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Molecular Mechanisms of Atherosclerosis in
Metabolic Syndrome

Role of Reduced IRS2-Dependent Signaling

Herminia González-Navarro, Ángela Vinué, Marian Vila-Caballer, Ana Fortuño, Oscar Beloqui,
Guillermo Zalba, Deborah Burks, Javier Díez, Vicente Andrés

Objective—The mechanisms underlying accelerated atherosclerosis in metabolic syndrome (MetS) patients remain poorly
defined. In the mouse, complete disruption of insulin receptor substrate-2 (Irs2) causes insulin resistance, MetS-like
manifestations, and accelerates atherosclerosis. Here, we performed human, mouse, and cell culture studies to gain
insight into the contribution of defective Irs2 signaling to MetS-associated alterations.

Methods and Results—In circulating leukocytes from insulin-resistant MetS patients, Irs2 and Akt2 mRNA levels
inversely correlate with plasma insulin levels and HOMA index and are reduced compared to insulin-sensitive MetS
patients. Notably, a moderate reduction in Irs2 expression in fat-fed apolipoprotein E-null mice lacking one allele of Irs2
(apoE�/�Irs2�/�) accelerates atherosclerosis compared to apoE-null controls, without affecting plaque composition.
Partial Irs2 inactivation also increases CD36 and SRA scavenger receptor expression and modified LDL uptake in
macrophages, diminishes Akt2 and Ras expression in aorta, and enhances expression of the proatherogenic cytokine
MCP1 in aorta and primary vascular smooth muscle cells (VSMCs) and macrophages. Inhibition of AKT or ERK1/2,
a downstream target of RAS, upregulates Mcp1 in VSMCs.

Conclusions—Enhanced levels of MCP1 resulting from reduced IRS2 expression and accompanying defects in AKT2 and
Ras/ERK1/2 signaling pathways may contribute to accelerated atherosclerosis in MetS states. (Arterioscler Thromb
Vasc Biol. 2008;28:2187-2194.)

Key Words: insulin resistance/metabolic syndrome � atherosclerosis � IRS2 � AKT
� extracellular signal-regulated kinase (ERK)

The metabolic syndrome (MetS) is defined by the presence
of at least 3 of the following abnormalities: abdominal

obesity, glucose intolerance, hypertension, low HDL-choles-
terol levels, or hypertriglyceridemia.1,2 Patients with MetS
and type-2 diabetes mellitus (T2DM) have 2 to 5 times higher
risk of atherosclerosis, a chronic inflammatory disease that
results from interactions between modified lipoproteins and
cells of the arterial wall, including endothelial, immune, and
vascular smooth muscle cells (VSMCs).3–5 Among the dif-
ferent cardiovascular risk factors that precipitate atheroscle-
rosis and associated cardiovascular disease (CVD), T2DM
and MetS are becoming the most relevant given that the
prevalence of these metabolic diseases is expected to increase
by 165% in the next 40 years, representing the health plague
of the 21st century.2 Importantly, the incidence of CVD
increases when T2DM and the MetS coexist.1,2 Population
aging and acquisition of sedentary lifestyle patterns (eg,
obesity and physical inactivity) are major driving forces

behind these metabolic diseases. A number of alterations in
endothelial cells, VSMCs, and platelets have been identified
which may accelerate atherosclerosis, plaque instability, and
thrombus formation in T2DM/MetS patients, however the
underlying mechanisms remain ill defined.2,6,7 Many MetS
patients display insulin resistance (IR), which seems to play a
pivotal role in the development of both atherogenic dyslipid-
emia and T2DM.1 Therefore, IR is an attractive target for
prevention of CVD. However, whether IR management per se
might reduce CVD risk remains unknown.

On binding to the insulin receptor (INS-R), insulin exerts
its action through insulin-receptor substrate proteins (IRS1–
4).8 Studies in genetically-modified mice have highlighted a
major role of IRS2 in �-cell function, glucose and insulin
homeostasis, and atherosclerosis development. First, Irs2-null
mice (Irs2�/�) display a T2DM/MetS-like phenotype, includ-
ing hyperglucemia, hyperinsulinemia, IR and hyperten-
sion.9–11 Second, global Irs2-deficiency in apoE-null mice
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(apoE�/�Irs2�/�) aggravates atherosclerosis compared to
apoE�/� counterparts with intact Irs2.12,13 Doubly deficient
apoE�/�Irs2�/� mice exhibit hyperinsulinemia, IR, and in-
creased glucose intolerance and a positive correlation be-
tween circulating insulin levels and atherosclerotic burden,12

consistent with findings in Lepob/ob:LDLr�/� and Lepob/ob:
apoE�/� mice, two additional models of IR-dependent accel-
erated atherosclerosis.14 It is noteworthy that although whole
body Irs2 ablation aggravated atherosclerosis,12,13 the effects
of macrophage-specific defective insulin signaling are con-
troversial. Indeed, Ins-r–deficient bone-marrow transplant
enhanced atherosclerosis in LDLr�/� mice,15 however macro-
phage-specific inactivation of Ins-r or Irs2 decreased athero-
sclerosis in apoE�/� mice.13 The reasons for these controver-
sial findings remain to be established.

The two main downstream effectors of IRS proteins are the
phosphatidylinositol-3 kinase (PI-3K)/V-akt murine thy-
moma viral oncogene homolog kinase (AKT) and the Ras/
Raf/ERK pathways.8 Marked reductions in Ins-r, Irs2, and
Akt2 gene expression have been reported in pancreatic islets
from T2DM patients.16 Here we have tested the hypothesis
that impaired IRS2 signaling is a mechanism contributing to
accelerated atherosclerosis in MetS states. To this end, we
have analyzed IRS2 signaling in white mononuclear blood
cells (WMBCs) from MetS patients with and without IR.
Additionally, we have studied apoE-null mice with an intact
Irs2 gene (apoE�/�) or lacking one allele of Irs2 (apoE�/�

Irs2�/� mice), and primary VSMCs and macrophages derived
from these animals.

Materials and Methods
Expanded Materials and Methods can be found in supplemental
material (available online at http://atvb.ahajournals.org).

Human Subjects
In compliance with institutional guidelines, subjects were informed
of the present study and all agreed to participate. The study was
carried out in accordance with the Helsinki Declaration, and the
Ethical Committee of the University Clinic of Navarra approved the
protocol. The study was performed with samples from 55 unrelated
individuals referred to our institution for routine medical work-up
after 12 hours of overnight fasting. Clinical screenings were based on
medical history, physical examination, and routine analytic tests.
Subjects were diagnosed with MetS when 3 or more of the AHA/
NHLBI criteria for defining this condition were present.1 The
following criteria were adopted. Central obesity: waist circumfer-
ence �102 cm in men and �88 cm in women; hypertriglyceridemia:
triglycerides �1.7 mmol/L or use of medication to reduce triglycer-
ides; low HDL cholesterol: HDL cholesterol �1.03 mmol/L in men
and �1.3 mmol/L in women or use of medication to increase HDL
cholesterol; high blood pressure: systolic blood pressure (SBP)
�130 mm Hg, diastolic blood pressure (DBP) �85 mm Hg, or use of
antihypertensive medication; high fasting glucose: glucose
�5.55 mmol/L or use of medication to reduce glucose.

IR was diagnosed when the homeostasis model assessment
(HOMA) index (fasting glucose [mmol/L]�fasting insulin [�U/
mL]/22.5) was equal or greater than the median in normal-weight
subjects plus 2.5 standard deviations (HOMA �3.3). Using this
criterium, we identified 30 patients with IR within the studied
population.

Mice and Diets
Care of animals was in accordance with institutional guidelines.
Irs2�/� (C57BL/6J)10 and apoE�/� (C57BL/6J, Charles River Lyon,

France) mice were crossbred to generate apoE�/�Irs2�/� mice.
Genotyping was done by polymerase chain reaction (PCR) as
described.10,12 After weaning, male mice were maintained on a
low-fat (control) standard diet (2.8% fat; Panlab, Barcelona, Spain)
or placed on an atherogenic diet (10.8% total fat, 0.75% cholesterol,
S8492-E010, Ssniff, Germany) for the indicated periods of time.

Results

Irs2 and Akt2 Expression Is Decreased in WMBCs
and Inversely Correlates With Insulin Levels and
HOMA Index in Insulin-Resistant MetS Patients
The demographic and clinical characteristics of the MetS
patients included in our studies are summarized in supple-
mental Table I (available online at http://atvb.ahajournals.
org). Patients were classified as insulin-sensitive or insulin-
resistant based on the HOMA index (see methods). No
significant differences in gender distribution, age, and fre-
quency of cardiovascular medications were observed between
both groups. However, insulin-resistant patients presented
higher body mass index (BMI), waist circumference, DBP,
HOMA index, and plasma levels of insulin, oxidized LDL
(oxLDL), and metalloproteinase-9 (MMP-9), and lower
plasma HDL-cholesterol levels as compared with insulin-
sensitive patients. No significant differences in the remaining
parameters were noted between the 2 groups of patients.
Thus, IR is associated with higher risk of CVD in our cohort
of MetS patients.

Given that total genetic ablation of Irs2 in fat-fed apoE�/�

mice produces IR and accelerates atherosclerosis12,13 and that
IRS proteins signal in part through the PI3K/AKT pathway,8

we examined Irs2 and Akt expression in WMBCs from both
groups of patients. Quantitative real-time PCR (qPCR) anal-
ysis revealed reduced Irs2 and Akt2 mRNA levels in insulin-
resistant versus insulin-sensitive subjects, although only dif-
ferences in Akt2 reached statistical significance (Figure
1A).We also found increased expression of Irs1 in insulin-
resistant versus insulin-sensitive individuals (P�0.029),
whereas Akt1 and Akt3 were expressed at similar level in both
groups of patients (Figure 1A). Correlation studies demon-
strated a significant and positive bivariate correlation be-
tween Irs2 and Akt2 expression in all the MetS patients
(r2�0.66, P�0.001, Figure 1B), which remained highly
significant after controlling for age and sex (r2�0.63,
P�0.001), and when analyzing separately insulin-sensitive
(r2�0.69, P�0.001) and insulin-resistant (r2�0.46, P�0.001)
patients.

In insulin-resistant patients, mRNA expression levels of
Irs2 and Akt2 in WMBCs exhibited a statistically significant
inverse correlation with plasma insulin levels (Figure 1C and
1E) and the HOMA index (Figure 1D and 1F). These
associations were not observed in insulin-sensitive patients
(Irs2 versus insulin: r2�0.039, P�0.342; Irs2 versus HOMA:
r2�0.051, P�0.278; Akt2 versus insulin: r2�0.02, P�0.500;
Akt2 versus HOMA: r2�0.022, P�0.484). Additional asso-
ciation studies are presented in supplemental Tables II
through V. These results indicate that hyperinsulinemia and
IR in MetS patients are associated with downregulation of
Irs2 and its downstream effector Akt2 in WMBCs.
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Partial Inactivation of Irs2 in ApoE�/� Mice
Combined With Severe Hypercholesterolemia
Produces Increased Glucose Intolerance and Mild
Hyperinsulinemia and Accelerates Atherosclerosis
We next sought to generate an animal model with moderate
reductions in Irs2 expression to determine whether this
alteration observed in insulin-resistant MetS patients acceler-
ates atherosclerosis. To this end, we partially inactivated the
Irs2 gene in apoE�/� mice, which spontaneously develop
hypercholesterolemia and complex atherosclerotic lesions
resembling those observed in humans, which can be acceler-
ated by a high-fat cholesterol-rich diet.17 Mice received either
standard chow or were challenged for 3 months with a
high-fat cholesterol-rich atherogenic diet. Under either di-
etary regimen, partial disruption of Irs2 did not influence
circulating glucose levels (Figure 2A and 2B). Similarly,
fasting plasma insulin levels did not differ between apoE�/�

and apoE�/�Irs2�/� mice fed control diet (Figure 2A). How-
ever, on a high-fat diet, a trend toward increased fasting
plasma insulin was observed in apoE�/�Irs2�/� mice com-
pared with apoE�/� mice (1.00�0.17 versus 0.65�0.14
�g/dL, respectively, P�0.074; Figure 2B). Glucose tolerance
measured by the area under the curve (AUC) was similar in
apoE�/�Irs2�/� and apoE�/� mice fed control diet (Figure
2C), whereas, fat-fed apoE�/�Irs2�/� mice were more glucose
intolerant than apoE�/� counterparts on a high-fat diet
(P�0.05, Figure 2D). Under both dietary regimens, glucose-
stimulated insulin secretion was similar in both groups of
mice, as revealed by the AUC (Figure 2C and 2D). Likewise,

body weight did not differ statistically between control and
fat-fed apoE�/�Irs2�/� and apoE�/� mice (data not shown),
thus excluding obesity as a principal factor in the aforemen-
tioned metabolic differences developed by apoE�/�Irs2�/�

mice.
Circulating levels of total cholesterol (Total-C), HDL-C,

and triacylglycerides (TAG) were indistinguishable between
apoE�/� and apoE�/�Irs2�/� mice fed either control (Figure
2E) or atherogenic (Figure 2F) diet. As expected, levels of
plasma Total-C and TAG in fat-fed mice were increased in
comparison to prediet values. These findings suggest that
lipid metabolism in apoE�/� mice is unaffected by deletion of
one allele of Irs2.

As shown in Figure 3A, oil red O staining revealed similar
extent of atherosclerosis in the aortic arch of apoE�/� and
apoE�/�Irs2�/� mice fed control diet (Total-C �300 mg/dL,
cf. Figure 2E). In contrast, atherosclerosis burden was signif-
icantly increased in fat-fed apoE�/�Irs2�/� mice (Total-
C�550 mg/dL, cf. Figure 2F, postdiet values) receiving the
atherogenic diet for 2 months (aortic root, supplemental
Figure IA) and 3 months (aortic arch, Figure 3A). We also
found that neointimal accumulation of Mac3-immunoreactive
macrophages, SM� -actin-immunoreactive VSMCs, and col-
lagen was undistinguishable when comparing apoE�/� and
apoE�/�Irs2�/� mice fed either standard chow or atherogenic
diet (Figure 3B, and supplemental Figure IB).

We next investigated the consequences of reduced Irs2
expression on the uptake of modified LDL by macrophages,
a key event in atherosclerosis.18 Macrophages from apoE�/�

Figure 1. qPCR analysis in WMBCs from MetS patients. A, Insulin-resistant compared to insulin-sensitive patients (�1). B, Correlation
between Irs2 and Akt2 mRNA for all MetS patients. C through F, Regression analysis of Irs2 (C and D) and Akt2 (E and F) mRNA
revealed significant associations with plasma insulin (C and E) and HOMA index (D and F) in insulin-resistant patients.
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Irs2�/� mice exhibited a 30% increase in AlexaFluor488-
acLDL uptake compared to apoE�/� controls (Figure 3C),
coinciding with higher mRNA levels of CD36 and SRA
(Figure 3D), the two main scavenger receptors involved in the
uptake of modified LDLs by neointimal macrophages.

Effect of Partial Irs2 Inactivation on Aortic
Expression of Genes Related to Insulin Signaling
To further investigate the underlying mechanisms by which
partial inactivation of Irs2 in apoE�/� mice aggravates diet-
induced atherosclerosis, we used a pathway-focused RT-PCR

array which profiles the expression of 84 genes related to
insulin action (supplemental Table VI and expanded Materi-
als and Methods). We analyzed atheroma-rich aortic tissue
obtained from mice maintained for 2 months on a high-fat
diet. The array analysis revealed changes in the expression of
14 genes in aorta of apoE�/�Irs2�/� versus apoE�/� mice (3
with P�0.06 and 11 with at least P�0.05) (supplemental
Figure II). As expected, Irs2 mRNA expression was signifi-
cantly reduced in apoE�/�Irs2�/� aorta. Among the altered
genes, several are related with glucose and lipid metabolism
(G6pc, G6pc2, LDLr) whereas others encode kinases and
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Figure 2. Metabolic characterization of mice. ApoE�/� and apoE�/�Irs2�/� mice received either control (A, C, and E) or atherogenic (B,
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Figure 3. Irs2 partial disruption
increases atherosclerosis and
macrophage acLDL uptake
and scavenger receptor
expression. A, Atherosclerosis
burden (oil red O–stained aor-
tic arch). B, Neointimal content
of Mac3-immunoreactive and
SM�-actin–immunoreactive
cells and collagen (representa-
tive images from fat-fed
apoE�/�Irs2�/�). C and D, Mac-
rophage AlexaFluor488-acLDL
uptake and qPCR of CD36 and
SRA (relative to apoE�/�).
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phosphatases (Dusp14, Nck1, Prkc), transcription factors
(Cebpa, Klf10), and scaffold protein genes (Shc1). Interest-
ingly, apoE�/�Irs2�/� aorta exhibited reduced Akt2, Rras, and
Hras1 mRNA levels. These results clearly demonstrate that
the Irs2/Akt2/Ras insulin-signaling effector pathway is down-
regulated in aortic tissue of fat-fed apoE�/�Irs2�/� mice.

Both Partial Irs2 Genetic Inactivation and
Pharmacological Inhibition of AKT or ERK1/2
Enhance Mcp1 Expression
Atherosclerosis, T2DM, and IR are characterized by chronic
inflammation in different tissues.3–5,19,20 qPCR revealed in-
creased expression of the proinflammatory cytokine Mcp1 in
atherosclerotic plaque-rich aorta of apoE�/�Irs2�/� mice as
well as in primary cultures of VSMCs and macrophages
obtained from these animals versus apoE�/� controls (Figure
4A). Given the results of our expression studies in aorta
showing reduced mRNA level of Akt2, Hras 1, and Rras
(supplemental Figure II), we sought to assess whether defec-
tive signaling through AKT2 or ERK1/2 (a downstream
effector of RAS signaling) might be linked to the increased
Mcp1 expression associated with reduced expression of Irs2.
Indeed, pharmacological inhibition of either AKT (inhibitor
VIII) or ERK1/2 (U0126) increased Mcp1 mRNA expression
in cultures of rat VSMCs (Figure 4B). Western blot analysis

confirmed the inhibition of AKT and ERK, as indicated by
reduced accumulation of phosphorylated (active) AKT1/2
and ERK1/2 (Figure 4B, pAKT1/2, pERK1/2) in treated
VSMCs. Moreover, inhibitor VIII and U0126 markedly
reduced, respectively, the phosphorylation of p70S6K (which is
triggered on AKT activation) and of serum-inducible c-Fos
upregulation (which depends on ERK1/2 activation; Figure
4C), thus providing functional validation of the efficacy of
these drugs in our experimental settings.

Discussion
Irs2-null mice develop T2DM- and MetS-like alterations (eg,
IR, hyperinsulinemia, glucose intolerance, hypertension,
moderate hyperlipidemia).9–11 Recently, we and others re-
ported that total ablation of Irs2 accelerates atherosclerosis in
severely hypercholesterolemic apoE�/� mice.12,13 Novel find-
ings in the present study include: (1) the demonstration that
increased risk of CVD in insulin-resistant versus insulin-
sensitive MetS patients is associated with reduced expression
of Irs2 in WMBCs, and that a moderate reduction in Irs2
expression is sufficient to accelerate atherosclerosis in se-
verely hypercholesterolemic apoE�/�Irs2�/� mice, which dis-
play characteristics of MetS and IR; (2) the identification in
aorta of changes in the expression of insulin-related genes
potentially involved in augmented atherosclerosis in apoE�/�
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Irs2�/� mice, including the downregulation of Akt2 and Ras;
and (3) the identification of defective IRS2/AKT and IRS2/
RAS/ERK1/2 signaling as mechanisms of upregulating the
expression of proatherogenic MCP1.

Reduced expression of Ins-r, Irs2, and Akt2 has been
reported in pancreatic �-cells of T2DM/IR patients.16 How-
ever, our study is the first to analyze the expression of these
signaling molecules in WMBCs from insulin-resistant and
insulin-sensitive patients (Figure 1A). Notably, in accordance
with the notion that AKT acts downstream of IRS2, we found
a direct correlation between the level of Irs2 and Akt2 mRNA,
both when considering all MetS patients (Figure 1B) and
when analyzing separately insulin-sensitive and insulin-resis-
tant subjects. We also found that levels of Irs2 and Akt2
mRNA were inversely correlated with plasma insulin levels
and the HOMA index only in insulin-resistant patients (Fig-
ure 1C through 1F). Thus, hyperinsulinemia and IR in
humans are associated with the downregulation of Irs2 and
Akt2 in cell types which play major roles in the pathogenesis
of T2DM and atherosclerosis. We also found similar level of
Akt1 and Akt3 in both groups of MetS patients and higher Irs1
expression in insulin-resistant subjects, perhaps as a compen-
satory mechanism, a possibility which deserves further inves-
tigation. Additional studies are also warranted to clarify the
relative contribution of defined subpopulations of WMBCs in
the establishment of the observed differences between
insulin-sensitive and insulin-resistant MetS patients.

We and others have previously reported that fat-fed
apoE�/� mice with complete deficiency for IRS-2 exhibit
features of MetS (severe dyslipidemia, hyperinsulinemia,
glucose intolerance, IR) and accelerated atherosclerosis.12,13

To address whether a moderate reduction in Irs2 expression
(comparable to that which we observed in the WMBCs of
insulin-resistant patients with MetS) might have pathological
consequences in an animal model, we generated apoE�/�

Irs2�/� mice which lack only one allele of Irs2. In response to
high-fat feeding, these mice developed severe hypercholes-
terolemia (Total-C�550 mg/dL), higher glucose intolerance,
and a trend toward hyperinsulinemia as compared to similarly
hypercholesterolemic apoE�/� controls (Figure 2). This
MetS-like phenotype of fat-fed apoE�/�Irs2�/� mice was
associated with significantly enhanced aortic atherosclerosis,
without changes in plaque composition (eg, macrophage,
vascular smooth muscle cell [VSMC], and collagen content;
Figure 3, and supplemental Figure I). Notably, none of the
differences caused by partial Irs2 ablation were observed
when mice were fed standard chow (Total-C �300 mg/dL),
suggesting that reduced Irs2 expression can accelerate ath-
erosclerosis only when combined with other features of MetS
such as severe hypercholesterolemia. Interestingly, IR com-
bined with severe hypercholesterolemia (�700 mg/dL) was
also associated with severe atherosclerosis in fat-fed liver
Ins-r–deficient mice.21 We also noted higher expression of
the scavenger receptors SRA and CD36 and increased uptake
of acLDL in apoE�/�Irs2�/� versus apoE�/� macrophages
(Figure 3C and 3D). Similar findings have been previously
reported for Ins-r– deficient and ob/ob mouse macro-
phages.15,22 Thus, increased macrophage uptake of modified
LDLs through upregulation of SRA and CD36 appears to

contribute to accelerated atherosclerosis in different MetS
murine models.

As fat-fed apoE�/�Irs2�/� mice seemed an appropriate
model to investigate how impaired insulin-dependent signal-
ing promotes atherosclerosis, we used aorta from these mice
to investigate the consequences of reduced Irs2 on the
expression of 84 genes implicated in insulin-signaling using a
qPCR array (supplemental Table VI and supplemental Figure
II). As expected, our gene profiling study confirmed a
significant reduction in Irs2 mRNA in atheroma-rich aorta
from fat-fed apoE�/�Irs2�/� versus apoE�/� mice. The expres-
sion of Akt2 and Ras was also significantly diminished in
aorta of fat-fed apoE�/�Irs2�/� mice, indicating a correlation
between a moderate reduction of Irs2 expression and the
downregulation of 2 major pathways which mediate insulin
signaling. Remarkably, insulin-dependent IRS2/PI3K/AKT
and IRS1/ERK1/2 signaling are impaired in macrophages
from db/db and ob/ob diabetic mice,22,23 and in human
adipocytes from T2DM patients,24 respectively. It is also
noteworthy that Akt2 ablation in the mouse causes major
alterations in glucose homeostasis and insulin sensitivity,
leading to IR and T2DM.25,26 Therefore, our results extend
these findings to the cardiovascular system by suggesting a
mechanistic link between impaired AKT2- and RAS-
dependent signaling in aortic tissue and accelerated athero-
sclerosis in fat-fed apoE�/�Irs2�/� mice.

The proatherogenic role of MCP1 has been firmly estab-
lished.27,28 Thus, the upregulation of Mcp1 mRNA observed
in aorta of fat-fed apoE�/�Irs2�/� mice (Figure 4A) may
accelerate atherosclerosis in this model. Mcp1 expression was
also higher in primary VSMCs and macrophages from apoE�/�

Irs2�/� mice (Figure 4A). Moreover, this cytokine is upregu-
lated in adipocytes exhibiting IR (IR-3T3-L1 and ob/ob
adipocytes)29 and in platelets from diabetic patients.30 Our
finding that pharmacological inhibition of AKT2 or
ERK1/2 upregulates Mcp1 mRNA in rat VSMCs (Figure
4B) is consistent with the notion that accelerated athero-
sclerosis in MetS conditions is attributable, at least in part,
to defective IRS2-AKT2 and IRS2-RAS/ERK1/2 pathways
and the resulting upregulation of Mcp1 in various cell
types involved in atherothrombosis (eg, VSMCs, macro-
phages, platelets, adipocytes). However, additional studies are
needed to firmly establish causal relationships between human
MetS states, Mcp1 upregulation, and dysfunctional IRS2-AKT2-
and IRS2-RAS/ERK1/2–dependent signaling.

In summary, our studies demonstrate that WMBCs from
MetS patients with IR display diminished expression of Irs2
and its downstream effector Akt2 compared to insulin-
sensitive MetS patients, suggesting a mechanistic link be-
tween reduced IRS2 expression and human metabolic dis-
eases. Indeed, the moderate reduction of Irs2 expression
achieved in fat-fed apoE�/�Irs2�/� mice is sufficient to
produce MetS-like symptoms and accelerate atherosclerosis.
Our studies with aortic tissue, primary VSMCs, and macro-
phages demonstrate that partial Irs2 inactivation impairs
AKT2- and Ras/ERK1/2-dependent signaling, leading to
augmented MCP1 expression and enhanced CD36 and SRA
scavenger receptor expression and macrophage acLDL up-
take beyond hypercholesterolemia. These findings highlight
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defective IRS2-associated AKT2- and Ras/ERK1/2-
dependent signaling as a potential mechanism underlying
accelerated atherosclerosis in MetS/IR states.
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Supplementary Material 
 
 

Molecular mechanisms of atherosclerosis in metabolic syndrome: Role of 

reduced IRS2-dependent signaling 

 

Herminia González-Navarro, Ángela Vinué, Marian Vila-Caballer, Ana Fortuño, Oscar 

Beloqui, Guillermo Zalba, Deborah Burks, Javier Díez, Vicente Andrés 

 
 
Expanded figure legends 
 

Fig.1. mRNA levels of Irs2 and Akt2 in WMBCs are decreased in insulin-resistant 
MetS patients and inversely correlate with plasma insulin levels and HOMA index. 
(A) qPCR analysis of Irs1, Irs2, Akt1, Akt2 and Akt3 in WMBCs. Insulin-resistant 

patients are compared to insulin-sensitive patients (=1). Results were normalized by 

endogenous Gapdh expression, which was undistinguishable in both groups (p>0.05). 

(B) Correlation between Irs2 and Akt2 mRNA expression levels for all MetS patients. 

Regression analysis of Irs2 (C,D) and Akt2 (E,F) mRNA levels determined by qPCR 

revealed significant associations with plasma insulin levels (C,E) and HOMA index (D,F) 
in insulin-resistant MetS patients. 

 
 
Fig.2. Metabolic characterization of apoE-/-Irs2+/- and apoE-/- mice. Plasma glucose 

and insulin levels in mice fed control diet (A) or challenged with atherogenic diet for 3 

months (B) (apoE-/-Irs2+/-: n=10 and n=16, respectively; apoE-/-: n=13 and n=10, 

respectively) after overnight fasting. Glucose tolerance test in mice fed control diet (C) 
or atherogenic diet for 3 months (D), showing plasma glucose and insulin levels and the 

corresponding AUC (n=6). (E) Fasting plasma total cholesterol (Total-C), HDL 

cholesterol (HDL-C) and TAG of 10-month-old apoE-/-Irs2+/- (n=11) and apoE-/- (n=10) 
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mice on control diet. (F) The same parameters were measured in mice before and after 

3 months of atherogenic diet (n=16 and n=18, respectively). 

 
 
Fig.3. Partial disruption of Irs2 increased atherosclerosis and macrophage acLDL 
uptake and scavenger receptor expression. (A) Quantification of aortic arch 

atherosclerosis expressed as percentage of lesional area (stained by Oil Red O) for 

mice fed control diet for 10 months or atherogenic diet for 3 months. (B) Neointimal 

content (%) of Mac3-immunoreactive macrophages, SMα-actin-immunoreactive VSMCs 

and collagen in mice fed control diet for 10 months or atherogenic diet for 3 months. 

The photomicrograps show representative images (from fat-fed apoE-/-Irs2+/-mice). The 

discontinuous lines mark the approximate contour of the tunica media. (C) 
AlexaFluor488-acLDL uptake is increased in apoE-/-Irs2+/- macrophages. Results show 

the average of three independent experiments and are represented relative to apoE-/- 

(=1). (D) qPCR of CD36 and SRA in mouse macrophages (n=4).  

 

 

Fig.4. Partial inactivation of Irs2 and pharmacological inhibition of AKT2 or 
ERK1/2 increases Mcp1 expression. (A) qPCR of Mcp1 in VSMCs (n= 3), 

macrophages (n= 3), and aortic tissue (n=5 pools of 2 vessels per genotype) obtained 

from fat-fed mice. Results were normalized with cyclophilin and were expressed relative 

to apoE-/- (=1). (B) Rat VSMCs were treated as indicated. Left: qPCR of Mcp1 (n=3). 

Results were normalized with Gapdh and expressed relative to untreated cells (=1, first 

bar). Right: Western blot analysis of the indicated proteins (p-AKT1/2: phosphorylated 

AKT1/2; p-ERK1/2: phosphorylated ERK1/2). *p<0.05; **p<0.03 vs. untreated cells. (C) 
Western blot analysis of downstream effectors of AKT (phospho-p70S6K) and ERK (c-

Fos) in rat VSMCs treated as indicated.  
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Expanded Materials and Methods 
 
Metabolic measurements in mice 

Circulating glucose and lipid levels in plasma of mice fasted overnight were measured 

using enzymatic procedures (WAKO, St. Louis, USA) and Glucometer Ascensia Elite 

(Bayer HealthCare). Insulin levels were determined by ELISA (Mercodia, Sweeden). 

HDL-cholesterol (HDL-C) was determined after precipitation of the apoB-containing 

lipoproteins with dextran-sulphate/MgCl2 (SIGMA, St. Louis, USA) as reported.1 For 

glucose tolerance test (GTT), mice were injected with glucose (intraperitoneally, 2g/Kg 

of body weight) and plasma and insulin glucose levels were analyzed at different time-

points. 

 

Quantification of atherosclerosis burden 

For mice fed standard chow or atherogenic diet for 3 months, the extent of 

atherosclerosis was determined by Oil Red O staining (80% methanol, 0.2% Oil Red O, 

SIGMA) of whole mounted aortic arch fixed with 4% paraformaldehyde/PBS as 

previously described.1 In mice fed atherogenic diet for 2 months, the aortic arch was 

snap-frozen for qPCR studies (see below) and lesion size was quantified as the intima-

to-media ratio in cross-sections of paraffin-embedded aortic root. A researcher blinded 

to genotype quantified the extent of atherosclerosis by computer-assisted morphometric 

analysis (SigmaScan, Pro5). 

 

Immunohistochemical analysis of atheromas 

Immunohistopathological examination of atheromas performed by a researcher blinded 

to genotype included the quantification of the content of macrophages, vascular smooth 

muscle cells (VSMCs), and collagen (Masson’s trichrome stain). VSMCs were identified 

with mouse anti-SMα-actin monoclonal alkaline phosphatase-conjugated antibody (1/20 

dilution, clone 1A4, a-5691, Sigma) and Fast Red substrate (Sigma). Macrophages 

were detected with a rat anti-Mac3 monoclonal antibody (1/200 dilution, clone M3/84, 

sc-19991, Santa Cruz Biotechnology), followed by biotin-conjugated goat anti-rat 

secondary antibody (1/300 dilution, sc-2041, Santa Cruz Biotechnology), HRP-

 at UNIVERSIDAD DE NAVARRA on May 2, 2012http://atvb.ahajournals.org/Downloaded from 

http://atvb.ahajournals.org/


 4

Streptavidin (STAR5B, AbD SEROTEC) and DAB substrate (BUF021A, AbD 

SEROTEC). Slides were counterstained with hematoxylin. Images were captured with 

an Olympus CAMEDIA-C5060 wide zoom digital camera mounted on a 

stereomicroscope Axiolab, Zeiss).  

 

Primary cell culture 

Cultures were maintained at 37 °C in a humidified 5% CO2 atmosphere. Bone marrow-

derived macrophages were obtained from femoral bone marrow suspensions plated at 

3x106 cells/mL and differentiated for 7 days in the presence of DMEM/10%FBS/10% 

macrophage-colony stimulating factor2. Mouse and rat aortic VSMC cultures were 

obtained from thoracic aortas harvested from 3-5 month old animals after two digestions 

in HBSS/Fungizone medium as described elsewhere.2 Briefly, the first digestion 

consisted of type II collagenase (175U/mL, Worthington Biochemical Corp.) incubation 

to eliminate the adventitia. A second digestion with type II collagenase (175 mg/mL) 

(Worthington) and type I Elastase (0.5 mg/mL) (Sigma) gave rise to cell suspensions. 

VSMCs were cultured in 20% FBS/DMEM/Fungizone and used until passage 10. The 

purity of VSMCs was confirmed with anti-SMα-actin monoclonal alkaline phosphatase-

conjugated antibody (1/20 dilution, clone 1A4, a-5691, Sigma) and Fast Red substrate 

(Sigma). 

 

Western blot analysis and pharmacological inhibition of kinases 

Protein extracts were obtained from VSMC cultures (typically 10 cm diameter plates) 

using ice-cold 50mM Tris-HCl buffer (pH 7.5) containing 1% Triton X-100, 150mM NaCl, 

1mM DTT and protease inhibitor Complete Mini cocktail (ROCHE, Mannheim, 

Germany). Polyacrilamide Gel Electrophoresis and Western blot analysis were done as 

reported 2 using the following primary antibodies: anti-ERK2 (1/500, sc-154), anti-

phospho-ERK1/2 (1/300, sc-7383), anti-c-Fos (1/300, sc-52), anti-Akt1/2 (1/1000, sc-

1619) from Santa Cruz Biotechnology, and anti-phospho-Akt1/2 (Ser473) (1/250, 9271) 

and anti-phosphop70S6K (Ser371) (1/1000, 9208) from Cell Signaling Technology. HRP 

conjugated secondary antibodies (1/300, Santa Cruz Biotechnology) used were: goat 

anti-mouse IgG-HRP (sc-2005), goat anti-rabbit IgG-HRP (sc-2004) and donkey anti-
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goat IgG-HRP (sc-2056). Immunocomplexes were detected with ECL detection kit 

(Amersham Biosciences, Piscataway, USA). 

For inhibition studies, rat aortic VSMCs were incubated overnight with the MEK 

inhibitor U0126 (10 μM, Promega) or the AKT Inhibitor VIII (1 μM, Calbiochem). 

Effective inhibition was first confirmed by Western blot analysis of the phosphorylated 

(active) forms of AKT (p-AKT) and ERK1/2 (p-ERK1/2). Inhibition was also validated by 

Western blot of c-Fos and phosphorylated p70S6K (p-p70S6K) as downstream targets of 

ERK1/2 and AKT, respectively. For c-Fos expression, cells were starved for 48h, pre-

incubated 1h with or without the MEK inhibitor U0126 and then serum-stimulated for 2h. 

 

Uptake of acetyladed-low-density lipoproteins (Ac-LDL) 

Bone marrow-macrophages from apoE-/- (n=3) and apoE-/-Irs2+/- (n=3) mice were 

incubated for 4 hours with AlexaFluor488-acLDL (1 μg/mL, Invitrogen) in Serum-Free 

media. After incubation, cells were recovered in complete medium and AlexaFluor488-

acLDL uptake was quantified as the median fluorescence intensity (arbitrary units) using 

a FACsCanto cytometer (BD Bioscience).  

 

Gene expression analysis by quantitative real-time PCR (qPCR) 

The TRIzol Reagent (Invitrogen) was used for extracting RNA from aortic tissue of mice 

fed atherogenic diet for 2 months, from mouse cells and from human white mononuclear 

blood cells (WMBCs) isolated from peripheral blood samples with Lymphoprep as 

previously described.3 RNA purity and concentration was determined by the A260/280 

ratio.  

The studies of Fig.3D and 4A were carried out with RNA (0.5-1μg) retro-

transcribed with Superscript III First Strand Synthesis Supermix and Platinum 

Quantitative PCR Supermix-UDG with Rox dye (both from Invitrogen). Reactions were 

run on a thermal Cycler 7500 Fast System and results were analyzed with the software 

provided by the manufacturer (Applied Biosystems). The following primers (Forward: 

Fw; Reverse: Rv) were designed using the Primer Express programme (Applied 

Biosystems):  
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Mouse Cd36:  
Fw 5’-TCGGAACTGTGGGCTCATTG-3’ 

Rv 5’-CCTCGGGGTCCTGAGTTATATTTTC-3’ 

Mouse Sra:  
Fw 5’-CATGAACGAGAGGATGCTGACT-3 

Rv 5’-GGAAGGGATGCTGTCATTGAA-3’ 

Mouse Mcp1:  
Fw 5’-GCCCAGCACCAGCACCAG-3’ 

Rv 5’-GGCATCACAGTCCGAGTC-3’  

Mouse cyclophilin:  
Fw 5’-TGGAGAGCACCAAGACAGACA-3’ 

Rv 5’-TGCCGGAGTCGACAATGAT-3’ 

Rat Mcp1:  
Fw 5’-GCTGCTACTCATTCACTGGCAA-3’ 

Rv 5’-TGCTGCTGGTGATTCTCTTGTA-3’ 

Rat Gapdh:  
Fw 5’-TGCACCACCAACTGCTTA-3’ 

Rv 5’-GGATGCAGGGATGATGTTC-3’ 

Human Irs1:  
Fw-5’-CGGAGAGCGATGGCTTCTC-3’  

Rv 5’-GTTTGTGCATGCTCTTGGGTTT-3’  

Human Irs2:  
Fw-5’-CCGACGCCAAGCACAAGTA-3’  

Rv 5’-CGGCCACGGCGAAGTA-3’  

Human Akt1:  
Fw 5’-CCGACGCCAAGCACAAGTA-3’  

Rv 5’-CGGCCACGGCGAAGTA-3’ 

Human Akt2:  
Fw 5’-CAAGGATGAAGTCGCTCACACA-3’  

Rv 5’-GAACGGGTGCCTGGTGTTC-3’ 
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Human Akt3:  
Fw 5’-CCTTGAAATATTCCTTCCAGACAAA-3’  

Rv 5’-ACAGCTCGCCCCCATTAAC-3’ 

Human Gapdh:  
Fw 5’-ACCACAGTCCATGCCATCAC-3’  

Rv 5’-TCCACCACCCTGTTGCTGTA-3’ 

 

The studies of Fig. II were done using the Mouse Insulin Signaling Pathway RT2 

Profiler PCR Array System, which allows the analysis of 84 genes related to the insulin-

signaling pathway and housekeeping genes for normalization (Superarray Bioscience 

Cat. # PAMM-030, see Table VI and 

http://www.superarray.com/rt_pcr_product/HTML/PAMM-030A.html). For each array, 

RNA was extracted with TRIzol Reagent from a pool of 2 aortic archs and cDNA was 

synthesized using the Reaction-Ready First Strand cDNA synthesis kit (SuperArray 

Bioscience). For each genotype, 5 independent qPCR arrays were run using the 7500 

Fast System Light Cycler and analysis was performed according to the manufacturer’s 

recommendations (Applied Biosystems). Expression in apoE-/-Irs2+/- mice was 

expressed relative to that in apoE-/- mice (=1). 

 

Statistical analysis 

Data are presented as mean±SEM. Differences among mouse groups were evaluated 

by one-way ANOVA with Fisher’s post-hoc test (Statview, SAS institute, Cary, USA). 

Differences in the demographic and clinical characteristics between insulin-resistant and 

insulin-sensitive patients were assessed by Student’s t or Mann-Whitney´s U test. The 

χ2 analysis was used to analyze differences among qualitative variables. The Pearson 

test was used to assess associations between continuous variables in human studies. 

Multivariate linear regression analysis was performed to evaluate factors related to Irs2 

and Akt2 human expression. The area under the curve (AUC) was calculated with the 

R-Project programme. Statistical significance was taken at p≤0.05. 
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Results 

 

Analysis of all metabolic syndrome (MetS) patients (insulin-sensitive + insulin-resistant) 

revealed a significant and inverse correlations of WMBC Irs2 mRNA levels with plasma 

insulin levels (r2=0.087, p=0.031) and HOMA index (r2=0.074, p=0.050). These 

associations remained statistically significant in a multivariate analysis after adjusting for 

age, diastolic blood pressure (DBP), body mass index (BMI), and HDL-cholesterol 

(Table II and III). Similarly, Akt2 mRNA levels in WMBC were negatively associated with 

plasma insulin levels (r2=0.110, p=0.016) and HOMA index (r2=0.113, p=0.050) when 

analyzing all MetS patients, and these associations remained statistically significant in a 

multivariate analysis after adjusting for age, DBP, BMI, and HDL-cholesterol (Table IV 

and V).  
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Table I: Demographic and clinical characteristics of MetS patients 

 
 Insulin-

sensitive 
Insulin-

resistant 
p value 

Gender (male/female) 22/3 26/4 0.797 
Age (years) 55±2 52±2 0.154 
BMI (kg/m2) 28.4±1.2 32.3±0.9 0.012 
Waist circumference (cm) 98±2 106±2 0.021 
SBP (mm Hg) 137±3 140±3 0.593 
DBP (mm Hg) 80±2 88±2 0.032 
Glucose (mmol/L) 101±2 106±3 0.152 
Insulin (pmol/L) 59.4±4.8 123.6±7.2 <0.001 
HOMA index 2.3±0.2 5.4±0.4 <0.001 
Total Cholesterol (mg/dL) 216±13 226±11 0.945 
LDL-cholesterol (mg/dL) 146±13 150±9 0.938 
HDL-cholesterol (mg/dL) 41±2 36±1 0.037 
Triglycerides (mg/dL) 153±16 154±12 0.983 
von Willebrand Factor (%) 115±13 116±7 0.924 
Fibrinogen (mg/dL) 287±12 288±13 0.984 
C-reactive protein (mg/dL) 0.31±0.04 0.27±0.03 0.339 
Oxidized LDL (U/L) 69±4 86±5 0.017 
MMP-9 (ng/mL) 9.9±1.2 14.0±1.4 0.038 
Obesity (%) 48 77 0.028 
Diabetes (%) 12 17 0.625 
Dyslipidemia (%) 84 97 0104 
Hypertension (%) 72 77 0.692 
Medication    

Antihypertensives (%) 40 47 0.713 
Statins (%) 8 7 1.000 
Oral hypoglycemics (%) 12 7 0.543 

 

 at UNIVERSIDAD DE NAVARRA on May 2, 2012http://atvb.ahajournals.org/Downloaded from 

http://atvb.ahajournals.org/


 10

Table II: Association WMBC Irs2 expression/plasma insulin in multiple linear regression analysis 

 β p * Partial r2 (%) 

Plasma insulin levels (pmol/L)  -0.25 0.041 8.7 

BMI (kg/m2) 0.004 0.861 0.1 

HDL-cholesterol (mg/dL) -0.11 0.165 2.6 

DBP (mm Hg) -0.003 0.749 0.2 

Age (years) 0.13 0.144 3.9 

r2 for the total population was 15.5% 
 

Table III: Association WMBC Irs2 expression/HOMA index in multiple linear regression analysis 

 β p * Partial r2 (%) 

HOMA index  -0.084 0.045 7.4 

BMI (kg/m2) 0.003 0.872 0.2 

HDL-cholesterol (mg/dL) -0.11 0.189 1.8 

DBP (mm Hg) -0.002 0.813 0.1 

Age (years) 0.16 0.079 5.9 

r2 for the total population was 15.4% 
 

Table IV: Association WMBC Akt2 expression/plasma insulin in multiple linear regression analysis 

 β p * Partial r2 (%) 

Plasma insulin levels, pmol/L  -0.023 0.018 11.0 

BMI (kg/m2) 0.022 0.180 2.0 

HDL-cholesterol (mg/dL) -0.0011 0.825 0.1 

DBP (mm Hg) -0.006 0.410 1.1 

Age (years) 0.013 0.078 5.7 

r2 for the total population was 19.9% 
 

Table V: Association WMBC Akt2 expression/HOMA index in multiple linear regression analysis 

 β p * Partial r2 (%) 

HOMA index  -0.090 0.006 11.3 

BMI (kg/m2) 0.024 0.151 2.2 

HDL-cholesterol (mg/dL) -0.002 0.805 0.1 

DBP (mm Hg) -0.005 0.526 0.6 

Age (years) 0.016 0.028 8.8 

r2 for the total population was 23% 
 
p values in Tables II, III, IV and V are adjusted for BMI, DBP, HDL-cholesterol and age. 
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Table VI: List of the 84 genes analyzed in the Insulin Signaling Pathway RT2 Profiler PCR Array System 

Insulin Receptor-associated 
Proteins: 

Ins1, Insl3, Irs1, Irs2, Sorbs1, Igf1r, Igfbp1, Cbl, Grb10, Grb2, Dok1, Dok2, Dok3, Eif4ebp1, Frs2, Frs3, 
Gab1, Nck1, Ppp1ca, Ptpn1, Ptprf, Shc1 

PI-3 Kinase Pathway: 
 

Akt1, Akt2, Akt3, Eif2b1, Frap1, Pdpk1, Pik3ca, Pik3cb, Pik3r1, Pik3r2, Prkcc, Prkci, Prkcz, Adra1d, 
Bcl2l1, Dusp14, G6pc, G6pc2, Hk2, Igfbp1, Pck2, Serpine1, Srebf1, Ucp1, Vegfa 

MAPK Pathway: 
 

Araf, Braf, Dok2, Dok3, Gab1, Grb2, Hras1, Kras, Map2k1, Mapk1, Raf1, Rps6ka1, Rras, Rras2, Shc1, 
Sos1, Bcl2l1, Ercc1, Fos, Nos2, Klf10 (Tieg1), Ucp1 

Primary Target Genes for Insulin: Cebpb, Fos, Jun, Lep, Prl 
Secondary Effector Target Genes 
for Insulin Signaling: 

Npy, Pck2, Tg 

Target genes for PPARγ: Acox1, Cfd (Adn), Cap1, Cebpb, Gpd1, Pck2, Pparg, Retn, Slc27a4 
Target genes for SREBP1: Acaca, Fbp1, G6pc, Gck, Pck2, Pklr 

Carbohydrate Metabolism: Fbp1, G6pc, Gck, Gpd1, Hk2, Ins1, Lep, Pck2, Pklr, Ppp1ca, Slc2a1, Sorbs1. 

Lipid Metabolism: Ldlr, Lep, Srebf1, Acox1, Slc27a4, Sorbs1, Araf, Prkcc, Prkci, Prkcz, Raf1, Shc1 

Protein Metabolism: 
 

Dusp14, Ppp1ca, Ptpn1, Ptprf, Akt1, Akt2, Akt3, Araf, Gsk3b, Igf1r, Map2k1, Mapk1, Pdpk1, Pik3ca, 
Pik3r1, Prkcc, Prkci, Prkcz, Raf1, Rps6ka1, Eif2b1, Eif4ebp1, Ppp1ca, Hras1, Prkci, Rras2, Bcl2l1, 
Cebpa, Cebpb, Dok3, Frs2, Gab1, Gck, Grb10, Grb2, Jun, Ldlr, Lep, Nck1, Nos2, Pik3r2, Serpine1, Shc1, 
Sorbs1, Sos1, Ucp1 

Transcription Factors and 
Regulators: 

Aebp1, Cebpa, Cebpb, Fos, Jun, Pparg, Srebf1, Klf10 (Tieg1) 

Cell Growth and Differentiation: 
 

Gsk3b, Hras1, Igf2, Jun, Kras, Mapk1, Irs2, Lep, Nos2, Frs2, Igf1r, Igf2, Igfbp1, Lep, Shc1, Vegfa, Cebpa, 
Cebpb, Map2k1, Pik3r1, Pparg. 

Classification in different categories as indicated by the manufacturer (SuperArray Bioscience; 
http://www.superarray.com/rt_pcr_product/HTML/PAMM-030A.html). Note that some genes are included in more than one category. 
Shown in colour are the 14 genes included in Figure II which exhibited downregulation (in red) or upregulation (in green) in the aortic 
arch of fat-fed apoE-/-Irs2+/- versus apoE-/- mice.  
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Figure I: Partial disruption of Irs2 increases atherosclerosis burden but does not affect plaque composition. Aortic root cross-
sections were obtained from mice fed the atherogenic diet for two months. (A) Atherosclerosis burden determined as the intima-to-media 
ratio. Results are expressed relative to apoE-/- mice (=1). (B) Neointimal content of macrophages, VSMCs and collagen was quantified 
using anti-Mac-3, anti-SM α–actin and Masson’s Trichrome staining, respectively. Results represent the percentage of area occupied by 
macrophages, VSMCs and collagen versus total area of atheroma. The photomicrograps show representative images of the stainings 
(from apoE-/-Irs2+/-mice). The discontinuous lines mark the approximate contour of the tunica media. Statistically significant differences 
between genotypes were only observed for the intima-to-media-ratio (p=0.02, Student’s t-test). 
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Figure II. Aortic expression of genes related to insulin signaling in fat-fed apoE-/-Irs2+/- mice. Gene profiling was performed in aortic 
arch tissue of apoE-/- and apoE-/-Irs2+/- mice fed atherogenic diet for 2 months using a murine “Insulin signaling pathway qPCR Superarray” 
system, which allow the study of 84 genes related to insulin signaling (please, see Table VI and Expanded Material and Methods in this on-
line supplement). mRNA levels in apoE-/-Irs2+/-mice are expressed relative to apoE-/- controls (=1). Asterisks indicate genes displaying 
statistically significant differences between genotypes (p<0.05, Student’s t-test). Three genes displayed borderline significance (p=0.06). 
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