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Abstract 

The aim of the work was to develop biodegradable microspheres for controlled 

delivery of the somatostatin analogue vapreotide and maintenance of sustained 

plasma levels over 2 - 4 weeks after a single injection in rats. Vapreotide was 

microencapsulated into end-group capped and uncapped low molecular weight PLA 

and PLGA by spray-drying and coacervation. Microspheres were prepared from 

single and blended (1:1) polymer types. The microparticles were characterized for 

peptide loading, in vitro release and pharmocokinetics in rats. Spray-drying and 

coacervation produced microspheres in the size range of 1 - 15 μm and 10 - 70 μm, 

respectively, and with encapsulation efficiencies varying between 46 and 87%. In 

vitro release of vapreotide followed a regular pattern and lasted more than 4 weeks, 

time at which 40 – 80% of the total dose were released. Microspheres made of 14 

kDa end-group uncapped PLGA50:50 or 1:1 blends of this polymer with 35 kDa end-

group uncapped PLGA50:50 gave the best release profiles and yielded the most 

sustained plasma levels above a pre-defined 1 ng/ml over approx. 14 days. In vitro/in 

vivo correlation analyses showed for several microsphere formulations a linear 

correlation between the mean residence time in vivo and the mean dissolution time 

(r=0.958) and also between the amount released between 6 h and 14 days and the 

AUC6h-14d (r = 0.932). For several other parameters or time periods, no in vitro/in vivo 

correlation was found. This study demonstrates that controlled release of the 

vapreotide is possible in vivo for a duration of a least two weeks when administered 

i.m. to rats. These results constitute a step forward towards a twice-a-month or once-

a-month microsphere-formulation for the treatment of acromegaly and 

neuroendocrine tumors. 

 

   



 3

Keywords: Vapreotide; PLGA microspheres; Polymer blend; Controlled release; 

IVIV-correlation

   



 4

INTRODUCTION 

Over eighty peptide and protein pharmaceuticals have been approved so far 

[1]. An unknown and probably much higher number of therapeutically promising 

peptide and protein drugs have, however, failed to reach advanced clinical testing or 

the market, partly because of the lack of appropriate delivery systems warranting 

prolonged release and sustained biological effects. To achieve optimal therapeutic 

effects with biopharmaceuticals, drug bioavailability at the site of action must be 

optimized and controlled. Most protein and peptide drugs will require prolonged 

bioavailability to fulfill the intended effect [2]. The biodegradable poly(lactide) (PLA) 

and poly(lactide-co-glycolide) (PLGA) have for some time proven their suitability for 

controlled delivery applications [3-5]. Their adjustable physico-chemical properties 

such as swelling and biodegradation kinetics [6,7], or molecular interaction potential 

with embedded drugs [8], offer numerous possibilities in the design of controlled 

release systems. These properties are strongly defined by structural features such as 

co-polymer composition, molecular weight and nature of the chain end-groups. In 

PLA and PLGA, the latter are hydroxyl and carboxyl moieties (so-called uncapped 

polymer types) or the carboxyl may be esterified (capped polymer types). Non-

esterified carboxyl end-groups cause increased hydrophilicity, faster and higher 

polymer swelling, faster biodegradation in aqueous environments [6] and faster and 

sometimes more regular, i.e., less pulsatile, release of entrapped peptides or 

proteins. On the same line, block-co-polymers of PLA or PLGA and poly(ethylene 

oxide) [9] or branched polyesters [10] have been developed. Alternatively, physical 

means to control drug release from biodegradable microspheres is through co-

entrapment of release modifying agents [11,12], or through blending different 

polymer types for microencapsulation [13] or blending different microsphere types 

[14].  
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For an optimization of biodegradable microspheres towards prolonged 

peptide and protein delivery, the knowledge of the dose to be administered and the 

desired time course of concentration in serum or at the site of action is essential. 

Various studies attempted to establish relationships between in vitro release kinetics 

and serum drug concentration after i.m. or s.c. administration of microencapsulated 

drugs [3, 5, 11, 15-18]. In vivo release kinetics were estimated either from residual 

drug contents in microspheres retrieved from the excised tissue at the injection site 

[3, 5, 11, 15-18] or from drug input rates calculated from plasma concentrations and 

clearance [3, 5, 11, 15-18]. Good in vitro-in vivo (IVIV)-correlation of peptide release 

was generally shown. However, with the exception of the study of Ogawa et al. [15], 

none of the others demonstrated such a correlation for more than one microsphere 

preparation, although distinct in vitro release profiles from several formulations were 

sometimes available [11,17].  

In this work, PLA and PLGA microspheres containing  a somatostatin 

octapeptide analogue, vapreotide, (DFCYDWKVCW-NH2) were prepared. The 

characteristics and activity of this drug have been described previously [19, 20]. Main 

formulation parameters which were tested included the polymer type (end-group 

capped and uncapped PLA and PLGA types), polymer blends, and the size of the 

microspheres. The purpose of varying these parameters was to achieve a peptide 

entrapment efficiency of at least 70%, to control the in vitro burst release and prolong 

the sustained release over 4 weeks, and to extend plasma levels above pre-defined 1 

ng/ml in rats to 2-4 weeks after a single injection of microencapsulated peptide. 
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MATERIALS AND METHODS 

 

Materials 

End-group capped and uncapped poly(d,l-lactide) (PLA) and various 

poly(D,L-lactide-co-glycolide) (PLGA) of variable molecular weight and composition 

were purchased from Boehringer-Ingelheim (Ingelheim, Germany). They included 

end-group capped 14 kDa PLGA 50:50 (Resomer® RG502), end-group uncapped 14 

and 35 kDa PLGA 50:50 (Resomer® RG502H and RG503H, respectively), end-group 

uncapped 17 kDa PLGA 75:25 (Resomer® RG752H), and end-group uncapped 14 

kDa PLA (Resomer® 202H). The somatostatin analogue vapreotide acetate, 

DFCYDWKVCW-NH2, was synthesized by Novabiochem, Läufelingen, Switzerland. 

Acetic acid was from Merck (Dietikon, Switzerland), and fetal bovine serum from 

Gibco BRL (Basle, Switzerland). 

 

Microencapsulation of vapreotide 

Vapreotide acetate was microencapsulated into single polymer types or into 

1:1 (w/w) mixtures of two polymer types. For this, both the peptide (0.5%, w/w) and 

polymer (5%, w/w) were co-dissolved in 40 ml acetic acid, and this solution was 

spray-dried through a 0.7 mm nozzle installed in a Mini Spray-Dryer 190 (Büchi, 

Flawil, Switzerland) [21]. The product feed was 3 ml/min, inlet and outlet 

temperatures were at 50 and 40 °C, respectively, aspirator setting at 40 m3/h, and 

spray-flow at 450 Nl/h.  

Vapreotide acetate was also microencapsulated by coacervation [22]. Briefly, 

2 ml of aqueous peptide solution (10%, w/w) was dispersed by ultrasonication in 38 

ml of 5% (w/w) polymer solution in ethyl acetate. The mixture was cooled to 10 °C 

and kept under vigorous stirring by an impeller stirrer in a closed reactor. Upon 
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addition of approx. 40 ml of silicone oil (1070 mPas; Fluka, CH-Buchs) , polymer 

phase separation was induced, and the coacervate droplets engulfing the peptide 

were finally hardened in 400 ml of octamethylcyclotetrasiloxane (Abil K-4; 

Goldschmidt, D-Essen). 

In both procedures, the microspheres were washed first with 0.1% (w/w) 

poloxamer 188 solution and, subsequently, with distilled water, and collected on a 0.2 

μm cellulose acetate filter. After drying under reduced pressure (approx. 10 mbar) at 

room temperature for 24 hours, the particles were re-dispersed in hexane to break up 

any aggregated particles, and dried again under vacuum (10 mbar) for 12 hours. 

 

Peptide assay 

The intact peptide was analyzed by HPLC (Column Licrospher® RP-18, 4 x 

250 mm, Merck, Darmstadt, Germany). The elution phase consisted of a gradient of 

solvent A (triethylammonium phosphate buffer of pH 2.3; TEAP) and solvent B 

(acetonitrile/TEAP pH 2.3, 60/40), with B increasing from 30 to 80% (v/v) within 25 

min. Detection was at 215 nm. 

 

Size distribution of microspheres 

Size and size distribution of the microspheres were analyzed by light 

microscopy (Wild, Heerbrugg, Switzerland) and laser light diffraction (Mastersizer®, 

Malvern Instruments, Malvern, UK) [22, 23]. 

 

Peptide encapsulation efficiency 

Vapreotide content in the microspheres was determined by HPLC [23]. The 

microspheres (approx. 20 mg, accurately weighed) were dissolved in 3 ml of 

acetonitrile, to which 2 ml of chloroform were added. The mixture was stirred 
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vigorously, and the peptide extracted three times with 2 ml of triethylamino phosphate 

buffer of pH 2.3. The loading efficiency of vapreotide was determined by the ratio of 

the actual amount of encapsulated peptide over the amount of peptide used to 

prepare the microspheres (actual loading/nominal loading). 

 

Residual solvent in the microspheres 

100 mg of dried microspheres were weighed into 5 ml screw cap vials and 

dissolved in 0.5 ml of 1,4-dioxane (Merck). The polymer was precipitated by adding 

1.0 ml isooctane (Scharlau, EGT, Chemie, Tägerig, Switzerland), containing 2-

butoxy-ethanol (Fluka) as internal standard. The coacervate dispersion was 

centrifuged at 3000 rpm for 5 min, and the samples cooled to –10º C for 15 min. The 

clear supernatant was assayed in duplicate by gas chromatography (Varian 3600 CX, 

Walnut Creek, CA, USA), as specified previously [24].  

 

In vitro release 

Microspheres (approx. 10 mg, accurately weighed, n=3) were incubated in 

4.0 ml of fetal bovine serum preserved with 0.02% (w/w) of thiomersal. Incubation 

took place in rotating vials at 37 °C. Due to the instability of the peptide in the release 

medium [21], the amount of drug released was determined indirectly by measuring 

the amount of drug remaining in the microspheres. At regular intervals, three vials for 

each microsphere formulation were withdrawn, and the polymer particles separated 

by centrifugation. After removal of the supernatant, the polymer mass was dried 

overnight at 10 mbar and room temperature. The amount of remnant vapreotide in 

the microspheres was determined by HPLC [23] following the aforementioned 

extraction procedure. 
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In vivo evaluation 

A pharmacokinetic study was performed in male Sprague-Dawley rats 

weighing 380-400 g (C.E.R.J., Les Genest St. Isle, France). The animals were taken 

care of in accordance with the UFR des Sciences Pharmaceutiques et Biologiques 

Local Ethical Committee and the NIH Guidelines for the Care and Use of Laboratory 

Animals (1985). Selected microsphere formulations were suspended in 0.5 ml of an 

aqueous injection vehicle (the dose was 1.5 mg of peptide per animal, calculated as 

vapreotide base) and injected intramuscularly in six animals per group. The animals 

were maintained under constant environmental conditions (22 ± 1°C; 50 ± 5% 

relative humidity). Food and water were available ad libitum. Plasma levels of 

vapreotide (base) were determined by double-radioimmuno assay [25] with a 

sensitivity of 50 pg/ml. The pharmacokinetic parameters were calculated by non-

compartimental methods using the pharmacokinetic software WinNonlin 1.5 

(Pharsight Corporation, Mountain View, USA). The area under the concentration-time 

curve (AUC) was calculated by the trapezoidal rule from time zero to the last 

observed concentration and was extrapolated after the last point. Maximum plasma 

concentration (Cmax) and time to peak concentration (Tmax) were registered from the 

observed plasma concentration-time data. Mean residence time (MRT) was 

computed by moment analysis. A statistical analysis was performed in order to 

evaluate the influence of chemical characteristics of PLA, the microencapsulation 

procedure and the formulation composition (single or polymer blends) on the in vivo 

profile of vapreotide. The differences between the pharmacokinetic parameters were 

evaluated by a paired t-test (two-tailed) or a Wilcoxon signal-rank test. A p-value 

below 0.05 was considered to be statistically significant. 
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Analysis of in vivo / in vitro data correlation (IVIVC) 

The data generated in the in vitro release studies and in vivo evaluation of 

microsphere formulations were used to develop the IVIV-correlation (IVIVC). Two 

levels of correlation, B and C, were studied according to the FDA regulations [26]. 

Level B IVIVC was based on statistical moment analysis. The mean in vitro 

dissolution time (MDT), an model-independent in vitro parameter that shows the 

mean time for vapreotide to release from the microspheres under in vitro release 

conditions, was compared to the mean residence time in vivo (MRT). The MDT was 

calculated according to the equation:  

∞

=
M

ABCMDT vitro in  

where ABCin vitro is the area between the release curve and its asymptote, calculated 

by the trapezoidal rule from time zero to the last measured time point, and M∞ is the 

total amount of released drug at this time point. 

Level C IVIVC represents single-point correlation between one dissolution 

time point and one pharmacokinetic parameter. In this work the parameters 

considered at this IVIVC level were: (i) amount of peptide released in vitro within the 

initial 6 hours (so-called burst release); (ii) amount released in vitro between time 

zero and day 14; (iii) amount released in vitro between 6 hours (after burst) and day 

14; (iv) in vivo Cmax; (v) area under the plasma level curves between time zero and 

day 14 (AUC0-14d); (vi) AUC between 6 hours and day 14 (AUC6h-14d). Under each 

IVIVC level, a linear regression analysis using an ordinary least squares method was 

applied to estimate the regression parameters. Correlation coefficient (r) was 

evaluated and the F-statistic was estimated if the slope was significantly different 

from zero (P<0.05).  
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RESULTS AND DISCUSSION 

 

Microsphere size, encapsulation efficiency, residual solvent  

Both microencapsulation methods of spray-drying and coacervation 

produced microspheres with particle diameters in the range of 1-15 μm (with the 

majority of particles below 5 μm) and 10-70 μm, respectively. The various polymer 

types affected only negligibly the particle size. 

The encapsulation efficiency for the different preparations varied between 46 

and 87% (Table 1). Generally, the encapsulation was higher in the microspheres 

made with the end-group uncapped polymer types, in agreement with data on 

microencapsulated capsaicin [27, 27a].  

Microspheres were also prepared from blends of end-group uncapped 

polymers consisting of equal amounts of 14 kDa PLGA50:50 (RG502H) and either 35 

kDa PLGA50:50 (RG503H), or 17 kDa PLGA75:25 (RG752H), or 14 kDa PLA 

(R202H). These formulations were prepared because we expected them to release 

the peptide in a regular pattern over a period of 3-4 weeks. With the blended polymer 

types, the highest encapsulation efficiency of 87% was attained with the most 

hydrophilic mixture of RG502H/RG503H, whereas the less hydrophilic RG502H/ 

RG752H or RG502H/ R202H yielded more modest entrapment (Table 1). These 

differences may be best explained by the differing polarity of the polymers, which is 

higher for uncapped than for capped PLGA; the increased polarity affords stronger 

peptide-polymer interactions, thereby improving vapreotide acetate encapsulation 

(27a). 

Solvent residues in microspheres for parenteral administration may be of 

safety concern in therapeutic use, depending on the duration, frequency and amount 

of particles to be administered (Ph.Eur. III). In this work, acetic acid, a safety class-3 
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solvent (Ph.Eur. III) was used as common solvent for both the peptide and the 

polymers. Acetic acid residues in all microsphere formulations lay in the very low 

ppm-range, i.e., from 10 to 35 ppm. This low amount of residual acetic acid and the 

toxicologically uncritical nature of this solvent should obviate any safety concern. 

 

In vitro release kinetics 

Serum was used as in vitro release medium, because previous release 

experiments in different media revealed that serum mirrored best the 

pharmacokinetics in rats [21]. The vapreotide release profile from the spray-dried 

uncapped PLGA50:50 (RG502H) microspheres (size: 1-15 μm) was composed of a 

burst release during the first 6 hours of approx. 42% of the total dose, followed by a 

continuous release of additional 40% of the dose until day 28 when the experiment 

was terminated (Table 1; Fig. 1a). The uncapped PLGA50:50 microspheres prepared 

by coacervation (size: 10-70 μm) exhibited a lower burst release (14% of the total 

dose), while the remaining release kinetics until day 28 followed the same pattern as 

the spray-dried particles. The different burst release of the two differently sized 

microspheres (Table 1) may have been caused by the different particle surface areas 

[28, 29], or by a different drug distribution inside the microspheres arising from the 

two processes of particle formation. In agreement with previous data [30], the 

kinetics after the burst was not affected by the particle size, suggesting that peptide-

polymer interactions and related restricted peptide diffusion mainly controlled peptide 

release. 

The spray-dried end-group capped PLGA50:50 (RG502) microspheres 

released more slowly the entrapped peptide (Table 1; Fig. 1a), with a burst release of 

approx. 27% of the total dose (42% for uncapped PLGA50:50 microspheres). By 

contrast, the coacervated end-group capped PLGA50:50 microspheres produced a 
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higher initial burst (35%) than the spray-dried end-group capped PLGA50:50 (27%) 

or the coacervated end-group uncapped PLGA50:50 microspheres (14%). This does 

not support a relationship between microsphere size and burst release, as suggested 

above, but emphasizes the likely importance of peptide distribution inside the 

particles. For illustration, the peptide will be more evenly distributed throughout the 

matrix if the peptide interacts more strongly with the polymer than with the 

disappearing solvent. Conversely, the peptide will locate preferentially at the 

particles’ periphery, if the affinity for the solvent (or solvent mixture in coaceravtion) is 

high. Release kinetics between 6 hours and day 7 for was similar for the uncapped 

and capped PLGA50:50 type microspheres, whereas between days 7 and 30, the 

latter released only 10% of peptide at an almost constant rate. Obviously, the less 

hydrophilic nature of the end-group capped PLGA type restricted the initial hydration 

of the polymeric matrix, resulting in a lower burst and a reduced polymer degradation 

rate, causing a slower release particularly during the time when polymer degradation 

rate accelerated, i.e., between days 7 and 30 [30]. This view is supported by 

previous data showing that the initial water uptake (up to day 14) was much greater 

and the initial degradation rate 6.5 times higher for the end-group uncapped 

PLGA50:50 than for the end-group capped PLGA50:50 type [6].  

Vapreotide release profiles from the spray-dried uncapped polymer blend 

microspheres (Fig. 1b) resembled the profiles obtained with the single uncapped 

PLGA50:50 microspheres (Fig. 1a). The major differences between the two groups of 

formulations resided in the initial burst release, which decreased (from 42% for the 

RG502H) with the admixture of the higher molecular weight PLGA50:50 (RG503H) 

(31% burst), or the more hydrophobic PLGA 75:25 (RG752H) or PLA (R202H) (both 

approx. 5% burst). Interestingly, there was not significant difference in the release 
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rates up to day 14 between the RG502H/RG752H and the RG502H/R202H 

microspheres.  

The selection of appropriate polymer types and encapsulation parameters 

(solvent, method) allowed us to meet largely the initially set criteria regarding 

encapsulation efficiency and in vitro release over one month. In particular, the 

microspheres prepared from RG502H alone or from a 1:1 mixture of 

RG502H/RG503H satisfied fully our set targets. 

 

Pharmacokinetic study in rats 

For pharmacokinetic testing, the microsphere formulations were injected 

intramuscularly into rats. Vapreotide serum concentrations were monitored for 28 

days. The common feature of most plasma level profiles was an initial increase within 

1 to 6 hours, an irregular phase between 6 hours and 7 days, and a final drop to the 

lower limit set at 1 ng/ml between days 7 and 14 (Fig. 2). The mean vapreotide 

pharmacokinetic parameters of microsphere formulations are summarized in Table 2. 

The obtained results showed that there are discernible differences between the 

microsphere formulations. Typically, spray-dried and coacervated uncapped 

PLGA50:50 (RG502H) microspheres produced pharmacologically relevant drug 

serum levels for slightly less than 14 days, whereas spray-dried capped PLGA50:50 

(RG502) particles produced such levels for only two days (Fig. 2a). MRT was 

significantly shorter (p=0.01) with vapreotide formulated in microspheres using end-

group capped polymers (Table 2). Further particle preparations made from other 

types of end-group capped PLA and PLGA gave similarly unsatisfactory plasma 

profiles (data not shown). In the case of coacervated RG502H, the above mentioned 

irregular profile phase between 1 h and 7 days consisted in a Cmax of 16.4 ng/ml at 

tmax of 1 h, a sharp drop to 5 ng/ml between 1 and 6 h, and a slow re-increase to 12 
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ng/ml between days 2 and 7. For the spray-dried RG502H particles, the initial 

increase leveled off at 9.2 ng/ml after 6 h and remained almost constant for up to day 

7. Nevertheless, there was not a significant difference in the MRT and AUC values 

from spray-dried and coacervated microspheres using the same polymer (p=0.1) 

(Table 2), suggesting that the rate and extent of vapreotide release was comparable 

in vivo, despite the differences in the plasmatic concentration-time profiles of 

vapreotide between the two formulations.  

As promising in vivo results were obtained only with uncapped polymer type 

microspheres, we tested the feasibility of extending vapreotide plasma levels by 

using blends of the uncapped 14 kDa PLGA50:50 (RG502H) with more slowly 

degradable uncapped PLGA and PLA types. With the 50% admixture of the 35kDa 

uncapped PLGA50:50 (RG503H), the 17 kDa PLGA75:25 (RG752H) or the 14 kDa 

PLA (R202H) the MRT of vapreotide was much higher than that observed with the 

single polymer type microspheres (p=0.001), suggesting a longer prolonged action 

when vapreotide is formulated with these polymer blends. Indeed, pharmacologically 

relevant plasma levels were detected over an entire fortnight after drug 

administration (Fig. 2b). The RG502H/RG503H and RG502H/RG752H particles 

produced a Cmax of 4-6 ng/ml after tmax of 6 hours, and the levels were kept above the 

desired 1 ng/ml over 14 days. The RG502H/RG503H microspheres produced a slight 

re-increase in plasma level between days 2 and 4, while those made of 

RG502H/RG752H microspheres showed this re-increase between days 4 and 7. The 

particles made from the polymer blend RG502H/R202H gave a slightly different 

profile with a Cmax of 6 ng/ml after a tmax of 2 days. No re-increase in plasma levels 

was observed at later time points, and the levels decreased to 0.2 ng/ml within 15 

days.  
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Analysis of in vivo / in vitro data correlation 

The few reports in the literature that attempted to demonstrate a relationship 

between in vitro and in vivo release restricted the analysis to a single microsphere 

formulation exhibiting a specific in vitro release under adjusted release conditions [3-

4, 11, 16-18], with one exception [15]. Although an IVIVC can be defined with 

different batches of the same formulation, two or more preparations with different 

release rates and consequently different absorption profiles of the drug, are 

recommended to obtain a more consistent IVIVC [26]. Many more studies have 

certainly been undertaken to test IVIVC for microencapsulated peptide drugs, but 

were not published, at least in some cases because of lack of correlation. The 

reasons for the lack of correlation may be manifold. For example, the fate of the 

released peptide in vivo affects greatly plasma levels of intact and free peptide. The 

kinetics and pathways of degradation, protein binding and other clearance processes, 

e.g. lymphatic, re-adsorption to the polymer, may differ between peptide released 

from microspheres injected intramuscularly and peptide injected in solution. 

Particularly lymphatic clearance (particles can be readily phagocytosed) and peptide 

re-adsorption onto the remnant polymer may alter long-term bioavailability.  

Drug absorption from a particulate delivery system after intramuscular 

administration depends on the release of the drug from the formulation, the 

permeability across the tissue barriers, and the dissolution of the drug under 

physiological conditions. In the case of vapreotide-loaded microparticles, drug 

dissolution may be the rate-limiting step for the in vivo ADME and a linear 

relationship between in vivo disposition and the in vitro release from microspheres 

can be expected. Two levels of IVIVC (B and C) were investigated in this work, using 

parameters obtained from all the developed formulations. Linear correlation plots for 

mean in vitro dissolution time and in vivo mean residence time are shown in Fig. 3. 
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An acceptable correlation (r= 0.958; filled triangles in Fig. 3) was obtained with spray-

dried uncapped PLGA50:50 (RG502H), coacervated uncapped PLGA50:50 

(RG502H), spray-dried microspheres made from uncapped 14 + 17 kDa PLGA50:50 

(RG502H/RG503H), and 14 kDa PLGA50:50 + 17 kDa PLGA75:25 

(RG502H/RG752H) microspheres. However, a poor correlation coefficient was 

obtained when spray-dried capped PLGA50:50 (RG502) and 14 kDa PLGA50:50 + 

14 kDa PLA (RG502H/R202H) formulations were subjected to IVIVC analysis (r 

=0.098; unfilled triangles in Fig. 3). For these latter two formulations, the MRT lagged 

substantially behind MDT-values, and AUC-values were approximately two-fold lower 

than the other microparticle formulations tested (Table 2). Thus, as MRT and AUC 

are pharmacokinetic parameters reflecting the residence time and amount of free 

vapreotide, respectively in systemic circulation, the in vivo vapreotide release must 

have been significantly delayed compared with the in vitro release from spray-dried 

capped PLGA50:50 (RG502) and 14 kDa PLGA50:50 + 14 kDa PLA 

(RG502H/R202H) microspheres.  

On the other hand, the correlation between in vitro burst and either Cmax, 

AUC0-6h or AUC0-14d was very poor, i.e. with r-values < 0.2. Similarly, the total amount 

released in vitro between time 0 and day 14 correlated poorly (r = 0.467) with the 

AUC0-14d. The best correlation was obtained when the amount released in vitro 

between 6 h (after burst) and 14 days was compared to the AUC6h-14d (r = 0.932) 

(Fig. 4). The results of this study highlight the influence of burst effect on the 

development of an IVIV study for microencapsulated peptide drugs. Generally, the 

phase of rapid release of microencapsulated peptide drugs may be related to the 

onset of bulk erosion of the polymer, providing additional pores for diffusion of the 

entrapped peptide [5]. In this process drug release is not a rate-limiting step of in vivo 

disposition of the peptide, and a fast distribution or degradation of the drug at this 
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early stage can be expected. Usually, the IVIVC models failed to accurately predict 

the in vivo drug performance under burst release conditions, where the rate-limiting 

step for drug availability is the drug permeability across the tissue barriers, a non-

linear kinetic process. Nonetheless, the development of an IVIVC model with the 

exclusion of the burst release data allows the accurate determination of the in vivo 

peptide release after intramuscular administration of microencapsulated peptide 

drugs. It is interesting to note that the second release pulse, as observed between 2 

and 7 days with some formulations, does not appear to hamper the IVIVC. This may 

be due to the rather low release rate of the peptide during this second release pulse.  

The lack of IVIVC for longer time periods (14-28 days) may be related to the 

different ways the peptide was detected in the in vitro and in vivo studies. Indeed, in 

vitro, the peptide that remained in the microspheres was quantified, whereas in vivo, 

the peptide released and detectable in serum was determined. Since vapreotide 

degrades relatively fast in biological fluids, it appears that the small amounts released 

at later time points in vivo were degraded before the peptide reached the central 

compartment. 

 

CONCLUSION 

The objective of this study was to develop vapreotide-loaded microspheres 

that would deliver biologically active vapreotide over a period of 2 to 4 weeks. The 

parameter Cmax should be kept below approx. 20 ng/ml, and the minimum serum drug 

concentration to be maintained over 2 - 4 weeks should be above 1 ng/ml. The main 

strategies employed to control the in vitro release kinetics of vapreotide from the 

microspheres were encompassed the utilization of different types of PLA and PLGA, 

blending of the most promising polymer types, and variation of the microspheres size 

as done by using either spray-drying and coacervation methods for peptide 
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encapsulation. The IVIVC reported here was excellent for predicting vapreotide AUC 

between 6 hours and 14 days for all PLGA microspheres formulations tested. For the 

formulations with low burst, this should allow to predict in vivo results from in vitro 

observations, permitting a more rapid and more efficient screening of different 

preparations. With the best formulation, twice-a-month injectable delivery system for 

vapreotide was finally achieved.  
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Figure legends 

 

Figure 1. In vitro release profiles of vapreotide acetate from microspheres made from 

single polymer types (A) and polymer blends (B). A: Spray-dried uncapped 

PLGA50:50 (RG502H) microspheres (q); Coacervated uncapped PLGA50:50 

(RG502H) microspheres (m); Spray-dried capped PLGA50:50 (RG502) microspheres 

(+). B: Spray-dried microspheres made from uncapped 14 + 17 kDa PLGA50:50 

(RG502H/RG503H) (u); 14 kDa PLGA50:50 + 17 kDa PLGA75:25 

(RG502H/RG752H) (t);14 kDa PLGA50:50 + 14 kDa PLA (RG502H/R202H) (s).  

 

Figure 2. Plasma levels of vapreotide acetate after intramuscular injection (1.5 mg of 

peptide, base equivalent) of microspheres made from single polymer types (A) and 

polymer blends (B). A: Spray-dried uncapped PLGA50:50 (RG502H) microspheres 

(q); Coacervated uncapped PLGA50:50 (RG502H) microspheres (m); Spray-dried 

capped PLGA50:50 (RG502) microspheres (+). B: Spray-dried microspheres made 

from uncapped 14 + 17 kDa PLGA50:50 (RG502H/RG503H) (u); 14 kDa PLGA50:50 

+ 17 kDa PLGA75:25 (RG502H/RG752H) (t);14 kDa PLGA50:50 + 14 kDa PLA 

(RG502H/R202H) (s).  

 

Figure 3. Relationship between the mean dissolution time of peptide (MDT) and the 

mean residence time of plasma levels (MRT) calculated for the same period of time.  

Analyzed data were from microsphere formulations made of spray-dried uncapped 

PLGA50:50 (RG502H), uncapped 14 + 17 kDa PLGA50:50 (RG502H/RG503H), 14 

kDa PLGA50:50 + 17 kDa PLGA75:25 (RG502H/RG752H) and coacervated 

uncapped PLGA50:50 (RG502H) (r=0.958) (all s), and from spray-dried capped 
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PLGA50:50 (RG502), and 14 kDa PLGA50:50 + 14 kDa PLA (RG502H/R202H) 

(r=0.098) (8). 

 

Figure 4. Relationship between the amount of peptide released after the initial burst 

until day 14 and the AUC of plasma calculated for the same period of time (r=0.932). 
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Table 1: Formulation parameters of various microsphere (MS) types loaded with 

vapreotide. The nominal drug loading was 10%, relative to the microsphere mass. 

 

Polymer type 

(Resomer®)1

Preparation 

Method 2
Encapsulation 

efficiency 

(%) 

Burst release 

within initial 6 h

(ng/mg MS) 

Amount released 

from 6h to 14 d  

(ng/mg MS) 

RG502H SD 77 ± 6 42.5 ± 4.5 30.5± 5.2 

RG502H CO 75 ± 5 14.2 ± 1.7 28.5 ± 1.5 

RG502 SD 46 ± 2 27.0 ± 2.6 14.0 ± 2.7 

RG502 CO 66 ± 2 35.5 ± 2.3 0.5 ± 1.6 

RG502H + 

RG503H 

SD 87 ± 2 31.6 ± 2.4 23.4 ± 2.5 

RG502H + 

RG752H 

SD 63 ± 3 7.0 ± 2.6 23.0 ± 4.3 

RG502H + 

R202H 

SD 65 ± 2 8.0 ± 4.1 20.0 ± 3.8 

 
1 RG502H: 14 kDa end-group uncapped PLGA50:50; RG502: 14 kDa end-group 

capped PLGA50:50; 503H: 35 kDa end-group uncapped PLGA50:50; RG752H: 17 
kDa end-group uncapped PLGA75:25; 14 kDa end-group uncapped PLA. 

2 SD: Spray-drying; CO: Coacervation 
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Table 2: Vapreotide pharmacokinetic parameters after intramuscular administration 

of different microsphere formulation types loaded with vapreotide. The dose was 1.5 

mg of peptide per animal, calculated as vapreotide base.  

Polymer type 

(Resomer®)1

Preparation 

Method 2
CMAX  

(ng/ml) 

tMAX  

(h) 

AUC 

(ng*day/ml) 

MRT 

(h) 

RG502H SD 9.2 ± 2.8 3.0 ± 2.6 77.6 ± 24.5 4.8 ± 0.6 

RG502H CO 16.4 ± 2.5 0.042 ± 0 68.7 ± 34.2 5.0 ± 0.7 

RG502 SD 28.3 ± 4.5 0.042 ± 0 20.3 ± 2.9 2.2 ± 0.7 

RG502H + 

RG503H 

SD 5.2 ± 0.5 0.042 ± 0 43.7 ± 6.4 6.5 ± 0.3 

RG502H + 

RG752H 

SD 5.1 ± 3.1 2.9 ± 3.5 40.2 ± 27.2 6.5 ± 2.2 

RG502H + 

R202H 

SD 7.5 ± 4.3 0.87 ± 0.9 28.4 ± 17.6 7.5 ± 1.8 

 
1 RG502H: 14 kDa end-group uncapped PLGA50:50; RG502: 14 kDa end-group 

capped PLGA50:50; 503H: 35 kDa end-group uncapped PLGA50:50; RG752H: 17 
kDa end-group uncapped PLGA75:25; 14 kDa end-group uncapped PLA. 

2 SD: Spray-drying; CO: Coacervation 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

   



 

   

29

Fig. 1 
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Fig. 2 
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Fig. 3 
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Fig. 4 
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