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We present new experimental results on the quenching dynamics of an extended thermo-
convective system (a network array of approximately 100 convective oscillators) going through
a secondary subcritical bifurcation. We characterize a dynamical phase transition through the
nature of the domain walls (1D-fronts) that connect the basic multicellular pattern with the new
oscillating one. Two different mechanisms of the relaxing dynamics at the threshold are charac-
terized depending on the crossing rate µ = dε

dt

∣∣
ε=0

of the quenched transition. From the analysis
of fronts, we show that these mechanisms follow different correlation length scales ξ ∼ µ−σ.
Below a critical value µc, a slow response dynamics yields a spatiotemporal coherent front with
weak coupling between oscillators. Above µc, for rapid quenches, defects are trapped at the
front with a strong coupling between oscillators, similarly to the Kibble–Zurek mechanism in
quenched phase transitions. These defects, pinned to the fronts, yield a strong decay of the
correlation length.

Keywords : Synchronization; pattern formation; nonequilibrium phase transitions; networks; front
dynamics; symmetry breaking bifurcations; cosmology.

1. Introduction

A dynamical synchronization transition is the clos-
est expression of a “real” phase transition in nature.
Some recent interest on synchronization processes
[Miranda & Burguete, 2010; Mertens & Weaver,
2010; Mancini & Vidal, 2010; Arenas et al., 2008;
Osipov et al., 2007; Abrams & Strogatz, 2006;
Zhou & Kurths, 2006; Boccaletti et al., 2006;
Shima & Kuramoto, 2004; Kuramoto, 2003] is
meant to understand the interaction between oscil-
lating units which give rise to a collective behavior

(i.e. as in a phase transition or in a Network). A
key aspect of most phase transitions is the break-
ing of symmetries which should be inherited in the
synchronization processes.

Moreover, in nature, systems that undertake
symmetry breaking transitions show a richer phe-
nomenology. As a matter of fact, it has been argued
that in the early universe, short after the Big
Bang this kind of transitions had made possible
the appearance of the present electromagnetic field
from unified fields, and the asymmetry between
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matter and antimatter in the universe [Guralnik
et al., 1964; Kibble, 1976, 1980], among other
important phenomena. Kibble [1976] proposed that
cosmological phase transitions which underwent in
the early universe could also be responsible for the
large scale structure that is observed in the present
time (i.e. distribution of galaxies). This may happen
due to the existence of many causally uncorrelated
regions in a less symmetric phase after the transi-
tions. This will lead to a phase mismatch and thus,
to the appearance of phase singularities (topologi-
cal defects). Those defects determined huge energy
fluctuations which could be related to the large scale
of the universe, and even to the existence of topo-
logical dark matter [Muruyama & Shu, 2010].

Later, Zurek [1985, 1996] proved that this
causal mechanism has its counterpart in condensed
matter systems, and in general, can be applied to all
second order breaking phase transitions. The gen-
eralized mechanism is known as the Kibble–Zurek
one. The argument is the following: on one hand,
when the control parameter is far from the criti-
cal point, any slow change in the control param-
eter would be followed adiabatically by the states
of the system. On the other hand, in the critical
region the relaxation time diverges. Thus, the sys-
tem cannot follow the control parameter because
otherwise the fluctuations should propagate faster
than the limiting speed in the system. Consequently
the correlation length of the fluctuations gets frozen
until the adiabatic dynamics is restored (after the
transition is crossed). Then, fluctuations grow to
form the new phase, and topological defects appear
due to the aforementioned mismatch. This kind of
defects, due to their topological stability, keep the
correlation values until well after the transition is
performed. This mechanism leads to a power law
for the correlation length as a function of the rate
of change of the control parameter.

Many condensed matter experiments have been
performed to confirm cosmological theories in the
laboratory [Zurek, 1985; Rajantie, 2002, 2003;
Dziarmaga, 2010]. Among them, in liquid crystals
[Chuang et al., 1991; Bowick et al., 1994; Digal
et al., 1999], in superfluid helium [Hendry et al.,
1994; Bäuerle et al., 1996; Ruutu et al., 1996, 1998;
Eltsov et al., 2000; Bunkov, 2003; Eltsov et al., 2004,
2010], in superconductors and Josephson junctions
[Carmi & Polturak, 1999; Monaco et al., 2001, 2002,
2003, 2006, 2008, 2009; Maniv et al., 2003], in Bose–
Einstein condensates [Weiler et al., 2008; Sadler

et al., 2006] and in other condensed matter systems
[Yusupov et al., 2010]. Numerical and theoretical
approaches have been numerous.

The Kibble–Zurek mechanism has been also
extended to nonequilibrium primary bifurcations
[Casado et al., 2007] and has been the focus of
experiments in nonlinear optical systems [Ducci
et al., 1999; Casado et al., 2007] and in fluid convec-
tion systems [Casado et al., 2001; González-Viñas
et al., 2001; Casado, 2002]. All these bifurcations are
supercritical (i.e. second order) or very weakly sub-
critical. In a primary bifurcation, the system goes
from a homogeneous state to a patterned one (with
broken symmetries). In a secondary bifurcation, the
previous existing phase (pattern) could nonlinearly
interact with the fluctuations. Thus, the dynamics
of the critical modes show features that will be rel-
evant similarly to primary bifurcations where the
broken symmetry phase has more than one critical
mode [Casado et al., 2001].

On the other hand, in subcritical bifurcations
we have to distinguish two cases: weakly subcriti-
cal bifurcations where the causal mechanisms could
hold for fast enough transitions, due to the existence
of a slowing down of the relevant modes (although
the relaxation times do not diverge) [Casado et al.,
2001; Schützhold, 2008] and others where the mech-
anisms are completely different [Vachaspati, 2006].

In this paper, we show first experimental results
on the quenching dynamics taking place in a con-
vective network of oscillators driven by a quasi-
1D heating through a secondary bifurcation. The
basic pattern is a stationary multicellular pattern
(ST) from which different heating ramps will send
the system towards an oscillatory pattern through-
out the presence of domains of traveling waves
(TW) and mixed patterns of counter-oscillating
waves over ST (ST/ALT). Furthermore, as we
increase the quench intensity the system will cross
a second bifurcation to the counter-oscillating pat-
tern (ALT). This experiment has been studied in
a previous experimental setup [Burguete et al.,
1993, 2003] and an improved version can be found
in [Miranda & Burguete, 2008, 2009]. Therefore,
this experiment allows us to study the quenching
dynamics from a constrained degeneracy given by a
nonhomogeneous basic pattern (ST). For this sys-
tem, we have already shown that the classical pat-
tern formation can be understood from the point
of view of Networks [Miranda & Burguete, 2010]
as the phase synchronization between individual
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oscillators. In this sense, this work is very relevant
because the results on the quenched dynamics in
the critical region can be translated into the inter-
action and collective behavior of those oscillators.
Notwithstanding the existence of very few numeri-
cal works [Ciszak et al., 2009] pointing towards this
direction.

Although the classical Kibble–Zurek mecha-
nism (its limitations and possible extensions) is
still a matter of discussion [Moro & Lythe, 1999;
Biroli et al., 2010], we aim at finding new clues
in experiments which could enlighten the Kibble–
Zurek mechanisms from its foundations (i.e. causal-
ity and dynamical aspects of bifurcations). Specifi-
cally, we are going to focus for the first time on the
fact that the studied bifurcation is secondary, and
also we will consider its weak (but not very weak,
though measurable) subcritical character.

2. Experimental Setup

Our system consists of a rectangular cell Lx × Ly

(Lx = 470 mm, Ly = 60 mm) filled with a Sili-
cone oil of viscosity 5cSt. Convection is achieved by
heating the fluid layer from below and along a cen-
tral line (in the widest direction x̂). The fluid layer
lies over a plane plate with a heating rail under-
neath. Temperature on this underlying plate (Tb)
is selected at a heating bath (Th). The upper sur-
face of the fluid layer is opened to the atmosphere
and the depth of the fluid layer d is measured with
a micrometric screw. Lateral cooled walls (Tc) and
room temperature (Ta) are kept at 20.0 ± 0.1◦C.
The control parameter for a fixed depth is the ver-
tical temperature difference ∆Tv = Th − Ta and
the reduced control parameter is defined as ε =
∆Tv−∆Tvc

∆Tv
, where ∆Tvc = Thc − Ta is the critical

value at the threshold. A more detailed descrip-
tion of the present experimental setup can be found
in [Miranda & Burguete, 2008]. For the results
reported here, we have been supplied with a differ-
ent 5cSt Silicone oil whose only effect is to displace
the convective thresholds.

During each quench, the temperature Tb is
recorded at the heating line and controlled at the
entrance of the cell in order to check the heating
bath response. Because the underlying plate is the
most external structure from the inner core of the
cell, we have obtained that Tb ≈ Th − 9.0◦C.

The dynamics of the convective cells is recorded
from the shadowgraphy images on the screen by

placing an acquisition line (we use an image acqui-
sition board connected to a CCD camera) next to
the heating line. Each measurement consists of a
spatial and temporal sampling image in grey levels
which is a spatiotemporal diagram. Spatiotemporal
diagrams show a central region of the cell of 156 mm
long that is recorded during 900 sec at a frequency
of 1 sec−1.

Due to the high thermal inertia of this system,
before recording each spatiotemporal diagram, it
is necessary to achieve a permanent regime which
takes at least three hours from an initial state where
the whole cell is at room temperature.

3. Measurement Process

On the stability diagram in Fig. 1, we set our control
parameters at (d = 7.5 mm, ∆Tv = 16.0◦C), close
to the codimension-2 point from below, in order to
achieve a constant velocity at the static threshold
of the secondary bifurcation ε = 0 (see Fig. 2).
Thus, the crossing rate is given by µ = dT

dt

∣∣
ε=0

. This
secondary bifurcation is weakly subcritical when it
is crossed quasi-statically (with a subcriticality of
ε ≈ −0.02 [Miranda & Burguete, 2008]). Under
these conditions, the system bifurcates from a mul-
ticellular pattern towards the oscillatory pattern
ST/ALT+TW at the first subcritical threshold, or
towards ALT at the second one depending on the
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Fig. 1. Stability diagram. Solid lines bound regions with
the same asymptotic dynamics. The upward arrow shows the
range of quenches that have been explored at d = 7.5 mm.
Co-2 stands for codimension-2 point. Stationary patterns are:
PC (primary convection which, in our system, is the homoge-
neous state) and ST (multicellular pattern). Oscillatory pat-
terns are: ALT (resonant triad), ST/ALT (mixed pattern of
irregular clusters in ALT over ST), TW (traveling waves)
and ST/ALT+TW (coexistence between the mixed pattern
ST/ALT and TW).
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Fig. 2. Sketch of the control parameter ramp at the thresh-
old of a secondary instability ε = 0 (Tb = 29.5◦C). The slow
relaxation dynamics takes place in the region [−to, to] where
the crossing rate is given by µ = dε

dt

∣∣
ε=0

. The initial value of
the control parameter for each quench is εi (Tb = 27.2◦C)
where the system exhibits the multicellular regime (ST).
Above ε = 0 the system bifurcates to an oscillatory pattern.

quench power. We observe from Fig. 1 that, beyond
the codimension-2 point (d ≥ 8 mm), the system
bifurcates supercritically from a homogeneous state
towards traveling waves.

The starting temperature selected at the heat-
ing bath is determined from the closeness to the
static threshold ε = 0 of the secondary bifurcation
towards ST/ALT+TW. This fact assures the linear
behavior of temperature in the vicinity of ε = 0.
Thus, quenches start at the stationary regime ST
which is characterized by a wavelength (λs) that
allows us to define an array of convective oscillators,
initially at rest. In the course of quenches, these con-
vective oscillators will become nonlocally coupled
through the correlation length ξ. This correlation
length is measured at the transition front.

Each heating ramp starts at Th = 36.0◦C (on
the underlying plate the corresponding temperature
is Tb = 27.2 ± 0.1◦C) and is characterized by the
final temperature in the range from Th = 42.0◦C to
Th = 54.0◦C. In order to get a better accuracy, we
have worked with steps of 1 or 2 degrees depending
on the subcritical nature of the region to be studied.

The results reported here correspond to the
average of four spatiotemporal diagrams for each
heating ramp. For a given crossing rate µ, we find
out the corresponding transition front. We define
this 1D-front as the spatial position where the new
phase has been identified in time: Fµ(x, t) = 0.
From now on, it will be expressed explicitly as t =
fµ(x), which is a univaluated function. Fronts are
determined from the amplitude and phase diagrams

because it is not possible to track the oscilla-
tor paths individually along the quenched dynam-
ics. Trajectories described by each oscillator might
become deformed along quenched regimes invad-
ing neighboring paths in order to adjust to a new
wavenumber and frequency. This fact has deter-
mined the necessity of analyzing the global phase-
amplitude information of spatiotemporal diagrams
for a constant illumination. Therefore, the front of
active oscillators t = fµ(x) is obtained by com-
plex demodulation from the matrix of amplitudes
|A(x, t)| ≥ α|Amax(x, t)|, where |Amax(x, t)| is the
maximum amplitude of the critical mode and α is
a constant (0 < α < 1). Critical modes are selected
with the following criteria: those with the highest
amplitude in the Fourier spectrum, and those pro-
viding the dynamics at the front. Amplitude dia-
grams have been tested in the range α = [0.2−0.37]
in order to assure that the shape of the front is
conserved.

The self-correlation of the fronts is obtained as:

Cµ(ζ) =
∫

x
[fµ(x + ζ) − 〈fµ(x)〉]

× [fµ(x) − 〈fµ(x)〉]dx. (1)

where ζ is the spatial lag and 〈 〉 defines the spatial
average value. Hence, the characteristic correlation
length ξ is given by the spatial lag at e−1 of the
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Fig. 3. Temperature measurements at the underlying plate
of the cell belonging to a sequence of quenches. The static
threshold of this secondary bifurcation ε = 0 takes place
at Tb = 29.5◦C. Each temperature profile has been fitted
to the curve Tb = ao + a1e−t/a2 + a1(1 − e−t/a2e−t/a3).
The solid line corresponds to the following parameter values:
ao = 30.91, a1 = −3.84, a2 = 254.10, a3 = 96.38. The cross-
ing rate in this particular case is µ = dTb

dt (Tb = 29.5◦C) =
0.0061◦C/sec.
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largest value of Cµ:

ξ = min
[
C−1

µ

{Cµ(0)
e

}]
. (2)

The values of Cµ(ζ) have been computed for dif-
ferent parameters (amplitude thresholds and filter
properties). From these values we have obtained a
similar description of the dynamics, therefore, we
have introduced these deviations in the error bars
computed for each spatiotemporal diagram.

Temperature measurements at the underlying
plate are shown in Fig. 3 for a particular sequence
of quenches. We implement a nonlinear curve fitting
taking into account the heat transfer from the water
circulation in the heating bath towards the under-
lying plate (see Fig. 3). For each temperature ramp,
the crossing rate is obtained from the slope of each
fitted curve at the static threshold: µ = dTb

dt

∣∣
ε=0

.

4. Results and Discussion

The initial pattern at the beginning of each quench
is the stationary one (ST), with wavelength λs =
4.75 ± 0.05 mm, which corresponds to an array
of 95 latent oscillators, although we observe only
the central region of the system (approximately 33
oscillators). Once the quenched regime bifurcates
towards an oscillatory pattern, we obtain the cor-
responding front t = fµ(x) by selecting the Fourier
oscillatory modes with the minimum frequency in
order to obtain the first unstable front from the
multicellular pattern.

In Fig. 4, we show the wavenumbers and fre-
quencies of the critical modes. From Fig. 4(a) we
have measured an average wavelength of 8.76 ±
0.01 mm for µ ≤ 0.0095◦C/sec, and of 9.25 ±
0.02 mm for µ > 0.0095◦C/sec. The gap between
these values might be inherited from two different
and consecutive subcritical thresholds in the per-
manent regimes [Miranda & Burguete, 2008]. This
observation will be checked with the corresponding
spatiotemporal diagrams and fronts further on.

From Fig. 4(b) we obtain an average period
of 23.60 ± 0.01 sec which remains practically con-
stant at any crossing rate. A detailed analysis of
the spatiotemporal diagrams shows that the fre-
quency evolves slowly along the heating ramp as
it is expected from previous results [Miranda &
Burguete, 2008]. This fact is related to the slow
response of the system towards the transition point
where the modes with the lowest frequencies are the
very first to guide this quenched bifurcation.
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Fig. 4. (a) Wavenumbers and (b) frequencies of the critical
modes that define the front at a given quench. Error bars are
given by the dispersion of values given by the left and right
oscillatory modes for different sequences.

In Figs. 5 and 6 we show some spatiotempo-
ral diagrams that represent the quenching dynam-
ics along two different and contiguous subcritical
thresholds. Also, the corresponding fronts t = fµ(x)
have been overlapped. We briefly summarize the
main features of these transitions when they are
crossed quasi-statically (for a more detailed study
of the quasi-static transitions see [Miranda & Bur-
guete, 2008]):

(1) In the first subcritical bifurcation, left and
right traveling waves (with λTW± ≈ 1.5λs) are
bounded in domains which coexist with the
mixed pattern ST/ALT (with λALT ≈ 2λs).

(2) In the second subcritical bifurcation, the ALT
pattern is expected to coexist with the TW
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(a) (b)

(c) (d)

Fig. 5. Spatiotemporal diagrams corresponding to quenched dynamics: (a) µ = 0.0035◦C/sec, (b) µ = 0.0065◦C/sec,
(c) µ = 0.0095◦C/sec, (d) µ = 0.0125◦C/sec. White lines correspond to the fronts defined by left oscillatory modes.

(a) (b)

Fig. 6. Spatiotemporal diagrams corresponding to quenched dynamics: (a) µ = 0.0155◦C/sec, (b) µ = 0.0215◦C/sec. White
lines correspond to the fronts defined by left oscillatory modes.
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pattern until, for increasing values of the con-
trol parameter, the only remaining pattern is
the ALT one.

In Fig. 5, we show the transition front for differ-
ent crossing rates ranging from µ = 0.0035◦C/sec,
with a spatio-temporal coherent front, until the
crossing rate reaches µ = 0.0125◦C/sec, with a
more homogeneous front. We observe that the front
becomes fragmented in between as the quench
power is increased. Thus, we may infer that, in the
range shown in this figure, the front exhibits differ-
ent degrees of coherence depending on the strength
of coupling between oscillators.

In Fig. 6, the bifurcation scenario is more
robust because from the previous quasi-homoge-
neous front [e.g. see Fig. 5(d)] topological defects
arise at the front. These defects have survived
the quenched transition and remain pinned to the
transition front.

From these patterns we can distinguish two dif-
ferent behaviors:

(i) For µ ≤ 0.0095◦C/sec, the quenching dynam-
ics after the onset of the bifurcation shows
the presence of certain domains in the TW
and ST/ALT patterns which are remnants
of the subcritical behavior of the quasi-static
transition. We should stress that the front
describes the time at which each oscillator
bifurcates disregarding the fluctuating behav-
ior of the oscillators that belong to the mixed
pattern ST/ALT (because they are susceptible
of returning to the stationary state).

(ii) For µ > 0.0095◦C/sec, the quenching dynam-
ics sends the system through the following sub-
critical bifurcation. Nevertheless, the new pat-
tern has entirely bifurcated to the ALT pattern.
Therefore, for fast quenches, during the relax-
ation time that takes the system to reach the
onset of this bifurcation, the most unstable
mode is the one that represents the ALT pat-
tern (which doubles the wavelength of the mul-
ticellular pattern).

In Fig. 7, we measure for different sequences
the degree of inhomogeneity of the front given by
the standard deviation of the front t = fµ(x). We
have taken into account fronts defined from both
counter-oscillating modes. These modes define sim-
ilar fronts except for the very slow values of µ
because of the presence of TW domains that are
attached to the front. We should emphasize that
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Fig. 7. Standard deviation of the fronts versus the crossing
rate µ. The dashed line indicates the critical value µc.

results from Fig. 7 match the dynamical description
of the fronts given above: for slow crossing rates
nonhomogeneous fronts appear, meanwhile as the
crossing rate is increased the fronts become more
homogeneous and robust, this fact is related to the
stronger coupling between oscillators [Miranda &
Burguete, 2010].

In Fig. 8, we show the correlation length of the
fronts ξ which is obtained from Eq. (2). The maxi-
mum value of ξ corresponds to a quasi-homogeneous
front [see Fig. 5(d)] at a critical value of the crossing
rate µc. For slow quenches (µ < µc), there is a min-
imum correlation length that belongs to the kind of
fragmented fronts shown in Figs. 5(b) and 5(c). In
these fronts, neighboring oscillators begin to show
a stronger coupling [Miranda & Burguete, 2010].
On the other hand, according to the Kibble–Zurek
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Fig. 8. Self-correlation of the fronts ξ versus the crossing
rate µ. The vertical dashed line indicates the critical value µc.
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Fig. 9. Minimum time to bifurcate from the static threshold
ε = 0 versus the crossing rate µ. The dashed line indicates
the critical value µc.

mechanism in phase transitions, our experimental
results for fast quenches (µ > µc) follow a power law
despite the critical exponent is far to follow previous
experimental results obtained in other systems.

In Fig. 9, the minimum time that is needed to
bifurcate from the static threshold is a measure of
the relaxation time of the convective array of oscil-
lators. We observe that for the slowest quenches,
when the oscillators are weakly coupled, the relax-
ation time is the shortest. But as the power law
behavior is reached (for µ > µc) the relaxation time
becomes much longer as if the quenched dynamics
from the basic pattern ST to the ALT pattern had
corresponded to that of a supercritical bifurcation
(see Fig. 6).

5. Further Remarks and
Conclusions

In this paper we report experimental evidence of
the slow response dynamics arising from quenched
transitions in a quasi-1D convective system. The
quenched dynamics goes through a secondary and
weakly subcritical bifurcation for a depth of the
fluid layer of d = 7.5 mm. Complementary results
concerning quenches through a stronger subcriti-
cal bifurcation are going to be reported elsewhere
[Miranda et al., 2011].

Specifically, these results correspond to the kind
of ramped symmetry breaking bifurcations where
an initially quasi-degenerated state (ST) undergoes
a phase transition where it loses some symmetries
towards the oscillatory patterns (ST/ALT+TW
or ALT). These dynamics can be characterized

from the shape of the fronts where defects become
trapped above a critical value of the crossing rate
µc. Fronts and topological defects are the kind of
localized coherent structures that have survived a
sudden transition in the laboratory, and represent
an interesting analogy to the cosmological objects
after the Big Bang [Kibble, 2007].

According to the Kibble–Zurek mechanism, the
distance between defects might revel the order of
the correlation length scale which diverges from the
correlation length ξ measured from the fronts. If
the positions of defects along the array are uncor-
related, one may think that the distribution of
defects along the fronts does not respond to the
healing length and perhaps to a nonlinear mech-
anism regarding the distant position of the last
subcritical instability from the primary bifurcation.
For µ > µc, despite the analysis could have been
done taking as reference the next bifurcation, we
choose not to; because in fact the pattern for ε < 0
(ST) remains unchanged until the studied front is
revealed.

The fronts are expected to show the degree of
interaction between the convective oscillators along
the network. In Fig. 10, we summarize the most
relevant aspects of this paper. We should outline
that the results on the correlation length are a mea-
sure of the degree of interaction between oscillators.
On the other hand, fluctuations of the front that
have not been absorbed by the front during the
slow relaxation time, do represent an order param-
eter of the quenched dynamics. In consequence, the
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Fig. 10. Sketch of the quenching mechanism. Blue lines rep-
resent fronts while dashed lines are a guide to the eye. The
vertical solid line indicates the critical value µc.
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shape of the front is a trace of the slow relaxation
dynamics at the critical point of a symmetry break-
ing bifurcation.
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