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Abstract:
Background: Ischemia-reperfusion (I/R) injury associated with hepatic resections

and liver transplantation remains a serious complication in clinical practice, in

spite of several attempts to solve the problem. Aims: To evaluate the response of

the hepatocyte to ischemia Methods: Published data are thus revised. Results: The

response of the hepatocyte to ischemia is based on the sensitivity of hepatocytes to

different types of ischemia, the kind of cell death of the hepatocyte when it is

subjected to ischemia, and on the response of the hepatocyte to the different times

and extents of ischemia. Clinical factors including starvation, graft, age, and

hepatic steatosis, all of which contribute to enhancing liver susceptibility to

ischemia/reperfusion injury. Conclusion: Ischemic preconditioning, based on the

induction of a brief ischemia to the liver prior to a prolonged ischemia, has been

applied in tumor hepatic resections for reducing hepatic I/R injury and recent

clinical studies suggest that this surgical strategy could be appropriate for liver

transplantation.

Ischemia-reperfusion (I/R) injury is a phenomenon
whereby cellular damage in a hypoxic organ is accen-
tuated following the restoration of oxygen delivery
(1–3) (Fig. 1). In the liver, this form of injury was
recognized as a clinically important pathological dis-
order by Toledo-Pereyra et al. in 1975 during studies of
experimental liver transplantation (LT). However, it
was not until the mid-1980s that the term reperfusion
injury was generally used in the literature on LT (1, 4).

The lack of oxygen to hepatocytes during ischemia
causes mitochondrial de-energization, ATP depletion,
alterations of H1, Na1, Ca21 homeostasis that activate
hydrolytic enzymes and impair cell volume regulation
and sinusoidal endothelial cells (SEC) as well as
Kupffer cells (KC) swelling (5–8). This fact together
with the imbalance between nitric oxide (NO) and
endothelin (ET) production, contributes to narrowing
of the sinusoidal lumen and thus to microcirculatory
dysfunction. Capillary narrowing also contributes to
hepatic neutrophil accumulation (9, 10). Concomi-
tantly, the activation of KC releases reactive oxygen
species (ROS) and proinflammatory cytokines, in-
cluding tumor necrosis factor-a (TNF-a) and inter-

leukin-1 (IL-1) (11, 12). Like KC, ROS can derive from
mitochondria and xanthine oxidase of activated SEC
and hepatocytes. Cytokines release throughout the
induction of adhesion molecules (intercellular cell
adhesion molecule (ICAM) and vascular cell adhesion
molecule (VCAM)) and chemokines promote neutro-
phil activation and accumulation, thereby contribut-
ing to the progression of parenchymal injury by
releasing ROS and proteases (2, 3, 11). Besides, IL-1
and TNF-a recruit and activate CD41T-lymphocytes,
which produce granulocyte-macrophage colony-
stimulating factor (GM-CSF), interferon g (INF-g)
and tumor necrosis factor b (TNF-b). These cyto-
kines amplify KC activation and TNF-a and IL-1
secretion and promote neutrophil recruitment and
adherence into the liver sinusoids (13–15). Platelet
activating factor (PAF) can prime neutrophils for
superoxide generation, whereas leukotriene B4
(LTB4) contributes to the amplification of the neutro-
phil response (2, 3).

Due to the complexity of hepatic I/R injury, the
present review summarizes established basic concepts
of the mechanisms and cell types involved in this
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process. To prevent or minimize graft dysfunction and
posttransplantation complications and the risks asso-
ciated with I/R in hepatic resections, it is essential to
fully understand the importance of indivi-
dual liver cell types in I/R injury induced by cold
storage and warm ischemia. The present review is
mainly focused on the response of the hepatocyte to
ischemia.

Sensitivity of the hepatocyte to the different
types of ischemia

The main victims of ischemic injury are the hepato-
cytes and SECs. These two cell types show different
responses to different types of ischemia: hepatocytes
are more sensitive to warm ischemia and SECs to cold
ischemia (12, 16, 17). Although, most hepatocytes
remain viable after 48 h of cold preservation and
reperfusion, SECs suffer severe damage following
reperfusion (40% non-viable) (18). The result of this
sinusoidal damage is the subsequent microcirculatory

abnormalities upon reperfusion, resulting in hepato-
cyte injury and dysfunction (16, 19). This contributes
to the development of primary nonfunction or im-
paired primary function after LT. However, some
studies have called the importance of sinusoidal injury
into question. Huet et al. (20) have demonstrated that
damage to the extracellular matrix from prolonged
preservation and reperfusion appears to be the critical
factor in graft failure (21). In addition, it is possible
that perturbations in hepatocyte levels of adenine
nucleotides during cold storage can trigger proteolytic
events that contribute to damage in the liver graft and
subsequently compromise hepatic functions after LT
(22). Moreover, cold ischemia profoundly disturb
several key hepatocellular functions, such as volume
and pH homeostasis, as well as solute transport and
drug metabolism, protein synthesis and mitochondrial
function. This contribute to preservation injury of the
liver graft. Therefore, these observations indicate that
aside from reducing endothelial cell damage, LT ther-
apy may benefit from strategies aimed at improving
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Fig. 1. Mechanisms involved in the pathophysiology of ischemia-reperfusion injury.
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the maintenance of appropriate hepatocyte functions
(22, 23).

What kind of cell death occurs when the
hepatocyte is subjected to isquemia?

The exact mechanism of cell death in hepatic I/R
injury remains uncertain. Apoptosis has been regarded
as the fate of cells experiencing I/R injury (24). In this
line, different studies have demonstrated apoptotic
death in hepatocytes and/or SECs after both cold and
warm ischemia of the rat liver (25–27). All of the
aforementioned studies (24–27) used TdT-mediated
dUTP-biotin nick and labelling (TUNEL staining) for
DNA ladders to demonstrate apoptosis. However, the
ability of TUNEL staining to distinguish between
apoptosis and necrosis has been called into question
(28). The activation of caspases has also been used to
demonstrate apoptosis in rat SECs following cold I/R
(29, 30). Indeed, use of pan-caspase inhibitors pro-
tected rat liver SECs (31) and hepatocytes (32) against
I/R injury after prolonged periods of both cold and
warm ischemia. On the other hand, the groups of
Jaeschke and Lemasters oppose the view that the
majority of cells undergo apoptosis in response to
either warm or cold I/R injury, believing that necrosis
is the principle form of cell death. They believe that in
a number of studies the proportion of cells undergoing
apoptosis is not of significant magnitude and that the
degree of caspase activation does not correlate with the
number of SECs and hepatocytes supposedly under-
going apoptosis (33). It is postulated that a shared
intracellular pathway, which can lead to either apop-
tosis or necrosis, is an explanation for these conflicting
findings (21, 34). The new term ‘necrapoptosis’ has
been coined to describe a process that begins with a
common death signal and which culminates in either
cell lysis (necrotic cell death) or programmed cellular
resorption (apoptosis), depending on factors such as
the decline of cellular adenosine triphosphate levels
(35, 36).

What is the response of hepatocytes to the
times and extent of hepatic ischemia?

The severity of hepatocyte damage depends on the
length of time the ischemia lasts. It appears that short
periods (60 min) of warm ischemia result in reversible
cell injury in which liver oxygen consumption returns
to control levels when oxygen is resupplied after
ischemia. Reperfusion after more prolonged periods
of warm ischemia (120–180 min) results in irreversible
cell damage. These observations agree with a previous
report on rat liver subjected to I/R, indicating a

cellular end point for hepatocytes after 90 min of
ischemia (37, 38). In human LT, a long ischemic
period is a predicting factor for posttransplantation
graft dysfunction, and some transplantation groups
hesitate to transplant liver grafts preserved for more
than 10 h (39, 40). Some studies in experimental
models of LT indicate that 24 h of cold ischemia
induces low survival at 24 h after LT. However, at
shorter ischemic periods, LTmay also result in primary
organ dysfunction. For animals subjected to 8 h of cold
ischemia, an ischemic period associated with high
survival, the histological study of the liver at 24 h after
LT showed multifocal and extensive areas of hepato-
cyte coagulative necrosis with neutrophil infiltration
and hemorrhage (39, 41).

In regard to the extent of hepatic ischemia, previous
reports indicate that the extent of hepatic injury as
well as the hepatic I/R mechanisms, including the
recovery of the blood flow and energy charge during
hepatic reperfusion, is dependent on the extent of
ischemia, depending on whether a total or a partial
hepatic ischemia of 70% is applied (42–44). The
authors have suggested that this fact could be ex-
plained by the stealing phenomenon. In contrast to
100% hepatic ischemia, during ischemia to the left and
median lobes, the flow is shunted via the right lobes
and following the release of the occlusion to the left
and median lobes, a significant amount of shunting via
right lobes will continue during reperfusion until
vascular resistance in the postischemic lobes decreases.
This is due to the fact that blood will flow through the
path of least resistance. The reasons for this may be
cellular swelling endothelial, stasis, or other changes.
Thus, the recovery of blood flow and hepatic perfusion
of the preischemic lobe is later in the case of 70% than
to 100% of hepatic ischemia (45–47). In line with these
observations, different studies have shown that infusion
of ATP–MgCl2 following 60 or 90 min of total hepatic
ischemia in rats restored the depressed reticuloen-
dothelial function and improved hepatocellular func-
tion (42, 48, 49). However the benefits of ATP–MgCl2
were dependent of the extent of hepatic ischemia used.
Thus, when the ischemia applied was 70%, this drug
had no benefits on mitochondrial function or hepatic
blood flow in the postischemic lobes as the postis-
chemic lobes were not reached by any great amounts of
the drug under these conditions (45).

Do all hepatocytes respond in the same way
to ischemia?

A variety of clinical factors including starvation, graft
age, and steatosis contribute to enhance liver
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susceptibility to I/R injury, further increasing the
patient risks related to reperfusion injury (50). In
clinical LT, starvation of the donor, due to prolonged
intensive care unit hospitalization or lack of an ade-
quate nutritional support, increases the incidence of
hepatocellular injury and primary nonfunction (51,
52). It is well-known that the shortage of organs has
led care centers to expand their criteria for the
acceptance of marginal donors. Some of these criteria
include the use of organs from aged donors and
steatotic liver grafts (53–55). However, I/R injury is
the underpinning factor of graft dysfunction that is
seen in the marginal organ. Donor age of more than 70
years was found to be associated with lower patient
and graft survival (56, 57). Additionally, these donors
also have an increased incidence of steatosis, which
may potentiate cold preservation injury (56, 58–60).
Moreover, increased rates of primary non-function
have been reported when using donor livers with
moderate steatosis compared with non-steatotic livers.
As such, hepatic steatosis is the major cause of rejected
grafts for LT and exacerbates the organ shortage
problem (54, 61, 62). Therefore, minimizing the
adverse effects of I/R injury could increase the number
of both suitable transplantation grafts and of patients
who successfully recover from LT. The first step
towards achieving this objective is a full understanding
of the mechanisms involved in I/R injury in these
marginal organs.

Starvation

The preexistent nutritional status is a major determi-
nant of hepatocyte injury associated with I/R. Based
on the nutritional status, several studies in experimen-
tal animals and in man support the hypothesis that
the availability of glycolytic substrates is important for
maintenance of hepatic ATP levels during ischemia
and functional recovery during reperfusion (63–65).
Fasting exacerbates I/R injury because the low content
of glycogen stores results in a more rapid ATP fall
during ischemia, when the oxidative phosphorylation
is inhibited and glycogen must supply glucose for
glycolytic ATP generation (5, 66). In addition, fasting
causes alteration in tissue antioxidant defenses,
accelerates the conversion of xanthine dehydrogenase
to xanthine oxidase during hypoxia and induces
mitochondrial alterations. In fact, Caraceni et al. (67)
have shown that mitochondrial damage is greatly
enhanced by fasting which decreases the hepatic con-
tent of antioxidants and therefore sensitizes the mito-
chondria to the injurious actions of ROS (51, 68). An
important observation is the close association between

the nutritional status and the mitochondrial content
of the catalytic F1 subunit of the F0F1-ATP synthase, an
enzymatic complex involved in ATP synthesis (69).
The fasting-induced exacerbation of oxidative stress is
likely to have contributed to the very low levels of the
F1 subunit observed in starved rats. Indeed, under
fasting conditions, the fall of mitochondrial GSH
affects the protein sulfhydril pool, whose reduced form
is necessary for the preservation of proteins (70) and
which can, in turn, predispose to the oxidation of
enzymes containing functional sulfhydril groups, such
as b-F1 subunit (71). Taking these observations into
account, it has been suggested that an artificial nutri-
tional support, which may also include an adequate
content of antioxidants, may represent a new approach
for the prevention of reperfusion injury in fasted livers
(66). On the other hand, it has been reported that
fasting can improve organ viability and survival
(72–74). Fasting reduces phagocytosis and the genera-
tion of TNF-a; both parameters indicate impaired KC
function in fasted livers. Because activation of KC is
important for reperfusion injury, metabolic inactiva-
tion of these cells can be beneficial (72). Although
these reports appear to contradict the other reports
mentioned above, which indicated the injurious effects
induced by fasting conditions, it is important to
consider the different experimental conditions in these
investigations. A beneficial effect of high glycogen
content can mainly be expected under conditions of
long preservation times and long periods of warm
ischemia. Under these conditions, high metabolic
reserves of the liver may attenuate ischemic cell injury
and preserve defense functions against cytotoxic med-
iators of KC. On the other hand, short ischemic
periods require lower metabolic reserves, and the
extent of KC activation can be the dominant factor in
early graft injury (63).

Aged

A number of distinct age-related alterations have been
identified in the hepatic inflammatory response to
hepatic I/R, including cell-specific alterations in the
activation of inflammatory transcription factors and
expression of cytoprotective proteins (75–78). Under
warm hepatic ischemia, mature adult mice had a much
increased neutrophil function, increased intracellular
oxidants and decreased mitochondrial function, com-
pared with young adult mice. These alterations con-
tributed to the increased liver injury after I/R in
mature adult mice compared with young adult mice
Specifically, mature adult mice had much lower hepa-
tic expression of the cytoprotective protein, heat shock
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protein (HSP) 70 (HSP70), than did young adult
mice. In contrast, serum HSP70 levels which have
been linked to subsequent tissue injury, were
higher in mature adult mice than in young adult mice
(78). The age appears to be a condition which influ-
ences the sensitivity of the liver to oxidative stress
(75–78). The results obtained in an experimental
model of isolated perfused liver indicate that,
during reperfusion, livers obtained from old rats
generate an amount of oxyradicals lower than livers
from young rats. This fact could be explained by
the lower KC activity, the reduction of liver blood
flow, and the impaired functions and structural
alterations observed in the livers of old rats (75). In
fact, in hepatocytes from mature adult mice, delayed
activation of NF-kB in response to TNF-a and
virtually no production of MIP-2 has been detected,
which may be due to an age-related defect in hepa-
tocytes (78).

Steatosis

Several hypothesis have been suggested to explain the
decreased tolerance of steatotic liver to I/R injury
compared with non-steatotic livers. Besides the im-
pairment of the microcirculation, which is considered
a major event of reperfusion injury in steatotic livers
(66, 79–81), hepatocyte damage appears remarkably
higher in steatotic livers than in non-steatotic livers
(82, 83). Several evidences indicate that an increased
sensitivity of fatty hepatocytes to the injurious effects
of ROS could explain the poor tolerance of steatotic
livers to I/R (84–86). Mitochondrial ROS generation
dramatically increases during reperfusion and mito-
chondrial structures are exposed to the attack of
the ROS generated both outside and inside these
organelles leading eventually to the dysfunction of
important mitochondrial processes including those
responsible for the ATP synthesis. It is well-known
that steatotic livers synthesise less ATP than non-
steatotic livers during postischemic reperfusion (87).
Different works have been focused on preventing the
increased oxidative stress observed in steatotic livers
(85, 88, 89). However, until now, data about the
effectiveness of the administration of antioxidants on
the deleterious effects of ROS in steatotic livers was
controversial. Some studies in obese Zucker rats, a
well-characterized model of nutritionally induced
obesity, indicated that the administration of tocopher-
ol, which possesses antioxidant properties, improved
tolerance to warm ischemia. However, other experi-
mental studies in steatotic livers, induced by a
choline–methionine-deficient diet, show that the ad-

ministration of GSH precursors, such as N-acetylcys-
teine, could help to restore hepatocellular integrity in
the steatotic liver but without scavenging free radical.
In addition, both dietary high fat and alcohol exposure
produced SOD/catalase-insensitive ROS that may be
involved in the mechanism of failure of steatotic livers
after orthotopic LT (85, 88–90). The difficulties that
have been found when attempting to prevent I/R
injury in steatotic livers with therapies aimed at
inhibiting ROS production have also been evidenced
with caspase inhibitors (32, 82), No donors (91) and
heme-oxygenase-1 (HO-1) activators (92). Results
obtained under warm hepatic ischemia indicate that
apoptosis was the predominant form of hepatocyte
death in the ischemic non-steatotic liver, whereas the
steatotic livers developed massive necrosis after an
ischemic insult. Thus, caspase inhibition, a highly
protective strategy in non-steatotic livers, had no effect
on hepatocyte injury in steatotic livers (82). In the
experimental model of LT, exogenous no protected
non-steatotic grafts but was ineffective in presence of
steatosis. The injurious effects of exogenous NO
donors on hepatic injury and oxidative stress in
steatotic grafts could be explained by peroxinitrite
generation caused by ROS overproduction (91). HO-
1 activators such as cobalt(III) protoporphyrin IX,
might protect both liver types against warm I/R injury.
However, a lower dose of HO-1 activator was required
to protect steatotic livers effectively, as steatotic livers
undergoing I/R showed higher HO-1 levels than non-
steatotic livers (92).

In regard to the mechanisms involved in hepatic I/R
injury in relation to the type of steatosis, neutrophils
have been involved in the increased vulnerability of
steatotic livers to I/R injury, especially in alcoholic
steatotic livers. However, neutrophils do not account
for the differentially greater injury in the non-alco-
holic steatotic liver during the early or late hours of
reperfusion. Similarly, the role of TNF in the vulner-
ability of steatotic livers to I/R injury may be depen-
dent on the type of steatosis (88, 93). These
observations could be of clinical interest because
pharmacological strategies that could be effective in
alcoholic fatty livers by reducing the neutrophil infil-
tration and or TNF action may not be sufficient to
reduce the hepatic I/R injury in non-alcoholic fatty
livers.

All the aforementioned results point up the fact that
the different mechanisms of cell death in steatotic vs.
non-steatotic livers as well the differences in the
mechanisms involved in hepatic I/R injury in terms of
the type of esteatosis could explain the difficulties in
effectively preventing steatotic livers from I/R injury.
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Thus, therapies which are effective in non-steatotic
livers may either prove useless in the presence of
steatosis or the effective drug dose may differ between
the two types of grafts (13, 91, 92). On the other hand,
there may be drugs that would only be effective in
steatotic livers (94, 95).

What is the response of the hepatocyte to a
brief period of ischemia before a prolonged
ischemia?

The response of hepatocyte to ischemia never ceases to
be surprising. In fact, contrary to what might be
expected, the induction of consecutive periods of
ischemia to the liver does not provoke an additive
effect in terms of the hepatocyte lesion. Murry et al.
(96) have reported that ischemic preconditioning (IP)
based on a brief period of ischemia followed by a short
interval of reperfusion before a prolonged ischemic
stress protects against I/R injury (Fig. 2). The mole-

cular basis for IP consists of a sequence of events: in
response to the triggers of IP, a signal must be rapidly
generated which is then transduced into an intracel-
lular message leading to the amplification of the
effector mechanism of protection (97, 98). As in the
pathophysiology of hepatic I/R, in the modulation of
hepatic injury induced by IP there is a complex
interaction between different cell types. The present
review is focused on some of the proposed mechan-
isms leading to the development of hepatocyte resis-
tance to I/R injury following hepatic IP. Experimental
studies in isolated hepatocytes indicate that the stimu-
lation by adenosine of adenosine A2 receptors induces
a network of signals involving Gi proteins, phospholi-
pase C (PLC) and phosphatidylinositol 3-kinase
(PI3K) that mediate that sequential activation of
protein kinase C (PKC) and p38. No release through
the activation of guanylate cyclase (cG-S) can also
stimulate p38 MAPK (99, 100). In addition, the
generation of AMP by IP could induce the activation
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Fig. 2. Proposed mechanisms involved in the benefits of ischemic preconditioning on hepatic ischemia-reperfusion injury.
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of AMP-dependent kinase (AMPK) (101, 102). The
signals transduced by p38 MAPK, protein kinase B
(PKB/Akt) and AMPK can activate a variety of me-
chanisms able to preserve energy metabolism, mito-
chondrial functions, pH and ion homeostasis as well as
to reduce oxidative stress (99). IP via AMPK activa-
tion, reduced the ATP depletion thus attenuating the
accumulation of glycolytic intermediates and lactate
production during hepatic sustained ischemia (101,
102). The benefits of IP on oxidative stress could be
explained by the induction of antioxidants, such as
SOD and HSPs (15, 97, 99, 103) as well as by its effect
on xanthine dehydrogenase/xanthine oxidase. IP re-
duced the accumulation of xanthine during ischemia
and prevented the conversion of XDH to XOD, thus
preventing the deleterious effect of this ROS generat-
ing system on liver (39, 97, 104). It is possible that
nuclear factor kB (NFkB) and p38MAPK-regulated
transcription factors (ATF-2 and MEF2C) might be
responsible for inducing the expression of protective
genes, including SOD (99, 105). IP signals also activate
heat shock transcription factor 1 (HSF1), and its
binding to specific heat shock recognition sequences
(HES) in the DNA leads to the production of HSP27,
HSP70, and HO-1. It is also possible that HSPs might
contribute to improve membrane potential and re-
spiratory control in hepatic mitochondria, allowing a
faster recovery of ATP on reoxygenation (99, 106, 107).
The modulation of inflammatory response by hepatic
IP has been also reported in different experimental
models of warm and cold hepatic ischemia. IP reduces
neutrophil accumulation, and the generation of ROS
and proinflammatory cytokines including TNF and
IL-1 from KC (13, 97, 98, 108, 109). The benefits of IP
were also observed on hepatic microcirculation by
inhibiting the effects of different vasoconstrictor med-
iators such as ETs, thus ameliorating sinusoidal perfu-
sion and microvascular dysfunction (10, 110). The
combination of these effects decreases liver cell sus-
ceptibility to necrosis and/or apoptosis in response
to I/R.

The benefits of IP observed in experimental models
of hepatic warm and cold ischemia created the need
for human trials of IP. To date, IP has been successfully
applied in human liver resections in both steatotic and
non-steatotic livers (21, 104). The effectiveness of IP in
hepatic surgery was first reported by Clavien, but
unfortunately, in this study, it proved ineffective in
elderly patients (111, 112). Prevention of posthepa-
tectomy liver insufficiency by IP, particularly in pa-
tients with cirrhotic or steatotic livers has also been
demonstrated (113). A recent clinical study by Koneru
and colleagues shows no effects of IP on cadaveric

donor livers compared with controls. However, the
study consisted of clamping the hepatic vessels for a
period of 5 min and, as the authors concluded, that
may be insufficient time to obtain a beneficial effect
from IP (84). Another clinical study carried out by
Azoulay and colleagues using the model of cadaveric
whole LT has shown that IP based on 10 min of
ischemia was associated with better tolerance to ische-
mia. However, this was at the price of decreased early
function (114). Jassem and colleagues have concluded
that 10 min of preconditioning is effective to protect
cadaveric donor allografts from cold ischemia, reduces
inflammatory response and results in better graft
function (115). Further randomized clinical studies
are necessary to confirm whether IP is appropriate for
LT in clinical practice. The potential applications of IP
in human LT are numerous. IP also has the potential to
increase the number of organs suitable for LT as it can
improve the outcome for marginal grafts that would
not otherwise have been transplanted. Its benefits to
reduce the vulnerability of steatotic grafts to I/R injury
have also been reported in different experimental
studies of LT (54, 91). Again, IP may also have a role
in the transplantation of small grafts whose pathophy-
siology overlaps with I/R injury. In fact, a study
published by Barrier et al. (116)in 2005 has shown the
benefits of IP in transplantation from living human
liver donors.
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