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Background. Preventive and therapeutic vaccine strategies aimed at controlling hepatitis C virus (HCV)
infection should mimic the immune responses observed in patients who control or clear HCV, specifically T help-
er (Th) type 1 and CD8+ cell responses to multiple antigens, including nonstructural protein (NS) 3. Given the
experience with human immunodeficiency virus, the best candidates for this are based on DNA prime, pox, or
adenovirus boost regimens.

Methods. In rhesus macaques, we compared NS3-expressing DNA prime and adenovirus boost strategy with
2 alternative priming approaches aimed at modifying Th1 and CD8+ responses: DNA adjuvanted with interleukin
(IL)–2– and –12–encoding plasmids or Semliki Forest virus (SFV).

Results. All prime-boost regimens elicited NS3-specific B and T cell responses in rhesus macaques, including
CD8+ responses. SFV priming induced higher lymphoproliferation and longer Th1 memory responses. The use
of IL-2– and IL-12–expressing vectors resulted in reduced Th2 and antibody responses, which led to increased Th1
skewing but not to an increase in the magnitude of the IFN-g and CD8+ responses.

Conclusions. All strategies induced Th1 cellular responses to HCV NS3, with fine modulations depending on
the different priming approaches. When they are developed for more HCV antigens, these strategies could be
beneficial in therapeutic vaccine approaches.

Hepatitis C virus (HCV) is the major cause of chronic

liver infection; it leads to severe liver damage, includ-

ing cirrhosis and hepatocellular carcinoma [1]. Pro-

phylactic and therapeutic approaches to prevent HCV

hepatitis are urgently needed [2]. Although information

regarding the immune correlates of protective immu-
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nity is incomplete, current evidence points to the piv-

otal role played by HCV-specific cellular immune re-

sponse in the control and clearance of HCV infection

[3]. In particular, nonstructural protein (NS) 3–specif-

ic Th1 responses have been linked to viral clearance in

humans [4, 5], and NS3-specific CD8+ responses have

been described in the treatment-linked resolution of

infection [6]. In chimpanzees, early viral clearance and

protection from chronic infection have been associated

with induction of interferon (IFN)–g in the liver [7]

and with envelope- and NS3-specific IFN-g–secreting

cells in the periphery [8].

To induce such immune responses, priming of the

immune system is critical. Faulty priming that results

in an inappropriate skewing of the immune system may

be irreversible, and it may have dramatic adverse effects

[9, 10]. T cell immunity can be induced against a variety

of pathogens in different animal models by vaccine vec-
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Table 1. Rates of seroconversion to nonstructural protein (NS) 3 after each immunization and after
long-term follow-up (week 45).

Vaccine group

Antibody responders to NS3

After first
prime

After second
prime

After first
adenovirus

After second
adenovirus Week 45

Group 1, DNA and adenovirus 0/3 1/3a 2/3 3/3 3/3
Group 2, DNA, IL, and adenovirus 0/4 0/4 1/4 4/4 1/4
Group 3, SFV and adenovirus 0/4 1/4b 1/4 2/4c 1/4b

Total 0/11 2/11 4/11 9/11 5/11

NOTE. Results are expressed as no. of macaques showing an antibody response to NS3/total no. of macaques in the
group. IL, interleukin; SFV, Semliki Forest virus.

a Macaque Ri499.
b Macaque C056.
c Macaques C228 and Ri426 did not mount any detectable anti-NS3 antibody response.

Figure 1. Anti–nonstructural protein (NS) 3 helicase antibody response
in macaque groups primed with DNA and DNA plus cytokines. ELISA an-
tibody titers are represented for each rhesus macaque in group 1, which
were primed with DNA-NS3 alone (black lines and symbols) and of group
2, primed with DNA-NS3 plus interleukin (IL)–2 and IL-12 (gray lines and
white symbols). White arrows represent the 2 priming injections; black
arrows represent the 2 boosting injections. Results for group 3, primed
with Semliki Forest virus and NS3, are not shown; only 2 of 4 macaques
seroconverted. *Significant difference observed between the 2 groups
(week 45, ).P p .04

tors, including DNA plasmids [8, 11–13] and recombinant viral

vectors, such as Semliki Forest virus (SFV) [14, 15] and ade-

novirus [16]. Prime-boost immunization approaches with het-

erologous vectors are now being widely tested against different

pathogens and are acceptable for human use [17]. We used

adenovirus as a boosting agent because it infects a broad spec-

trum of human cells, including dendritic cells, which leads to

efficient antigen presentation [18, 19] and therefore may en-

hance the immune responses induced by different priming vec-

tors, such as DNA and SFV. The low-level immune responses

elicited by DNA vaccines can also be influenced by combining

them with cytokines, as has been demonstrated in the context

of HIV in rhesus macaques [20–23]. We used plasmids encod-

ing 2 interleukins (ILs) that favor the development of Th1

immune responses—IL-12 and IL-2 [22, 24]. Finally, the use

of viral vaccine vectors such as SFV may have the advantage

over plasmid DNA of mimicking a transient virus infection

and, thus, recruiting innate antiviral responses [25, 26].

Although DNA, SFV, and adenoviral vectors have been eval-

uated in macaques as vaccine candidates for HIV, they have been

the focus of only a small number of studies of HCV, which were

limited to mice [27]. However, observations in mice can rarely

be translated directly to humans, particularly those that concern

Th1/Th2 response skewing. Besides humans, chimpanzees are

the only species susceptible to chronic HCV infection; however,

their use in research is highly restricted. Therefore, human clini-

cal trials of HCV vaccine candidates may be guided by com-

parative immunogenicity studies in nonhuman primates, such

as rhesus macaques. Although they are not susceptible to HCV

infection, rhesus macaques are a suitable model for preclinical

immunogenicity studies because they are phylogenetically and

physiologically similar to humans [28]. Their well-characterized

immune system is comparable to that of humans in terms of

cytokine production and regulation [29]. HCV vaccine candi-

dates based on recombinant viral proteins (core and, most re-

cently, virus-like particles [VLPs]) have been tested for immu-

nogenicity in macaques and baboons [30, 31]. To date, there has

been no knowledge of the responses induced in nonhuman pri-

mates by viral vectors encoding HCV antigens, and the results

obtained in primates with vectors encoding other antigens, such

as those for HIV, may not predict the responses obtained with

HCV antigens that possess immunomodulatory functions [32–

34]. We investigated the immunogenicity and fine modulation

of B and T cell immune responses induced in nonhuman pri-

mates by comparing DNA and SFV priming in combination with

adenovirus boosting. We used a clinically relevant HCV NS3 gene

as a first screening step before incorporating other key HCV
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Figure 2. Anti-adenovirus antibody responses. Anti-adenovirus antibody titers are represented for all rhesus macaques at weeks 16, 20, 22, and 24.
All macaques had undetectable anti-adenovirus antibody levels before the injection of adenovirus (data not shown). Immunizations with adenovirus–non-
structural protein (NS) 3 were performed at weeks 14 and 20. The immunization regimen for all macaques is indicated. SFV, Semliki Forest virus. *Two
macaques (Ri499 and C056) seroconverted to NS3 after priming. #Two macaques (C228 and Ri426) did not elicit anti-NS3 antibodies at any time.

Figure 3. Lymphoproliferation to nonstructural protein (NS) 3 helicase protein. The individual stimulation indices (SIs) from each rhesus macaque from
the 3 groups are shown. White bars indicate levels before immunization. Gray bars indicate levels after prime (week 8 or 12), after the first injection of
NS3-adenovirus (week 16 or 20), after the second injection of NS3-adenovirus (week 22 or 24) (for these 3 time points, the better result for each macaque
is shown), and week 45. Lymphoproliferation was considered to be positive when the SIs (counts per minute with antigen divided by background counts
per minute with medium alone) was 12. The immunization regimen for all macaques is indicated. SFV, Semliki Forest virus.

antigens, such as the structural proteins. These studies may be

useful in the selection of vaccine candidates for efficacy testing.

MATERIALS AND METHODS

Macaques. The present study and the experimental proce-

dures used in 12 naive rhesus macaques (Macaca mulatta) were

approved by the institute’s animal ethical and use committee

and were performed in accordance with Dutch and interna-

tional guidelines for the use of animals in science. Serum and

peripheral blood mononuclear cells (PBMCs) were isolated from

blood samples collected from sedated macaques at regular time

points by use of aseptic techniques (Vacutainer; Becton Dick-

inson). Body weight, temperature, and hematologic and bio-

chemical clinical values were monitored at regular intervals.

Peptides and recombinant NS3 protein. Seventy-eight

15-mer peptides with overlaps of 7 amino acids covering the

NS3 region of the same HCV genotype 1b J strain [35] as

that used for immunization were purchased from Clonestar

Biotech. The NS3 helicase (aa 1193–1458) of HCV genotype

1a [36] was expressed in Escherichia coli and purified as de-

scribed elsewhere [37].

NS3-expressing vaccine vectors. All immunogens used to

immunize monkeys (DNA, SFV, and adenovirus) were based on

the HCV genotype 1b J strain [35]. The DNA-NS3 plasmid
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Figure 4. Individual balance of nonstructural protein (NS) 3 helicase–specific Th1 (interleukin [IL]–2 and interferon [IFN]–g) and Th2 (IL-4) cytokine
production by peripheral blood mononuclear cells (PBMCs). Cells secreting IL-2 (left panels, black bars), IFN-g (middle panels, black bars), and IL-4
(right panels, dashed bars), as tested by enzyme-linked immunospot assay, are shown for each macaque from each group (group 1, DNA priming;
group 2, DNA plus IL priming; and group 3, Semliki Forest virus [SFV] priming) after prime boost (week 8 or 12), after the first injection of NS3-
adenovirus (week 16 or 20), after the second injection of NS3-adenovirus (week 22 or 24) (the better result for each macaque is shown), and at week
45 (referred to as “long-term follow-up”). Results are expressed as mean no. of spot-forming cells in triplicate assays per 106 cells minus the cutoff
(the mean no. of spot-forming cells obtained with the cells cultured in medium, also in triplicate assays, plus 2 SDs). Macaque identities are not
indicated, but macaques are consistently represented for each group from top to bottom: group 1, C134, C168, and Ri499; group 2, C139, C172, Ri489,
and Ri498; and group 3, C056, C154, C228, and Ri426. *Statistically significant difference with the other groups ( , analysis of variance).P ! .05

contains the NS3 gene (nt 3419–5311; aa 1027–1657), cloned

into the high-expression gWIZ vector (Gene Therapy Systems)

under the control of a modified cytomegalovirus promoter [38].

For SFV-NS3 particles, the NS3 fragment was inserted into an

SFV expression vector. The packaging of RNA into recombinant

SFV particles was facilitated by use of a 2-helper RNA system

described elsewhere [39]. The production of NS3 was confirmed

by in vitro transfection, pulse chase, and immunoprecipitation

(data not shown). The NS3-expressing type 5 replication–defec-

tive adenovirus (NS3-adenovirus) has been described elsewhere

[37]. HCV NS3-encoding DNA, SFV, and adenovirus constructs

elicited, alone or in prime-boost combinations, Th1 immune

responses in mouse models [37, 38, 40, 41].

IL-encoding DNA plasmids. The human (h) IL-2/Ig plas-

mid pVRC-hIL2/Ig (DNA–IL-2), which encodes a fusion pro-

tein consisting of IL-2 and the Fc portion of IgG [21], was

provided by Dr. Dan Barouch (Beth Israel Deaconess Medical

Center, Boston, MA). In rhesus macaques, this markedly aug-

ments DNA vaccine-elicited HIV-1 and simian immunodefi-

ciency virus (SIV)–specific immune responses [21]. The plas-

mid pNDI–IL-12, which encodes rhesus IL-12b (DNA–IL-12;

provided by Francois Villinger, Emory University, Atlanta, GA),
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Figure 5. Individual cumulative nonstructural protein (NS) 3 peptide pool–specific interferon (IFN)–g production by peripheral blood mononuclear
cells (PBMCs). Production of IFN-g to NS3 peptide pools (pp) 1–5, as tested by enzyme-linked immunospot assay, are shown for each macaque from
each group after prime boost (A, week 8 or 12) and after the injection of NS3-adenovirus (B, week 16, 20, 22, or 24) (the better result for each
macaque is represented). Results are expressed as mean no. of spot-forming cells in triplicate assays per 106 cells minus the cutoff (the mean no.
of spot-forming cells obtained with the cells cultured in medium, also in triplicate assays, plus 2 SDs). SFV, Semliki Forest virus.

has been reported to enhance DNA vaccine-induced protection

of rhesus macaques against SIV challenge [42]. All plasmid

DNAs were extracted and purified by use of Qiagen EndoFree

Plasmid Kits (Qiagen).

Immunizations. The 3 prime-boost vaccine combinations

were tested in 3 groups of 4 macaques each. The first group

received the DNA prime and adenovirus boost, the second group

received the DNA plus cytokine-encoding plasmids prime and

adenovirus boost, and the third group received the SFV prime

and adenovirus boost. The priming consisted of 2 injections at

weeks 0 and 6, and the NS3-adenovirus boosters were admin-

istered at weeks 14 and 20. A prime is the first time an antigen

is encountered, but, for brevity, the first and second immu-

nizations (DNA or SFV) will be referred to as “prime,” and

the third and fourth injections (adenovirus) will be referred to

as “boost.” For each DNA immunization, 1 mg of DNA-NS3

suspended in saline buffer was equally divided intramuscular-

ly and intradermally. For group 2, 1 mg of DNA–IL-12 was

coadministered with DNA-NS3, and 1 mg of DNA–IL-2 was

administered 2 days later at the same sites. For SFV-NS3 im-

munization, pfu dissolved in saline were injected sub-85 � 10

cutaneously. All macaques were boosted subcutaneously with

pfu NS3-adenovirus at week 14 and with 5 � 1010 pfu95 � 10

at week 20. No adverse effects or lesions associated with the

inoculations were found. One macaque from the first group

died of an unrelated health problem at week 6, reducing group

1 (DNA and adenovirus) to 3 macaques.

Humoral immune responses. Quantification of anti-ade-

novirus antibodies was performed in serum by an independent

hospital laboratory (Erasmus MC—Virology), by use of a quan-

titative ELISA (SERION adenovirus IgG/IgA) that detects an-

tibodies to the 8 most prevalent serotype-specific epitopes. HCV-

NS3–specific antibodies were detected in serum by ELISA for

which microtiter plates were coated with NS3 helicase recom-

binant protein (0.5 mg/mL). Serum samples were screened at

a dilution of 1:100. Positive samples were serially diluted to
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Figure 6. Individual production of interferon (IFN)–g to nonstructural protein (NS) 3 peptide pools (pp) by CD4+ and CD8+ cells. A, NS3 peptide–
specific IFN-g–positive CD4+ (gray bars) and CD8+ (black bars) responses were analyzed in all rhesus macaques by an intracellular staining assay after
injections of adenovirus (week 20 or 24; the better result for each macaque is shown). Results are expressed as corrected no. of NS3-specific IFN-
g–positive CD4+ or CD8+ cells per 106 lymphocytes (no. of IFN-g–positive CD4+ or CD8+ cells with NS3 peptide pool minus the no. of IFN-g–positive
CD4+ or CD8+ cells with an irrelevant hepatitis C virus [HCV] E2 peptide pool). B, As an example, the flow-cytometric dot plots of the IFN-g– and IL-
2–producing CD8+ cells from macaque C134 stimulated with the irrelevant HCV E2 peptide pool (left panel, negative control) and with the HCV NS3
peptide pool (right panel) are represented. Lymphocytes are gated for CD3+ and CD8+ surface markers. PBMC, peripheral blood mononuclear cells.

obtain end-point titers. Detection was performed with per-

oxidase-conjugated Affinipure goat anti–human IgG (Jackson

Immunoresearch), diluted to 1:10,000. The cutoff was deter-

mined as the mean value obtained with serum from 3 naive

blood donors +3 SDs. Serum was considered to be positive

when the absorbance was equal to or superior to this cutoff.

Cellular immune responses. Lymphoproliferation was mea-

sured by 3H-thimidine incorporation, as described elsewhere

[34]. Quantification of specific cytokine-secreting cells was per-

formed by IFN-g, IL-2, and IL-4 enzyme-linked immunospot

(ELISPOT) assays, according to the manufacturer’s instructions

(U-Cytech), by use of concanavalin A (ConA; 5 mg/mL), NS3

helicase protein (4 mg/mL), peptides covering NS3 or HIV-1SF2

gag p24 (4 mg/mL; provided by the late Kathelyn Steimer, Chi-

ron, Emeryville, CA) or medium alone. Results are expressed

as the mean number of spot-forming cells per 106 cells from

triplicate assays minus the cutoff (mean number of spot-form-

ing cells plus 2 SDs obtained with triplicate medium assay).

Phenotyping by intracellular cytokine staining (ICS) assay.

The phenotype of responding T cells was analyzed by use of ICS

assay, as described elsewhere [43], by stimulating PBMCs with

ConA, NS3, or E2 peptide pools (5 mg/mL) or with medium

alone and by staining with fluorescein isothiocyanate–labeled

anti-CD3, peridinin-chlorophyll-protein complex–labeled anti-

CD8, and allophycocyanin-labeled anti–IFN-g antibodies (BD

Pharmingen). Results are expressed as the corrected number

of specific IFN-g–positive CD4+ or CD8+ cells per 106 lym-

phocytes, according to the method of Barouch et al. [22]: num-

bers of IFN-g–positive CD4+ or CD8+ cells with the NS3 peptide

pool minus the numbers of IFN-g–positive CD4+ or CD8+ cells

with the irrelevant E2 peptide pool.

Statistical analysis. Statistical analysis was performed by
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analysis of variance and t tests, with 2-tailed P values calculated

by exact methods. was considered to be significant.P ! .05

RESULTS

Influence of priming on the antibody responses. The priming

injections were poor inducers of antibody responses in rhesus

macaques (table 1). After 2 adenovirus boosts, all 7 macaques

primed with DNA seroconverted, whereas this was true for

only 2 of 4 SFV-NS3–primed macaques. In the macaques that

received only DNA, 2 of 3 had seroconverted after the first

adenovirus injection, as did 1 of 4 in the cytokine-adjuvanted

group. Analysis of the antibody titers in these DNA-primed

groups suggested that the macaques primed with NS3 plus

plasmids encoding IL-2 and IL-12 had lower antibody titers

(range, 100–1600), compared with the macaques primed with

DNA-NS3 alone (range, 800–51,200) (figure 1). The antibody

response was higher in the DNA-primed group at week 45

( ).P p .04

Transient anti-adenovirus humoral responses were induced

in all macaques, peaking 2 weeks after the first adenovirus in-

jection (3.19–122.0 U/mL at week 16; figure 2) and decreasing

to undetectable levels at week 28 (data not shown). The 3

priming vectors did not influence the adenovirus-specific hu-

moral response. Two macaques that seroconverted to NS3 after

priming (Ri499 and C056) mounted higher responses to the

adenoviral vector (122 and 94 U/mL, respectively) than did the

others (maximum, 40.3 U/mL), which suggests that NS3-spe-

cific T helper cells elicited by the priming immunizations pro-

vided T cell help to the adenovirus-specific B cells. Except for

these cases, there was no correlation between the anti-NS3 and

the anti-adenovirus antibody titers. The 2 SFV-NS3–primed

macaques that did not seroconvert to NS3 (C228 and Ri426)

had anti-adenovirus antibody responses (19.4 and 28.8 U/mL,

respectively; figure 2), which confirms that the absence of NS3

seroconversion was not due to an improper injection of NS3-

adenovirus. Owing to the likelihood of preexisting adenovirus

immune responses limiting the second boost, we elected to use

a 10-fold-higher second dose. Despite this, the second admin-

istration of NS3-adenovirus elicited a lower response (from 0

to 19.4 at weeks 22 and 24; figure 2).

Impact of priming on lymphoproliferative responses. Both

combinations involving DNA-NS3 priming were poor induc-

ers of lymphoproliferative responses, compared with the SFV-

primed macaques ( ; figure 3). Only 2 of 7 DNA-primedP p .04

macaques (C134 and C139) showed proliferation (stimulation

indices [SIs] peaking at 7.9 and 4.3, respectively), whereas the

other macaques had a marginal or no response ( ). InSI � 2.7

contrast, 3 of 4 macaques immunized with SFV-adenovirus

developed higher NS3-specific lymphoproliferative responses,

with SIs of 6.8–15.3 ( ). However, this response becameP p .04

undetectable at week 45 in almost all macaques (figure 3).

Differential induction of Th1/Th2 cytokine secretion. We

counted the NS3 protein–specific IL-2–, IFN-g–, and IL-4–

secreting cells (figure 4). Although we did not separate CD8+

cells from the PBMCs, the cells responding to proteins in the

ELISPOT assay most likely were CD4+ cells [44]. All 3 vaccine

regimens induced IL-2 responses to NS3, with comparable in-

tensity and kinetics between groups (figure 4). Most responses

were obtained after the first injection of NS3-adenovirus (range,

10–105 sfc/106 cells) and were not boosted by the second in-

jection of NS3-adenovirus. Low numbers of IL-2–secreting cells

were still detectable 25 weeks after the last injection in 6 ma-

caques, 3 of which had been primed with SFV.

The 3 vaccine regimens were also able to induce NS3-specific

IFN-g–secreting T cells that largely exceeded the IL-4 responses

(figure 4). Surprisingly, the use of cytokine-encoding plasmids

blocked IFN-g production after the priming injection (Pp .03).

After the first injection of NS3-adenovirus, IFN-g responses in

all 3 groups were equivalent (range, 15–150 sfc/106 cells) and

were not further increased by the second adenovirus boost

(figure 4). IFN-g responses became undetectable by week 28

in all 7 DNA-primed macaques, whereas SFV priming elicited

IFN-g responses in macaques up to week 45 ( ). NS3-P p .02

specific IL-4–producing cells were induced after the injections

of NS3-adenovirus in only 6 of 11 macaques and were low in

all of them (range, 5–40 sfc/106 cells; figure 4). In particular,

DNA with IL-2 and IL-12 reduced the IL-4 responses to almost

undetectable levels (to !10 sfc/106 cells). Taken together, these

results demonstrate that the 3 vaccine regimens were able to

induce NS3 protein–specific Th1 responses, but priming with

IL-2 and IL-12 did not increase or prolong the IFN-g responses.

Induction of IFN-g responses to NS3 peptide pools. The

induction of NS3-specific CD8+ responses was a primary ob-

jective of our HCV vaccine experiments, because of the ob-

served benefit that cytotoxic T lymphocyte responses give in

the control of HCV infection. As a first screening, we undertook

an analysis of IFN-g production in response to 5 NS3 peptide

pools (pp) covering the entire NS3 protein: pp1 covered aa

1028–1154, pp2 covered aa 1148–1274, pp3 covered aa 1268–

1402, pp4 covered aa 1395–1530, and pp5 covered aa 1524–

1644 (pp1 and pp5 covered regions that were not included in

the NS3 helicase recombinant protein). Before the adenovirus

injections, low IFN-g production specific to pp1, pp4, and pp5

was induced in macaques C134 and C168, which had been

primed with DNA-NS3 (20 and 75 sfc/106 cells, respectively;

figure 5A). After the injections of NS3-adenovirus, 9 of 11 ma-

caques in all groups had strong IFN-g responses to �1 peptide

pool, with cumulative responses reaching 1150 sfc/106 cells. At

week 28, most peptide pool–specific responses were !45 sfc/106

cells in all groups (data not shown).

Phenotype of the NS3 peptide–specific response. We in-

vestigated the phenotype of the NS3 peptide–specific IFN-g–
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producing T cells using the ICS assay. Samples obtained after

adenovirus infection were analyzed by use of a single NS3 pep-

tide pool including pp1–pp5. Our results demonstrated that

high peptide-specific IFN-g production was due to CD8+ cells,

with NS3-specific IFN-g–positive CD8+ cell counts of 13–1588

cells/106 PBMCs (figure 6). Significantly lower responses were

observed in the IL-2 and IL-12 group, compared with the 2

other groups ( ).P p .02

DISCUSSION

We evaluated the immunogenicity of 3 vaccine regimens aimed

at inducing Th1 and CD8+ immune responses to the HCV NS3

antigen in a nonhuman primate model, the rhesus macaque. We

compared a DNA prime, DNA plus IL-2 and IL-12 prime, and

an SFV prime, all of which were combined with an adenovirus

boost. Although similar studies have been performed with HIV,

these vaccine combinations are unique in the field of HCV. Our

results showed that all vaccine regimens were able to induce B

cell, Th1, and CD8+ cell responses, with fine differences.

The priming agents DNA and SFV alone were not able to

induce good antibody responses in rhesus macaques, whereas

the blocking with the adenovirus was highly efficient, as has

been demonstrated elsewhere [45]. Similarly, B cell responses

can be elicited with HIV DNA or SFV immunization alone [46,

47]; however, viral vector boosting is beneficial for reaching

significant titers [48, 49]. A lower and short-lived B cell re-

sponse was obtained with the IL-2 and IL-12 priming, as was

expected, given that the induction of a Th1 bias should have

counteracted and limited the Th2 response [50]. Therefore, the

cytokine priming had a long-lasting effect, because the first and

second adenovirus immunizations occurred 8 and 16 weeks,

respectively, after the last cytokine injection, which empha-

sizes the importance of the “imprinting” left during the first

encounter of the immune system with an antigen.

Similar to the B cell response, most NS3-specific cellular re-

sponses were observed after adenovirus boosting. As with HIV

constructs, plasmid DNA alone does not elicit T cell responses

of sufficient magnitude in primates [34]. We observed that the

second injection of adenovirus did not increase the NS3-specific

cellular immune responses, even while it elicited a reduced an-

ti-adenovirus antibody response. This suggests that the 10-fold-

higher dose administered at the second injection was neutralized

by the antivector immune response. Indeed, the impact of pre-

existing immune memory on vaccine viral vectors and especially

adenovirus has previously been documented with other vaccines,

including HIV vaccines, in primates [51, 52]. Although it seems

that the second injection of adenovirus was beneficial for the

humoral response, this still could have been due to a delayed

effect of the first injection of adenovirus. In other studies, longer

intervals of 12 or 24 weeks allowed a second injection of ade-

novirus, which was shown to have a boosting effect on both

humoral and cellular responses in macaques and suggests that

the second injection of adenovirus has a boosting effect only af-

ter the specific cellular responses have undergone the contrac-

tion phase [53, 54]. The 2 injections of adenovirus in our study

were probably too close to each other.

As expected, and similar to results previously observed with

HIV vaccines for which IL-4 production was measured [34],

the 3 vaccine strategies induced Th1-biased immune responses

in primates, with IFN-g responses largely exceeding the IL-4

responses, and included the desired NS3-specific CD8+ re-

sponses. However, the cytokines increased the skewing of the

CD4+ response toward Th1 but did not increase the intensity

of the IFN-g and IL-2 responses and even decreased the CD8+

response. This is surprising, because both the IL-2 and IL-12

plasmids used in the present study have demonstrated their

potential to enhance and improve the efficacy of several T cell–

based HIV vaccines in macaques [21, 22]. The IL-12 dose re-

leased in the microenvironment of antigen-presenting cells

(APCs) and T cells seems to be crucial. In particular, a high

dose might block the function of APCs and reduce the im-

munogenicity of the coinjected antigen, as has been described

in mice [55, 56]. When DNA is used, the amount of cytokine

released locally should be low. However, because we did not

compare different doses, we cannot exclude the possibility that

1 mg of IL-12–encoding DNA produced too much IL-12 locally

and thus reduced the immunogenicity of DNA and NS3. The

observations that no IFN-g was detected after the priming in-

jections that included cytokines, in contrast with the 2 other

priming strategies ( ), and that the CD8+ responses wereP p .03

lower ( ) point in this direction. The antigen itself mayP p .02

influence the quality of the immune responses, and this effect

might be dominant over the cytokine microenvironment, as

was shown recently for HIV antigens [34]. In vitro, HCV NS3

has been shown to induce IL-10 production by monocytes and

dendritic cells while reducing IL-2 production and differenti-

ation in the latter. Notably, this could be reversed by use of

anti–IL-10 antibodies but not by the addition of IL-12 [33].

This property could account for the differences observed be-

tween HIV vaccines and our HCV NS3–based vaccine.

The development of prophylactic and therapeutic vaccine

strategies against HCV infection cannot be limited to studies

in mice, because there is a big gap between the results of mice

and chimpanzee studies and those of human clinical trials. Al-

though a high number of vaccine candidates have been devel-

oped and tested in mice [57], very few have reached the pre-

clinical phase and have been tested in naive chimpanzees [8,

58, 59]. The use of nonhuman primates to investigate the im-

munogenicity of HCV vaccine candidates is a valid option, and

it may help in the selection of optimal vaccine candidates or

adjuvants and allow a detailed analysis of several aspects of the

immune responses. Both HCV vaccine candidates tested pre-
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viously in nonhuman primates (macaques and baboons) were

based on subunit proteins (core and VLPs, respectively) and

did not involve NS3 [30, 31]. Our vaccine regimens elicited

HCV-specific responses that were comparable in intensity to

those of responses observed in baboons immunized with VLPs,

and these responses mimic some of those observed in patients

recovering from HCV infection [5]. In conclusion, we have

demonstrated the utility of clinically relevant DNA and SFV

prime–adenovirus boost vaccine strategies for the induction of

HCV-specific Th1 and CD8+ cellular responses in primates and

have shown the effect of priming on the quality of the ultimate

vaccine-induced response.
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