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Expansion and activation of cytolytic T lymphocytes bearing high-affinity T-cell receptors spe-
cific for tumor antigens is a major goal of active cancer immunotherapy. Physiologically, T
cells receive promitotic and activating signals from endogenous professional antigen-present-
ing cells (APC) rather than directly from malignant cells. This phenomenon fits with the
broader concept of cross-presentation that earlier was demonstrated for minor histocompati-
bility and viral antigens. Many mechanisms have been found to be capable of transferring an-
tigenic material from malignant cells to APC so that it can be processed and subsequently pre-

 

sented by MHC class I molecules expressed on APC. Dendritic cells (DC) are believed to be
the most relevant APC mediating cross-presentation because they can take up antigens from
apoptotic, necrotic, and even intact tumor cells. There exist specific molecular mechanisms
that ensure this transfer of antigenic material: 1) opsonization of apoptotic bodies; 2) recep-
tors for released heat shock proteins carrying peptides processed intracellularly; 3) Fc recep-
tors that uptake immunocomplexes and immunoglobulins; and 4) pinocytosis. DC have the
peculiar capability of reentering the exogenously captured material into the MHC class I
pathway. Exploitation of these pieces of knowledge is achieved by providing DC with complex
mixtures of tumor antigens ex vivo and by agents and procedures that promote infiltration of
malignant tissue by DC. The final outcome of DC cross-presentation could be T-cell activation
(cross-priming) but also, and importantly, T-cell tolerance contingent upon the activation/

 

maturation status of DC. Artificial enhancement of tumor antigen cross-presentation and
control of the immune-promoting status of the antigen-presenting DC will have important
therapeutic implications in the near future. © 2002 International Society for Experimental

 

Hematology. Published by Elsevier Science Inc.

 

Cross-presentation:
cross-priming and cross-tolerance

 

In the late 1970s, Bevan and coworkers using congenic
mouse strains made the unexpected observation that endog-
enous antigen-presenting cells (APC) were necessary for
cytotoxic T-lymphocyte (CTL) priming against minor histo-
compatibility antigens [1,2]. The system required the inter-
play of professional APC, eventually discovered to be of he-

matopoietic origin [3], whose functions were to capture and
process antigens in such a way that they would be presented
to T cells. This function was called cross-priming because it
was the result of antigens being cross-presented by APC, as
opposed to direct presentation by other somatic cells, which
also has been proven true in some experimental systems [4].
Although formal definitive proof of the identity of the in
vivo APC [5] is lacking, the best candidate are cells, or bet-
ter a class of cells, called dendritic cells (DC) [6–8], which
are sufficient to mediate cross-priming [9].

DC are a complex network of cells probably derived
from both myeloid and lymphoid precursors [10], which
give rise to an array of differentiated cells that colonize pe-
ripheral tissues and lymphoid organs including the thymus
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[10]. Their mission is believed to include the following: 1)
internalization and processing of multiple moieties and par-
ticles present in their tissular environment; 2) migration
from peripheral to lymphoid tissues; 3) antigen presentation
on MHC class I and class II molecules; and 4) expression of
cytokines and costimulatory ligands critical for activation of
T cells [6,7] .

Recent evidence strongly suggests that the result of anti-
gen presentation by DC in lymphoid organs could be T-cell
clonal anergy or deletion. The recently coined term for this
tolerizing result of cross-presentation is “cross-tolerance”
[11]. It is conceivable that the most frequent outcome of the
interaction of antigen-presenting DC with specific T cells
might be tolerogenic [12,13]. According to this model [13],
DC would be in charge of constantly capturing, transport-
ing, and presenting harmless antigens to T cells in order to
impose tolerance [12,13]. In concordance with this notion
are the observations of DC migrating from peripheral tis-
sues carrying self-apoptotic bodies [14].

In transgenic mice models of cross-presentation in which
ovalbumin is expressed only in insulin-secreting cells of the
pancreas, cross-tolerance only occurs beyond a certain
threshold of protein expression [15]. Therefore, peripheral
tolerance probably is imposed upon highly expressed anti-
gens. In contrast, antigens below these thresholds are ig-
nored by the immune system for either T-cell priming or
tolerization [15,16].

To achieve cross-presentation, the antigen-presenting
machinery of DC is highly active and regulated [17,18]. DC
have the peculiar ability to transfer exogenously captured
antigens to the endogenous pathway of MHC class I presen-
tation [17–19]. This may be due to a yet unidentified molec-
ular mechanism that shuttles antigenic proteins from endo-
somes into the cytoplasm [19]. The class II presentation
pathway also is prominent in these cells [17,18]. Empty
(peptideless) molecules are expressed such that they can be
easily loaded with antigenic determinants on the plasma
membrane [20]. As mentioned earlier, the physiology of

 

cross-presentation can be exploited for either priming or
tolerization. Evidence that tumor antigens can be cross-pre-
sented came primarily from observations with granulocyte-
macrophage colony-stimulating factor (GM-CSF) trans-
fected tumor cells that can act as vaccines [3,21]. Thus,
transfected tumor cells locally attract and differentiate DC,
and accordingly a crucial role of bone marrow-derived APC
has been demonstrated in immunity with these GM-CSF
transfectants [3]. Direct injection of DC into tumor tissue is
another way to exploit the ability to cross-present tumor an-
tigens [22–24]. In fact, coculture of DC and tumor cells
yields DC that can activate tumor-specific T cells in vitro,
indicating the ability of DC to take up antigens from “in-
tact” tumor cells [25]. On the other side of immunotherapy,
it has been shown that cross-tolerance can be imposed by
DC under certain conditions, such as culture with tumor ne-
crosis factor [26,27] or genetic modification to express Fas-L

 

[28], transforming growth factor-

 

�

 

 [29], or interleukin (IL)-10
[30]. Thus, the induced deletion or inactivation of damaging
T cells could ameliorate the course of autoimmune condi-
tions, hypersensitivity reactions, or graft rejection [31].

 

Control of DC maturation
and the outcome of cross-presentation

 

Peripherally deployed DC have a complex system of sen-
sors that enable them to detect 1) nonphysiologic cell de-
struction or damage [32]; 2) presence of microorganisms
[33–35], or 3) tissular inflammation. In order to do so, they
bear receptors for proinflammatory cytokines [7], for mate-
rials released by cells dying under stressful conditions [36],
and for molecules that are the hallmark of microbial inva-
sion (such as prokaryotic deoxyribonucleic acid, lipopoly-
saccharide, lipoteichoic acid, dsRNA, and others) [35,37].
Upon conditions of stimulation of these receptors, DC rap-
idly migrate to lymphoid tissue due to a change in the pat-
tern of the chemokine receptors that they express [38],
while they both up-regulate antigen presentation and down-
regulate antigen capture [17,18]. As they migrate into lym-
phoid tissue, they up-regulate the expression of costimula-
tory molecules that provide signals to T cells that, upon an-
tigen recognition, are complementary for T-cell receptor
(TCR)-mediated activation [7]. These molecular changes
are collectively termed DC maturation and are driven by

 

multiple signaling cascades [39] that involve NF-

 

�

 

B tran-
scription factors as key players [40]. With respect to anti-
gen-presenting molecules, they mobilize onto the plasma
membrane MHC class II molecules that had been retained
in antigen-loading compartments [41,42].

The current paradigm is that antigen presentation by im-
mature DC leads to T-cell anergy or deletion [43], whereas
presentation by mature DC leads to T-cell priming and sub-
sequent effector T-cell response [44]. However, this likely
is an oversimplification because DC maturation is the result
of a very complex set of gene expression programs. For ex-
ample, CTL tolerization requires a certain degree of matura-
tion, described as partial maturation changes, that can be
achieved, for instance, after exposure to tumor necrosis fac-
tor-

 

�

 

 as a single maturation-inducing factor [26,27].
Overall, DC maturation status should be envisioned as a

condition determined by a gene expression pattern that re-
sults from the type of maturation stimulus and its own inten-
sity [45]. Each gene expression profile shares many com-
mon molecules, but some critical differences in the up- or
down-regulated genes could be crucial to understanding
contrary outcomes of the immune response. For instance,
genes such as those encoding IL-12 [45] are tightly regu-
lated and clearly induced only in the presence of a combina-
tion of potent stimuli [46,47]. The “two-signal model” is a
theory proposing that TCR signals (signal 1), in the absence
of costimulatory interactions (signal 2), result in T-cell inac-
tivation or deletion [48–50]. In contrast, according to this
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model, the interplay of signal 1 

 

�

 

 signal 2 is the driving
force of T-cell activation [48–50]. It has been proposed that
other types of signals (signal 3) are critical for T-cell prim-
ing [51], mainly in the case of CTL induction. Signal 3
should be “turned on” only on licensed DC that can prime
CTL effector function [52–54]. IL-12 is a good candidate to
be a signal 3 [51], and this cytokine is able to shape the im-

 

mune response toward a CTL/T

 

H

 

1 type of cellular immune
response [55]. Other molecules such as 4-1BBL might have
a crucial role [56]. Signal 3, regardless of its molecular na-
ture, is conceived to bias the cytokine pattern of T helper
cells toward T

 

H

 

1 [51]. Artificial means to provide IL-12
achieve antitumor effects either as a recombinant protein or
when transferred in gene therapy approaches [57]. There is
interest in determining which DC subtype mediates cross-
priming in vivo [58]. In mouse spleen, two populations can
be distinguished based on CD8

 

�

 

 expression. The CD8

 

�

 

subset readily secretes IL-12 upon stimulation and is be-
lieved to be essential for cross-priming. However, recent

 

evidence indicates that CD8

 

�

 

 spleen DC only represent a
more mature status of the same lineage rather than a popula-
tion of a different ontogeny [59].

CD40 is a key signaling molecule at licensing DC for
CTL activation [52,54], providing signals for maturation
that are synergistic with other stimuli (such as LPS) [47,60].
CD40 binds a cognate ligand expressed on activated T
helper cells [61]. Therefore, MHC class II-restricted anti-
gens recognized by CD4

 

�

 

 T cells determine the outcome of
cross-presentation [52–54]. This is being exploited in exper-
imental antitumor immunotherapy by either artificial liga-
tion of CD40 with monoclonal antibodies [62,63] or ectopi-
cally expressed CD40L [64,65]. In addition, DC vaccines
set to elicit antitumor CTL are known to benefit from the in-
clusion of MHC class II-restricted determinants [66].

All of these therapeutic approaches that provide artificial
costimulation without antigen rely on a certain degree of
basal cross-priming against tumor antigens that can be am-
plified. Evidence for this basal cross-priming has been ob-
tained in mouse tumors, but it is clear that it is not sufficient
to induce effective immunity [67,68].

 

Heat shock proteins chaperoning
antigen and providing maturation stimulus

 

Two intracellular chaperones, gp96 and HSP-70, have been
found to display important immunologic functions at cross-
priming [69,70]. HSP-70 and gp96 have binding activity for
short peptides undergoing the MHC class I-presenting path-
way. In a sense, the array of peptides bound to these moi-
eties in a given cell is a reflection of the proteins being
translated in it at a given time point. Both molecules are
expressed intracellularly, gp96 in the rough endoplasmic
reticulum and HSP-70 in the cytosol. They are released only
when cells die and pores are formed across the plasma
membrane.

Both heat shock proteins share the interesting properties
of being avidly internalized by APC [71–73] and of provid-
ing strong DC maturation signals by interacting with sur-
face receptors [74,75]. The receptor for internalization is
CD91 [72,76]. The identity of the maturating receptor has
not yet been established, but it could be TLR2/4 receptors
previously identified by their property of conferring respon-
siveness to microbe components [77]. Existence of endoge-
nous ligands for these and other danger signal detectors had
been predicted by Polly Matzinger in her danger theory
[32,78].

HSP-70 and gp96 derived from tumors have been used to
specifically vaccinate against these tumors [69,79]. The
procedures require obtaining autologous tumor mass that is
lysed in order to purify gp96 or HSP-70 by various chro-
matographic techniques. There is evidence that HSP-70,
when induced under stress conditions, is involved in endog-
enous cross-priming against antigens that are released after
necrosis of malignant cells [22,80]. Other members of the
mammalian heat shock protein family are proposed to share
similar functions [69,70].

As mentioned earlier, it has been observed in mouse tu-
mor models that affinity-purified heat shock proteins from
tumors vaccinate specifically against inoculation of the cor-
responding viable cell line [69,79]. The vaccine also in-
creases therapeutic activity against established transplanted
tumors that is mediated by CTLs. Fueled by these observa-
tions, a number of pilot clinical trials are being conducted
[81,82]. Information released from such trials is scanty but
indicates that the procedures are safe and well tolerated
[69,81,82]. To date, clinical efficacy appears to be limited.
As often is the case in early clinical experimentation, only
cancer patients with heavy disease burden were eligible for
study inclusion, but augmentation of the cellular immune
response occurred even in these patients.

 

Apoptotic bodies and antigen transfer

 

Malignant cells undergo programmed cell death [83]. Their
remains as apoptotic bodies are opsonized by thrombospon-
din and rapidly internalized by macrophages [84]. Phagocy-
tosis of apoptotic bodies is thought to be immunosuppres-
sive [85], but if mediated by DC it can result in immunity
against the antigens contained by apoptotic bodies
[84,86,87], provided the engulfing DC experiences matura-
tion [86]. In this regard, apoptotic bodies have been con-
firmed to transfer viral antigens and labeled apoptotic bod-
ies have been found inside tumor-associated DC [88]. In
addition, incubation of ex vivo cultured DC with tumor apo-
ptotic bodies has been found to provide efficient means to
load DC with tumor antigens [84,89–91]. There is no defin-
itive proof that such DC cross-presented tumor antigens are
taken up via this mechanism in tumor-bearing mice. It
should be kept in mind that, in general, apoptotic death in
surrounding cells does not induce maturation of DC; there-
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fore, to achieve immunity a maturation-inducing stimulus
should reach the DC loaded with apoptotic bodies [85,86,92].
It is important to note that there is experimental proof that
DC internalize antigenic material through pinocytosis of solu-
ble proteins that could come from malignant cell debris [93].

Because maturation induction signals are believed to be
critical for cross-priming, the most relevant factor must be
whether the tumor environment displays proinflammatory
factors or the cells are dying under stress conditions [86,92].
Necrosis is thought to induce immunity, whereas “normal”
apoptosis would be involved in tolerance induction or in al-
lowing tissular antigens to remain ignored by the immune
system [12,13]. Stress-induced molecules in cells undergo-
ing either apoptosis or necrosis are capable of activating DC
maturation. Heat shock proteins are one example of this
type of molecule, but other endogenous danger signals
probably will be identified in the future [94]. Local applica-
tion in the tumor nodules of proinflammatory cytokines/
chemokines, stress molecules, or microbial components are
interesting approaches to obtaining clinical benefits from
these mechanisms.

 

Cellular exosomes,
membrane cooption, and Fc receptors

 

Tumor cell lines constantly release vesicles (nanometers in
diameter) coated by plasma membrane [95]. They contain
MHC class I molecules and heat shock proteins involved in
MHC class I antigen presentation [96]. Such vesicles can be
internalized and processed by DC in vitro, but exosome cap-
ture does not induce DC maturation [95]. Continuous re-
lease of these exosomes is believed to occur in vivo. The
observation that coculture of viable tumor cells and DC can
result in antigen transfer [25] probably is related to these
structures.

A nonmutually exclusive mechanism that can explain
this observation is the proposed ability of DC to exchange
membrane patches with cells they interact with [97,98].
During this cooption of patches of membrane, they can gain
surface expression of antigen-presenting molecules that
originally were attached to the plasma membrane of the do-
nor cells [97,98]. Mechanisms of this cooption are not de-
fined yet and could involve fusion with exosomes released
by tumor cells. Importantly, MHC class I molecules carry-
ing melanoma tumor antigens can be transferred through
this mechanism to DC in order to elicit CTL in vitro.

It was found recently that antigen coating of apoptotic
bodies with antibodies enhances cross-priming [99,100]. In-
triguingly, the mechanism was not a simple increase in op-
sonization/internalization by Fc receptors, but instead was
related to a property of the internalized immunocomplexes
that rendered the material more prone to be presented
[99,100]. There is hope that this property can be exploited
in cross-priming against tumor antigens. The first observa-
tions were made in experimental myelomas, and it has been

 

speculated that these types of mechanisms can be important
in understanding the therapeutic effects of anti-idiotypic hu-
moral responses in malignancies of lymphoid origin. More-
over, it has been repeatedly noted, even in clinical trials,
that in vitro DC pulsing with either immunoglobulin alone
or tumor idiotype conjugated with keyhole limpet hemocya-
nin (KLH

 

)

 

 can induce cellular immune responses in vivo
upon reinfusion of the pulsed DC into the patient [101–
104]. These results suggest that the Fc receptors expressed
by DC may internalize tumor-specific idiotype-bearing im-
munoglobulins alone or as part of immunoconjugates (im-
munoglobulin chemically complexed to KLH). Soluble pro-
teins, including pathologic immunoglobins, can be taken up
by DC through macropinocytosis in an Fc-receptor–inde-
pendent fashion [93,105].

 

Tumor cell RNA and
tumor-DC hybridomas in cross-priming

 

mRNA normally is confined to the cell interior. Its release
as translatable genetic material could provide excellent
means of antigen transfer if captured in its integrity by DC.
DC can be loaded with RNA encoding for tumor antigens or
with total tumor RNA for immunotherapy of cancer [106–
108]. Those DC are useful for treating experimental malig-
nancies, and clinical trials have reported discrete biologic
effects in prostate cancer patients [109]. In those tech-
niques, cationic lipids usually assist RNA entry into DC, but
in some cases it has been proved that it enters DC efficiently
without artificial help [108,109]. On the other hand, double-
stranded RNA can stimulate the DC receptor TLR-3 [110]
and provide stress signals to DC [111]. It would not be sur-
prising that RNA forming secondary structures would be a
maturing signal for DC, whereas TLR-3 might be involved
in internalization. Whether RNA is an important messenger
for antigen transfer awaits the results of clear-cut experi-
mentation.

One of the best ways to generate antitumor vaccines might
be to fuse DC and tumor cells to generate hybrid cells
[112,113]. In this strategy, malignant cells provide antige-
nicity, whereas DC provide immunogenicity. In mouse tumor
models the strategy can break tolerance against self-antigens
[113]. The only clinical trial reported to date disclosed ex-
tremely encouraging efficacy results [114]. However, cau-
tion still is necessary until the issue of data reproducibility
is addressed successfully [115]. Artificial means to generate
these syncytia in vivo are being attempted in mouse models
by gene transfer into tumor cells of fusogenic retroviral pro-
teins [116,117] and subsequent intratumor injection of DC.

 

Intratumor injection of DC

 

The simplest approach to take advantage of these concepts
is to release in vitro-cultured DC inside malignant tissue by
direct injection [22–24]. Alternatively, it is possible to at-
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tract DC to tumors by transferring into cancer cells con-
structions of genes expressing GM-CSF [21,118] or DC-
attracting chemokines, such as MIP3

 

�

 

 [119].
DC injection into tumor masses has some antitumor ac-

tivity against micrometastasis [22]. However, if artificially
injected DC are transfected with genes to express IL-12
[23,24], IL-7 [120], CD40L [121], or IL-2 [122] to a lesser
extent, they are highly efficacious against malignant tumors
by eliciting specific CTLs. It is not yet clear what kind of
antigen transfer mechanism shuttles tumor antigens into DC
in vivo, as they are artificially released into the tumor. It
could be any of those described in this review (Fig. 1) or
several operating in combination. Injection damage, caused by
hydrostatic pressure and puncture, could help to create some
local stress [123]. In this regard, it is worth noting that local
radiotherapy that destroys tumor cells enhances the efficacy
of DC vaccination and adoptive T-cell therapy [124]. More-
over, according to a recent report, frozen/thawed tumor
cells are less efficient than irradiated tumor cells at transfer-
ring immunogenic antigen to DC [90]. Nonetheless, other
authors report similar antigen transfer efficacy of necrotic
and apoptotic cells, at least for CTL priming in vitro [125].

In all of these approaches, DC are allowed to capture and
present every available antigen in malignant tissue (cancer

cells 

 

�

 

 stroma), not only tumor antigens. Accordingly, damag-
ing immunity could be induced to self-components. In trans-
genic mice with surrogate self-antigens shared by vital tissues
and transplanted/eradicated tumors, lethal anti–self-reactions
have been observed [126]. However, the real risk is believed to
be small in light of clinical trials that were almost uneventful in
this regard [8,127], with the exception of vitiligo in several
melanoma patients [128]. After DC reach lymphoid tissue,
they die within 24 to 48 hours [129]. Their death is induced by
activated T cells [130], thus providing a negative feedback
mechanism that regulates the immune response. There is evi-
dence that antigen released by dying DC can be taken up by
resident sister DC that can perform second-hand antigen cross-
presentation [131], but the real importance of this mechanism
currently is unknown. From a practical point of view, discov-
ery of a means to extend the lifespan of DC in lymphoid organs
can be important [132,133]. In the context of intratumor injec-
tion, it is interesting that DC can mediate a tumor necrosis fac-
tor-related apoptosis-inducing ligand (TRAIL)-dependent kill-
ing of tumor cells, thus creating apoptotic bodies available for
uptake by the killer DC [134]. Cytotoxicity as mediated by nat-
ural killer cells, CTLs, or macrophages could have similar con-
sequences in terms of generating antigenic material for cross-
presentation[135].

Figure 1. Antigen transfer pathways fron cancer to dendritic cells.
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CTL cross-priming and active immunization
against cancer: what to expect in the near future?

 

From our point of view, strategies based on increasing the
amount and quality of antigen transferred from cancer cells
to DC will be major priming procedures against cancer. It is
likely that they will be accompanied by a means to increase
the maturation status of DC in a manner that renders them
more capable to prime CTLs (licensed). Figure 1 shows a
summary of the diverse antigen transfer pathways that con-
ceivably are involved in cross-priming.

To be successful, it is wise to use a combination of anti-
gens for priming [123]. We favor approaches in which DC are
allowed to serve themselves from the buffet of tumor com-
ponents rather than from a fixed antigenic menu, thus avoid-
ing excessive antigen focusing with propensity to select out
antigen-loss variants. Combination therapies including effector
T-cell in vitro culture for adoptive T-cell therapy will benefit
from the success of efficacious priming procedures [136,137].
Apart from adoptive T-cell therapy, other strategies that are
likely to be combined in order to increase efficacy are as
follows:

 

1.

 

Repeated boosting

 

 [138]. There is room for improve-
ment with this strategy because in some acute viral in-
fections a large number of specific T-cells are ex-
panded, whereas the expansion reached by the best
current active antitumor immunotherapy regimes is
about one order of magnitude less [139,140].

2.

 

Exogenous administration of agents that inhibit regu-
latory T cells [141] and/or interfere with molecules
involved in down-regulating T-cell responses.

 

 Means
to counteract the function of transforming growth fac-
tor-

 

�

 

 [142], CTLA-4 [143], and/or PD-1 [144,145]
are the best candidates so far, but similar possibilities
are to be explored with blocking strategies for the
functions of IL-10 and IL-13 [146], which are immuno-
suppressive in some experimental tumor models.

3.

 

Combination with immunostimulatory monoclonal anti-
bodies or cytokines that enhance the cellular immune
response.

 

 Among the antibodies that hopefully have
clinical potential are anti-CD137 (4-1BB) [147,148],
anti-CD40 [62,63], and anti–CTLA-4 [143]. Among
the cytokines we would highlight are IL-12, IL-2, IL-15,
and GM-CSF, for all of which we predict a role in com-
bination immunotherapy. Recent evidence showing
that soluble Flt-3L has antitumor effects [149] and in-
creases DC recovery in cancer patients [94] is likely to
be important for artificial cross-priming [94].

Development of combination strategies has a serious dif-
ficulty in that safety studies must be performed first with
single agents and a long period of time is needed before
combinations can be tested, even though excellent preclini-
cal efficacy and safety data have been obtained.

In addition, translational research review and approval
processes are a limiting bottleneck to faster development. In

some countries up to three levels of regulatory authorities
and committees are involved in a sequential decision. Pilot
clinical experimentation and safety studies involving a
small number of cancer patients without expectations of
curative treatment should be simplified in terms of bureau-
cracy. In some cases direct testing of combination strategies
should be allowed, at least for clinical investigation groups
with records of excellent practice standards.

There is some controversy regarding these opinions, be-
cause others argue that no definitive statistic data exist on
the clinical efficacy of DC-mediated immunotherapy against
cancer. In their opinion, given that the field in its infancy, it
would be wise to test separately in patients the many vari-
ables of the technology that should be optimized (route,
dose, source of DC, antigen loading strategy) before begin-
ning combined treatments in clinical trials. In any case, reg-
ulatory authorities should place emphasis on the expert
peer-review of the preclinical safety profiles of new thera-
peutic agents to be tested as a single agent or in combina-
tion, as well as on the balance of risk/potential benefit to the
patients.

Careful follow-up of the clinical effects and assessment
of specific immune responses will teach us the best and saf-
est approaches. In our opinion, the next decade will witness
a major impact of immunotherapy on the management of
malignancies. In particular, the prognosis of minimal resid-
ual disease cases is expected to improve significantly. New
ways for using cross-priming soon will be in the arsenal
against cancer.
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