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ABSTRACT  

The aim of this work was to study the extraction behavior of the main coffee 

antioxidants (caffeoylquinic acids, melanoidins and caffeine) and the antioxidant 

capacity, during brewing time in the most widely consumed coffee brew methods (filter 

and espresso) in coffee. Antioxidant capacity by colorimetric assays (Folin-Ciocalteau, 

ABTS and DPPH) and electron spin resonance spectroscopy techniques (Fremy’s salt 

and TEMPO) were analyzed. In espresso coffee, more than 70% of the antioxidants 

(except dicaffeoylquinic acids, diCQA) of a coffee brew were extracted during the first 

8 s. In filter coffee, a U-shape antioxidants extraction profile was observed, starting later 

(after 75s) in Vietnam coffee than in Guatemala one, probably due to different 

wettability. Other technological parameters, such as turbulences and a longer contact 

time between water and ground coffee in filter coffeemaker, increased extraction 

efficiency, mainly in less polar antioxidant compounds as diCQA. In conclusion, these 

technological factors should be considered to optimize coffee antioxidants extraction 

that can be used as ingredients for functional foods. 

 

KEYWORDS: Antioxidants, brewing time, coffee, Maillard reaction products, 

phenolics. 

 



1. INTRODUCTION 

Several chronic diseases, such as cancer, cardiovascular, inflammatory, and 

neurogenerative pathologies are associated with oxidative stress (Aruoma, 1999; Beal, 

1995; Dorea & da Costa, 2005). Beside fruits and vegetables, plant beverages such as 

coffee brew have been proposed as an important source of antioxidants in human diet 

(Pulido, Hernandez Garcia, & Saura Calixto, 2003; Svilaas, Sakhi, Andersen, Svilaas, 

Strom, & Jacobs, 2004). The antioxidant capacity of coffee brew is attributed to both 

antioxidants originally present in coffee beans, like phenolic compounds, and roasting-

induced antioxidants, like melanoidins and other Maillard Reaction Products (MRP) 

(Borrelli, Visconti, Mennella, Anese, & Fogliano, 2002; Crozier, Jaganath, & Clifford, 

2009; del Castillo, Ames, & Gordon, 2002). 

The most abundant phenolic compounds of coffee are chlorogenic acids (CGA). CGA 

are known for their contribution to the final acidity, astringency, and bitterness of the 

coffee brew, but also for their potent antioxidant properties (Moreira, Monteiro, 

Ribeiro-Alves, Donangelo, & Trugo, 2005; Natella, Nardini, Giannetti, Dattilo, & 

Scaccini, 2002; Trugo & Macrae, 1984; Variyar, Ahmad, Bhat, Niyas, & Sharma, 

2003). During roasting, CGA are partially degraded and at least partly incorporated in 

coffee melanoidins through non-covalent or covalent bounds (Bekedam, Schols, van 

Boekel, & Smit, 2008; Nunes & Coimbra, 2010). Melanoidins are generally defined as 

the browned-colored, high-molecular-weight, nitrogenous end products of the Maillard 

reaction. They are formed during roasting process of coffee. Beside its contribution to 

flavor and color, one of the important functional properties of melanoidins is its 

antioxidant activity (Caemmerer & Kroh, 2006; C. Delgado-Andrade & Morales, 2005; 

López-Galilea, Andueza, Leonardo, de Peña, & Cid, 2006; Rufián-Henares & Morales, 

2007). Although there is still a discussion about their bioavailability, it is clear that at 



least they may act as prebiotic or even antimicrobial depending on their nature and 

concentration (Borrelli & Fogliano, 2005; Rufián-Henares & de la Cueva, 2009). Also 

caffeine or its metabolites in humans have been proposed as antioxidant compounds 

against lipid peroxidation induced by reactive oxygen species (Devasagayam, Kamat, 

Mohan, & Kesavan, 1996; Lee, 2000). However, although caffeine has been extensively 

studied from the pharmacological point of view, less attention has been paid to its 

potential antioxidant activity that may be overshadowed by phenolic compounds and 

MRP. 

Brewing process is essential for the antioxidant composition and health properties of a 

coffee brew, because the contact of water with roasted coffee grounds is the crucial step 

for extraction of coffee compounds. Other factors, such as origin or variety of coffee 

beans, blending, roasting degree and grinding also play a key role in coffee 

composition. Among the several brewing techniques, filter coffee (drip filter) is the 

most widely used coffee brew obtained by infusion method, whereas espresso coffee is 

the most appreciated coffee brew produced by pressure method. In drip filtration 

methods, water at 92-96 ºC flows through a hardly compressed ground coffee bed and 

the extract drips from the brewing chamber into the pot. Turbulence in the brewing 

chamber prevents water from becoming saturated (Lingle, 1996). In pressure methods, 

water at approximately 9 bars and 88-92ºC is forced to go through coffee grounds 

compacted in a small brewing chamber (coffee cake). Also rapid brewing time and fine 

particle size are necessary (Lingle, 1996). Many chemical species identified in roasted 

coffee, including antioxidants, exhibit different extraction rates that may also be 

influenced by the choice of brewing technique and conditions (Peters, 1991; Petracco, 

2001; Petracco, 2005).  



Even though the brewing time is given by the coffee brewing technique, the knowledge 

of extraction behavior of the main coffee antioxidants during this time might induce to 

know the technological factors with major impact on antioxidants extraction. Thus, it 

could be possible to obtain not only coffee brews with higher antioxidant capacity, but 

also coffee extracts with health properties that can be used as ingredients in functional 

foods. For these reasons, the aim of this work was to study the extraction behavior of 

the main coffee antioxidants and the antioxidant capacity, during brewing time in the 

most widely consumed coffee brew procedures (filter and espresso). 

 

2. MATERIALS AND METHODS 

2.1. Chemicals and reagents. The methanol (spectrophotometric and HPLC grade) and 

Folin-Ciocalteau reagent were from Panreac (Barcelona, Spain). ABTS (2,2’-Azino-

bi(3-ethylbenzo-thiazonile-6-sulfonic acid) diammonium salt), potassium persulfate, 

DPPH- (2,2-Diphenyl-1-picrylhydrazyl), Trolox (6-hydroxy-2,5,7,8-tetramethyl-

chroman-2-carboxylic acid), dipotassium hydrogen phosphate, potassium dihydrogen 

phosphate, sodium chloride, Fremy’s salt (potassium nitrosodisulfonate) and TEMPO 

(2,2,6,6-tetramethyl-1-piperidin-1-oxyl) were purchased from Sigma-Aldrich 

(Steinheim, Germany). Gallic acid was from Fluka (Madrid, Spain). Pure reference 

standards of 5-caffeoylquinic acid (5-CQA) and caffeine were obtained from Sigma-

Aldrich (Steinheim, Germany) and pure reference standards of 3,4-, 3,5- and 4,5-

dicaffeoylquinic acids were purchased from Phytolab (Vestenbergsgreuth, Germany). A 

mixture of 3-CQA, 4-CQA, and 5-CQA was prepared from 5-CQA using the 

isomerization method of Trugo and Macrae (1984), also described in Farah et al. (2005). 

2.2. Coffee brew samples. Roasted coffee from Guatemala (Coffea arabica, 3.03 % 

water content, L* = 25.40 ± 0.69, roasted at 219 ºC for 905 s) and Vietnam (Coffea 



canephora var. robusta, 1.59 % water content, L* = 24.92 ± 0.01, roasted at 228 ºC for 

859 s) was provided by a local factory. The L* value was analyzed by means of a 

tristimulus colorimeter (Chromameter-2 CR-200, Minolta, Osaka, Japan) using the D65 

illuminant and CIE 1931 standard observer. The instrument was standardized against a 

white tile before sample measurements. Ground roasted coffee was spread out in an 

l cm Petri plate, and the L* value was measured in triplicate on the CIELab scale. 

Roasted coffee beans were ground to a powder in a Moulinex coffee grinder (model 

Super Junior “s”, Paris, France) for 20 s immediately before sample preparation. Filter 

Coffee Brew was prepared from 36 g of ground roasted coffee for a volume of 600 mL, 

using a filter coffee machine (model Avantis 70 Aroma plus, Ufesa, Spain). Extraction 

took approx. 6 min at 90 ºC. Five fractions for filter coffee were collected sequentially 

every 75 s. Espresso Coffee Brew was prepared from 7 g of ground roasted coffee for a 

volume of 45 mL using an espresso coffee machine (model Saeco Aroma, Italy). Three 

fractions for espresso coffee were collected sequentially every 8 s. Coffee brews and 

fractions were lyophilized using a CRYODOS Telstar (Terrassa, Spain) and stored at -

18ºC until sample analysis. 

2.3. pH. The pH measurements of coffee brews and fractions were performed with a 

Crison Basic 20pH-meter. 

2.4. Browned compounds (Abs 420 nm). Fifty microliters of coffee brew or fraction 

were diluted up to 2 mL with deionized water. Browned compounds were quantified by 

measuring the absorbance of the sample at 420 nm after exactly 1 min, in a 3 mL 

capacity cuvette (1 cm length) with a Lambda 25 UV-VIS spectrophotometer (Perkin-

Elmer Instruments, Madrid, Spain) connected to a thermostatically controlled chamber 

(25 ºC) and equipped with UV Win-Lab software (Perkin Elmer).   



2.5. Folin-Ciocalteau (FC) assay. The Folin-Ciocalteau reducing capacity of coffee or 

fractions was performed according to the Singleton´s method (Singleton & Rossi, 

1965). For every coffee sample, 1:10 dilutions with demineralized water were prepared, 

and 500 μL of Folin-Ciocalteau reagent were added to 100 μL of the coffee sample 

solution. After 2 min delay, 1.5 mL of a 7.5% sodium carbonate solution was added. 

Next, the sample was incubated in darkness at room temperature for 90 min. The 

absorbance of the sample was measured at 765 nm in a Lambda 25 UV-VIS 

spectrophotometer (Perkin Elmer Instruments, Madrid, Spain). Gallic acid (GA) was 

used as reference, and the results were expressed as milligrams of GA per mililiter of 

coffee brew or fraction. 

2.6. Antioxidant capacity by ABTS assay. The antioxidant capacity measured with 

ABTS was carried out according to the method described by Re et al. (1999) with some 

modifications. The radicals ABTS·+ were generated by the addition of 2.45 mM 

potassium persulfate to an 7 mM ABTS solution prepared in phosphate-buffered saline 

(PBS, pH 7.4) and allowing the mixture to stand in darkness at room temperature for at 

least 12 h before use. The ABTS·+ stock solution was adjusted with PBS to an 

absorbance of 0.7 (±0.02) at 734 nm in a 1 cm cuvette at 25 ºC (Lambda 25 UV, VIS 

spectrophotometer, Perkin Elmer Instruments, Madrid, Spain). An aliquot of 50 µL of 

coffee sample diluted with demineralized water (5:1000 to 15:1000) was added to 2 mL 

of ABTS·+ reagent and the absorbance was monitored for 18 min at 25 ºC. Calibration 

was performed with Trolox solution (a water-soluble vitamin E analogue) and total 

antioxidant capacity was expressed as micromoles (μmol) of Trolox per mililiter of 

coffee brew or fraction. 

2.7. Antioxidant capacity by DPPH assay. The antioxidant capacity was measured 

using the DPPH decolorization assay (Brand-Williams, Cuvelier, & Berset, 1995). A 



6.1x10–5 M DPPH· methanol solution was prepared immediately before use. The DPPH· 

solution was adjusted with methanol to an absorbance of 0.7 (±0.02) at 515 nm in a 

1 cm cuvette at 25 ºC (Lambda 25 UV, VIS spectrophotometer, Perkin Elmer 

Instruments, Madrid, Spain). Fifty microliters of appropriate diluted coffee sample 

(1:100 to 3:100) was added to DPPH· solution (1.95 mL). After mixing, the absorbance 

was monitored at 515 nm for 18 min at 25 ºC. Calibration was performed with Trolox 

solution and the total antioxidant capacity was expressed as micromoles (μmol) of 

Trolox per mililiter of coffee brew or fraction. 

2.8. Antioxidant capacity by Electro Spin Resonance (ESR) spectroscopy. The ESR 

spectroscopy measurements were performed with Fremy´s salt and TEMPO as 

stabilized radicals with the same procedure described by Roesch et al. (2003) and 

modified by Caemmerer & Kroh (2006). For the investigation with Fremy’s salt, 

100 μL of every coffee sample diluted 250-fold with demineralized water was allowed 

to react with an equal volume of an aqueous 1 mM Fremy’s salt solution prepared in 

50 mM phosphate buffer (pH 7.4). ESR spectra were recorded every 40 s for 30 min. 

For the investigation with TEMPO, aliquots of 300 μL of coffee sample were allowed to 

react with 100 μL of 1 mM TEMPO solution. ESR spectra were obtained after 120 min, 

by which time the reaction was complete. Microwave power was set at 10 dB. 

Modulation amplitude, center field, and sweep width were set at 1.5, 3397, and 71 G, 

respectively. Both Fremy’s salt and TEMPO antioxidant activity were calculated as 

Trolox equivalents and expressed as micromoles (μmol) of Trolox per mililiter of coffee 

brew or fraction. 

2.9. Chlorogenic acids (CGA) and caffeine. Extract preparation and cleanup were 

carried out according to Bicchi et al. (1995). The compounds were analyzed by HPLC 

following the method described by Farah et al. (2005), with some modifications. HPLC 



analysis was achieved with an analytical HPLC unit model 1100 (Agilent Technologies, 

Palo Alto, CA, USA) equipped with a binary pump and an automated sample injector. A 

reversed-phase Hypersil-ODS (5 µm particle size, 250 x 4.6 mm) column was used at 

25 ºC. The sample injection volume was 100 µL. The chromatographic separation was 

performed using a gradient of methanol (solvent A) and Milli-Q water acidulated with 

phosphoric acid (pH 3.0, solvent B) at a constant flow of 0.8 mL/min starting with 20% 

solvent A. Then solvent A was increased to 50% within 15 min to be maintained at 50% 

for 9 min and, finally, to return to initial conditions (20% solvent A) in 3 min. Detection 

was accomplished with a diode-array detector, and chromatograms were recorded at 

325 nm for CGA and 276 nm for Caffeine. Identification of CGA and caffeine was 

performed by comparing the retention time and the photodiode array spectra with those 

of their reference compounds. Quantification of 5-caffeoilquinic (5-CQA) and caffeine 

was made by comparing the peak areas with those of the standards. Quantification of 

the other chlorogenic acids (CGA) was performed using the area of 5-CQA standard 

combined with molar extinction coefficients of the respective CGA as reported by 

Trugo and Macrae (1984) and Farah et al. (2005). 

2.10. Statistical analysis. Each parameter was analyzed in triplicate. Results are shown 

as means ± standard deviations. Student’s t-test was applied for each antioxidant 

capacity assay to know whether there were differences between both coffees in each 

coffee brew. One-way analysis of variance (ANOVA) was applied for each parameter to 

compare antioxidants extraction among fractions in each coffee brew sample. A T-

Tukey test was applied as a test a posteriori with a level of significance of 95%. All 

statistical analyses were performed using the SPSS v.15.0 software package. 

3. RESULTS AND DISCUSSION 

3.1. Coffee fractions Volumes 



The volumes of the coffee brews and fractions obtained by espresso and filter 

coffeemakers are shown in Table 1. The volumes of the three espresso coffee fractions 

were quite similar, ranging from 14 to 17 mL. In contrast, the volumes of the filter 

coffee fractions increased from F1 (76-80 mL) up to F3 (160-186 mL) and then 

decreased to F5 (26-54 mL), showing an inverted U-shape profile.  

To extract coffee compounds during the brewing process, the dry coffee grounds must 

first absorb water. Once the water has completely surrounded a coffee particle, both 

inside and out, the coffee extractable material begins to move out of the bean’s cellular 

structure and into the surrounding water. Because espresso coffeemaker applies constant 

pressure that forces water through the coffee grounds with a constant flow, the coffee 

fraction volumes were similar among each other. However, in filter coffee no 

mechanical forces are applied, and the brew volume dripping out from the extraction 

chamber depends on the water amount, and consequently on the water pressure in the 

extraction chamber of the coffeemaker according to Darcy’s law (Petracco, 2005). 

Furthermore, at the beginning of the filter extraction process, part of the water is 

absorbed by coffee grounds. In an espresso coffeemaker, water is forced to go through 

the coffee cake, but, in a filter coffeemaker, during wettability, 1 g of coffee will absorb 

2 mL of water as a general rule (Lingle, 1996). This fact explains the low volume 

obtained for F1 (0-75 s). With time, water fills the extraction chamber increasing the 

pressure and favoring that water passes through the coffee bed, which leads to higher 

volumes in the middle fractions. At the end of the brewing procedure, pressure 

decreases when the water reservoir depletes, giving the lowest volume in the last 

fraction (F5). 

3.2. Antioxidant capacity of coffee fractions 



The antioxidant capacity of the coffee brews and fractions obtained by espresso and 

filter coffeemakers was measured by means of three colorimetric assays (Folin-

Ciocalteau, ABTS and DPPH) and two electron spin resonance (ESR) spectroscopy 

techniques (Fremy´s salt and TEMPO) and the results are shown in Figure 1 to 5.  

The Folin-Ciocalteau assay is based on an electron-transfer reaction. Although this is 

the most popular method to evaluate the total phenolic compounds, the Folin-Ciocalteau 

reagent can be reduced by many electron-donors, not only phenolic compounds (Huang, 

Ou, & Prior, 2005). Two different stable radicals (ABTS·+ and DPPH·) were chosen to 

assess the radical scavenging activity in coffee fractions. These radicals react 

energetically with hydrogen-donors, such as phenolic compounds, being DPPH· likely 

more selective in the reaction with H-donors than ABTS·+ (Huang et al., 2005). In these 

three colorimetric assays, Vietnam coffee brews showed significantly (p<0.01) higher 

antioxidant capacity than Guatemala ones. The results were similar to those reported by 

other authors in espresso and filter coffee brews (Pérez-Martinez, Caemmerer, De Peña, 

Cid, & Kroh, 2010; Sánchez González, Jiménez Escrig, & Saura Calixto, 2005). 

Espresso coffee fractions from both coffees showed a remarkable decrease in 

antioxidant capacity with brewing time. More than 70% of the overall antioxidant 

capacity of an espresso coffee brew was found in F1 (0-8 s), whereas F3 accounted for 

less than 12 %. These results demonstrate that the compounds responsible for the 

antioxidant activity of an espresso coffee brew are mainly extracted at the beginning of 

the brewing process and, afterwards, are diluted. Similar results were found by Alves et 

al (2010) for DPPH antioxidant activity in espresso coffees with different brew lengths 

(“short” to “long”). These authors also observed that the antiradical or reducing activity 

of espresso coffee brew is not only dependent on total phenolic amounts measured by 

Folin-Ciocalteau assay. This may be due to the fact that the Folin-Ciocalteau assay not 



only evaluates phenolic compounds, but also because it is well known that roasting-

induced antioxidants like Maillard reaction products (MRP), contribute to the overall 

antioxidant capacity of coffee (Delgado-Andrade, Rufián-Henares, & Morales, 2005; 

Pérez-Martinez et al., 2010). 

To go deeper into the influence of brewing time on antioxidant capacity due to 

phenolics or MRP, Electron spin resonance (ESR) spectroscopy was applied using 

Fremy’s salt and TEMPO radicals. Mainly phenolic compounds can be detected when 

Fremy’s salt is used as the stabilized radical, whereas TEMPO is mainly scavenged by 

Maillard reaction products (MRP), such as melanoidins (Caemmerer & Kroh, 2006). 

The results obtained with ESR spectroscopy (Figure 4 and 5) showed that Fremy´s salt 

scavenging capacity was almost four times higher than TEMPO. Similar results were 

reported by other authors who proposed that the phenolic antioxidants evaluated by 

Fremy´s salt dominate the overall antioxidant capacity of coffee brews, whereas the 

contribution of roasting-induced antioxidants is rather limited (Bekedam, Schols, 

Cämmerer, Kroh, van Boekel, & Smit, 2008; Pérez-Martinez et al., 2010).  

The ESR antioxidant capacity of espresso coffee fractions showed that F1 (0-8 s) 

accounted for 75-81 % and for 86-89 % of the Fremy´s salt and TEMPO scavenging 

capacity of an espresso coffee brew, respectively. Although antioxidant capacity due to 

phenolics and measured by Fremy’s salt assay was the highest in the first fraction, 20-

25 % of the scavenging capacity was still found in F2 and F3. This could be due to a 

slower extraction of those phenolics retained in the inner coffee particles and those 

bound to melanoidins that need more time and water pressure to be released. The 

highest percentages observed for TEMPO scavenging capacity in F1 indicate that MRP 

antioxidants were mainly extracted during the first 8 seconds, whereas the last fraction 

(16-24 s) only accounted for 1-2 %. These results agree with the significantly highest 



values of Browned compounds (Abs 420 nm) showed in the first fraction (Table 2) that 

clearly decreased in the next ones (F2 and F3).  

Filter coffee fractions showed different antioxidant capacity extraction behaviors, being 

also different in the two coffee samples in comparison to espresso coffee. In Guatemala 

filter coffee, all antioxidant capacity assays showed a U-shape profile with the highest 

concentration in F1 (0-75 s) and F5 (300-375 s) and the lowest in F3 (150-225 s). 

However, in Vietnam coffee the U-shape antioxidant capacity extraction started after 

75 s, showing F1 the lowest values. This could be due to a higher water absorption in 

Vietnam coffee that leads to a longer wetting stage. The wettability depends on the 

particle shape and size that may be different depending on factors like grinding that is 

also influenced by coffee origin or variety and roasting degree (Lingle, 1996). In this 

work, taking into account that roasting degree and grinding conditions were controlled 

to be the same, different wettability may be due to the different brittleness of the coffee 

beans. The increase of antioxidant capacity in the last fractions (F4 and F5) of filter 

coffee brews could be due to the water pressure decrease that induces a lower flow and 

a longer contact time between water and ground coffee. In fact, because the last fraction 

(F5) had the lowest volumes (26 mL and 54 mL for Guatemala and Vietnam coffees, 

respectively), their contribution to the antioxidant capacity of the overall coffee brew 

was rather limited (~9 % and ~14 %, respectively).  

The results of the antioxidant capacity due to phenolics and MRP, measured by ESR 

spectroscopy in filter coffee fractions using Fremy’s salt and TEMPO as stabilized 

radicals (Figures 4 and 5), also corroborate that the antioxidants extraction seems to be 

delayed in Vietnam filter coffee. This was more pronounced in TEMPO antioxidant 

capacity that mainly evaluates the scavenging activity of melanoidins which are 

polymeric compounds with more difficult to be released without water pressure. In fact, 



the Absorbance at 420 nm of Vietnam filter F1 fraction was significantly the lowest as 

shown in Table 3. Moreover, taking into account the brew volume, only ~3 % of 

TEMPO antioxidant capacity of the overall Vietnam filter coffee brew was extracted 

during the first 75 seconds (F1), whereas ~37 % was found in F2 (75-150 s). So that, the 

contribution of the first two fractions of Vietnam filter coffee to the overall TEMPO 

antioxidant capacity was similar to the ~40 % found in Guatemala filter coffee F1. 

3.3. Antioxidant compounds extraction 

The antioxidant capacity of coffee brew is attributed to both, natural antioxidants, like 

phenolic compounds, and roasting-induced antioxidants, like melanoidins and other 

MRPs. To know the influence of brewing time on the main antioxidant compounds, 

browned compounds (Abs 420 nm), caffeine and caffeoylquinic acids in coffee brews 

fractions were quantified and the results are shown in Table 2 and 3. Browned 

compounds, as previously discussed, were mainly extracted in those coffee fractions 

with high TEMPO antioxidant capacity showing a high correlation (r=0.969, p<0.001). 

Also caffeine has been proposed as an antioxidant compound against lipid peroxidation 

induced by reactive oxygen species (Lee, 2000). Caffeine was in significantly higher 

concentration in Vietnam espresso and filter coffee brews and fractions. It is very well 

known that Robusta coffees are richer in caffeine than Arabica ones (Belitz, Grosch, & 

Schieberle, 2009). Thus, caffeine might partially explain the higher antioxidant capacity 

of Vietnam coffee brews that could not be attributed to the main chlorogenic acids that 

were found in lower amounts in these coffee brews, as will be discussed later. 

Traditionally, the higher antioxidant capacity of Robusta coffee brews has been 

attributed to higher total phenolic compounds (usually measured by Folin Ciocalteau 

technique), and then to chlorogenic acids because 5-CQA is the most abundant phenolic 

in coffee. However, other authors (López-Galilea, de Peña, & Cid, 2007; Vignoli, 



Bassoli, & Benassi, 2011) also observed higher antioxidant capacity but lower 5-CQA 

amounts in brews prepared with Robusta coffee or torrefacto blends. These authors 

reported high correlations between antioxidant capacity of coffee brews and caffeine, 

suggesting that caffeine might be a good contributor to the antioxidant capacity or 

reducing power of coffee brews. In the present work, also high correlations have been 

found between antioxidant capacity assays and caffeine (r values ranging from 0.906 for 

Fremy’s salt assay to 0.968 for DPPH). 

Chlorogenic acids (CGA) are water soluble esters formed between trans-cinnamic 

acids, such as caffeic acid, and quinic acid. They may be subdivided according to the 

nature, number and position of the cinnamic substituents (Clifford, 1999). 

Caffeoylquinic acid (CQA) is the most abundant chlorogenic acid class accounting for 

76-84% of the total CGA in green coffee (Perrone, Farah, Donangelo, de Paulis, & 

Martin, 2008). Although during roasting CGA are lost up to 95%, CQA still are the 

predominant CGA in roasted coffee (Trugo & Macrae, 1984). Monocaffeoylquinic acids 

(3-CQA, 4-CQA, 5-CQA) and dicaffeoylquinic acids (3,4-diCQA, 3,5-diCQA, 4,5-

diCQA) were identified and quantified by HPLC-DAD in each fraction and coffee 

brew, and the results are shown in Tables 4 and 5. 5-CQA was the major compound 

among CQAs in all samples, followed by 4-CQA and 3-CQA. The diCQAs were in 

lower concentration than CQAs. The abundance of 3,4-diCQA and 4,5-diCQA was 

similar in every coffee fractions or brews, whereas 3,5-diCQA was the least abundant 

isomer. These results are in agreement with those reported by other authors in roasted 

coffee (Perrone et al., 2008) and in coffee brew (Alves et al., 2010). Higher amounts of 

CQA in Robusta coffees than in Arabica ones have been extensively reported (Farah et 

al., 2005). However, in this study less amounts of CQA were found in Vietnam coffee 

than in Guatemala ones. Also Vignoli et al. (2011) observed higher amount of 5-CQA 



in Arabica soluble coffee. This could be due to several factors, such as the origin of 

coffee and the higher loss of chlorogenic acids in Robusta coffee during roasting 

process (Clifford, 1997; Perrone, Donangelo, Donangelo, & Farah, 2010).  

Fractions obtained from espresso coffeemaker showed in both coffees a steep decrease 

with extraction time in all three CQA isomers (3-, 4-, and 5-CQA). F1 (0-8s) accounted 

for about 70 %, F2 (8-16 s) for 17 % and F3 (16-24 s) for less than 14 % of the total 

CQA amounts found in an espresso coffee brew. The CQA extraction behavior was 

similar to that of the antioxidant capacity measured by colorimetric assays and Fremy´s 

salt, showing high correlations (r values ranging from 0.727 for 5-CQA and DPPH to 

0.903 for 4-CQA and Fremy’s salt, p<0.001), maybe because monocaffeoylquinic acids 

are the most abundant phenolic compounds in coffee. In contrast, diCQAs were 

extracted more slowly, accounting F1 for ~50 %, F2 for ~30 % and F3 still for ~20 %, 

showing correlations coefficients lower than 0.700 (except for 3,4-diCQA with r values 

ranging from 0.906 for Fremy’s salt to 0.968 for DPPH). The esterification of an 

additional caffeic acid moiety in diCQA increases the number of hydroxyl groups and 

might favor the retention of these compounds by interaction with melanoidins or other 

polymeric compounds (Bekedam, Schols, van Boekel et al., 2008; Kroll, Rawel, & 

Rohn, 2003), reducing the release of diCQA. In fact, the hydrogen bonding between 

hydroxyl groups of the phenolic compounds and the amide carbonyls of the peptide 

bond were found to be a common non-covalent interaction between phenolics and 

melanoidins (Nunes & Coimbra, 2010). Also the weaker polarity of the diCQA 

compared to the CQA might explain the slower release of these compounds during 

extraction with water (Kroll et al., 2003). Blumberg et al. (2010) studied the influence 

of hot water percolation on the concentration of monocaffeoylquinic acids and 



chlorogenic acid lactones and reported that dicaffeoylquinic lactones were extracted 

rather slowly in comparison to monocaffeoylquinic ones. 

Caffeoylquinic acids extraction behavior was different in filter coffee, as can be seen in 

Table 5. Different extraction profiles were also found for the two coffee samples. In 

Guatemala filter coffee, CQAs and diCQAs extraction showed a U-shape profile with 

the highest concentration in F1 (0-75 s) and F5 (300-375 s) and the lowest in F3 (150-

225 s), similar to that observed for antioxidant capacity according to the correlations 

showed before. However, in Vietnam filter coffee the U-shape extraction of 

caffeoylquinic acids started after 75 s, and F1 exhibited the significantly lowest 

caffeoylquinic acids concentration. The delay in caffeoylquinic acids extraction might 

be attributed to the longer wetting stage observed in Vietnam coffee, as described 

above. On the other hand, the increased extraction of caffeoylquinic acids in the last 

stage of the brewing process, mainly observed in F5 in both coffee samples, could be 

due to the water pressure decrease that induces a lower flow and a longer contact time 

between water and ground coffee. This might facilitate the hydrolysis of caffeoylquinic 

acids bound to melanoidins inducing their release during advanced stages of filter coffee 

brewing (Lingle, 1996). However, when the lowest volumes of these fractions are 

taking into account, it could be observed that caffeoylquinic acids only accounted for 

~8 % and ~11 % of the total in Guatemala and Vietnam filter coffee brews, respectively.  

Unlike in espresso coffee, similar extraction percentages among CQAs and diCQAs in 

each coffee fraction along the filter brewing process were observed. Moreover, when 

the concentration of antioxidants is calculated per gram of coffee taking into account the 

different fractions volumes, higher extraction of these phenolic compounds per gram of 

coffee was obtained in filter coffee brews than in espresso ones, in agreement with 

Pérez-Martinez et al. (2010). This may be due to the technological differences between 



espresso and filter coffeemaker. Although the high water pressure applied in espresso 

coffeemaker favors the extraction process, the short contact time between water and 

coffee grounds, the high coffee/water ratio and the limited space in coffee cake does not 

allow equilibrium to be reached (Petracco, 2005). In contrast, longer time and 

turbulences in the extraction chamber of the filter coffeemaker allow the water in 

immediate contact with the coffee to extract additional compounds when it has not 

become so saturated with dissolved material. Thus, both technological factors might 

favor the extraction of both CQAs and diCQAs, free and bound with melanoidins. In 

fact, turbulences are considered, after time and temperature, the third most important 

factor in filter coffee brewing (Lingle, 1996). Less turbulences during sequential coffee 

percolation could also be the reason why Blumberg et al. (2010) found that 

monocaffeoylquinic acids and monocaffeoyl and dicaffeoyl quinides extraction 

behaviors were more similar to those of our espresso coffee fractions than filter ones, 

i.e. higher extraction in the first fractions and slower release of dicaffeoyl quinides. 

In conclusion, brewing time plays a key role in antioxidants extraction of coffee. To 

optimize their extraction in order to obtain antioxidants that can be used as ingredients 

for functional foods, several technological factors should be taken into account. Thus, 

higher water pressure increases antioxidants extraction speed like in the first fraction of 

espresso coffee. Nevertheless, parameters like turbulence and longer contact time, 

typically of a filter coffeemaker, should be considered in order to increase extraction 

efficiency, mainly in less polar antioxidant compounds as diCQA. Moreover, extraction 

conditions should also be adjusted for each coffee because cellular structure of coffee 

beans may also influence. Further research in the influence of technological parameters 

on chemical composition of coffee brew fractions, as well as their sensory properties, 

should be needed before to industrial development. 
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Table 1. Volumes of coffee brews and fractions obtained by espresso and filter 

coffeemakers. 

  Espresso Filter 

  textraction (s) V (mL) textraction (s) V (mL) 

Guatemala     

Coffee brew 24 47 375 532 

F1  0-8 16 0-75 80 

F2  8-16 14 75-150 146 

F3  16-24 17 150-225 186 

F4  - - 225-300 94 

F5  - - 300-375 26 

Vietnam     

Coffee brew 24 46 375 520 

F1  0-8 17 0-75 74 

F2  8-16 14 75-150 120 

F3  16-24 15 150-225 160 

F4  - - 225-300 112 

F5  - - 300-375 54 

 

 



Table 2. pH, browned compounds and caffeine in espresso coffee brews and fractions. 

All values are shown as mean ± standard deviation (n=3). Different letters indicate 

significant differences (p<0.05) among different coffee fractions in each coffee. 

  
pH 

Browned compounds 
[Abs420] 

Caffeine  
[mg/100mL] 

Guatemala    

Coffee brew 4.01 ± 0.01    0.391 ± 0.013   141.4 ± 2.4   

F1  4.83 ± 0.01 a 0.903 ± 0.008 c 296.8 ± 1.6 c

F2  4.90 ± 0.01 b 0.253 ± 0.005 b 82.66 ± 0.7 b

F3  5.09 ± 0.01 c 0.128 ± 0.004 a 39.6 ± 0.4 a

Vietnam   

Coffee brew 5.76 ± 0.00    0.458 ± 0.011   253.3 ± 2.0   

F1  5.57 ± 0.01 a 1.172 ± 0.008 c 575.4 ± 3.9 c

F2  6.08 ± 0.01 b 0.297 ± 0.004 b 159.2 ± 0.1 b

F3  6.38 ± 0.00 c 0.133 ± 0.007 a 74.7 ± 0.2 a

 



Table 3. pH, browned compounds and caffeine in filter coffee brews and fractions. All 

values are shown as mean ± standard deviation (n=3). Different letters indicate 

significant differences (p<0.05) among different coffee fractions in each coffee. 

  
pH 

Browned compounds 
[Abs420] 

Caffeine 
[mg/100mL] 

Guatemala    

Coffee brew 5.29 ± 0.01    0.200 ± 0.003   57.1 ± 0.1   

F1  5.12 ± 0.01 a 0.275 ± 0.002 c 106.8 ± 0.1 e

F2  5.25 ± 0.01 b 0.200 ± 0.002 b 57.1 ± 0.2 c

F3  5.39 ± 0.01 c 0.160 ± 0.005 a 35.7 ± 0.0 a

F4  5.37 ± 0.02 c 0.171 ± 0.005 a 48.6 ± 0.4 b

F5  5.12 ± 0.00 a 0.266 ± 0.007 c 89.0 ± 0.6 d

Vietnam   

Coffee brew 6.07 ± 0.01 x 0.205 ± 0.001   115.3 ± 0.4   

F1  6.14 ± 0.01 c 0.132 ± 0.005 a 65.9 ± 0.6 a

F2  5.93 ± 0.01 a 0.298 ± 0.010 c 158.1 ± 0.3 e

F3  6.06 ± 0.01 b 0.210 ± 0.012 b 112.9 ± 0.2 c

F4  6.19 ± 0.01 d 0.193 ± 0.007 b 104.4 ± 0.8 b

F5  6.08 ± 0.01 b 0.273 ± 0.015 c 117.6 ± 0.9 d

 



Table 4. Chlorogenic acids in espresso coffee brews and fractions. All values are shown 

as mean ± standard deviation (n=3). Different letters indicate significant differences 

(p<0.05) among different coffee fractions in each coffee. 

  
3-CQA 

[mg/100mL] 
4-CQA 

[mg/100mL] 
5-CQA 

[mg/100mL] 
3,4-diCQA 

[mg/100mL] 
3,5-diCQA 

[mg/100mL] 
4,5-diCQA 

[mg/100mL] 

Guatemala       

Coffee brew 43.2 ± 0.1   55.6 ± 0.7  96.7 ± 1.8  5.1 ± 0.1   2.8 ± 0.2   5.0 ± 0.1   

F1  91.3 ± 1.3 c 114.6 ± 0.6 c 201.1 ± 1.6 c 9.8 ± 0.2 c 4.2 ± 0.1 c 9.6 ± 0.4 c 

F2  26.4 ± 0.4 b 33.8 ± 0.1 b 56.3 ± 0.6 b 6.5 ± 0.4 b 3.1 ± 0.1 b 5.7 ± 0.1 b 

F3  15.0 ± 0.0 a 22.4 ± 0.1 a 29.8 ± 0.1 a 3.2 ± 0.0 a 1.8 ± 0.0 a 2.9 ± 0.0 a 

Vietnam       

Coffee brew 25.8 ± 1.2   35.0 ± 0.2   52.9 ± 2.0  4.1 ± 0.0   2.0 ± 0.0   3.8 ± 0.1   

F1  49.3 ± 0.6 c 70.4 ± 0.5 c 108.0 ± 2.9 c 7.8 ± 0.2 c 2.7 ± 0.2 c 5.4 ± 0.1 c 

F2  16.0 ± 0.1 b 20.5 ± 0.1 b 30.8 ± 0.2 b 4.6 ± 0.0 b 1.7 ± 0.1 b 3.8 ± 0.1 b 

F3  9.4 ± 0.3 a 13.0 ± 0.2 a 16.0 ± 0.4 a 2.1 ± 0.0 a 0.8 ± 0.0 a 1.7 ± 0.1 a 

 



Table 5. Chlorogenic acids in filter coffee brews and fractions. All values are shown as 

mean ± standard deviation (n=3). Different letters indicate significant differences 

(p<0.05) among different coffee fractions in each coffee. 

  
3-CQA 

[mg/100mL] 
4-CQA 

[mg/100mL] 
5-CQA 

[mg/100mL] 
3,4-diCQA 

[mg/100mL] 
3,5-diCQA 

[mg/100mL] 
4,5-diCQA 

[mg/100mL] 

Guatemala       

Coffee brew 17.0 ± 0.1   25.3 ± 0.0   38.7 ± 0.1   3.8 ± 0.0   2.0 ± 0.0   3.2 ± 0.0   

F1  31.0 ± 0.3 e 40.9 ± 0.1 d 70.1 ± 0.3 e 6.1 ± 0.3 d 2.9 ± 0.1 c 6.0 ± 0.0 d 

F2  16.8 ± 0.4 c 26.2 ± 0.2 c 38.2 ± 0.7 c 3.8 ± 0.1 b 2.0 ± 0.1 b 3.9 ± 0.1 b 

F3  11.0 ± 0.1 a 16.8 ± 0.0 a 24.8 ± 0.2 a 2.7 ± 0.1 a 1.4 ± 0.0 a 2.7 ± 0.0 a 

F4  14.7 ± 0.2 b 23.0 ± 0.2 b 34.1 ± 0.4 b 3.8 ± 0.2 b 2.1 ± 0.1 b 3.7 ± 0.0 b 

F5  24.5 ± 0.8 d 42.0 ± 0.9 d 61.3 ± 1.0 d 4.4 ± 0.0 c 3.0 ± 0.1 c 4.3 ± 0.1 c 

Vietnam       

Coffee brew 15.0 ± 0.1   19.4 ± 0.0   21.8 ± 0.2   3.1 ± 0.0   0.7 ± 0.0   1.2 ± 0.0   

F1  10.6 ± 0.2 a 13.1 ± 0.1 a 14.3 ± 0.2 a 2.0 ± 0.0 a 0.3 ± 0.0 a 0.7 ± 0.0 a 

F2  18.5 ± 0.2 d 24.4 ± 0.0 e 28.3 ± 0.4 d 4.2 ± 0.1 e 0.9 ± 0.0 d 1.6 ± 0.0 d 

F3  14.6 ± 0.1 bc 19.1 ± 0.0 c 21.2 ± 0.2 b 2.9 ± 0.0 c 0.7 ± 0.0 b 1.2 ± 0.0 b 

F4  14.5 ± 0.3 b 18.3 ± 0.0 b 20.4 ± 0.5 b 2.8 ± 0.0 b 0.7 ± 0.0 b 1.2 ± 0.0 b 

F5  15.2 ± 0.4 c 20.4 ± 0.1 d 22.6 ± 0.6 c 3.6 ± 0.0 d 0.8 ± 0.0 c 1.5 ± 0.0 c 

 

 

 



FIGURE CAPTIONS 

Figure 1. Antioxidant capacity (Folin-Ciocalteau method) of coffee brews and fractions 

obtained by espresso (a) and filter coffeemaker (b). All values are shown as mean ± 

standard deviation (n=3). ** indicates highly significant differences (p<0.01) between 

coffee brews. Different letters indicate significant differences (p<0.05) among coffee 

fractions in each coffee.  

Figure 2. Antioxidant capacity (ABTS method) of coffee brews and fractions obtained 

by espresso (a) and filter coffeemaker (b). All values are shown as mean ± standard 

deviation (n=3). ** indicates highly significant differences (p<0.01) between coffee 

brews. Different letters indicate significant differences (p<0.05) among coffee fractions 

in each coffee.  

Figure 3. Antioxidant capacity (DPPH method) of coffee brews and fractions obtained 

by espresso (a) and filter coffeemaker (b). All values are shown as mean ± standard 

deviation (n=3). ** indicates highly significant differences (p<0.01) between coffee 

brews. Different letters indicate significant differences (p<0.05) among coffee fractions 

in each coffee.  

Figure 4. Antioxidant capacity (Fremy’s Salt method) of coffee brews and fractions 

obtained by espresso (a) and filter coffeemaker (b). All values are shown as mean ± 

standard deviation (n=3). ** indicates highly significant differences (p<0.01) and ns 

nonsignificant differences (p>0.05) between coffee brews. Different letters indicate 

significant differences (p<0.05) among coffee fractions in each coffee.  

Figure 5. Antioxidant capacity (TEMPO method) of coffee brews and fractions 

obtained by espresso (a) and filter coffeemaker (b). All values are shown as mean ± 

standard deviation (n=3). ** indicates highly significant differences (p<0.01) and ns 



nonsignificant differences (p>0.05) between coffee brews. Different letters indicate 

significant differences (p<0.05) among coffee fractions in each coffee.  

 



Figure 1. Antioxidant capacity (Folin-Ciocalteau method) of coffee brews and fractions 

obtained by espresso (a) and filter coffeemaker (b). All values are shown as mean ± 

standard deviation (n=3). ** indicates highly significant differences (p<0.01) between 

coffee brews. Different letters indicate significant differences (p<0.05) among coffee 

fractions in each coffee.  
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Figure 2. Antioxidant capacity (ABTS method) of coffee brews and fractions obtained 

by espresso (a) and filter coffeemaker (b). All values are shown as mean ± standard 

deviation (n=3). ** indicates highly significant differences (p<0.01) between coffee 

brews. Different letters indicate significant differences (p<0.05) among coffee fractions 

in each coffee.  
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Figure 3. Antioxidant capacity (DPPH method) of coffee brews and fractions obtained 

by espresso (a) and filter coffeemaker (b). All values are shown as mean ± standard 

deviation (n=3). ** indicates highly significant differences (p<0.01) between coffee 

brews. Different letters indicate significant differences (p<0.05) among coffee fractions 

in each coffee.  
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Figure 4. Antioxidant capacity (Fremy’s Salt method) of coffee brews and fractions 

obtained by espresso (a) and filter coffeemaker (b). All values are shown as mean ± 

standard deviation (n=3). ** indicates highly significant differences (p<0.01) and ns 

nonsignificant differences (p>0.05) between coffee brews. Different letters indicate 

significant differences (p<0.05) among coffee fractions in each coffee.  
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Figure 5. Antioxidant capacity (TEMPO method) of coffee brews and fractions 

obtained by espresso (a) and filter coffeemaker (b). All values are shown as mean ± 

standard deviation (n=3). ** indicates highly significant differences (p<0.01) and ns 

nonsignificant differences (p>0.05) between coffee brews. Different letters indicate 

significant differences (p<0.05) among coffee fractions in each coffee.  
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