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Abstract

Simulation has been widely used for training and rehearsing difficult or unusual
actions in several fields such as aviation and the military. However, the simulators
available in some disciplines do not fulfil the requirements of reliability and
accuracy that users demand. This happens in neurosurgery. In order to overcome
these difficulties, this thesis presents a multimodal Neurosurgery Simulator
focused on patient-specific surgical learning and training.

One of the aspects that most influences the behavioural reality of a simulator
is the way in which the scene objects interfere. For that reason, detecting collisions
and giving them a feasible response is particularly important. This work presents
the collision handling methods for rigid and deformable volumetric objects and
their haptic response to be integrated into the Neurosurgery Simulator. With the
aim of evaluating our methods in terms of continuity and stability, the present
document analyses the time consumption of the collision handling algorithms and
the stability of the force parameters they return.

Real-time virtual reality simulators require accuracy but are also time
dependent. Thus, their computational cost is a vital aspect. This thesis also
proposes a methodology to optimize the time consumption of collision detection
algorithms that are based on the uniform spatial partition technique. It is validated
experimentally and compared to other approaches. Additionally, the optimization
is applied to our deformable collision detection method in order to improve its
performance.
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Resumen

La simulación como herramienta de entrenamiento y ensayo ha sido extensamente
utilizada en diferentes áreas tales como la aviación o el ejército. Sin embargo, los
simuladores de ciertas disciplinas no cumplen con los requerimientos de fiabilidad
y precisión que los usuarios demandan. Éste es el caso de la neurocirugı́a. Con
objeto de superar estas dificultades, esta Tesis presenta un Simulador multimodal
de Neurocirugı́a orientado a la enseñanza.

Uno de los factores que más afecta al realismo del comportamiento de
un simulador es la forma en la que interfieren los objetos que componen la
escena. Por esta razón, la detección y respuesta a colisiones son especialmente
importantes. Este trabajo presenta métodos de detección y respuesta a colisiones
para objetos volumétricos tanto rı́gidos como deformables y su correspondiente
respuesta háptica, los cuales serán integrados en el Simulador de Neurocirugı́a
final. Con el fin de evaluar nuestros métodos en términos de continuidad y
estabilidad, el presente documento analiza el tiempo de detección y respuesta
a colisiones de ambos algoritmos, ası́ como la estabilidad de los parámetros de
fuerza que devuelven.

Aparte de la precisión, los simuladores de realidad virtual en tiempo
real dependen del consumo de tiempo de sus módulos. De hecho, el tiempo
computacional es un factor crı́tico en este tipo de simuladores. Esta Tesis propone
también una metodologı́a que optimiza el consumo de tiempo de algoritmos de
colisión basados en la técnica de subdivisión espacial uniforme. Se ha validado
experimentalmente y comparado con otras propuestas. Además, la optimización
se ha aplicado al método de detección de colisiones deformables propuesto en esta
Tesis.
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Chapter 1

Introduction
The art and science of asking questions is the source

of all knowledge
THOMAS BERGER

Virtual Reality (VR) simulations are computer-generated versions of
real-world objects or processes presented in a 3-dimensional, multimedia format.
This technology allows users to explore and manipulate environments in real
time. Simulation tools are now extended to many fields such as aviation, military,
architecture, entertainment and medicine. Our work is focused on VR medical
simulators for learning purposes. The following section briefly introduces the
reader to the world of VR Surgery Simulation and its teaching capacities.

1.1 Surgery Simulation

Medical simulation is a branch of simulation technology related to education and
training in medical fields.

Medicine has gone through a substantial transition over the last decades.
Due to the new medical procedures emerging every day, medical knowledge
doubles every 6− 8 years. For that reason, the way in which education for
health-care professionals is designed demands significant changes. Since the
half-life of medical information is so short, the teaching process for students and
professionals extends over years. Consequently, the need for an accurate education
and training model has become essential.

These needs and the advances in educational and training technology have led

3
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to an increase in the number of learning tools, including computer simulators.

The earliest forms of simulation for medical purposes consisted of dissections
of human cadavers or animal models. However, the spread of computer
capabilities created a new paradigm in simulation: the possibility of implementing
new technologies to serve as simulation platforms.

This idea takes its roots from aeronautics and flight simulators. The military
was the first to explore the potential of computers to train its members. Due
to the success of the experience many different field experts attempted to adapt
simulation technologies to their own needs. The rapid advances in hardware and
the advent of computer-generated graphics in the 1980s led to the development of
the sophisticated and immersive simulators that are currently in use. In the medical
realm, anaesthesiology was the precursor to implementing new technologies for
training purposes (Bharath, 2006).

Medical training began with the use of mannequins in the 1950s.
The most notable prototype at that time was the Resusci-Anne mannequin
(Laerdal, Wappingers Falls, New York, USA). It was used for Cardiopulmonary
Resuscitation (CPR) training. Encouraged by Dr. Bjorn Lind and other
anaesthesiologists, Laerdal created a mannequin to demonstrate mouth to mouth
resuscitation in 1960.

Figure 1.1: First training mannequin: Resusci-Anne

However, the first computer controlled mannequin simulator did not appear
until the mid 1960s. It was called Sime One, and it was created by the engineer
S. Abrahamson and the physician J. Denson at the University of California. It
realistically simulated the tasks of endotracheal intubation and the physiological
responses of the patient (Denson J.S., 1969).

The earliest example of a part task medical trainer is the cardiopulmonary
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patient simulator Harvey. It was developed in 1968 by M. Gordon at the University
of Miami. Harvey is a full sized mannequin that performs 27 different cardiac
functions of the human body, varying blood pressure, breathing, pulse, heart
sounds and murmurs. Its effectiveness in medical skills teaching was sponsored by
the National Heart, Lung and Blood Institute in 1987. Thus, it served as inspiration
for more portable and smaller cardiology patient simulators.

Figure 1.2: Cardiopulmonary patient simulator Harvey

The development of more complete models of human physiology enabled
higher fidelity simulators. The screen-based simulator SLEEPER was built with a
multicompartment model of human physiology and pharmacology. Nonetheless,
owing to its complex system it required huge computing power, which was
not available in desktop computers. Because of their complex models and
non-affordable technologies, the simulators developed until the late 1980s where
aimed at a specific audience. The physician H. Schwid and the programmer Daniel
O’Donnell developed the concept of screen-based simulation by simplifying the
models so they could be run on a desktop computer and therefore reach a wider
audience. The SLEEPER simulator, which became a broader application called
BODY, was expanded and commercialised in a product called the Anaesthesia
Simulator Recorder in 1989. It was later evolved into a family of screen based
simulators marketed by Anesoft Corporation (Cooper and Taqueti, 2004).

VR as applied to surgery simulation was first proposed in the early 1990’s
(Satava, 1993) and focussed on task simulation. Owing to the increasing power
of computer processing and the availability of more advanced devices such as
haptics, surgery simulation gained in sophistication and realism.

VR is increasingly becoming a promising area with a great potential for
improving and modifying the learning and training experience. VR training
simulators can support experiential learning due to the rich, interactive and
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attractive educational context they provide.

A great responsibility is put on these educational mechanisms. For that reason,
in some disciplines conditions of strict fidelity and accuracy are demanded for
their simulators. This is the case in neurosurgery. However, the simulators in
use nowadays do not meet these requirements. In fact, neurosurgery students and
residents must still attend real interventions carried out by expert neurosurgeons
in order to acquire specific aptitudes.

Using VR in education and learning has clear benefits in contrast to traditional
teaching methods. The most significant benefits are:

• Experiential learning: Virtual environments can provide a promising
enhancement to learning through experience. Many authors, such as
Manovani (Mantovani, 2001) emphasize the high potential of VR and its
capacity to provide a rich, interactive and engaging educational context
where students learn by doing via first-hand experience. Direct experience
is vital in the learning process and education with VR simulators encourages
active participation rather than passivity. Knowledge is more effectively
assimilated by doing and experiencing than reading formal descriptions.
Preliminary studies (Anderson, 1996) note that users’ performance in
understanding abstract problems is considerably greater when tracking 3D
worlds where abstract entities are represented by objects.

• Access unreachable or dangerous areas: VR allows learning in contexts
where in real life access would be complex or even impossible, e.g. moving
inside a human body. Furthermore, activities which entail any risk of
damage to the user or the patient can also be performed without danger.
Additionally, VR simulators permit virtually training with expensive
equipment without having to buy the machine itself.

• Increase motivation: The interaction with a VR environment can be
approached like a game, which is intrinsically motivating.

• Adaptability: Simulators can be adjusted to the specific necessities of the
task to be performed. What is more, owing to the different characteristics
and needs of each learner, the environment, task or teaching process can be
modified in order to adapt to the circumstances.

• Evaluation: Sessions in VR environments can be easily monitored and
recorded with the aim of evaluating the student in one or more tasks.
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• Interaction through stimuli: One of the most important keys of the teaching
capacity of VR is the possibility of actively interacting with the virtual
environment through devices such as a mouse or a haptic device. Our senses
play an important role in the learning process, and VR has the capability of
offering multiple sensorial experiences through touch, eyesight and hearing.

1.1.1 Phases of the Surgery Simulation Process

Any surgery simulation process covers various disciplines that need to be
connected to get plausible and convincing results. In general terms, a surgery
simulator consists of the following areas:

Figure 1.3: Phases of a Surgery Simulator

• Image segmentation: The goal of the image segmentation in surgery
simulators is to convert the representation of medical images into something
that is more meaningful and easier to analyse for the computer. It consists
of partitioning a digital image into multiple segments. Segmentation can be
used to locate tumours or other pathologies, measure tissue volumes, make
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diagnosis, plan specific treatments or study anatomical structures.

Figure 1.4: Image Segmentation in a Neurosurgery Simulator

• 3D reconstruction: Three-dimensional reconstruction is the creation of 3D
models from a set of images, capturing the shape and appearance of the real
object. For example, a reconstruction of Computerized Tomography (CT)
scans or Magnetic Resonance Imaging (MRI) images can be created for
diagnostic or therapeutic purposes.

Figure 1.5: 3D Reconstruction of a CT Scan of a minimally displaced
fracture of a radial head

• Physical modelling: Different properties can be defined for each
reconstructed element. Different parts of the human anatomy have different
tissue properties, and each requires a different treatment when interacting
with them.

• Physical simulation: With the aim of reproducing the behaviour of the
elements over time a physical simulation module is required. As previously
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stated, different elements can have distinct properties. For that reason, their
behaviour in view of diverse situations and stimuli must also vary. The way
in which the elements in the simulation behave is determined by means of
this step.

• Collision handling: One of the aspects that most influences an
environment’s approximation to reality is the way in which the elements
interfere with each other. Once interpenetrating objects are identified,
constraints or other techniques restrict unwanted movements to give a
solution to the interferences.

Figure 1.6: Collision handling is an essential task in any kind of
simulator

• Haptics: Thanks to haptic devices users can interact with virtual objects
through the sense of touch receiving force feedback as a response to
collisions with the environment. Haptics significantly increase the accuracy
and efficiency of the procedure in addition to providing the sensation of
immersion.

Figure 1.7: Phantom Omni haptic device
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The last two stages make up the concept of ”haptic rendering”. The objective
of the haptic rendering process is to stimulate the sense of tact in the users, with the
aim of achieving a more realistic and interactive simulation. This thesis focuses
its attention on the haptic rendering phase.

1.2 Surgery Simulators

VR surgery is currently used in many procedures and specialties, such as
endoscopy (Walsh et al., 2012), microsurgery (Wen et al., 2010), neurosurgery
(Lee et al., 2012a), urology (Lee et al., 2012b), orthopaedics (Zhang et al., 2011)
or ophthalmology (Carvalho, 2012). With the advent of more sophisticated and
more accurate tools, VR applied to surgery is gaining acceptance in more areas of
the medical realm.

The world leader in the development and application of medical simulation
programs is the National Capital Area Medical Simulation Center1 or SimCenter
which is part of the Uniformed Services University of the Health Sciences2

(USUHS). Here medical procedures that pose a high risk to patient safety
are simulated, which allows healthcare personnel to develop and maintain the
cognitive and psychomotor skills needed for safely and effectively performing
medical tasks.

Trying to meet the training objectives of the SimCenter, the Virtual Medical
Environments Laboratory3 (VME Lab) , which is part of the Surgical Simulation
Laboratory, adapts computer technology for medical training through simulation.
The VME Lab is active in developing new applications that include computer
based imagery used in conjunction with haptic feedback devices. Their main goal
is to create life-like simulated tasks and make them available to trainees on the
computer screen.

Back in the early 2000’s, a company called ImmersiveTouch4 was created
in Chicago from work done as part of an advanced technology program at the
National Institute of Standards and Technology5. Over the years the company
worked with beta customers to develop its products. Currently they offer

1http://simcen.usuhs.edu/Pages/default.aspx
2http://www.usuhs.mil/
3http://www.simcen.org/
4http://www.immersivetouch.com/
5http://www.nist.gov/index.html
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augmented virtual reality systems with 3D graphics and haptic feedback. Among
their projects, the most notable ones are the cranial simulations oriented toward
ventriculostomies, spinal simulations and anatomical explorations. A cataract
simulator is also under development. They offer a simulation platform that can
be used as the base of many simulators (Luciano et al., 2005), (Lemole et al.,
2007).

Our work is focused on craniotomy and neurosurgery procedures. The
following sections give some examples of the craniotomy and neurosurgery
simulators that have been developed over the last decades.

1.2.1 Craniotomy and Bone Drilling Simulators

In 2002, a group at the University of Hamburg developed a virtual petrous
bone surgery simulator for specific laterobasal approaches (Pflesser et al., 2002).
This application allows the simulation of specific surgical approaches and cuts
with high quality visualization, which is achieved by what at that time was
a new multi-volume visualization technique. The user can learn about the
three-dimensional anatomy of the temporal bone from the viewpoint of a real
otosurgical procedure using a Sensable 3 DoF (Degrees-of-Freedom) Phantom
device.

The same group also presented a temporal bone surgery simulator called
TempoSurg (Petersik et al., 2002). It provides tactile haptic feedback and
incorporates a foot pedal to control the speed of the virtual drill.

Another example of a real-time temporal bone simulator is the Visible Ear
Simulator (Figure 1.9). It is oriented toward ear surgery procedures, in which a
surgeon drills into the temporal bone to gain access to the middle or inner ear.
Its main goal is to support the development of anatomical insight and training
both students and experienced otologists in drilling skills. A physically plausible
drilling experience is achieved by means of a Phantom Omni force feedback
device.

The Stanford Bio-Robotics Lab6 also conducts research in user-friendly
robotics and surgical robotics. The physical interaction between human beings
and computer-driven actuators is one of their main lines of research. Their projects
centre on haptics, surgical simulation and robotic design, among other areas. In
the surgical simulation realm, they primarily focus on bone drilling simulators

6http://biorobotics.stanford.edu/
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(a) (b) (c)

Figure 1.8: (a) Petrous bone surgery simulator working environment,
(b) Petrous bone cutting (Pflesser et al., 2002), (c) The temporal bone
simulator TempoSurg by the University of Hamburg (Petersik et al.,
2002)

Figure 1.9: The Visible Ear Simulator while drilling the temporal bone

(Morris et al., 2006), (Morris et al., 2005).

He and Chen (He and Chen, 2006) proposed a freehand-controlled bone
drilling simulation framework with a prototype simulation system for training
skull-bone drilling procedures (Figure 1.10). One of the biggest contributions they
made is the modelling of torque rendering. The haptic device used is a Sensable
6 DoF called Phantom Premium. The user can drill a virtual skull bone with
multi-sensory feedback such as force, torque, vision and sound.
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Figure 1.10: Freehand-controlled bone drilling simulator including a
Sensable 6 DoF Phantom Premium device (He and Chen, 2006)

One of the training tools that the VME Lab is actively developing nowadays
is the Intracranial Hematoma Craniotomy simulator (Acosta et al., 2007), which
helps the learner to practice the skills required to perform a craniotomy, including
scalp cutting and retraction. Typically used bone cutting tools, which have been
created from real instruments, are modelled and controlled by a haptic device.

Kockro and Hwang (Kockro and Hwang, 2009) created a virtual model of
the temporal bone called Virtual Temporal Bone. Together with an environment
called Dextroscope which will be discussed further in 1.2.2, the virtual model can
simulate several cranial base surgical procedures. Furthermore, they calibrated a
Phantom arm with a bone drilling application in order to experiment with tactile
haptic interaction.

The medical education and training company SimQuest LCC 7 created a burr
hole simulator to train users to drill a burr hole into the skull for diagnostic
purposes or therapeutic decompression. It enables non-neurosurgeons to learn
and practice the procedures before operating on real patients. It uses a Hudson
Brace drill handle attached to a 6 DoF haptic interface device that integrates
two modified Falcon 6 DoF haptic force feedback systems (Figure 1.11). This
design allows users to stand while holding the real drill, which is attached to the
mentioned force-feedback devices, just as they would in an operating room. It
allows nearly the same movements and feeling of forces and torques as produced
in the actual procedure. Results of an assessment study indicated that spending
20 minutes on this simulator was likely to have measurable benefits for less
experienced individuals performing their first craniotomy procedure.

7http://www.simquest.com/
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Figure 1.11: SimQuest LCC Burr Hole Simulator

1.2.2 Neurosurgery Simulators

In the last decades many VR platforms have been designed and implemented
to support education and training in different areas of learning. In the realm of
neurosurgery, experts are increasingly demanding simulation mechanisms that
facilitate and guide their procedures. Thus, the management of neurosurgical
disorders has gone under significant advances in the last years. This has led to
a significant growth in the amount of successfully resolved neurological diseases.

For example, Giorgi et al. (Giorgi et al., 1994) used a Virtual Reality system to
guide a mechanical toolholder in a space of stereotactic neuroanatomical images.
High precision encoders on the arm are attached to the stereotactic frame. It helps
the surgeon control and check the orientation of different approach trajectories.

Z. Wang et al. (Wang et al., 2000) also presented a system for stereotactic
neurosurgical planning and support. A 3D model of the interior structure of the
patient’s brain is reconstructed and displayed. The patient’s head and the brain
model are mapped using marker registration. A robot arm locates the predefined
incision point and the orientation of the incision route on the patient’s head. Then
the surgeon can insert a medical instrument into the patient’s head and the surgery
is performed successfully. With the help of a virtual environment (VE), this system
could also be used for teaching and training.
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P. Wang et al. (Wang et al., 2007) (Wang et al., 2006) presented a
virtual-reality neurosurgical simulator which incorporates simulation of surgical
prodding, pulling and cutting. The simulator uses boundary element technology
to develop real-time realistic deformable models of the brain. 3D stereo-vision is
implemented and two hand-held force-feedback devices are used.

Figure 1.12: Prodding, pinching and cutting examples in (Wang et al.,
2007)

A team of experts from the NRC research institutes in Canada proposed the
NeuroTouch Simulation8 platform (Figure 1.13), which comprises neurosurgical
simulation training for craniotomy and endoscopy. The craniotomy procedures
include microsurgery tasks such as tumour debulking and bipolar cautery. The
endoscopy procedure enables endoscopic third ventriculostomy and trans-nasal
navigation. Photorealistic 3D rendering of tissues and bleeding is offered, as well
as a highly delicate force feedback on surgical tools. The deformation and rupture
of soft tissues is determined by the Finite Element Method (FEM).

As mentioned in the explanation of the ImmersiveTouch platform, augmented
reality has also been implemented for surgical purposes. Gleason et al. (Gleason
et al., 1994) combined three-dimensional computer-reconstructed neuroimages
with a novel video registration technique for virtual reality-based, image-guided
surgery of the brain and spine. This technique superimposes a 3D reconstructed
MR or CT scan on a live video image of the patient using augmented reality. This

8http://www.neurotouch.ca/eng/simulators.html
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Figure 1.13: Neurotouch Simulation platform

technique allows the surgeon to localize cerebral and spinal lesions. The scan
is segmented into the relevant components such as tumours, oedema, ventricles,
arteries, brain and skin, and the surgeon can determine the optimal surgical
approach. The surgeon’s proposed approach is displayed in the operating room
at the time of surgery using a portable workstation. Augmented reality is also
playing an important role in neurosurgical endoscopy.

With regard to the 3D neurosurgical planning tools, the most significant
advance came with the arrival of the Dextroscope simulation environment in
the 1990s. This uses CT and MRI images in order to create specific volumetric
models. It takes advantage of its stereoscopic imaging capacity, and also uses
positional controllers to manipulate models with natural movements. However,
this mechanism does not have haptic feedback. The Dextroscope environment
has been used for many tasks, including surgical planning. For instance, a
platform called VizDexter (Kockro et al., 2007) provides tools to coregister
data, perform segmentations manually, make measurements and simulate multiple
intraoperative viewpoints using Dextroscope. It has also been used for head
positioning, craniotomy and virtual aneurysm clipping simulation through a
procedural application created by Wong et al. (Wong et al., 2007).
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1.3 Motivation

Simulation has been widely used for training and rehearsing difficult or unusual
actions in several fields. Indeed, the use of simulators has become mandatory in
many training programs. However, the simulators available in some disciplines
do not fulfil the requirements of reliability and accuracy that users demand. This
happens in neurosurgery. In fact, every year neurosurgery students from all over
Europe must attend real interventions carried out by expert neurosurgeons in order
to learn specific procedures.

One of the most important goals of training simulators nowadays is for
trainees to assimilate the skills needed to execute complex surgical procedures
before practicing them on patients. Of the various characteristics of the
environment that make it possible to meet that objective, two key features are:
immersion and presence. Immersion is described as the experience of being
surrounded by a virtual world. Presence, in turn, is a multidimensional perception
that reports a feeling of not just being surrounded by the virtual environment but
also being part of the virtual world, at the same time that other beings also exist
in that VE (Schuemie et al., 2001). Receiving realistic haptic and visual stimuli
strongly conditions the immersion and presence of the application.

As stated previously, accuracy is a critical condition when working with
neurosurgery simulators. On account of the existing limitations in haptic
interfaces, such as volume-rendering techniques or physically based algorithms,
much work is being done in this realm, and many promising advances have been
made throughout recent years (McNeely et al., 1999).

In order to overcome these difficulties, our goal is to develop a multimodal
Neurosurgery Simulator focused on patient-specific surgical training of brain
tumour resection. Different areas need to be combined in order to construct a
feasible and completely accurate tool. Therefore, the disciplines we will integrate
are: medical imaging, 3D geometrical reconstruction of tissues, real time volume
rendering, physical modelling, simulation, collision handling, visualization and
haptics.

Having a realistic simulator which accurately describes the behaviour of
the tissues will offer clear benefits over other simulators. The first one is that
the simulation of an accurate model will be useful for new surgical equipment
design since dimensions, working angles and shapes can be taken into account.
Additionally, this realism will be essential for surgical anatomy teaching and
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training for students, residents and specialists. Finally, this type of simulators
also facilitates the development of applications that analyse the accessibility and
suitability of medical instrumentation.

This project can become a platform for training students in real surgery
procedures. Students will get experience in the tasks involved in these operations,
thereby considerably reducing the number of hours they need to spend attending
long interventions. Moreover, the training of students, residents and surgeons will
be done based on a realistic neurosurgery simulator with accurate patient-specific
models.

1.4 Objectives

The main goal of this work is the generation of a realistic and immersive
haptic and visual response to the user’s interaction with rigid and deformable
bodies in a neurosurgery simulator. In order to obtain a convincing response, an
adequate collision detection algorithm that efficiently detects the interferences in
the environment and offers accurate information about collisions must be run. All
these matters are included in the haptic rendering process.

This thesis is centred on obtaining a convincing collision detection and
response for a Neurosurgery Simulator oriented toward brain tumour resection.
This will serve as a learning platform for students and residents. Additionally,
patient-specific data will be used to model the objects, so it will offer the
surgeons the possibility of rehearsing prior to a real intervention. The multimodal
Neurosurgery Simulator will be split into three main phases:

• Craniotomy Simulator: This first prototype will simulate skull drilling using
a haptic device that governs a virtual milling tool. The system will provide
the surgeon with the visual and force feedback corresponding to an actual
craniotomy intervention.

• Brain Physical Haptic Simulator: This simulator operates on an accurate
model of the brain tissue. The surgeon will be able to interact with the
virtual brain by means of a haptic tool. It will offer force feedback to the
user via the haptic device. In addition, the deformations of the brain model
due to the impact of the surgical tool will be emulated, giving a realistic
idea of the physical behaviour of the tissue.
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• Integration: This consists of the combination of both the Craniotomy
Simulator and the Brain Physical Haptic Simulator. It will be made up of
a skull model obtained from real CT data and a model of the brain tissue
inside it. The brain model is acquired from MRI data from the same patient.
The surgeon will be able to drill the skull and interact with the virtual brain
with a haptic tool. Further, the surgeon will be warned whenever the milling
tool touches the brain tissue while drilling the skull. Once the drilling task
is accomplished, the tool will be changed and the new task will be enabled.

An additional fourth stage would involve the expansion of our simulator to a
final multimodal Neurosurgery Simulator. In addition to the features mentioned
above, it would include the option of cutting the brain tissue in order to let the
surgeon access the tumour and resect it. The resulting multimodal simulator would
enable surgeons to practice actual operations.

For the first stage we will focus on the three key elements needed to obtain
the required realism: refined visual representation, realistic collision handling and
haptic interaction.

The second stage involves the design and implementation of a Brain Haptic
Physical Simulator. In this case, in addition to the components needed for
the Craniotomy Simulator, accurate rendering of physical behaviour, including
deformable collision handling and physical simulation, is required.

The visual aspect and realism of the simulator greatly affects its ability to
serve as an effective teaching tool. Therefore, we will use detailed medical images
to model the skull. CT data will be acquired since it lets bone be rendered more
clearly. The brain model will be loaded from a real MRI image of the patient. The
use of patient-specific images gives the simulation systems the ability to train, as
data from different anatomies and diseases can be used. This widens the variety
of training scenarios and, consequently, increases the range of knowledge that can
be acquired. Due to this characteristic the simulator will be used for rehearsal in
addition to training.

The haptic interaction and the behaviour of the model are deeply intertwined
since the haptic response depends on the physical behaviour. The Neurosurgery
Simulator will offer a wide variety of possible skills for training or rehearsal, such
as the friction of the tool on the skull. The collision handling algorithm will give
a realistic sensation of working with a real milling tool, together with the visual
feedback and the haptic interaction.

One of the advantages of the proposed simulators is that the input data
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correspond to patient-specific medical images. In contrast, traditional training
simulators use generic data and organ atlases. This project will introduce an
integrated solution to facilitate surgery rehearsal and the execution of the
intervention.

1.5 Dissertation organization

This dissertation is divided into 7 chapters. Chapter 1 has introduced the roots
and evolution of surgery simulation, as well as the current objectives it covers.
In addition, it has introduced some of the surgery simulators developed during
recent years. The factors that have motivated our work and the main objectives we
wanted to reach have also been presented.

As this thesis is focused on collision handling for a neurosurgery simulator,
Chapter 2 introduces some basic collision detection and response techniques used
in the literature. These bases will be useful for understanding the subsequent
presentation of a variety of collision methods that have been implemented recently
for different surgery simulators.

Chapters 3 and 4 present the collision handling algorithms developed in this
thesis. The first one centres on rigid volumetric object collision detection and
response in order to integrate them into a Craniotomy Simulator framework. The
second one expounds the collision detection and response methods for deformable
bodies that we have implemented as part of a Brain Haptic Physical Simulator.
The experiments performed to analyse both collision handling methods are also
presented at the end of each chapter.

Due to an optimization gap found in the literature concerning collision
detection techniques based on Uniform Spatial Partitioning, we have also
developed a methodology that faces the problem. This work, together with the
obtained results, is explained in Chapter 5.

As previously mentioned, the developed collision detection and response
techniques have been oriented in such a way that they can be integrated into
two surgery simulators: a Craniotomy Simulator and a Brain Haptic Physical
Simulator. Both are described in Chapter 6. Additionally, these simulators have
been combined to form a Haptic Physical Neurosurgery Simulator, which is also
presented in the same section.

Finally, Chapter 7 discusses the conclusions of this thesis and possible future
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lines of work.
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Chapter 2

State of the art

As previously mentioned, surgery simulators cover various areas which combined
form accurate and convincing training tools. Haptic rendering is one of them.
This thesis is centred on the haptic rendering field, which is responsible for
computing the necessary forces to feel a realistic interaction between the virtual
representation of the haptic device and the virtual objects of the scene. Therefore
it assures that a correct force is transmitted to the user through the haptic device
(Salisbury et al., 2004).

Haptic rendering algorithms consist of three basic components: collision
detection, collision response and haptic control (see Figure 2.1).

Figure 2.1: Haptic rendering is splitted into three main blocks: collision
detection, collision response and control algorithms (Salisbury et al.,
2004)

The collision detection module receives the position of the haptic device
and the environment’s information and detects interferences between the scene
objects. The collision response module takes that information and calculates the

23
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ideal force to be applied to the virtual tool and environment. Finally, control
algorithms return a force to the user adapted to the characteristics of the haptic
device.

Our main goal is focused on the correct collision detection and response
handling of a Neurosurgery Simulator. It comprehends the collision handling for
rigid volumetric objects (skull) and the one for deformable bodies (brain). Due to
the presence of a haptic device in our simulator, collisions must be adapted to be
combined with the haptic control system.

This section will introduce the reader into the basics of collision detection and
response techniques and structures. Afterwards, collision handling methods used
in different surgery simulators will be presented.

2.1 Collision Detection

The realism of an environment is strongly conditioned by the way in which the
scene objects interfere each other. Different objects should not share a point in the
space at the same time, so a solution must be given to the movements which place
several objects at the same location at a time. A priori the objects in the virtual
world are free of penetrating each other. The detection of geometric interferences
between virtual bodies and the nature of the contact are the job of collision
detection algorithms.

The detection of the interfering objects is not enough to later estimate a
physical response to the collision. Additional information as the penetration depth
and contact normals is needed. Several techniques have been implemented in order
to solve this matter (Lin and Manocha, 2003). Each method is adapted to the
environment’s necessities, conditions and applications.

The most common methods are based on Bounding Volume Hierarchies
(Biesel and Gross, 2000) (Madera et al., 2010) and Spatial Subdivision (Gissler
et al., 2009b). However, many other approaches like Image-Space Techniques
(Heidelberger et al., 2003), Stochastic Methods (Teschner et al., 2004a) or
Distance Fields (Gissler et al., 2009a) can be found in the bibliography. The latter
is not very appropriate to use in real-time for geometrically complex objects. This
section will present two of the most significant techniques: Spatial Subdivision
and Bounding Volume Hierarchies.
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2.1.1 Spatial Subdivision

The idea of the Spatial Subdivision or Spatial Partitioning is to divide the space
into convex regions called cells. In such a way, the zones where the objects are far
away from each other are directly discarded. The attention is centred in the zones
where the objects are close, to later calculate the exact intersection between them.

The Spatial Subdivision technique partitions the space into smaller volumes
which are classified with identifiers (calculated according to the coordinates of
the cell). Each cell has a list of the object primitives contained inside it, thus the
interacting objects are classified and relations between them can be identified.

The space can be partitioned in different ways. There are many structures
to be used for space partitioning, such as Voxel Grids (Teschner et al., 2003),
Octrees (Garcia and Corre, 1989), K-d Trees or Binary Space Partitioning Trees
(BSP Trees) (Ar et al., 2002). The following lines give a brief idea of the nature
and characteristics of each one.

Voxel Grids: This technique uses uniform, rectangular, axis-aligned cells
called voxels. The structure is based on a three-dimensional array of cells.

Figure 2.2: Uniform Voxel Grid structure

Voxel grids are object independent, as they can be constructed according to
parameters which have nothing in common with primitives. Furthermore, the cell
access is made in constant time (O(1)), since the calculation of the cell is made in
constant time.

For instance, given a point with the coordinates (x,y,z), the indices i jk of the
corresponding cell could be:

celli = f loor(x)/cell sizex
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cell j = f loor(y)/cell sizey

cellk = f loor(z)/cell sizez

where f loor(n) is the function which returns the largest integer not greater
than n, and cell size represents the size of the voxels in each axis. Even if this size
should be equal for the three axis as the Voxel Grids should contain rectangular
cells, some authors (Garcia-Alonso et al., 1994) propose parallelepiped voxel
grids.

Once the indices for each cell are known, a hashing function locates them in
the hash vector:

ind = cellk×numCellsx×numCellsy + cell j×numCellsx + celli

being ind the indice of the cell in the hash vector and numCells the number
of cells of the grid for each axis.

The chosen hashing function can change the performance of the method.
Values given by this function should be uniformly distributed to get a good
performance. The hash table size also influences, as the use of big ones reduces
the possibility of placing several different cells to the same position. Therefore,
the algorithm usually works faster. On the other hand, performance decreases due
to the higher memory consumption. Some studies have been made on this topic
(Teschner et al., 2004b), which have found that if the hash table is significantly
larger than the number of primitives, the risk of hash collisions is minimal.
However, hash functions work most efficiently if the hash table size is a prime
number (Smith et al., 1995).

Concerning to the benefits of using a voxel grid, the low storage usage and fast
cell access need to be mentioned. However, the biggest drawback of this structure
is the fact that performance depends on the density of objects in the space being
uniform. If the objects are very close to each other and clustered, a few cells have
most of the objects and the majority of cells are empty. In such cases a grid is not
very useful.

Octrees and k-d Trees: Octrees and k-d Trees also partition the space into
rectangular, axis-aligned cells. But in these cases the cells are not necessarily
uniform. The partition is made by structuring the space hierarchically: The root
node corresponds to the whole space, and internal nodes represent a subdivision of
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Figure 2.3: Octree structure

the corresponding region into smaller regions. Leaf nodes are cells which contain
primitive lists (Figure 2.3).

In conclusion, these techniques are adaptive to local distribution of the
objects. Cells are larger in zones with low density of primitives than in greatly
populated areas. Therefore the updating process is made dynamically, as cells
with many primitives can be subdivided while the ones with fewer primitives can
be merged.

The difference between Octrees and k-d trees is the way the regions are
subdivided. In 3D, an Octree divides each region into eight uniform parts along
the three axes. On the other hand, k-d trees subdivide each region into two parts
along an arbitrary axis (Figure 2.4).

These two methods are popular due to their relatively little storage usage and
their ability to adapt to different densities. Regions that are densely populated by
objects can be more finely subdivided, while sparsely populated regions can be
subjected to less subdivision.

BSP Trees: The Binary Space Partitioning Tree is another hierarchical
structure which divides the space into convex cells by arbitrarily oriented planes.
The idea of BSP Trees was firstly formalized by H. Fuchs in 1980 (Fuchs et al.,
1980).
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Figure 2.4: K-D Tree structure

Figure 2.5: BSP Tree structure

This technique can be understood as a generalized k-d tree. There are also
discrete-orientation BSP trees (DOBSP trees), in which the orientations of the
partitioning planes are chosen from a finite set of orientations.

Figure 2.5 illustrates a BSP Tree structure. In n dimensional space, it is
subdivided into two subspaces by a n−1 dimensional plane. Afterwards elements
are classified as belonging to one or the other subspace. One subspace is regarded
as positive and the other as negative, while the actual splitting plane is arbitrarily
assigned to either space.

1. A is the root of the tree and the entire space of interest

2. A is split into B and C

3. B is split into D and E

4. D is split into F and G, which are convex and thus become leaves on the
tree

One of the main problems of this type of structures is the choice of the most
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efficient partitioning plane, as it strongly affects the size and performance of the
tree.

• Collision Query:

As mentioned before, in this technique the space is subdivided into cells, which
are introduced into a hash vector depending on their position in the world.

The collision detection technique with this method involves classifying all the
primitives of one object with respect to the cell in which they are placed. Their
position is discretized with respect to a user-defined cell size. Then the defined
hash function locates the discretized position into a hash vector. So after that,
each cell has a list of references to primitives contained in it.

Afterwards, primitives of other objects in the scene are discretized using
the same criterion. For each discretized primitive, it is checked for intersection
with the list of primitives contained in the same cell. The intersection test varies
depending on the primitives.

In the case of deformable objects, the lists of primitives occurring in a cell
need to be updated for every object transformation. However, there are some
methods that instead of updating the whole hash table, just update the indices
that actually need to be updated by using time stamps to identify them (Teschner
et al., 2003). There is also another technique called Collision Interest Matrix,
which contains flags that indicate whether collision detection has to be carried out
between any given pair of objects (Garcia-Alonso et al., 1994). As shown before,
by means of this structure many primitive pairs can be rejected from intersection
testing.

2.1.2 Bounding Volume Hierarchies

Bounding Volume Hierarchies (BVH) are tree structures on a set of geometric
objects (the data objects). Each primitive object is stored in a leaf of the tree. Leaf
primitives are then grouped and enclosed within bounding volumes and stored in
upper nodes. These, recursively, are also grouped within larger bounding volumes,
resulting in a tree structure with a single bounding volume at the top of the tree.

Several data structures can be used to enclose the geometric objects. The
choice of the structure type determines a variety of factors: the computational
cost of computing the bounding volume, the updating cost, the cost of determining
intersections, and the desired precision of the intersection test.
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A bounding volume is a primitive shape that comprises the model and fits it as
tightly as possible. They are used to approximate a collision detection quickly, as
using bounding volumes to determine whether two models are intersecting or not
we skip checking all primitives. In consequence, it should be computationally
much cheaper than tests for the enclosed models. What is more, they are
represented by a small amount of storage (or at least smaller than the storage
used by the model itself), and the cost for computing such a volume for a model
should be low.

Bounding volumes allow us to know whether two objects could interfere, so
the fast rejection is one of the merits of these structures. For that reason, they
should fit the object as tightly as possible to reduce the probability of a query
object intersecting the volume but not the object. They also require efficient
overlap tests and memory efficiency. If recomputation of a bounding volume is
required, efficient computation would be necessary.

The following lines introduce different types of bounding volumes:

Bounding Spheres: A sphere is a very simple volume type, which only needs
the centre and the radius to be represented. Spheres are fairly used due to their
simplicity and the fast intersection test they allow. Moreover, they do not need
to be recalculated when rotations are made, which makes them more popular in
dynamic environments. Nonetheless, they are not very tightly fitting volume types
for many shapes.

Figure 2.6: Two objects surrounded by their respective Bounding
Spheres colliding

Axis-Aligned Bounding Boxes: Axis-Aligned Bounding Boxes are
commonly known as AABBs.

They are even more widely used than spheres, since their test for intersection
is really fast and simple. AABBs are created based on the three coordinate axis,
and in contrast to spheres, they must be recomputed when objects rotate. There
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Figure 2.7: Axis-Aligned Bounding Boxes

are many ways of representing this type of volume: One of them is just storing the
maximum and minimum values of the box, (the top-right and bottom-left points).
There is another option which stores the centre and radius of the box. Computing
the smallest AABB for an object can be done quickly by just projecting its vertices
onto the coordinate axes and store the minimum and maximum values of each one.

k-DOPs: k-DOPs (Discrete Orientation Polytopes) are convex polytopes
whose facets are determined by a finite fixed number of orientations. They are
similar to AABBs, but their axes are not reduced to the coordinate axes, the finite
number k/2 describes the number of directions of its halfspaces.

They are represented by its directions and the k/2 pairs of minimum and
maximum values. Larger k -s are more flexible.

As AABBs, this type of bounding volume needs to be changed if the object
suffers a rotation, and the smallest k-DOP for an object is computed in the same
way by using its projections onto the k/2 axes.

Oriented Bounding Boxes: Oriented Bounding Boxes (OBBs) are the most
tight-fitting volume for many shapes. However, their storage and testing cost are
bigger than others. Their principal axes are not fixed and they move according to
objects transformations.

It is hard to find the smallest OBB of an object, as an inhomogeneous vertex
distribution can cause bad fitting OBBs. For that reason heuristics are applied to
get reasonably tight-fitting boxes.

Apart from these four data structures, there are some more as ellipsoids,
convex hulls or swept-sphere volumes (SSVs), which are less efficient and are
used in less cases.
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Figure 2.8: Oriented Bounding Box of a tea cup

Once the different data structures that can be used for solving the collision
detection problem, some information about the way in which collisions can be
found will be given in the following paragraphs.

Once the bounding volume type is decided, a hierarchy of the chosen boxes
needs to be constructed to determine the collisions. A bounding volume hierarchy
is basically a tree of bounding volumes, in which primitives are stored in the
leaves. Each node contains a bounding box that encloses all bounding volumes or
primitives of its children.

• Building and updating process:

There are several ways of building bounding volume hierarchies. The most used
one is called top-down, which starts building the tree from the root and ends with
the leaves. At each recursion step this method computes the smallest bounding box
of the set of primitives, and it is splitted by ordering the primitives with respect to
a well-chosen partitioning plane.

There is another building method called bottom-up, which starts with
primitives and ends when inserting the root. First of all, bounding volumes for
the primitives are created, and then other levels are constructed by recursively
grouping primitives or bounding volumes and making new bounding volumes for
them. In case of a single bounding volume, the tree is complete.

One of the facts that makes the hierarchies slow down in the case of
deformable objects is the constant need of updating the tree for every change in the
scenario. The hierarchy must be updated every simulation step, so the execution
slows down pretty much. However, there is a method proposed by Larsson and
Akenine-Möller (Larsson and Akenine-Möller, 2003) called Hybrid Hierarchy
Update, which makes the update faster in some cases: This technique updates
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the tree from the level n/2 to the root by the bottom-up, and the rest of the tree is
updated as needed only if necessary. With this method, the change of the whole
tree is not always necessary and that can strongly decrease the computing time.

Several studies have been made to decrease the time of updating the tree
for every time step. There is also another technique proposed by Gino Van
Den Bergen (van den Bergen, 1998) which can be used for AABB Trees, that
allows them to be refitted in a bottom-up manner. This method builds the tree by
allocating the leaves and internal nodes as contiguous arrays of nodes, such that
each internal child node’s index number in the array is greater than its parent’s
index. So in this way, the array of internal nodes is iterated in reversed order
to refit internal nodes. This technique refits the whole tree in linear time in the
number of nodes.

• Overlapping test:

The idea of hierarchies is to speed-up the collision detection, preventing from
unnecessary tests and simplifying the query. Starting from the root node, if the
bounding boxes of its children do not overlap, collision test finishes. If they
do, children for both of them are checked for intersection. Continuing with this
procedure, a collision will be happening if the leaves are reached and they overlap.
Thus, three collision detection tests need to be implemented: The first one checks
two bounding volumes for intersection. This can be seen in Figure 2.9, where two
AABBs are analysed. This test is not enough to find real intersections between
objects, but it is used because of its fast computation and as a previous rejection
of possible collisions. When two bounding boxes collide, a more detailed test
of the corresponding objects is necessary, but if they do not, the possibility of
penetration can be rejected.

This thesis uses many AABBs. The intersection between two of them can be
detected as in Equation 2.1:

Two AABBs do not overlap in 3D if
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∧∣∣∣∣∣∣(c1− c2)•
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where c1 and c2 are the centre of each bounding box and rx,ry and rz are the
radius in each axis. Figure 2.9 illustrates the intersection query.

Figure 2.9: Intersection test between two objects using their AABBs in
2D

A second type of test checks intersections between a bounding volume
and a primitive. This one varies depending on the primitives used. This thesis
checks collisions for tetrahedra, and in the case of having an AABB against a
tetrahedron the intersection test can be made by checking whether any edge of the
bounding box intersects the triangles of the tetrahedron or not. All the edges of
the tetrahedron are tested in the same way with respect to the squares of the box.
However, there are two special cases: a bounding box occurring completely inside
a tetrahedron, and a tetrahedron which is completely inside a bounding box. These
two cases should be tested separately.

The last test checks whether two primitives collide or not. In the case of
tetrahedra, this test is made in the same way as the previous one, but replacing
the bounding box with another tetrahedron.

In this method there is an improved object approximation at higher levels
of the tree. The localization of regions with collisions is fast, nevertheless the
generation of the tree can be expensive. For that reason it is more used for rigid
models when they can be pre-computed.

Both the Spatial Subdivision and the BVH technique do all their calculations
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using the CPU. However, the use of the GPU is rapidly increasing for these matters
in the last years. There are different collision detection techniques that benefit
from the graphics hardware and its parallelization capacity in order to accelerate
their calculus (Heidelberger et al., 2003), (Govindaraju et al., 2005), (Wong and
Baciu, 2005).

2.2 Collision Response

Virtual objects do not have the properties inherent to real objects which preclude
two solid bodies sharing a point in the space at the same time. The realism of a
simulation is strongly conditioned by the similarity of the objects’ behaviour in
the real and virtual world. For that reason, a correct collision response is crucial
to avoid the virtual objects penetrating each other.

Once a collision between the scene objects is detected, the collision response
algorithm uses the obtained information to give a realistic physical response to
the interference. The response varies depending on the application’s domain:
for the case of haptic surgery simulators, the collision response consists of
computing the force feedback to be sent to the user via the haptic device. We
must calculate an appropriate force to be applied to the haptic device in order to
keep its virtual representation on the surface of the colliding object. Moreover, the
colliding virtual bodies must also behave according to the forces generated by the
interference. For these issues, collision response algorithms use the environmental
information as the position of the colliding objects, the position of the virtual tool
or other information obtained from the collision detection module to respond with
a feasible feedback.

One of the most popular collision response techniques is the so-called penalty
method. It introduces forces to the haptic interface in order to meet a constraint,
that is, it generates a reaction force if a constraint is not met. Its effect is directly
proportional to the penetration of the virtual haptic point into the model. In other
words, the reaction force is a direct function of the haptic position inside the
virtual model.

When the virtual objects have complex geometries a number of problems
appear in the computation of the penalty forces. A big amount of primitives could
lead in a computationally hard search of the exterior surface as illustrated in Figure
2.10 (a). Additionally, since the haptic point penetrates the object it is not always
clear towards which surface must the force be directed (Figure 2.10 (b)). Another
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conflicting situation is that thin objects are traversed by the haptic tool easily
(Figure 2.10 (c)). When the haptic point passes more than halfway through the
object, the reaction force’s direction flips towards the other side. These undesired
reactions are known as the pop-through effect and must be solved in some manner
(Ruspini et al., 1997).

(a)

(b) (c)

Figure 2.10: Drawbacks of penalty methods (Ruspini et al., 1997): (a)
a global search of all the primitives may be required to find the nearest
exterior surface, (b) the force could be directed towards the wrong
surface, (c) small or thin objects may have insufficient internal volume
to generate the constraint forces required to prevent the haptic tool from
traversing the model

Penalty methods differ depending on the collision detection method used to
identify the colliding primitives. In such a way, polygonal penalty methods are
applied to scenes where the objects are represented by polygons (e.g. triangles
or tetrahedra) since the collision detection process returns a set of intersecting
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polygons as a base to compute the response. On the other hand, volumetric
collision detection algorithms offer voxel-based information so the penalty forces
to be applied are derived from voxels. Volumetric penalty methods solve these
matters (McNeely et al., 1999)(Renz et al., 2001).

In order to address the problems of the penalty methods, constraint-based
approaches offer the possibility of uncoupling the virtual representation of the
haptic interface point and restrict its movements to the surface of the object. This
method was first proposed by (Zilles and Salisbury, 1995a) and is known as the
god-object method. This algorithm has been used to model interactions between
a point-size god-object and complex polygonal models.

(Ruspini et al., 1997) extend the idea of the god-object location method in
order to model extra features as force shading, friction, surface stiffness and
texture by only changing the position of the uncoupled virtual point.

2.3 Collisions in Surgery Simulators

Section 1.1 has presented the different disciplines a surgery simulator covers.
Amongst them, collision handling and haptics. The main objective of our work
is focused on these stages, which apart from detecting interferences between the
scene objects, give an accurate and realistic response to the colliding objects
and the user. Our final simulator contains rigid and deformable virtual bodies
(a skull and a brain tissue model). For that reason, the collision detection must
be performed for both rigid and deformable models, and as the surgery tool is
governed by a haptic device, the response involves a force feedback via the haptic
device and a visual feedback between the virtual tool and the skull or brain.

Many haptic rendering and collision handling approaches have been proposed
in different surgery simulators. Combining data structures and techniques as
the ones explained at the beginning of this chapter, different algorithms can
be constructed to give plausible answers to object interferences in simulators.
Depending on many factors as the input data structures, output devices or
the application’s purposes the collision detection and response methods vary.
Hereafter some examples are displayed.
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2.3.1 Collisions in Craniotomy and Bone Drilling Simulators

Different simulation platforms have been developed which include rigid objects
derived from patient data. As said before, the most used medical information
format for craniotomy and bone drilling simulators is the CT scan. The CT is
a diagnostic procedure that obtains cross-sectional pictures of the body. These
pictures give material opacity units, which are displayed in the computer as voxel
structures with density information. When manipulating such structures in order
to find and solve interferences in the simulators, different techniques have been
used. Some of them will be presented in this section.

B. Pflesser et all. (Pflesser et al., 2002) developed a system for virtual petrous
bone surgery that simulates specific laterobasal surgical approaches. Anatomical
objects are represented in a 3D rectilinear grid of volume elements derived
from CT data. Different bone parts are defined by means of a semi-automatic
segmentation approach. Cutting regions are modelled in independent data
volumes using voxelization techniques and the voxelization is adapted to
successive cutting operations. Additionally, the geometric description of the
cutting tool is also converted into a volumetric representation. They combine
the mentioned independent multi-volume representation with a visualization
technique which reduces rendering artifacts. The haptic device used is a Sensable
3 DoF Phantom device.

From the same group was created the temporal bone surgery simulator
TempoSurg (Petersik et al., 2002). This is an approach for haptic volume
interaction where the anatomic models are also based on attributed voxels. The
tool is represented by a number of sample points distributed over its surface.
Concerning to the skull model, they construct its surface by a ray-casting
algorithm based on the segmentation data. Each of the sample points of the tool is
checked whether it collides with the objects or not. Additionally every point has an
associated normal vector which is pointing to the inside of the tool. All colliding
surface points are traced along the corresponding inward pointing normal until the
surface of the object is found or the end of the normal is reached (Figure 2.11).
Whenever a collision between the tool and static objects occurs, the direction
and magnitude of the collision force are calculated. They are adapted in order
to overcome frequency differences, and a vibration is also modulated onto the
drilling force to improve the sensation of drilling.

The prototype of freehand-controlled bone drilling simulator presented by
He and Chen (He and Chen, 2006) offers a realistic haptic rendering and an
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Figure 2.11: Calculation of collision forces on the surface: colliding
points are traced along their normal until they reach the surface
(Petersik et al., 2002)

efficient graphic rendering. This is achieved by using a hybrid model of volumetric
and polygonal parts. The haptic rendering is based on volumetric data with high
resolution and multi-point collision detection. The drill is represented as the union
of a sphere and a cylinder. The collision detection is performed based on an
OBB-tree structure of the volumetric model. Collisions between the burr and a
voxel are detected by checking whether the distance between them is smaller than
the burr radius. The collision between the cylinder representing the drill shaft and
bone is simply detected by checking the distance between the drill shaft axis and
a voxel. The force modelling used to simulate bone dissection introduces elastic
and frictional forces with spring-damping.

Agus et all. (Agus et al., 2003) discuss a haptic and visual simulation of
bone-cutting burr developed as a component of a training system for temporal
bone surgery. They use patient-specific volumetric data derived from CT images
with a resolution of 256x256x219. However, the region where the operation
takes place is represented by a volume of 256x256x128 cubical voxels. They
approximate the voxels representing the skull with spheres of the same volume
to accelerate collision detection (see Figure 2.13), and the tool’s representation is
converted into a grid around the tip of 5x5x5 for force computations. The cutting
process is divided into two successive steps: the first one estimates the bone
material deformation and the resulting elastic forces, given the relative position
of the burr with respect to the bone. The second step estimates the local rate of
cutting by using an energy balance between the mechanical work performed by
the burr motor and the energy needed to cut the bone. Additionally, the force
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Figure 2.12: Representation of the drill for collision detection by He
and Chen (He and Chen, 2006)

Figure 2.13: Voxels are approximated with spheres to accelerate
collision detection (Agus et al., 2003)

restitution model incorporates friction in addition to elasticity.

Section 1.2 has presented the Intracranial Hematoma Craniotomy Simulator
(Acosta and Liu, 2007), (Acosta et al., 2007) developed in the SimCenter. They
describe real-time volumetric haptic and visual algorithms for a craniotomy
surgical simulator. In this application the burr is represented by a point cloud
that approximates its surface. It also has erosion points that determine the cutting
capacity of each tool zone. The bone zones are represented with a voxel structure
which encodes densities, density gradients and colours. Collisions are detected
when the haptic points intersect voxels with a non-zero density value. Surface
voxels are identified by following the vector associated to colliding haptic points
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at voxel-sized intervals until a voxel with a non-zero gradient is found. A tangent
plane is constructed for each surface voxel, which depending on the number of
facets exposed to the surface give a normal vector and a penetration depth (see
Figure 2.14). Those parameters are used to compute forces based on Hooke’s Law.
The algorithm’s performance is based on the number of points used to construct
the pointshell.

Figure 2.14: Pointshell interaction with a voxmap, generation of
tangent planes and the force calculation in the Intracranial Hematoma
Craniotomy Simulator (Acosta et al., 2007)

Morris et al. (Morris et al., 2006), members of the Stanford Biorobotics
Lab, performed a framework for temporal bone dissection, using a hybrid data
representation: bone is represented by volumetric data for haptic simulation of
bone removal, and triangulated surfaces are used for graphic rendering. The drill is
represented as a cloud of sample points, distributed uniformly around the spherical
surface. Sample points are tested for intersection with the bone, and a ray is traced
from each intersecting point toward the tool centre until the bone surface is found.
Thus, the contact force to move that sample point out of the bone can be generated.
Furthermore, when bone-voxels are removed as a consequence of the collision,
the burred zone is re-tessellated by creating triangles that contain the centres of
the new surface voxels as vertices. To give a more realistic haptic sensation, the
vibration and sound of the instrument are added.

Other simulation environments transform image data into other specific
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formats in order to manipulate them easier. Morris et al. (Morris et al., 2005)
also proposed a simulator focused on craniofacial procedures. They transform
data obtained from CT or MR (see Figure 2.15) into isosurfaces by using the
Marching Cubes method (Lorensen and Cline, 1987). Isosurfaces are then capped
using the 3D Studio Max software package, and a set of texture coordinates is
also generated on the isosurface mesh. Afterwards, a flood-filling technique is
used to build a voxel grid. Texture coordinates and surface normals are assigned
to boundary voxels, and they are exported along with density information. This
is used for haptic rendering. Finally, this voxel array is retessellated into a new
surface used for graphic rendering. All this preprocessing time can be around
fifteen or twenty minutes long.

Figure 2.15: Data transformation process. Starting from CT data, they
are (a) isosurfaced in a first stage, (b) capped and smoothed in a
second phase, (c) flood-filled to generate a voxel array and finally (d)
re-tessellated into a surface mesh (Morris et al., 2005)

Asenjo (Asenjo, 2008) suggests two different approaches to detect and give
an answer to collisions for a bone milling and drilling haptic surgery simulator.
The first one is called The Line Approximation Algorithm. In this method, the
tool is represented as the combination of a sphere and a cylinder. The burr is
approximated with a vertex in the centre of the sphere and the cylinder with an
arbitrary amount of vertices along the centreline as seen in Figure 2.16 (a). The
collision detection is based on checking density values of the points along the
centreline of the tools tip. The intersection point is found by making a study of
the tips trajectory from time step t − 1 to t. When a collision occurs, a proxy
point is determined based on a spring-model algorithm (Magnus, 2006). A vector
which represents the spring’s length and direction is also derived from the proxy
and probe position. This information is used to calculate the haptic force at the
proxy point. The torque at that point is also needed, which is derived from the
intersection point on the shaft of the probe and the previous calculated intersection
point. The second algorithm he proposes is called The Surface Approximation
Algorithm. The fundamental idea of this algorithm is to put vertices on the
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surface of the tool, both on the sphere and the cylinder. These vertices are used
for collision detection and force and torque calculations. Collision detection is
performed comparing the density values between the tool and the object. However,
the new representation of the tool leads in a more stable haptic feedback since the
force is computed as the sum of the forces of all the colliding vertices.

Figure 2.16: Discretization of the milling tool in (a) The Line
Approximation Algorithm and (b) The Surface Approximation
Algorithm (Asenjo, 2008)

2.3.2 Collisions in Neurosurgery and Other Deformable Simulators

Concerning to the collision techniques commonly used in neurosurgery
simulators, a variety of methods have also been proposed in the last years. The
data structures used to represent deformable brain models are usually tetrahedral
meshes. Some simulators adapt these structures in order to add specific features
as cuts. Let’s review some of the techniques found in the bibliography.

Bielser and Gross (Biesel and Gross, 2000) presented a framework for the
interactive simulation of surgical cuts. They base on tetrahedral volume meshes to
provide topological flexibility. Collisions between the surgical tool and the tissue
are detected by using AABB hierarchies adapted for deformable objects. The
detection basically consists of two tasks: surface collision detection and volume
collision detection. The first one is made by constructing an AABB hierarchy over
the surface triangles, following the deformation of the object. The tree is locally
updated by bottom up traversal starting from each deformed surface element. The
size of each bounding box has also a small tolerance to skip updating for small
positional changes of a child element (see Figure 2.17 (a)).

The intersection of the surgical tool and the tissue surface is computed by
performing bounding box tests hierarchically by top-down traversal of the tree.
After detecting the entry points, the volume collision detection starts by searching
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Figure 2.17: (a) Tolerances added to each node within the AABB, (b)
The scalpel tip intersecting the tissue having a segment out (Biesel and
Gross, 2000)

all active tetrahedra. Afterwards, representing the scalpel by a thin line, the
trajectory of the scalpel tip is traversed. It computes all face intersections of
tetrahedra lying between the current tip tetrahedron and the previous active tip
tetrahedron. In a second step all the tetrahedra intersected by the swept surface are
traversed in order to get the edge intersections. For haptic rendering and feedback,
they devised a mechanical scalpel model which accounts for the most important
interaction forces between scalpel and tissue.

An approach proposed by Brown et al. (Brown et al., 2001) is another example
of a surgery simulator using a BVH for its deformable collision detection. It
is a microsurgical training application which allows vessel suturing. Objects
are represented by nodes connected by links. These are grouped into triangles
in the surface but unrestricted below it. Collisions are performed by using
distance computations based on a BVH of spheres. Edge-to-edge, edge-to-face
and face-to-face collisions are achieved depending on the interacting objects and
the task wanted to be executed.

A similar technique was later used for an interactive suturing and knotting
environment with haptic feedback (Payandeh and Shi, 2010), proposed to be part
of a gaming simulator for training surgeons. The BVH of the suture is constructed
with bottom-up at successive levels of detail (see Figure 2.18) and different
collision techniques are used for different object types: collisions between the
suture and the grasper are determined by modelling the graspers as line segments
and checking them against the suture’s BVH. Needle and soft tissue interferences
are found by defining a bounding box around the needle and analysing the mesh
nodes inside it. Self-collision are achieved by a top-down search of two copies of
the suture’s BVH.

Other simulators convert object data into simpler hybrid structures in order to
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Figure 2.18: Bounding Sphere Hierarchy of the suture at successive
levels, from (Payandeh and Shi, 2010)

handle collisions in an easier way. This is the case of the laparoscopic rectum
surgery simulator developed by Pan et al. (Pan et al., 2011). Different tissues
are classified into two types: the behaviour of membranes and fat tissues is
simulated by a mass-spring model, while bowels are modelled as one-dimensional
geometrical entities. The rectum is represented by a string of spheres, so collision
detection is easily performed by using these spheres as bounding boxes.

Another option to determine collisions in a surgery simulator relies on the
graphics hardware. Lombardo et al. (Lombardo et al., 1999) propose a real-time
collision handling method for a surgery simulator aimed at training surgeons at
minimally invasive techniques as laparoscopy. They represent the laparoscopic
surgery tools as cylinders of constant section and varying length. What they
basically do is a similar process to the one done in a scene visualization process: a
viewing volume is specified (in this case it corresponds to the cylinders covering
the tool between two consecutive steps) and the hardware is used to clip all the
scene polygons according to that ”camera”. In such a way, only the intersection
between the scene objects and the viewing volume is rendered. If nothing is
visible, collision can be neglected. Otherwise the part of the object that the tool
intersects will be shown. The problems this method carries are solved by using
some features of the OpenGL graphics library.

Many other techniques have been proposed in order to achieve deformable
collisions in surgery simulators. They base on the combination of basic
collision detection techniques, depending on the data structures or the simulator
requirements.
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2.4 Discussion

This chapter has presented the basics of collision detection and response
techniques and how different surgery simulators combine them to solve their
collision handling problem.

As shown, many collision handling approaches have been proposed in
different surgery simulators. Depending on different aspects such as the input
models, their mechanical properties or the specific procedures wanted to be
performed the collision handling methods vary. Focusing our attention on
craniotomy and neurosurgery simulators, they frequently obtain their input data
from CT or MRI images. CT data contain material opacity information and
are displayed in the computer as voxel structures with density information.
Commonly, surgery simulators convert these voxels into surfaces, hybrid models
of polygonal and volumetric parts, generate additional structures that approximate
the original structure and so forth. This is made in order to avoid the
discontinuities that the proper voxelized structure has. However, knowing that the
proper voxel structure derived from the CT is already a discrete approximation
of the real data, additional structures or adaptations that approximate the already
approximated structure can lead in an accumulation of possible numeric errors
that can result trivial when working in the field of surgery. Intending to fill this
gap, we propose a collision handling method that only uses the voxel information
to give an stable and accurate response to the interfering objects.

Existing surgery simulators are usually focused on specific procedures. Many
rigid and deformable collision handling methods have been proposed but, the
combination of both matters is not commonly seen. Our purpose is to develop
an accurate neurosurgery simulator that apart from offering an efficient collision
handling method for voxel-based data, also leads with deformable bodies and
combines both tasks in the same environment. Both collision handling techniques
should also offer a realistic and stable haptic response.
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Chapter 3

Rigid Volumetric Collision
Handling

Medicine, the only profession that labours
incessantly to destroy the reason for its existence

JAMES BRYCE

3.1 Introduction

This chapter presents our approach on rigid volumetric collision handling. This
will be integrated into a Craniotomy Simulator which will be detailed in Chapter
6. Our main goal is to obtain a convincing haptic interaction with a rigid
volumetric skull. For that purpose, an adequate collision detection algorithm
is required, together with an accurate collision response and haptic control.
The collision detection algorithm must efficiently detect the interferences in the
environment and offer accurate information about collisions. This information is
later interpreted by the collision response method and converted into a convincing
force restitution. This chapter first describes the proposed rigid volumetric
collision detection algorithm, to later present the implemented collision response
and haptic control process. Finally, performed experimental results will show the
performance of the methods in terms of time consumption and stability.

As previously mentioned, the Craniotomy Simulator requires collision
handling for rigid objects. There are many methods and algorithms to solve
the problem for rigid objects represented by all types of geometry as it has
been presented in the previous chapter. This Craniotomy Simulator uses data
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represented just by volumetric information obtained from real CT images without
the need of converting them to triangle meshes, tetrahedral meshes or any other
adapted structure.

Nowadays, most of the bone-drilling simulators convert volumetric data to
specific adapted structures (McNeely et al., 1999) (He and Chen, 2006) in order
to decrease force discontinuities. In our case, the visual module does not use
any other information but the one about bone densities obtained from the CT.
Our method gives a realistic haptic rendering by solving adversities instead of
constructing a new hybrid or adapted geometry.

3.2 Collision Detection

The developed collision detection finds the interferences between a dynamic
virtual tool and a rigid volumetric skull model. The skull bone is represented by
a set of voxels with an associated density value. This value informs about the
density of the piece of bone contained in each voxel. In such a way, voxels with a
null density value correspond to empty zones in the space, while the ones with a
non-empty value correspond to different bone areas with different densities. This
has clear benefits in the case of requiring a distinction of different skull bone areas.

The role of the dynamic object is assumed by a simple sphere of the same
dimensions as the milling tool. Its surface is surrounded by a cloud of points.
From this point forward, we will refer to this point cloud as the ”pointshell”.
Points on a sphere can be evenly or irregularly distributed. There are several
techniques to generate a uniform discretization such as the Uniform Random
Distribution, the Normal-Deviate Method, the Hypercube Rejection Method or the
Trig Method. As mentioned before, points can also be distributed randomly by, for
instance, using Particle Systems. We have used the Uniform Random Distribution
by applying the equation in 3.1.

x = r cosα sinβ (3.1)

y = r sinα sinβ

z = r cosβ

with α and β values inside the ranges

0≤ α < 2π, 0≤ β < π



Section 3.2. Collision Detection 51

The chosen step between consecutive α and β values determines the number
of points that finally constitutes the surface of the sphere. These generated points
have an associated normal to the centre of the sphere, which will be used for the
determination of the contact normal in the collision response process.

Figure 3.1: Pointshell surrounding the tool

As a preprocess stage, whenever the collision detection wants to be
performed, data structures need to be initialized: to start with, the haptic module
gets the current position and rotation of the haptic device. This information is
assigned to the virtual model of the tool. From now on, this will be referred to as
the ”proxy” and it is covered by the previously mentioned pointshell.

Once the virtual tool is correctly located, the collision detection process starts
its work. The general work flow of this module is shown in Figure 3.2.

As a first step, the collision module receives the movement made by user
with the haptic device. At this point, even if directly applying the translation and
rotation to the virtual tool could seem sufficient, it is not enough: some virtual
object could intersect the whole action, so the proxy should not imitate that entire
movement. In those cases, the virtual sphere only moves inside its possibilities.
This is made by a process we have called ”sweep”.

The concept of the sweep process consists in covering all the voxels from
one point in the space to another, to determine whether the path crosses a bone
zone or not. The route is divided into small pieces of the size of the smallest
voxel side. Therefore, it is assured that no voxel will be skipped. The route is then
covered piece by piece, comparing the density of the voxel in which it lies with a
predefined isovalue1. Voxels with larger density than the isovalue represent bone

1Indicates the density value level of the voxels attenuation values done by the graphic rendering
of the 3D object
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Figure 3.2: Collision detection control flow

zones. Thus, if a bone-voxel is found before arriving to the objective position,
it means that the path collides with an object so the tool must stop its trajectory
at that point as shown in Figure 3.3. It is located in such a way that it does not
penetrate the bone zone completely but it lightly touches it. Its exact location
depends on the radius of the sphere.

In this way, the first step of moving the virtual tool is performed by means
of a sweep of voxels which starts from the previous position of the virtual tool
in the direction of the new position. It stops when a full voxel is found or when
the whole path is covered, and the new proxy position is set at that point (see
Figure 3.4). This can result in a ”gap” between the locations of the real tool and
the proxy which is assumed and controlled. The real tool position coincides with
that one measured in the device, while the ideal proxy position is consistent with
the restrictions of the scene. The act of uncoupling the positions of the real haptic
tool and the proxy is called Virtual Coupling and is an extended haptic rendering
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Figure 3.3: Sweep process

technique (Colgate et al., 1995). The nature of this gap will be important when
deciding the course of the algorithm in some occasions. This will be detailed later.

Figure 3.4: Sweep with the haptic and proxy before moving

Once internal structures have been updated with the current state of the scene
objects, the sphere and pointshell involving the tool are updated and a colliding
box is defined. We refer to the colliding box as the cuboidal zone where the AABB
of both the skull and the tool-sphere interfere (see Figure 3.5).

This first phase of delimiting the whole problem to a so-called colliding
box accelerates the process: if the box is null, the collision process does not
continue checking for interference between the objects. Thus, it avoids checking
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Figure 3.5: The colliding box is defined as the intersection of the skull’s
AABB with the tool’s AABB

for interference when the models are far away from each other.

At this point, and if the colliding box is not empty, the cells inside it are
checked for real intersection. All the points belonging to the pointshell are
checked in order to take the ones lying inside the colliding box. For every point
lying inside the box, the first question is whether it belongs to a bone-voxel or not.
This is checked by finding the voxel in which it lies and comparing its density with
the predefined isovalue. If the cell represents a bone zone, it means that the cell
belongs to the skull and is also located inside the tool-sphere. In conclusion, the
tool is touching the skull. Thus, the mentioned voxel and point are saved, which
will be later used to calculate the contact normal and penetration depth.

If a collision is found and the drilling flag is active, the removal of the skull
bone is performed here by decrementing the density associated to the colliding
voxels by 1.0. In our case, the isovalues of the skull bone vary between 300 and
500.

However, this method has some problems. Working with an space lag between
the real position of the tool and the proxy carries undesirable situations in some
circumstances, which have been faced by the use of the sweep process. The nature
of the problem is basically one, but it can happen in two different situations:

• The AABBs of the skull and the tool do not overlap: If the colliding box is
empty, no collision is happening. However, this is not always true. Let’s see
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a circumstance in which having an empty colliding box the user must still
feel a force: when the real and proxy positions of the tool differ. This can
happen when a collision is happening in the previous frame, and the proxy
position has been moved to the surface of the skull while the real position
of the tool is inside it. The movement made by the user from the previous
frame to the current one can position the proxy in a non-colliding place.
However, the real tool can still be colliding. For that reason, the user must
keep feeling a force, and the proxy must keep touching the skull (see Figure
3.6).

(a) (b)

Figure 3.6: The real (blue) and proxy (red) positions differ. Once the
movement is done, the proxy is free of interferences but the real tool is
still inside the skull (a). The user must keep feeling a force, so a sweep
process is needed (b)

• The AABBs overlap, but no colliding point is found: This is basically the
same problem as the previous one. Even if in this case the proxy lies inside
the skull’s AABB, no colliding point is found. So it does not really collide
with the skull. The proxy could have been moved to a non-colliding position
while the real tool is still in collision. The user must also keep feeling a force
and the proxy must be placed in the surface.

An additional sweep stage solves these matters. A sweep process from the
proxy position to the real tool position is thrown (Figure 3.6). The reason for
doing this is that the force wanted to be felt is the one related to the real movement
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of the user’s hand, so even if the visual representation of the tool (the proxy) is
placed in a different location, it always tries to match the real one. In such a way,
if the sweep does not find any skull voxel along its path, there is absolutely no
interference between both tools. The real tool is not in collision and the proxy can
be moved along the path to the real haptic position. Both tools can be matched, and
the collision can be discarded. On the contrary, if some skull voxel is found, the
user must keep feeling a force, and the proxy cannot be moved to the real position
as something is placed between them. The proxy would visually traverse the skull.
In that case, the contact normal is considered the inverse of the sweep direction.
Since the proxy is relocated to the position where the sweep has stopped, this is
done with a predefined small penetration depth.

The sweep can be adapted to the scene, objects and circumstances. If it is
a-priori ensured that the skull does not contain cavities of smaller dimensions
than the tool’s diameter, and if the radius is relatively small, the sweep can be
done from the centre of the tool to the new predicted centre, just following a line.
Otherwise, as seen in Figure 3.7, the sweep should be made considering the path
as a cylinder, not as just a line. It could also be done by defining the path as a
string of spheres with the same radius as the tool and searching for interferences
along the path. Obviously, this would carry a higher computational cost.

Figure 3.7: The sweep can be made with a cylinder instead of a simple
line. This is not necessary in environments where the radius of the tool
is relatively small

Information about the colliding voxels and points and the new proxy position
if the sweep has moved the tool is sent to the collision response module in the
next stage. A haptic and visual response are needed, so all this information has to
be processed and used to give a realistic feedback in both senses.
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3.2.1 Visual feedback

The haptic interface does not have infinite stiffness. For that reason, we cannot
stop the haptic interface point from penetrating the virtual objects. It is proven that
the visual sensory channel can strongly distract the user’s perception of feeling a
force. Thus, if the virtual tool visually remains in the surface of the deformable
body even if the force limitations are exceeded, the perception of stiffness is
stronger. This is what we call visual feedback. The idea is to define two tool
objects: one matches the movements of the haptic device but is not visualized,
and the other is located where the tool should be if the skull were completely
impenetrable. The latter is what we have been calling proxy.

In the bibliography, a method called ”god-object” (Zilles and Salisbury,
1995a) modifies the location of the proxy tool and forces it to follow the laws
of physics by staying where it would be if the haptic interface and the virtual
object were infinitely stiff. This method is what we have adapted and used to give
a realistic visual feedback to our algorithm. Our proxy object is the one which
suffers the location changes determined by the god-object location method, while
the real tool can freely move around the environment but is not visualized.

The visual feedback in our method is applied after the collision handling
process and before giving a haptic response to the user. Once interferences are
identified, the visual representation of the tool is updated, and its new location is
determined depending on the results of the detection process. Let’s analyse the
different situations in which the collision detection process can end and how the
visual feedback behaves for each one.

Having a look to Figure 3.2 which illustrates the collision detection’s
workflow, the detection process can reach two different states at the end of its
flow: collision or no collision. In the case of no collision, no additional visual
feedback is needed. The proxy position is just matched with the haptic position.

However, the state of ”collision” can be reached from two paths: a sweep can
have moved the proxy to a feasible position and thus the proxy tool is placed at the
object’s surface, or the collision detection process has followed the normal flow
and no rectifying sweep has been performed. It is obvious that in the first case (the
sweep process has moved the proxy position) the visual feedback only involves
moving the proxy to the new location.

Nonetheless, if a collision has been detected and the virtual tool’s position
has not been rectified by a sweep, the performed visual feedback becomes a bit
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more sophisticated. In that case, it is possible that the haptic tool is positioned
inside the skull while the proxy is somewhere in the surface (where the moving
sweep has placed it). If the haptic tool is in collision the proxy must be moved
to its correct location in the surface. Thus, an adaptation of the previously cited
god-object location method (Zilles and Salisbury, 1995a) is applied which, having
a constraint plane, provides the virtual tool with a new projected position. Our
algorithm does not contain surface information. So the constraint plane used for
the god-object location method is derived from the contact normal calculated for
the force restitution. Even if this method gives a feasible visual feedback, the
collision detection method has been performed for the current proxy position,
so the new location does not assure no interference will be happening with any
other plane which is not in collision now. No collision with the constraint plane is
ensured, but the proxy can interfere with another plane which has not been taken
into account in the current stage.

For that reason, an additional rectifying step is again needed at this point.
Actually, it is necessary every time the proxy position wants to be updated
directly: when a god-object location is defined as well as when no collision is
found and the proxy wants to match the haptic position. It consists of sweeping
the voxels from the previous proxy position to the new one given by the god-object
location method or by the haptic position. If the new position involves crossing a
bone zone, the sweep stops and locates the proxy at that point.

3.3 Collision Response and Haptic Control

The advent of haptic devices into VR environments provides a more realistic sense
of immersion to the user, apart from increasing the interactivity. The user can feel
a physical stimulus when the scene objects collide. Additionally, different textures
can be perceived for each object as in real world.

In the case of surgery simulators, the student or surgeon could perform the
surgery tasks as skull drilling or interacting with the brain tissue without any other
feedback but the visual one. However, the accuracy of the application increases
significantly if the user is able to feel the force that avoids him to penetrate into
other virtual objects. The accuracy required in surgery tasks makes the use of
haptic devices more necessary.

The computation of the collision response is done using the information
given by the collision detection module. This module constantly verifies collisions
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between different objects of the scene and calculates the interfering primitives.
The interfering primitives returned from the rigid and deformable collision
detection modules differ, as the structures used to detect collisions are different
in both cases. Anyway, the returned information is used by the collision response
module to compute a set of forces that will act against the prohibited movement
of the user.

This section analyses the rigid haptic collision response problem by a short
description of the different parameters used to determine a solution for the
interfering objects in the scene. This solution is obtained from the geometric
information provided by the collision detection module. The given solution is
based on the penalty forces method described in Section 2.2.

Figure 3.8 illustrates the control flow of the whole rigid volumetric collision
handling process. As it is shown, the collision response module calculates the final
force to be sent to the haptic device based on the data received from the collision
detection module.

Figure 3.8: Control flow of the rigid volumetric collision handling
process

As mentioned above, the information sent by the detection module is different
for the rigid and deformable collision detection modules. In the rigid case, as the
skull model is represented by voxels, no triangles or surfaces are known. For that
reason, the rigid collision detection module returns the list of skull-bone voxels
which are in collision. Apart from that, for each colliding voxel, the list of points
belonging to the pointshell that are actually colliding with it are given.

The collision response module computes the force restitution through the
haptic device. This is proportional to the penetration of the intersecting objects.
The system calculates and returns a three-dimensional force. Due to the lack of
torques in our system, the calculation of the force can simply be done with the
force direction (contact normal), penetration depth and a stiffness constant (k).
The simplest way to model the restitution force is by the use of a spring model
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defined by the Hooke’s law of elasticity:

F = kpn (3.2)

where k is the stiffness constant, p is the penetration depth of the collision and
n is the contact normal.

However, a viscous component is frequently added to the elastic model
defined previously. This model is called viscoelastic and adds viscosity by adding
velocity information to the deformable force restitution. This contributes to the
system’s stability and improves the contact feeling. The hereafter equation is
applied:

F = kpn+bv (3.3)

where k and b are the stiffness and viscosity constants respectively, p is the
penetration depth, n is the contact normal and v is the velocity of the haptic device.

The contact normal and penetration depth are calculated based on the voxel
and point information received from the detection module. Additionally, the
contact perception of the user is also affected by the chosen stiffness constant
k. The larger this value is, the more rigid the contact will be felt. Thought, the
system’s stability cannot be assured for every chosen stiffness value. The velocity
information is also required which can be obtained directly from the haptic device.
Finally, viscosity constant b values must also be adjusted in order to maintain the
global stability of the system. Let’s now analyse how the contact normal and the
penetration depth are obtained.

Logic says that the contact normal should be the direction correspondent to
the surface normal touched by the virtual tool. However, the difficulty of this
method is the lack of surface data in the skull model. The object is represented
by density voxels, so there is no additional geometry information available. The
main adversity comes when getting the surface normal. In our case, the penetration
depth of each colliding point and the contact normal for each colliding voxel is
computed based on (McNeely et al., 1999): the penetration is calculated as the
distance d from the colliding point to a plane called tangent plane (see Figure
3.9). This is defined as the plane that passes through the centre point of the voxel
and has the same normal as the colliding point’s associated normal.
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Figure 3.9: Penetration depth and contact normal calculation (McNeely
et al., 1999)

Nonetheless, while they compute the final force as the sum of local forces
obtained from multiple colliding voxels, we obtain the contact normal and
penetration for each single colliding point and compute an unique normal and
an unique penetration depth from all of them. Then, we use these values to
determine a single force. This was first proposed by (Renz et al., 2001) in order
to solve the problem illustrated in Figure 3.10. When the colliding point crosses
the voxel border, the local penetration is reduced to zero so the force returned
by the local collision is also zero. This influences the overall collision force. In
such a way, based on the list of voxels and points received from the collision
detection module, the resulting force is computed by using the average of the
contact normals (Equation 3.4) and the maximum penetration.

Figure 3.10: Adapted force calculation (Renz et al., 2001)



62 Chapter 3. Rigid Volumetric Collision Handling

navg =
∑

m
i=1 ni

|∑m
i=1 ni|

(3.4)

where navg is the average normal vector, m is the number of voxels in collision
and ni the contact normals of each colliding voxel.

Thus, the contact normal used to avoid the collision is defined as the average
of the contact normals of all the colliding voxels. Regarding to the penetration
depth, it is determined as the maximum of the average penetrations of the points
colliding with each voxel. Namely, for each colliding voxel all the points colliding
with it are searched and the average of their penetrations is taken. Then, the
maximum of all the average penetrations is the one chosen to represent the
penetration depth of the whole intersection. See Algorithm 1.

Algorithm 1 Rigid penetration depth
1: function RIGID PENETRATION(voxels, points)
2: dist← 0
3: penetration← 0
4: for i = 0→ voxels.size() do
5: if points[i].size()> 0 then
6: for j = 0→ points[i].size() do
7: dist← dist +getDistance(points[i],voxel)
8: end for
9: dist← dist/points[i].size()

10: if penetration < dist then
11: penetration← dist
12: end if
13: end if
14: end for
15: end function

Even if the penetration depth is calculated in the collision response module,
it could be necessary to modify it if a visual feedback is required. In those cases,
the penetration depth is the distance between the centre of the haptic tool and the
centre of the proxy. This will lead in larger force restitution the more the user
penetrates the skull, even if the visual feedback does not let the user see it.
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3.4 Experimental Results

In order to evaluate our rigid volumetric collision handling method, some
experiments have been carried out. This section analyses the behaviour and
validity of our algorithm, as well as the parameters that most affect its
performance.

One of the biggest purposes of haptic systems is the avoidance of
discontinuities in order to offer a pleasant experience to the user. The first
adversity in this way comes with the proper models, since they are represented
by discrete structures that implicitly add discontinuities.

Apart from that, the response time is also a crucial aspect to offer an accurate
feeling. Haptic systems usually require a minimum frequency of 1kHz to offer
a real-time interaction. In order to fulfil this necessity, the collision module’s
frequency should be as close as possible to the haptic module’s frequency. This
means that the collision module should finish its work in at worst 1ms time.
Otherwise, the collision information sent by the haptic module to the haptic
device would be out to date, so the forces felt by the user would not fit the real
environment’s situation.

With the aim of evaluating our methods in terms of continuity and stability,
we have analysed two main aspects: the time consumption of the collision
handling algorithms and the stability of the force parameters they return. The
time consumed by the collision handling methods will show whether the required
frequency can be achieved or not and which factors alter it.

Our first goal is to determine the frequency of the collision handling
algorithms. We are also interested in the time consumption differences between
input models with varying tessellation. When comparing the behaviour of an
algorithm depending on the used models, an identical path is generally used. We
call path to a sequence of discrete consecutive positions in the scene. In other
words, a trajectory is defined by moving the virtual tool around the environment,
so the same tool path is analysed for the same algorithm with different models. In
such a way, the comparison is done by only varying the parameter we are owing
to compare.

A path can be defined by different methods. We have used the proper
haptic device to move the virtual tool around the environment and record the
covered positions. Different input models could be tested differing the number of
primitives, or the same object with different tessellations could be loaded. We have
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opted to load the same structure varying the number of primitives (voxels) instead
of loading different objects for a simple reason: when testing different models,
some recorded locations that result in plausible colliding positions for one model
could lie in unreal positions for other models. For instance, they could lie in some
point inside the proper model. Or a no-collision situation could happen, which is
not relevant for our study. However, this can also happen when loading the same
object with varying number of primitives, if the surface of the model is complex.
A different number of primitives also involves a bigger or lower precision in the
surface of the model, which could lead in the problem we are trying to face.
In order to avoid this problem, we have first done the experiments with cubical
models which, obviously, have a plane surface. In this way, the recorded tool
trajectory will cover plausible positions whichever the tessellation is.

The cubical models will help us to identify the possible problems of our
algorithms. Afterwards, the time consumption of our methods with some skull
models will be shown.

Regarding to the force parameters, the returned force parameters for
consecutive frames will be shown in order to determine the stability of the system.

3.4.1 Time Consumption

A low computational cost of the rigid volumetric collision handling method
is trivial to achieve the minimum frequency required by the haptic interface.
Collision detection and response must be done in at most 1ms. One of the factors
that strongly affects this time is the size of the voxels composing the input rigid
model. The voxel-size alters the collision times in the following aspects:

• Sweep process: small voxels prolong the sweep process since the step
depends on the voxel-size. The smaller the voxel is, the smaller the step
will be. Consequently the sweep needs more steps to cover the entire path,
which makes the process longer. Anyway, the paths to cover are generally
short since the surgeon is supposed to do small movements with light
contacts. Therefore, times to perform this stage are generally small and in
our particular case can be even rejected.

• Calculation of the contact normal: the contact normal is computed based on
the colliding primitives returned by the collision detection module. Small
voxels imply a larger amount of colliding voxels. In this way, a large amount
of colliding voxels lengthens the computation of the normal.
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• Calculation of the penetration depth: since the penetration depth also
depends on the colliding voxels, this process would also be longer.
However, the penetration depth’s calculation also checks the points
contained in each colliding voxel. As small voxels contain a small number
of points inside them, the computation is shorter in this way.

With all this information, it seems that small voxels generally lengthen the
collision handling process. Nonetheless, if the part of the penetration depth’s
calculation relative to the colliding points has a strong charge in the algorithm,
the time consumption could be balanced. For that reason, the time consumed
by models with a different voxelization is not clear. We have performed some
experiments in order to see the computational cost differences between different
rigid models varying their voxelization.

The number of points surrounding the virtual tool (number of points contained
in the pointshell) also affects the time consumption. A large amount of pointshell
points results in higher collision detection times. However, we are more interested
in examining the tessellation of the input models rather than the tool’s point
density. This parameter can slightly affect the consumption time but, from a
minimum number of points onward, the accuracy of the algorithm does not vary
pretty much. As explained in the collision detection section, we have used a
Uniform Random Distribution of points (see Equation 3.1 defined at the beginning
of this chapter). The chosen step for α and β is 10.0 in the rigid case, which
leads in 466 points surrounding the sphere. Thus, the mentioned step was the one
that best time-accuracy balance offered. This value is maintained for all the rigid
experiments.

Table 4.1 describes the cube models used to compare the algorithm’s time
consumption varying the voxel size. All the models have the same size, so varying
the voxel-size means increasing or decreasing the number of primitives per axis.
All the voxels are cubical so the voxel-size is only given for one axis. All this
information is summarized in the table.

It must be noted that each experiment is performed by covering the same
recorded tool path for all the examined models. Intending to be faithful to reality,
this path is recorded with the proper haptic device in order to cover plausible
positions.

The initial experiments are done with rigid volumetric cube models which
help us analyse the behaviour of the algorithm. Afterwards, volumetric skull
models will be examined in the same way in order to determine the voxelization



66 Chapter 3. Rigid Volumetric Collision Handling

model dimensions voxel-size
Cube100 100x100x100 2.000
Cube200 200x200x200 1.000
Cube300 300x300x300 0.667
Cube400 400x400x400 0.500
Cube450 450x450x450 0.444
Cube500 500x500x500 0.400

Table 3.1: Description of the cube models, the number of voxels per
axis and the consequent voxel-size

level of skull models our algorithm can support. Additionally, we have divided the
experiments of both types of models into two different tasks: touch and drill. The
first experiment is done by only touching the rigid model but not drilling, while
the latter keeps the drilling flag active all the time. Figure 3.11 (a) shows the
collision handling times in 2500 consecutive frames for the previously described
cube models in the first case: touching the skull without drilling. The number of
voxels in collision for each analysed position is given in Figure 3.11 (b).

As can be seen in the first graph, all the collision times lie inside the barrier
of 1ms. This means that the required minimum frequency is achieved for all the
analysed cube models. Apart from that, even if the difference is minimal, it seems
that smaller voxels return higher collision times. As expected, (b) confirms that
small voxels imply a larger number of colliding primitives.

Frames 1048− 1465 seem to illustrate a range of non-colliding positions,
since the number of voxels in collision is null all over the range. However, a
collision is actually happening even if the number of voxels returned by the
algorithm is null. The reason for this goes back to Chapter 3 where the sweep
process has been introduced. As explained, our algorithm activates the sweep
process in order to solve two conflicting cases in which the positions of the
proxy and the haptic tool differ: in the first case the AABBs of the rigid model
and the proxy do not overlap, but the collision cannot be discarded since the
haptic tool could be colliding. For that reason, even though the AABBs do not
overlap, the proxy and the tool cannot be directly matched and the sweep process
places the proxy at its new plausible position. In the second conflicting case the
AABBs of the rigid body and the proxy do overlap but they are not colliding.
Once again, the proxy may not share any space with the object while the real
haptic position is inside it. So the sweep relocates the proxy again. In both cases
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(a) Collision handling times

(b) Number of voxels in collision

Figure 3.11: Comparison of the collision times in a non-drilling task for
cube models with varying tessellation

the force parameters related to the collision (the contact normal and penetration
depth) are directly computed without the need of calculating the colliding voxels.
This is why the number of voxels in collision is said to be null but it is truly not.

The times spent by the collision handling module in the mentioned range
suffer some variations. The reason for this is that when the algorithm detects that
the AABBs of both models do not overlap (first conflicting case), the only thing to
be done is the sweep process and the direct computation of the force parameters.
So the time spent by the algorithm to solve such situation is really low. The second
conflicting case does not discard collisions until all the points of the pointshell are
checked, so the time needed to finish it is slightly higher. So the almost null times
shown in the graph correspond to the first conflicting case while the rest of the
values inside the 1048−1465 range illustrate the second one.
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The collision handling times and colliding voxels during the drilling process
are given in Figure 3.12. In the same way as with the non-drilling task, these
graphs display the times and the number of colliding voxels for 2500 consecutive
positions, but in this case the drilling flag is active during the whole experiment.

(a) Collision handling times

(b) Number of voxels in collision

Figure 3.12: Comparison of the collision times in a drilling task for
cube models with varying tessellation

In the drilling task the time differences between different tessellations are
more meaningful than in the non-drilling task. Drilling cube models with very
small voxels consumes more that 1ms in some cases, while the same task with
models composed by bigger voxels can be easily performed in the required time.
Comparing Figures 3.11 and 3.12, it is clear that drilling is computationally more
expensive than just touching. But, what does really happen in the drilling task to
be more expensive than touching in terms of time consumption? At first sight, it
might seem that the only difference is the activation of the drilling flag, which
decreases the density of the colliding voxels until they disappear. Nonetheless,
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there is another difference: the number of colliding primitives. When drilling bone
the voxels in collision are removed so a hole is created inside the body. As a result,
the drilling tool gradually enters the hole and it obviously gets in contact with a
higher number of primitives (see Figure 3.13).

Figure 3.13: Colliding primitives in the touching and drilling process

The drilling process detects up to 300 voxels in collision in the Cube500
model while the non-drilling experiment does not pass beyond 100. So when
the sweep process is not performed, the number of primitives needed to traverse
in order to calculate the contact normal and penetration depth is bigger. This
obviously leads in a heavier computational cost.

As mentioned before, when the drilling task is being accomplished the sweep
process of the collision detection is rarely needed. It has also been stated that
the sweep implies the direct calculation of the force parameters. So the sweep
skips all the process of computing the contact normal and penetration based
on the colliding voxels and points. Knowing that the time consumed by the
sweep process is much lower than the computational cost of computing the force
parameters, the activation of the sweep process shortens the collision handling
time.

Since the rigid volumetric collision handling method has been designed to be
integrated into a craniotomy simulator, the rigid input models are skull models
derived from real CT data. Once the behaviour of the collision handling algorithm



70 Chapter 3. Rigid Volumetric Collision Handling

has been analysed with simple cube models, we present some experiments carried
out with skull models. What we have done is to resample a real skull model
obtained from a CT into skull models with almost the same shape and size but
different voxelization levels. In such a way, the same recorded tool path can
be used to compare the effect of varying the voxelization without varying the
covered positions. The original skull model contains 216x128x142 voxels of size
0.984x1.584x0.997. Table 3.2 describes the used skull models, their dimensions
and the size of the voxels. Once again and in order to simplify the comparison,
the chosen voxels are cubical.

model dimensions voxel-size
Skull1 143x135x95 1.500
Skull2 171x162x114 1.250
Skull3 213x202x142 1.000
Skull4 284x269x189 0.750
Skull5 425x403x283 0.500

Table 3.2: Description of the skull models, the number of voxels per
axis and the consequent voxel-size

The system’s accuracy strongly depends on the number of voxels contained
in the skull model. The force parameters returned by the collision handling
algorithm are closer to reality the more voxels the models contain. In contrast,
a high number of voxels increases the time consumption of the collision handling
method. Therefore, a compromise must be found. The idea is to increase
the number of voxels as much as the collision handling algorithm is able to
support computationally. The next graphs illustrate the rigid volumetric collision
handling times obtained with different skull models. Figure 3.14 corresponds to a
non-drilling task and the graph in (b) gives the number of voxels in collision for
each frame.

The results show that even the Skull5 model which contains more than
48000000 voxels can be processed in less than 1ms. As happened in the
non-drilling task of the cube models, even if the number of colliding voxels
differs for different models, the collision handling times are similar whichever
the voxelization is.

Let’s now see the results obtained in the drilling task with the same skull
models. Seeing the results obtained with the cube models it can expected that the
time consumption in this case will be larger than in the non-drilling task.
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(a) Collision handling times

(b) Number of voxels in collision

Figure 3.14: Comparison of the collision times in a non-drilling task for
skull models with varying tessellation

The results of the drilling task are shown in Figure 3.15. As expected, the
rigid collision handling times are larger when the drilling flag is active than when
the tool only touches the skull. The number of colliding voxels increases and
consequently the calculation of the force parameters results heavier. Additionally,
since the drilling process does not usually require the use of the sweep, the cover
of all the colliding voxels is not avoided in most frames. Even though the time
consumption of the drilling process is larger than the time spent by the touching
task, the collision times only exceed the barrier of 1ms when experimenting with
the Skull5 model on a few occasions. This means that the rigid collision handling
algorithm can be performed obeying the required frequency in most cases. The
original skull model contains almost 4000000 voxels, but it could be resampled
in order to contain up to 48000000 without the risk of exceeding the claimed
maximum collision time.
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(a) Collision handling times

(b) Number of voxels in collision

Figure 3.15: Comparison of the collision times in a drilling task for
skull models with varying tessellation

The first section of this chapter has described the rigid volumetric collision
handling algorithm designed for the craniotomy simulator. As it explains, the
tool’s movement is first reflected in the virtual tool and afterwards possible
collisions are checked. The movement of the tool is not directly done but a
sweep process checks if the entire movement can be executed or some object
interferes the whole action. So the system’s frequency also depends on the
computational cost of the sweep process when moving the tool before handling
the collisions. The sweep process combined with the collision handling algorithm
must be done in less than 1ms. We have measured the time consumed by the
sweep-before-moving process in 10000 consecutive frames in a scene with skull
models. Figures 3.16 (a) and (b) show that the sweeping times are so small that
they could even be rejected. The first graph corresponds to the sweep process
when touching the skull without drilling. The latter does the same but drilling.
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(a) Touch

(b) Drill

Figure 3.16: Times to perform the sweep process for skull models with
varying voxel-size for (a) touching the skull and (b) the drilling task

Most of the sweeps are finished in less than 0.015ms in both cases. This means
that the additional cost of sweeping before moving is absolutely rejectable. The
behaviour of all the skull models is similar as the path to cover is usually very
small and the voxel size does not nearly affect. In conclusion, our rigid volumetric
collision handling algorithm fulfils the frequency requirements of the haptic
system even with high voxelization levels. The drilling tasks are computationally
more expensive but the minimum frequency of 1kHz is achieved anyway.

3.4.2 Force Parameters

The stability of a haptic system depends on many aspects. Among them, the
quantization of the haptic sensors and the saturation of its actuators. However,
the haptic interaction model and its parameters are also closely related to the
system’s stability. It is strongly affected by the force parameters derived from
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the collision handling process (the contact normal and the penetration depth) and
their variation along time. The contact normal represents the direction of the force
restitution to be sent to the haptic device, while the penetration depth directly
affects its modulus. For that reason, we have performed some experiments with
the aim of determining the behaviour of our method in terms of stability and its
limitations.

As done to analyse the computational cost of the algorithm, we have
differentiated two tasks the user could carry out in a craniotomy simulator: touch
and drill. The former only touches the rigid model but does not drill, while
the latter keeps the drilling flag active during the whole experiment. To start
with, Figures 3.17 and 3.18 show the force parameters calculated by our rigid
collision response algorithm in the touching and drilling tasks respectively. The
experiments have been done with the original skull model obtained from the
patient’s CT. It contains 216x128x142 voxels of size 0.984x1.584x0.997. The
contact normal and penetration depth information has been measured for 3000
consecutive frames and they represent the force parameters to be included in the
final force model.

(a) Contact normal

(b) Penetration depth

Figure 3.17: Force parameters returned by our collision handling
method in a non-drilling task with the original skull model



Section 3.4. Experimental Results 75

(a) Contact normal

(b) Penetration depth

Figure 3.18: Force parameters returned by our collision handling
method in a drilling task with the original skull model

Strong variations in the contact normal or the penetration depth can make the
haptic device jitter. In the touching experiment, normal directions are reasonably
stable and penetrations vary from 0.2mm to 0.8mm which are quite low values.
Knowing that the stiffness value chosen for our system is k = 2.0, the force’s
modulus varies between 0.4N and 1.6N. In the drilling task, the normals seem to
suffer more variations, while the penetration depth values are even smaller than in
the touching process: they are all below 0.3mm. This means that having the same
stiffness constant than before, the resulting force reaches at most 0.6N. Since
the maximum exertable force of the Phantom OMNI is 3.3N, the system does
not in theory saturate the device in any of the performed tasks. Although large
values saturate the haptic device, them themself do not necessarily imply stability
problems if they are reached gradually. The next graph shows the variation in
time of our penetrations multiplied by the stiffness value (k = 2.0). Thus, we can
examine the variations in the force’s modulus and detect possible instabilities.

As said, Figures 3.19 and 3.20 give the variations suffered by the modulus
of the force along time. The absolute value of the modulus difference between
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Figure 3.19: Variations in the force’s modulus along different frames
multiplied by the stiffness constant in a non-drilling task with the
original skull model

Figure 3.20: Variations in the force’s modulus along different frames
multiplied by the stiffness constant in a drilling task with the original
skull model

two consecutive frames does not exceed 0.3N in the touching task and 0.5N when
drilling. This means that the force stimulus sent to the haptic device does not
suffer consecutive variations of more than 0.3N and 0.5N. So in general, with
penetration depths beyond 0.8mm, forces of at most 1.6N and force variations
that do not exceed 0.5N, the haptic device is not saturated and the systems seems
to be stable.

Our rigid volumetric collision handling algorithm can be understood as an
initial calculation of the force parameters with a rectifying stage afterwards. The
collision detection module calculates the contact normal and penetration depth
based on the current state of the scene objects, but an additional god-object
algorithm is later performed in order to manage the position of the proxy tool.
In this process, the contact normal and penetration information are rectified based
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on the god-object algorithm’s results. The information displayed in the previous
graphs is the one already rectified. In order to see the initial penetrations calculated
by the collision module compared to the rectified ones sent to the haptic device,
Figures 3.21 and 3.22 show the penetrations obtained in the previous experiments
compared to the penetrations initially calculated by the collision response module.

Figure 3.21: Comparison of the first penetrations returned by the rigid
collision module and the rectified penetrations in a non-drilling task
with the original skull model

Figure 3.22: Comparison of the first penetrations returned by the rigid
collision module and the rectified penetrations in a drilling task with the
original skull model

The initial penetration values are rectified based on the god-object location
algorithm that calculates the new proxy position. When the god-object algorithm
does not need to be run the contact normal and the penetration depth computed in
the collision response process are maintained. The graphs show that the rectifying
process stabilizes the penetrations sent to the haptic device. In those points where
both penetrations coincide, the god-object algorithm has not been activated. The
penetrations initially returned by the collision response algorithm are not large
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but the rectifying stage makes the even smaller, which results in smaller force
restitution values. We could have used a higher stiffness constant in order to obtain
a higher force restitution. However, we prefer to maintain low variations in the
force instead of receiving a higher force, in order to avoid the risk of getting
unexpected high peaks at any time. The visual feedback obtained by means of
the sweep process and the god-object algorithm make the user feel a higher force
restitution which, together with a sound feedback, completely fulfils the feeling
of immersion.

Our rigid collision handling algorithm uses a viscoelastic model to compute
the final force restitution to be sent to the haptic device. Figure 3.23 shows
the viscoelastic forces returned by our system in the touching task. The force
variations in the three axis are also given afterwards (Figure 3.24). Additionally,
the values obtained in the drilling experiment are given in Figures 3.25 and 3.26.

Figure 3.23: Viscoelastic forces in a non-drilling task with the original
skull model

As expected, the modulus of the resulting force does not exceed the 1.5N
barrier which is less than half the maximum force of the Phantom OMNI. With
respect to the force variations in consecutive frames, the highest differences in
absolute value are all below 0.6N.

Regarding to the drilling task, the modulus of the resulting force is always
smaller than 0.5N and the maximum force variation suffered by the haptic device
in two consecutive frames is 0.4N.

In conclusion, he decisions taken along the course of our rigid volumetric
collision handling method lead in forces that do not exceed 1.5N in any performed
task and the force variations in consecutive frames are all lower than 0.4. This
means that the force parameters sent to the Phantom OMNI do not saturate the
device and vibrations derived from force variations are minimum.
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Figure 3.24: Variations in the viscoelastic force along different frames
in a non-drilling task with the original skull model

Figure 3.25: Viscoelastic forces in a drilling task with the original skull
model
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Figure 3.26: Variations in the viscoelastic force along different frames
in a drilling task with the original skull model

3.5 Discussion

This chapter has described our rigid volumetric collision handling method to be
integrated into a Craniotomy Simulator.

The collision handling includes an accurate collision detection algorithm that
detects the interferences between a dynamic virtual tool and a rigid volumetric
skull model represented by density voxels. Most of the bone-drilling simulators
construct adapted structures from the density-based information in order to
avoid the discontinuities inherent to the voxel representation. We have opted
to maintain the voxel structure and solve adversities instead of constructing
additional structures that can implicitly add errors to our model. In this way, the
intersecting primitives (voxels and points) are efficiently determined by only using
density data. This information is sent to the collision response module to derive
the force parameters that will be used to compute the restitution force.

Thus, the implemented collision response and haptic control method is
designed to work with voxel-based information. Based on the colliding voxels and
points returned by the collision detection module, the collision response computes
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the parameters needed to get the final force restitution which is finally obtained
by a viscoelastic force model.

Experiments have been performed for input models with different
voxelization levels. The obtained experimental results conclude that our collision
detection and response method fulfils the required minimum frequency when
touching and drilling bone even with input models containing a big amount of
voxels. Moreover, it returns an stable force restitution which is crucial for a
realistic and pleasant feeling.
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Chapter 4

Deformable Volumetric Collision
Handling

If the human brain were so simple that we could
understand it, we would be so simple that we

couldn’t
EMERSON M. PUGH

4.1 Introduction

This chapter describes our approach on deformable volumetric collision handling.
This will be integrated into a Brain Haptic Physical Simulator which will be
presented in Chapter 6.

The brain interaction requires collision handling for deformable objects.
The brain model is a soft body which behaves according to the physical laws,
depending on its tissues’ properties. For that reason, a collision handling between
deformable and rigid bodies is demanded. The main purpose of this work is to
get an accurate and realistic haptic interaction with a deformable volumetric brain
mesh. The following lines describe the collision detection algorithm performed
to solve interferences between a virtual tool and a deformable volumetric brain
mesh. The collision response method and haptic control used to transform the
geometry information of collisions into a three-dimensional force to be sent to the
haptic device will be detailed later. Finally, some experiments will validate our
method in terms of time consumption and stability.

83
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4.2 Collision Detection

Collision detection for deformable models adds some difficulties to the one
for rigid bodies, which after all can be understood as deformable bodies with
infinite stiffness. Deformable bodies can take any form and can move into the
space without keeping the centre of mass in a concrete point into the object,
unless such movements are restricted by some constraint. Thus, one side of
the object can collide with another, which is commonly known as self-collision
(Magnenat-Thalmann, 1994) (Heidelberger et al., 2004a). Additionally, the
deformable nature of soft bodies adds the necessity of updating the data structures
every time a deformation happens, while rigid bodies initialize data structures at
a preprocessing stage and do not require updates in run time.

Several methods have been applied in the bibliography in order to solve
such matters, varying data structures and the representation of the models. Each
technique is chosen depending on the environment the algorithm will work on, the
data nature and the requirements of the environment.

This chapter presents the collision detection technique we have developed for
the interaction of the user with a brain tissue model by means of a haptic device.
This method has been tested in a Brain Haptic Physical Simulator, which has later
been integrated into a multimodal Neurosurgery Simulator.

Figure 4.1 shows a brief scheme of the developed collision detection
algorithm.

Our simulator obtains brain data from MRI images, converting them to an
adapted tetrahedral mesh structure. In the same way as in the rigid volumetric
collision detection method, the resecting tool is represented by a simple sphere
covered by a uniform point cloud that will also be referred to as the pointshell.

Hereafter we present the most important procedures contained in the collision
detection module.

4.2.1 Initialization

As a preprocess stage, the collision module initializes the tool sphere with its
surrounding pointshell, using position and rotation information from the haptic
module. The pointshell of the sphere is created in the same way as in the rigid
method. However, a different number of points is used. It also initializes all the
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Figure 4.1: Control flow of the collision detection module

collision parameters as normals, penetrations or forces to zero. As mentioned
before, the brain model is converted to a tetrahedral mesh. Thus, the axis-aligned
bounding box wrapping the mesh is also initialized here.

Since the used collision detection technique is based on a spatial subdivision
method, primitives must be placed into the voxel grid to be checked against other
primitives. This is made during the collision step process, as it needs to be updated
constantly depending on its deformed state. The idea of the spatial subdivision is
to divide the space into convex regions called cells. These are determined by an
identifier (calculated according to the coordinates of the cell), and are placed into a
vector in order to classify the interacting objects and determine relations between
them.

The technique we have employed uses uniform, rectangular, axis-aligned
cells. The structure is based on a three-dimensional array of cells. The size of
this array is N1xN2xN3, where N1,N2 and N3 are the number of subdivisions
along the respective axes. This structure is constructed at the initialization process.
Now the discussion comes when determining the optimal cell-size: as explained
before, large cells increase the number of primitives per cell, which takes up a
lot of storage and the intersection test slows down. However, very small ones
cause a spreading of primitives to more cells which can be too time-consuming.
Chapter 5 describes a methodology to infer the optimal voxel size in order to
minimize the time-consumption. This methodology has been applied to get the
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optimal voxel size for the collision detection algorithm implemented in our Brain
Haptic Physical Simulator, so the chosen voxel-size is already optimized.

4.2.2 Collision Step

After the determination of the voxel-size that best fits and the initialization of the
data structures, the collision thread starts with the run of the collision step. This is
performed once and again until the program finishes. The collision step follows a
sequence of four main actions: update the points surrounding the tool depending
of the haptic movement, classify them with respect to their new position in the cell
grid, update their bounding boxes and finally detect collisions. The four stages are
better explained below.

• Update Pointshell: The haptic device moves around its working space and
so reflects the virtual tool in the virtual environment. The collision module
knows the exact location of the virtual tool constantly so it can determine
either a collision is happening or the virtual tool and the brain model are
not touching each other. Every time the virtual tool changes its position, the
structures related to it are also updated. So the pointshell surrounding the
tool sphere is updated to ensure a correct collision detection. This process
is simple and fast since it only involves applying the same translation of the
tool to each point belonging to the pointshell.

• Classify Points: As explained before, in this technique the space is
subdivided into cells. Each cell has an identifier and is introduced into a
vector depending on its position in the world. In the same way, all the points
of the pointshell can be classified with respect to the cell in which they are
placed, and they are consequently placed into an analogous vector. Thus,
each cell has a list of references to points contained in the cell.

The cell access in voxel grids is really fast, since the calculation of the cell
where a point in the space lies is made in constant time. For instance, given
a point p(x,y,z), the indices of the corresponding cell are:

ind = f loor(pos)/cell size

for every axis. where ind is the indice associated to the cell in one axis, pos
is the position of the point in that axes and cell size is the predefined size
of the cell in the same axis.
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Once the indices for each cell are known, a function locates them in the
vector:

id = indk×numCellsx×numCellsy + ind j×numCellsx + indi

where id is the identifier of the cell in the vector, indi, ind j and indk are the
indices that locate the cell in the space, and numCells is the number of cells
in each axis.

Depending on this function each indice from the vector corresponds to a
single voxel from the grid, or if a hash function is applied each indice
contains more than one cell. In such a way, storage problems can be solved
if necessary. In our case, this is not a critical aspect.

Once all the points belonging to the pointshell are placed into the grid and
classified, the algorithm is ready to check them for intersection against other
primitives. This will be detailed in the Collision Detection section.

• Update AABBs: The pointshell vertices are already placed into the voxel
grid. In order to check them for intersection against the primitives of other
objects in the scene, these primitives must also be updated and classified.
The first step is to update the brain mesh data based on their current
deformed state.

As previously mentioned, our brain model is obtained from MRI data. This
information is then transformed into a tetrahedral mesh structure. Those
tetrahedra are the primitives used to analyse the intersections between the
brain model and the tool. In order to accelerate the collision detection
process, the tetrahedra of the mesh have an associated AABB (Figure 4.2).
These AABBs are updated every frame based on the current deformed state
of the tetrahedron they belong to. The deformation property of the model
demands a continuous update of the AABBs since the previous frame could
have made changes on them.

• Collision Detection: Once the pointshell is correctly positioned, its points
are placed into the grid and the bounding boxes of the tetrahedra are all
updated, the collision detection process can be started.

First of all, equally to the skull drilling method a colliding box is defined
that contains the intersection between the axis-aligned bounding boxes of
both the brain mesh and the tool-sphere. If the intersection is empty, the



88 Chapter 4. Deformable Volumetric Collision Handling

Figure 4.2: The AABBs of the brain tetrahedra are stored in a vector
and are updated every frame

collision can be discarded. This first pass avoids checking for interference
when the tool is far away from the brain.

If a non-empty colliding box exists, a search along the tetrahedra is carried
out. Each tetrahedron is checked for intersection. The search stops when
an intersecting tetrahedron is found or when no more primitives are found.
Thus, at this point it is already known whether the models are intersecting
each other or not. Nonetheless, in the case of collision the process must
continue in order to find out more details for the collision response. Data
as the contact normal or the penetration depth must be known in order to
give a realistic response to the impact. The intersection test is done as in
(Teschner et al., 2003).

Intersection Test: The intersection query starts with a tetrahedron to be
checked against a group of points belonging to the tools pointshell. The
bounding box of the tetrahedron is discretized to determine the cells of
the previously defined voxel grid where it lies (see Figure 4.3). For each
cell which contains the bounding box of the tetrahedron, the tetrahedron is
checked for intersection with the list of vertices contained in the cell.

The intersection test between a vertex v and a tetrahedron t consists of two
steps:

– The first one checks v against the bounding box of t, which has been
updated in the first pass. If v does not penetrate the bounding box, the
procedure stops; there is no collision. However, if v is inside the box
a second step is performed.



Section 4.2. Collision Detection 89

Figure 4.3: The tetrahedron is checked for intersection with the points
lying in the same cells as its AABB (Teschner et al., 2003)

– The second step checks whether v intersects t or not. This is made
using the barycentric coordinates of the vertex v with respect to the
tetrahedron.
Having the tetrahedron t defined by the points t1, t2, t3 and t4, the
barycentric coordinates of the vertex v in terms of the these points
are the numbers α,β ,γ and δ such that

v = αt1 +β t2 + γt3 +δ t4

with the constraint
α +β + γ +δ = 1

Knowing the barycentric coordinates of the vertex v with respect to
the tetrahedron t, v is inside or part of the tetrahedron t if and only if

0≤ α,β ,γ,δ ≤ 1

If the second stage finds an intersection between the point and the
tetrahedron, the collision has already been detected.

The diameter of the tool in our simulator is substantially smaller than the
facets of the tetrahedra. That is why if a collision exists and if one of
the intersecting tetrahedra is located, checking some tetrahedra around it
instead of covering all the primitives again would be enough. What we do
is to analyse neighbours of the found tetrahedron, as well as the neighbours
of these neighbours. The rest of the tetrahedra are directly discarded.
Figure 4.4 shows the tetrahedra checked for intersection with the virtual
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tool. Those tetrahedra are undergone the same collision detection method
mentioned before. This stage substantially decreases the time consumption
of the algorithm which is crucial when integrating the method in a haptic
system.

Figure 4.4: Tetrahedra to be checked for intersection with the virtual
tool

Once the suspicious tetrahedra have been analysed, it is already known
whether a collision has happened or not. What is more, the colliding
tetrahedra and the points inside each of them have been located. This
information is afterwards used to calculate the contact normal and the
penetration depth, which will be performed in the collision response stage
detailed in the next chapter.

As previously stated, this four steps are run once and again by the collision
thread. For every frame, the information of the contact normal and the penetration
depth is available and the haptic module can use it to calculate the resulting
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force feedback to be sent to the haptic device. The next chapter explains the
collision response algorithm used for both the rigid volumetric and the deformable
environments.

4.2.3 Visual Feedback

Apart from the force feedback, a visual feedback is also required. As explained
in the rigid volumetric collision handling algorithm, the haptic interface is not
infinitely stiff, so the movements of the user cannot be completely restricted.
Even though the collision handling method returns a force feedback, the force
limitations of the haptic device must be overcome in some way.

The deformable collision handling method requires a less sophisticate visual
feedback than the rigid volumetric collision handling method, since the brain
tissues have a lower stiffness than skull bones. The deformable collision handling
algorithm also claims a visual feedback, but since the haptic interaction with the
brain is thought to be slight and smooth, the visual feedback does not require
much. What we do is to apply the same god-object algorithm as in (Zilles
and Salisbury, 1995a). Given the location of the virtual tool, the proxy position
and a restriction plane, the algorithm returns a new plausible position for the
proxy. Our collision detection method, after performing the four stages described
above, already has enough information to define the restriction plane claimed by
the god-object method (it is derived from the contact normal and the previous
proxy position). In this way, once the collision handling algorithm calculates
the collision information for a frame and if a collision is happening, the system
computes the new proxy position by means of the god-object method and the
visual representation of the tool is relocated in the brain surface (Figure 4.5). In
the case of no collision, the proxy position is matched with the real haptic position.

4.3 Collision Response and Haptic Control

It has already been stated that the visual feedback received by the user could
be enough to perform the surgery tasks as skull drilling or interacting with the
brain tissue. Nevertheless, adding a force stimulus that restricts the movements of
the user along the interaction with the virtual environment strongly increases the
accuracy of the application.

As said before, the final force computation depends on the collision



92 Chapter 4. Deformable Volumetric Collision Handling

Figure 4.5: New proxy position obtained from the god-object method

information obtained from the collision detection process. In the case of the
rigid collision detection, the given information is the list of colliding voxels
and the tool points interfering each voxel. In the case of the deformable brain
collision detection, since the brain model is represented with tetrahedra, surface
information is available. This will be used to compute the force feedback for our
deformable brain collision handling approach.

Figure 4.6 illustrates the control flow of the whole deformable volumetric
collision handling process. As it is shown, the collision response module
calculates the final force to be sent to the haptic device based on the data received
from the collision detection module. The collision response module calculates the
final force to be sent to the haptic device based on the information received from
the collision detection module. This module constantly examines the situation of
the scene objects and gets the colliding primitives. The collision response module
uses this information to compute a set of three-dimensional forces that act against
the restrictions.

The deformable collision detection module finds interferences between the
scene objects and obtains some data related to such collision: colliding tetrahedra
and the points intersecting each colliding tetrahedron. These data are used to
calculate the force restitution to be applied to the haptic device and the brain
nodes in order to simulate the proper deformation.

The contact normal is defined as the average of the normalized surface face
normals belonging to the colliding tetrahedra. Each tetrahedron contains the list
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Figure 4.6: Control flow of the deformable volumetric collision
handling process

of its neighbours, so the surface faces are easily identified as the ones with no
neighbours.

Concerning to the penetration depth, it is calculated as the maximum of the
projected distances between the colliding points and the surface faces of the
tetrahedra they belong to. Algorithm 2 shows the pseudocode of the penetration
depth calculation, and Figure 4.7 illustrates it graphically.

Algorithm 2 Deformable penetration depth
1: function DEFORMABLE PENETRATION(tetrahedra, points)
2: dist← 0
3: penetration← 0
4: for i = 0→ tetrahedra.size() do
5: for j = 0→ points[i].size() do
6: for k = 0→ sur f aceFaces(tetrahedra[i]) do
7: dist← abs(Pro jectedDistance(points[i][ j],sur f aceFaces[k]))
8: if penetration < dist then
9: penetration← dist

10: end if
11: end for
12: end for
13: end for
14: end function

With all this information, the system again returns a three-dimensional force.
It already has the necessary information to compute the force restitution: the
contact normal and the penetration depth. With the aim of giving a more realistic
feeling to the user, the force model in this case also adds a viscous component to
the elastic model defined previously. So the force model used is the viscoelastic
model described in Equation 3.3.
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Figure 4.7: The penetration depth is the maximum of the projected
distances between the points and the surface facet

The choice of the force model for each case has been made experimentally.
Different models have been applied to both simulators, taking the most realistic
ones. In this case, having a deformable brain model, damping makes the user feel
a padded model of the brain giving a richer perception.

The proposed Craniotomy and Brain Haptic Physical Simulators require
different collision detection and response techniques. The first one demands a
method to manage interferences between the virtual tool and a rigid volumetric
object, while the second one requires deformable collision handling techniques.
Both detection modules return information related to the interferences produced
against a virtual tool governed by the user. This information must then be
processed to send the pertinent force feedback to the haptic device. The
deformable nature of the brain model prompts a topology change when an external
objects gets in touch with it. Hence, the appropriate force is also sent to the nodes
of the brain model affected by the interference. Thanks to the collision detection
of the rigid volumetric skull and the deformable brain model, the necessary
information to compute a plausible and realistic force feedback has been acquired.

4.4 Experimental Results

Haptic systems have the goal of avoiding discontinuities that lead in an unpleasant
feeling for the user. The proper models are represented by discrete structures that
implicitly add discontinuities, so the problems start from there.

What is more, the time consumption of the algorithms is also vital in order to
offer an accurate response. Haptic systems usually require a minimum frequency
of 1kHz to offer a real-time interaction. The collision module is forced to finish its
work in less than 1ms to achieve the mentioned frequency. Otherwise, the haptic
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device receives force information that does not correspond to the real situation of
the scene. This effect must be avoided by forcing the collision handling algorithm
to fulfil the claimed frequency.

As we did to evaluate the continuity and stability of the rigid volumetric
collision handling method, the deformable volumetric collision handling
algorithm has been examined by analysing two main aspects: the time
consumption of the collision handling and the stability of the force parameters.

The computational cost of the collision handling method will show whether
the minimum frequency can be achieved or not and the factors that most affect it.
We want to analyse the time consumption differences between input models with
varying tessellation. Since the idea is to compare the behaviour of an algorithm
depending on the used models, an identical path is used. The same tool path
is covered for the same algorithm with different models. In such a way, the
comparison is done by only varying the parameter we are owing to compare.
This path has been recorded in the same way as we did for the rigid method
experimentation.

It has already been said that the number of points contained in the pointshell
also affects the time consumption. However, what we want to do is to analyse
the tessellation of the input models instead of the tool’s point density. In the
deformable collision handling case, the chosen step for α and β is 15.0, which
leads in 211 points surrounding the sphere. This choice is the one that best
time-accuracy balance offers. This value is maintained for all the deformable
experiments.

Once again, the first experiments are done with cubical models which help us
to identify the possible bottlenecks of our algorithm. The time consumption of our
method with some brain models will be given later.

With regard to the system’s stability, the force parameters returned by the
collision response algorithm will be given.

4.4.1 Time Consumption

The deformable collision module’s frequency depends on basically two factors:
on one hand, the number of primitives of the brain model significantly affects
the collision detection’s time consumption. A big amount of tetrahedra entails
a large number of intersection tests, which increases the detection time. On the
other hand, as will be stated in Chapter 5, a bad election of the voxel size can
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substantially slow down the work of the collision module. The latter has already
been optimized by a methodology presented in this thesis. So the experiments
have been performed using the best fitting voxel size for each model.

To start with, Figure 4.8 displays the execution times of the deformable
collision handling algorithm with different cube models, using a cell-size that
according to the previously mentioned study optimizes the calculations for each
case. The tessellation level and the chosen cell-size for each model is described in
Table 4.1. The pointshell surrounding the tool contains 211 points.

model tetrahedra cell-size
Cube1 1715 37.5
Cube2 10985 20.0
Cube3 53240 12.0
Cube4 135000 8.7
Cube5 320000 6.5
Cube6 625000 5.2
Cube7 1080000 4.2

Table 4.1: Description of the cube models and the chosen cell-size

Figure 4.8: Comparison of the collision times for cube models with
varying tessellation

It must be noted that outliers can appear in the graphs since the analysed
time values are really small and any unexpected process run in the computer
can significantly distort the values. For the models Cube1, Cube2 and Cube3
all the values lie inside the 1ms barrier so even the outliers are not a problem.
For these three models the required minimum frequency is achieved and thus
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the system is stable. The number of tetrahedra of the first model is quite small,
so the collisions are fast but the required realism could be affected. The second
and third models have 10985 and 53240 tetrahedra respectively, which apart from
providing an stable collision handling offer the required minimum precision. The
main discussion comes when deciding whether these tessellations are sufficient in
order to approach the demanded realism. Concerning to the models Cube4, Cube5
and Cube6, their execution times pass the barrier. The collision algorithm should
be better analysed to detect the real reason of such alterations.

The collision detection algorithm is constituted by different phases, and
analysing the times consumed by different stages could help us understand where
the real bottleneck is. The method starts with the search of the first colliding
tetrahedron. Afterwards, its neighbours with index 2 are examined and the rest
of the algorithm is performed. Therefore the collision times can be divided in
order to find out the most time consuming part of the algorithm. The graphs
Figure 4.9 (a) and (b) show the collision handling times for the Cube4 and Cube5
models, separated in two stages: the search of the first colliding tetrahedron and
its neighbours is illustrated in blue while the rest of the algorithm is given in red,
stacked.

The results suggest two things: first of all, in the case of exceeding the 1ms
barrier, the most time consuming stage seems to be the search of the first colliding
tetrahedron and its neighbours. Let’s better see the same times but independently
shown in order to see the differences between both stages (Figures 4.10 (a) and
(b)).

Clearly, the bottleneck is in the search of the colliding tetrahedra. The rest
of the calculations are all done in less than the haptic module claims. Now, the
question at this point is: which are the parameters that affect the search of the first
colliding tetrahedron? Does the tessellation level influence it? Well, it actually
does. It can be seen in Figure 4.11 where a comparison of the times consumed
by different cube models to compute the search of the first tetrahedron and its
neighbours is displayed.

It is obvious that the more tetrahedra the model contains, the more time it
needs to do the search. However, the location of the collision is also a vital
aspect. The search of the first colliding tetrahedron is done starting from the first
stored tetrahedron. Without any other criterion. For that reason, if the collision
is located near the first searched primitive, the time consumed to find it is small.
On the contrary, if the collision is happening at some tetrahedra at the end of the
primitives’ vector, the time spent to reach them is longer. Experiments with real
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(a) Cube model of 135000 tetrahedra and a cell size of 8.7mm

(b) Cube model of 320000 tetrahedra and a cell size of 6.5mm

Figure 4.9: Times to perform the collision handling process for Cube4
and Cube5 divided into two steps: the search of the first colliding
tetrahedrons with its neighbours and the rest of the algorithm

brain models will confirm the necessity of improving this stage.

The deformable collision handling method implemented in this thesis is
thought to be used in a neurosurgery simulator, so the deformable input models
used are brain models. Their tessellation is between 10000 and 20000 tetrahedra
aiming for a compromise between approximation to reality and stability. Apart
from that, the simulation module is not able to support a larger amount of
primitives in real time. The first time consumption experiments have been done
with cube models that contain until 50 times more primitives. This serves to find
out the problems our collision handling algorithm itself could have. Let’s now see
the time consumption for different brain models. Once again, it must be pointed
that although the compromise between realism and stability is best achieved with
models Brain2 and Brain3, the experiments have been done with other tessellation
levels in order to exalt the differences.
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(a) Cube model of 135000 tetrahedra and a cell size of 8.7mm

(b) Cube model of 320000 tetrahedra and a cell size of 6.5mm

Figure 4.10: Times to perform the collision handling process divided
into two steps for Cube4 and Cube5

Table 4.2 describes the used brain models with their tessellation and the
chosen cell-size that best fits them. Figure 4.12 illustrates the comparison of
the times consumed by the collision handling algorithm for the mentioned brain
models.

model tetrahedra cell-size
Brain1 3497 15.5
Brain2 12511 10.5
Brain3 22076 8.6
Brain4 40584 7.0
Brain5 50041 6.4

Table 4.2: Description of the brain models and chosen cell-size

Brain1 and Brain2 are performed in the time required by the haptic module.
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Figure 4.11: Comparison of the times to perform the first stage of the
collision algorithm for cube models with varying tessellation

Figure 4.12: Comparison of the collision times for brain models with
varying tessellation

On the contrary, the collision algorithm needs more than 1ms to finish its
calculus in some frames when loading brain models that contain more than 20000
tetrahedra: Brain3, Brain4 and Brain5. For the models Brain4 and Brain5, some
time-exceeding ranges can be found. This means that for some collision zones, the
times needed to compute the collisions does not achieve the minimum frequency.
The case of Brain4 is not so worrying as even if it sometimes passes the claimed
time limit, the excess is minimal.

As said before, the haptic thread requires a minimum frequency of 1kHz. In
other words, the collisions must be performed in less than 1ms. This is the ideal
case. Otherwise the haptic module does not receive collision information during
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some frames and it must activate mechanisms to predict the force parameters. In
our simulator, when the haptic module does not receive any information from the
collision module, the force parameters received in the last frame are maintained.
In this way the force stability is not altered. When the time consumed by the
algorithm is smaller than 2ms, the haptic thread only needs to maintain the values
for one additional frame. Nonetheless, if the time consumption is bigger, the
maintenance prolongs in time and the force feedback felt by the user does not
correspond to reality. Additionally, if the time excess happens in consecutive
frames, the system suffers big instabilities and the force and visual feedback are
not pleasant for the user.

The brain models used in our simulator have a similar nature to Brain2 and
Brain3. Although the former satisfies the frequency requirement, the latter does
not. As mentioned above, an improvement can be done in the search of the first
colliding tetrahedron in order to reduce its computational cost. The first colliding
tetrahedron is reached by covering the primitives’ vector starting from the first
stored tetrahedron. For that reason, if the collision is by chance located at the
beginning of the covered vector, the time consumed to find it is small. Contrarily,
if the collision happens at some tetrahedra at the end of the primitives’ vector, the
search results much longer.An easy way to reduce this time is assuming that for
consecutive frames the collision will be happening in close tetrahedra. So the first
search could result heavy, but the rest would be started from tetrahedra around the
last collision location. In such a way, the search of the first colliding tetrahedron
could be significantly reduced in many points. In sum, the search is started from
the location of the previous collision, so in those cases where the collision is
located in near tetrahedra the time consumption is significantly reduced. The new
obtained times are shown in Figure 4.13 for all the brain models seen before.

The graph shows that the ranges where the non-improved algorithm gives high
collision times are reduced to a single frame with a high time value. The ranges
where the time consumption exceeds the required time are caused by collision
zones located far away from the beginning of the primitives’ vector. Thanks to the
new algorithm, once a collision has been found, the next search is started from the
found collision zone. The previous graph demonstrates that the collision times are
significantly reduced and in the cases where the times pass the barrier, the excess
is not maintained in time.

The following figures compare the values corresponding to the most
time-consuming brain models from Figure 4.12 and Figure 4.13, but only
measuring the first stage of the algorithm. Figure 4.14 shows the times consumed



102 Chapter 4. Deformable Volumetric Collision Handling

Figure 4.13: Comparison of the improved collision times for brain
models with varying tessellation

by the Brain3 and Brain5 models to finish the first stage of the collision algorithm
with both methods: the original one and its improved version.

The second version of the algorithm evidently reduces the most
time-consuming ranges to a single outlier which, for the case of Brain3 does not
even exceed the 1ms. The system is now much more stable, and in the cases where
the time consumption does not fulfil the claimed time limits, the excess is not
prolonged in consecutive positions.

4.4.2 Force Parameters

Although some of the stability limits of a haptic system depend on the sensors
quantization and the saturation of the actuators, most of them can be obtained
studying the haptic interaction model and its parameters. The stability of a
haptic system largely depends on the force parameters derived from the collision
detection process: the contact normal and the penetration depth. They represent
the direction and module of the force restitution which is crucial to ensure a stable
response of the haptic device.

This section displays a set of experiments carried out with the goal of
determining the stability of our method in different situations: moving the tool
around the surface of the brain, a freehand random movement, and a localised
interaction in a concrete zone with higher intermittent penetrations. The latter
recreates the movements of a surgeon when interacting with a concrete brain zone.
Table 4.3 describes the three paths used to perform the experiments. We analyse
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(a) Brain model of 22076 tetrahedra and a cell size of 8.6mm

(b) Brain model of 50041 tetrahedra and a cell size of 6.4mm

Figure 4.14: Comparison of the times to perform the first stage of the
collision handling process for Brain3 and Brain5, with the initial search
algorithm and its improved version

the normals and penetrations returned by the collision module in consecutive
frames of such paths with different brain models.

Figures 4.15, 4.16 and 4.17 show the normals and penetrations returned by the
deformable collision module during 3000 frames in a scene with a brain model of
type Brain3 by covering the mentioned three paths.

Strong changes in the contact normal or the penetration can make the haptic
device jitter. However, large penetration depths themselves do not imply system
instabilities if they are reached gradually. Having a look at the first graph (Path1),
at first glance it suggests that when a hard change of the normal direction
happens (see frames 0− 400 and 2900− 3000) the penetration depth grows or
decreases gradually. This leads in a smoother feeling and avoids high force peaks.
Nonetheless, only with the shown normal vector and penetration information it is
not easy to assure that the force peaks are not excessive. The results must be better
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Path name Description
Path1 Slight movements covering the surface of the

brain
Path2 Freehand random movements through the

surface varying slight and strong contacts
Path3 Recreation of the movements a surgeon

would do to interact with a localised zone of
the brain

Table 4.3: Description of the different paths recorded for the
experiments

Figure 4.15: Force parameters returned by the deformable collision
handling algorithm for a Brain3 model and responding to Path1
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Figure 4.16: Force parameters returned by the deformable collision
handling algorithm for a Brain3 model and responding to Path2

examined.

As mentioned before, we have analysed three different paths in order to
examine the stability of the algorithm in different situations. Figure 4.18 gives
the penetration depths obtained for the three cases with the Brain2, Brain3 and
Brain4 models.

As might be expected, when the tool moves around the brain surface lightly
the penetration depths do not vary pretty much. However, in the case of freely
and randomly moving around the environment produces strong variations in the
penetration depth and causes undesirable peaks. The third experiment, where the
surgeon’s brain interaction is reproduced, returns a kind of wave of penetration
depths as a result of touching the same zone of the brain once and again.
Nevertheless, as said before, the penetration depth itself does not inform pretty
much about the system’s stability so its variations along consecutive frames will
be analysed.

The viscoelastic model used to calculate the final force sent to the haptic
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Figure 4.17: Force parameters returned by the deformable collision
handling algorithm for a Brain3 model and responding to Path3

device is based on the contact normal, the penetration depth, the stiffness constant,
the damping constant and the velocity. In order to better analyse the system’s
behaviour we have multiplied the penetration depths of Brain3 obtained in the
previous graphs with the stiffness constant (in our case k = 0.3), and Figure 4.19
(a) gives their variation between consecutive frames covering Path1. (b) gives
the variation in the freehand experiment (Path2) and (c) is the variation returned
by Path3: localised collisions. The damping constant and velocity have not been
applied in the experiments as they can be understood as an additional contribution
used to smooth the resultant force. The penetration difference multiplied by the
stiffness constant shows the variation on the resultant force if a simple elastic
model was applied. The effect of applying a viscoelastic model instead of an
elastic one will be displayed later.

The results show that the variations suffered by the haptic device are minimal
in all the analysed situations. The biggest peaks are of up to 0.8N, which would
carry a force variation of only 0.8N. Exceeding the maximum exertable force
of the haptic device usually causes large vibrations. Nonetheless, taking into
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(a) Path1: moving the tool around the surface

(b) Path2: Random freehand experiment

(c) Path3: Localised experiment

Figure 4.18: Penetration depth returned by the deformable collision
handling method for Brain2, Brain3 and Brain 4 models responding
to three different situations
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(a) Path1: moving the tool around the surface

(b) Path2: Random freehand experiment

(c) Path3: Localised experiment

Figure 4.19: Variations in the force’s modulus along different frames
multiplied by the stiffness constant with a Brain3 model
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account that the Phantom OMNI can return forces until 3.3N, our system has a
comfortable margin not to saturate the haptic device. This is to some extent due
to the chosen stiffness constant (k = 0.3) which softens the resulting force, and
the low variations in the penetration depth which avoid high peaks in the force
variation in consecutive frames.

As said before, our deformable collision handling algorithm uses a
viscoelastic model to calculate the final force to be sent to the haptic device.
Figure 4.20 is an example of the final viscoelastic forces calculated by our system
with a Brain3 model. The experiment has been done by touching the brain model
repeatedly in a concrete zone of the brain imitating the movements of a surgeon.
The force variations in the three axis are also given afterwards.

Figure 4.20: Viscoelastic forces returned by our collision handling
algorithm with a Brain3 model

The maximum exertable force is never exceeded in this case and the
subtle force variations in consecutive frames make the system a stable haptic
environment. Moreover, with the aim of delimiting the experiments to the analysis
of our collision handling method’s behaviour, all the information has been
collected omitting brain deformations. The forces given in the graphs are the
result of interacting with brain models that behave as if they were rigid. In such a
way, the behaviour of the algorithm can be examined without external parameters
interfering. After all, a rigid body can be understood as a deformable body with
infinite stiffness. In such a way, decreasing the model’s stiffness and adding the
mechanical properties of a real brain tissue, the realism of the contact felt by
the user will always be improved. The mechanical properties of soft-tissues carry
small deformations, so the forces returned to the haptic device are nearly the same.
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Figure 4.21: Variations in the viscoelastic force along different frames
with a Brain3 model

4.5 Discussion

This chapter has described a deformable volumetric collision handling method
which is integrated into a Brain Haptic Physical Simulator.

The collision handling includes an accurate collision detection algorithm
that detects the interferences between a dynamic virtual tool and a deformable
volumetric brain model represented by tetrahedra. The intersecting primitives
(tetrahedra and points) are sent to the collision response module which computes
the resulting force parameters (the contact normal and penetration depth). The
collision detection process has been optimized in order to speed up the time
consumption of determining the intersecting primitives.

The developed collision response and haptic control method computes the
parameters needed to get the final force restitution based on the colliding
tetrahedra and points. Finally, a viscoelastic force model calculates the force to
be sent to the haptic device. According to the experimental results, our method
gives an stable force restitution to the user.

Experiments have been performed for input models with different
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tessellations. The results conclude that, with the exception of some concrete
cases, our deformable collision detection and response method achieves the
required minimum frequency with input models containing a big amount of
tetrahedra. However, the performed improvement in the collision detection
process minimizes these cases of the computational cost being higher than it
should. Regarding to the force restitution, the returned force parameters and
final result offer an stable contact with small force variations and rare force
discontinuities. This makes our algorithm a suitable method to be used for training
or rehearse.
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Chapter 5

Optimal Voxel Size Computation

The content of this chapter has been published in:

Echegaray, G. and Borro, D. “A methodology for optimal voxel size
computation in collision detection algorithms for virtual reality”. Virtual
Reality, Vol. 16, N. 3, pp. 205–213. September, 2012.

5.1 Introduction

Real-time virtual reality applications require accuracy but are also time dependent,
therefore in these environments the time consumption is particularly important.
For that reason, when facing the problem of collision detection for a virtual reality
application, we firstly focus our attention on optimizing time performance for
collisions among objects. Spatial Partitioning algorithms have been broadly used
in collision detection. In particular, voxel-based methods are simple and quick,
but finding the optimum voxel size is not trivial. We propose a methodology
to easily determine the optimal voxel size for collision detection algorithms.
Using an algorithm which represents volumetric objects with tetrahedra as an
example, a performance cost function is defined in order to analytically bound
the voxel size that gives the best computation times. This is made by inferring
and estimating all the parameters involved. Thus, the cost function is delimited
to depend only on geometric data. By doing so, it is possible to determine
the optimal voxelization for any algorithm and scenario. Several solutions have
been researched and compared. Experimental results with theoretical and real 3D
models have validated the methodology. The reliability of our research has also
been compared to traditional experimental solutions given by previous works.

113
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Even if the problem of detecting collisions seems purely mathematical,
there are some issues which complicate matters considerably. For example, it is
necessary to use the limited processing power as efficiently as possible in order to
perform the queries within a concrete time frame. Moreover, points in space are
represented by floats, which cause rounding errors that can result in a completely
different environment behaviour. Additionally, the memory consumption of these
detection methods must also be considered.

We have focused our attention on optimizing time performance for the
computation of collisions. VR applications require accuracy but are also time
dependent, therefore in these environments the time consumption is particularly
important.

One of the common techniques used in collision detection is based on
uniform spatial partitioning. These types of methods always have the problem
of determining the voxel size which, being a user-defined parameter, can
considerably change the performance of the method. If the number of voxels per
axis is not optimized, the detection could result in execution times that are too long
to use in real time. The best idea would be finding a method which automatically
calculates the optimal size of the voxel for any scenario. Unfortunately, such
a value depends on too many factors and finding an analytical method is a
difficult task. That is why most of the works that use voxel-based algorithms
have solutions inferred from experimental results. For instance, Garcı́a-Alonso
et al. (Garcia-Alonso et al., 1994) use OBBs subdivided into voxels, and have
experimentally found that the optimal case is defining 512 voxels per object. Other
research cases (McNeely et al., 1999) determine the discretization depending on
the resolution they want to obtain. On the other hand, according to Gregory et al.
(Gregory et al., 2000), the voxel size is set by multiplying the average edge length
by a constant.

We propose a methodology (a sequence of steps) to calculate the optimal
voxel size for algorithms based on Uniform Spatial Partitioning. The main
contribution of this work is a sequence of steps to infer an analytical method that
automatically determines the optimal voxel size based only on the geometry of the
scene. This will conclude in an easy and rapid method for improving algorithm
time-rates. A previous work (Borro et al., 2004) validated the followed method
with objects represented by triangle meshes. Our proposal extends that work to
other types of object representations (tetrahedral meshes) and offers a general
methodology for any kind of collision detection algorithm based on voxels. Other
research (Teschner et al., 2003) has determined that optimal performance is
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achieved when a grid cell has the same size as the average edge length of all
tetrahedra. We will compare our solution with this assertion.

Furthermore, we provide a set of experimental results obtained from various
3D models. The input models have been chosen varying geometry and complexity.
They have been used to validate the methodology and compare our results with
others proposed in the bibliography.

The remainder of the chapter is organized as follows. Section 5.1 gives some
previous works on finding the optimal voxel size for the spatial subdivision
method. Section 5.2 describes a collision detection algorithm based on tetrahedral
meshes, which is later used to infer the formula and carry out experiments. Section
5.3 introduces the optimal voxel size problem and describes the proposed solution.
In Section 5.4, experimental results are shown, followed by the conclusions in
Section 5.5.

5.2 Description of the Collision Detection Algorithm

The collision detection algorithm we have used to infer the method is a particular
case where objects are represented by tetrahedral meshes. In this approach, the
collision problem is solved using a uniform spatial subdivision. This technique
subdivides space into cells, which are introduced into a vector depending on their
position in the world (Teschner et al., 2003). Using voxels, cell access is fast, since
the calculation of the cell is made in constant time:

cell = f loor
(

p+world
cell size

)
where p is a point, world comprises the size of the scenario in the three axes

and cell size represents the size of the voxels in each axis.

Once we have the indices for each cell, we just need to use a simple function
to locate them in a vector:

ind = indk×numCellsX×numCellsY + ind j×numCellsX + indi

Most works based on voxels use hashing techniques in order to reduce
memory consumption. The chosen hashing function can change the performance
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of the method. Values given by this function should be uniformly distributed to
achieve quality performance. The hash table size also influences, as the use of big
tables reduces the possibility of placing several different cells to the same position.
Therefore, the algorithm usually works faster. On the other hand, the memory
consumption is higher. Some studies have been done on this topic (Teschner
et al., 2003), which have found that if the hash table is significantly larger than
the number of primitives, the risk of hash collisions is minimal. Besides, hash
functions work most efficiently if the hash table size is a prime number (Cormen
et al., 2001).

The diagram in Figure 5.1 describes the collision detection algorithm we have
used.

Figure 5.1: General design of the algorithm

In a pre-process block, the space is subdivided according to the chosen
cell-size. Afterwards, at runtime, this grid is used to determine colliding voxels as
well as checking primitives for intersection. These two steps are known as broad
phase and narrow phase, respectively, according to the nomenclature of Hubbard
(Hubbard, 1993). Once collisions have been detected, a collision response is
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performed. This provides models with the convenient deformations which are
calculated using a specific integration model.

The objects in the scene are represented by vertices (particles) and tetrahedra.
From now on we will use particle and vertex without distinction. Once the voxel
grid has been created, all the particles of a tetramesh are classified with respect to
the cell in which they are placed. Afterwards, each cell has a list of references to
particles contained in that cell. These lists will be modified in every single frame
due to the mobility of the objects.

As mentioned before, the runtime block can be divided into two phases: the
broad phase and the narrow phase.

In a first pass, all the particles in the scene are classified once again in the
voxel grid. At the same time, the bounding boxes of the tetrahedra are recomputed
based on their current deformed state.

In a second pass, the algorithm of (Teschner et al., 2003) is executed.

• Broad Phase: For each tetrahedra t of one input object, we get its bounding
box AABBt . Then, we identify the set voxels in the scene where AABBt

lies. These voxels are called objective voxels (vo). This delimits the whole
problem to a smaller set of data.
For each voxel in vo, the particles belonging to the second object which lie
inside it are analysed. Each one of them is checked for intersection with
AABBt . When a particle p is inside AABBt the second step (narrow phase)
is performed.

• Narrow Phase: This step checks whether p intersects t or not. This is
done using the barycentric coordinates of the vertex p with respect to the
tetrahedron (Teschner et al., 2003).

The lists of the particles occurring in a cell need to be updated for every single
object transformation. As has been shown before, using this structure there are a
lot of primitives and particle pairs which can be rejected from intersection testing.

After detecting collisions between primitives, the collision response is
performed. For this task, we have used the penalty method based on the
penetration depth of intersecting objects. Even if there are many methods
to estimate the penetration depth, the one used here computes a consistent
penetration depth (Heidelberger et al., 2004b), which reduces collision response
artifacts inherent to existing approaches. Moreover, a propagation scheme is
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introduced (Heidelberger et al., 2004b) to approximate the penetration depth and
direction for vertices with deep penetrations. This procedure will not be described
in detail as the goal of this paper is optimizing the detection algorithm (next
Section), not the response.

5.3 Analytical Computation of the Optimal Voxel Size

The idea of the Spatial Subdivision is to divide the space into convex regions
called cells. These are determined by an identifier (calculated according to the
coordinates of the cell), and are placed into a vector, in order to classify the
interacting objects and determine relations between them.

The use of spatial partitioning techniques involves a basic initial problem: the
3D space is discretized with respect to a user-defined cell size, and the choice of
that value can significantly change the efficiency of the algorithm. If the number
of cells per axis is not optimal, the detection process may be too long to use in
real time. Of course, this value changes depending on the scenario.

The optimal voxel size is the one which enables minimal calculation time cost
in the collision detection algorithm. This will be delimited by these two events:

1. If cells are very large compared to the size of the model’s tetrahedra, the
number of primitives per cell increases, which involves a large amount of
point-tetrahedron tests.

2. On the other hand, small cells cause a spreading of primitives to more cells.
This will result in a lot of voxel-tetrahedron intersection tests.

What has been done is to extend a previous experience in this topic (Borro
et al., 2004) to generalize a methodology valid not only for scenes of triangle
meshes, but also for scenes with other types of object representations.

In the next section, the parameters which are supposed to affect the collision
detection time in an instant are identified. Then, we will show how to refine this
definition of parameters.

5.3.1 Methodology to Infer the Cost Function

This section describes the methodology to obtain an analytical solution for
optimizing the voxelization.
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The cost function of the algorithm is the mathematical expression that
describes its behaviour, namely, it predicts the time it will take to solve a collision
problem in a determined scenario.

The factors that could be involved a priori in the analytical formula are the
following: the number of polygons in the scene, the average of their areas, the
average length of the edges, and the average volume of the tetrahedra. Location
of the objects and the contact volume could also affect the cost function of the
algorithm.

If the cost function is constructed dependent of the voxel size, it is enough
to find the value of this variable which makes the function minimum. What we
present is an adaptation of the approach we used in a previous work (Borro
et al., 2004) for the new algorithm presented in Section 5.2, proving that the
methodology might be extended to other collision detection algorithms where
objects are not represented by triangles. We will take the collision detection
algorithm, infer the cost function of its behaviour and estimate all the parameters
of the cost function using only geometrical data from the scenario.

As shown in a previous section, the collision detection algorithm has two
levels of precision: voxels and tetrahedra. Each tetrahedron of the object goes
through both levels in case of collision. So if to is the number of tetrahedra of
one object, vo (objective voxels) is the average number of voxels covered by
the bounding box of a tetrahedron, and pv is the average number of affected
particles per voxel, the algorithm behaviour could be expressed as in Equation 5.1
(remember that the algorithm has three loops: one works through each tetrahedron
of the object, another one through the objective voxels of each tetrahedron and the
last one through the particles of each objective voxel):

z = to · vo · pv (5.1)

This equation only considers the worst case: when one whole object is
colliding with another. In a normal case, this does not happen, as the collision
response algorithm does not let the objects penetrate each other to such a degree.
A typical simulation does not have collisions, or at most a few tetrahedra intersect.
That is why z should be separated into two cases:

z = to · pnc · vo + to · (1− pnc) · vo · pv (5.2)

where pnc is the probability of no collision for each tetrahedron. Experiments
made with different scenarios and objects have shown that this probability can
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always be bounded between 0.98 and 0.99 when the physically based collision
response algorithm is implemented (our experiments have used pnc = 0.99). This
means that the first term of 5.2 will have much more weight than the second one,
as happens in a real simulation where only a few tetrahedra are in collision.

Even if the equation in 5.2 gives the same weight to the parameters vo and pv,
this could be refined. The time it takes to determine if a voxel is empty of particles
(tv) is much lower than checking whether a particle collides with a tetrahedron or
not (tp). For that reason, we have defined a ratio rt between particle and voxel
times. It is defined as rt = tv/tp. According to our experiments, checking particles
for intersection is 5 times more expensive than the voxels time.

Apart from that, to is a constant value (it does not depend on the voxel size)
and we do not need it to compute the minimum of z. So our z can finally be written
as follows:

z = pnc · vo +(1− pnc) · vo · pv · rt (5.3)

Once the behaviour of the algorithm is established via the cost function, an
expression of the parameters vo and pv needs to be found in order to associate
them with the voxel size (the variable we want to solve) and the geometry of the
scene (the only data we have).

5.3.2 Cost Function Parameters

This section presents an expression of the cost function which obtains a voxel size
(δ ) that minimizes the function value.

For a specific voxelization and a scene, vo and pv can be directly measured.
Nevertheless, if we want to replace them in the expression of the cost function,
they need to be approximated as a function of δ and the geometry data. Basically,
we modify the derived expressions of (Borro et al., 2004) to work with tetrahedra,
instead of triangle meshes.

We will deduce the expressions for both parameters in the next lines:

• vo: As previously stipulated, this is the average number of voxels contained
within the bounding box of a tetrahedron t, specifically the ones intersected
by its AABB. So in order to express vo, we first need to estimate the
dimensions of the bounding box. In a simpler case, a way of constructing a
box that always covers a triangle is by choosing the one in which the side
is equal to the largest side of the triangle. So in our case, as the tetrahedra
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can be in any space orientation, in the worst case the AABB involving a
tetrahedron will be a cube in which the side, sAABB, is the largest edge of the
tetrahedron.

Once we have the dimensions of the AABB, and based on the voxel size,
the number of voxels intersected by the bounding box in the worst case can
be predicted.

vo =
⌊(sAABB

δ
+2
)⌋3

(5.4)

• pv: The number of particles inside a voxel can be approximated finding
the average number of triangles contained in the voxel. This could be done
with different methods. We use the area of the tetrahedra facets (triangles) to
approximate the maximum number of facets per voxel. As we use triangle
areas, we can take the same approach of (Borro et al., 2004) to compute this
parameter taking into account that the biggest triangle a voxel can contain
is the one shown in Figure 5.2.

Figure 5.2: Largest triangle contained in a voxel

The area of that triangle (Avox) is

Avox =
δ 2
√

3
2

(5.5)

Being At the real average area of the scene triangles, the number of facets
per voxel ( fv) can be easily predicted:

fv =
Avox

At
=

δ 2
√

3
2At

(5.6)



122 Chapter 5. Optimal Voxel Size Computation

Once we estimate the number of triangles contained in a voxel and if each
triangle joins three particles, the number of particles per voxel is:

pv = 3 · δ
2
√

3
2At

(5.7)

We already have all we need to get the optimal value of the cost function
seen in Equation 5.3: vo and pv have been predicted in this section, and pnc

and rt are constant numbers. Then, the cost function z only depends on the
voxel size δ . Therefore, we will obtain the optimal voxel size by minimizing the
function. This optimal value will be calculated in the pre-process stage and the
time consumption for that work is obviously not significant. This can be done by
solving the following equation:

dz
dδ

= 0 (5.8)

5.4 Experimental results

Using a software that runs a set of simulations with different voxelizations, several
experiments can be made in order to get their execution times and determine
the optimal zone experimentally. That will be useful to validate our analytical
solution. Approximating the times obtained in the set of simulations with a
polynomial function f (x) will allow us to experimentally determine the optimal
value and the optimal zone. We understand as optimal zone the range of voxel
sizes that give the smallest computation times for the algorithm: smaller or larger
levels of voxelization than the ones in the optimal zone lead to greater frame rates.

The minimum of the polynomial function used for the approximation is
considered the experimental optimal value. The optimal zone involves the values
close to the optimal value, which have been delimited as the ones which do not
raise the optimal value more than 1 millisecond.

We have performed two types of experiments: tests with simple and
theoretical objects and tests using some standard 3D models. The primitive used
in the simple tests is the sphere. Although in real simulations complex models are
always going to be used, these first experiments can gather information about the
method behaviour. Table 5.1 shows the number of tetrahedra of the simple models
used to carry out the experiments.

The next lines list some criteria used throughout the entire experiment.
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model tetrahedra
Sphere01 41937
Sphere02 52326
Sphere03 60688
Sphere04 72631
Sphere05 80927

Table 5.1: Description of the models

• The developed software automatically runs an analysis for different voxel
sizes. For each voxelization level, the same procedure is applied: two
identical objects are placed into a position where they collide with each
other. Then, necessary forces are applied to the objects (collision response,
gravitational forces and so forth) and the simulation runs for 10 frames.
Collision detection times for those 10 frames are used to calculate the
average computation time.

• Analysed positions have not been chosen randomly. They have been
selected in order to have an average number of 1% of the tetrahedra of the
scene in collision. As the implemented collision response algorithm does
not let the objects penetrate significantly into each other, positions in which
more than the 1% of the tetrahedra are in collision will never happen. This
value has been chosen after performing some experiments with real models
in order to check the average number of colliding tetrahedra.

Figure 5.3 shows the results following the steps in the experiments. This one
concretely belongs to a scene with two Sphere01 objects. It shows the average
times of the experiments carried out with these two objects when using different
voxel sizes. Although the cost function of the previous section depends on the
voxel size (δ ), in graphs and tables the number of voxels per axis (derived from
δ ) is used, considering that this value is easier to evaluate for the reader. For
that reason, the given x values are the number of voxels per axis. The size of the
scenario is 4x4x4. The curve has been approximated with the polynomial function
that best fits it. An optimal zone [δmin,δmax] is defined by taking an interval around
the optimal value δopt .

Each experiment (δmin,δopt ,δmax) is compared with two values: the first one
is the voxel size guessed by our analytical formulation (δa). The result is also
compared with one traditional solution (δtrad) based on the average length of
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Figure 5.3: Experimental average times and approximation of the curve
for two Sphere01 models colliding

the edges (Teschner et al., 2003). Table 5.2 gives the results of experiments with
different objects.

Sphere01 Sphere02 Sphere03 Sphere04 Sphere05
δmin 20 22 16 8 20
δopt 28.33 28.16 34.04 26.63 37.87
δmax 39 38 54 47 57
δa 28.73 30.94 32.49 34.48 35.65

δtrad 41.90 45.16 47.40 50.29 51.90

Table 5.2: Experimental optimal, our analytical approach and
traditional values for each pair of spheres

Note that the optimal value according to our equation lies inside the minimum
and maximum experimental values. On the other hand, values given by other
solutions differ considerably from the real experimental optimum. On some
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occasions, they do not even lie within the optimal zone.

In order to make it easier to see the difference between experimental and
traditional solutions as well as the analytical ones derived from our research, a
relative error εδ has been used as in (Borro et al., 2004).

εδ =
|δopt −δ | · (

⌊
δopt
δ

⌋
+
⌊

δ

δopt

⌋
)

(δopt −δmin) ·
⌊

δopt
δ

⌋
+(δmax−δopt) ·

⌊
δ

δopt

⌋ (5.9)

If the error is zero, it means that δ matches the optimal size found
experimentally (δopt). If 0 < εδ ≤ 1, δ is not exactly the experimental optimum
but it lies inside the optimal zone so we consider it as a good approximation.

model εδa εδtrad

Sphere01 0.038 1.272
Sphere02 0.283 1.727
Sphere03 0.086 0.669
Sphere04 0.385 1.162
Sphere05 0.124 0.734

Table 5.3: Error εδ for both our analytical value (δa) and values given
by traditional believes (δtrad)

Table 5.3 shows the relative errors for two cases: the first column is the
error of the approximation made by our formula (based on the average area
of the triangles that are part of the tetrahedra), respect to the optimal value
obtained experimentally. The second column is the error for the voxel sizes used
in traditional solutions (based on the average length of the edges), with respect to
the optimal experimental value as well.

As it can be seen, our values are all inside the optimal zone (0 < εδa ≤ 1), very
close to the experimental optimal voxelization levels. On the other hand, other
solutions differ widely from the optimum, and in some cases are even outside
the optimal zone. This could result in an important increase of the computation
time. We have also made approximations based on other geometrical data like the
average volume of the tetrahedra. Nevertheless we haven’t included the results
since the results based on areas are much more accurate.

Once experiments with theoretical models have been shown, results obtained
for real models are given in the following figures and tables. Figure 5.4, Table
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5.4 and Table 5.5 show the complexity of the real models, optimal values and
computed εδ , respectively.

(a) Bunny (b) Cow (c) Armadillo

Figure 5.4: 3D Models used in the experiments: (a) Bunny (20462
tetrahedra), (b) Cow (50380 tetrahedra), (c) Armadillo (16377
tetrahedra)

Bunny Cow Armadillo
δmin 16 13 13
δopt 22.97 31.15 20.49
δmax 34 54 37
δa 31.35 48.80 31.55

δtrad 44.94 70.93 45.48

Table 5.4: Experimental optimal, our analytical approach and
traditional values for each pair of 3D models

model εδa εδtrad

Bunny 0.759 1.992
Cow 0.772 1.741

Armadillo 0.669 1.516

Table 5.5: Error εδ for both our analytical value (δa) and values given
by traditional methods (δtrad)

Once again, the optimal cell size calculated by our method lies inside the
optimal zone obtained experimentally. Nonetheless, solutions given by traditional
methods are close but do not always belong to the optimal zone. Even if these
previous methods give an approximation of the optimal voxel size and may be
valid for some types of applications, our new approach gets much closer to the
exact optimal value.
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5.5 Discussion

VR refers to computer-generated environments that can simulate physical
conditions. One particularly important aspect that influences the realism of VR
is the problem of real-time interactive collision detection. Time consumption is
particularly important in such environments. For that reason, we have presented
the concrete problem of optimizing collision detection algorithms based on
Uniform Spatial Subdivision. This is made by determining the optimal voxel size.
We have studied the difficulties of the approach and proposed a methodology
to optimize the selection of the best voxel size. Thus, starting from a Spatial
Partitioning collision detection algorithm, we have described the steps to follow,
in order to easily estimate the most appropriate cell size to optimize the behaviour
of the algorithm in any scenario.

The voxel size chosen in the past was usually selected experimentally.
Some studies give an approximation of the best voxelization by carrying out
experiments, which lead to a method for delimiting a suitable voxel size based
on the geometry of the scene. These solutions however, came quite close to the
optimum, but were not always as accurate as some applications demanded. Our
proposal gives a general methodology to infer an analytical solution based on a
cost function and approximates the optimal size satisfactorily. It has also been
validated experimentally and compared to other approaches.

We have presented a particular case to validate the methodology with
objects represented by tetrahedra. As said before, a previous work validated the
method for triangle meshes, so with these two studies we involve most of the
representations used in VR applications. Even if the particular solution presented
here is dependent on a concrete algorithm, the cost function can be easily obtained
from other algorithms in the same way so the same method can be applied to any
algorithm.
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Chapter 6

Prototypes’ Description
Believing is half the cure

TOBA BETA

Part of this chapter has been published in:

Echegaray, G., Herrera, I., Aguinaga, I., Buchart, C., and Borro, D.
“Towards a multimodal neurosurgery simulator: Brain haptic physical
simulation and visualization”. In XXX Congreso Anual de la Sociedad
Española de Ingenierı́a Biomédica (CASEIB 2012). San Sebastián, Spain.
2012.

Echegaray, G., Herrera, I., Buchart, C., and Borro, D. “Towards a
multimodal neurosurgery simulator: Drilling simulation and visualization
using real patient data”. In XXIX Congreso Anual de la Sociedad Española
de Ingenierı́a Biomédica (CASEIB 2011), pp. 423–426. Cáceres, Spain.
2011.

6.1 Introduction

We have developed a Neurosurgery Simulator focused on patient-specific
planning and surgical rehearsal of brain tumour resections. Due to the used
patient specific data, the surgeon can practice complex procedures before
actually performing the intervention, thus lowering the odds of human errors.
Different areas need to be combined in order to construct a feasible and
completely accurate tool. Therefore, the disciplines we have integrated are:
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medical imaging, 3D geometrical reconstruction of tissues, real time volume
rendering, physical modelling, simulation, collision handling, visualization and
haptics. The development of our simulator is divided into three phases:

• Craniotomy Simulator: This first prototype simulates skull drilling using
a haptic device that governs a virtual milling tool. The system provides
the surgeon with the visual and force feedback correspondent to an actual
craniotomy intervention.

• Brain Haptic Physical Simulator: This simulator operates on an accurate
model of the brain tissue. The deformations of the brain model due to
the impact of the surgical tool are emulated, giving a realistic idea of the
physical behavior of the tissue.

• Integration: It consists of the combination of both the Craniotomy Simulator
and the Brain Haptic Physical Simulator. It is constituted by a skull model
obtained from real CT data and a model of the brain tissue inside it. The
brain model is acquired from MRI data of the same patient. The surgeon
can drill the skull and interact with the virtual brain with a haptic tool. He
or she is advised whenever the milling tool touches the brain tissue while
drilling the skull. Once the drilling task is accomplished, the tool is changed
and the new task is enabled. The resulting simulator enables surgeons to
practice actual operations, and will serve as a training tool for residents and
students.

An additional fourth stage would involve the expansion of our simulator to a
final Neurosurgery Simulator oriented to brain tumour resection. In addition to the
features mentioned above, it would include the option of cutting the brain tissue
in order to let the surgeon access the tumour and resect it.

The required realism has been reached with the development of three principal
components: refined visual representation, haptic interaction and realistic physical
behaviour including collision handling and physical simulation.

6.2 Craniotomy Simulator

Skull drilling is an essential task required in many surgical procedures.
This section describes a volumetric bone drilling process, which involves the
combination of several disciplines such as 3D reconstruction, physical behaviour
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including collision detection and visual feedback, and an accurate haptic response.
We have developed a real-time volumetric framework for a Craniotomy Simulator
which uses patient specific data. The performed Craniotomy Simulator simulates
skull drilling using a haptic device that governs a virtual milling tool. The system
enhances the approximation of reality, when milling and drilling bone. It provides
visual and force feedback correspondent to an actual craniotomy intervention.

Figure 6.1: Craniotomy Simulator

The Craniotomy Simulator involves the design and development of the
following areas: control, haptics, collisions and visualization. In order to cover
these necessities, two threads have been designed and developed: on one hand, a
main thread has been created which generates the simulation components and
manages the visualization. On the other hand, a haptic thread is started from
that first thread. This one manages the haptic device and its connection with the
collision module, which handles interferences between the models. The haptic
thread also gives the necessary force feedback to the user. Figure 6.2 gives a
general idea of the interaction between different modules.

Each component will be briefly explained in the following lines. Although
the principal aim of this thesis is the analysis, design and implementation of
the collision handling, the rest of the modules also affect its functionality and
effectiveness. For that reason, it is advisable to have a small idea of how each
module behaves.
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Figure 6.2: Craniotomy Simulator architecture

6.2.1 Main Thread

The Craniotomy Simulator is started in a main thread which creates all the
components of the simulation. A simulator must start with the visualization of
its components, and the module in charge of doing so is contained in this first
thread. Hence, this thread transfers haptic position information to the visualization
module with the aim of connecting the haptic thread with it. So the exchange
of location information between the haptic module and the visual module is its
concern. Apart from the position messages, control messages are also swapped as
remote orders of starting and disconnecting.

Regarding to the graphical user interface (GUI), all the events for windows,
mouse, keyboard or any user-interaction tools (except the haptic device) are
handled here.

6.2.1.1 Visual Module

The main thread contains the visualization module and it maintains it updated
about haptic position changes. The visual module must be informed about the
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haptic movements as it is responsible for everything related to the graphic scene
and must visually show the movements made by the user with the haptic device.
It periodically receives position messages from the main thread, which have
previously been calculated in the haptic thread.

The visual aspect and realism of the simulator greatly affects its teaching
capability. Therefore, detailed medical images have been used to model the skull.
In our case, CT data have been acquired since it renders the bone more clearly.
Using patient-specific images increases the possibilities of the training as data
from different patients with different anatomy and diseases can be used. This
widens the variety of training scenarios and, consequently, increases the range
of knowledge acquired through it. Due to this characteristic, the simulator can be
used for rehearse in addition to training.

In Figure 6.3 the main window and an enlarged view of the skull and the
tool of the Craniotomy Simulator can be seen. (a) shows the three orthogonal
views of the skull and the 3D reconstruction of the environment. (b) gives the 3D
reconstruction of the data. In such a way, it presents a user-friendly environment
in which accurately drill the skull. Moreover, the user can move around with total
liberty as in an actual intervention.

(a) (b)

Figure 6.3: (a) Craniotomy Simulator Interface and (b) an enlarged view
of the skull

Tools and other objects are rendered using The Visualization Toolkit (VTK)
(Will et al., 2006). It is an open source, cross-platform C++ library that supports
a wide variety of advanced visualization and volume processing algorithms. We
have implemented the visualization modules to be compatible with VTK. They
are used to visualize the skull (from CT) in a fast and realistic way. Additionally,
a renderer for the shadows of the tools is developed, which greatly increases the
depth perception of the user.
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Concretely, direct volume rendering is used to visualize the patient’s real
data. Raycasting is also used to visualize the skull. Nonetheless, the skull is
completely opaque, so a direct isosurface rendering can be used, which is a more
specific and optimized raycasting method. This method renders the isosurface
defined by an isovalue, which is the density of the material to be visualized
(the skull in this case). Samples where the densities are lesser than the given
isovalue are completely discarded, and the renderer proceeds to check the next
sample position. Samples with a value equal or bigger than the isovalue stop the
ray traversal, and the illumination and shadowing are calculated as previously
mentioned. In this rendering mode the opacity property is not given by the
transfer function but is set to be completely opaque. These changes entail a drastic
reduction on the number of calculations per ray, giving a huge performance boost.

6.2.2 Haptic Thread

The objective of the Haptic Thread is to manage the movement of the virtual tool
around the environment and control the force restitution through the haptic device.
For that issue, it uses the information obtained from the collision detection and
response module. The haptic device we have used for this Craniotomy Simulator
is a Phantom OMNI, a Sensable 6 DoF haptic device.

After initializing the proper data structures, the haptic thread reads the
encoders of the haptic device and transforms the location and rotation information
into the virtual environment’s language. This information is then sent to both the
visual module and the collision module. The first one needs the location data
in order to reflect the movement of the virtual tool visually. Concerning to the
collision module, it must be periodically informed about the tool’s movements
to adapt its data structures and detect possible restricted locations. Afterwards,
the haptic thread asks the collision detection module to start its work and
detect possible interferences between the skull model and the new position of
the virtual tool. Once the collision response module has returned the collision
information, even if no collision has happened, the haptic module applies the
position changes known as ”visual feedback” explained in Section 3.2.1. This
must be done as the collision module sometimes changes the tool’s position by
a process we have called ”sweep” (see Chapter 3). Finally, the haptic thread
sends a three-dimensional force obtained from a viscoelastic force model to the
haptic device so the user can feel the skull surface physically. This process is
continuously running in a separate thread so it is absolutely independent from
others.
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6.2.2.1 Collision Module

The collision module is the responsible for detecting the intersections occurred in
the virtual scene and calculating the necessary information to the be sent to the
haptic thread. The design, implementation and analysis of the collision handling
method for the Craniotomy Simulator has been one of the main objectives of this
thesis. Hence, the collision detection method used in our Craniotomy Simulator is
the one proposed in Chapter 3.

The proper haptic thread contains and manages the collision module. For that
reason and in order to avoid instabilities, the collision module’s frequency should
not exceed 1000Hz rate. This means that the collisions calculation must be done in
less than 1ms. If the time spent by the collision module to detect the interferences,
determine the parameters that affect to the collision and calculate the restitution
force is larger than 1ms, the haptic module must have alternatives to be able to
give plausible force values. In our simulator, as mentioned in Chapter 3, when
the haptic module does not receive any information from the collision module the
force parameters received in the last frame are maintained. In this way the force
stability is not altered.

6.3 Brain Haptic Physical Simulator

This section presents a real-time deformable simulation framework which uses
patient specific data. The Brain Haptic Physical Simulator entails the design and
implementation of areas such as 3D Reconstruction, haptic rendering and an
accurate collision handling including visual feedback. Apart from that, due to the
deformable nature of the brain model, a physical simulation must be added. The
performed brain haptic simulator allows the user to interact with a brain model
obtained from patient-specific MRI through a haptic device that governs a virtual
surgery tool. All these aspects have been combined and organized as follows:

A main thread is responsible for creating all the elements of the simulator.
One of the most important matters of this thread is the creation of the other three
threads composing the simulator: The haptic, collision and the Simulation thread.

The haptic thread manages the movement of the virtual tool and controls the
force restitution through the haptic device. It uses information obtained from the
collision module.

The collision thread handles the interferences between the brain model and the
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working tool. It is communicated with the haptic and Simulation thread by sending
information about the forces needed to be applied to both the brain structure and
the resecting tool when an interference has been found.

To end with, the Simulation thread computes the deformations to be applied
to the brain mesh depending on the information received from the collision thread.
Once the calculation is done, the visual module displays the new deformed state
visually.

Figure 6.4 gives a general idea of the interaction between different modules.

Figure 6.4: Brain Haptic Physical Simulator

6.3.1 Main Thread

Analogous to the Craniotomy Simulator, the main thread creates all the elements
of the simulator: in this case the visual, collision and simulation modules together
with the haptic device are initialized here. Once all the initializations have been
made, the collision thread, the simulation thread and the haptic thread are ready
to start so their start call is performed here.

As happened in the Craniotomy Simulator, the haptic and visual module
interchange updated position and rotation information by means of this module.
Apart from the location messages, this module also swaps control messages as
remote orders of starting and disconnecting.

Concerning to the graphical user interface (GUI), all the events for windows,
mouse, keyboard or any user-interaction tools are handled here.
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6.3.1.1 Visual Module

The visual module is again the module in charge of managing everything related to
the graphic scene. An interface module contained in the main thread periodically
transmits position and rotation messages from the haptic thread to the visual
module. In such a way, the visual module update the new state of the tool visually.

The deformations of the brain must also be reflected visually. When the
user touches the brain by means of the virtual tool the simulation module
calculates the subsequent deformation to be applied to the nodes of the brain.
Such deformation must be visualized properly. Moreover, a visual feedback of the
tool not penetrating the skull is also projected in this module. Hence, the user’s
perception of stiffness and robustness increases considerably.

An accurate visualization greatly affects the realism and validity of the
simulator. Thus, our brain model is loaded from a real MRI image of the patient.
Figure 6.5 shows an example of a brain model used in our Brain Haptic Physical
Simulator. The use of patient-specific images gives the training capacity to our
system, as data from different anatomies and diseases can be used.

Figure 6.5: Tetrahedralized brain model

In order to achieve the stated accuracy the rendering of the skull is done using
a volumetric isosurface rendering as explained in the visualization module of the
Craniotomy Simulator. On the other hand we have the brain, which has to be
rendered accurately with the calculated deformation. In this method, similar to
the one presented in (Tejada and Ertl, 2005), a raycasting is performed with the
tetrahedral data and the structured volume is used as the tetrahedrons’ underlying
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data. It should be noted that the tetrahedral mesh used in the raycasting is exactly
the same used in the physical simulation. This allows us to render a correctly
deformed brain using the patient MRI directly.

This approach achieves rendering speeds of 15-20 fps at 1680x1050
resolution, permitting a good interactive visualization.

An accurate and fast visualization facilitates the pre-operative tests to the
surgeons and widens the knowledge acquired to students. In conclusion, this
simulator can be used for rehearse in addition to training.

6.3.2 Haptic Thread

As stated in the Craniotomy Simulator, the objective of the haptic thread is again
to handle the movement of the virtual tool around the environment. The control of
the force restitution through the haptic device is also its concern. This is managed
by using the information obtained from the collisions module and the visual
feedback.

The haptic device used for the Brain Haptic Physical Simulator is obviously
the same as the one used for the Craniotomy Simulator, since both simulators
will be merged as a last stage. Thus, this simulator also makes use of a Phantom
OMNI, a 6 DoF haptic device from Sensable.

The haptic thread first reflects the movement of the haptic device into the
virtual tool by reading the device encoders of position and rotation. The virtual
representation of the tool is assumed by a sphere surrounded by a point cloud
(proxy).

Once the proxy is positioned at its new location, the haptic is ready to receive
contact information from the collision module. The collision thread controls
interferences between the scene objects continuously. In such a way, when the
haptic thread is informed about the existing interferences, it can send the correct
force feedback to the haptic device. In case of interference, the proxy position is
updated by a god-object location method as in (Zilles and Salisbury, 1995b).

6.3.3 Collision Thread

Collision detection and response are vital aspects in a virtual surgery simulator,
as they significantly affect the accurate real-time response and simulation
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realism. The collision thread is responsible for keeping the environment free of
interferences between the brain model and the resecting tool. The data-structures
corresponding to the collision are initialized in the interface module from the main
thread as a preprocess stage before creating the collision thread. Once created,
the collision thread makes use of the collision module to run a collision step
repeatedly. The collision module implements a detection algorithm based on a
Uniform Spatial Subdivision method which has been detailed in Chapter 4.

Further, the contact information needed to give a haptic response to the
interferences is also computed in this thread (Chapter 4). The haptic thread will
periodically take the contact information and send it to the haptic device via force
feedback.

Finally, the brain model also responds to the touch of the virtual tool by
running a physical simulation framework. For that issue, it is necessary to compute
a set of forces to be applied to the brain nodes as a response to the collision. These
forces are also calculated in the collision thread.

6.3.4 Simulation Thread

Medical applications require both a realistic visualization and a realistic
simulation of the behaviour of the tissue. The deformations of the brain must be
driven by a realistic physics simulation.

Several approaches have been used in the past to drive physic based
simulation. However, the use of FEM is the most relevant when accuracy is an
important factor. These implementations are suitable for the simulation of objects
that undergo small deformations and whose material behaviour can be considered
linear. However the behaviour of soft-tissue is notoriously non-linear, and in many
applications large deformations are also common. For this reason, non-linear FEM
implementations are preferable in this work. The non-linearity is handled using a
Total Lagrangian non-linear Explicit Dynamics (TLED) approach (Joldes et al.,
2010).

The simulation is calculated in the GPU using CUDA in order to speed
up the calculations. In such a way, for tetrahedral meshes of for instance 22k
tetrahedra, real time is achieve by using a time step of 0.33ms. Figure 6.6 shows
the deformation suffered by the texture of the brain when a virtual tool interacts
with it.

The finite element method requires a discretized mesh for the material to be
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Figure 6.6: Deformation of the brain model when a virtual sphere
intersects with it

simulated i.e. a tetrahedral or hexahedral mesh. This simulator uses a tetrahedral
mesh extracted from the MRI data using the tool iso2mesh1.

The soft-tissue parameters used in the simulation are not the ones related to
the concrete patient. Nonetheless, the general mechanical properties of soft tissues
are typically used for this kind of simulation. Table 6.1 gives the simulation
parameters used in our Brain Haptic Physical Simulator to give a physical
behavior to the brain model knowing that the scene objects are measured in
millimetres.

parameter value
Density ρ 0.000001
Young’s E 30.0
Poisson ν 0.3
Gravity 9810

Table 6.1: Description of the simulation parameters

1http://iso2mesh.sourceforge.net/cgi-bin/index.cgi
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6.4 Integration

The integration consists of the combination of both the Craniotomy Simulator
and the Brain Haptic Physical Simulator explained in Sections 6.2 and 6.3. It is
composed by a skull model obtained from real CT data which contains a brain
tissue model inside it. The latter is obtained from MRI data from the same patient.
By means of this simulator the surgeon first drills the skull using the haptic device
that governs a virtual milling tool. If the tool touches the brain tissue in the drilling
process warning messages are displayed in order to alert the user and avoid any
damage to the patient. Once the drilling task has been accomplished, the tool
changes and the user can interact with the virtual brain via the haptic device.

Figure 6.7: The main window of the integrated simulator

As explained in Section 6.2, the Craniotomy Simulator is composed of two
threads: the main thread and the haptic thread. In the case of the Brain Haptic
Physical Simulator detailed in Section 6.3, two additional threads are needed: the
collision thread and the simulation thread. Thus, the integration of both simulators
is constituted by four threads: the main, haptic, collision and simulation thread.

Both the drilling task and the interaction with the brain have a flag to inform
whether one or the other is being accomplished. The algorithm runs different
modules depending on the activated task. At the beginning of the operating
process the craniotomy flag is active and the brain interaction is disabled. In such
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a way, the algorithm performs the instructions correspondent to the Craniotomy
Simulator. When the surgeon finishes the drilling task the craniotomy flag is
disabled to let the brain interaction flag activate. This implies the start of the Brain
Haptic Physical Simulator instructions. However, even if the interaction with the
brain is disabled while performing the drilling task, the user wants to be advised
if the drill touches the brain while drilling. For that reason, the collision thread
corresponding to the Brain Haptic Physical Simulator is initialized and starts its
run from the beginning of the drilling task despite its disabled flag. The start of
each thread during the simulation process is illustrated in Figure 6.8.

Figure 6.8: Flow of the threads during the simulation process

As well as in the two individual simulators, all the threads are created and
initialized in the main thread. An interface and visual module comprise this
thread. Apart from generating the components of the simulator, is also manages
the connections between different threads and modules.

The interface module basically behaves as it did in the second stage of our
simulator: the Brain Haptic Physical Simulator. The initializations of the visual,
collision and simulation modules are made there, together with the startup of the
haptic device. After creating and initializing all the modules, the collision thread,
the simulation thread and the haptic thread are ready to be activated. The swap
of starting and disconnecting control messages is also its concern. Moreover, the
GUI is handled by the interface module by controlling all the events for windows,
keyboard, mouse or any other user-interaction tools.

The integrated system visualizes a drilled skull at the time the brain is inside
it (Figure 6.9). Thanks to the optimizations and specific rendering modules,
interactive visualization rates between 15Hz and 20Hz are achieved at 1680x1050
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resolution. The reason behind such high resolution is the didactic nature of the
simulator, in which a teacher can be showing the student the proper use of the
simulator.

Figure 6.9: Drilled skull

One of the major changes added with respect to the Craniotomy and Brain
Haptic Physical Simulators is the way in which the haptic thread works. The
management of collisions changes depending on the volume the user is interacting
with at each moment. The interaction with the skull (rigid body) and the brain (soft
body) differs, so each case is treated in a different manner.

Remembering Figures 3.8 and 4.6, the first step in both cases is the reflection
of the haptic device’s movement into the virtual tool. This is made by reading
position and rotation encoders. In the case of craniotomy, an additional sweep
process is performed before reflecting the new position into the tool.

The second stage to be carried out is the obtaining of the collision information.
The main difference between both flows in this case is the way in which they
get the interference information. The first simulator just calls a function from the
collision module which returns whether a collision is happening or not. It also
returns the force parameters (penetration depth and contact normal). In the second
case a collision thread is running outside the haptic thread, so the only thing to do
is to take the necessary information from there.

The haptic interface of the Craniotomy Simulator gives a visual feedback even
if no collision is found. On the contrary, in the Brain Haptic Physical Simulator a
visual feedback is not needed when the objects do not interfere. Apart from that,
the returned visual feedback differs for both simulators. So the integration solves
this aspect separately.
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To finalize, the last stage calculates and sends the correspondent forces to the
haptic device. Although this step might seem the same for both simulators, the
chosen force model is different for each one. We have incorporated a viscosity
component to the Brain Simulator in order to achieve a higher realism. For that
reason, when sending forces to the haptic device the object’s material is also taken
into account.

In conclusion, the integration process of the haptic thread requires a
differentiation of the two different tasks. After moving the tool (this is made
equally in both cases) the algorithm takes the first route if the craniotomy flag
is active, and the second one if it is not.

Regarding to the collision thread, it only deals with the collision handling
respective to the brain interaction. The interaction with the skull is managed in a
collision module which does not work independently as a thread but it is called
from the control loop of the haptic thread. At the beginning of the simulation
both the collision module for rigid bodies and the collision thread for deformable
objects are active. However, once the drilling task finishes the rigid collision
detection does not work anymore.

Although the collision thread for deformable objects starts running from the
inception of the simulation, the collision response is not available until the drilling
task ends. During the craniotomy the only force feedback the user receives is
the one related to the interaction with the skull. However, at the same time the
collision module is detecting interferences between the tool and the skull, the
collision thread detects collisions between the milling tool and the brain in order
to advise the user whether the brain is being damaged while drilling. Therefore the
collision detection is performed but the collision response is not applied neither
to the haptic device nor to the brain model.

Figure 6.10 describes the connections between the haptic thread and the
collisions in both the drilling process and the brain interaction task. In the
first stage the haptic thread receives collision information about the rigid body
interferences and gives a response to them. Apart from that, the collision thread
detects interferences between the deformable body and the tool, but the haptic
module does not receive any information about it. A force response is not applied
for such interferences. When the drilling process ends, the rigid collision module
stops and the information the haptic receives is the one related to the brain model.
The response now corresponds to the brain model.

The deformable nature of the brain makes it necessary to simulate its
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Figure 6.10: Interaction between the haptic thread and the collisions
while drilling the skull and interacting with the brain

behaviour when the operating tool interacts with it. The simulation module is
the one in charge of assigning a realistic physical behaviour to the brain model.
Several approaches have been used in the past to drive physic based simulation.
However, given the kind of materials present in biological models, specially
the mechanical properties of soft tissues, and the amount of deformation they
can suffer during a procedure, the previously mentioned non-linear FEM is the
approach capable of providing the most realistic behavior. It is also the most
relevant when accuracy is an important factor.

The method, material properties and tools employed in the integrated
simulator for the simulation of the soft body are exactly the same used in the Brain
Haptic Physical Simulator. The skull model does not need a simulation process
due to its rigid nature, so the only simulation method used in the integration is the
one relative to the second stage.

The resultant Neurosurgery Simulator (see Figures 6.11 and 6.12), created
from the combination of the Craniotomy Simulator and the Brain Haptic Physical
Simulator consists of a skull model which covers a brain tissue model from the
same patient. The entire simulator can be a useful tool to train students or residents
in real skull drilling procedures. Furthermore, the interaction of the virtual tool
with the brain tissue enhances the immersion of the students into the intervention.
In conclusion, this framework could avoid or at least reduce the time spent by
students and residents attending long real interventions with the aim of being
instructed in real neurosurgery tasks.
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Figure 6.11: The multimodal Neurosurgery Simulator where the drilling
task is being accomplished
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Figure 6.12: Integrated Neurosurgery Simulator framework
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

We have presented a Neurosurgery Simulator with particular emphasis on the
collision detection and response handling methods.

The Neurosurgery Simulator is divided into three phases. First, we
implemented a Craniotomy Simulator that is based on real patient CT data
and simulates skull drilling using a haptic device that governs a virtual milling
tool. Thanks to the collision detection method developed for rigid volumetric
data and the implemented collision response technique, the system enhances the
approximation of reality when milling and drilling bone. It provides the surgeon
with the visual and force feedback that corresponds to an actual craniotomy
intervention.

The collision handling method implemented for this stage calculates a stable
response in complex volumetric environments with discontinuities. While other
simulators convert their volumetric data into hybrid or adapted structures with
surface information, we maintain the original voxel structure and respond to
collisions by solving adversities. Our method offers a realistic and pleasing force
restitution without the need of transforming the original data into an adapted
structure.

As a second stage, we have developed a Brain Haptic Physical Simulator.
The user interacts with a brain model obtained from patient-specific MRI data
through a haptic device that governs a virtual surgery tool. As a result of the
deformable collision detection and response technique, the user can interact with
the brain tissue and feel the forces via the haptic device. At the same time, the
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corresponding deformations are reflected in the brain model.

In this case, the collision detection and response is performed for deformable
objects that are represented by tetrahedra. This is based on the uniform spatial
partitioning technique, which uses a predefined voxel size that can cause
performance disorders if it is not chosen correctly. Thus, we have also presented
a methodology for describing the steps to follow in order to easily estimate the
most appropriate voxel size and optimize the behaviour of the algorithm. We later
applied this methodology to get the most fitting voxel size for our environment
and thus optimize the time consumption. The resulting stable and pleasing contact
handling increases the feeling of interacting with real brain tissue.

The last phase involved the integration of both simulators into a multimodal
Neurosurgery Simulator, as well as the incorporation of new components and
features such as notifications or the ability to switch tools during the operation.
The Neurosurgery Simulator offers the possibility of exploring the environment
by interacting with both the skull and the brain’s deformable tissue. While drilling
the skull, warning messages alert the user if the tool is somehow touching the brain
and thus causing any damage to the patient. Once the drilling task is finished, the
working tool changes and the user can start the interaction with the brain.

In order to improve the realism of the simulation and increase the learner’s
immersion into the environment, accurate visual feedback was incorporated into
all the simulators. This enhances the user’s immersion and presence in the
environments since the virtual tool is not allowed to penetrate the skull nor the
brain visually.

All stages of this simulator can be a promising tool for training students in real
neurosurgery procedures. The time students and residents spend attending long
real interventions in order to be instructed in such tasks could be considerably
reduced; it could even become unnecessary.

Additionally, it can be utilized as a suitable surgery rehearsal tool. Because
the simulator uses patient-specific data, the surgery can be planned and practiced
prior to the actual intervention. The results give a precise sensation of performing
a real bone drilling intervention, and offer a useful tool according to surgeons
from the ”Clı́nica Universitaria de Navarra” (CUN).

A realistic haptic simulator describing a faithful behaviour of the tissues offers
convincing benefits in comparison to other simulation tools:

• The precision and realism of the interaction support surgical anatomy
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teaching and training for students, residents and specialists.

• The use of patient-specific data makes the simulator a plausible tool for
rehearsal in addition to training. The surgeons can practice procedures
before facing complex interventions.

• Accurate model simulation and an accurate environment can help for
surgical equipment design considering dimensions, working angles and
shapes.

• Moreover, the accessibility and suitability of medical instrumentation can
also be analysed with this type of simulators.

7.2 Future research lines

As an extension of the work presented in this thesis, several possible research lines
are still open. Some of them are:

• The first prototype of our Neurosurgery Simulator is a Craniotomy
Simulator that enables skull drilling procedures. The collision handling
algorithm for this simulator was implemented based on the volumetric
representation of the skull model. Even though the solution ended up being
as accurate and realistic as was required, it could be compared with other
existing rigid collision detection algorithms for skull drilling procedures.
As most of the simulators convert their volumetric data to adapted structures
and handle collisions with this second representation, a comparison in terms
of time-consumption or user perception could be interesting. However,
our simulator behaves correctly with the patient data we employ. For that
reason, the comparison would be interesting as an informational study for
simulators where the base data are heavier and the computational cost
causes problems.

• The second prototype proposed here is the Brain Haptic Physical Simulator.
This was designed in order to allow the user to freely interact with the
brain tissue of the patient. Nevertheless, the representation of the brain is
assumed by a single tetrahedral mesh with the same physical properties
for all its tetrahedra. In the real world a brain contains vessels, blood and
different tissues. It also has its own pulse. All these components should
be distinguished and properly simulated. This would involve additional
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collision detection, response, and haptic feedback methods, as well as liquid
simulation techniques. Additionally, having the information of real brain
tissue properties and being able to simulate them would also imply a huge
improvement of the simulator’s realism.

• The integrated Neurosurgery Simulator enables the combination of both
tasks: skull drilling and brain haptic interaction. Nonetheless, a complete
Neurosurgery Simulator should add the possibility of manipulating the
brain tissue by making cuts or absorbing serum with special tools. These are
common tasks a neurosurgeon carries out during a neurosurgery operation,
so the learning and training skills of students and residents would increase
significantly with all these additional features. Therefore, an additional
fourth stage of the simulator could extend it by including for example a
volume cutting feature.

• The validity of our simulators should be proven through experimentation
with expert individuals as the possible users are students or residents. The
patient specific data make it possible to rehearse a specific procedure prior
to the real intervention. Thus, validation experiments with experienced
surgeons would be interesting in order to prove its rehearsal capacity. The
simulator’s reliability could be determined by simply asking experienced
surgeons to compare it with real neurosurgery interventions. It could also
be completed with analytical experiments of accuracy and stability.

• A voxel-size optimization methodology has also been proposed in this
thesis. This methodology was later applied in order to optimize the
performance of the Brain Haptic Physical Simulator and the final
Neurosurgery Simulator. The study is valid for rigid and deformable bodies
that are represented by triangle or tetrahedral meshes. Nevertheless, it could
be interesting to generalize it in order to optimize the time performance for
volumetric objects represented by densities. In this way, the Craniotomy
Simulator could also be optimized.
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