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ABSTRACT 
 
This paper analyzes the long-term dynamics of Chinese stock market prices, 
using the data series of daily closing spot price indices from Shanghai and 
Shenzhen stock markets, two major stock exchange markets in China. Both 
autoregressive and fractional models have been employed: in the former case, 
we implement standard unit root tests to determine the nonstationarity; while 
for the fractional I(d) models, we use a parametric testing procedure developed 
by Robinson (1994) and a semiparametric estimation method based on a “local” 
Whittle estimate of d (Robinson, 1995). The results show strong evidence in 
favour of unit roots and thus lack of mean reverting behaviour for the log-prices 
series, when using both the classical methods based on integer degrees of 
differentiation but also when applying fractionally integrated techniques. On the 
other hand, when examining the volatility processes by means of studying the 
absolute and the squared returns series, the results strongly support the view of 
fractional integration in all cases, with the orders of integration fluctuating in the 
range (0, 0.5).  This implies stationary long memory in volatility.  
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1. Introduction 

The statistical modelling of financial time series data such as asset prices plays an 

important role in portfolio management. Despite the extensive theoretical and empirical 

literature of the last thirty years, there is still no consensus on what might be the most 

adequate model specification for many financial series. Thus, for example, whether asset 

returns of asset prices are predictable or not is still controversial. While the efficiency 

market hypothesis suggests that they should follow an I(1) random walk (see Fama, 

1970; Summers, 1986), other authors have found evidence of mean reversion in their 

behaviour (see, e.g., Poterba and Summers, 1988 and Fama and French, 1988). The 

standard econometric approach to settle this issue empirically relies on establishing the 

(integer) order of integration of the series by carrying out nonstationary unit root tests. 

However most of the methods employed in this context have extremely low power if the 

true data generating process is integrated of a fractional order. Therefore, the possibility 

of fractional orders of integration with a slow rate of decay has also been taken into 

account. Time series exhibiting long memory or fractional integration are characterized 

by a strong dependence between distant observations in time, which implies that their 

autocorrelation functions decay hyperbolically contrary to the faster exponential decay 

which characterizes traditional autoregressive moving average models.  Moreover, these 

models (based on a non-integer degree of differentiation) imply the existence of a degree 

of predictability in the time series behavior, rejecting thus the hypothesis of efficiency in 

the stock markets. 

Long memory specifications have been used for financial data: Crato (1994), 

Cheung and Lai (1995), Barkoulas and Baum (1996), Barkoulas, Baum, and Travlos 

(2000), Sadique and Silvapulle (2001), Henry (2002), Tolvi (2003) and Gil-Alana (2006) 
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among others. For developed markets, Crato (1994) studied the stock index of the G-7 

using a fractionally integrated autoregressive moving average (ARFIMA) model, which 

allows the integration order to take non-integer value between 0 and 1; Mills (1993) 

applied a similar model to UK stock series; Barkoulas and Baum (1996) and Hiemstra 

and Jones (1997), not only focused on the stock indices, but also examined individual 

U.S. stocks. Both of these find evidence of statistically significant long memory for some 

stocks; Lillo and Farmer (2004) studied the long memory properties for the signs of order 

in London Stock Exchange using the Hurst exponent. Using also a fractional model, 

Caporale and Gil-Alana (2002) found that there is no permanent component in US stock 

market returns, since the series examined is close to being I(0). Caporale and Gil-Alana 

(2007) decomposed the stochastic process followed by US stock prices into a long-run 

component described by the fractional differencing parameter (d) and a short-run 

(ARMA) structure. Empirical support for non-linear asset pricing models (such as the 

one by Dittmar, 2002) has also been found (see, inter alia, Hossein and Sonnie, 2008). 

On the other hand, several studies have reported favorable evidence of long 

memory dynamics for emerging and developing markets: Madhusoodanan (1998), 

provides evidence of long memory on the individual stocks in the Indian Stock 

Exchange, and Golaka (2002) also gives significant indication of long memory for all 

time lags in India; Similar evidence on the Greek financial market is given by Barkoulas, 

Baum and Travlos (2000); the stock market in Finland is analyzed by Tolvi (2003); In 

addition, Costa and Vasconcelos (2003) investigated the Ibovespa index of the São Paulo 

Stock Exchange and appeared to have detected the existence of long memory; Matos et 

al. (2004) found similar evidence by analyzing the time series structure of the Portuguese 
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stock market index from 1993 to 2001, and Disario et al. (2007) for the daily returns of 

the Istanbul Stock Exchange National 100 Index.  

Since developing markets do not always seem to behave as expected, and more 

precisely, the efficient market hypothesis may not necessarily hold for returns of stocks 

in emerging markets, it is more likely that long memory will be detected in them. In this 

paper, we look at the data for the case of China. Since Chinese stock market is one of the 

largest emerging financial markets, we expect to find the existence of long memory in 

the results of our analysis.  

The case of stock market in China has been investigated in some recent papers. 

Thus, for example, Qian et al. (2008) performed threshold unit root tests developed by 

Caner and Hansen (2001) and applied them to the Shanghai Stock Exchange Composite 

(SSEC) index for the time period 1990m12 – 2007m6. They obtained evidence of non-

linear behaviour with two regimes and unit roots in the two regimes. In another recent 

paper, Gu and Zhou (2009) provide evidence of long memory in the volatility of Chinese 

stock returns. Similar evidence is also found in Ren and Zhou (2008), Ren, Gu and Zhou 

(2009) and Ren, Guo and Zhou (2009). Our results support the view that the Chinese 

stock market is inefficient, with the volatility process presenting also a degree of 

predictability in its behaviour. 

This paper innovates with respect to the above literature in the use of I(d) 

techniques in both the returns and the volatility in the Chinese stock market. Moreover, 

we use a methodology that is supposed to be the most efficient one in the context of 

fractional integration. 

The structure of the paper is as follows. Section 2 briefly describes the main 

features of the Chinese stock market, focussing on the Shanghai and Shenzhen indices. 



 5 

Section 3 deals with the methodology used in the paper based on unit roots and fractional 

integration. Section 4 describes the empirical results, while Section 5 contains some 

concluding comments. 

 

2. The stock market in China 

Many investors believe that countries with expected rapid growth are the best places to 

invest. Over the last decade, China‟s average annual GDP growth was 9.2%. However, 

China‟s stock markets, as one of the emerging markets, with high degree of 

governmental and public interventions, appear to dish up the worst combination: 

macroeconomic booms and high volatility of the stock markets. Does market efficiency 

hold in China‟s stock markets? 

Various  methodologies  have  been  used to test the efficient market hypothesis 

for Chinese stock markets: Charles and Darne (2009) analyze the efficiency of the 

Chinese stock markets using variance ratio tests and conclude that RMB (Chinese 

currency) denominated shares (A-shares) appear to follow a random-walk. They 

explained that liquidity; market capitalization and information asymmetry can play a role 

in explaining the weak form efficiency. Beltratti et al. (2009) analyze the stock price 

effects of the changes in ownership structure derived of the conversion of non-tradable 

shares into tradable ones in 2005-2006, and find that the price of stocks are characterized 

by lower liquidity; inactive investors and less transparency before the reform tend to 

benefit most from it. Thus, they conclude that the recent financial reforms significantly 

improved Chinese stock market fundamentals. 

Other researchers have reported that China‟s stock market has unique attributes 

that challenge traditional asset pricing models and the theory of rationality. For instance, 
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Lee et al. (2001) examined time-series features of stock returns and volatility in China‟s 

stock exchanges. They provided strong evidence of time-varying volatility and indicated 

that volatility is highly-persistent and predictable. Moreover, evidence in support of a fat-

tailed conditional distribution of returns was found.  Kang et al. (2002) suggest that the 

lack of rigorous stock analysis and research may have led to the perception that prices are 

driven by sentiment as much as by other factors. Drew et al. (2003) suggest that the 

Chinese market is difficult to comprehend using conventional analysis. The authors 

document in their result that book-to-market equity generates on average a negative 

monthly return that may come from investors‟ misvaluation. Burdekin and Redferin 

(2009) present evidence that individuals react to the real return on deposits (the risk-free 

asset) and equity markets relative performance and risk perception. Finally, Eun and 

Huang (2007) find that while the market risk (beta) is not priced, there is a significantly 

negative relationship between firm-specific risk and expected returns in China. 

According to historical data, there are two main boom and two bust periods in 

China‟s stock market since April 1999: The first pronounced boom started in the autumn 

of 2006 and ended early 2008, while a shorter stock market boom occurred around mid-

2009. The first identified bust in China‟s stock market was between end-1999 and early 

2000, the second between mid-2004 and mid-2005. In fact, during last decade, the 

Chinese financial system has been subjected to substantial reforms with far reaching 

consequences. These reforms process has helped in dramatic improvement in 

transparency level in financial markets including stock market. There have been 

significant changes in the regulations for smooth and efficient functioning of capital 

market in the country. The country has also experienced the mild contagion effect of 

financial crisis in international markets and successfully sailed through the period of 
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Asian crisis not significantly jeopardizing the interest of the domestic economy. The 

market has undergone substantial changes due to the introduction of hedging products 

like futures and options. Risk management system has been changing in keeping pace 

with change in the scenario. The international investors‟ access to the domestic market 

has also helped in increasing liquidity. All these helped in better dissemination of 

information and hence possibly increased the level of efficiency in asset prices.  

On the background of this, it has become important to test the existence of long 

memory in the Chinese market taking the stock market data during the time when 

substantial regulatory changes have taken place and the market practices have changed 

dramatically and various hedge products have been introduced to improve the risk 

management. 

 

3. Methodology 

To determine the degree of nonstationarity in economic and financial time series data, 

unit root testing procedures have been widely employed. Among them, the Augmented 

Dickey-Fuller (ADF, Dickey and Fuller, 1979) test has been the most widely used. In its 

simplest version, this procedure uses the model, 

,)1( tt uyL       (1) 

where ut is a white noise process, and where the unit root corresponds to the null: 

.1: oH      (2) 

In this context, the process is stationary as long as │α│ < 1. It contains a unit root if α = 

1, and the process is explosive in case of │α│> 1. Thus, we observe an abrupt change in 

the limit behavior around the unit root case. On the other hand, we can consider 

fractional alternatives of form: 
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,)1( tt

d uyL      (3) 

where the unit root corresponds now to the null, 

.1: dHo      (4) 

In this case, yt is covariance stationary as long as d is smaller than 0.5, and then, as d 

increases above 0.5 throughout 1, the process is becoming “more nonstationary” in the 

sense for example that the partial sums increase in magnitude with d. Nevertheless, we 

do not observe an abrupt change around the case of a unit root as in the autoregressive 

models. The models in (1) and (3) can be extended to the case of weak autocorrelation 

(e.g., ARMA) for the I(0) error term ut. Thus, for example, if ut is ARMA(p, q) in (3), yt 

is said to be a fractional ARIMA (ARFIMA(p, d, q)) process and displays long memory 

as long as d is positive. 

In this paper we will employ procedures based on the two types of alternatives 

just presented, that is, autoregressive and fractional models of form as in (1) and (3). In 

the former case, we will implement ADF tests along with other standard unit root 

methods like the tests of Phillips and Perron (PP, 1988) and Kwiatkowski et al. (KPSS, 

1992). Using the fractional specification, we will make use of a parametric testing 

procedure developed by Robinson (1994) and a semiparametric estimation method based 

on a “local” Whittle estimate of d (Robinson, 1995). We briefly present the two 

fractional methods.
1
 

Robinson‟s (1994) method is a testing procedure based on the Lagrange 

Multiplier (LM) principle that uses the Whittle function in the frequency domain. It tests 

the null hypothesis: 

                                                           
1
  We do not describe the unit root methods since they have been widely employed in economics during the 

last twenty years. 
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,: oo ddH           (5)  

for any real value do, in a model given by equation (3), where xt can be the errors in a 

regression model of form: 

            ...,2,1'  txzy ttt              (6) 

where yt is the time series we observe; zt is a (kx1) vector of exogenous variables;  is a 

(kx1) vector of unknown parameter and xt is given by (3). Based on Ho (5), Robinson 

(1994) showed that, under certain very mild regularity conditions, the LM-based statistic 

)ˆ(r  satisfies: 

,)1,0(ˆ  TasNr dtb  

where “ →dtb “ stands for convergence in distribution, and this limit behaviour holds 

independently of the regressors used in (6) and the specific model for the I(0) 

disturbances ut in (3). Moreover, Gaussianity is not a requirement, a moment condition of 

only 2 being necessary, and this method is the most efficient one in the Pitman sense 

against local departures from the null.
 2

  

As in other standard large-sample testing situations, Wald and LR test statistics 

against fractional alternatives will have the same null and limit theory as the LM test of 

Robinson (1994). In fact, Lobato and Velasco (2007) essentially employed such a Wald 

testing procedure, and though this and other recent methods such as the one developed by 

Demetrescu et al (2008) have been shown to be robust with respect to even unconditional 

heteroscedasticity (Kew and Harris 2009) they require an efficient estimate of d, and 

therefore the LM test of Robinson (1994) seems computationally more attractive. 

                                                           
2
 The functional form of this procedure can be found in any of the numerous empirical applications based 

on his tests (e.g. Gil-Alana and Robinson 1997; Gil-Alana 2000; Gil-Alana and Henry 2003; etc.). 
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Additionally we employ a semiparametric method (Robinson 1995) which is 

essentially a local „Whittle estimator‟ in the frequency domain, using a band of 

frequencies that degenerates to zero. The estimator is implicitly defined by: 

,log
1

2)(logminargˆ

1
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and d  (-0.5, 0.5). Under finiteness of the fourth moment and other mild conditions, 

Robinson (1995) proved that: 

,)4/1,0()ˆ( *  TasNddm dtb  

where d
*
 is the true value of d. This estimator is robust to a certain degree of conditional 

heteroskedasticity (Robinson and Henry 1999) and is more efficient than other semi-

parametric competitors. 

Although there exists further refinements of this procedure, (Velasco 1999; 

Phillips and Shimotsu 2004; Abadir et al 2007; etc.), these methods require additional 

user-chosen parameters, and the estimates of d may be very sensitive to the choice of 

these parameters. In this respect, the method of Robinson (1995) seems computationally 

simpler. 
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4. Data and empirical results 

The series examined in this work are the closing spot price indices, at a daily frequency, 

from Shanghai and Shenzhen stock markets, two of the stock exchange markets in China. 

The two indices are the Shanghai Composite Index, which is an index of all stocks (A-

shares and B-shares) that are traded at the Shanghai Stock Exchange (SSE), and the 

Shenzhen Component Index, which is an index of 40 selected stocks that are traded at the 

Shenzhen Stock Exchange (SZSE). We choose these two indices since they are the two 

most typical references of indicating Chinese stock market situations. The time range of 

both these two indices is January 04, 1999 to July 09, 2010: a total of 2,779 observations 

individually, obtained from the Bloomberg database. We do not start the sample earlier 

because, before 1999, trading was not very active and information disclosure 

requirements were rather poor. The returns are computed as logarithmic differences of 

the original index series.  

 

[Insert Figure 1 about here] 

  

 Figure 1 displays the time series plots of the original indices, their logged values 

and the returns, computed as the first differences of the logged indices. The values are 

very similar for the two series and also between the original and the log-transformed 

data. The returns series may display a degree of conditional heteroskedasticity though 

this is irrelevant for our purpose of detecting long memory and the order of integration of 

the series since the methods employed in the paper are robust against heteroskedastic 

errors. 
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As mentioned above, before analyzing the long memory in returns, first, we test 

whether the log-transformed indices and/or the returns are stationary/nonstationary, using 

ADF, PP and KPSS unit root tests. These tests differ in the null hypothesis. The null 

hypothesis of the ADF and PP tests is that the series has a unit root; while that of KPSS 

test is that the series is stationary I(0).  

 

[Insert Table 1 about here] 

 

Table 1 reports the results based on the three unit root tests, using both the log-

transformed series and their first differences (the returns), for the two indices. As we can 

see, the three procedures give similar results: for the log-transformed series, both the 

ADF and the PP tests indicate that we cannot reject their null hypotheses, which indicates 

that the series are nonstationary I(1); while the KPSS test results support the rejection of 

its null hypothesis, which also means that the series are nonstationary; on the other hand, 

for the returns, the ADF and the PP tests show evidence of stationary I(0) returns; while 

the KPSS test statistics also indicate evidence of stationarity.  

As a conclusion, the results reported so far and based on integer degrees of 

differentiation using AR alternatives clearly indicate that the log-prices series are 

nonstationary I(1) and consequently that the returns are I(0). However, as earlier 

mentioned the results displayed above may be biased due to the low power of these tests 

in the context of fractional alternatives.
3
 Thus, in what follows we consider fractional 

models. 

                                                           
3
 The low power of standard unit root tests in the context of fractional integration has been studied among 

others by Diebold and Rudebusch (1991), Hassler and Wolters (1994) and Lee and Schmidt (1996). 
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 First, we employ Robinson‟s (1994) parametric approach, and the results in terms 

of the estimated values of d are reported in Table 2. We report the estimated values of d 

in a model given by 

,)1(; tt

d

tt uxLxty     (5) 

where yt is the observed time series; α and β are the coefficients corresponding 

respectively to the intercept and a linear trend, and xt is supposed to be an I(d) process. 

Thus, ut is I(0) and given the parametric nature of this method we must specify its 

functional form. We will first assume that ut is white noise. Then we will consider the 

case of autocorrelated errors, supposing that ut is an AR(1) model, and finally we will 

impose the exponential spectral model of Bloomfield (1973). This is a non-parametric 

approach for modeling ut that produces autocorrelations decaying exponentially as in the 

AR(MA) case. The main advantage of the Bloomfield approach is that it mimics the 

behavior of ARMA structures with a small number of parameters. Moreover, it is 

stationary independently of the values of its coefficients unlike what happens in the AR 

case.
4
 

 

[Insert Table 2 about here] 

 

 Table 2 displays the estimates of d (along with the 95% confidence bands 

corresponding to the non-rejection values of d using Robinson‟s (1994) tests) for the 

three types of disturbances (white noise, AR and Bloomfield) for the three standard cases 

                                                           
4
 See Gil-Alana (2004) for the advantages of the model of Bloomfield (1973) in the context of Robinson‟s 

(1994) tests. 
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of: i) no regressors (i.e., α = β = 0 a priori in (5)), an intercept (α unknown and β = 0 a 

priori), and an intercept with a linear time trend (i.e., α and β unknown). 

 The upper part of the table refers to the Shanghai Composite Index. We observe 

here that if ut is white noise the estimated value of is very close to 1 and the unit root null 

cannot be rejected. Therefore, according to this simple specification, this stock market 

may be efficient. However, allowing for autocorrelated errors, the estimated values of d 

are slightly above 1 (around 1.04) and the unit root null is now rejected at conventional 

statistical levels. 

 The results for the Shenzhen Component Index are displayed in the lower part of 

the table. In general, the values are slightly higher than in the other series. If we do not 

include deterministic terms the I(1) null cannot be rejected, however, this hypothesis is 

decisively  rejected in favor of d > 1 with an intercept and/or a linear trend.
5
 

 

[Insert Figure 2 about here] 

 

 Figure 2 refers to the semiparametric method of Robinson (1995). We display the 

estimates of d along with the 95% confidence interval corresponding to the I(1) case. The 

horizontal axis refers to the bandwidth number while the vertical one represents the 

estimates of d. We observe that if the bandwidth number is low, the estimates are above 

the I(1) interval in the two series. In case of large bandwidth numbers, the estimates of 

the Shanghai index are within the unit root case, while those of the Shenzhen are still 

                                                           
5
  Though not reported the time trend coefficients were found to be statistically insignificant in all cases 

while the intercepts were found significantly different from zero. According to this specification, d is found 

to be slightly above 1 in the two series. 
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above 1.
6
 This is consistent with the results reported for the parametric case where a 

slightly higher degree of integration is observed in the Shenzhen index over the Shanghai 

Composite Index. Nevertheless, these results strongly reject the hypothesis of mean 

reversion in the two Chinese stock markets. 

 Next we focus on the volatility processes and use two measures as proxies for the 

volatility: the squared and the absolute returns. These two measures have been widely 

employed in the financial literature to measure volatility. Thus, for example, absolute 

returns were employed among others by Ding et al. (1993), Granger and Ding (1996), 

Bollerslev and Wright (2000), Gil-Alana (2005), Cavalcante and Assaf (2004), 

Sibbertsen (2004) and Cotter (2005), whereas squared returns were used in Lobato and 

Savin (1998), Gil-Alana (2003), Cavalcante and Assaf (2004) and Cotter (2005). 

 

[Insert Tables 3 and 4 about here]                         

 

            Tables 3 and 4 report the unit root tests results for the absolute and the squared 

returns in the two markets, respectively. As we can see, the three unit root tests give 

contradictory results: with the ADF and the PP tests, we reject the null hypothesis of 

nonstationarity I(1) in both absolute and squared returns; while using the KPSS tests, we 

reject the null hypothesis, indicating that absolute and squared returns series are I(1). As 

argued before, these inconsistent results might come from the too restrictive assumptions 

imposed by the standard unit root tests and that only consider integer degrees of 

differentiation. So, next we consider the possibility of fractional orders of integration, 

allowing for a slow rate of decay in the autocorrelations. 

                                                           
6
 The bandwidth determines the trade-off between the bias and the variance in the estimation of d. 
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First we look at the absolute returns using the parametric method of Robinson 

(1994). The results are displayed in Table 5. We see that in all cases and for the two 

series, the estimates are in the range (0, 0.5) implying long memory and stationary 

returns.
7
 As before, the estimates of d are slightly higher for the Shenzhen than for the 

Shanghai series, and another feature observed in the two series is that the estimated 

values of d differ across the different types of disturbances. Thus, if ut is white noise, the 

values are around 0.16 in the two series; using AR(1) disturbances they are around 0.23 

for the Shanghai absolute returns and around 0.24 for the Shenzhen returns, and finally, 

using the model of Bloomfield (1973) the values are around 0.26 in the two cases. 

Because of this, we also implement a semiparametric approach that is robust to the type 

of I(0) disturbances. 

 

[Insert Table 5 and Figure 3 about here] 

 

 Figure 3 displays the values for the absolute returns using the semiparametric 

“local” Whittle method of Robinson (1995). In this figure we also display the 95% 

confidence bands for the I(0) and the I(1) cases. We observe that, independently of the 

bandwidth number, the estimates are outside the two confidence bands, which is 

consistent with the previous results of fractional orders of integration. 

 

[Insert Table 6 and Figure 4 about here] 

 

                                                           
7
 Remember that in the I(d) case, the process is stationary if d < 0.5. On the other hand, if 0.5 ≤ d < 1 the 

process is no longer covariance stationary though it is still mean reverting. 
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 Table 6 and Figure 4 are similar to the above but referring now to the squared 

returns. As with the absolute values, the estimated values of d are in the range (0, 0.5) 

implying stationary long memory volatility. Here we observe much higher values for the 

Shenzhen squared returns compared with those of the Shanghai index, especially in the 

case of autocorrelated errors. The long memory property observed in the volatility 

process is consistent with the results obtained in other more developed markets, implying 

inefficiencies and predictability in the volatility processes. Other more elaborated models 

taking into account noise effects, such as the long memory stochastic volatility (LMSV) 

models or the fractionally integrated exponential generalized autoregressive conditional 

heteroskedasticity (FIEGARCH) models can also be implemented in these series to 

examine the long memory in the volatility. 

 

5. Concluding comments 

In this article we have examined the dynamics underlying the Chinese stock market 

indices. In particular we have focussed on two well-known indices, the Shanghai 

Composite Index and the Shenzhen Component Index, daily, for the time period January 

04, 1999 – July 09, 2010. In both cases, the results are similar to those obtained in other 

stock markets. Thus, for the log-prices series we obtain strong evidence in favour of I(d) 

models with d equal to or higher than 1, and thus implying lack of mean reverting 

behaviour. This result is obtained when using both the classical methods based on integer 

degrees of differentiation but also when applying fractionally integrated techniques. 

Moreover, it is consistent with the results obtained in Qian et al. (2008) though these 

authors use a completely different methodology. The fact that the two series may present 
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a degree of long memory after first differences indicates a degree of predictability in their 

behaviour and thus, lack of efficiency in the Chinese stock market. 

On the other hand we have also examined the volatility processes by means of 

studying the absolute and the squared returns series. The results here strongly support the 

view of fractional integration in all cases, with the orders of integration fluctuating in the 

range (0, 0.5).  This implies long memory in volatility: the series are still covariance 

stationary but the autocorrelations are positive and take longer to disappear than in the 

I(0) (short memory) case.  Again this result is in line with that obtained by other authors 

when using other methodologies (Ren and Zhou, 2008; Gu and Zhou, 2009; etc.) and 

imply a degree of predictability in the volatility series.  

The existence of long memory in Chinese stock market suggests that the future 

volatility depends on its past realizations and therefore, is predictable: that is, the market 

indices consist of the impact of news and shocks occurred in the recent (and no so- 

recent) past, showing that speculative earnings could be gained by predicting stock 

prices, which is inconsistent with the efficient market hypothesis. The next step in this 

context should be to correctly determine the most adequate specification for these two 

series, which is crucial for financial analysts in order to forecast the short (and long) run 

evolution of the prices. In line with this, multivariate methods still in the context of 

fractional integration may be conducted in these two series, and based on the fact that the 

two individual series may display the same degree of integration, the possibility of 

fractional cointegration is a future avenue that will be investigated in future papers. 
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Figure 1: Original time series, log-transformation and their corresponding returns 
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Table 1: Unit Root Tests in the log prices indices and the returns 

 Shanghai Composite Index Shenzhen Component Index 

Level Difference Level  Difference 

ADF 
-1.448 

(-3.433) 

-53.495 

(-3.433) 

-0.786 

(-3.433) 

-28.670 

(-3.433) 

PP 
-1.466 

(-3.433) 

-53.489 

(-3.433) 

-0.861 

(-3.433) 

-50.625 

(-3.433) 

KPSS 
2.490 

 (0.739) 

0.130 

(0.739) 

3.728 

(0.739) 

0.120 

(0.739) 

The significance level is 1%.  

 

 

 

 

 

 

Table 2: Estimates of d in the (log-) stock market indices 

i) Shanghai Composite Index 

 No regressors With an intercept With a linear trend 

White noise 1.000 

(0.977,   1.026) 

1.009 

(0.990,   1.031) 

1.009 

(0.990,   1.031) 

AR (1) ----- 1.038 

(1.009,   1.070) 

1.038 

(1.009,   1.070) 

Bloomfield (1) 1.000 

(0.962,   1.041) 

1.043 

(1.013,   1.081) 

1.043 

(1.013,   1.080) 

i) Shenzhen Component Index 

 No regressors With an intercept With a linear trend 

White noise 1.001 

(0.978,   1.027) 

1.042 

(1.021,   1.065) 

1.042 

(1.021,   1.065) 

AR (1) ----- 1.040 

(1.011,   1.073) 

1.041 

(1.011,   1.073) 

Bloomfield (1) 1.001 

(0.963,   1.042) 

1.042 

(1.012,   1.073) 

1.042 

(1.012,   1.073) 

The estimates are the Whittle estimates in the frequency domain (Dahlhaus, 1989). The values in 

parenthesis are the 95% confidence intervals of the non-rejection values using Robinson‟s (1994) 

parametric tests. 
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Figure 2: Estimates of d based on the Whittle method of Robinson (1995) 
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The horizontal axe refers to the bandwidth number while the vertical one to the estimates of d. We also 

report the 95% confidence band for the I(1) case. 
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Table 3: Unit Root Tests in the absolute returns 

 Shanghai Composite Returns Shenzhen Component Returns 

Level Difference Level  Difference 

ADF 
-9.646 

(-3.433) 

-23.414 

(-3.433) 

-7.591 

(-3.433) 

-26.186 

(-3.433) 

PP 
-63.309 

(-3.433) 

-488.091 

(-3.433) 

-64.206 

(-3.433) 

-439.527 

(-3.433) 

KPSS 
1.810 

(0.739) 

0.009 

(0.739) 

1.907 

(0.739) 

0.012 

(0.739) 

The significance level is 1%.  
 

 

 

 

Table 4: Unit Root Tests in the squared returns 

 Shanghai Composite Returns Shenzhen Component Returns 

Level Difference Level  Difference 

ADF 
-23.955 

(-3.433) 

-20.601 

(-3.433) 

-10.479 

(-3.433) 

-24.690 

(-3.433) 

PP 
-51.531 

(-3.433) 

-545.769 

(-3.433) 

-60.593 

(-3.433) 

-424.039 

(-3.433) 

KPSS 
1.652 

(0.739) 

0.0193 

(0.739) 

1.560 

(0.739) 

0.007 

(0.739) 

The significance level is 1%.  
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Table 5: Estimates of d in the absolute stock market returns 

ii) Shanghai Composite absolute returns 

 No regressors With an intercept With a linear trend 

White noise 0.162 

(0.147,   0.178) 

0.165 

(0.151,   0.181) 

0.156 

(0.141,   0.172) 

AR (1) 0.235 

(0.213,   0.260) 

0.236 

(0.215,   0.259) 

0.228 

(0.205,   0.252) 

Bloomfield (1) 0.260 

(0.231,   0.290) 

0.259 

(0.234,   0.283) 

0.247 

(0.222,   0.279) 

ii) Shenzhen Component absolute returns 

 No regressors With an intercept With a linear trend 

White noise 0.166 

(0.152,   0.182) 

0.168 

(0.154,   0.183) 

0.159 

(0.144,   0.175) 

AR (1) 0.247 

(0.225,   0.272) 

0.246 

(0.225,   0.269) 

0.238 

(0.215,   0.263) 

Bloomfield (1) 0.264 

(0.242,   0.305) 

0.262 

(0.241,   0.293) 

0.257 

(0.232,   0.287) 

The estimates are the Whittle estimates in the frequency domain (Dahlhaus, 1989). The values in 

parenthesis are the 95% confidence intervals of the non-rejection values using Robinson‟s (1994) 

parametric tests. 
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Figure 3: Estimates of d based on the Whittle method of Robinson (1995) 
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The horizontal axe refers to the bandwidth number while the vertical one to the estimates of d. We also 

report the 95% confidence band for the I(1) case. 
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Table 6: Estimates of d in the squared stock market returns 

iii) Shanghai Composite squared returns 

 No regressors With an intercept With a linear trend 

White noise 0.161 

(0.142,   0.182) 

0.163 

(0.145,   0.184) 

0.156 

(0.137,   0.178) 

AR (1) 0.158 

(0.136,   0.183) 

0.162 

(0.140,   0.187) 

0.151 

(0.127,   0.177) 

Bloomfield (1) 0.161 

(0.130,   0.183) 

0.163 

(0.134,   0.194) 

0.152 

(0.125,   0.181) 

iii) Shenzhen Component squared returns 

 No regressors With an intercept With a linear trend 

White noise 0.143 

(0.128,   0.160) 

0.145 

(0.130,   0.162) 

0.138 

(0.122,   0.155) 

AR (1) 0.208 

(0.186,   0.234) 

0.211 

(0.189,   0.235) 

0.203 

(0.180,   0.225) 

Bloomfield (1) 0.226 

(0.197,   0.254) 

0.227 

(0.206,   0.257) 

0.219 

(0.194,   0.249) 

The estimates are the Whittle estimates in the frequency domain (Dahlhaus, 1989). The values in 

parenthesis are the 95% confidence intervals of the non-rejection values using Robinson‟s (1994) 

parametric tests. 
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Figure 4: Estimates of d based on the Whittle method of Robinson (1995) 
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The horizontal axe refers to the bandwidth number while the vertical one to the estimates of d. We also 

report the 95% confidence band for the I(1) case. 

 

 


