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of von Kármán-like flows
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We present numerical simulations of the kinematic induction equation in order to examine the dynamo efficiency
of an axisymmetric von Kármán–like flow subject to time-dependent nonaxisymmetric velocity perturbations.
The numerical model is based on the setup of the French von Kármán-sodium dynamo (VKS) and on the flow
measurements from a water experiment conducted at the University of Navarra in Pamplona, Spain. The principal
experimental observations that are modeled in our simulations are nonaxisymmetric vortexlike structures which
perform an azimuthal drift motion in the equatorial plane. Our simulations show that the interactions of these
periodic flow perturbations with the fundamental drift of the magnetic eigenmode (including the special case of
nondrifting fields) essentially determine the temporal behavior of the dynamo state. We find two distinct regimes
of dynamo action that depend on the (prescribed) drift frequency of an (m = 2) vortexlike flow perturbation.
For comparatively slowly drifting vortices we observe a narrow window with enhanced growth rates and a drift
of the magnetic eigenmode that is synchronized with the perturbation drift. The resonance-like enhancement of
the growth rates takes place when the vortex drift frequency roughly equals the drift frequency of the magnetic
eigenmode in the unperturbed system. Outside of this small window, the field generation is hampered compared
to the unperturbed case, and the field amplitude of the magnetic eigenmode is modulated with approximately
twice the vortex drift frequency. The abrupt transition between the resonant regime and the modulated regime is
identified as a spectral exceptional point where eigenvalues (growth rates and frequencies) and eigenfunctions
of two previously independent modes collapse. In the actual configuration the drift frequencies of the velocity
perturbations that are observed in the water experiment are much larger than the fundamental drift frequency of
the magnetic eigenmode that is obtained from our numerical simulations. Hence, we conclude that the fulfillment
of the resonance condition might be unlikely in present day dynamo experiments. However, a possibility to
increase the dynamo efficiency in the VKS experiment might be realized by an application of holes or fingers on
the outer boundary in the equatorial plane. These mechanical distortions provoke an anchorage of the vortices at
fixed positions thus allowing an adjustment of the temporal behavior of the nonaxisymmetric flow perturbations.
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I. INTRODUCTION

Cosmic magnetic fields are ubiquitous phenomena that
are intrinsically coupled to most astrophysical objects like
planets, stars, or galaxies. The origin of these fields involves
the formation of electrical currents by means of a complex flow
of a conducting fluid or plasma. This process, the so-called
dynamo effect, is necessarily three dimensional and nonlinear,
which makes an analytical or numerical approach difficult.
Meanwhile, fluid-flow-driven generation of magnetic fields
has also been obtained in laboratory experiments providing a
complementary tool to astronomical observations or numerical
simulations. However, whereas astrophysical dynamo action
is comparably easy because of the large dimensions of the
involved flows, its experimental realization requires consid-
erable technical efforts [1]. An important obstacle for the
occurrence of laboratory dynamo action arises from the scaling
behavior of the power that is required to drive a flow with a
requested magnetic Reynolds number, Rm. For turbulent flows
this power scales ∝Rm3 so a reduction of the critical Rm for the
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onset of dynamo action is most important to achieve magnetic
self-excitation at all.

So far, dynamo experiments based on a flow of a conducting
fluid have been successfully conducted in Riga [2], Karlsruhe
[3], and Cadarache [4]. The first two facilities made use
of a more or less predetermined fluid flow essentially fixed
by the forcing and the shape of the internal tubes. Note,
however, that, at least in the Riga dynamo experiment, the
saturation process involved a nontrivial back-reaction effect
of the magnetic field that changes the geometry of the flow.
Such effects might be even more pronounced in the Cadarache
von Kármán-sodium (VKS) dynamo. In that experiment, the
flow driving by two opposing impellers provides more freedom
for the development of a saturated turbulent state, in which the
back-reaction of the magnetic field on the fluid can strongly
modify the geometry and dynamics of the flow. In an idealizing
model the mean axisymmetric flow between counter-rotating
impellers comprises two toroidal and two poloidal eddies
(so-called s2t2 topology), and it is well known that this
flow is able to drive a dynamo [5,6]. Various attempts in
different geometries have been made (numerically as well as
experimentally) in order to examine dynamo action driven by
such a flow [4,7–20]. However, so far, experimental dynamo
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action driven by a von Kármán–like flow is obtained only at
the VKS facility and only when at least one of the flow-driving
impellers is made of soft iron with a large relative permeability.
Kinematic simulations of the Cadarache dynamo indicate a
close linkage between the exclusive occurrence of dynamo
action in the presence of soft iron impellers and the observed
axisymmetry of the magnetic field [21,22]. Nevertheless, a
fully satisfactory explanation of the working principle of this
dynamo is still missing and it is still unclear whether the present
experiments will ever be able to achieve growing equatorial
dipole modes, which constitute the magnetic field geometry
that has been expected from kinematic simulations with an
axisymmetric flow field.

An improvement of present numerical models may require
the explicit consideration of coherent nonaxisymmetric struc-
tures that repeatedly have been observed in water experiments
using a von Kármán–like flow driving [23–25]. Nonaxisym-
metric time-periodic flows with a dominant azimuthal wave
number m = 2 have also been found in 3D simulations of
s2t2 flows in spherical geometry [16]. Kinematic dynamo
simulations using various manifestations of these velocity
fields showed a surprising diversity of behavior patterns;
however, self-generation of magnetic energy was found only
when the time-dependent flow field was taken into account,
whereas the simulations with the time-averaged flow or with
different snapshots of the velocity field did not exhibit dynamo
action. A similar behavior has also been found previously in
an ideal two-dimensional model by the authors of Ref. [26],
who examined the induction action of a uniform shear flow
perturbed by a periodic variation on intermediate time scales.
The authors found a perpetual amplification even for very small
perturbation amplitudes and concluded that tiny distortions
∼Rm−1 can be sufficient to alter the ability of a flow to
provide for dynamo action. This type of dynamo action has
been attributed to non-normal growth in Ref. [27], where it
was shown that an appropriate mixing of nonorthogonal
eigenstates through a time-dependent linear operator can lead
to growing modes even if the contributing eigenstates alone
correspond to decaying solutions in a stationary system.

The main objective of our study is the behavior of the
dynamo efficiency of a cylindrical VKS-like system subject
to nonaxisymmetric velocity perturbations with a single
azimuthal wave number m = 2. Such velocity modes were
observed in a water experiment conducted at the University of
Navarra in Pamplona in order to analyze the influence of slowly
evolving large-scale flow on the occurrence of dynamo action
[23,28]. Here, we utilize the essential features of the measured
flow field as the basis input for numerical simulations of the
kinematic induction equation. Typical input parameters that
are systematically varied are the flow amplitude (in terms of
the magnetic Reynolds number) and the azimuthal drift motion
of the implied nonaxisymmetric velocity perturbation. From
the simulation data we extract the leading eigenmodes and the
related eigenvalues in terms of growth rates and frequencies
that describe field amplitude modulations and/or azimuthal
field drift. Interestingly, for comparably low drift frequencies
of the velocity perturbation, we, first, observe a phase locking
of the magnetic eigenmode drift with the vortex drift which
is replaced, for higher perturbation drift frequency, by the
appearance of a time-modulated magnetic eigenmode. By

analyzing the involved growth rates and frequencies in the
phase-locked regime and in the modulated regime, we identify
the transition between them as a spectral exceptional point
where eigenvalues and eigenfunctions of two modes coincide
[29,30]. The observed behavior is in close analogy with typical
(resonant) mechanical systems subject to periodic forcing, like,
e.g., spinning disk systems [31], or to the behavior observed
in the stability study of water waves [32] and we will see, by
analyzing the solution of a simple Mathieu equation, that the
observed spectral structure is quite generic for systems under
the influence of periodic forcing. Comparable effects have
also been found in mean-field dynamos of αω type that were
designed to explain the bisymmetric field pattern observed
in spiral galaxies. In these models a periodic perturbation is
caused by density waves due to spiraling arms, and a paramet-
ric resonance (also called swing excitation) is observed when
the frequency of the perturbing velocity pattern is twice the
oscillation frequency of the (axisymmetric) dynamo [33–37].

In the present paper, we show that a facilitation of dynamo
action by periodic flow perturbations is also possible in
more complex three-dimensional models that include mag-
netic diffusivity and potentially can be applied to existing
dynamo experiments. In contrast to the dynamo models from
Refs. [16,27] the observed increase of the growth rate occurs
already without involving time-periodic states, which makes
an interpretation in terms of non-normal growth (as in
Ref. [27]) rather implausible.

II. EXPERIMENTAL BACKGROUND

The simulations presented below are motivated from a water
experiment that is described in detail in Ref. [23]. In the exper-
iment a von Kármán swirling flow is driven by two counter-
rotating impellers located at the end caps of a cylindrical vessel
of radius R = 10 cm and height H = 20 cm [Fig. 1(a)].

Both impellers spin with a rotation rate up to 12 Hz so the
resulting flow is highly turbulent with flow fluctuations of the
same order as the mean flow [a typical snapshot of the turbulent
flow is shown in Fig. 1(b)]. The velocity field is measured using
laser Doppler velocimetry (LDV) and the mean velocity field
is obtained by averaging the instantaneous flow for (at least)
100 impeller turns. The resulting axisymmetric velocity field
consists of two toroidal cells and two meridional recirculating
cells that are roughly restricted to each cylindrical half-space
[Fig. 1(c)]. Comparable structures have been also observed in
water experiments with similar configurations [24,25].

The cylindrical configuration combined with the specific
flow driving imposes a discrete symmetry: The most sym-
metric flow that can be obtained between two propellers
rotating in opposite directions breaks the reflection symmetry
on any plane that contains the cylinder axis but preserves
the symmetry about a π rotation around any diameter in the
equatorial plane [Fig. 2(a)]. However, in the water experiment,
this symmetry is broken for Re � 104 (without internal
symmetrizing fixtures) and the measured mean velocity field
becomes asymmetric even when both impellers spin with equal
rotation rates [23]. As a consequence, one of the cells [blue
(upper cell) or red (lower cell) in Fig. 2(b)] becomes larger
than the other. The averaged velocity field is meta-stable, and
spontaneous jumps of the dominant cell from one side to the
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FIG. 1. (Color) (a) Sketch of the experimental setup. In the experiment the von Kármán swirling flow is driven by two counter-rotating
impellers located at the end caps of a cylindrical vessel of radius R = 10 cm and height H = 20 cm. The yellow ring denotes the equatorial plane
of the cylinder. (b) Instantaneous snapshot of the turbulent fluid flow. Note the vortexlike structure roughly in the center of the vessel. (c) Mean
axisymmetric flow field measured in the experiment. The colored structure denotes the toroidal flow (uϕ) and the arrows denote the poloidal flow
(ur,uz). Although both impellers rotate with the same velocity different sizes of the flow cells occur due to spontaneous symmetry breaking.

other are observed (so-called inversions) with both possible
states occurring with equal probability.

The transition time for an inversion is τinv ≈ 10 s and the
time between consecutive events varies from minutes to hours
following a probability distribution ρ(t) = 1

T0
e−t/T0 with a

parameter T0 determined by the noise intensity. T0 decreases
for increasing Reynolds number, i.e., inversions occur more
frequently if the turbulence is more vigorous. The inversions of
the velocity field introduce a slow time scale at which the large
scale flow and hence the large scale magnetic field change their
structure. In the long run, the enhanced dissipation arising from
the transition between different eigenstates (corresponding to
the different velocity fields) can result in a reduced efficiency
for the dynamo process when the mean lifetime of a velocity
state becomes of the same order as the magnetic diffusion
time [38].

In addition to breaking of the equatorial symmetry the
observed mean flow also violates the ideal axial symmetry.
Coherent nonaxisymmetric structures emerge close to the
equatorial plane (even before a turbulent state is reached) and
establish a local swirling flow around an axis perpendicular to
the main symmetry axis of the cylinder. The nonaxisymmetric
flow perturbation is dominated by an azimuthal wave number
m = 2 and undergoes an azimuthal drift that is immediately
linked to the flow orientation of the dominating toroidal cell.
The drift frequency of the vortexlike pattern is related to
the maximum azimuthal mean flow velocity umax

ϕ by ωv ≈
0.3umax

ϕ /Rv, where Rv denotes the radius of the maximum
vortex velocity (Rv ≈ 0.857 in units of the cylinder radius).
The midsize structures provide an additional source of helicity,
so it is likely that the vortices are involved in the dynamo
process when a conducting fluid like liquid sodium is utilized.

FIG. 2. (Color online) Reconstruction of averaged trajectories in the experiment. The blue (upper) and red (lower) streamlines represent
the averaged trajectories impelled by each one of the top and bottom impellers. (a) Symmetric flow configuration. (b) Equatorial symmetry
breaking observed in the experiment when Re > 104. Spontaneous jumps between both possible states are observed in the experiment.
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III. NUMERICAL MODEL

The temporal development of the magnetic flux density B
induced from a flow u of a conducting fluid is described by the
magnetic induction equation that results from the combination
of Faraday’s law, Ohm’s law, and Ampère’s law (without
displacement current):

∂ B
∂t

= ∇ × (u × B − η∇ × B) . (1)

In Eq. (1) η denotes the magnetic diffusivity which is related to
the electrical conductivity σ and the vacuum permeability μ0

by η = (μ0σ )−1. Equation (1) is time stepped, applying a finite
volume method where a constraint transport scheme ensures
the exact treatment of the solenoidal property of B (if the initial
field is divergence free). Insulating boundary conditions are
treated with a modified boundary integral equation approach
which yields the tangential field components on the boundary
from the normal field components on the whole surface of the
computational domain [39,40].

A. The axisymmetric velocity field

We use an analytically prescribed flow field that incorpo-
rates the main characteristics of a von Kármán flow and allows
a convenient variation of the equatorial symmetry breaking.
Since the typical lifetime of the mean flow state is much longer
than the time scales governing the (nonaxisymmetric) flow
perturbations, the dynamics introduced by the inversions can
be ignored so we assume a time-independent axisymmetric
velocity field. Equatorial symmetry breaking is modeled using
a basic flow that is composed of two different axisymmetric
parts with different symmetry properties. The main part is
symmetric with respect to a π rotation around any diameter
in the equatorial plane. This contribution will be called
even flow [Fig. 3(a)]. The geometric structure of the even

flow consists of two counteroriented toroidal cells and two
recirculating poloidal cells located in each cylindrical half-
space. Mathematically, the even part is prescribed by the
so-called MND flow first proposed by Marié, Normand, and
Daviaud [41],

ue
r (r,z) = − π

H
r(1 − r)2(1 + 2r) cos

(
2πz

H

)
,

ue
ϕ(r,z) = 4εr(1 − r) sin

(
πz

H

)
, (2)

ue
z(r,z) = (1 − r)(1 + r − 5r2) sin

(
2πz

H

)
,

where ε represents the relation between toroidal and poloidal
flow (here ε = 0.8155) and H is the total height of the cylinder
(here H = 2.0).

The second contribution changes its sign when performing
the same π transformation and is called odd flow [Fig. 3(b)].
This contribution is determined by a single poloidal cell that
spreads through the whole cylinder and a global azimuthal
rotation uϕ (independent of z and ϕ). The odd flow contribution
assumes the same expressions for ε, H and for the radial profile
as used for the even flow (2) and is given by

uo
r = π

2H
r(1 − r)2(1 + 2r) sin

(
2πz

H

)
,

uo
ϕ = εr(1 − r), (3)

uo
z = (1 − r)(1 + r − 5r2) cos2

(
πz

H

)
.

The variation of the equatorial symmetry breaking is realized
by multiplying the odd flow contribution (3) with a weighting
factor a ∈ [0; 1] so the total flow field is given by

u = ue + auo. (4)

FIG. 3. (Color online) Prescribed velocity field. From left to right: (a) even flow (MND flow) as given by Eq. (2), (b) odd flow contribution
given by Eq. (3), (c) total flow u = ue + auo for a = 0.35. The color-coded (gray shaded) pattern represents the azimuthal flow (uϕ) and the
arrows denote orientation and magnitude of the meridional flow (ur,uz).
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u describes a flow field with two different cell sizes with the
even contribution always being dominant [see Fig. 3(c)]. In
our model the dominant toroidal eddy is always located close
to the north (top) impeller (at z = +H/2) and is characterized
by a counterclockwise oriented azimuthal velocity [Fig. 3(c)].

The combined flow field is scaled allowing a systematically
variation of the (prescribed) magnetic Reynolds number
defined as

Rm = UR
η

, (5)

where η denotes the magnetic diffusivity, R a characteristic
length scale (hereR = 1, the radius of the cylindrical domain),
and U is the peak velocity defined by U = Umax = max[(u2

r +
u2

ϕ + u2
z)

1
2 ].

The flow field (4) is qualitatively similar to the model flow
applied in Ref. [42], where dynamo action is examined in a
VKS-like configuration with impellers rotating at different
speeds. There are various other possibilities to realize the
equatorial symmetry breaking of the ideal flow field (2) and
it turns out that not every property of the observed flow
field can always be reproduced exactly. For example, the
definition of the flow field (4) does allow an easy adjustment
of the symmetry breaking in terms of the parameter a but
exhibits different azimuthal velocities near the impellers. In
this sense, the idealized flow (4) differs from the observed
flow, which results from a forcing through impellers that are
in exact counter-rotation, so the flow velocities close to both
impellers are the same. Such deviations slightly influence the
quantitative outcome of the simulations like, e.g., the critical
magnetic Reynolds number for the onset of dynamo action;

nevertheless, they do not affect the essential conclusions that
will result from our simulations.

B. Modeling of the nonaxisymmetric velocity perturbations

The coherent nonaxisymmetric flow perturbations are
located near the outer wall of the cylinder and close to
the equatorial plane where a strong shear layer emerges
that is caused by the opposite azimuthal flow orientation
in each cylindrical half. The vortices allow a relaxation of
the shear in the equatorial layer in some way similar to a
Kelvin-Helmholtz instability but under turbulent conditions.
The formation of the vortices in the experiment and the
corresponding implementation in the numerical model are
sketched in Fig. 4.

In the simulations, the vortices are parameterized by
analytical expressions whereby the essential properties—the
azimuthal wave number, thickness, diameter, and average
radial position—are taken from the measurements. The center
of the vortices with a typical diameter of 0.5 (and an aspect
ratio of unity) is located around the equatorial plane with
a maximum at a radius of Rv = 0.857 (all numbers are
denoted in units of the cylinder radius R = 10 cm). The
nonaxisymmetric contribution of the vortices to the velocity
field is explicitly given by

uv
r = 0,

uv
ϕ = 2Vm

m
cos[m(ϕ + ωvt)]r

2(1 − r)e−[(r−r0)/σ ]2
sin(4z),

uv
z = −2Vm sin[m(ϕ + ωvt)]r

2(1 − r)e−[(r−r0)/σ ]2
cos2(2z),

(6)

FIG. 4. (Color online) Mean flow and vortex pattern realized in the model: The figures show axisymmetric and nonaxisymmetric
contributions of the velocity field in the (ϕ,z) plane at r = 0.9. Only the azimuthal and axial components of the velocity field are presented.
(a) Odd and even axisymmetric part [Eqs. (2) and (3)]. (b) Vortices according to Eq. (6) for m = 2. (c) Total velocity field [combining Eqs. (2),
(3), and (6)] for Vm = 0.2. The colored (gray shaded) structures represent the radial component of the vorticity of the nonaxisymmetric
contribution (∇ × uv)r [red (dark gray) respectively blue (light gray) corresponds to positive repectively negative vorticity]. (d) Same as in (c)
for the experimental data.
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with the axial coordinate z restricted to the interval z ∈
[−π/4; π/4]. In Eq. (6) Vm denotes the magnitude of the
nonaxisymmetric perturbation and the quantities σ and r0 are
estimated from the experimental observations (here always
r0 = 0.9 and σ = 0.12). The azimuthal drift frequency of the
vortex perturbation is denoted by ωv, which in the experiment
is linked to the azimuthal velocity of the dominant mean flow
cell. In the system of units applied in the simulations the
observed vortex drift frequency ∼0.3umax

ϕ /Rv corresponds to
ωv ≈ 17.1 (14.9,14.0,13.1) for a = 0 (0.62,0.84,1.00). Note
that the drift frequency of the nonaxisymmetric velocity
pattern with an azimuthal wave number m is related to
the previously defined vortex frequency by �p = mωv. In
the water experiment the vortices exhibit an intermittent
behavior, e.g., sudden jumps to a state with a different wave
number (m = 3 or m = 4) or fluctuations of the vortex drift.
Furthermore, the locations of the vortices undergo variations
that are connected to the largest fluctuations of the mean
velocity field. Those fluctuations appear centered around the
shear layers and close to the wall. These temporal alterations
are not considered in our numerical model, where we restrict
our examinations to the case m = 2 which corresponds to the
most probable configuration observed in the experiment. In
all cases the disturbance introduced by the nonaxisymmetric
component remains only weak and has no influence on the
actual Rm given by the maximum of the modulus of u.

IV. RESULTS

In the kinematic approach, the back-reaction of the mag-
netic field on the flow is neglected so the solution of the
induction Eq. (1) represents a linear problem, which in
principle could be solved with the ansatz

B(r,t) = B0(r)eλt . (7)

A dynamo solution is obtained if the magnetic energy density
Emag = (2μ0)−1|B|2 grows exponentially, ∝e2λt . In general, λ

is a complex quantity, λ = γ + iω, where γ denotes the field
amplitude growth rate and ω denotes an oscillation or drift
frequency. In case of a time-dependent velocity perturbation
with a (given) period T , the general form of the solution differs
from Eq. (7) and the proper time dependence follows from
Floquet theory,

B(r,t) ∼
∑

i

eμi t P i(r,t), (8)

where P i(r,t) = P i(r,t + T ) has period T and ρi = eμi t are
the so-called Floquet multipliers (e.g., Refs. [43,44]). In the
following, the growth rates represent magnetic field amplitude
growth rates for the (m = 1) mode and the applied time
scale is given by the magnetic diffusion time τη = R2/η.
In accordance with Cowling’s antidynamo theorem, dynamo
solutions generated by a prescribed mean axisymmetric flow
necessarily yield a nonaxisymmetric field. In all simulations
presented below the (m = 1) mode is the dominant field
contribution so the magnetic eigenmode behaves ∝cos ϕ and
represents a dipole oriented along the equatorial plane.

A. Equatorial symmetry breaking

For a sufficiently large magnetic Reynolds number, the
flow field (4) drives a dynamo with a typical structure
shown in Fig. 5, which displays the eigenmodes for the
undisturbed flow field (a = 0) and the model case a = 0.62.
In both cases, the geometry is dominated by two interleaved
banana-cell-like structures. However, in case of equatorial
symmetry breaking (a = 0.62; Fig. 5, right panel), a slight
concentration of magnetic energy is observed in the upper
cylindrical half-space containing the dominant flow cell. The
breaking of the ideal equatorial symmetry suppresses dynamo
action: When a symmetry-breaking flow contribution is added,
the critical magnetic Reynolds number for the onset of dynamo
action roughly increases ∝a2 from Rmc ≈ 50.5 for a = 0 to
Rmc = 109.5 at a = 1 [Figs. 6(a) and 6(b)].

FIG. 5. (Color) Geometric structure of the dynamo eigenmode. Left: No equatorial symmetry breaking (a = 0), Rm = 70. Right: a =
0.62,Rm = 70. The isosurfaces show the magnetic energy density at 10%, 30%, and 50% of the respective maximum value. The colored
contours denote the azimuthal magnetic field Bϕ . Note the magnetic energy concentration in the upper part of the cylinder, which contains the
dominant flow cell in case of equatorial symmetry breaking (right panel).
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FIG. 6. (a) Growth rate versus Rm for various equatorial symmetry breaking a; (b) critical magnetic Reynolds number versus a. The dashed
curve denotes a fit by a polynomial of degree 2.

In the ideal symmetric case (a = 0), the eigenmode shows
no time dependence except the exponential decay. With
symmetry breaking, the (m = 1) mode exhibits an azimuthal
drift around the cylinder axis, i.e., B ∼ B0(r,z)eλt cos(ϕ −
ωf t), with the magnetic field drift frequency ωf increasing
nearly linearly with the degree of asymmetry a and with Rm
[Figs. 7(a) and 7(b)]. ωf is constant in time and is oriented
opposite to the azimuthal flow in the dominant cell. For
axisymmetric velocity fields [as ue and uo, Eqs. (2) and (3)]
poloidal and toroidal velocity components are decoupled,
and their shear layer may have independent locations. The
relative position of these shear layers controls the magnitude
(and orientation) of the magnetic field drift. For example, an
exclusive increment of the odd azimuthal flow contribution
(which only shifts the toroidal shear layer) would alter the
drift frequency. The change might be quite dramatic and even
a reversal of the drift orientation is possible with the eigenmode
corotating with the dominant azimuthal flow, as observed, for
example, in Ref. [8]. A systematic study of the influence of
this effect is underway.

B. Impact of nonaxisymmetric velocity perturbations

The presence of nonaxisymmetric velocity components
results in a coupling between different azimuthal magnetic

field modes that are separated in the purely axisymmetric prob-
lem. Hence, the characterization of the dynamo eigenmode
with a single azimuthal wave number is no longer correct
because (in principle) all azimuthal wave numbers are linked.
In the following, we examine the impact of a nonaxisymmetric
flow perturbation with a (single) wave number m = 2 so two
classes of magnetic eigenmodes arise which incorporate even
azimuthal wave numbers (m = 0,2,4, . . . ) or odd azimuthal
wave numbers (m = 1,3,5, . . . ), respectively. In our model,
only the second class with odd wave numbers is relevant,
whereas the even modes are not relevant for our problem
because they decay on a faster time scale.

In the following, we keep the amplitude of the nonaxisym-
metric velocity contribution fixed at Vm = 0.3Umax, which
roughly corresponds to the value observed in the experiments.
In this regime the presence of the nonaxisymmetric velocity
component neither changes the global (axisymmetric) flow
topology nor the actual magnetic Reynolds number. We further
assume that the drift frequency of the vortex, ωv, is a free
parameter that is systematically varied in the interval ωv ∈
[−60,+60]. The maximum or minimum value correspond to
a vortex drift velocity approximately equal to the maximum
azimuthal flow velocity (recall that in the water experiment
the observed vortex drift velocity is roughly 0.3umax

ϕ ). We
also examined the artificial case with a vortex drift orientation

FIG. 7. (a) Drift frequency of the (m = 1) mode versus Rm for various a. (b) Drift frequency of the (m = 1) mode versus equatorial
symmetry breaking a. Note the slight deviation from the linear behavior for small a.
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FIG. 8. (a) Time dependence of the magnetic field amplitude for Rm = 70 and a = 0.62. (b) Fourier spectrum for the case ωv = 14.9 (after
eliminating the exponential decay). The various peaks denote the modulation frequency of the field amplitude ωa ≈ 25.08 (and its overtones).

opposite to the azimuthal flow of the dominant cell. These
cases are denoted by negative frequencies.

The temporal development of the amplitude of the dominant
eigenmode for two different vortex drift frequencies, but
similar Rm, is shown in Fig. 8 (dashed curve: ωv ≈ 2.5; solid
curve: ωv ≈ 14.9). Both curves show completely different
behavior: For ωv ≈ 14.9 the solution decays and its amplitude
is modulated with a frequency of ωa ≈ 25.08 (solid curve),
whereas at ωv ≈ 2.5 the field amplitude does not show any time
dependence except the exponential growth (dashed curve).
Regardless of the distinct temporal behavior for both cases the

field structure is quite similar (except the pulsating character
in the modulated case) and remains close to the pattern
already observed in the previously discussed unperturbed
configuration (Fig. 9).

The occurrence of nonaxisymmetric solutions with oscillat-
ing energy is a clear indication for the presence of two distinct
azimuthal modes with the same growth rate (i.e., real part of the
eigenvalues) but with different frequencies (imaginary part of
eigenvalues). In fact, simulations that cover a sufficient number
of periods exhibit characteristic beat patterns, indicating that
the frequencies of the superimposed modes are very close.

FIG. 9. (Color online) Left: Field structure in the resonant regime (Rm = 70, a = 0.62, ωv = 2.5, corresponding to the dashed curve in the
left panel of Fig. 8). Right: Time series of a typical solution with amplitude modulation (Rm = 70, a = 0.62, ωv ≈ 14.9, corresponding to the
solid curve in the left panel of Fig. 8). The isosurfaces show the magnetic energy density at 10%, 30%, and 50% of the respective maximum
value and the colored (gray shaded) contours denote the azimuthal magnetic field Bϕ . The time series covers one modulation period with each
snapshot scaled by the respective maximum so the effects of exponential decay or growth and the amplitude modulations are eliminated. The
period of the amplitude modulation is much shorter than the time scale of the magnetic field drift so the phase of the eigenmode (i.e., its
orientation in space) remains nearly constant.
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FIG. 10. (Color online) (a) Growth rate versus vortex drift frequency for Rm = 70 and Vm = 0.3Umax. In the abscissa the resonance
frequency ωres

v has been subtracted so all curves are centered at the origin. The horizontal dotted lines denote the growth rates without
nonaxisymmetric perturbation. (b) Enlarged section of the resonant regime. The growth rates in the resonant regime correspond to nonoscillating
m = 1 eigenmodes, whereas outside of this window the solutions exhibit a modulation of the field amplitude [see also Fig. 11(c)].

We observe field amplitude modulations independently of the
degree of equatorial symmetry breaking for a broad range
of vortex drift frequencies, whereas unmodulated solutions
only occur within a narrow window of relatively slow vortex
drift frequencies. The unmodulated solutions are further char-
acterized by a sharp maximum for the corresponding growth
rates (Fig. 10), typical for parametric resonance. Characteristic
properties of the resonant regime and a comparison to values in
the unperturbed state are denoted in Table I. The location of the
resonance maximum (denoted by ωres

v ) is roughly determined
by the field drift frequency of the magnetic eigenmode in
the unperturbed case (from now labeled with ω0

f ). However,
a constant gap is observed in runs with equatorial symmetry
breaking (a > 0), resulting in ωres

v ≈ (ω0
f + 0.5), whereas the

case a = 0 remains a particular case with ωres
v = 0. The shift

of the resonance frequency with respect to the fundamental
frequency in the unperturbed problem probably follows from
the interaction of vortex structure and drifting eigenmode
similar to the shift of the resonance frequency in periodically
forced mechanical systems with damping. Outside of the
resonance, the growth rate is suppressed compared to the
unperturbed case (denoted by the dotted horizontal line in
Fig. 10). Only for very large drift velocities is the value of the
purely axisymmetric case obtained again, i.e., the impact of

the vortices vanishes when their drift frequency becomes too
large. The width of the resonant regime slightly increases with
the symmetry-breaking parameter a and so does the relative
enhancement of the growth rates and, accordingly, the relative
reduction of the critical Rm.

The periodic distortion caused by the drifting vortices also
influences the drift behavior of the magnetic eigenmode. In the
resonant regime the dynamo eigenmode exhibits an azimuthal
field drift that is immediately locked to the vortex drift
frequency, i.e., the magnetic field pattern follows the vortices
[ωf ∼ ωv, Fig. 11(b)]. This frequency locking also applies
without equatorial symmetry breaking (a = 0), which does
not show any field drift without vortices [red (topmost) curve
in Fig. 11(b)]. Besides the temporal decay and growth, the
(constant) azimuthal field drift determines the only time scale
in the resonant regime, whereas outside of the resonant window
two different time scales appear: an average azimuthal field
drift that is roughly determined by the equatorial symmetry-
breaking parameter a [solid curves in Fig. 11(a)1 and the

1This does not hold in the vicinity of the transition between the
modulated regime and the resonant regime where the field drift
exhibits a divergent trend.

TABLE I. Characteristics properties of the resonant window for different values of the equatorial symmetry breaking a. All data stems from
runs with Rm = 70. The critical magnetic Reynolds number (columns 6 and 7) has been estimated from inter-/extrapolation of simulation runs
with Rm = 50,70, and 90.

Maximum Unperturbed Rmc Rmc Relative Width of
growth growth without at reduction unmodulated

a rate ωres
v rate ω0

f vortex resonance of Rmc regime �ωv

0.00 +2.817 −0.00 +0.912 0.00 59.7 50.5 15.4% 5.06
0.62 +0.667 −1.99 −0.798 −2.63 78.5 64.8 17.5% 5.11
0.84 −0.302 −2.91 −1.839 −3.41 92.1 72.9 20.8% 5.63
1.00 −1.181 −3.50 −2.905 −4.04 108.5 82.7 23.8% 6.12
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FIG. 11. (Color online) Panels (a) and (b) show the drift frequency
of the magnetic eigenmode which is computed from the time-
derivative of the azimuthal phase ∂ϕ/∂t . (a) average field drift
frequency versus the vortex drift frequency for various values of
the symmetry-breaking parameter a (value of a increases from top to
bottom curves). The solid curves denote the average field drift in the
modulated regime. The horizontal dotted lines denote the field drift
in the unperturbed case (ω0

f ). (b) field drift frequency in the resonant
regime. The field drift is synchronized with the vortex drift: ωf ∼ ωv.
(c) Frequency of the magnetic field amplitude modulation for various
values of the symmetry-breaking parameter a. The frequencies of the
amplitude modulation scale ωa ∼ 2ωv.

aforementioned modulation of the field amplitude which scales
∼2ωv [Fig. 11(c)]. In the modulated regime, the field drift is
not constant but varies regularly with the same time scale
as the amplitude modulation. A movie that shows the time
development of four characteristic runs (no vortex, resonant
run with frequency locking, and modulated case with positive
and/or negative vortex drift frequency) can be found in the
supplemental material for this article [45].

In order to illustrate the behavior of the eigenmode in
the vicinity of the transition between the resonant and the
modulated regime, we have combined the curves shown in
Fig. 11 into one drawing. Figure 12 shows a combination
of frequencies of the magnetic eigenmode (ωf ± ωa and ωf ,
left panel) and the related growth-rates (right panel) against
ωv − ωres

v . By using the sum and difference of the observed
frequencies (drift and amplitude modulation), a continuous
transition but with a jump in the derivative is achieved between
modulated and resonant regime. The abrupt transition from
the modulated regime with ωa ∼ 2ωv to an unmodulated
regime with ωa = 0 and ωf ∼ ωv occurs when two different
eigenmodes merge. At these points, known as exceptional
points [29], the eigenvalues of two eigenmodes coincide. In our
case, the change of the temporal behavior of the eigenmode
results from the merging of the imaginary parts of the two
eigenvalues, whereas the real parts (growth rates) are identical
in the modulated regime, giving rise to the field amplitude
modulation. In the resonant regime (where the field amplitude
modulation vanishes) the real parts of the eigenvalues of both
interacting modes split and presumably form a “bubble” simi-
lar to the behavior of periodical perturbed resonant mechanical
systems (see discussion below). In addition, at the exceptional
point the two previously linearly independent eigenfunctions
collapse and become indistinguishable. Mathematically, this
is described by the formation of a nondiagonal Jordan block
structure in the matrix representation of the (non-self-adjoint)
dynamo operator associated with algebraic eigenvectors [46].
A characteristic property of exceptional points with two
coinciding eigenvalues is reflected in the time dependence
of the field amplitude, which, exactly at the exceptional point,
exhibits an additional secular term linear in t [47] so

B(t) ∼ (B1 + B2t)e
γ t . (9)

Such a time dependence has been found experimentally in
an examination of a two-level system in microwave billiards
[48] and it would be interesting to identify this term in
our simulations. However, relation (9) is exactly valid only
very close to the transition point between the modulated and
resonant regimes and it seems that, in practice, a unique
decomposition of the “measured” growth rates (obtained
from our time-stepping scheme) according to Eq. (9) remains
impossible. Hence, we can only speculate on the nature of
the interacting eigenmodes because, unfortunately, with our
present time-stepping method, we can only identify the leading
eigenmode, whereas the identification of the second mode
would require the use of an appropriate eigenvalue solver.
However, it is rather suggestive to assume that the leading
mode essentially consists of a dominant (m = 1) compo-
nent with some slight addition of a (m = 2)-vortex-induced
(m = 3) component and that the second eigenmode is
dominated by a (m = 3) component, to which a slight
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FIG. 12. (Color online) (a) Compilation of frequencies of the magnetic eigenmode versus the vortex drift frequency minus the resonance
frequency. The solid curves show a combination of field drift frequency and amplitude modulation frequency and the dashed central part
denotes the field drift frequency locked to the vortices in the resonant regime. (b) corresponding growth rates, Note the dashed curve in the
bottom part which represents the assumed growth rates of a hidden mode that cannot be identified with the applied time-stepping approach.

(m = 2)-vortex-induced (m = 1) component is added. Inde-
pendently, we expect that the growth rates of this “hidden”
mode qualitatively behave in the same way as in comparable
mechanical systems, forming a bubble in the resonant regime.
The assumed development has been added in Fig. 12 in terms
of the dashed orange curve.

A very similar spectral pattern is well known from me-
chanical systems subject to periodic perturbations, which, in
the undamped case, can often be described by a Mathieu-like
equation,

ẍ + ω2
0[1 + 2ε cos(ω̃t)]x = 0, (10)

where x denotes an oscillating state, ω0 is the fundamental
frequency of the system, and ε is the amplitude of the periodic
perturbation with frequency ω̃. An approximate solution of
Eq. (10) can be given in the form of

x(t) =
[
a0 cos

(
ω̃

2
t

)
+ b0 sin

(
ω̃

2
t

)]
eμt . (11)

Applying some further simplifications the exponent μ can be
calculated as

μ ≈ ± 1
2

√
(εω0)2 − (ω̃ − 2ω0)2. (12)

Exponential growth is obtained when the real part of μ does
not vanish so the unstable regime is restricted to the interval
(2 − ε)ω0 � ω̃ � (2 + ε)ω0. In this regime, exponentially
growing solutions occur with a frequency determined by ω̃/2.
Outside this resonant regime μ is purely imaginary and the
frequency of the solution is approximately given by

ω ≈ 1
2 ω̃ ±

√
(ω̃ − 2ω0)2 − (εω0)2. (13)

Growth rates and frequencies as obtained from Eqs. (12)
and (13) are presented in Fig. 13 and qualitatively show a
good agreement with the pattern obtained in our simulations. A
comparable pattern is also observed in the eigenvalue spectrum
of oscillating α2 dynamos with nontrivial radial distribution
of α [49,50]. However, in those models, the behavior of the

growth rates and the frequencies is exchanged: The real part
of the eigenvalues merge or split (in the same manner as the
frequencies in the left panel of Fig. 12) and the imaginary
parts form a bubble corresponding to a restricted regime
with oscillatory (axisymmetric) solutions with two conjugate
complex eigenvalues.

It is further important to state that the simple model given
by Eq. (10) and the corresponding solution (11) can only serve
as an analogy for our three-dimensional problem. In particular,
our model exhibits dynamo action without perturbation (when
Rm is large enough), whereas the solutions of Eq. (10) only
show an instability within a restricted regime. Nevertheless,
the resulting frequency behavior denoted by the dotted curves
in Fig. 13 is very close to the patterns found in our study (see
Fig. 12).

Interestingly, in a few simplified cases dynamo problems
were already successfully reduced to a Mathieu-like equation.

FIG. 13. Growth rates and frequencies of an (approximate) solu-
tion to the Mathieu equation (10) versus the perturbation frequency ω̃.
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For example, the thin disk approximation used in the galactic
αω model from Ref. [33] allows a description of the amplitude
of the magnetic vector potential by an equation similar to
Eq. (10). A parametric resonance (also called swing excitation)
is observed when the frequency of the perturbing velocity
pattern is twice the natural frequency of the dynamo. Likewise,
parametric resonances have been found in a Bullard-type disk
dynamo model with a periodic modulation of the disk rotation.
The model is based on a damped variant of Eq. (10) and
resonances which allow magnetic field excitation for rather
low velocities of the conducting disk are also observed at
higher frequencies [51]. However, a corresponding reduction
of our complicated three-dimensional dynamo to a simplified
model such as in Eq. (10) must be left for future work.

V. CONCLUSIONS

We have examined kinematic dynamo action of a von
Kármán–like flow of a conducting fluid in a cylindrical
container. When the flow breaks the ideal equatorial symmetry
of the system, the critical magnetic Reynolds number for the
onset of dynamo action increases with the amount of symmetry
breaking and a time dependence is introduced in terms of an az-
imuthal drift motion of the dominant dynamo eigenmode. The
frequency of this drift increases with the amount of symmetry
breaking as well as with the magnetic Reynolds number.

The main focus of our examinations has been on the
interaction of this field drift with a nonaxisymmetric time-
dependent velocity perturbation and the resulting impact on
dynamo action. In summary, what we observe is the following:
The temporal behavior of the system is governed by three
different time scales: the decay/growth time, the magnetic
field drift, and the vortex drift, which, in contrast to the first

two, represents an imposed quantity. For rather slow vortex
drift frequencies, the first magnetic eigenmode (dominated
by an (m = 1) component) is enslaved by the drifting vortex
pattern, hence, we see here ωf ∼ ωv. Connected with the
linear frequency relationship in this regime we observe a
parabolic shape of the growth rate, with a maximum close to
the resonance point where the vortex drift frequency would
roughly correspond to the eigenfrequency of the magnetic
field for the unperturbed, axisymmetric flow, and a quadratic
reduction of the growth rate nearby this point. Outside of
the resonant regime the field amplitude and the field drift
are modulated with twice the frequency of the vortex drift.
Phenomenologically, the development of growth rates and
frequencies can be described by a Mathieu-like equation.

The observed behavior can also be explained on the
basis of simple physical principles. For sufficiently slowly
drifting vortices the system adjusts itself to an optimum state
and the (azimuthal) phase between magnetic eigenmode and
vortex pattern remains fixed so that the field growth becomes
maximal. This state is essential characterized by the alignment
between the magnetic eigenmode and the nonaxisymmetric
velocity mode which is roughly the same independently of
symmetry breaking or vortex drift (see Fig. 14). Increasing
ωv, the magnetic eigenmode cannot follow the ever faster
(m = 2) vortex drift, but “bethinks” of its own eigenvalue
(in the unperturbed state) to which it converges in the limit
|ωv| → ∞. In doing so, it will be “beaten” by the m = 2
vortex mode with an ever-increasing frequency 2ωv, which
explains the occurrence of the second frequency involved.

The simulations presented in this study show similarities
with the results from Ref. [16] where dynamo action was exam-
ined using a flow field obtained from nonlinear simulations of
spherical s2t2 flow in a sphere. Kinematic dynamo simulations

FIG. 14. (Color online) Alignment of magnetic eigenmode and velocity perturbation for different values of the vortex drift frequency ωv.
All runs stem from the resonant regime. The color-coded (gray shaded) structure denotes Bϕ and the contour lines show the axial velocity
perturbation uv

z . Left: a = 0; right: a = 0.62.
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using the time-averaged flow or different snapshots of the
velocity field did not exhibit dynamo action, whereas this was
indeed the case when considering the time-dependent flow. The
exclusive occurrence of dynamo action with a time-dependent
flow was interpreted as dynamo action based on non-normal
growth originally described in Refs. [26,27]. Looking at the
details, a number of differences become visible between the
study of Ref. [16] and the model presented here. The key result
of Ref. [16] is a magnetic field amplification induced by two
counterpropagating m = 2 waves that were anchored at the
poles of a sphere. However, in their study the authors did not
find any clear sharp resonant-like regime. Furthermore, they
only found a more complex temporal (i.e., cyclic) behavior in
one special case with a coupled Navier-Stokes and induction
equation which leads to a phase jump in the alignment
between the nonaxisymmetric velocity mode and the magnetic
eigenmode enforced by the back-reaction of the Lorentz force
on the velocity field. In all other runs presented in Ref. [16] the
orientation of the magnetic eigenmode remains fixed in space
and time and no azimuthal drift is observed (this behavior is
similar to the results presented in Ref. [27], where only real
eigenvalues of the leading eigenmodes were obtained). The
most probable explanation for the distinct behavior results
from the differences in the hydrodynamic base of the model
of Ref. [16], which does not show any equatorial symmetry
breaking (thus, the basic magnetic state is stationary and
non-drifting). Moreover, the wavelike distortions in Ref. [16]
consist of two counterpropagating m = 2 patterns that were
anchored at the poles of a sphere which most probably inhibits
the phase-locking phenomenon observed in our study. As a
further difference, we observe a resonant behavior even in
runs without equatorial symmetry breaking and with stationary
vortices, i.e., in systems without any time dependence so no
time-dependent contribution is available that may provide
for a mixture of non-normal modes. Hence, the role of
non-normal growth in our models and the comparability
with the model of Ref. [16] must for now remain an open
question.

It is difficult to conclude if the resonance effect can
be realized in existing dynamo experiments. Although a
coincidence of forcing frequency (the frequency of the drift
motion) and magnetic field frequency cannot be ruled out,
the resonance condition is a quite particular case and most
probably can only be fulfilled by chance. This is particularly

true in the case of a more realistic nonlinear analysis, in which
the Navier-Stokes and the induction equation are coupled so
the drift of the vortex pattern might strongly be influenced
by back-reaction of the magnetic field. Furthermore, in the
examined VKS-like configuration, the vortex drift frequencies
observed in the water experiment are far away from the
resonance condition (at least for reasonable values of the
equatorial symmetry breaking) so it is unlikely that the vortices
affect the VKS dynamo in its actual setup. Nevertheless, it
might be suggestive to change the large-scale flow geometry
in order to adjust the relation of vortex drift and field drift, e.g.,
by changing the aspect ratio [52] or by fixing the vortices using
some wall inhomogeneity. From Table I it follows immediately
that the most promising state to realize the resonance in
the experiment would be in a configuration that suppresses
the equatorial symmetry breaking (e.g., using a ring in the
equatorial plane). In that case, the resonance maximum occurs
for nondrifting vortices (ωv = 0), providing a reduction of
∼15% (from Rmc = 59.7 to Rmc = 50.5). This configuration
is definitely achievable in the experiment where the vortices
can be anchored by mounting some inhomogeneity on the outer
cylinder wall like, e.g., holes or fingers. However, even when
the resonance condition theoretically is adjusted, it remains
unclear whether a parametric resonance condition can be
fulfilled because in the highly turbulent regime the vortex po-
sition undergoes considerable fluctuations. These fluctuations
(which indeed are observed in the water experiment) could
be modeled by introducing a random phase in the equations
for the nonaxisymmetric flow perturbation but, in contrast to
amplitude fluctuations, such phase noise is known to prevent
the occurrence of a parametric resonance [53].
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[36] R. Rohde, G. Rüdiger, and D. Elstner, Astron. Astrophys. 347,

860 (1999).
[37] D. Sokoloff and N. Piskunov, Mon. Not. R. Astr. Soc. 334, 925

(2002).
[38] A. de La Torre, J. Burguete, and C. Pérez-Garcı́a, Eur. Phys. J.
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