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A
�

bstract. Cellular immune responses can destroy cancer cells, achieving the cure of experimental mali
�
gnancies.

An expanding wealth of knowledge on the molecular basis of how to prime and amplify a T cell re� sponse has
fueled a number of strategies successful at treating established tumors (rather than merely p	 reventing tumor
g
 rafting). The most efficacious approaches operate at different stages, including: 1) priming the immune response
u� sing tumor antigen-expressing dendritic cells or tumor cells transfected with genes that render�  them immu-
nogenic, 2) sustaining and amplifying immunity using agonistic monoclonal antibodies against costimulatory
m olecules or immune-potentiating cytokines, and 3) eliminating mechanisms that self-regula� te the strength of the
immune response, such as inhibitory receptors or regulatory T cells. A rational combination of such approaches
holds great hope for cumulative and synergistic effects, but there is also evidence that they�  can open the
flood-gates for unwanted inflammatory reactions. The next decade can be envisioned as the time when the first
r� eproducibly efficacious combination regimes for cancer immunotherapy will become availab

�
le and widely used

in the clinic, as clinicians learn the best strategies and try to harness their potentially damag
 ing effects.
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Antitumor T Cell Pr iming (Star t the Engine)

Tumor cells are antigenic. Many antigenic determi-
n� ants are encoded by their genes as a result of muta-
t

�
ions or ectopic expression4

�
, 5, 41. Many of them have

b
�
een molecularly defined and the interactions of several

d
�
eterminants with MHC antigen-presenting molecules

h
�
ave been studied. However, tumor cells are very poor-

ly immunogenic in the sense that they do not ignite
a�  T cell mediated-immune response by themselves, or
if they do, the response is of rather low intensity4

�
1.

A hot topic these days is whether tumors induce
t

�
olerance towards their antigens or if their antigens are

simply ignored by the immune system46. Experimental
e� vidence delivers examples of both modes of action,
a� lthough in most instances fully-established tolerance,
a� s such, cannot be demonstrated and ignorance is the
most prevalent mechanism9

�
. In fact, tumor cells per-

f
�
orm very poorly as antigen-presenting cells, even to

induce tolerance by clonal anergy (or deletion) of
T

�
 cells9

�
. Response or tolerance against tumor antigens

o� ccurs as a result of a complex process called cross-
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-presentation in which tumor antigens are taken up,
t

�
ransported and presented by a cell professional for
t

�
hose tasks21. Importantly, cross-presentation, either for

c� ross-priming or for tolerance, needs a certain thre-
shold in the level of antigen expression that, if not
reached, results in immune ignorance to the antigen21.

T
�

herefore, several requirements are to be fulfilled in
o� rder to start a T cell response to a tumor antigen:
1) transport of the antigen to lymphoid tissue to meet
n� aive T cells, 2) presentation on a cell with the correct
a� rray of costimulatory molecules, antigen-presenting
molecules and cytokines, and 3) presence of responsive
e� lements in the T cell repertoire5

�
7. The first two re-

q� uirements are satisfied if the antigen is given in a form
t

�
hat finally results in its expression on mature dendritic

c� ells (DC)1. The presence of a responsive T cell reper-
t

�
oire depends on the ability of the tumor to tolerize

a� gainst its antigens.
T

�
wo general approaches have been followed:

a� ) transfection of cytokines and costimulatory mole-
c� ules into tumor cells to make them resemble functional
D

�
C, and b) an artificial loading of tumor antigens on

selected or cultured DC. Either approach has been suc-
c� essful in priming the response against murine tumors.
T

�
hese strategies dominate, in various forms, the current

a� rena of tumor vaccination strategies41.
E

 
xpression of DC genes in tumor cells can be

a� chieved by in vitro transfection or by in vivo gene
t

�
ransfer of tumor nodules with a number of viral vec-
t

�
ors. The best results with this approach are obtained

b
�
y transfection of granulocyte-macrophage colony-sti-

mulating factor (GM-CSF)12, 22, a molecule that largely
w! orks by easing cross-priming. This is because it
a� ttracts and differentiates DC. Interleukin 12 (IL-12)
a� lso works well but, again, the cellular events actually
e� licited probably rely on cross-presentation mechan-
i

�
sms and the induction of a cascade of cytokines with
p	 leotropic functions on leukocyte biology and an-
g
 iogenesis3

"
8, 53. Gene transfer of surface molecules of

t
�
he B7 family10, MHC class II2

#
, 47, 4-1BBL19, 36 and

C
$

D40L5
�

4 have been found to be efficacious, but most
o� ften they are unable to tackle well-established or pro-
l

%
iferated disease.

A major break-through in the field was the possi-
b

�
ility to culture DC from monocytes of bone-marrow

p	 recursors in the presence of GM-CSF and IL-42
#

3, 50.
This made feasible the proof-of-concept type of ex-
p	 erimentation, showing that tumor antigens pulsed on
D

�
C were extremely potent tumor vaccines. Sources of

a� ntigen can contain single or multiple antigenic deter-
m inants which are given to DC as peptides or a mixture
o� f tumor antigens4

�
0. Complex sources of tumor antigens

a� re provided as tumor lysate, tumor apoptotic bodies,
c� ell fusion of DC and tumor cells, transfection of total
t

�
umor RNA, etc. Viral and bacterial vectors can be used

t
�
o lead the antigens into the antigen-presenting ma-

c� hinery of DC5
�

6. An alternative has been to inject DC
into malignant tissue in such a way that the artificially
i

�
njected DC take up antigens and transport them2

#
5, 37, 45.

C
$

omplex sources of antigens are better, since they in-
d

�
uce a polyclonal type of response against multiple epi-

t
�
opes at the same time (therefore making antigen-loss

v& ariants less likely) 40. However, they could vaccinate
a� gainst normal sequences shared by proteins in the
t

�
umor and normal tissue, leading to autoimmunity.

Many clinical trials are currently testing the best source
o� f DC (monocyte-derived, CD34-derived, or Flt-3L-mo-
b

�
ilized)13, 14, 56, the best source of tumor antigen, and

t
�
he most convenient route of injection. The winning

results so far have been for the tumor-cell/DC hybrido-
m as17, 18, which show impressive efficacy in human
renal cell carcinoma27, but such data are under investi-
g
 ation due to a well-founded suspicion of misconduct3

"
.

A
'

 very appealing source of antigen is tumor pro-
t

�
eins of the heat shock protein family (HSP-70 and

g
 p96) that chaperone peptides in the MHC class
I

�
 antigen-presenting pathway and have been shown to

b
�
e very efficiently internalized in DC49, while they also

p	 rovide cytokine-like activation signals to these cells.
This approach is being currently tested with cancer pa-
t

�
ients.

Costimulation and Immune-Response
M

(
aintainance (Step on the Gas Pedal)

The immune system has some tricks that can be
e� xploited in order to amplify a response. A great num-
b

�
er of cytokines and membrane-bound costimulatory

ligands are able to upregulate and shape the type of
e� ffector response. These mechanisms can be grossly
e� xaggerated by properly engineered therapeutic agents
in order to get a better antitumor immune response.

In a way, a very simple means to obtain this ampli-
f

�
ication is to repeat the immunization procedure se-

q� uentially over time. If tumor cells present the antigens
i

�
n a poorly immunogenic fashion, repeated doses of the
a� ntigens under immunogenic conditions is a good idea,
since these repetitions will not let the immune response
fade away3

"
1.

I
�
f a patient is successfully primed by active immu-

notherapy, this can allow the physician to culture his
e� ffector T cells e) x vivo to be reinfused as adoptive ther-
a� py6

*
1. The artificial culturing of these lymphocytes
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b
�
enefits greatly from this successful priming to increase

T cell precursor frequencies3
"
5. Therefore, active and

p	 assive or adoptive immunotherapy are to be combined
i

�
n the clinic to sustain the response, as has been shown

in animal models.
Administration of cytokines, either as proteins or

w! ith gene-transfer approaches, can also help the re-
sponse. Type I interferons and IL-2 may find a role in
t

�
hese therapy combinations. Particularly interesting is

t
�
he exploration of the use of IL-15, GM-CSF and Flt-

-3L, which are very promising agents. IL-15 has unex-
p	 ected properties not shared with IL-2, since it expands
m emory cytotoxic T lymphocytes (CTLs) and prevents
a� ctivation-induced cell death6

*
, 29, 62. Flt-3L and GM-

-CSF, to a lesser extent, promote the differentiation and
a� ccumulation of great numbers of DC in the treated
subjects3

"
2, 33. This has an antitumor immune effect p+ er

s, e3
"
2 and permits an easier isolation and manipulation of

D
�

C14.
A number of agonistic antibodies against costimu-

l
%
atory molecules seem to greatly increase the antitumor

i
�
mmune response. This is the case of anti-4-1BB mono-

c� lonal antibodies (mAb)3
"

9, which recognize a surface
g
 lycoprotein expressed only on activated T and natural
k

-
iller cells, providing a very potent costimulatory sig-

nal to activated CTLs throughout the body. These anti-
b

�
odies rely on some level of pre-existing T cell priming

t
�
o activate the expression of 4-1BB on T cells2

#
6. Agon-

istic antibodies against CD40, which activate antigen-
-presenting cells in all lymphoid tissues, also have great
p	 otential, according to data obtained in mouse tumors16, 58.
Here the anti-CD40 mAb reaches and activates, among
m any others, the small number of DC cross-presenting
t

�
umor antigens and license them to activate CTLs5

�
1. Its

function is reminiscent of a physiological concomitant
Th1 response activating DC through CD40L/CD40 in-
t

�
eractions.

O
.

ther means to accelerate the immune response
w! ill be very likely found by selectively inhibiting
a� ctivation-induced cell death of T cells. Such
a�  mechanism offers a target to be manipulated and
e� xploited in order to strengthen the cellular immune
r� esponse. In this regard, a number of B7-like mole-
c� ules are being discovered which may mediate these
f

�
unctions.

Finally, a major hurdle on the pathway of cancer
immunotherapy is the low migration of T cells into ma-
lignant tissue20. Such migration is controlled by chemo-
k

-
ines and adhesion molecules on endothelial cells,

w! hich are upregulated under inflammatory conditions.
A

'
ddressing effector T cells to cancer tissue by manipu-

lating the expression of such molecules, making the

t
�
umor look like an inflamed tissue, is a very attractive

p	 ossibility3
"

4, 42.

Fighting the Immune Self-Regulation
Mechanisms (Release the Brakes)

The immune system has mechanisms that bring the
immune responses to an end and downsize the clonal
e� xpansions of lymphocytes. On the other hand, certain
p	 hysiological systems seem to set thresholds and
c� heck-point requirements for cellular immunity to
p	 roceed. Examples of these mechanisms that have been
e� xploited in tumor immunotherapy are the cytotoxic
T

�
 lymphocyte antigen 4 (CTLA-4) receptor of T cells

a� nd, more recently, immunoregulatory CD4+C
$

D25+

T cells.
Anti-CTLA-4 antibodies block negative signals that

d
�
ownregulate T cell expansion8, 60. This molecule, ex-

p	 ressed selectively on activated T cells, recruits tyro-
sine phosphatases that inhibit CD28-mediated T cell
c� ostimulation. In fact, CTLA-4–/– mice develop, in
a�  matter of weeks, a severe autoimmune disease with
lymphocyte infiltration in non-lymphoid tissues. Treat-
m ent with CTLA-4 mAb, presumably blocking its
function in vivo, erradicates some malignancies and
synergizes with vaccination with tumor cells expressing
G

/
M-CSF7

0
, 8, 59, 60. In the latter case, autoimmunity in

t
�
he form of vitiligo has been found in mice as well as

in human melanoma patients.
R

1
ecently, CD4+2 C

$
D25+2  T cells have entered the

limelight of immunology as suppressor cells of the im-
m une response11, 24, 28, 55. They have been found to be
v& ery much involved in maintaining tolerance to self
t

�
issues. The mechanisms that they use to execute these

a� ctions are dependent on cell contact and involve T-T
a� nd T-DC interactions4

�
8. No information has been pub-

lished on the molecular players of their effector func-
t

�
ion. Anti-CD25 antibodies deplete this subpopulation

a� nd are known to increase the antitumor immunity, in
p	 articular in synergy with other means of treatment (i.e.
w! ith vaccination with peptide in adjuvant). This deple-
t

�
ion must be performed before the immunization pro-

c� edure, because the depleting anti-CD25 antibody
w! ould otherwise deplete the T cells that are becoming
a� ctivated, since CD25 is expressed on activated lym-
p	 hoblasts.

The molecular targets involved in this control
a� gainst overactivation of the immune response will be
a�  productive area of research. A race in the search for
a� ttractive candidates has started. Infiltration of non-lym-
p	 hatic tissues by activated lymphocytes has also been

I. Tirapu et al.: Tumor Immunotherapy and Autoimmunity 15



r� eported in PD-1–/– mice15, 44, albeit less intense than
t

�
hat observed in CTLA-4–/– mice. Neutralization of the

immune downregulating effects of TGF-β is another
f

�
ield of interest.

… and Get Ready to Face Autoimmunity

Rolf Zinkernagel and coworkers published a paper
i

�
n which mice developed autoimmunity after immuni-

zation against surrogated tumor antigens with DCs. In
t

�
heir model, tumor cell lines and a target transgenic
o� rgan shared artificial expression of a viral antigen3

"
0.

In their experiments, tumor rejection correlated consist-
e� ntly with severe autoimmunity. Although this is an
i

�
mportant warning call, data from other experiments

a� nd from the battlefield of clinical trials are not so
w! orrisome13, 43, since DC vaccination is known to pres-
e� nt self proteins but do not elicit autoimmunity (at least
frequently and seriously enough to be a problem). For
i

�
nstance, in mice transgenic for an antigen of hepatitis
B

3
 virus expressed in the liver, vaccination with antigen-

-pulsed DC leads to CTL generation, but without liver
a� utoimmunity5

�
2. However, if these T cells are expanded

in vitro and reinfused, acute hepatitis takes place, indi-
c� ating the existence of some control mechanisms. In
f

�
act, loading DC with complex sources of tumor anti-

g
 ens containing plenty of normal sequences has not
resulted in serious autoimmune conditions.

W
4

e do not know what the case will be if we tamper
w! ith the control systems and, at the same time im-
munize intensively. Probably, serious adverse reactions
w! ill be witnessed. The scenario would be reminiscent
o� f acute and chronic graft-versus-host reactions in al-
logeneic bone-marrow transplantation. But do not for-
g
 et that if we are to fight cancer with these weapons,
w! e have to take some risks. The spectrum of organ
d

�
amage that can take place is difficult to predict, as is

w! hether the reactions will be acute and self limited or
maintained, reaching chronicity.

Conclusion

O
.

ur immunotherapeutic arsenal against cancer has
increased incredibly in the last decade. Activity against
mouse tumor models has been unprecedented and the
results in clinical trials are encouraging. We postulate
t

�
hat the ultimately sucessful regimes will consist in
a�  combination of interventions based on each of the
t

�
hree different elements described: priming, amplifica-

t
�
ion and removal of the inhibitions. The potency of the

c� ombination will very likely challenge us with some
a� utoimmune adverse effects and, hopefully, we will
learn to tilt the balance to the interest of the patient.
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