$ ); 1714 (s,  $v_{C=0 \text{ ketone}}$ ); 1642 (s,  $v_{C=0 \text{ amide}}$ ). <sup>1</sup>H NMR (400 MHz, DMSO-d6)  $\delta$  ppm: 8.55 (bs, 1H, NH); 7.39 (dd, 2H,  $H_{3'}+H_{5'}$ ,  $J_{3'-2'}= 8.5$  Hz,  $J_{3'-Cl}= 1.9$  Hz); 7.30 (d, 2H,  $H_{2'}+H_{6'}$ ); 4.28 (d, 2H, CH<sub>2</sub>-NH,  $J_{CH2-NH}= 5.9$  Hz); 3.38 (s, 2H, CO-CH<sub>2</sub>-CO); 2.15 (s, 3H, CH<sub>3</sub>-CO).

6.1.4.3. 3-oxo-N-(*p*-bromobenzyl)butanamide (6). Yield: 57%. IR (KBr): 3253 (s,  $v_{N-H}$ ); 3085 (m,  $v_{arC-H}$ ); 1714 (s,  $v_{C=O ketone}$ ); 1642 (s,  $v_{C=O amide}$ ); 1015 (m,  $v_{arC-Br}$ ). <sup>1</sup>H NMR (400 MHz, DMSO-<sub>d6</sub>)  $\delta$  ppm: 8.55 (bs, 1H, NH); 7.52 (d, 2H,  $H_{3'}+H_{5'}$ ,  $J_{3'-2'}= 8.2$  Hz); 7.24 (d, 2H,  $H_{2'}+H_{6'}$ ); 4.26 (d, 2H, CH<sub>2</sub>-NH,  $J_{CH2-NH}= 5.5$  Hz); 3.38 (s, 2H, CO-CH<sub>2</sub>-CO); 2.15 (s, 3H, CH<sub>3</sub>-CO).

6.1.4.4. 3-oxo-N-(p-methylbenzyl)butanamide (7). Yield: 40%. IR (KBr): 3254 (m,  $v_{N-H}$ ); 3088 (m,  $v_{arC-H}$ ); 1715 (m,  $v_{C=O ketone}$ ); 1641 (s,  $v_{C=O amide}$ ). <sup>1</sup>H NMR (400 MHz, DMSO-d6)  $\delta$  ppm: 8.47 (t, 1H, NH,  $J_{NH-CH2}$ = 5.8 Hz); 7.20-7.10 (m, 4H, H<sub>2</sub>,+H<sub>3</sub>,+H<sub>5</sub>,+H<sub>6</sub>); 4.24 (d, 2H, CH<sub>2</sub>-NH); 3.36 (s, 2H, CO-CH<sub>2</sub>-CO); 2.28 (s, 3H, CH<sub>3</sub>-ph); 2.15 (s, 3H, CH<sub>3</sub>-CO).

6.1.4.5 *N*-(2,2-*diphenylethyl*)-3-oxobutanamide (**8**). Yield: 32%. IR (KBr): 3276 (s,  $v_{N-H}$ ); 3020 (w,  $v_{arC-H}$ ); 1710 (m,  $v_{C=O ketone}$ ); 1668 (s,  $v_{C=O amide}$ ). <sup>1</sup>H NMR (400 MHz, DMSO-<sub>d6</sub>)  $\delta$  ppm: 8.14 (t, 1H, NH,  $J_{NH-CH2}$ = 5.6 Hz); 7.34-7.24 (m, 10H, 2**ph**); 4.19 (t, 1H, CH,  $J_{CH-CH2}$ = 7.9 Hz); 3.73 (dd, 2H, CH<sub>2</sub>-NH); 3.19 (s, 2H, CO-CH<sub>2</sub>-CO); 1.96 (s, 3H, CH<sub>3</sub>-CO).

6.1.4.6. *N*-(*benzo*[*d*][1,3]*dioxo*l-5-*y*lmethyl)-3-oxobutanamide (**9**). Yield: 33%. IR (KBr): 3290 (m,  $v_{N-H}$ ); 3064 (w,  $v_{arC-H}$ ); 1758 (m,  $v_{C=O ketone}$ ); 1615 (s,  $v_{C=O amide}$ ); 1241 (m,  $v_{C=O}$ ). <sup>1</sup>H NMR (400 MHz, DMSO-<sub>d6</sub>)  $\delta$  ppm: 8.50 (t, 1H, N**H**,  $J_{NH-CH2}$ = 5.6 Hz); 7.02 (bs, 1H, **H**<sub>2</sub>·); 6.91 (bs, 2H, **H**<sub>5</sub>·+**H**<sub>6</sub>·); 6.01 (s, 2H, O-C**H**<sub>2</sub>-O); 4.27 (d, 2H, C**H**<sub>2</sub>-NH); 3.37 (s, 2H, CO-C**H**<sub>2</sub>-CO); 2.15 (s, 3H, C**H**<sub>3</sub>-CO).

6.1.5. General procedure of the synthesis of 1,4-di-*N*-oxide-quinoxaline-2-carboxylic acid aryl amide derivatives (**Series 1-9**)

The appropriate BFX (1.0 mmol) and the corresponding  $\beta$ -ketoamide (1.2 mmol) were dissolved in a minimum amount of methanol. Next, calcium chloride (0.1 mmol) and ethanolamine (5 drops) were added as catalysts.[22,23] The mixture reaction was stirred at room temperature from 1 to 48 hours, depending on the BFX substituents used; it was then filtered and washed with cold diethyl ether. The solid was dissolved in dichloromethane and quenched with water. The organic phase was dried with anhydrous sodium sulphate and filtered. The solvent was removed in vacuo and precipitated with cold diethyl ether in order to obtain a yellow solid. The solid was purified by column chromatography, if necessary.

6.1.5.1. 3-phenylquinoxaline-2-carboxylic acid phenylamide 1,4-di-N-oxide (1a). Yield: 17%. IR (KBr): 3256 (w,  $v_{NH}$ ); 3077 (w,  $v_{arC-H}$ ); 1693 (s,  $v_{C=0}$ ); 1348 (s,  $v_{N+O-}$ ). <sup>1</sup>H NMR (400 MHz, DMSO-<sub>d6</sub>)  $\delta$  ppm: 10.80 (s, 1H, NH); 8.60-8.56 (m, 2H, H<sub>5</sub>+H<sub>8</sub>); 8.10-8.07 (m, 2H, H<sub>6</sub>+H<sub>7</sub>); 7.62-7.60 (m, 2H, H<sub>2</sub>+H<sub>6</sub>-ph-<sub>QX</sub>); 7.49-7.47 (m; 3H, H<sub>3</sub>-H<sub>5</sub>ph-<sub>QX</sub>); 7.39 (dd, 2H, H<sub>2</sub>+H<sub>6</sub>-ph-<sub>NH</sub>,  $J_{2-3}$ = 8.5 Hz,  $J_{2-4}$ =1.0 Hz); 7.33-7.28 (m, 2H, H<sub>3</sub>+H<sub>5</sub>-ph-<sub>NH</sub>); 7.10 (tt, 1H, H<sub>4</sub>-ph-<sub>NH</sub>,  $J_{4-3}$ = 7.2 Hz). Anal. Calcd. for C<sub>21</sub>H<sub>15</sub>N<sub>3</sub>O<sub>3</sub>: C, 70.58%; H, 4.23%; N, 11.76%. Found: C, 70.72%; H, 4.48%; N, 11.99%.

6.1.5.2. 7-chloro-3-phenylquinoxaline-2-carboxylic acid phenylamide 1,4-di-N-oxide (**1b**). Yield: 18%. IR (KBr): 3256 (w,  $v_{NH}$ ); 3058 (w,  $v_{arC-H}$ ); 1686 (s,  $v_{C=O}$ ); 1330 (s,  $v_{N+O-}$ ). <sup>1</sup>H NMR (400 MHz, DMSO-<sub>d6</sub>)  $\delta$  ppm: 10.82 (s, 1H, N**H**); 8.57-8.56 (m; 2H,

**H**<sub>5</sub>+**H**<sub>8</sub>); 8.11 (dd, 1H, **H**<sub>6</sub>,  $J_{6-5}$ =9.0 Hz,  $J_{6-8}$ =1.7 Hz); 7.61-7.59 (m, 2H, **H**<sub>2</sub>+**H**<sub>6</sub>-ph-<sub>QX</sub>); 7.49-7.48 (m, 3H, **H**<sub>3</sub>-**H**<sub>5</sub>-ph-<sub>QX</sub>); 7.38 (d, 2H, **H**<sub>2</sub>+**H**<sub>6</sub>-ph-<sub>NH</sub>,  $J_{2-3}$ = 7.9 Hz); 7.31 (t, 2H, **H**<sub>3</sub>+**H**<sub>5</sub>-ph-<sub>NH</sub>,  $J_{3-4}$ = 7.9 Hz); 7.11 (t, 1H, **H**<sub>4</sub>-ph-<sub>NH</sub>). Anal. Calcd. for C<sub>21</sub>H<sub>14</sub>ClN<sub>3</sub>O<sub>3</sub>: C, 64.38%; H, 3.60%; N, 10.72%. Found: C, 64.30%; H, 3.96%; N, 10.48%.

6.1.5.3. 7-fluoro-3-phenylquinoxaline-2-carboxylic acid phenylamide 1,4-di-N-oxide (**1c**). Yield: 17%. IR (KBr): 3244 (m, v<sub>NH</sub>); 3058 (w, v<sub>arC-H</sub>); 1658 (s, v<sub>C=O</sub>); 1339 (s, v<sub>N+O</sub>). <sup>1</sup>H NMR (400 MHz, DMSO-<sub>d6</sub>) δ ppm: 10.83 (s, 1H, N**H**); 8.66-8.62 (m, 1H, **H**<sub>5</sub>); 8.34-8.32 (m, 1H, **H**<sub>8</sub>); 8.02-7.98 (m, 1H, **H**<sub>6</sub>); 7.60-7.59 (m, 2H, **H**<sub>2</sub>+**H**<sub>6</sub>-ph-<sub>QX</sub>); 7.49-7.47 (m, 3H, **H**<sub>3</sub>-**H**<sub>5</sub>-ph-<sub>QX</sub>); 7.39-7.37 (m, 2H, **H**<sub>2</sub>+**H**<sub>6</sub>-ph-<sub>NH</sub>); 7.32-7.28 (m, 2H, **H**<sub>3</sub>+**H**<sub>5</sub>-ph-<sub>NH</sub>); 7.12-7.09 (m, 1H, **H**<sub>4</sub>-ph-<sub>NH</sub>). Anal. Calcd. for C<sub>21</sub>H<sub>14</sub>FN<sub>3</sub>O<sub>3</sub>: C, 67.20%; H, 3.76%; N, 11.20%. Found: C, 66.85%; H, 3.95%; N, 11.00%.

6.1.5.4. 7-trifluoromethyl-3-phenylquinoxaline-2-carboxylic acid phenylamide 1,4-di-N-oxide (1d). Yield: 18%. IR (KBr): 3250 (w,  $v_{NH}$ ); 3058 (w,  $v_{arC-H}$ ); 1686 (s,  $v_{C=O}$ ); 1345 (s,  $v_{N+O-}$ ); 1140 (s,  $v_{arC-CF3}$ ). <sup>1</sup>H NMR (400 MHz, DMSO-<sub>d6</sub>)  $\delta$  ppm: 10.82 (s, 1H, NH); 8.83 (s, 1H, H<sub>8</sub>); 8.77 (d, 1H, H<sub>5</sub>,  $J_{5-6}$ = 9.0 Hz); 8.39 (dd, 1H, H<sub>6</sub>,  $J_{6-8}$ = 1.6 Hz); 7.64-7.62 (m, 2H, H<sub>2</sub>+H<sub>6</sub>-ph-<sub>QX</sub>); 7.51-7.49 (m, 3H, H<sub>3</sub>-H<sub>5</sub>-ph-<sub>QX</sub>); 7.39-7.37 (m, 2H, H<sub>2</sub>+H<sub>6</sub>-ph-<sub>NH</sub>); 7.33-7.29 (m, 2H, H<sub>3</sub>+H<sub>5</sub>-ph-<sub>NH</sub>); 7.13-7.10 (m, 1H, H<sub>4</sub>-ph-<sub>NH</sub>). Anal. Calcd. for C<sub>22</sub>H<sub>14</sub>F<sub>3</sub>N<sub>3</sub>O<sub>3</sub>: C, 62.12%; H, 3.32%; N, 9.88%. Found: C, 61.83%; H, 3.37%; N, 9.58%.

6.1.5.5. 7-methyl-3-phenylquinoxaline-2-carboxylic acid phenylamide 1,4-di-N-oxide (1e). Yield: 9%. IR (KBr): 3256 (w,  $v_{NH}$ ); 3064 (w,  $v_{arC-H}$ ); 1686 (s,  $v_{C=O}$ ); 1335 (s,  $v_{N+O-}$ ). <sup>1</sup>H NMR (400 MHz, DMSO-<sub>d6</sub>)  $\delta$  ppm: 10.80 (s, 1H, NH); 8.47 (d, 1H, H<sub>5</sub>,  $J_{5-6}$ = 8.8 Hz); 8.41-8.35 (m, 1H, H<sub>8</sub>); 7.91 (dd, 1H, H<sub>6</sub>,  $J_{6-8}$ = 1.2 Hz); 7.63-7.58 (m, 2H, H<sub>2</sub>+H<sub>6</sub>-ph-<sub>QX</sub>); 7.51-7.44 (m, 3H, H<sub>3</sub>-H<sub>5</sub>-ph-<sub>QX</sub>); 7.41-7.36 (m, 2H, H<sub>2</sub>+H<sub>6</sub>-ph-<sub>NH</sub>); 7.33-7.27 (m, 2H, H<sub>3</sub>+H<sub>5</sub>-ph-<sub>NH</sub>); 7.13-7.07 (m, 1H, H<sub>4</sub>-ph-<sub>NH</sub>); 2.65 (s, 3H, CH<sub>3</sub>). Anal. Calcd. for C<sub>22</sub>H<sub>17</sub>N<sub>3</sub>O<sub>3</sub>: C, 71.15%; H, 4.61%; N, 11.31%. Found: C, 71.05%; H, 4.80%; N, 11.01%.

6.1.5.6. 7-methoxy-3-phenylquinoxaline-2-carboxylic acid phenylamide 1,4-di-N-oxide (**1f**). Yield: 77%. IR (KBr): 3250 (m,  $v_{NH}$ ); 3077 (m,  $v_{arC-H}$ ); 1685 (s,  $v_{C=O}$ ); 1335 (s,  $v_{N+O-}$ ); 1243 (s,  $v_{C-O-C}$ ). <sup>1</sup>H NMR (400 MHz, DMSO-<sub>d6</sub>)  $\delta$  ppm: 10.81 (s, 1H, N**H**); 8.48 (d, 1H, **H**<sub>5</sub>,  $J_{5-6}$ = 9.5 Hz); 7.87 (d, 1H, **H**<sub>8</sub>,  $J_{8-6}$ = 2.7 Hz); 7.68 (dd, 1H, **H**<sub>6</sub>); 7.61-7.58 (m, 2H, **H**<sub>2</sub>+**H**<sub>6</sub>-ph-<sub>QX</sub>); 7.48-7.46 (m, 3H, **H**<sub>3</sub>-**H**<sub>5</sub>-ph-<sub>QX</sub>); 7.38 (dd, 2H, **H**<sub>2</sub>+**H**<sub>6</sub>-ph-<sub>NH</sub>,  $J_{2-3}$ = 8.5 Hz,  $J_{2-4}$ = 1,1 Hz); 7.32-7.28 (m, 2H, **H**<sub>3</sub>+**H**<sub>5</sub>-ph-<sub>NH</sub>); 7.10 (tt, 1H, **H**<sub>4</sub>-ph-<sub>NH</sub>,  $J_4$ .  $_3$ =7.3 Hz); 4.04 (s, 3H, OC**H**<sub>3</sub>). Anal. Calcd. for C<sub>22</sub>H<sub>17</sub>N<sub>3</sub>O<sub>4</sub>: C, 68.21%; H, 4.42%; N, 10.85%. Found: C, 67.89%; H, 4.42%; N, 10.89%. 6.1.5.7. 6,7-dichloro-3-phenylquinoxaline-2-carboxylic acid phenylamide 1,4-di-Noxide (**1g**). Yield: 46%. IR (KBr): 3308 (m,v<sub>NH</sub>); 3071 (m,v<sub>arC-H</sub>); 1666 (s, v<sub>C=0</sub>); 1332 (s, v<sub>N+O-</sub>); 1313 (s, v<sub>N+O-</sub>). <sup>1</sup>H NMR (400 MHz, DMSO-<sub>d6</sub>) δ ppm: 10.88 (s, 1H, N**H**); 8.76 (s, 1H, **H**<sub>5</sub>); 8.74 (s, 1H, **H**<sub>8</sub>); 7.61-7.59 (m, 2H, **H**<sub>2</sub>+**H**<sub>6</sub>-ph-<sub>QX</sub>); 7.51-7.48 (m, 3H, **H**<sub>3</sub>-**H**<sub>5</sub>-ph-<sub>QX</sub>); 7.38 (dd, 2H, **H**<sub>2</sub>+**H**<sub>6</sub>-ph-<sub>NH</sub>, *J*<sub>2-3</sub>= 8.5 Hz, *J*<sub>2-4</sub>= 1.0 Hz); 7.33-7.29 (m, 2H, **H**<sub>3</sub>+**H**<sub>5</sub>-ph-<sub>NH</sub>); 7.11 (tt, 1H, **H**<sub>4</sub>-ph-<sub>NH</sub>, *J*<sub>4-3</sub>= 7.8 Hz). Anal. Calcd. for C<sub>21</sub>H<sub>13</sub>Cl<sub>2</sub>N<sub>3</sub>O<sub>3</sub>.1/2H<sub>2</sub>O: C, 57.89%; H, 3.22%; N, 9.65%. Found: C, 57.56%; H, 2.91%; N, 9.54%.

6.1.5.8. 3-phenylquinoxaline-2-carboxylic acid benzylamide 1,4-di-N-oxide (2a). Yield: 15%. IR (KBr): 3302 (m, $v_{NH}$ ); 3085 (w,  $v_{arC-H}$ ); 1673 (s,  $v_{C=O}$ ); 1348 (s,  $v_{N+O-}$ ); 1339 (s,  $v_{N+O-}$ ). <sup>1</sup>H NMR (400 MHz, DMSO-<sub>d6</sub>)  $\delta$  ppm: 9.12 (t, 1H, NH,  $J_{NH-CH2}$ = 5.8 Hz); 8.58-8.53 (m, 2H, H<sub>5</sub>+H<sub>8</sub>); 8.06-8.04 (m, 2H, H<sub>6</sub>+H<sub>7</sub>); 7.57-7.56 (m, 3H, H<sub>3</sub>-H<sub>5</sub>ph-<sub>QX</sub>); 7.51-7.49 (m, 2H, H<sub>2</sub>+H<sub>6</sub>-ph-<sub>QX</sub>); 7.22-7.21 (m, 3H, H<sub>3</sub>-H<sub>5</sub>-ph-<sub>CH2</sub>); 6.90-6.87 (m, 2H, H<sub>2</sub>+H<sub>6</sub>-ph-<sub>CH2</sub>); 4.28 (d, 2H, CH<sub>2</sub>). Anal. Calcd. for C<sub>22</sub>H<sub>17</sub>N<sub>3</sub>O<sub>3</sub>: C, 71.15%; H, 4.61%; N, 11.31%. Found: C, 71.02%; H, 4.50%; N, 10.94%.

6.1.5.9. 7-chloro-3-phenylquinoxaline-2-carboxylic acid benzylamide 1,4-di-N-oxide (**2b**). Yield: 22%. IR (KBr): 3286 (m,  $v_{NH}$ ); 3094 (w,  $v_{arC-H}$ ); 1649 (s,  $v_{C=O}$ ); 1331 (m,  $v_{N+O-}$ ). <sup>1</sup>H NMR (400 MHz, DMSO-<sub>d6</sub>)  $\delta$  ppm: 9.12 (t, 1H, N**H**,  $J_{NH-CH2}$ = 5.9 Hz); 8.56-8.54 (m, 1H, **H**<sub>5</sub>), 8.50 (bs; 1H, **H**<sub>8</sub>); 8.08 (dd, 1H, **H**<sub>6</sub>,  $J_{6-5}$ = 9.2 Hz,  $J_{6-8}$ = 2.2 Hz); 7.58-7.49 (m, 5H, **H**<sub>2</sub>-**H**<sub>6</sub>-ph-<sub>QX</sub>); 7.21-7.20 (m, 3H, **H**<sub>3</sub>-**H**<sub>5</sub>-ph-<sub>CH2</sub>); 6.89-6.87 (m, 2H, **H**<sub>2</sub>+**H**<sub>6</sub>-ph-<sub>CH2</sub>); 4.28 (d, 2H, C**H**<sub>2</sub>). Anal. Calcd. for C<sub>22</sub>H<sub>16</sub>ClN<sub>3</sub>O<sub>3</sub>: C, 65.10%; H, 3.97%; N, 10.35%. Found: C, 65.41%; H, 3.97%; N, 10.16%.

6.1.5.10. 7-fluoro-3-phenylquinoxaline-2-carboxylic acid benzylamide 1,4-di-N-oxide (2c). Yield: 22%. IR (KBr): 3312 (m, v<sub>NH</sub>); 3059 (w, v<sub>arC-H</sub>); 1673 (s, v<sub>C=O</sub>); 1335 (m, v<sub>N+O-</sub>). <sup>1</sup>H NMR (400 MHz, DMSO-<sub>d6</sub>) δ ppm: 9.14 (t, 1H, N**H**, *J<sub>NH-CH2</sub>*= 5.7 Hz); 8.62-8.59 (m, 1H, **H**<sub>5</sub>); 8.33-8.30 (m, 1H, **H**<sub>8</sub>); 7.99-7.94 (m, 1H, **H**<sub>6</sub>); 7.94-7.49 (m, 5H, **H**<sub>2</sub>-**H**<sub>6</sub>-ph-<sub>QX</sub>); 7.21-7.20 (m, 3H, **H**<sub>3</sub>-**H**<sub>5</sub>-ph-<sub>CH2</sub>); 6.90-6.88 (m, 2H, **H**<sub>2</sub>+**H**<sub>6</sub>-ph-<sub>CH2</sub>); 4.28 (d, 2H, C**H**<sub>2</sub>). Anal. Calcd. for C<sub>22</sub>H<sub>16</sub>FN<sub>3</sub>O<sub>3</sub>.1/2H<sub>2</sub>O: C, 66.26%; H, 4.27%; N, 10.54%. Found: C, 66.56%; H, 4.04%; N, 10.17%.

6.1.5.11. 7-trifluoromethyl-3-phenylquinoxaline-2-carboxylic acid benzylamide 1,4-di-N-oxide (2d). Yield: 6%. IR (KBr): 3287 (m, v<sub>NH</sub>); 3093 (w, v<sub>arC-H</sub>); 1647 (s, v<sub>C=O</sub>); 1350 (s, v<sub>N+O</sub>); 1319 (s,v<sub>N+O</sub>); 1171 (s, v<sub>ar-CF3</sub>); 1125 (s, v<sub>ar-CF3</sub>). <sup>1</sup>H NMR (400 MHz, DMSO-<sub>d6</sub>) δ ppm: 9.15-9.10 (m, 1H, N**H**); 8.81-8.77 (m, 1H, **H**<sub>5</sub>); 8.44-8.28 (m, 2H, **H**<sub>8</sub>+**H**<sub>6</sub>); 7.59-7.51 (m, 5H, **H**<sub>2</sub>-**H**<sub>6</sub>-ph-<sub>QX</sub>); 7.25-7.21 (m, 5H, **H**<sub>2</sub>-**H**<sub>6</sub>-ph-<sub>CH2</sub>); 4.29 (d, 2H, C**H**<sub>2</sub>, *J<sub>CH2-NH</sub>*=5.9 Hz). Anal. Calcd. for C<sub>23</sub>H<sub>16</sub>F<sub>3</sub>N<sub>3</sub>O<sub>3</sub>: C, 62.87%; H, 3.67%; N, 9.56%. Found: C, 63.03%; H, 3.96%; N, 9.36%. 6.1.5.12. 7-methyl-3-phenylquinoxaline-2-carboxylic acid benzylamide 1,4-di-N-oxide (2e). Yield: 36%. IR (KBr): 3224 (m,  $v_{NH}$ ); 3058 (w,  $v_{arC-H}$ ); 1682 (s,  $v_{C=O}$ ); 1355 (s, $v_{N+O-}$ ); 1314 (s,  $v_{N+O-}$ ). <sup>1</sup>H NMR (400 MHz, DMSO-<sub>d6</sub>)  $\delta$  ppm: 9.13 (t, 1H, NH,  $J_{NH-CH2}$ = 5.9 Hz); 8.43 (d, 1H, H<sub>5</sub>,  $J_{5-6}$ = 8.8 Hz); 8.37 (s, 1H, H<sub>8</sub>); 7.87 (dd, 1H, H<sub>6</sub>,  $J_{6-8}$ = 1.8 Hz); 7.59-7.55 (m, 3H, H<sub>3</sub>-H<sub>5</sub>-ph-<sub>QX</sub>); 7.51-7.48 (m, 2H, H<sub>2</sub>+H<sub>6</sub>-ph-<sub>QX</sub>); 7.21-7.19 (m, 3H, H<sub>3</sub>-H<sub>5</sub>-ph-<sub>CH2</sub>); 6.90-6.87 (m, 2H, H<sub>2</sub>+H<sub>6</sub>-ph-<sub>CH2</sub>); 4.28 (d, 2H, CH<sub>2</sub>). Anal. Calcd. for C<sub>23</sub>H<sub>19</sub>N<sub>3</sub>O<sub>3</sub>.1/2H<sub>2</sub>O: C, 69.97%; H, 5.07%; N, 10.65%. Found: C, 70.35%; H, 5.03%; N, 10.65%.

6.1.5.13. 6-methoxy-3-phenylquinoxaline-2-carboxylic acid benzylamide 1,4-di-N-oxide (2f). Yield: 35%. IR (KBr): 3262 (m, v<sub>NH</sub>); 3080 (w, v<sub>arC-H</sub>); 1689 (s, v<sub>C=O</sub>); 1352 (s, v<sub>N+O-</sub>); 1328 (s,v<sub>N+O-</sub>); 1256 (s, v<sub>C-O-C</sub>). <sup>1</sup>H NMR (400 MHz, DMSO-<sub>d6</sub>) δ ppm: 9.14 (t, 1H, NH, *J<sub>NH-CH2</sub>*= 5.9 Hz); 8.44 (d, 1H, H<sub>5</sub>, *J*<sub>5-6</sub>= 9.5 Hz); 7.86 (d, 1H, H<sub>8</sub>, *J*<sub>8-6</sub>= 2.7 Hz); 7.65 (dd, 1H, H<sub>6</sub>); 7.58-7.54 (m, 3H, H<sub>3</sub>-H<sub>5</sub>-ph-<sub>QX</sub>); 7.51-7.48 (m, 2H, H<sub>2</sub>+H<sub>6</sub>-ph-<sub>QX</sub>); 7.22-7.20 (m, 3H, H<sub>3</sub>-H<sub>5</sub>-ph-<sub>CH2</sub>); 6.93-6.90 (m, 2H, H<sub>2</sub>+H<sub>6</sub>-ph-<sub>CH2</sub>); 4.27 (d, 2H, CH<sub>2</sub>); 4.03 (s, 3H, OCH<sub>3</sub>). Anal. Calcd. for C<sub>23</sub>H<sub>19</sub>N<sub>3</sub>O<sub>4</sub>: C, 68.82%; H, 4.77%; N, 10.47%. Found: C, 68.94%; H, 4.87%; N, 10.26%.

6.1.5.14. 6,7-dichloro-3-phenylquinoxaline-2-carboxylic acid benzylamide 1,4-di-Noxide (**2g**). Yield: 8%. IR (KBr): 3280 (m, ν<sub>NH</sub>); 3062 (w, ν<sub>arC-H</sub>); 1649 (s, ν<sub>C=O</sub>); 1327 (s, ν<sub>N+O-</sub>). <sup>1</sup>H NMR (400 MHz, DMSO-<sub>d6</sub>) δ ppm: 9.15 (t, 1H, N**H**, *J<sub>NH-CH2</sub>*= 5.9Hz); 8.75 (s, 1H, **H**<sub>5</sub>); 8.70 (s, 1H, **H**<sub>8</sub>); 7.50-7.48 (m, 5H, **H**<sub>2</sub>-**H**<sub>6</sub>-ph-<sub>QX</sub>); 7.22-7.20 (m, 3H, **H**<sub>3</sub>-**H**<sub>5</sub>-ph-<sub>CH2</sub>); 6.90-6.88 (m, 2H, **H**<sub>2</sub>+**H**<sub>6</sub>-ph-<sub>CH2</sub>); 4.27 (d, 2H, C**H**<sub>2</sub>). Anal. Calcd. for C<sub>22</sub>H<sub>15</sub>Cl<sub>2</sub>N<sub>3</sub>O<sub>3</sub>: C, 60.02%; H, 3.43%; N, 9.54%. Found: C, 60.07%; H, 3.56%; N, 9.46%.

6.1.5.15. 3-phenylquinoxaline-2-carboxylic acid (2-phenylethyl)amide 1,4-di-N-oxide (**3a**). Yield: 10%. IR (KBr): 3269 (w,  $v_{NH}$ ); 3078 (w,  $v_{arC-H}$ ); 1679 (s,  $v_{C=O}$ ); 1328 (s,  $v_{N+O-}$ ). <sup>1</sup>H NMR (400 MHz, DMSO-<sub>d6</sub>)  $\delta$  ppm: 8.75 (t, 1H, N**H**,  $J_{NH-CH2}$ = 5.7Hz); 8.55-8.52 (m, 2H, **H**<sub>5</sub>+**H**<sub>8</sub>); 8.05-8.03 (m, 2H, **H**<sub>6</sub>+**H**<sub>7</sub>); 7.57-7.51 (m, 5H, **H**<sub>2</sub>-**H**<sub>6</sub>-ph-<sub>QX</sub>); 7.27 (t, 2H, **H**<sub>3</sub>+**H**<sub>5</sub>-ph-<sub>CH2</sub>,  $J_{3-2}$ = $J_{3-4}$ = 7.3 Hz); 7.20 (t, 1H, **H**<sub>4</sub>-ph-<sub>CH2</sub>); 7.09 (d, 2H, **H**<sub>2</sub>+**H**<sub>6</sub>ph-<sub>CH2</sub>); 3.27-3.21 (m, 2H, C**H**<sub>2</sub>-NH); 2.39 (t, 2H, C**H**<sub>2</sub>-ph,  $J_{CH2-CH2}$ = 7.3Hz). Anal. Calcd. for C<sub>23</sub>H<sub>19</sub>N<sub>3</sub>O<sub>3</sub>: C, 71.68%; H, 4.97%; N, 10.90%. Found: C, 71.72%; H, 5.22%; N, 10.88%.

6.1.5.16. 7-chloro-3-phenylquinoxaline-2-carboxylic acid (2-phenylethyl)amide 1,4-di-N-oxide (**3b**). Yield: 8%. IR (KBr): 3304 (w,  $v_{NH}$ ); 3056 (wd,  $v_{arC-H}$ ); 1668 (s,  $v_{C=O}$ ); 1330 (s,  $v_{N+O-}$ ). <sup>1</sup>H NMR (400 MHz, DMSO-<sub>d6</sub>)  $\delta$  ppm: 8.75 (t, 1H, N**H**,  $J_{NH-CH2}$ = 5.6Hz); 8.54-8.52 (m, 2H, **H**<sub>5</sub>+**H**<sub>8</sub>); 8.07 (dd, **H**<sub>6</sub>,  $J_{6-5}$ = 9.3 Hz,  $J_{6-8}$ = 2.2 Hz); 7.56-7.51 (m, 5H, **H**<sub>2</sub>-**H**<sub>6</sub>-ph-<sub>QX</sub>); 7.27 (t, 2H, **H**<sub>3</sub>+**H**<sub>5</sub>-ph-<sub>CH2</sub>,  $J_{3-2}$ = $J_{3-4}$ = 7.3Hz); 7.19 (t, 1H, **H**<sub>4</sub>-ph<sub>CH2</sub>); 7.09 (d, 2H,  $H_2+H_6$ -ph-<sub>CH2</sub>); 3.27-3.21 (m, 2H, C $H_2$ -NH); 2.39 (t, 2H, C $H_2$ -ph,  $J_{CH2-CH2}=$  7.4 Hz). Anal. Calcd. for C<sub>23</sub>H<sub>18</sub>ClN<sub>3</sub>O<sub>3</sub>: C, 65.80%; H, 4.32%; N, 10.01%. Found: C, 65.95%; H, 4.46%; N, 10.09%.

6.1.5.17. 3-methylquinoxaline-2-carboxylic acid p-trifluoromethylbenzylamide 1,4-di-Noxide (**4a**). Yield: 21%. IR (KBr): 3205 (w, v<sub>N-H</sub>); 3039 (w, v<sub>arC-H</sub>); 1669 (s, v<sub>C=O</sub>); 1325 (s, v<sub>N+O-</sub>); 1166 (m, v<sub>arC-CF3</sub>); 1101 (m, v<sub>arC-CF3</sub>); 1068 (m, v<sub>arC-CF3</sub>). <sup>1</sup>H NMR (400 MHz, DMSO-<sub>d6</sub>) δ ppm: 9.49 (t, 1H, N**H**, *J<sub>NH-CH2</sub>*= 5.9 Hz); 8.53-8.49 (m, 2H, **H**<sub>5</sub>+**H**<sub>8</sub>); 8.03-7.96 (m, 2H, **H**<sub>6</sub>+**H**<sub>7</sub>); 7.77 (d, 2H, **H**<sub>3</sub>+**H**<sub>5</sub>, *J*<sub>3'-2'</sub>= 8.2 Hz); 7.70 (d, 2H, **H**<sub>2</sub>+**H**<sub>6'</sub>); 4.67 (d, 2H, C**H**<sub>2</sub>); 2.44 (s, 3H, C**H**<sub>3</sub>-C<sub>3</sub>). Anal. Calcd. for C<sub>18</sub>H<sub>14</sub>F<sub>3</sub>N<sub>3</sub>O<sub>3</sub>: C, 57.30%; H, 3.74%; N, 11.14%. Found: C, 57.02%; H, 3.79%; N, 11.00%.

6.1.5.18. 7-chloro-3-methylquinoxaline-2-carboxylic acid p-trifluoromethylbenzylamide 1,4-di-N-oxide (**4b**). Yield: 37%. IR (KBr): 3277 (w,  $v_{N-H}$ ); 3103 (w,  $v_{arC-H}$ ); 1650 (m,  $v_{C=O}$ ); 1328 (s,  $v_{N+O-}$ ); 1161 (m,  $v_{arC-CF3}$ ); 1109 (m,  $v_{arC-CF3}$ ); 1072 (m,  $v_{arC-CF3}$ ). <sup>1</sup>H NMR (400 MHz, DMSO-<sub>d6</sub>)  $\delta$  ppm: 9.49 (t, 1H, N**H**,  $J_{NH-CH2}$ = 5.9 Hz); 8.50 (s, 2H, **H**<sub>5</sub>+**H**<sub>8</sub>); 8.04 (dd, 1H, **H**<sub>6</sub>,  $J_{6-5}$ = 9.1 Hz,  $J_{6-8}$ = 2.3 Hz); 7.77 (d, 2H, **H**<sub>3</sub>+**H**<sub>5</sub>,  $J_{3'-2}$ = 8.1 Hz); 7.69 (d, 2H, **H**<sub>2'</sub>+**H**<sub>6'</sub>); 4.66 (d, 2H, C**H**<sub>2</sub>); 2.43 (s, 3H, C**H**<sub>3</sub>-C<sub>3</sub>). Anal. Calcd. for C<sub>18</sub>H<sub>13</sub>ClF<sub>3</sub>N<sub>3</sub>O<sub>3</sub>: C, 52.51%; H, 3.18%; N, 10.20%. Found: C, 52.26%; H, 3.19%; N, 9.95%.

6.1.5.19. 7-fluoro-3-methylquinoxaline-2-carboxylic acid p-trifluoromethylbenzylamide 1,4-di-N-oxide (**4c**). Yield: 51%. IR (KBr): 3212 (w,  $v_{\text{N-H}}$ ); 3079 (w,  $v_{\text{arC-H}}$ ); 1671 (m,  $v_{\text{C=O}}$ ); 1327 (s,  $v_{\text{N+O-}}$ ); 1167 (m,  $v_{\text{arC-CF3}}$ ); 1101 (m,  $v_{\text{arC-CF3}}$ ); 1065 (m,  $v_{\text{arC-CF3}}$ ). <sup>1</sup>H NMR (400 MHz, DMSO-<sub>d6</sub>)  $\delta$  ppm: 9.50 (t, 1H, N**H**,  $J_{NH-CH2}$ = 5.8 Hz); 8.58 (dd, 1H, **H**<sub>5</sub>,  $J_{5-6}$ = 9.5 Hz,  $J_{5-F}$ = 5.1 Hz); 8.25 (dd, 1H, **H**<sub>8</sub>,  $J_{8-F}$ = 8.8 Hz,  $J_{8-6}$ = 2.4 Hz); 7.93 (ddd, 1H, **H**<sub>6</sub>,  $J_{6-F}$ = 9.4 Hz); 7.77 (d, 2H, **H**<sub>3</sub>,  $H_{5'}$ ,  $J_{3'-2'}$ = 8.1 Hz); 7.69 (d, 2H, **H**<sub>2'</sub>+**H**<sub>6'</sub>); 4.67 (d, 2H, C**H**<sub>2</sub>); 2.43 (s, 3H, C**H**<sub>3</sub>-C<sub>3</sub>). Anal. Calcd. for C<sub>18</sub>H<sub>13</sub>F<sub>4</sub>N<sub>3</sub>O<sub>3</sub>: C, 54.69%; H, 3.31%; N, 10.63%. Found: C, 54.64%; H, 3.30%; N, 10.36%.

6.1.5.20. 3-methyl-7-trifluoromethylquinoxaline-2-carboxylic acid p-trifluoromethyl benzylamide 1,4-di-N-oxide (**4d**). Yield: 12%. IR (KBr): 3212 (w,  $v_{N-H}$ ); 3064 (w,  $v_{arC-H}$ ); 1679 (s,  $v_{C=0}$ ); 1326 (s,  $v_{N+O-}$ ); 1168 (m,  $v_{arC-CF3}$ ); 1143 (m,  $v_{arC-CF3}$ ); 1111 (m,  $v_{arC-CF3}$ ); 1085 (m,  $v_{arC-CF3}$ ). <sup>1</sup>H NMR (400 MHz, DMSO-d6)  $\delta$  ppm: 9.52 (t, 1H, NH,  $J_{NH-CH2}$ = 5.5 Hz); 8.76 (s, 1H, H<sub>8</sub>); 8.70 (d, 1H, H<sub>5</sub>,  $J_{5-6}$ = 9.0 Hz); 8.29 (dd, 1H, H<sub>6</sub>,  $J_{6-8}$ = 1.7 Hz); 7.78 (d, 2H, H<sub>3</sub>+H<sub>5</sub>,  $J_{3'-2'}$  = 8.1 Hz); 7.70 (d, 2H, H<sub>2</sub>+H<sub>6'</sub>); 4.68 (d, 2H, CH<sub>2</sub>); 2.47 (s, 3H, CH<sub>3</sub>-C<sub>3</sub>). Anal. Calcd. for C<sub>19</sub>H<sub>13</sub>F<sub>6</sub>N<sub>3</sub>O<sub>3</sub>: C, 51.25%; H, 2.94%; N, 9.44%. Found: C, 51.26%; H, 2.74%; N, 9.34%.

6.1.5.21. 3,7-dimethylquinoxaline-2-carboxylic acid p-trifluoromethylbenzylamide 1,4di-N-oxide (**4e**). Yield: 28%. IR (KBr): 3199 (w, v<sub>N-H</sub>); 3032 (w, v<sub>arC-H</sub>); 1669 (s, v<sub>C=O</sub>); 1325 (s,  $v_{N+O-}$ ); 1165 (m,  $v_{arC-CF3}$ ); 1100 (m,  $v_{arC-CF3}$ ); 1167 (m,  $v_{arC-CF3}$ ). <sup>1</sup>H NMR (400 MHz, DMSO-<sub>d6</sub>)  $\delta$  ppm: 9.49 (t, 1H, N**H**,  $J_{NH-CH2}$ = 5.5 Hz); 8.40 (d, 1H, **H**<sub>5</sub>,  $J_{5-6}$ = 8.8 Hz); 8.31 (s, 1H, **H**<sub>8</sub>); 7.84 (d, 1H, **H**<sub>6</sub>); 7.76 (d, 2H, **H**<sub>3'</sub>+**H**<sub>5'</sub>,  $J_{3'-2'}$ = 8.2 Hz); 7.70 (d, 2H, **H**<sub>2'</sub>+**H**<sub>6'</sub>); 4.66 (d, 2H, C**H**<sub>2</sub>); 2,59 (s, 3H, C**H**<sub>3</sub>-C<sub>7</sub>); 2.42 (s, 3H, C**H**<sub>3</sub>-C<sub>3</sub>). Anal. Calcd. for C<sub>19</sub>H<sub>16</sub>F<sub>3</sub>N<sub>3</sub>O<sub>3</sub>: C, 58.31%; H, 4.12%; N, 10.74%. Found: C, 58.05%; H, 4.09%; N, 10.48%.

6.1.5.22. 7-methoxy-3-methyl-quinoxaline-2-carboxylic acid p-trifluoromethylbenzyl amide 1,4-di-N-oxide (**4f**). Yield: 29%. IR (KBr): 3212 (w,  $v_{N-H}$ ); 3040 (w,  $v_{arC-H}$ ); 1679 (m,  $v_{C=O}$ ); 1325 (s,  $v_{N+O-}$ ); 1169 (m,  $v_{arC-CF3}$ ); 1118 (m,  $v_{arC-CF3}$ ); 1066 (m,  $v_{arC-CF3}$ ). <sup>1</sup>H NMR (400 MHz, DMSO-<sub>d6</sub>)  $\delta$  ppm: 9.51 (t, 1H, N**H**,  $J_{NH-CH2}$ = 5.6 Hz); 8.42 (d, 1H, **H**<sub>5</sub>,  $J_{5-6}$ = 9.5 Hz); 7.81 (d, 1H, **H**<sub>8</sub>,  $J_{8-6}$ = 2.60 Hz); 7.77 (d, 2H, **H**<sub>3</sub>,  $H_{5'}$ ,  $J_{3'-2'}$ = 8.1 Hz); 7.71 (d, 2H, **H**<sub>2'</sub>+**H**<sub>6'</sub>); 7.61 (dd, 1H, **H**<sub>6</sub>); 4.66 (d, 2H, C**H**<sub>2</sub>); 4.00 (s, 3H, OC**H**<sub>3</sub>); 2,41 (s, 3H, C**H**<sub>3</sub>-C<sub>3</sub>). Anal. Calcd. for C<sub>19</sub>H<sub>16</sub>F<sub>3</sub>N<sub>3</sub>O<sub>4</sub>: C, 56.02%; H, 3.96%; N, 10.32%. Found: C, 55.90%; H, 3.84%; N, 10.14%.

6.1.5.23. 6,7-dichloro-3-methyl-quinoxaline-2-carboxylic acid p-trifluoromethylbenzyl amide 1,4-di-N-oxide (**4g**). Yield: 12%. IR (KBr): 3237 (w, v<sub>N-H</sub>); 3071 (w, v<sub>arC-H</sub>); 1670 (m, v<sub>C=O</sub>); 1323 (s, v<sub>N+O-</sub>); 1169 (m, v<sub>arC-CF3</sub>); 1109 (m, v<sub>arC-CF3</sub>); 1069 (m, v<sub>arC-CF3</sub>). <sup>1</sup>H NMR (400 MHz, DMSO-<sub>d6</sub>) δ ppm: 9.51 (t, 1H, N**H**, *J<sub>NH-CH2</sub>*= 5.8 Hz); 8.69 (s, 1H, **H**<sub>5</sub>); 8.68 (s, 1H, **H**<sub>8</sub>); 7.76 (d, 2H, **H**<sub>3'</sub>+**H**<sub>5'</sub>, *J*<sub>3'-2'</sub>= 8.4 Hz); 7.68 (d, 2H, **H**<sub>2'</sub>+**H**<sub>6'</sub>); 4.66 (d, 2H, C**H**<sub>2</sub>); 2.43 (s, 3H, C**H**<sub>3</sub>-C<sub>3</sub>). Anal. Calcd. for C<sub>18</sub>H<sub>12</sub>Cl<sub>2</sub>F<sub>3</sub>N<sub>3</sub>O<sub>3</sub>: C, 48.45%; H, 2.71%; N, 9.42%. Found: C, 48.75%; H, 2.82%; N, 9.44%.

6.1.5.24. 3-methylquinoxaline-2-carboxylic acid p-chlorobenzylamide 1,4-di-N-oxide (**5a**). Yield: 47%. IR (KBr): 3192 (w,  $v_{N-H}$ ); 3071 (w,  $v_{arC-H}$ ); 1675 (s,  $v_{C=O}$ ); 1327 (s,  $v_{N+O-}$ ); 1082 (m,  $v_{arC-Cl}$ ). <sup>1</sup>H NMR (400 MHz, DMSO-<sub>d6</sub>)  $\delta$  ppm: 9.40 (t, 1H, NH,  $J_{NH-CH2}$ = 5.8 Hz); 8.53-8.49 (m, 2H, H<sub>5</sub>+H<sub>8</sub>); 8.01-7.97 (m, 2H, H<sub>6</sub>+H<sub>7</sub>); 7.49 (d, 2H, H<sub>3</sub>+H<sub>5</sub>,  $J_{3'-2}$ = 8.5 Hz); 7.45 (d, 2H, H<sub>2</sub>+H<sub>6</sub>·); 4.56 (d, 2H, CH<sub>2</sub>); 2.42 (s, 3H, CH<sub>3</sub>-C<sub>3</sub>). Anal. Calcd. for C<sub>17</sub>H<sub>14</sub>ClN<sub>3</sub>O<sub>3</sub>: C, 59.40%; H, 4.10%; N, 12.22%. Found: C, 59.14%; H, 4.10%; N, 12.58%.

6.1.5.25. 7-chloro-3-methylquinoxaline-2-carboxylic acid p-chlorobenzylamide 1,4-di-N-oxide (**5b**). Yield: 37%. IR (KBr): 3271 (w, v<sub>N-H</sub>); 3103 (w, v<sub>arC-H</sub>); 1650 (s, v<sub>C=O</sub>); 1326 (s, v<sub>N+O-</sub>); 1073 (m, v<sub>arC-Cl</sub>). <sup>1</sup>H NMR (400 MHz, DMSO-<sub>d6</sub>) δ ppm: 9.40 (t, 1H, N**H**, J<sub>NH-CH2</sub>= 5.7 Hz); 8.50 (d, 1H, **H**<sub>5</sub>, J<sub>5-6</sub>= 9.3 Hz); 8.49 (d, 1H, **H**<sub>8</sub>, J<sub>8-6</sub>= 2.0 Hz); 8.04 (dd, 1H, **H**<sub>6</sub>); 7.48 (d, 2H, **H**<sub>3'</sub>+**H**<sub>5'</sub>, J<sub>3'-2'</sub>= 8.6 Hz); 7.45 (d, 2H, **H**<sub>2'</sub>+**H**<sub>6'</sub>); 4.55 (d, 2H, C**H**<sub>2</sub>); 2.41 (s, 3H, C**H**<sub>3</sub>-C<sub>3</sub>). Anal. Calcd. for C<sub>17</sub>H<sub>13</sub>Cl<sub>2</sub>N<sub>3</sub>O<sub>3</sub>: C, 53.99%; H, 3.46%; N, 11.11%. Found: C, 54.03%; H, 3.53%; N, 11.05%. 6.1.5.26. 3,7-dimethylquinoxaline-2-carboxylic acid p-chlorobenzylamide 1,4-di-Noxide (**5e**). Yield: 21%. IR (KBr): 3250 (w,  $v_{N-H}$ ); 3064 (w,  $v_{arC-H}$ ); 1670 (s,  $v_{C=O}$ ); 1322 (s,  $v_{N+O-}$ ); 1068 (m,  $v_{arC-Cl}$ ). <sup>1</sup>H NMR (400 MHz, DMSO-<sub>d6</sub>)  $\delta$  ppm: 9.40 (t, 1H, N**H**,  $J_{NH-CH2}$ = 5.5 Hz); 8.40 (d, **H**<sub>5</sub>,  $J_{5-6}$ = 8.8 Hz); 8.31 (s, 1H, **H**<sub>8</sub>); 7.83 (dd, 1H, **H**<sub>6</sub>,  $J_{6-8}$ = 1.5 Hz); 7.49 (dd, 2H, **H**<sub>3'</sub>+**H**<sub>5'</sub>,  $J_{3'-2'}$ = 8.5 Hz,  $J_{3'-Cl}$ = 1.3 Hz); 7.45 (dd, 2H, **H**<sub>2'</sub>+**H**<sub>6'</sub>,  $J_{2'-Cl}$ = 1.1 Hz); 4.55 (d, 2H, C**H**<sub>2</sub>); 2.59 (s, 3H, C**H**<sub>3</sub>-C<sub>7</sub>); 2.40 (s, 3H, C**H**<sub>3</sub>-C<sub>3</sub>). Anal. Calcd. for C<sub>18</sub>H<sub>16</sub>ClN<sub>3</sub>O<sub>3</sub>: C, 60.43%; H, 4.51%; N, 11.74%. Found: C, 60.08%; H, 4.46%; N, 11.51%.

6.1.5.27. 6,7-dichloro-3-methylquinoxaline-2-carboxylic acid p-chlorobenzylamide 1,4di-N-oxide (**5g**). Yield: 11%. IR (KBr): 3243 (w, v<sub>N-H</sub>); 3071 (w, v<sub>arC-H</sub>); 1671 (s, v<sub>C=O</sub>); 1321 (s, v<sub>N+O-</sub>); 1066 (m, v<sub>arC-Cl</sub>). <sup>1</sup>H NMR (400 MHz, DMSO-<sub>d6</sub>) δ ppm: 9.43 (t, 1H, NH, J<sub>NH-CH2</sub>= 5.9 Hz); 8.69 (d, 1H, H<sub>5</sub>, J<sub>5-8</sub>= 0.5 Hz); 8.68 (d, 1H, H<sub>8</sub>); 7.48 (d, 2H, H<sub>3'</sub>+H<sub>5'</sub>, J<sub>3'-2'</sub>= 8.8 Hz); 7.45 (d, 2H, H<sub>2'</sub>+H<sub>6'</sub>); 4.55 (d, CH<sub>2</sub>); 2.41 (s, 3H, CH<sub>3</sub>-C<sub>3</sub>). Anal. Calcd. for C<sub>17</sub>H<sub>12</sub>Cl<sub>3</sub>N<sub>3</sub>O<sub>3</sub>: C, 49.48%; H, 2.93%; N, 10.18%. Found: C, 49.76%; H, 2.98%; N, 10.12%.

6.1.5.28. 3-methylquinoxaline-2-carboxylic acid p-bromobenzylamide 1,4-di-N-oxide (**6a**). Yield: 7%. IR (KBr): 3271 (w,  $v_{N-H}$ ); 3090 (w,  $v_{arC-H}$ ); 1677 (s,  $v_{C=O}$ ); 1331 (s,  $v_{N+O-}$ ); 1073 (m,  $v_{arC-Br}$ ). <sup>1</sup>H NMR (400 MHz, DMSO-<sub>d6</sub>)  $\delta$  ppm: 9.40 (t, 1H, N**H**,  $J_{NH-CH2}$ =5.8 Hz); 8.52-8.49 (m, 2H, **H**<sub>5</sub>+**H**<sub>8</sub>); 8.03-7.96 (m, 2H, **H**<sub>6</sub>+**H**<sub>7</sub>); 7.59 (d, 2H, **H**<sub>3'</sub>+**H**<sub>5'</sub>,  $J_{H3'-H2'}$ = 8.3 Hz); 7.43 (d, 2H, **H**<sub>2'</sub>+**H**<sub>6'</sub>); 4.54 (d, 2H, C**H**<sub>2</sub>); 2.42(s, 3H, C**H**<sub>3</sub>-C<sub>3</sub>). Anal. Calcd. for C<sub>17</sub>H<sub>14</sub>BrN<sub>3</sub>O<sub>3</sub>: C, 52.60%; H, 3.63%; N, 10.82%. Found: C, 52.23%; H, 3.55%; N, 10.43%.

6.1.5.29. 7-chloro-3-methylquinoxaline-2-carboxylic acid p-bromobenzylamide 1,4-di-N-oxide (**6b**). Yield: 14%. IR (KBr): 3237 (w, v<sub>N-H</sub>); 3064 (w, v<sub>arC-H</sub>); 1670 (s, v<sub>C=O</sub>); 1325 (s, v<sub>N+O-</sub>); 1071 (m, v<sub>arC-Br</sub>). <sup>1</sup>H NMR (400 MHz, DMSO-<sub>d6</sub>) δ ppm: 9.40 (bs, 1H, N**H**); 8.50 (d, 1H, **H**<sub>5</sub>, *J*<sub>5-6</sub>=9.3 Hz); 8.49 (d, 1H, **H**<sub>8</sub>, *J*<sub>8-6</sub>=2.4 Hz); 8.04 (dd, 1H, **H**<sub>6</sub>); 7.59 (d, 2H, **H**<sub>3'</sub>+**H**<sub>5'</sub>, *J*<sub>3'-2'</sub>= 8.4 Hz); 7.42 (d, 2H, **H**<sub>2'</sub>+**H**<sub>6'</sub>); 4.53 (d, 2H, C**H**<sub>2</sub>, *J*<sub>CH2-NH</sub>=5.8 Hz); 2.41 (s, 3H, C**H**<sub>3</sub>-C<sub>3</sub>). Anal. Calcd. for C<sub>17</sub>H<sub>13</sub>BrClN<sub>3</sub>O<sub>3</sub>: C, 48.31%; H, 3.10%; N, 9.94%. Found: C, 48.30%; H, 3.00%; N, 9.64%.

6.1.5.30. 3,7-dimethylquinoxaline-2-carboxylic acid p-bromobenzylamide 1,4-di-Noxide (**6e**). Yield: 27%. IR (KBr): 3205 (w, v<sub>N-H</sub>); 3058 (w, v<sub>arC-H</sub>); 1667 (s, v<sub>C=O</sub>); 1327 (s, v<sub>N+O-</sub>); 1068 (m, v<sub>arC-Br</sub>). <sup>1</sup>H NMR (400 MHz, DMSO-<sub>d6</sub>) δ ppm: 9.40 (bs, 1H, N**H**); 8.40 (d, 1H, **H**<sub>5</sub>, *J*<sub>5-6</sub>= 8.8 Hz); 8.31 (s, 1H, **H**<sub>8</sub>); 7.83 (dd, 1H, **H**<sub>6</sub>, *J*<sub>6-8</sub>= 1.3 Hz); 7.58 (d, 2H, **H**<sub>3'</sub>+**H**<sub>5'</sub>, *J*<sub>3'-2'</sub>= 8.5 Hz); 7.43 (d, 2H, **H**<sub>2'</sub>+**H**<sub>6'</sub>); 4.53 (d, 2H, C**H**<sub>2</sub>, *J*<sub>CH2-NH</sub>= 5.9 Hz); 2.59 (s, 3H, C**H**<sub>3</sub>-C<sub>7</sub>); 2.40 (s, 3H, C**H**<sub>3</sub>-C<sub>3</sub>). Anal. Calcd. for C<sub>18</sub>H<sub>16</sub>BrN<sub>3</sub>O<sub>3</sub>: C, 53.75%; H, 4.01%; N, 10.45%. Found: C, 53.41%; H, 3.86%; N, 10.07%. 6.1.5.31. 6,7-dichloro-3-methylquinoxaline-2-carboxylic acid p-bromobenzylamide 1,4di-N-oxide (**6g**). Yield: 14%. IR (KBr): 3237 (w, v<sub>N-H</sub>); 3066 (w, v<sub>arC-H</sub>); 1670 (s, v<sub>C=O</sub>); 1320 (s, v<sub>N+O</sub>); 1067 (m, v<sub>arC-Br</sub>). <sup>1</sup>H NMR (400 MHz, DMSO-<sub>d6</sub>) δ ppm: 9.43 (t, 1H, N**H**, *J<sub>NH-CH2</sub>*= 5.9 Hz); 8.69 (s, 1H, **H**<sub>5</sub>); 8.68 (s, 1H, **H**<sub>8</sub>); 7.58 (d, 2H, **H**<sub>3</sub>,+**H**<sub>5</sub>, *J*<sub>3'-2</sub>= 8.3 Hz); 7.41 (d, 2H, **H**<sub>2</sub>,+**H**<sub>6</sub>); 4.53 (d, 2H, C**H**<sub>2</sub>); 2.41 (s, 3H, C**H**<sub>3</sub>-C<sub>3</sub>). Anal. Calcd. for C<sub>17</sub>H<sub>12</sub>BrCl<sub>2</sub>N<sub>3</sub>O<sub>3</sub>: C, 44.67%; H, 2.65%; N, 9.19%. Found: C, 44.33%; H, 2.56%; N, 8.92%.

6.1.5.32. 3-methylquinoxaline-2-carboxylic acid p-methylbenzylamide 1,4-di-N-oxide (**7a**). Yield: 61%. IR (KBr): 3224 (w,  $v_{N-H}$ ); 3045 (w,  $v_{arC-H}$ ); 1671 (s,  $v_{C=O}$ ); 1336 (s,  $v_{N+O-}$ ). <sup>1</sup>H NMR (400 MHz, DMSO-<sub>d6</sub>)  $\delta$  ppm: 9.30 (t, 1H, N**H**,  $J_{NH-CH2}$ = 5.8 Hz); 8.52-8.49 (m, 2H, **H**<sub>5</sub>+**H**<sub>8</sub>); 8.02-7.97 (m, 2H, **H**<sub>6</sub>+**H**<sub>7</sub>); 7.33 (d, 2H, **H**<sub>2</sub>+**H**<sub>6</sub>,  $J_{2'-3}$ = 7.8 Hz); 7.19 (d, 2H, **H**<sub>3</sub>+**H**<sub>5</sub>-); 4.51 (d, 2H, C**H**<sub>2</sub>); 2.42 (s, 3H, C**H**<sub>3</sub>-C<sub>3</sub>); 2.30 (s, 3H, C**H**<sub>3</sub>-ph). Anal. Calcd. for C<sub>18</sub>H<sub>17</sub>N<sub>3</sub>O<sub>3</sub>: C, 66.86%; H, 5.30%; N, 13.00%. Found: C, 66.62%; H, 5.28%; N, 12.78%.

6.1.5.33. 7-chloro-3-methylquinoxaline-2-carboxylic acid p-methylbenzylamide 1,4-di-N-oxide (**7b**). Yield: 35%. IR (KBr): 3259 (w,  $v_{N-H}$ ); 3077 (w,  $v_{arC-H}$ ); 1671 (s,  $v_{C=O}$ ); 1325 (s,  $v_{N+O}$ ). <sup>1</sup>H NMR (400 MHz, DMSO-<sub>d6</sub>)  $\delta$  ppm: 9.30 (t, 1H, N**H**,  $J_{NH-CH2}$ = 5.9 Hz); 8.50 (d, 1H, **H**<sub>5</sub>,  $J_{5-6}$ = 9.1 Hz); 8.48 (s, 1H, **H**<sub>8</sub>); 8.03 (dd, 1H, **H**<sub>6</sub>,  $J_{6-8}$ = 2.3 Hz); 7.32 (d, 2H, **H**<sub>2'</sub>+**H**<sub>6'</sub>,  $J_{2'-3'}$ = 7.9 Hz); 7.19 (d, 2H, **H**<sub>3'</sub>+**H**<sub>5'</sub>); 4.51 (d, 2H, C**H**<sub>2</sub>); 2.40 (s, 3H, C**H**<sub>3</sub>-C<sub>3</sub>); 2.30 (s, 3H, C**H**<sub>3</sub>-ph). Anal. Calcd. for C<sub>18</sub>H<sub>16</sub>ClN<sub>3</sub>O<sub>3</sub>: C, 60.43%; H, 4.51%; N, 11.74%. Found: C, 60.41%; H, 4.57%; N, 11.71%.

6.1.5.34. 3,7-dimethylquinoxaline-2-carboxylic acid p-methylbenzylamide 1,4-di-Noxide (**7e**). Yield: 10%. IR (KBr): 3281 (m,  $v_{N-H}$ ); 3065 (w,  $v_{arC-H}$ ); 1650 (s,  $v_{C=O}$ ); 1325 (s,  $v_{N+O-}$ ). <sup>1</sup>H NMR (400 MHz, DMSO-<sub>d6</sub>)  $\delta$  ppm: 9.31 (bs, 1H, N**H**); 8.39 (d, 1H, **H**<sub>5</sub>,  $J_{5-6}$ = 8.8 Hz); 8.30 (s, 1H, **H**<sub>8</sub>); 7.83 (dd, 1H, **H**<sub>6</sub>,  $J_{6-8}$ = 1.8 Hz); 7.33 (d, 2H, **H**<sub>2</sub>,+**H**<sub>6</sub>,  $J_{2'-3'}$ = 8.1 Hz); 7.19 (d, 2H, **H**<sub>3'</sub>+**H**<sub>5'</sub>); 4.50 (d, 2H, C**H**<sub>2</sub>,  $J_{CH2-NH}$ = 5.8 Hz); 2.60 (s, 3H, C**H**<sub>3</sub>-C<sub>7</sub>); 2.40 (s, 3H, C**H**<sub>3</sub>-C<sub>3</sub>); 2.30 (s, 3H, C**H**<sub>3</sub>-ph). Anal. Calcd. for C<sub>19</sub>H<sub>19</sub>N<sub>3</sub>O<sub>3</sub>: C, 67.64%; H, 5.68%; N, 12.45%. Found: C, 67.27%; H, 5.70%; N, 12.25%.

6.1.5.35. 6,7-dichloro-3-methylquinoxaline-2-carboxylic acid p-methylbenzylamide 1,4di-N-oxide (**7g**). Yield: 12%. IR (KBr): 3270(m,  $v_{N-H}$ ); 3045 (w,  $v_{arC-H}$ ); 1649 (s,  $v_{C=O}$ ); 1359 (m,  $v_{N+O-}$ ). <sup>1</sup>H NMR (400 MHz, DMSO-<sub>d6</sub>)  $\delta$  ppm: 9.35 (t, 1H, N**H**,  $J_{NH-CH2}$ = 5.3 Hz); 8.62 (s, 1H, **H**<sub>5</sub>); 8.45 (s, 1H, **H**<sub>8</sub>); 7.32 (d, 2H, **H**<sub>2</sub>,+**H**<sub>6</sub>,  $J_{2'-3}$ ,= 7.3 Hz); 7.19 (d, 2H, **H**<sub>3</sub>,+**H**<sub>5</sub>,); 4.51 (d, 2H, C**H**<sub>2</sub>); 2.55(s, 3H, C**H**<sub>3</sub>-C<sub>3</sub>); 2.30 (s, 3H, C**H**<sub>3</sub>-ph). Anal. Calcd. for C<sub>18</sub>H<sub>15</sub>Cl<sub>2</sub>N<sub>3</sub>O<sub>3</sub>: C, 55.12%; H, 3.85%; N, 10.71%. Found: C, 55.37%; H, 4.17%; N, 10.45%. 6.1.5.36. 3-methylquinoxaline-2-carboxylic acid 2,2-diphenylethylamide 1,4-di-N-oxide (**8a**). Yield: 8%. IR (KBr): 3237 (w,  $v_{N-H}$ ); 3064 (w,  $v_{arC-H}$ ); 1681 (s,  $v_{C=O}$ ); 1339 (m,  $v_{N+O-}$ ). <sup>1</sup>H NMR (400 MHz, DMSO-<sub>d6</sub>)  $\delta$  ppm: 8.90 (t, 1H, N**H**,  $J_{NH-CH2}$ = 5.7 Hz); 8.47-8.42 (m, 2H, **H**<sub>5</sub>+**H**<sub>8</sub>); 7.99-7.92 (m, 2H, **H**<sub>6</sub>+**H**<sub>7</sub>); 7.41 (dd, 4H, 2**H**<sub>2</sub>+2**H**<sub>6</sub>,  $J_{2'-3'}$ = 7.2 Hz,  $J_{2'-4'}$ =1.3 Hz); 7.35-7.31 (m, 4H, 2**H**<sub>3'</sub>+2**H**<sub>5'</sub>); 7.20 (tt, 2H, 2**H**<sub>4'</sub>,  $J_{4'-3'}$ = 7.3 Hz); 4.32 (t, 1H, C**H**,  $J_{CH-CH2}$ = 8.0 Hz); 4.02 (dd, 2H, C**H**<sub>2</sub>); 1.97 (s, 3H, C**H**<sub>3</sub>-C<sub>3</sub>). Anal. Calcd. for C<sub>24</sub>H<sub>21</sub>N<sub>3</sub>O<sub>3</sub>: C, 72.17%; H, 5.30%; N, 10.52%. Found: C, 72.02%; H, 5.34%; N, 10.29%.

6.1.5.37. 7-chloro-3-methylquinoxaline-2-carboxylic acid 2,2-diphenylethylamide 1,4di-N-oxide (**8b**). Yield: 17%. IR (KBr): 3231 (w, v<sub>N-H</sub>); 3058 (w, v<sub>arC-H</sub>); 1679 (s, v<sub>C=O</sub>); 1326 (s, v<sub>N+O-</sub>). <sup>1</sup>H NMR (400 MHz, DMSO-<sub>d6</sub>)  $\delta$  ppm: 8.88 (bs, 1H, N**H**); 8.45 (d, 1H, **H**<sub>5</sub>, J<sub>5-6</sub>= 9.2 Hz); 8.41 (d, 1H, **H**<sub>8</sub>, J<sub>8-6</sub>= 2.1 Hz); 8.00 (dd, 1H, **H**<sub>6</sub>); 7.40 (dd, 4H, 2**H**<sub>2</sub>·+2**H**<sub>6</sub>·, J<sub>2</sub>·-3·= 7.8 Hz, J<sub>2</sub>·-4·=1.2 Hz); 7.35-7.30 (m, 4H, 2**H**<sub>3</sub>·+2**H**<sub>5</sub>·); 7.22 (tt, 2H, 2**H**<sub>4</sub>·, J<sub>4</sub>·-3·=7.3 Hz); 4.32 (t, 1H, C**H**, J<sub>CH-CH2</sub>= 7.9 Hz); 4.03 (dd, 2H, C**H**<sub>2</sub>); 1.98 (s, 3H, C**H**<sub>3</sub>-C<sub>3</sub>). Anal. Calcd. for C<sub>24</sub>H<sub>20</sub>ClN<sub>3</sub>O<sub>3</sub>: C, 66.44%; H, 4.65%; N, 9.68%. Found: C, 66.53%; H, 5.03%; N, 9.31%.

6.1.5.38. 3,7-dimethylquinoxaline-2-carboxylic acid 2,2-diphenylethylamide 1,4-di-Noxide (**8e**). Yield: 11%. IR (KBr): 3223 (w,  $v_{N-H}$ ); 3057 (w,  $v_{arC-H}$ ); 1678 (s,  $v_{C=O}$ ); 1328 (s,  $v_{N+O-}$ ). <sup>1</sup>H NMR (400 MHz, DMSO-<sub>d6</sub>)  $\delta$  ppm: 8.90 (bs, 1H, N**H**); 8.34 (d, 1H, **H**<sub>5</sub>,  $J_{5-6}$ = 8.5 Hz); 8.23 (s, 1H, **H**<sub>8</sub>); 7.79 (dd, 1H, **H**<sub>6</sub>,  $J_{6-8}$ =1.2 Hz); 7.40 (d, 4H, 2**H**<sub>2</sub>+2**H**<sub>6</sub>,  $J_{2'-3'}$ = 7.5 Hz); 7.32 (t, 4H, 2**H**<sub>3'</sub>+2**H**<sub>5'</sub>,  $J_{3'-4'}$ = 7.5Hz); 7.24-7.20 (m, 2H, 2**H**<sub>4'</sub>); 4.31 (t, 1H, C**H**,  $J_{CH-CH2}$ = 7.9 Hz); 4.02 (dd, 2H, C**H**<sub>2</sub>,  $J_{CH2-NH}$ = 5.8 Hz); 2.57 (s, 3H, C**H**<sub>3</sub>-C<sub>7</sub>); 1.95 (m, 3H, C**H**<sub>3</sub>-C<sub>3</sub>). Anal. Calcd. for C<sub>25</sub>H<sub>23</sub>N<sub>3</sub>O<sub>3</sub>: C, 72.62%; H, 5.61%; N, 10.16%. Found: C, 72.26%; H, 5.84%; N, 9.77%.

6.1.5.39. 6,7-dichloro-3-methylquinoxaline-2-carboxylic acid 2,2-diphenylethylamide 1,4-di-N-oxide (**8g**). Yield: 15%. IR (KBr): 3212 (w, v<sub>N-H</sub>); 3083 (w, v<sub>arC-H</sub>); 1676 (s, v<sub>C=O</sub>); 1321 (s, v<sub>N+O-</sub>). <sup>1</sup>H NMR (400 MHz, DMSO-<sub>d6</sub>)  $\delta$  ppm: 8.91 (t, 1H, N**H**, J<sub>NH-CH2</sub>= 5.8 Hz); 8.63 (s, 1H, **H**<sub>5</sub>); 8.60 (s, 1H, **H**<sub>8</sub>); 7.40 (dd, 4H, 2**H**<sub>2</sub>,+2**H**<sub>6</sub>, J<sub>2'-3</sub> = 7.8 Hz, J<sub>2'-4</sub> = 1.3 Hz); 7.32 (dd, 4H, 2**H**<sub>3</sub>,+2**H**<sub>5</sub>, J<sub>3'-4</sub> = 7.4 Hz); 7.24 (tt, 2H, 2**H**<sub>4</sub>); 4.32 (t, 1H, C**H**, J<sub>CH-CH2</sub> = 8.1 Hz); 4.02 (dd, 2H, C**H**<sub>2</sub>); 1.07 (s, 3H, C**H**<sub>3</sub>-C<sub>3</sub>). Anal. Calcd. for C<sub>24</sub>H<sub>19</sub>Cl<sub>2</sub>N<sub>3</sub>O<sub>3</sub>.1/2H<sub>2</sub>O: C, 60.33%; H, 4.22%; N, 8.79%. Found: C, 60.10%; H, 4.25%; N, 8.60%.

6.1.5.40. 3-methylquinoxaline-2-carboxylic acid (benzo[1,3]dioxol-5-ylmethyl)amide 1,4-di-N-oxide (**9a**). Yield: 25%. IR (KBr): 3261 (m,  $v_{\text{N-H}}$ ); 3077 (w,  $v_{\text{arC-H}}$ ); 1642 (s,  $v_{\text{C=O}}$ ); 1329 (m,  $v_{\text{N+O-}}$ ). <sup>1</sup>H NMR (400 MHz, DMSO-<sub>d6</sub>)  $\delta$  ppm: 9.29 (t, 1H, N**H**,  $J_{NH}$ . <sub>CH2</sub>= 5.8 Hz); 8.52-8.38 (m, 2H, **H**<sub>5</sub>+**H**<sub>8</sub>); 8.02-7.95 (m, 2H, **H**<sub>6</sub>+**H**<sub>7</sub>); 7.03 (bs, 1H, **H**<sub>2</sub>·); 6.91 (bs, 2H,  $H_{5'}+H_{6'}$ ); 6.01 (s, 2H, O-C $H_2$ -O); 4.47 (d, 2H, C $H_2$ ); 2.42 (s, 3H, C $H_3$ -C<sub>3</sub>). Anal. Calcd. for C<sub>18</sub>H<sub>15</sub>N<sub>3</sub>O<sub>5</sub>.1/2H<sub>2</sub>O: C, 59.61%; H, 4.41%; N, 11.59%. Found: C, 59.72%; H, 4.32%; N, 11.56%.

6.1.5.41. 7-chloro-3-methylquinoxaline-2-carboxylic acid (benzo[1,3]dioxol-5-yl methyl)amide 1,4-di-N-oxide (**9b**). Yield: 18%. IR (KBr): 3276 (w, v<sub>N-H</sub>); 3090 (w, v<sub>arC-H</sub>); 1649 (s, v<sub>C=O</sub>); 1326 (s, v<sub>N+O-</sub>). <sup>1</sup>H NMR (400 MHz, DMSO-<sub>d6</sub>) δ ppm: 9.29 (t, 1H, N**H**, *J<sub>NH-CH2</sub>*= 5.6 Hz); 8.51-8.49 (m, 2H, **H**<sub>5</sub>+**H**<sub>8</sub>); 8.05-8.02 (m, 1H, **H**<sub>6</sub>); 7.02 (bs, 1H, **H**<sub>2</sub>·); 6.91 (bs, 2H, **H**<sub>5</sub>·+**H**<sub>6</sub>·); 6.01 (s, 2H, O-C**H**<sub>2</sub>-O); 4.46 (d, 2H, C**H**<sub>2</sub>); 2.40 (s, 3H, C**H**<sub>3</sub>-C<sub>3</sub>). Anal. Calcd. for C<sub>18</sub>H<sub>14</sub>ClN<sub>3</sub>O<sub>5</sub>: C, 55.75%; H, 3.64%; N, 10.84%. Found: C, 55.50%; H, 3.46%; N, 10.68%.

6.1.5.42. 3,7-dimethylquinoxaline-2-carboxylic acid (benzo[1,3]dioxol-5-ylmethyl) amide 1,4-di-N-oxide (**9e**). Yield: 21%. IR (KBr): 3266 (w,  $v_{N-H}$ ); 3071 (w,  $v_{arC-H}$ ); 1649 (s,  $v_{C=O}$ ); 1325 (s,  $v_{N+O-}$ ). <sup>1</sup>H NMR (400 MHz, DMSO-d6)  $\delta$  ppm: 9.29 (t, 1H, NH,  $J_{NH-CH2}$ = 5.8 Hz); 8.39 (d, 1H, H<sub>5</sub>,  $J_{5-6}$ = 8.8 Hz); 8.31 (s, 1H, H<sub>8</sub>); 7.83 (d, 1H, H<sub>6</sub>); 7.04 (bs, 1H, H<sub>2</sub>·); 6.91 (bs, 2H, H<sub>5</sub>·+H<sub>6</sub>·); 6.02 (s, 2H, O-CH<sub>2</sub>-O); 4.47 (d, 2H, CH<sub>2</sub>); 2.59 (s, 3H, CH<sub>3</sub>-C<sub>7</sub>); 2.40 (s, 3H, CH<sub>3</sub>-C<sub>3</sub>). Anal. Calcd. for C<sub>19</sub>H<sub>17</sub>N<sub>3</sub>O<sub>5</sub>: C, 62.12%; H, 4.66%; N, 11.44%. Found: C, 61.74%; H, 4.80%; N, 11.68%.

6.1.5.43. 6,7-dichloro-3-methylquinoxaline-2-carboxylic acid (benzo[1,3]dioxol-5ylmethyl) amide 1,4-di-N-oxide (**9g**). Yield: 22%. IR (KBr): 3273 (w,  $v_{N-H}$ ); 3058 (w,  $v_{arC-H}$ ); 1647 (s,  $v_{C=O}$ ); 1326 (s,  $v_{N+O-}$ ). <sup>1</sup>H NMR (400 MHz, DMSO-<sub>d6</sub>)  $\delta$  ppm: 9.31 (t, 1H, N**H**,  $J_{NH-CH2}$ = 5.8 Hz); 8.69 (s, 1H, **H**<sub>5</sub>); 8.67 (s, 1H, **H**<sub>8</sub>); 7.02 (bs, 1H, **H**<sub>2</sub>·); 6.90 (bs, 2H, **H**<sub>5</sub>·+**H**<sub>6</sub>·); 6.02 (bs, 2H, O-C**H**<sub>2</sub>-O); 4.46 (d, 2H, C**H**<sub>2</sub>); 2.50 (s, 3H, C**H**<sub>3</sub>-C<sub>3</sub>). Anal. Calcd. for C<sub>18</sub>H<sub>13</sub>Cl<sub>2</sub>N<sub>3</sub>O<sub>5</sub>: C, 51.20%; H, 3.10%; N, 9.95%. Found: C, 51.22%; H, 3.07%; N, 9.62%.

6.2. Pharmacology[31]

6.2.1. Primary Screening (Dose Response): Determination of a 90% Inhibitory Concentration ( $IC_{90}$ ).

The initial screening is conducted against *M.Tbc*. H<sub>37</sub>Rv (ATCC 27294) in BACTEC 12B medium using the Microplate Alamar Blue Assay (MABA).[32] Compounds are tested in ten 2-fold dilutions, typically from 100 µg/mL to 0.19 µg/mL. The IC<sub>90</sub> is defined as the concentration effecting a reduction in fluorescence of 90% relative to controls. This value is determined from the dose-response curve using a curve-fitting program. Any IC<sub>90</sub> value of  $\leq 10\mu$ g/mL is considered "Active" for antitubercular activity.

6.2.2. Secondary Screening: Determination of Mammalian Cell Cytotoxicity (CC<sub>50</sub>).

The VERO cell cytotoxicity assay is carried out in parallel with the TB Dose Response assay. After 72 hours exposure, viability is assessed using Promega's Cell Titer Glo Luminescent Cell Viability Assay, a homogeneous method for determining the number of viable cells in culture based on quantitation of the ATP present. Cytotoxicity is determined from the dose-response curve as the  $CC_{50}$  using a curve fitting program. Then the  $CC_{50}$  is divided by the  $IC_{90}$  for calculating a Selectivity Index (SI) value. SI values of  $\geq 10$  are considered for further testing.

#### Acknowledgments

This work has been carried out with the financial support of the PIUNA project from University of Navarra. We also wish to express our gratitude to the Tuberculosis Antimicrobial Acquisition & Coordinating Facility (TAACF) for the evaluation of the anti-tuberculosis activity through research and development contracts. E. M. is indebted to the La Rioja Government for a grant. S.A. is indebted to the Navarra Government for a grant.

## References

- [1] Global Tuberculosis Control WHO REPORT 2009. <u>http://www.who.int/tb/publications/global\_report/2009/pdf/full\_report.pdf</u>
   Acceded March 8, 2010.
- [2] NIAID MDR/XDR TB Research Agenda June 6, 2007. http://www3.niaid.nih.gov/topics/tuberculosis/. Acceded March 8, 2010.
- [3] http://www.who.int/tb/challenges/mdr/en/index.html. Acceded March 8, 2010.
- [4] http://www.who.int/tb/challenges/xdr/en/index.html Acceded March 8, 2010.
- [5] E. Vicente, R. Villar, B. Solano, A. Burguete, S. Ancizu, S. Pérez-Silanes, I. Aldana, A. Monge, A. An. R. Acad. Nac. Farm. 73 (2007) 927-945.
- [6] G. Aguirre, H. Cerecetto, R. Di Maio, M. Gonzalez, M.E.M. Alfaro, A. Jaso, B. Zarranz, M.A. Ortega, I. Aldana, A. Monge-Vega, Bioorg. Med. Chem. Lett. 14 (2004) 3835-3839.
- [7] C. Urquiola, M. Vieites, G. Aguirre, A. Marin, B. Solano, G. Arrambide, P. Noblia, M.L. Lavaggi, M.H. Torre, M. Gonzalez, A. Monge, D. Gambino, H. Cerecetto, Bioorg. Med. Chem. 14 (2006) 5503-5509.
- [8] A. Carta, M. Loriga, G. Paglietti, A. Mattana, P.L. Fiori, P. Mollicotti, L. Sechi, S. Zanetti, Eur. J. Med. Chem. 39 (2004) 195-203.
- [9] B. Ganley, G. Chowdhury, J. Bhansali, J.S. Daniels, K.S. Gates, Bioorg. Med. Chem. 9 (2001) 2395-2401.
- [10] M. Abu El-Haj, T. H. Cronin. DE2035480 (1971)
- [11] K. L. Leverkusen, U. Eholzer, R. Nast, F. Seng. US3660398 (1972)
- [12] M. Abu El-Haj. DE2316765 (1973)
- [13] T. H. Cronin. US3728345 (1973)
- [14] J. W. McFarland. FR2258856 (1975)
- [15] J. G. Frienlink.NL6504563 (1966)
- [16] K. M. Amin, M.F. Ismail, E. Noaman, D. H. Soliman, Y. A. Ammar. Bioorg. Med. Chem. 14 (2006) 6917-6923.
- [17] M.A. Ortega, M.E. Montoya, A. Jaso, B. Zarranz, I. Tirapu, I. Aldana, A. Monge, Pharmazie 56 (2001) 205-207.
- [18] M.A. Ortega, Y. Sainz, M.E. Montoya, A. Jaso, B. Zarranz, I. Aldana, A. Monge, Arzneim.-Forsch. 52 (2002) 113-119.
- [19] A. Jaso, B. Zarranz, I. Aldana, A. Monge, Eur. J. Med. Chem. 38 (2003) 791-800.
- [20] A. Jaso, B. Zarranz, I. Aldana, A. Monge, J. Med. Chem. 48 (2005) 2019-2025.
- [21] B. Zarranz, A. Jaso, I. Aldana, A. Monge, Bioorg. Med. Chem. 11 (2003) 2149-2156.

- [22] S. Ancizu, E. Moreno, B. Solano, R. Villar, A. Burguete, E. Torres, S. Pérez-Silanes, I. Aldana, A. Monge, Bioorg. Med. Chem.18 (2010) 2713-2719.
- [23] Name Reactions. A Collection of Detailed Reaction Mechanism. Jie Jack Li. Third Expanded Edition. Springer Berlin Heidelberg. (2006) 43-44.
- [24] G. Stumm, H.J. Niclas, J. Prakt. Chem. 331 (1989) 736-744.
- [25] M. González, H. Cerecetto, Topics in Heterocyclic Chemistry; Khan M. T. H., Ed.; Bioactive Heterocycles IV. Benzofuroxan and Furoxan. Chemistry and Biology; Springer Berlin: Heidelberg, 2007; Vol. 10, pp 265.
- [26] A.G. Neo, J. Delgado, et al. Tetrahedron Lett. 46 (2005) 23-26.
- [27] H.T. Openshaw, N. Whittaker, J. Chem. Soc. 19 (1968) 89-91.
- [28] R.J. Clemens, Chem. Rev. 86 (1986) 241-318.
- [29] G.W.H. Cheeseman, Condensed Pyrazines; Cookson, R. F., Ed.; J. Wiley and Sons: New York, 1979. p 35.
- [30] B. Zarranz, A. Jaso, I. Aldana, A. Monge, Bioorg. Med. Chem. 12 (2004) 3711-3721.
- [31] TAACF: http://www.taacf.org/Process-text.htm#assays. Acceded 26 february, 2010.
- [32] L.A. Collins, S.G. Franzblau, Antimicrob. Antimicrob. Agents Chemother. 41 (19 97) 1004-1009.



Figure 1. General structure and numeration of quinoxaline 1,4-di-N-oxide.



Figure 2. Design of the new series of quinoxaline-2-carboxamide 1,4-di-*N*-oxide.



Scheme 1. General scheme of synthesis.

Reagents and conditions: i<sub>a</sub>) acetic acid, diethyl ether, rt.; i<sub>b</sub>) methanol, Zn/NH<sub>4</sub>Cl aq.; ii) 2-hydroxypyridine, reflux; iii) methanol, 0°C, N<sub>2</sub> atmosphere; iv) methanol, CaCl<sub>2</sub>, ethanolamine.

| Comp.         R3         R         IC90 <sup>3</sup> CC60 <sup>9</sup> SI <sup>6</sup> 1a         26.99         NT. <sup>4</sup> NT.         NT.         NT.         NT.           1b         6.71         8.97         1.34         1.7.93         NT.         NT.           1d         C <sub>6</sub> H <sub>3</sub> C <sub>6</sub> H <sub>5</sub> 19.10         NT.         NT.         NT.           1d         C <sub>6</sub> H <sub>3</sub> C <sub>6</sub> H <sub>5</sub> 19.10         NT.         NT.         NT.           1f         26.684         NT.         NT.         NT.         NT.           1f         26.84         NT.         NT.         NT.         NT.           2a         6.71         >40         >5.96         25         3.39         >40         >11.79           2d         C <sub>4</sub> H <sub>5</sub> CH <sub>2</sub> -C <sub>6</sub> H <sub>5</sub> >100         NT.         NT.         NT.           2e         25.45         NT.         NT.         NT.         NT.         NT.           3a         C <sub>4</sub> H <sub>5</sub> CH <sub>2</sub> -C <sub>4</sub> H <sub>5</sub> -4CF <sub>3</sub> 15.61         NT.         NT.           4d         CH <sub>3</sub> CH <sub>2</sub> -C <sub>6</sub> H <sub>7</sub> -4-CF <sub>3</sub> 3.38         >40         >11.82           4                                                                                                                     | R <sub>7</sub> | $\begin{array}{c cccc} & & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & $ |                                                                 | Antitubercular<br>activity | Cytotoxicity              |                             |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|----------------------------|---------------------------|-----------------------------|
| Ia         26.99         N.T. <sup>4</sup> N.T.           Ib         6.71         8.97         1.34           Ic         17.93         N.T.         N.T.           Id         C <sub>6</sub> H <sub>3</sub> C <sub>6</sub> H <sub>3</sub> 19.10         N.T.         N.T.           Id         C <sub>6</sub> H <sub>3</sub> C <sub>4</sub> H <sub>3</sub> 19.10         N.T.         N.T.           Id         C <sub>6</sub> H <sub>3</sub> C <sub>4</sub> H <sub>3</sub> 19.10         N.T.         N.T.           Ig         6.63         5.541         0.84         0.84           2a         6.71         >40         >5.96         0.89           2b         3.86         17.86         4.62         0.84           2d         C <sub>6</sub> H <sub>3</sub> CH <sub>2</sub> -C <sub>6</sub> H <sub>3</sub> >100         N.T.         N.T.           2e         13.91         N.T.         N.T.         N.T.         N.T.         N.T.           3a         C <sub>6</sub> H <sub>5</sub> CH <sub>2</sub> -C <sub>6</sub> H <sub>3</sub> 18.61         N.T.         N.T.           4d         CH <sub>2</sub> -C <sub>6</sub> H <sub>3</sub> -4-CF <sub>3</sub> 3.38         >40         >6.52           4d         CH <sub>2</sub> -C <sub>6</sub> H <sub>3</sub> -4-CF <sub>3</sub> 3.38         >40         >1.82           4d         CH <sub>2</sub> -C <sub>6</sub> H <sub>3</sub> -4-CF <sub>3</sub>                                 | Comp.          | $R_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | R                                                               | IC90 <sup>a</sup><br>H37Rv | CC50 <sup>₽</sup><br>VERO | SI <sup>c</sup><br>CC50/MIC |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | la             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                 | 26.99                      | N.T.ª                     | N.T.                        |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1b             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                 | 6.71                       | 8.97                      | 1.34                        |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | lc             | C <sub>6</sub> H <sub>5</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C <sub>6</sub> H <sub>5</sub>                                   | 17.93                      | N.T.                      | N.T.                        |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ld             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                 | 19.10                      | N.T.                      | N.T.                        |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | le             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                 | 24.65                      | N.T.                      | N.T.                        |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | lf             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                 | 26.84                      | N.T.                      | N.T.                        |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1g             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                 | 0.03                       | 5.541                     | 0.84                        |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2a<br>2b       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                 | 0./1                       | >40                       | >3.90                       |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                 | 2.29                       | >40                       | -11.79                      |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 20             | C.H.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CH. C.H.                                                        | >100                       | 17.80<br>N.T              | 4.02<br>N T                 |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 20             | 0,6115                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0112-06115                                                      | 13.01                      | NT                        | NT                          |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2e<br>2f       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                 | 14.58                      | NT                        | NT                          |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 29             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                 | 25.45                      | NT                        | NT                          |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | - <u>-</u> 3a  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <u> </u>                                                        | 18.61                      | N.T.                      | N.T.                        |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3b             | C <sub>6</sub> H <sub>5</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CH <sub>2</sub> -CH <sub>2</sub> -C <sub>6</sub> H <sub>5</sub> | 15.42                      | N.T.                      | N.T.                        |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4a             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                 | 16.81                      | N.T.                      | N.T.                        |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4b             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                 | 6.13                       | >40                       | >6.52                       |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4c             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                 | 4.48                       | >40                       | >8.94                       |
| 4e         >100         N.T.         N.T.         N.T.           4f         >100         N.T.         N.T.         N.T.           4g         6.58         >40         >6.08           5a         11.04         N.T.         N.T.           5b         CH <sub>3</sub> CH <sub>2</sub> -C <sub>6</sub> H <sub>5</sub> -4-Cl         29.68         N.T.         N.T.           5e         CH <sub>3</sub> CH <sub>2</sub> -C <sub>6</sub> H <sub>5</sub> -4-Cl         29.68         N.T.         N.T.           5g         51.86         N.T.         N.T.         N.T.           6a         11.04         N.T.         N.T.           6b         CH <sub>3</sub> CH <sub>2</sub> -C <sub>6</sub> H <sub>5</sub> -4-Cl         29.68         N.T.         N.T.           6a         N.T.         N.T.         N.T.         N.T.         N.T.           6a         0.15.01         N.T.         N.T.         N.T.           6b         CH <sub>3</sub> CH <sub>2</sub> -C <sub>6</sub> H <sub>5</sub> -4-Br         5.33         >40         >7.50           7a         6.76         >40         >5.92         NT.         N.T.           7g         CH <sub>3</sub> CH <sub>2</sub> -C <sub>6</sub> H <sub>3</sub> -4-CH <sub>3</sub> 99.91         N.T.         N.T.           8a         15.99         N.T. <th< td=""><td>4d</td><td rowspan="3">CH₃</td><td rowspan="3">CH2-C6H5-4-CF3</td><td>3.38</td><td>&gt;40</td><td>&gt;11.82</td></th<> | 4d             | CH₃                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CH2-C6H5-4-CF3                                                  | 3.38                       | >40                       | >11.82                      |
| 4f         >100         N.T.         N.T.         N.T.           4g         6.58         >40         >6.08           5a         11.04         N.T.         N.T.           5b         CH <sub>3</sub> CH <sub>2</sub> -C <sub>6</sub> H <sub>5</sub> -4-Cl         29.68         N.T.         N.T.           5g         51.86         N.T.         N.T.         N.T.         N.T.           5g         51.86         N.T.         N.T.         N.T.           6a         15.61         N.T.         N.T.           6b         CH <sub>3</sub> CH <sub>2</sub> -C <sub>6</sub> H <sub>5</sub> -4-Br         5.33         >40         >7.50           6e         CH <sub>3</sub> CH <sub>2</sub> -C <sub>6</sub> H <sub>5</sub> -4-Br         78.22         N.T.         N.T.           6g         6.76         >40         >5.92           7b         CH <sub>3</sub> CH <sub>2</sub> -C <sub>6</sub> H <sub>5</sub> -4-CH <sub>3</sub> 32.04         N.T.         N.T.           7g         CH <sub>3</sub> CH <sub>2</sub> -C <sub>6</sub> H <sub>5</sub> -4-CH <sub>3</sub> 99.91         N.T.         N.T.           7g         200         N.T.         N.T.         N.T.         N.T.           8a         15.99         N.T.         N.T.         N.T.         N.T.           8g         CH <sub>3</sub> CH <sub>2</sub> -CH-(C <sub>6</sub> H <sub>3</sub> )                                                                                 | 4e             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                 | >100                       | N.T.                      | N.T.                        |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4f             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                 | >100                       | N.T.                      | N.T.                        |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4g             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                 | 6.58                       | >40                       | >6.08                       |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5a             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                 | 11.04                      | N.T.                      | N.T.                        |
| Se         14.30         N.1.         N.1.         N.1. $5g$ 51.86         N.T.         N.T.         N.T. $6a$ 15.61         N.T.         N.T.         N.T. $6b$ CH <sub>3</sub> CH <sub>2</sub> -C <sub>6</sub> H <sub>5</sub> -4-Br         5.33         >40         >7.50 $6e$ CH <sub>3</sub> CH <sub>2</sub> -C <sub>6</sub> H <sub>5</sub> -4-Br         78.22         N.T.         N.T. $6g$ 6.92         >40         >5.78 $7a$ 6.76         >40         >5.92 $7b$ CH <sub>3</sub> CH <sub>2</sub> -C <sub>6</sub> H <sub>5</sub> -4-CH <sub>3</sub> 32.04         N.T.         N.T. $7g$ $2100$ N.T.         N.T.         N.T.         N.T. $7g$ $2100$ N.T.         N.T.         N.T. $7g$ $2100$ N.T.         N.T.         N.T. $8a$ 15.99         N.T.         N.T.         N.T. $8e$ CH <sub>3</sub> CH <sub>2</sub> -CH-(C <sub>6</sub> H <sub>5</sub> ) <sub>2</sub> 16.79         N.T.         N.T. $9a$ 22.75         N.T.         N.T.         9.72 $9e$ CH <sub>3</sub> CH <sub>2</sub> -benzo[d][1,3]diox                                                                                                                                                                                                                                                                                                                                                                                                                     | 50             | CH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CH2-C6H5-4-Cl                                                   | 29.08                      | N.T.                      | N.T.                        |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5e             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                 | 14.00                      | N.I.<br>NT                | N.I.<br>NT                  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | - 5g<br>6a     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                 | 15.61                      | N.I.                      | N.I.                        |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6h             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                 | 5 33                       | >40                       | >7.50                       |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6e             | $CH_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CH2-C6H5-4-Br                                                   | 78.22                      | NT                        | NT                          |
| 7a         6.76         >40         >5.92           7b         CH <sub>3</sub> CH <sub>2</sub> -C <sub>6</sub> H <sub>5</sub> -4-CH <sub>3</sub> 32.04         N.T.         N.T.           7e         99.91         N.T.         N.T.         N.T.           7g         >100         N.T.         N.T.           8a         15.99         N.T.         N.T.           8b         CH <sub>3</sub> CH <sub>2</sub> -CH-(C <sub>6</sub> H <sub>5</sub> ) <sub>2</sub> 60.43         N.T.         N.T.           8g         66.54         N.T.         N.T.         N.T.           9a         22.75         N.T.         N.T.           9b         CH <sub>3</sub> CH <sub>2</sub> -benzo[d][1,3]dioxol         6.99         >40         >5.72           9e         CH <sub>3</sub> CH <sub>2</sub> -benzo[d][1,3]dioxol         13.22         N.T.         N.T.           9g         34.92         N.T.         N.T.         N.T.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6g             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                 | 6.92                       | >40                       | >5.78                       |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7a             | • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                 | 6.76                       | >40                       | >5.92                       |
| 7e         CH3         CH2-C6H3-4-CH3         99.91         N.T.         N.T.           7g         >100         N.T.         N.T.         N.T.           8a         15.99         N.T.         N.T.         N.T.           8b         CH3         CH2-CH-(C6H5)2         60.43         N.T.         N.T.           8e         CH3         CH2-CH-(C6H5)2         16.79         N.T.         N.T.           8g         66.54         N.T.         N.T.         N.T.           9a         22.75         N.T.         N.T.           9b         CH3         CH2-benzo[d][1,3]dioxol         6.99         >40         >5.72           9e         CH3         CH2-benzo[d][1,3]dioxol         13.22         N.T.         N.T.           9g         34.92         N.T.         N.T.         N.T.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7b             | CTT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CH. C.H. A CH                                                   | 32.04                      | N.T.                      | N.T.                        |
| 7g         >100         N.T.         N.T.           8a         15.99         N.T.         N.T.           8b         CH <sub>3</sub> CH <sub>2</sub> -CH-(C <sub>6</sub> H <sub>5</sub> ) <sub>2</sub> 60.43         N.T.         N.T.           8e         CH <sub>3</sub> CH <sub>2</sub> -CH-(C <sub>6</sub> H <sub>5</sub> ) <sub>2</sub> 16.79         N.T.         N.T.           8g         66.54         N.T.         N.T.         N.T.           9a         22.75         N.T.         N.T.           9b         CH <sub>3</sub> CH <sub>2</sub> -benzo[d][1,3]dioxol         6.99         >40         >5.72           9e         CH <sub>3</sub> CH <sub>2</sub> -benzo[d][1,3]dioxol         13.22         N.T.         N.T.           9g         34.92         N.T.         N.T.         N.T.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7e             | CH3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CH2-C6H3-4-CH3                                                  | 99.91                      | N.T.                      | N.T.                        |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7g             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                 | >100                       | N.T.                      | N.T.                        |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8a             | СН                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CH2-CH-(C4H3)2                                                  | 15.99                      | N.T.                      | N.T.                        |
| Se         CH2 CH2 CH2 (CH3)2         16.79         N.T.         N.T.           Sg         66.54         N.T.         N.T.           9a         22.75         N.T.         N.T.           9b         CH3         CH2-benzo[d][1,3]dioxol         6.99         >40         >5.72           9g         CH3         CH2-benzo[d][1,3]dioxol         13.22         N.T.         N.T.           9g         34.92         N.T.         N.T.         N.T.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 8b             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                 | 60.43                      | N.T.                      | N.T.                        |
| 8g         66.54         N.T.         N.T.           9a         22.75         N.T.         N.T.           9b         CH <sub>3</sub> CH <sub>2</sub> -benzo[d][1,3]dioxol         6.99         >40         >5.72           9e         CH <sub>3</sub> CH <sub>2</sub> -benzo[d][1,3]dioxol         13.22         N.T.         N.T.           9g         34.92         N.T.         N.T.         N.T.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8e             | 0113                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 011-011-(0011)/2                                                | 16.79                      | N.T.                      | N.T.                        |
| 9a         22.75         N.T.         N.T.           9b         CH <sub>3</sub> CH <sub>2</sub> -benzo[d][1,3]dioxol         6.99         >40         >5.72           9e         CH <sub>3</sub> CH <sub>2</sub> -benzo[d][1,3]dioxol         13.22         N.T.         N.T.           9g         34.92         N.T.         N.T.         N.T.           RIF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | - 8g           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                 | 66.54                      | N.T.                      | <u>N.T.</u>                 |
| 90         CH <sub>3</sub> CH <sub>2</sub> -benzo[d][1,3]dioxol         6.99         >40         >5.72           9e         CH <sub>3</sub> CH <sub>2</sub> -benzo[d][1,3]dioxol         13.22         N.T.         N.T.           9g         34.92         N.T.         N.T.         N.T.           PIF         0.015.0.125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9a             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                 | 22.75                      | N.T.                      | N.T.                        |
| 9e         15.22         N.1.         N.T.           9g         34.92         N.T.         N.T.           PIE         0.015.0.125         >100         >800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 96             | $CH_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CH2-benzo[d][1,3]dioxol                                         | 0.99                       | >40                       | >3.72                       |
| Figure         0.015.0.125         >100         >800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9e             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                 | 15.22                      | N.I.                      | N.I.                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | - 2g<br>DIE    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                               | 0.015.0.125                | >10.1.                    | >800                        |

 Table 1. Anti-tubercular activity of compounds (Series 1-9).

<sup>a</sup> IC<sub>90</sub> against *M.tb* H<sub>37</sub>Rv.
<sup>b</sup> Cytotoxicity in VERO Cells.
<sup>c</sup> Selectivity Index.
<sup>d</sup> Not Tested.
<sup>e</sup> Rifampin.