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Summary

Lung cancer and chronic obstructive pulmonary disease (COPD) are among
the deadliest diseases worldwide, and animal models play a key role in
understanding the natural history of these diseases, as well as in pre-clinical
treatment trials. Different techniques can be used to study animal models
of lung disease, such as pulmonary function tests or histology. X-ray micro-
computed tomography (micro-CT) represents a very convenient technology
to obtain three-dimensional images of the lungs with minimum invasiveness.

Multiple preliminary studies have shown the use of micro-CT to assess
the progress of mouse models of lung disease. In this thesis, we set up a
generic protocol for image acquisition which is of use even for heavily dis-
eased animals. The protocol includes endotracheal intubation, pulmonary
function tests and iso-pressure breath holds for movement artifact reduc-
tion. Chest micro-CT image segmentation and analysis methods have been
developed to quantify the effects of disease. These methods allow for quanti-
tative measurements on the lungs and the airways separately, which can be
used to monitor disease development. Moreover, significant contributions
have been made to the field of atlas-based segmentation, with applications
in multiple image modalities and segmentation problems.

Developed methods have been applied to characterize the dynamic evo-
lution of three relevant mouse models of lung disease: elastase-induced
emphysema, silica-induced chronic pulmonary inflammation and urethane-
induced lung cancer combined with emphysema. Apart from micro-CT,
other techniques have also been used to complement the data.

Results show the use of micro-CT and automated image analysis to
quantify the effect of different pulmonary diseases on small animal models.
Methods presented in this thesis will be of use to characterize other models
of lung disease, as well as for treatment testing.
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I hesitate ... For, usually and
fitly, the presence of an intro-
duction is held to imply that
there is something of conse-
quence and importance to be
introduced.

Arthur Machen, writer

1
Introduction

1.1 BACKGROUND

The lung is the basic organ for oxygen and carbon dioxide exchange in
all air-breathing animals, including humans. Diseases that affect the lung
are likely to impair this gas exchange and therefore compromise physiologi-
cal respiration. The deadliest lung disease is chronic obstructive pulmonary
disease (COPD), being the fourth leading cause of death in the developed
world [1]. COPD is characterized by airflow limitation that is not fully re-
versible, and can be related to chronic bronchitis, emphysema, or both [2].
The disease has an important inflammatory component and is generally
progressive. Lung cancer is another severe lung disease, being the most
common cancer in terms of both incidence and mortality worldwide [3]. Al-
though advances have been made in the detection and treatment of other
cancer types, lung cancer still presents very high mortality. One of the
main reasons for this is late detection, due to the lack of early symptoms.

Extensive research efforts are being put into both COPD and lung can-
cer [4, 5]. As on any other biomedical research, two different types can be
distinguished depending on the environment and subject employed for the
research. In vitro research is done in a controlled environment outside a liv-
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ing organism, for instance in a test tube or a Petri dish. On the other hand,
in vivo research is done on living organisms. These can be humans, which
are generally the final subject of research. However, biomedical research
on human subjects raises multiple practical and ethical issues. These can
be partially overcome by using animals, especially small animals such as
mice and rats. Therefore, animal models of lung disease are widely used
to gain insight into the pathological processes, as well as for drug testing.
Models exist for the most common diseases, including asthma, emphysema,
and lung cancer [6–8].

In 1959, William Russell and Rex Burch proposed the ”3 Rs” princi-
ple for animal research. Their point was that, when experimenting with
animals, every effort should be made to Replace them with non-sentient
alternatives, to Reduce to a minimum the number of animals used, and to
Refine experiments which used animals so that they caused the minimum
pain and distress [9]. The ”3 Rs” principle represents not only an ethical
demand, but also an incentive for high quality research.

Currently available non-invasive imaging techniques, such X-ray micro-
computerized tomography (micro-CT), positron emission microtomography
(micro-PET) or microscopic magnetic resonance imaging (micro-MRI), of-
fer the possibility to go further with the ”3 Rs”. In particular, the number
of animals can be reduced by performing longitudinal studies, and non-
invasiveness allows for considerable experiment refinement. In the case of
lung imaging in small animals, micro-CT is particularly well suited because
the air that fills the lungs has very low X-ray absorption, compared to the
tissue in the lungs. Therefore, high contrast can be achieved between tissue
and air within the lungs [10]. An important drawback of this techique is
the presence of respiratory motion, which results in blurred micro-CT chest
images if it is not avoided or compensated for.

Once the micro-CT images have been acquired, they must be inter-
preted. This can be done by mere visual assessment: the extent of em-
physema or inflammation can be qualitatively analyzed, the distribution
and size of tumors can be compared between different animal groups, etc.
Nevertheless, much more information can be obtained by quantitative im-
age analysis, which can be done manualy (by the user), semi-automatically
(with interactive methods) or fully automatically.

Multiple previous studies have shown the use of micro-CT to monitor
disease development in small animal models of lung disease, such as em-
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physema, lung cancer, fibrosis and inflammation [11–14]. Artifacts derived
from respiratory motion being one of the main drawbacks, different solu-
tions have been proposed and adopted to overcome this problem. They
include minimizing the movement by banding the chest area with nonelas-
tic paper tape [12], synchronizing image acquisition with different respi-
ratory phases (gating) [15, 16] and forced iso-pressure breath holds on an
endotracheally intubated animal [17]. The latter results in the best image
quality, but animal recovery can be problematic, as well as its application
to diseased animals.

Regarding automated image quantification, the analysis of radiologi-
cal images of human subjects is an area of active research, with dozens of
papers being published every year in journals such as IEEE Transactions
on Medical Imaging, Medical Image Analysis or the International Jour-
nal of Biomedical Imaging. However, due to the morphological differences
between humans and rodents (lung shape, airway structure), and the differ-
ences caused by the imaging modality (artifacts, image noise), methods that
are valid in CT images of humans can not generally be directly translated
to micro-CT images of rodents. Therefore, specific tools need to be devel-
oped and validated. The application of automatic tools to animal studies,
and in particular to chest micro-CT images, has been very limited, and
most published works have made use of manual or interactive tools [13,18].

1.2 CONTRIBUTIONS

This thesis was developed in the context of two coordinated projects
funded by the Spanish Ministry of Health (grants PI070751 and PI070792).
The general aim of these projects is to study the relationship between
COPD and lung cancer, based on the observation that smokers that suffer
from COPD are more likely to develop lung cancer than the rest [19]. One
project dealt with the relationship between both diseases in human samples.
The second project approached the problem using animal models of the
disease. Different animal models had to be thoroughly characterized. The
animal models studied during the project development were:

• Elastase-induced emphysema

• Urethane-induced lung cancer

• Silica-induced inflammation
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• Combined elastase and urethane model

• Combined silica and urethane model

The latter model is out of the scope of this thesis, since the lack of contrast
makes it virtually impossible to detect lung nodules surrounded by dense
inflammation in micro-CT images without contrast. These animal models
are very different, thus the analysis and characterization has been done
according to their particularities and estimated interest of the scientific
community. To this aim, several methods and techniques had to be used,
including micro-CT, pulmonary functional tests [20], histological analysis
and cytokine measurements.

One of the main contributions of this thesis is the protocol for data ac-
quisition, which allows obtaining lung function parameters and high qual-
ity micro-CT images in vivo in a considerably short time, with very low
mortality. Relevant advances have also been made in the field of image
analysis. Automatic methods for lung segmentation have been developed
and validated, which are of use not only on healthy but also on animals pre-
senting both low density (emphysema, for instance) or high density diseases
(inflammation or fibrosis, for example). Based on the automatic segmenta-
tions, measurements that quantitatively characterize disease development
can be obtained. An algorithm for airway segmentation was also developed.
This algorithm is based on previously published methods for human airway
segmentation on CT images, but substantial changes were required to adapt
the method to micro-CT images of mice, and to include the possibility of
segmenting lungs affected by disease. The devised acquisition and segmen-
tation methods were used to characterize the animal models detailed above,
thus contributing to a better understanding of the similarities and differ-
ences between the models and the actual disease. Significant contributions
have also been made to the field of atlas-based segmentation, which can be
applied to a wide variety of segmentation tasks. The advanced multi-atlas
methods proposed in the corresponding section have not been required in
our experiments, but they are present in the thesis for their generic interest.

1.3 OUTLINE

The rest of this thesis is divided in three main parts. Chapter 2 summa-
rizes the methods that have been developed or used to acquire and analyze
data for all animal models. This includes a new protocol for micro-CT
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image acquisition, pulmonary function tests and various image segmenta-
tion and quantification techniques, specifically devised and validated for
the analysis of small animal models of lung disease using micro-CT.

Chapter 3 separately describes the experiments and results for each
animal model, which were held making use of the methods presented in
Chapter 2. If a given method was used only in one of the models, it is
explained in the corresponding subsection. Each section of this chapter
also contains a discussion about the results of that particular model.

Finally, Chapter 4 includes a brief general discussion with the main
implications of this thesis. In Appendix A a method to perform spatially
variant convolution using scaled B-splines is presented. This method has
many applications in image processing and was developed during the re-
search period. It must be noted that a large part of the contents presented
in this thesis have been or are being considered to be published in inter-
national conferences and journals. A detailed list of publications can be
found in the appendices.
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So here we have pi squared,
which an engineer would call
10.

Frank King, cartoonist

2
Material and Methods

This chapter summarizes the main materials and methods employed
in this thesis. These include the methods for disease generation in mice,
micro-computed X-ray tomography (micro-CT) and pulmonary function data
acquisition protocols, and lung and airway segmentation algorithms for the
micro-CT images. A final section on multi-atlas segmentation introduces
significant contributions to the field of atlas-based segmentation.

2.1 ANIMAL MODELS

In this section, the protocols followed for disease generation in each
animal model will be detailed. All animal procedures were approved by the
University of Navarra Animal Experimentation Ethics Committee. The
studied models were:

• Elastase-induced emphysema: Animals from this group aspired 6 Units
per 30 g porcine pancreatic elastase (PPE, EC134GI, EPC, MI, USA)
following a previously published protocol [21]. Briefly, animals were
anesthetized using a mixture of oxygen and isoflurane and laid on
their backs on a metal board slanted at a 60◦angle. The tongue was
held with forzeps to avoid swallowing and nostrils were kept closed.
Then, the aspiration fluid was dropped in the mouth and the animals

7
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were kept in the same position for a few seconds. Animals recovered
in 1 to 2 minutes from this procedure.

• Silica-induced inflammation: Inflammation was produced by a single
oropharyngeal aspiration of crystalline silica (9 mg of 99% pure alpha-
quartz, < 5µm particle size, in 90 µl of saline; Min-U-Sil 5, US Silica
Co., Berkeley Springs, WV, USA). Oropharyngeal aspirations were
performed following the method described in the previous subsection
for elastase administration.

• Urethane-induced lung cancer: Animals were injected intraperitoneally
with urethane (1 mg per gram of body, Urethane U2500 Sigma, Saint
Louis, Missouri, USA) at the beginning of the experiment.

• Combined elastase and urethane model: The combined model was
created by first administering porcine pancreatic elastase by aspi-
ration and injecting urethane one week later (same quantity as in the
simple model).

• Control animals: To have a reference of animals without disease, con-
trol mice aspired 90 l of saline.

These models have very different appearance in micro-CT images, as
shown in Figure 2.1.

2.2 MICRO-CT IMAGE ACQUISITION

Micro-CT is a widely used non-invasive imaging technique for assess-
ment of animal models of lung disease, including lung cancer, emphysema
and fibrosis [12,13,18,22]. The principles of micro-CT have been explained
elsewhere [23, 24]. Briefly, an X-ray source and a detector rotate around
the specimen. Projection data is acquired from different angles and it is
used to reconstruct a three-dimensional image. Image acquisition protocols
depend on various parameters that include the desired image quality, the
delivered radiation and the X-ray absorption characteristics of the speci-
men or organ to be imaged. Generally, a trade-off exists between image
quality and dose [25].

Apart from the scanner settings, chest micro-CT images are affected
by respiratory motion, which causes image blurring. As pointed out in the
introductory chapter, different techniques have been proposed to minimize
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Figure 2.1: Sample transversal micro-CT slices of different mouse

models of lung disease. A healthy control subject (top

left) is displayed for comparison. The elastase-induced

emphysema model (top right) results in a loss of lung

tissue, and the lungs appear darker and more inflated

than the healthy lungs. Urethane causes spherical nod-

ules (bottom left, white arrow). Silica aspiration results

in heavy inflammation in central areas of the lungs (bot-

tom right, white arrow).

this problem. Solutions range from limiting the chest movement with a
nonelastic tape [12], to prospective and retrospective gating [15, 26]. To
achieve minimally blurred images with limited radiation, our protocol uses
artificial ventilation, and the micro-CT projections are acquired during
ventilator-induced breath holds.
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We defined our protocol starting from the work by Namati et al. [17].
Several preliminary experiments were made to find the optimum workflow
and scanning parameters. Every aspect was optimized to end up with
a protocol with high image quality, high animal survival rate and non-
detectable harm to the lungs.

Animals were anesthetized with an intraperitoneal injection of 90 mg/kg
ketamine and 10 mg/kg xylacine. Endotracheal intubation was performed
on anesthesized animals using the BioLite system (Biotex, Houston, Texas),
to illuminate the trachea with a fiber optic stylet. After intubation, animals
were connected to a Flexivent rodent ventilator (Scireq, Montreal, Canada)
at a rate of 200 breaths/min and a tidal volume of 10 ml/kg. Animals were
kept breathing isoflurane at 2% concentration until complete relaxation was
achieved. 0.5% isoflurane was maintained during the rest of the experiment.
No paralyzer was required in order to prevent mice from trying to breath on
their own. Before starting the micro-CT image acquisition, lung function
measurements were made (see section 2.3 for details).

Seven hundred (700) micro-CT projections were acquired during iso-
pressure breath holds at 12 cm H2O, which represents a physiological
pressure and minimizes the probability of ventilator induced lung injury
(VILI) [27]. Breath hold duration was 650 ms and normal breathing was
induced for two inspiration-expiration cycles between breath holds. A total
lung capacity (TLC) perturbation was performed every 20 breath holds.
This inflates the lung to the maximum capacity (30 cm H2O) for 3 s and
contributes to prevent atelectasis [28]. No projections were acquired during
the TLC perturbations.

Images were acquired with a Micro-CAT II scanner (Siemens Pre-Clinical
Solutions, Knoxville, Tennesee), with a source voltage of 80 kVp and a cur-
rent of 500 µA. The exposure time per projection was 450 ms and each
projection was acquired during the 650 ms iso-pressure breath holds at
peak inspiration (12 cm H2O). This resulted in images of 640 slices with
1024×1024 voxels per slice, and an isotropic voxel size of 46 µm. A water
phantom was used to calibrate the images to Hounsfield Units (HU).The
resolution estimated by the Resolution Estimator software (Siemens Pre-
Clinical Solutions, Knoxville, Tennessee) was 43.74 µm. Scan time was
approximately 30 minutes and the dosage computed by the Dose Calcu-
lator software (Siemens Pre-Clinical Solutions, Knoxville, Tennessee), was
71.6 cGy per scan. To estimate image noise, we scanned a cylindrical phan-
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tom filled with water and computed the standard deviation of the water
region (mean 0.97 HU), which resulted in 74.55 HU.

To avoid a dangerous reduction in animals’ body temperature, a plastic
tube was placed around the head of the animal. This protected the mice
from the air flow caused by the ventilators inside the scanner. A cotton
cloth placed around the body further contributed to keep the animal warm.
After the scan, animals were intraperitoneally injected with warm saline (10
µl per 1 g) to aid recovery from anesthesia and artificial ventilation.

2.3 LUNG FUNCTION MEASUREMENTS

In humans, parameters of lung function such as forced volume vital
capacity (FVC) or forced expiratory volume in 1 second (FEV1) can be
measured with patient’s cooperation. This is not possible with animals,
thus alternative approaches must be taken. Small animals, such as mice,
pose an extra difficulty due to their size [29]. There exists a trade-off
between invasiveness and accuracy: the less invasive the technique, the less
precise the measurement [20].

Unrestrained plethysmography lies on the least invasive side. It involves
placing the subject into a small closed box and measuring the pressure
changes within the box that occur as the animal breathes. The animal is
conscious and unrestrained. Changes of air pressure in the lung are mea-
sured, and this data is used to compute a parameter called enhanced pause
(Penh). This technique is still in use due to its simplicity, but it has been
severely criticised for its lack of precision and physiological meaning [30].
On the other hand, input impedance measurement on intubated mice rep-
resents an invasive and precise method. This method consists in measuring
the response to a known input pressure signal (perturbation), and deriving
the respiratory system input impedance. Then, parameters of a previously
defined model for the respiratory system can be computed minimizing the
distance between the measured curves and what the model predicts.

As stated above, in our studies lung function measurements were done
once the animals were connected to the ventilator and did not show any
reflex or attempt to breath on their own, and before the micro-CT image
acquisition. To obtain measurements of respiratory mechanics, two dif-
ferent perturbations were used. The Single-Frequency Forced Oscillation
provides the estimation of the Single Compartment Model parameters [20]:
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resistance (R) and compliance (C). This model assumes that the lung is an
elastic compartment with a given compliance or elastance value (E = 1/C),
served by a conduit that poses a certain resistance to air flow. The equation
of the system is then given by:

P (t) = R
dV (t)
dt

+
V (t)
C

+ P0, (2.1)

where P (t) is the pressure at the entrance to the model,
dV (t)
dt

is the flow

of gas into the model, V (t) is volume of gas in the elastic compartment, P0

is the resting applied pressure (e.g., positive end-expiratory pressure), and
t is time

Additionally, Broadband-Frequency Forced Oscillations allow for esti-
mation of the Constant Phase Model parameters [31]: airway resistance
(Raw), airway inertance (I), tissue damping (G), and tissue elastance (H).
The input impedance of the system is expressed as:

Zin = R+ i2πfI +
G− iH

(2πf)α
, (2.2)

where R is a Newtonian resistance, I is an inertance essentially equal to
that of the gas in the central airways, G characterizes viscous dissipation
of energy in the respiratory tissues, H characterizes energy storage in the
tissues and f is frequency. G and H are coupled via the equation:

α =
2
π

arctan
H

G
. (2.3)

This model separates the resistive and reactive components of main air-
ways and lung tissue, which in principle allows for differentially evaluating
the contribution of each of these two components to overall lung function.
An important limitation of this model is that it assumes a homogeneous
lung tissue.

In our experiments, each perturbation was performed three times and
the results averaged, to minimize variability. Before each pair of perturba-
tions, a total lung capacity (TLC) maneuver was performed, which inflates
the lungs to the maximum capacity (30 cm H2O) for 3 s. The TLC was
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performed to open small airways and to set comparable initial conditions.
The entire lung function parameter acquisition took around 5 minutes.

2.4 LUNG FIXATION

The same standard protocol was used for lung fixation in all animal
models. Mice were anesthetized with ketamin and xylacin and then sacri-
ficed by exsanguination. A 22G cannula was inserted in the trachea and
secured with a thread. The lungs and the heart were removed en bloc
and then fixed for one hour with 4% formaldehyde introduced in the lungs
through the cannula at a constant pressure of 20 cm H2O. The lungs were
immersed in fresh 4% formaldehyde for 24 hours and then in 70% ethanol
for 24 hours, before being included in paraffin.

2.5 LUNG SEGMENTATION IN MOUSE MODELS OF LUNG
DISEASE

2.5.1 PROBLEM STATEMENT AND PREVIOUS WORK

Segmenting the lungs is a basic preliminary step to quantify the effect
of any pulmonary disease in micro-CT images of the mouse chest. Healthy
lungs can be segmented using semi-automatic [32] or automatic methods
similar to the ones used in humans [33]. Emphysematous lungs show a de-
creased voxel intensity, which does not require different algorithms. How-
ever, lungs showing high intensity areas, for instance due to inflammation
or fibrosis, pose a considerable challenge (see Figure 2.1).

Automatically segmenting pulmonary inflammation areas in micro-CT
images resembles in some respects the segmentation of computed tomog-
raphy (CT) images of pathologies such as severe consolidation or extended
fibrosis. Sluimer et al. worked on algorithms to segment scans with dense
pathology [34] by combining image registration and voxel classification.
More recently, Lee et al. used level sets to segment images of patients with
diffuse interstitial lung disease (DILD) [35]. Their results were generally
correct although the method failed in the most severe cases.

In this section, we explain the segmentation algorithms employed in this
thesis as a preliminary step for the analysis of mouse models of lung dis-
ease. The method to segment healthy and emphysematous lungs is based
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on a previously reported algorithm [33], and the method for the inflamed
lungs was specifically devised for this work. Both methods are validated
by comparing computer-generated segmentations to manually-defined seg-
mentations. The rest of the section is organized as follows. In subsections
2.5.2 and 2.5.3 the algorithms for lung segmentation are explained and eval-
uated. In subsection 2.5.4 some implications of the methods and results are
discussed.

2.5.2 SEGMENTATION OF HEALTHY AND EMPHYSEMA-
TOUS LUNGS

2.5.2.1 Method

The segmentation algorithm used to extract the healthy and emphyse-
matous lungs is largely based on the method described by Hu et al. [33]. In
particular, the implementation by Carlos Jauquicoa for his Master Thesis
was used [36]. The basic steps of the algorithm are stated below, and we
refer to the mentioned two works for further details:

1. Automatic thresholding : a threshold is iteratively computed to sepa-
rate air and body tissue in the scan.

2. Background removal : air regions connected to the borders are re-
moved.

3. Small volume removal : small air volumes, which are likely to corre-
spond to air blobs in the digestive tract, are removed.

4. Hole filling : possible holes within the lung are filled.

5. Trachea extraction: the trachea and the main airways are deleted
from the volume.

6. Small vessel inclusion: a 3D closing operator is used to include small
vessels in the lung segmentation.

2.5.2.2 Evaluation

Six images of control and emphysematous mice were semi-automatically
segmented using the Amira software (Visage Imaging, Fürth, Germany)
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Table 2.1: SI for the six manually segmented images of control and

emphysematous mice

Image number and group Similarity Index

Image 1 (control, week 0) 0.99
Image 2 (control, week 4) 0.98
Image 3 (control, week 14) 0.99
Image 4 (emphysema, week 4) 0.99
Image 5 (emphysema, week 14) 0.99
Image 6 (emphysema, week 34) 0.98

and were used as reference for the evaluation of the automatic segmentation
method. A seeded region growing tool was used for segmentation, and
boundaries were corrected in case of inaccuracies.

The SI between two segmentations, Sa and Sb, of the same object, is
defined as:

SI =
2|Sa

⋂
Sb|

|Sa|+ |Sb| , (2.4)

where
⋂

indicates the overlapping voxels between the two segmenta-
tions, and |Sa| indicates the number of voxels of the corresponding segmen-
tation [37]. SI has value 1 when there is a perfect match between labels
and 0 when there is no overlap.

Resulting SI values are shown in Table 2.1. The average SI is 0.99.

2.5.3 SEGMENTATION OF LUNGS AFFECTED BY CHRONIC
INFLAMMATION

2.5.3.1 Method

Due to the difficulty of the task, our lung segmentation algorithm com-
bines three different segmentation strategies: threshold-based segmenta-
tion, atlas-based segmentation and geodesic active contours. This subsec-
tion details the implementation of each technique separately, concluding
with the method used to combine the three segmentation results.
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2.5.3.1.1 Threshold-based segmentation

We first segmented the healthy, i.e., low density, parts of the inflamed
lungs using the algorithm used for healthy and emphysematous lung seg-
mentation (see subsection 2.5.2). With this method the largest connected
area of the lung with low density is segmented, but the inflamed areas
remain unsegmented.

2.5.3.1.2 Atlas-based segmentation

This step is essential for the correct inclusion of the diseased lung areas
in the final segmentation. Furthermore, the result of this step will be used
for the initialization of the final level set refinement. Atlas-based segmen-
tation uses registration between a reference image, the atlas image, and the
image to be segmented, the target image, to transform the segmentation
of the atlas image into a segmentation of the target image [38]. Further
details on atlas-based methods can be found in section 2.7.

In this case, a randomly chosen silicotic lung was manually segmented
to serve as an atlas for the segmentation of the rest. Instead of directly
registering the atlas and the target images, binary images containing rib
segmentations were used. The reason is that there is a large potential
variability in inflammation location, extension and appearance, which can
lead to errors in the registration. Although inflamed areas appear mainly
near the main airways in the upper part of the lung, they can occasionally
be in the lower parts too. Therefore, in all images ribs were segmented by
thresholding and the resulting binary images were registered. A Gaussian
blurring was applied on the binarized images to help registration. The
alignment process consisted of two steps: affine registration and B-Spline
non-rigid registration. Mutual information was used as metric together with
a stochastic gradient descent optimizer, which allows for fast and accurate
registrations [39].

2.5.3.1.3 Geodesic Active Contours for refinement

The result of the atlas-based step is generally accurate at the ribs, has
the expected lung shape in the upper, inflamed areas of the lung, but is
inaccurate around the diaphragm and the heart. To refine the segmentation
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results in those areas we used geodesic active contours [40] . The geodesic
active contours, which were implemented in ITK, follow the equation [41]:

dψ

dt
= −αA(x) · ∇ψ − βP (x) · |∇ψ|+ γZ(x)κ · |∇ψ| (2.5)

where ψ is the level set function; α, β and γ are the weights for the
advection, propagation and curvature terms, respectively; A(x) is an ad-
vection term; P (x) is a propagation term; and Z(x) is a spatial modifier
for the curvature term κ.

To limit the refinement to the areas of interest near the diaphragm, we
applied the active contour segmentation only to the lower two thirds of the
lung in the coronal direction. The weights were set to 0.1 for propagation,
10 for curvature and 20 for advection. The high curvature and advection
terms lead to smooth segmentations, which at the same time are strongly
attracted to the edges.

2.5.3.1.4 Segmentation combination

The three previous segmentation results must be combined into a single
final segmentation. In this fusion process, two basic assumptions are made:

• All voxels segmented by the threshold-based segmentation method or
the level sets are correct.

• All voxels segmented by the atlas-based segmentation method are
correct, as long as there is another lung voxel with the same x-y
coordinates between the current point and the diaphragm, segmented
by any of the other two methods. An x-y plane is defined as an axial
or transverse slice of the micro-CT image.

With these assumptions, no extra voxel is added below the diaphragm,
which is assumed to be well delineated by the combination of the threshold-
based and the level sets segmentations. The atlas-based segmentation is
used to add pathological areas int the upper area of the lung.

Figure 2.2 shows an example of the segmentation process.
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(a) (b)

(c) (d)

(e) (f)

Figure 2.2: (a) Micro-CT image of a silicotic lung; (b) Threshold-

based segmentation; (c) Atlas-based segmentation; (d)

Cropped atlas-based segmentation; (e) Cropped atlas-

based segmentation refined using level sets; (f) Final

combined segmentation.
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Table 2.2: SI for the six manually segmented images of the chronic

inflammation study

Image number and group Similarity Index

Image 1 (control, week 0) 0.97
Image 2 (silica, week 0) 0.97
Image 3 (silica, week 4) 0.94
Image 4 (silica, week 4) 0.96
Image 5 (silica, week 14) 0.94
Image 6 (silica, week 14) 0.93

An airway segmentation algorithm similar to the one reported in sec-
tion 2.6 of this thesis was used to remove the airways from the final lung
segmentation.

2.5.3.2 Evaluation

Six different scans were manually traced using the Amira software (Vis-
age Imaging, Fürth, Germany) and were used as reference for the evaluation
of the automatic segmentation method. The similarity index (SI) between
the manual and the automatic segmentations was computed (see section
2.5.2.2).

Table 2.2 shows the SI for the six manually segmented images. The
average SI is 0.95.

Automatic segmentations can be used to obtain a three-dimensional
view of the lung volume. In Figure 2.3, the evolution of silica-induced
inflammation in a mouse can be seen.

2.5.4 DISCUSSION AND CONCLUSION

The quantitative study of animal models of lung disease using micro-
CT requires accurate segmentations of the lungs. Automatic segmentation
methods such as the ones described in this section are essential, because
manual segmentations are very time consuming, requiring as much as 5
hours in the silica-treated cases. Results show that our automatic segmen-
tation methods yield accurate delineations.
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Figure 2.3: Temporal evolution of silica-induced inflammation on

the same mouse. From top-left to bottom-right, time

points are baseline, 4 weeks, 14 weeks and 34 weeks

after silica aspiration. The blue volume indicates lung

with normal appearence, the red volume indicates the

inflamed volume and airways are represented in yellow.

The increase of the inflamed area can be observed.
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Automatic segmentation of human lungs without dense pathology in
CT images can be said to be a solved problem [33, 34]. Despite the dif-
ferences between the image modalities and imaged subjects, very similar
techniques can be used to segment the same kind of lungs in micro-CT
images of mice chests. In fact, the method proposed and evaluated here
is an implementation of the multi-step method initially proposed by Hu
et al. [33]. Evaluation results reveal that virtually perfect segmentations
are achieved. However, the same technique can not be used in presence of
dense pathologies, because it relies on the contrast between the air in the
lungs and tissue. Therefore, a novel method which combines multiple steps
had to be devised and evaluated.

Atlas-based segmentation is one of the steps of the devised automatic
segmentation method for lungs with inflammation. A randomly chosen
image of the silicosis group was chosen as the atlas image. Segmentation
accuracy results show that this approach does not lead to large errors, but
overall accuracy could improve with the use of a more generic atlas (see
section 2.7 for possible atlas selection and combination strategies).

In conclusion, we have used a well-known method for the segmenta-
tion of healthy and emphysematous lungs on micro-CT images. However,
this method was not valid to segment mouse lungs affected by chronic in-
flammation. The intrinsic complexity of the latter segmentation task has
produced the need for a custom segmentation method, within which sev-
eral well-known methods are combined taking the characteristics of the
expected disease into account.
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2.6 AIRWAY SEGMENTATION IN MOUSE MODELS OF LUNG
DISEASE

2.6.1 PROBLEM STATEMENT AND PREVIOUS WORK

Segmenting the airways is required by most automatic lung analysis
algorithms, especially in mice micro-CT images, due to the relatively large
volume occupied by the airways. It is well known that the functionality
of central airways and lung peripheral areas varies considerably. Thus, the
morphological effects of most lung pathologies are generally different in the
airways and the parenchyma. Separating airways from the rest of the lung
is thus of utmost importance when analyzing a disease (like emphysema,
chronic inflammation or cancer) which affects lung density differentially.
Moreover, the analysis of segmented airways may be interesting in itself to
study airway-specific morphological changes such as stenosis, bronchiecta-
sis, etc. Finally, the airways can be used as a reference for image registration
in follow-up studies or for atlas-based segmentation of the lungs, lobes and
pulmonary segments.

To the best of our knowledge, only two airway segmentation methods in
micro-CT images of mice lungs have been reported. Chaturvedi et al. [42]
segmented silicon casts of excised mice lungs using an interactive region
growing algorithm. More relevant to the present work, Shi et al. [43] re-
ported a fully automatic algorithm to segment in vivo images of healthy
mice, acquired with an iso-pressure breath hold protocol [17]. This algo-
rithm works by searching airway lumens in 2-D transversal slices that are
then used to reconstruct the full 3-D tree. The main drawback of this
method is that it is based on the search of candidates in 2-D, which may
lead to problems due to the high variablity of the shape of the airway lu-
mens as seen in transversal slices. Moreover, reported computation times
were fairly high (about 30 minutes for each scan).

Due to the scarce previous work on mouse airway segmentation, it is
worth reviewing the most relevant approaches that exist for segmenting the
human airways in CT images. Schlathoelter et al. [44] introduced an al-
gorithm for simultaneous segmentation and reconstruction of the airways.
This algorithm was based on a propagating front that divides the tree into
branches during segmentation. The framework was extended and general-
ized in a subsequent work by Bülow et al. [45]. More recently, van Ginneken
et al. [46] also used the framework for human airway segmentation with a
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multi-threshold approach to increase robustness. Kiraly et al. [47] com-
pared two different methods: an adaptive region growing algorithm and
an algorithm that combined region growing and mathematical morphol-
ogy. Their conclusion was that the region growing method was faster than
the hybrid method, but also slightly less accurate. Aykac et al. [48] used
a two step approach. In a first step, candidate airways were identified on
transversal slices using grayscale morphological reconstruction. In a second
step, valid candidates were connected to build a 3-D airway tree. Fetita et
al. [49] also employed mathematical morphology to obtain a first approxi-
mation of the airways. The morphological operator worked in 3-D and was
specifically built for this purpose. An energy-minimizing reconstruction al-
gorithm was used to build the final airway tree. The work by Tschirren
et al. [50] was based on fuzzy connectivity. They made use of small adap-
tive regions of interest around the already segmented airway areas. Thus,
the algorithm adapted to local image characteristics, leaks were detected
early and the computation time was reduced. In a recent work, Graham et
al. [51] present a method that can be summarized in three main steps. In
the first step, a conservative segmentation of the major airways is obtained
via 3-D region growing on heavily smoothed data. Then, possible branch
segments are detected and connected to each other by nonlinear filtering
and surface interpolation. The final segmentation is obtained using a global
graph partitioning algorithm, which connects the valid branch segments to
the major airways.

The main reason that prevents a direct translation of these algorithms
to mice micro-CT data is the low signal to noise ratio (SNR) of the images,
caused by the required small voxel size and the limitation on radiation dose
imposed by the in vivo studies. In particular, following the simple model
assumptions from reference [52], a reduction of one order of magnitude in
voxel size (0.5 mm in CT to 50 µm in micro-CT) implies an increase of two
orders of magnitude in the variance of the linear attenuation coefficient, if
the rest of parameters remain unchanged.

Taking this into account, we decided to develop on the flexible seg-
mentation and reconstruction framework first reported by Schlathoelter et
al. [44]. This framework has multiple advantages. First, it allows for simul-
taneous segmentation and reconstruction of tree-like structures. Second,
the topological and morphological information from the segmented tree can
be used to guide the segmentation of the remaining branches. Third, its
modular configuration allows for easy introduction of application-specific
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segmentation rules. In fact, one of the major contributions of our work is
the use of new features when compared to those in the previously reported
applications of the framework, to adapt to the low SNR and the special
morphology of the mice airways.

To complete the morphological information provided by the image-
based measurements, we use respiratory system input impedance mea-
surements and the constant phase model parameters, which have been
widely used to assess respiratory mechanics in multiple animal models
( [31], [53], [54]). The combination of micro-CT imaging and constant phase
model parameters has also been used to analyze animal models of lung dis-
ease before. In particular, Lundblad et al. [55] qualitatively analyzed ex
vivo micro-CT images in a mouse model of allergical inflammation and
combined it with measurements of tissue elastance. In this work, we pro-
pose to use quantitative airway measurements, since this approach is likely
to provide valuable information to better understand the morphology and
function of lungs affected by diseases like emphysema and inflammation.

The rest of the section is structured as follows. In subsection 2.6.2,
we briefly summarize the airway segmentation framework and give details
about the new features we have introduced. In subsection 2.6.3 the airway
segmentation validation experiments are detailed. Results are presented in
subsection 2.6.4. A final discussion (subsection 2.6.5) concludes the section.

2.6.2 METHODS

2.6.2.1 Prefiltering

Micro-CT images contain high levels of noise. This justifies the need of
a filtering step before the analysis. To this end, we used a 3-D grayscale
closing by reconstruction filter with a spherical structuring element of ra-
dius one voxel [56]. The 2-D version of this filter was reported to yield
positive results in the previous work by Shi et al. [43]. This filter increases
the contrast of the darkest regions of the image while preserving the shape
of the structures. The radius was selected because it represented a good
trade-off between noise removal and contour information preservation.
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2.6.2.2 Airway tree segmentation and reconstruction

The adopted framework has been explained in detail in previous works
by Schlathoelter et al. and Bülow et al. [44, 45]. A block diagram summa-
rizing the main execution flow is shown in Figure 2.4. A key concept is the
segment. A segment is a set of contiguous points that has been accepted as
valid by a growing wavefront without bifurcations. The growing wavefront
is initialized in one seed point, and grows into neighbouring voxels that
fulfill certain voxel acceptance criteria. After every wavefront propagation
step, several conditions are checked to prevent leaks. When the wavefront
bifurcates, new segments are initialized and added to the rest of pending
segments in a segment queue. This queue is a first-in, first-out (FIFO) list,
thus ensuring that branches from upper airways are processed first. When
a segment is finished, its correctness is checked in a segment evaluation
step.

It was necessary to develop new voxel acceptance, propagation eval-
uation and segment evaluation criteria, due to the particularities of our
segmentation task. Details about these new features are given in this sub-
section.

2.6.2.2.1 Initialization

The initial wavefront consists of a seed point located inside the trachea
detected on the first transversal slice. To find the trachea, the first im-
age slice is automatically thresholded using the method described by Hu et
al. [33]. This threshold value separates air from tissue and it is iteratively
computed for each image. Once this separation is done, two main objects
appear in the thresholded binary image: the trachea and the background
around the animal body. Other smaller objects can appear, for instance
between the animal body and the bed. To select the trachea, the follow-
ing process is used. In a first step, very small objects -smaller than 100
pixels- are removed. Next, very large objects -larger than 5000 pixels- are
discarded. This step removes the background. The last step consists in
computing the center of mass of the remaining objects. The most centered
object is considered to be the trachea. The center of mass of the trachea
in the first slice region is set as initial seed for the wavefront propagation.
The Insight Toolkit [41] was used to implement the initialization and also
the rest of the algorithm.
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Figure 2.4: Block diagram of general tree segmentation and recon-

struction framework.

2.6.2.2.2 Wavefront propagation

To propagate the wavefront, we use a 3-D Fast Marching level set al-
gorithm. In particular, our implementation is based on the algorithm de-
scribed by Deschamps et al. [57] and we refer to their work for details. An
important aspect is that, since the intensity threshold is variable -as it will
be detailed in subsection 2.6.2.2.3- it is not guaranteed that the potential
will be monotonically increasing as the wavefront propagates. Since the
Fast Marching algorithm assumes this, the wavefront stops as soon as a
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negative growth of the potential is detected. An important advantage of a
Fast Marching front compared to region growing is the dome-shape of the
wavefront, which is very helpful for correctly detecting bifurcations.

Bifurcation detection is a critical aspect of wavefront propagation. To
detect a bifurcation, the connectivity of the wavefront is checked after ev-
ery propagation step. If the wavefront is divided in two or more parts, a
bifurcation exists. Sensitivity to detect a bifurcation depends on the con-
nectivity size parameter. The connectivity size defines how many voxels
around a given voxels are considered as neighbors. A neighbor connec-
tivity of radius one means that only the 26 voxels around a given voxel
are considered neighbors. If this size is increased to two, all voxels in the
5×5×5 cube around a given voxel will be considered neighbors. Therefore,
a low connectivity is very sensitive to bifurcations and will detect them im-
mediately, although it is also sensitive to noise and will probably detect
non-existent bifurcations caused by noise. To combine the advantages of
high and low connectivities, we have implemented a variable connectiv-
ity scheme. Namely, a high connectivity size is used by default -cubical
neighborhood of radius three- and when rapid growth of the wavefront in
succesive steps is detected, the parameter is reduced to radius one, in order
to detect the bifurcation more rapidly. The connectivity returns to the
default value of three once the segment stops growing.

2.6.2.2.3 Voxel acceptance criteria

The viscosity function of the Fast Marching algorithm determines whether
a voxel is to be added to the current segment or not. If a certain voxel ful-
fills the acceptance criteria, its viscosity value is set to one. Otherwise it is
set to infinity. There are two criteria that a voxel must fulfill before being
accepted: the similar intensity condition and the low gradient condition.
The similar intensity condition is given by a variable upper threshold, which
accounts for the large variability in image intensities observable in micro-
CT images. In other words, the low SNR and the strong artifacts (beam
hardening, circular artifacts) cause the airway branches to have different
intensities depending on their location. Therefore, it becomes necessary to
have a threshold that varies within the same image. We define the variable
threshold considering the intensity distribution of the current segment as
well as the intensities of its ancestor segments:

Ti = µl + α ·max(σp, σgp), (2.6)
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where µl is the mean intensity of the current segment (l stands for local),
α is a tunable parameter, and σp and σgp are the standard deviations of
the intensity values of the voxels in the parent and grandparent segments
of the current one, respectively. The largest of both is taken, to avoid very
small σ-s in case of a short or very homogeneous segment, which would
lead to a too low threshold Ti. Intensities are averaged in a 3 × 3 × 3
neighborhood around the voxel of interest, to minimize the effect of noise.
In our experience with different imaging protocols, α values between 1.2
and 2 work generally well. If the image is very noisy α must be rather
small (near 1.2), while less noisy images require an α value closer to 2.

For the low gradient condition, the three-dimensional Sobel gradient is
computed and voxels are rejected if their Sobel gradient value exceeds a
given threshold Ts. This way segmentation leakage from the airways and
into the lungs is avoided.

2.6.2.2.4 Propagation evaluation

There are two criteria to accept or reject a propagation step. The first
one controls the current size of the wavefront, and prevents it from growing
in excess. This is implemented by not allowing wavefronts to be larger
than the wavefronts in their parent segments. To account for noise and
anatomical irregularities, the propagation stops if

r > γ · min(ranc) +mean(rancmin−r)
2

, (2.7)

where r is the current wavefront radius, γ is a tunable parameter that allows
certain growth, min(ranc) is the minimum radius among all ancestors of the
current segment and mean(rancmin−r) is the mean value of wavefront radius
of the ancestor containing the minimum radius. The latter is averaged
with the smallest radius because the smallest radius alone resulted in a
too noisy measure, which limited propagation in some cases. The value
of γ indicates the tolerance to the growth of the airway diameter as the
wavefront propagates inside the tree. A large value allows segments to
be wider than their ancestors, but can also lead to accept leaks as correct
airways. Given that mouse airway segments can be considerably wider than
their ancestors - especially the right mainstem bronchus can be wider than
the trachea-, values between 1.5 and 2 should be considered.
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The second propagation evaluation rule refers to the number of neighbor
segments. This number is limited to two, because the number of neighbors
is computed before the current segment has stopped its propagation and
its children segments have been initialized. That is, only a parent and a
brother segment can be neighbors. A number greater than two generally
indicates that several small segments are growing next to each other, which
is a common indicator of leakage.

2.6.2.2.5 Segment evaluation

Three different parameters are considered to accept or reject a fully
grown segment. A segment is considered to be fully grown when a bifurca-
tion of the wavefront is detected or it can not grow further.

To evaluate if the wavefront has propagated uniformly, the growth rate
(GR) is measured, which is given by:

GR =
1
N

N∑

i=1

|Wi|
|Wi−1| , (2.8)

where N is the number of propagation steps in the segment and |Wi| is
the number of voxels of the wavefront at propagation step i. Thus, a GR
larger than one indicates that the segment has grown during propagation.
A threshold TGR slightly larger than one allows a slight growth of the
segment.

Then the discrete compactness (C) is computed, as defined by Bribiesca
et al. [58] for a solid volume of n voxels in 3-D:

C =
n−A/6
n− ( 3

√
n)2

, (2.9)

where A is the area of the enclosing surface of the segment, and corresponds
to the sum of the areas of the external plane polygons of the voxels which
form the visible faces of the solid. Correct airways tend to be more compact
than leakages. A threshold TC is defined to separate correct and incorrect
segments.

Finally, the difference between the sizes of the last and the first wave-
front is also computed and compared to a threshold TW , because a large
difference is a typical sign of leakage.
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These three parameters are combined through voting, as detailed in
Algorithm 1. Two of the three parameters must be above the thresholds in
order to reject a segment.

Algorithm 1 Segment evaluation
votes⇐ 0
if GR > TGR then
votes+ +

end if
if C < TC then
votes+ +

end if
if |Wlast| − |Wfirst| > TW then
votes+ +

end if
if votes > 1 then

reject segment
else

accept segment
end if

2.6.3 EXPERIMENTS

2.6.3.1 Image dataset

We tested our algorithm on three different groups of 10 A/J male mice
each (Harlan UK Limited, Oxon, UK), scanned at 12 weeks of age and
with a mean weight of 21.1 gr (variance 1.45). The three groups received
a different treatment 4 weeks before the scan. The groups were control,
emphysema and chronic inflammation (see section 2.1).

Animals were imaged following the protocol detailed in section 2.2.

2.6.3.2 Airway segmentation evaluation measures

Automatic airway segmentations were compared to reference manual
segmentations. Only every fifth transversal slice was considered for evalua-
tion, due to the long time required to manually segmentat the images. The
Amira software (Visage Imaging, Fürth, Germany) was used to perform
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the manual segmentations. To this end, a seed was placed inside every
visible airway and a 2-D region growing algorithm was applied to segment
the airway. The upper threshold for region growing was modified to ad-
just to local airway characteristics in each case. Whenever this approach
failed (mainly due to leakage into the parenchyma) the airways were delin-
eated manually. The entire manual delineation process took approximately
90 minutes per scan. To assess inter-observer variability, a second expert
segmented 5 scans from each of the three groups.

To assess the accuracy of our segmentation method, we computed the
True Positive Volume Fraction (TPVF) and the False Positive Volume Frac-
tion (FPVF) as defined in [43]:

TPVF =
|SA ∩ SM |
|SM | , FPVF =

|SA − SM |
|SM | , (2.10)

where SA is the automatic segmentation, SM is the manual segmentation,
|SA∩SM | represents the cardinality of the intersection between the two seg-
mentations and |SA−SM | represents the number of pixels that were marked
as airway by the automatic algorithm but not by the manual segmentation.

2.6.3.3 Test parameter sets

Our airway segmentation algorithm has a number of parameters that
must be set. For this purpose, we used two extra images from each group,
which were excluded from the validation study. The tunable parameters
can be divided in two different groups: wavefront propagation and segment
evaluation. The wavefront propagation parameters are α (equation (2.6)),
Ts and γ (equation (2.7)). The parameter α, (see subsection 2.6.2.2.2)
acts on the threshold of the propagation: a high α value leads to a high
threshold. Ts is the threshold for the Sobel gradient and, similarly, the
higher the threshold the less restrictive the propagation. The last parameter
related to propagation is γ (equation (2.7)). A smaller value implies more
restrictions to radius growth in subsequent wavefronts. Three thresholds
(TGR, TC and TW ) comprise the segment evaluation parameters. A more
lenient set generally leads to more accepted segments, with the risk of more
invalid segments being accepted.

We used a simple methodology to set the tunable parameters. The
wavefront propagation parameters were selected first, by visually observing
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Table 2.3: Two test parameter sets, with different values for the

tunable parameters of the airway segmentation and re-

construction algorithm. Values in Set 1 were selected

using 2 images of the control group and 2 images of the

silica group. 2 images of the elastase group were used

for Set 2. The symbol |S| indicates the number of voxels

of the evaluated segment.

Set 1 Set 2

α 1.4 1.3
Ts none 4250
γ 2.5 2.5
TGR 1.2 1.1
TC 0.7 5 · 10−5 · |S|
TWd none 3.5 · 10−2 · |S|

the results in two images of each group. These parameters were set so that
all the main bronchi and most of the small bronchi were segmented, without
excessive leakage into the parenchyma. To select TGR, TC and TW , the
growth rate, compactness and difference between last and first wavefront
parameters of a few correct and incorrect segments were observed, and
thresholds that best separated those two groups were chosen.

Due to the very different image characteristics of the three groups, two
different parameter sets resulted from the tuning process. The first set,
aimed at control and silica-treated mice, has more lenient rules for both
propagation and segment evaluation than the second set. The reason is that
airway walls tend to be worse defined in elastase-treated animals and this
results in a much higher leakage probability. Precise values for parameters
are given in Table 2.3.

2.6.3.4 Robustness to image noise

To test how the algorithm behaves on images of different characteristics,
we scanned three A/J mice with three different X-ray doses. Two mice were
11 months old and the third one was 16 months old. The imaging protocol
was in all cases virtually identical to the one described in subsection 3.2.
The only difference was the tube voltage, which was set to 80 kVp for the
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(a) Control (b) Emphysema (c) Inflammation

Figure 2.5: Sample coronal micro-CT slices of control, emphyse-

matous and inflammed mice lungs. Differences in lung

texture and shape are clearly visible.

normal dose images, to 65 kVp for the low dose images and to 40 kVp for
the very low dose images. The standard deviation of the water volume in
a water phantom used to estimate the noise was 78.32 HU, 86.64 HU and
94.42 HU respectively.

2.6.4 RESULTS

Micro-CT sample images from the three groups are shown in Figure
2.5. Compared to the control group, emphysematous mice show consider-
ably darker lungs, due to the loss of parenchymal tissue [22]. This, together
with a stronger tendency to movement-related artifacts, leads to poor in-
tensity contrast between airways and parenchyma. Airway diameter is also
generally smaller and lungs appear more inflated. In contrast, the silica
group shows large inflammed central areas which display with high inten-
sity in the image. Some lung lobes and airways leading to them can appear
collapsed.

Table 2.4 shows the segmentation accuracy results for the three different
groups using the two different parameter sets presented in Table 2.3. As
expected, the first parameter set yields good results in the control and
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Table 2.4: Results of the automatic segmentation on the three dif-

ferent image datasets. Mean TPVF and FPVF are in-

dicated, together with the standard deviation in paren-

theses. The parameter set for each group is marked in

bold.

Dataset Parameter Set TPVF (%) FPVF (%)

Control 1 89.44 (3.26) 7.97 (5.53)
2 73.14 (22.88) 2.82 (2.18)

Elastase 1 53.28 (11.41) 53.76 (31.69)
2 81.20 (3.58) 12.99 (8.17)

Silica 1 87.86 (3.84) 6.52 (3.01)
2 72.04 (21.97) 2.98 (2.10)

Table 2.5: Inter-observer variability. Mean TPVF and FPVF of the

second observer’s segmentations are indicated, together

with the standard deviation in parentheses.

Dataset TPVF (%) FPVF (%)

Control 96.06 (1.41) 8.81 (1.07)
Elastase 95.59 (0.86) 14.3 (1.82)
Silica 90.16 (4.36) 6.76 (3.51)

silica groups, while a more restrictive set is required for the elastase-treated
emphysema group.

The result of manual segmentations depends up to a certain point on
the subjective criteria used by the manual segmenter. These effects can be
partially quantified by looking at inter-observer variability. In this case, it
was estimated by comparing the manual segmentations of two independent
observers on 5 randomly chosen images of each group. The first observer’s
segmentations were taken as reference to compute the TPVF and FPVF
of the second observer. Results are shown in Table 2.5, where relatively
high values of TPVF and FPVF can be observed. Visual comparison of the
two observers’ segmentations revealed that the second observer drew larger
contours around the airway lumens, which explains the high FPVF values.
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Figure 2.6: 3-D rendering of a segmentation of a control mouse air-

way. The black arrow points at an undetected leakage

in the upper right side.

Most oversegmentation errors of our automatic method occured due to
late detection of leaks, as shown in the 3-D rendering of Figure 2.6. A more
restrictive set of segment acceptance rules would reduce these kind of leaks,
but it would also affect the TPVF, as already seen in Table 2.4.

Computation time varies from image to image depending on particular
image characteristics (airway wall thickness, movement artifact, etc.) and
lies between one and three minutes, with non-optimized C++ code on an
Intel Xeon 3.20 GHz processor.

Our algorithm not only segments the airway tree, but also provides
a reconstruction of the bronchial tree, by means of a list of segments hi-
erarchically related. The length, volume and mean wavefront size of each
segment are also given. The mean wavefront size can be seen as a surrogate
of airway area, since the front propagates in normal direction to the airway
lumen. Figure 2.7 shows three renderings of images of the three groups,
with main segments displayed in different gray-levels. It must be noted
that segments do not necessarily correspond to airway branches, because
they only have algorithmic meaning, as explained in subsection 2.6.2.2.
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Table 2.6: Mean radius of the right and left mainstem bronchus

(MB) in µm. (*) and (**) indicate p < 0.05 and p < 0.01
when compared to the control group using the Wilcoxon

or Mann-Whitney U test.

Right MB Left MB

Control 760.38 529.92
Elastase 613.64** 475.18*
Silica 636.64** 449.88*

To gain a better understanding of the effect of the diseases on the lung
physiology, we first compared the radii of the two mainstem bronchi of the
three different mice groups. To have a more accurate measurement and
to have segments that correspond to real bronchi, the algorithm was run
again on the already segmented trees. Table 2.6 shows the mean radii of the
three different groups. It can be seen that, as expected, the right mainstem
bronchus is larger than the left, and that the elastase and silica groups
have smaller radii than the control group. The difference was statistically
significant according to the Wilcoxon or Mann-Whitney U test [59].

Regarding the constant phase model parameters, Raw, I and G did
not show any difference between the control and the diseased mice. H was
slightly lower in silica (22.26±2.94 cmH2O/ml) compared to control mice
(24.84±3.31 cmH2O/ml), and significantly lower in elastase-treated mice
(12.59±1.42 cmH2O/ml). If mean mainstem bronchi radii and H are plot-
ted jointly, clear differences between the 3 groups can be seen (see Figure
2.8). Silicotic mice have smaller bronchi radii than controls, and virtually
the same tissue elastance. On the other hand, emphysematous mice also
show smaller bronchi radii, but a significantly lower tissue elastance. This
suggests that the causes of mainstem bronchi shrinking are different. In the
inflammation case, the inflammation around the main airways is the most
probable cause of radius reduction. In contrast, reduced airway diameter
in emphysematous mice is likely to be due to the increased compliance of
their lung tissue, revealed by the low H value.

Table 2.7 shows the mean TPVF and FPVF values for the images ac-
quired at different X-ray doses (see subsection 2.6.3.4). It can be seen that,
as expected, decreasing dose leads to worse segmentations. However, the
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(a) Control (b) Emphysema (c) Inflammation

Figure 2.7: Sample renderings of segmented airway trees of the

three groups. In emphysema, less small branches are

segmented due to the lack of contrast between airway

and parenchyma in those areas, resulting in a less de-

tailed segmentation compared to the other groups. A

similar effect took place in manual segmentations. To

allow a clear distinction between the main segments in

the renderings, only main segments are shown in differ-

ent gray levels, while smaller branches are all displayed

in white.

Table 2.7: Effect of decreasing dose on the automatic segmentation.

Mean TPVF and FPVF of the automatic segmentations

with different levels of X-ray dose, with the standard

deviation in parentheses.

Dose 69.1 cGy Dose 48.3 cGy Dose 30.2 cGy

TPVF (%) 86.59 (6.02) 82.39 (11.01) 84.15 (2.88)
FPVF (%) 9.19 (2.84) 15.29 (8.61) 16.94 (7.88)

decrease in accuracy is not dramatic and, depending on the application,
the algorithm might be of use even with very low dose images.
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Figure 2.8: Mean radius of left and right mainstem bronchi plotted

along with tissue elastance (H).
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2.6.5 DISCUSSION AND CONCLUSION

Accurately segmenting mice airways in in vivo micro-CT images is a
challenging task. On the one hand, the imaging technology imposes certain
image quality constraints, as mentioned above (see subsection 2.6.1). On
the other hand, the position of lung structures can vary during the scan-
ning process, which takes several minutes. Despite artificial ventilation,
iso-pressure apneae and deep anesthesia, the way in which lungs respond
to repeated mechanical ventilation does not remain constant during the
acquisition process. We observed that this was especially significant in em-
physematous specimens, which lead to a generally lower image quality due
to movement artifacts.

To overcome the difficulty imposed by the low SNR and movement
artifacts, a robust segmentation algorithm is required. We built on a previ-
ously published framework for tubular structure segmentation and recon-
struction. Previous works have centered on the framework itself and its
applications [44–46]. The framework provides with generic concepts for the
segmentation and reconstruction of tree-like structures, such as the propa-
gating wavefront and the segment definition. Here, we have used these basic
concepts of the framework and we have devised new features in its different
components, such as the variable threshold and the voting segment evalu-
ation, to adapt to the particularities of thoracic micro-CT images. These
extra components have certain tunable parameters that must be fixed. In
our experience, it is useful to divide these parameters in wavefront propaga-
tion and segment evaluation parameters to better understand their global
effect. To fine tune the parameters, a few images of the dataset should
be used as a guide, until an acceptable trade-off between sensitivity and
specificity is achieved.

We tested our algorithm on normal mice and on two mouse models of
lung disease. The three groups showed very different image characteristics.
Particularly, the elastase group displayed very low voxel intensity in the
lungs, which made both manual and automatic segmentations more diffi-
cult. Moreover, movement artifacts were stronger in this group. Therefore,
we used a different parameter set for this image dataset. The main char-
acteristic of this parameter set was that it was more restrictive in both
wavefront propagation and segment acceptance.
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The validation was performed by comparing automatic segmentations
with manual ones. In an attempt to quantify the existing human observer
errors, a second expert segmented 50% of the evaluated images. Results
show that a considerable variability exists between the two observers, sug-
gesting the difficulty of precisely delineating the airways.

The automated image analysis tool that we have developed may be
of use for a variety of studies related to lung physiology and pathology.
A number of potential applications of murine airway segmentation have
been outlined in the introductory section. This can be used to quantify
both emphysema and inflammation, in the context of chronic-inflammation
related lung carcinogenesis (see chapter 3 in this thesis). An interesting
topic for future work would be the measurement of airways walls, since
they are also affected in COPD.

We showed that differences in airway diameter among different groups
can be detected with this segmentation method. However, the question of
how early in a disease process changes can be quantified has not been ad-
dressed. A different dataset showing disease progression would be required.
The factors that will affect the technique’s sensitivity include image reso-
lution, signal to noise ratio and the presence of motion artifacts in the
images.

We observed that, despite the segment evaluation rules, some leaks re-
mained undetected. Depending on the application, an interactive tool for
incorrect segment removal might be of use. The relatively large standard
deviations in the TPVF and FPVF values reveal that the algorithm per-
forms better in some images than in others. This could be improved by
modifying the tunable parameters separately for each image, which should
be done automatically if a fully automatic algorithm is desired. Variables
such as the number of segmented branches or the intensity values within
and outside the already segmented airways could be used for an iterative
tuning process. Another limitation of the algorithm that it is based on a
propagating wavefront. Any interruption in the growth of an airway branch
due to noise or disease-related airway obstruction stops the propagation.
Additional features would be required to detect and avoid these interrup-
tions.

Segment hierarchical information is given together with the segmen-
tation. Thus, the topology of the tree can be easily traced, because the
parent and children of each branch are identified. We believe that this is a
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major advantage of the technique when compared to other algorithms that
simply segment the tree, for two reasons. First, topological information can
be used to help the segmentation, for instance by comparing the current
segment with its ancestors’ radius or by checking the number of neighbor
segments. Second, it eliminates the need for an extra skeletonization step.
Moreover, our algorithm provides with measurements of the length, volume
and mean wavefront size of each airway (which is a surrogate of the area).
We showed an application of this by comparing the mean radius of the left
and right mainstem bronchi among the control, emphysema and inflamma-
tion groups. Combining data from the constant phase model parameters
and the airway measurements, we were able to detect different patterns in
the three groups studied. These differences could not be clearly seen when
only input impedance parameters or mainstem bronchi measurements were
analyzed.

In conclusion, we have presented a fast and robust algorithm for murine
airway segmentation and reconstruction. By adjusting the algorithm pa-
rameters to the particular characteristics of different models of lung disease,
the airways were segmented with high sensitivity and specificity values. We
have shown that measurements derived from these segmentations can be
combined with pulmonary input impedance measurements to gain more
insight into the changes in normal lung physiology caused by different dis-
eases.
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2.7 MULTI-ATLAS SEGMENTATION

2.7.1 PRINCIPLES AND PREVIOUS WORK

The principles of atlas-based segmentation have been successfully ap-
plied to a wide variety of image modalities and segmentation tasks [34,60–
63]. This approach has a major advantage when compared to other seg-
mentation algorithms, such as level sets [64] or watersheds [65]. Namely,
it allows introducing a-priori knowledge about the shape and the distribu-
tion of the segmented structures in a simple way, by using a pre-segmented
image as a reference that guides the segmentation.

In principle, a single atlas image can be used for segmenting new im-
ages. Indeed, in section 2.5.3 of this thesis, we used a single atlas in one
of the steps of a multi-step segmentation method for lungs with severe in-
flammation. However, it has been recently shown that using multiple atlas
images can yield better results [38, 66–68]. Information from several refer-
ence images can be combined into an average atlas [69,70] or, if probability
values for each particular location are included, into a so-called probabilis-
tic atlas [34, 60, 62, 67]. In doing so, these atlases try to comprise all the
variability of a given population. However, it has been recently suggested
that, to gain full advantage of having multiple atlas images at hand, they
must be registered to the target image independently and the resulting
segmentations combined [38].

An analogy can be made between the combination of segmentations
derived independently from multiple atlas images and the combination of
multiple independent classifiers in a generic classification problem [71]. In
this analogy, each transformed atlas image can be regarded as a classifier,
which assigns a label value to each voxel of the target image. The training
process can be assimilated to the registration between the atlas image and
the target image. It has been widely proven in the pattern recognition
field that combining multiple classifiers can yield more robust and accu-
rate results than using single classifiers [72, 73], this fact being the main
motivation for multi-atlas approaches.

The most widely used combination strategy in the literature is major-
ity voting, also named majority rule, decision fusion or label voting. This
approach weights each candidate segmentation equally and assigns to each
voxel the label that most segmentations agree on [38,68]. Another popular
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approach is called Simultaneous Truth And Performance Level Estima-
tion (STAPLE), which uses an expectation-maximization (EM) approach
to reach the best possible final segmentation [74, 75]. STAPLE estimates
the performance of each classifier iteratively and weights it accordingly. The
two different methods presented in [75] are extensions of the one in [74] for
images with multiple segmented structures. Shape-based averaging rep-
resents another way of combining segmentations [76] which is based on
Euclidean distance maps computed for all structures in each candidate
segmentation. The method was shown to keep structure regularity and
contiguity better than majority voting. Another possibility is atlas selec-
tion: instead of combining segmentations, methods can be devised to select
atlases a-priori -before registration- or a-posteriori- after registration [38].
In [77], a number of atlases is selected for combination based on mutual
information [78]. In [79], atlas selection is done on a structure basis for
the segmentation of brain MR images. The atlas image with highest local
mutual information in each structure is selected.

Recent works have contributed significantly to the field of atlas-based
medical image segmentation, but we believe that some aspects still remain
unexplored. Namely, we think that in order to achieve the highest possi-
ble overall segmentation accuracy, a better understanding of the different
combination strategies is required. In this paper, we propose a scheme that
divides the combination strategies in two major groups: Global strategies,
which estimate segmentation accuracy with a single value for the whole
image, and local strategies, which evaluate the segmentations at each voxel
and perform weighted voting accordingly.

We test several global and local combination methods on digital phan-
toms and on publicly available MR images of human brains, to conclude
that no combination algorithm is better than the others consistently for all
images and regions within the images. We study in which kind of struc-
tures local strategies do better than global methods, and conclude that the
optimum solution is approached by selecting the combination method ac-
cording to the gray level contrast between each particular region and its
neighbors.

The outline of this section is the following. In the methods subsection,
different segmentation combination strategies are examined. First, global
weighting approaches are listed. Then, we show their main limitations
and introduce the local combination strategies. In the third and fourth
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subsections, results from experiments on phantom images and on brain MR
data with multiple segmented structures are shown, comparing different
combination strategies. This section on multi-atlas image segmentation
ends with a discussion and a final conclusion.

2.7.2 COMBINATION METHODS

2.7.2.1 Notation

For simplicity and uniformity, we adopt the basic notation used in [75].
Consider a segmentation of an image with potentially L different classes
that belong to a label set Λ = {1, 2, ..., L}. A 3D atlas image Ak is a map-
ping from coordinates to labels Ak : R3 → Λ. An atlas-based classifier is
defined by a set of atlas images, Ak, k = 1, ...,K and coordinate transfor-
mations that map coordinates from the target image to the atlas images
FT→Ak

: R3 → R3, k = 1, ...,K. Using a given transformation FT→Ak
to

transform the segmentation of the atlas image As
k, an estimated segmenta-

tion of the target image T̂ s
k is obtained:

T̂ s
k = As

k ◦ FT→Ak
(2.11)

Each T̂ s
k , k = 1, ...,K is a candidate segmentation which must be combined

into a final estimated segmentation T̂ s. Following [75], we now regard the
segmentation task as the classification ofN unordered samples. Thus, when
candidate k assigns sample x to class i, we write the output of the classifier
as

ek(x) = i. (2.12)

Note that in this context the spatial location of the voxels is irrelevant. The
set of all samples that belong to class i is denoted by Ci. The outputs from
L independent classifiers can be combined to generate a single ensemble
response, E(x), which is the output of the combination strategy. The aim
when building an ensemble classifier is to achieve a higher probability of
correctly classifying the voxels of the image than that obtained by using
an individual classifier. The combined classifier output E(x) for a sample
x should be the class that maximizes the probability, given all classifier
decisions e1(x) through eK(x) and some arbitrary classifier performance
model P [75]

E(x) = argmax
i

P (x ∈ Ci|e1(x), ..., eK(x),P). (2.13)
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2.7.2.2 Global combination strategies

This group of combination strategies assigns a global weight wk to each
segmentation of the target image T̂ s

k . The weight is calculated by a global
evaluation of segmentation accuracy, and its value is used to ponderate the
whole target image segmentation derived from the atlas image. Note that
although the weight is global for each candidate segmentation, decisions on
the combination of the segmentations are taken voxel by voxel.

2.7.2.2.1 Majority Voting

This is the most simple combination method. It is generally used when
there is no a-priori knowledge about the accuracy of each classifier. It
assigns to each voxel the label that most segmentations agree on. Thus,
the ensemble response EMV (x) of majority voting can be expressed as

EMV (x) = max[f1(x), ..., fL(x)] (2.14)

where fi(x) =
∑K

k=1wk,i(x) for i = 1, ..., L and

wk,i(x) =
{

1, if i = ek(x)
0, otherwise.

(2.15)

This technique labels a voxel correctly if a majority among the K seg-
mentations agree on the correct value.

2.7.2.2.2 Weighted Voting

The expression for majority voting, given by (2.14), can be generalized
to assign arbitrary weights to each candidate segmentation. Weighted vot-
ing is commonly used in pattern recognition, as it allows the maximization
of classification accuracy when the accuracy of individual the classifiers is
known [73]. However, these results can not be directly translated into the
multi-atlas segmentation field, because segmentation accuracies can not be
known a-priori. Thus, a different approach must be adopted. The ensem-
ble response EWV (x) would respond to equation (2.14), but weights would
have to be set differently. One option is to set them as:
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wk,i(x) =
{
mp, if i = ek(x)
0, otherwise

(2.16)

where m is a similarity measure between the registered atlas image and
the target image and p is the associated gain. If the similarity measure
is not sensitive enough, the differences between the weights might not be
relevant. In those cases, it might be necessary to increase the value of p.

The selection of a similarity measure m is not straightforward. For in-
stance, in [80], we proposed using the mutual information [78] between
the target image and the registered atlas image as weight, i.e., mp =
[I(As

i ◦ FT→Ai , T )]p. The rationale behind that choice was that high mu-
tual information values normally imply a better registration, and using
this information for the weighting should yield better results. It must be
noted that, generally, no strong correlation between mutual information (or
any other image similarity measure) and registration accuracy exists [81].
Nevertheless, our tests on MR images of mouse brains resulted in higher
segmented region overlap and smaller distances between segmented surfaces
than majority voting [80]. It must also be noted that, although statistically
significant, differences were small.

More generally, in their work [82], Roche et al. study the assumptions
that are implicitly made when different similarity measures are used for
image registration. They show that the mean square distance can be used
when no relative intensity difference between images is expected, while vari-
ants of the correlation coefficient should be preferred in the case of an affine
relationship between intensities. Finally, if only a statistical relationship
can be assumed, mutual information is the best option. These three simi-
larity measures are tested and compared in our experiments, since they are
likely to be good predictors of accuracy in registration.

2.7.2.3 Limitation of global combination strategies

Global fusion strategies have shown their potential and perform gener-
ally better than single atlas approaches. Nevertheless, they have a major
limiting drawback. Namely, weights or performance estimates are the same
for all the voxels of the segmentation. We will show how this can nega-
tively affect overall performance using a simple example. Let us have a
star-shaped target image and two different atlas images, numbered 1 and
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Figure 2.9: Example that shows the limitations of global candidate

segmentation combination strategies. Atlas images 1
and 2 have been registered to the target image. Image 1
is generally better registered, except for the upper arm

of the star. However, global strategies can not evaluate

registration performance locally. Therefore, they can

not take advantage of this fact to obtain a better fused

segmentation.

2, as shown in Fig. 2.9. After registration, the first atlas image fits the
target image almost perfectly in all parts, except for one of the arms (upper
arm). In contrast, the second atlas image fits the target image correctly in
that arm, while registration fails in the rest of the image.

As weights are assigned globally, with these approaches it is impossible
to take advantage of the fact that registration between atlas image two and
the target image succeeded in a particular point, even if it was inaccurate in
the rest of the image. A combination strategy that would account for local
registration failures could therefore achieve higher segmentation accuracies.
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2.7.2.4 Local combination strategies

2.7.2.4.1 Generalized Local Weighted Voting

To overcome the limitation shown in the previous subsection, a logical
solution is to adapt weights locally. Instead of assigning the weight to all
the voxels of the segmentation, each voxel might have a different weight
value.

In this context, we propose a local segmentation fusion method that we
denominate Generalized Local Weighted Voting. The general expression for
the weights is given by

wk,i(x) =
{

[m(s, r)]p, if i = ek(x)
0, otherwise

(2.17)

where m(s, r) can be any local similarity measure that assigns a distance
between two regions of the registered atlas image and the target image.
The distance is measured over a neighborhood region of shape s, radius r
with a gain p. The neighborhood shape can also be arbitrary, for example
cubical or spherical.

As pointed out in subsection 2.7.2.2.2, it must be noted that similar-
ity measures do not correlate perfectly with registration accuracy. For
instance, high information content areas, such as edges or high contrast ar-
eas, are likely to result in regions with high mutual information, regardless
of the registration accuracy.

Assigning a different weight to each voxel significantly increases the
number of degrees of freedom of the problem. This arises the need for a
regularization method to ensure a smooth variation of the weights, ignoring
the image noise. When local weights are computed, an intrinsic regular-
ization occurs thanks to the voxel-by-voxel shifting of the neighborhood
region. For instance, assuming a 2D image and a square region of 10× 10
pixels, two neighboring pixels share 180 out of the 200 pixels (100 from
the target image, 100 from the registered atlas image) used to compute the
local weight. Sharing this large percentage of voxels between neighboring
pixels causes a smooth variation of the weights along the image, regard-
less of the particular similarity measure employed in each case. Increasing
the radius of the local neighborhood further ensures the smoothness of the
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weights, but such computed weights are less local and this generally results
in worse perfomance. More detailed effects of increasing the neighborhood
radius r are explored in sections 2.7.3 and 2.7.4.

On the other hand, the computational burden can be reduced by lim-
iting the number of voxels in which segmentations must be evaluated. If,
for a given voxel, all candidate segmentations agree on a certain label, this
label is directly assigned without computing the weights. This approach
was adopted in all experiments shown in this paper.

2.7.2.4.2 STAPLE

This fusion strategy weights each voxel according to the estimated per-
formance of the disputing labels at that point, using an iterative expectation-
maximization algorithm. Three different implementations of the method
exist. The binary classification method was first proposed by Warfield et
al. [74], and Rohlfing et al. presented two multilabel generalizations of
the method [75]. In the latter work, STAPLE was shown to outperform
majority voting on confocal microscopy images of bee brains.

2.7.3 EXPERIMENTS ON DIGITAL PHANTOMS

2.7.3.1 Data

To study the performance of different atlas combination strategies, we
built an artificial atlas of 18 images. A manually delineated elongated shape
was copied 7 times on a 2D image of size 1000× 600. On this first image,
random elastic deformations were applied using an online available ImageJ
plugin 1. Each transformation was calculated by deforming a B-spline grid
on the image, with a random noise factor. The grid spacing was one pixel.
We generated 18 different mask images, each of them containing 7 regions.
From each of these mask images, an atlas image was generated in three
steps. First, image intensities were modified, so that there were regions that
showed different contrast levels with the background. Second, a very slight
Gaussian smoothing with σ = 1 was applied. Third, image intensities were
modified to follow a Rician distribution, as MRI magnitude images do [83].
One of the phantom atlas images and the corresponding label mask can be
seen in Fig. 2.10. The label mask assigns the label 0 to the background,

1http://biocomp.cnb.uam.es/∼iarganda/SplineDeformationGenerator/
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(a) Phantom mask (b) Phantom

Figure 2.10: Sample label mask and corresponding phantom with

modified intensities and added noise.

and labels with increasing ordinal values to the regions from left to right,
i.e., the leftmost region has label 1 and the rightmost label 7. In the rest
of the paper, we assimilate the label to the name of the region. One of
the 18 images was used to set the parameters of the different segmentation
algorithms, while the other 17 were used for algorithm evaluation.

2.7.3.2 Registration

The registrations required for the multi-atlas segmentation were done in
two steps. First, an affine transform was used to account for translations,
rotations, anisotropic scaling and shearing. Then, an elastic B-spline reg-
istration was performed, using an isotropic grid spacing of 8.0 pixels [84].
Mutual information was maximized in both cases [78]. The reason for using
a much less dense grid than that employed for the deformation generation
was to obtain non-ideal registrations, as occurs in real complex 3D images.
Elastix, an open-source software for elastic image registration was used
for all registrations [85]. To accelerate computation time, registration was
done in a multi-resolution fashion, with three resolution levels. A stochastic
gradient descent optimizer was used, because it provides a good trade-off
between precision and computation time [39].
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2.7.3.3 Evaluation measures

The Similarity Index (SI) is the most widely used measure to evaluate
the performance of a segmentation algorithm. Its definition is given in
equation . As pointed out before, SI has value 1 when there is a perfect
match between labels and 0 when there is no overlap.

Apart from SI, the mean average surface distance (MASD) between
the segmented structures was also evaluated [34, 86]. The MASD is the
symmetric distance between the surfaces of the respective segmentations:

MASD(Sa, Sb) =
1
2
[d(Sa, Sb) + d(Sb, Sa)], (2.18)

where d(Sa, Sb) is the mean distance from the points of segmentation Sa to
segmentation Sb.

For both measures, mask images were considered the ground truth.

2.7.3.4 Combination algorithms

The combination algorithms were implemented based on the Insight
Toolkit (ITK) [41], an online available toolkit for image processing. The
gain (p) and region size (r) parameters were set independently for each
combination method, using a randomly chosen single image from the set.
For the global voting methods, the p between 1 and 8 that maximized
segmentation accuracy for the selected image was chosen. Selection was
also considered as a possible value for p, meaning that the image -or pixel,
in case of local methods- with the highest weight is selected, without any
further voting. For the local methods, both p and r had to be set. The
parameter tuning process consisted in setting r to an initial value of 10 and
then varying p from 1 to 8, including selection, to obtain the optimal value.
Then, r was varied from 5 to 25 with a 5 pixel step, to find the optimum
value.

We tested the following combination algorithms:

• Majority Voting
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• Global Weighted Voting based on Normalized Cross-Correlation (GWV-
NCC): Normalized cross-correlation (NCC) between two images is
defined as:

NCC =
Cov(I1, I2)√

V ar(I1) ·
√
V ar(I2)

(2.19)

where Cov(I1, I2) is the covariance of the images and V ar(I1) and
V ar(I2) are the variances of each of the images. The gain factor p
was set to 4.

• Global Weighted Voting based on Mutual Information (GWV-MI)
with p = 8. The power of eight was required to amplify differences
between the weights. Mutual information was computed as in [78],
using the ITK implementation.

• Global Weighted Voting based on Mean Square Distance (GWV-MSD):
This is a particular case that does not require any gain factor, because
the difference between the images is already a very large value. There-
fore, gain was simply set to −1 to account for the inverse relationship
between mean square distance and image overlap after registration.

• STAPLE : We used an implementation by Rohlfing available online
2. We did not limit the number of iterations and the termination
threshold for the EM iterations was set to 10−5.

• Local Weighted Voting based on Normalized Cross-Correlation (LWV-
NCC): The similarity measure employed in this local combination
method was the same as in GWV-NCC, but computed in a square
local neighborhood around each pixel of size r = 10. Best results
were achieved with p = 5.

• Local Weighted Voting based on Mutual Information (LWV-MI): For
this local fusion method, we particularized the Generalized Local
Weighted Voting method with normalized mutual information as sim-
ilarity measure, defined as:

NMI =
H(I1) +H(I2)
H(I1, I2)

(2.20)

2http://www.stanford.edu/∼rohlfing/software/index.html
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where H(I1), H(I2) and H(I1, I2) are the entropies of images 1, 2,
and 1 and 2 jointly, respectively. The entropy of an image can be
computed from its histogram h(x) as:

H(I1) = −
N∑

i=1

h(xi) log2 h(xi), (2.21)

where N is the number of bins and xi is the centroid of the i-
th histogram bin. The similarity measure was computed in a two-
dimensional square neighborhood of isotropic size r = 15, and p was
set to 8.

• Local Weighted Voting based on Mean Square Distance (LWV-MSD):
In this case, the chosen similarity measure was the mean squared
distance computed in a square region around the voxel of interest of
size 10 in each dimension. The power p was set to −6 to account
for the inverse relationship between distance and similarity between
images.

2.7.3.5 Results

Evaluation measures resulting from the use of different combination
strategies on the phantom images are summarized in Tables 2.8 and 2.9.
The Wilcoxon matched-pairs signed-ranks test [59] was applied on the re-
sults on a region basis, to look for the best method for each region. If we
look at SI (Table 2.8), LWV-MSD is generally the best combination method,
except for region 5. The particularity of this region is its extremely low
contrast with the background (see Fig. 2.10b). In terms of MASD (Table
2.9), it is noteworthy that the performance difference between LWV-MSD
and the next best method is generally larger in regions with greater con-
trast (regions 1, 2 and 3 are the ones with largest contrast, as shown in
Fig. 2.10b).

It is noteworthy that, in exceptional cases, a method can be significantly
better than the other, even though the mean evaluation measure is worse.
This is due to the fact that the employed statistical test works with the
magnitude of the differences between the pairs of measures involved in the
test. This is the case of region 7 in Table 2.9, where a single region in
one image degrades the mean MASD of LWV-MSD considerably, making
it worse than the mean MASD of GWV-MI. However, the statistical test is
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Table 2.8: Average SI for different phantom regions with different

combination strategies. (*) indicates p < 0.05 according

to the Wilcoxon matched-pairs signed-ranks test, when

compared one-to-one to all the other columns. (**) in-

dicates p < 0.001. If two columns are marked, it means

that the difference between them is not statistically sig-

nificant, but it is with the rest of the columns.

Region
Combination Strategy

MV STAPLE GWV-MI GWV-NCC GWV-MSD LWV-MI LWV-NCC LWV-MSD
1 0.97 0.95 0.98 0.97 0.96 0.98 0.97 0.99 **
2 0.97 0.96 0.98 0.97 0.97 0.98 0.97 0.99 **
3 0.97 0.95 0.97 0.97 0.96 0.97 0.97 0.99 **
4 0.92 0.88 0.93 0.92 0.87 0.92 0.92 0.97 **
5 0.83 0.79 0.84 * 0.83 0.78 0.83 0.83 0.84 *
6 0.91 0.85 0.91 0.91 0.85 0.91 0.91 0.96 **
7 0.95 0.91 0.95 0.95 0.89 0.95 0.93 0.98 **

Table 2.9: Average MASD in pixels for different phantom regions

with different combination strategies. (*) indicates p <

0.05 according to the Wilcoxon matched-pairs signed-

ranks test, when compared one-to-one to all the other

columns. (**) indicates p < 0.001.

Region
Combination Strategy

MV STAPLE GWV-MI GWV-NCC GWV-MSD LWV-MI LWV-NCC LWV-MSD
1 1.60 2.37 1.18 1.61 2.06 1.12 1.55 0.43 **
2 1.35 2.12 0.99 1.37 1.62 1.02 1.35 0.54 **
3 1.58 2.35 1.36 1.58 2.26 1.44 1.58 0.67 **
4 3.91 5.95 3.52 3.89 5.85 3.87 3.89 1.57 **
5 8.00 11.29 7.59 7.97 11.42 7.97 7.96 6.66 **
6 4.61 7.58 4.31 4.65 9.46 4.61 4.63 2.10 **
7 2.73 4.44 2.35 2.76 8.53 2.46 4.41 2.45 *

able to detect that LWV-MSD performs consistently better (with p < 0.05)
than the rest of the combination methods, including GWV-MI.

2.7.3.6 Influence of tunable parameter selection

We used a single image to set the tunable parameters, both for global
and local combining methods. This arises the question how much the final
result can be influenced by a change in the selection of these parameters.
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Figure 2.11: Plots showing the effect of varying the gain factor p

on mean SI and MASD over all regions for different

combination strategies on phantom images. p is var-

ied from 1 to 8. S indicates selection, that is, the

voxel with the highest weight is selected, without any

further voting process. r was set to 10 for all LWV

methods.

To evaluate this, we looked at SI and MASD as p varies for the different
combination methods, as the well as at the results of varying r. Results are
shown in Fig. 2.11 and Fig. 2.12 respectively.

The variation of p shows no clear peaks for any method, except for
GWV-MSD. This could be expected because weight values are already very
large with this metric, and amplifying them before the voting process is
not required. The absence of peaks and the very slow variation between
neighboring points on the rest of methods suggests that the selection of the
gain factor can lead to slightly better or worse overall results, but it is not
critical.

In the case of the neighborhood radius, it can be seen that if the smallest
radius, i.e. r = 5, is neglected, the accuracies resulting from the different
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Figure 2.12: Plots showing the effect of varying the neighborhood

region radius r on mean SI and MASD over all re-

gions for different combination strategies on phantom

images. For all methods, p was the set to the value

employed in the rest of experiments.

methods do not overlap with each other. That means that, on this dataset,
the selection of r does not heavily influence the performance of the local
combination methods.

2.7.4 EXPERIMENTS WITH REAL DATA

2.7.4.1 Data

To test the performance of the different combination strategies on real
images, we employed 18 T1 MR brain images from the Internet Brain Seg-
mentation Repository (IBSR) [87]. One of the images was used to tune
the segmentation parameters, while the other 17 were employed for the
evaluation of the algorithms. We studied the segmentation of 18 different
structures, 14 of which were paired (left and right side). More structures
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Table 2.10: Gain parameter p for each combination algorithm on

the IBSR database.

GWV-MI GWV-NCC GWV-MSD LWV-MI LWV-NCC LWV-MSD
Gain parameter p 4 6 -1 8 2 -1

were actually segmented on the images, but the segmentation failed almost
completely on them due to their small size. All images had been normalized
into the Talairach position and processed with biasfield correction routines.
Image size is 256 × 256 × 128. Resolutions are variable: In the x − y di-
mensions they range from 0.837 to 1.0 mm and in the z dimension it is 1.5
mm in all cases.

2.7.4.2 Registration

The registration strategy used with the phantom images was extended
to three-dimensional images. A similar approach has been previously used
to register brain MR images [68, 88]. The voxel spacing for the B-spline
grid was 8.0 voxels.

2.7.4.3 Combination algorithms

We used the same combination algorithms that we compared on the
phantoms, modified for 3D images when required. Neighborhood shapes
for the local combination methods were in this case cubical. The optimum
gain parameters p were generally different, due to the different intensity
distribution of the images. One image was used for parameter tuning.
Table 2.10 shows the chosen p for each combination method. The process
to select the p and r values was the same as the one followed for the phantom
images. Gain factors between 1 and 8 were considered, as well as selection.
The tested r values were between 2 and 14 with a varying step of 3. The
optimum value was 5 for all local combination strategies.

2.7.4.4 Evaluation measures

As in the phantom experiments, SI and MASD were evaluated. In this
case, manual segmentations were considered to be the ground truth.



58 Chapter 2. Material and Methods

Table 2.11: Average SI for different brain structures with different

combination strategies. In the case of paired struc-

tures (left-right), the first number indicates mean SI

of the left structure and the second refers to the right

structure. The highest value for each structure is high-

lighted in bold. (*) indicates p < 0.05 according to the

Wilcoxon matched-pairs signed-ranks test, when com-

pared one-to-one to all the other columns. (**) indi-

cates p < 0.001. If two columns are marked, it means

that the difference between them is not statistically sig-

nificant, but it is with the rest of the columns.

Brain Structure
Combination Strategy

MV STAPLE GWV-MI GWV-NCC GWV-MSD LWV-MI LWV-NCC LWV-MSD
Thalamus 0.86;0.86 0.85;0.85 0.87;0.87 0.86;0.86 0.87;0.87 0.87;0.87 0.86;0.86 0.87;0.88
Caudate 0.78;0.78 0.66;0.69 0.79;0.79 0.78;0.78 0.79;0.80 0.81;0.80 0.79;0.78 0.83;0.83 *
Putamen 0.86;0.85 0.81;0.79 0.86;0.86 0.86;0.85 0.86;0.86 0.87;0.86 0.86;0.85 0.86;0.86
Pallidum 0.80;0.80 0.69;0.70 0.80;0.81 0.80;0.80 0.80;0.80 0.81;0.81 * 0.80;0.80 0.78;0.79

Hippocampus 0.73;0.75 0.52;0.51 0.74;0.75 0.73;0.75 0.73;0.75 0.74;0.76 * 0.73;0.75 0.74;0.76 *
Amygdala 0.71;0.71 0.65;0.64 0.72;0.72 0.71;0.71 0.72;0.72 0.72;0.72 0.71;0.71 0.72;0.72

Accumbens area 0.66;0.66 0.51;0.47 0.67;0.68 0.66;0.66 0.66;0.66 0.68;0.68 0.66;0.66 0.67;0.67
Ventral DC 0.81;0.82 0.79;0.77 0.82;0.82 0.82;0.82 0.82;0.82 0.82;0.82 0.82;0.82 0.82;0.82

Cerebral WM 0.75;0.75 0.59;0.54 0.75;0.75 0.75;0.75 0.75;0.75 0.76;0.76 0.75;0.75 0.78;0.78 **
Cerebral Cortex 0.78;0.78 0.56;0.47 0.79;0.79 0.79;0.78 0.79;0.78 0.79;0.79 0.78;0.78 0.81;0.81 **
Lateral Ventricle 0.77;0.75 0.51;0.50 0.78;0.76 0.77;0.75 0.77;0.76 0.81;0.79 0.78;0.76 0.83;0.82 **
Inferior Lat Vent 0.16;0.15 0.15;0.12 0.22;0.21 0.18;0.17 0.20;0.18 0.22;0.20 0.18;0.17 0.22;0.22

Cerebellum Cortex 0.84;0.84 0.73;0.73 0.85;0.86 0.84;0.85 0.85;0.85 0.85;0.85 0.84;0.84 0.86;0.86
Cerebellum WM 0.78;0.78 0.70;0.70 0.79;0.79 0.78;0.78 0.78;0.78 0.80;0.80 * 0.78;0.78 0.79;0.79
Third Ventricle 0.71 0.70 0.71 0.71 0.70 0.73 * 0.71 0.74 *
Fourth Ventricle 0.75 0.54 0.75 0.75 0.75 0.77 ** 0.75 0.77 **

Brain Stem 0.89 0.85 0.90 0.90 0.90 0.90 0.90 0.91
CSF 0.57 0.55 0.60 0.58 0.55 0.61 0.58 0.61

2.7.4.5 Results

Table 2.11 shows the average SI for different brain regions using several
combination methods. Table 2.12 shows the corresponding results for the
MASD. In general, local strategies rendered better accuracies than global
methods, but performance varies from region to region. No combination
method is better than the rest for all regions.

Out of the studied 18 structures, LWV-MSD was among the methods
with highest average similarity index in 12 cases. This number was 8 for
LWV-MI. If MASD was evaluated, results followed the same trend. LWV-
MSD was the best method for 15 structures (including ties), and LWV-MI
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Table 2.12: Average MASD for different brain structures with dif-

ferent combination strategies. In the case of paired

structures (left-right), the first number indicates mean

MASD of the left structure and the second refers to the

right structure. The highest value for each structure is

highlighted in bold. (*) indicates p < 0.05 according

to the Wilcoxon matched-pairs signed-ranks test, when

compared one-to-one to all the other columns. (**) in-

dicates p < 0.001. If two columns are marked, it means

that the difference between them is not statistically sig-

nificant, but it is with the rest of the columns.

Brain Structure
Combination Strategy

MV STAPLE GWV-MI GWV-NCC GWV-MSD LWV-MI LWV-NCC LWV-MSD
Thalamus 0.85;0.89 0.94;0.98 0.81;0.81 0.84;0.88 0.84;0.88 0.79;0.80 * 0.81;0.84 0.76;0.74 *
Caudate 0.78;0.81 1.74;1.53 0.75;0.75 0.78;0.80 0.75;0.75 0.69;0.71 0.76;0.79 0.63;0.64 *
Putamen 0.70;0.72 0.94;1.14 0.67;0.67 0.65;0.72 0.68;0.68 0.66;0.68 0.70;0.72 0.66;0.67
Pallidum 0.70;0.69 1.45;1.27 0.70;0.67 0.70;0.75 0.70;0.68 0.68;0.66 * 0.70;0.69 0.73;0.70

Hippocampus 0.88;0.79 2.98;4.48 0.85;0.78 0.87;0.75 0.86;0.79 0.83;0.75 * 0.87;0.79 0.82;0.76 *
Amygdala 0.91;0.92 1.30;1.36 0.87;0.89 0.91;0.91 0.87;0.89 0.88;0.90 0.91;0.92 0.84;0.86

Accumbens area 0.74;0.71 3.14;4.33 0.71;0.0.68 0.74;0.71 0.77;0.74 0.70;0.68 0.74;0.71 0.68;0.67
Ventral DC 0.80;0.78 0.96;1.09 0.77;0.74 0.80;0.77 0.77;0.75 0.77;0.75 0.80;0.78 0.74;0.73

Cerebral WM 1.31;1.29 1.61;1.78 1.24;1.22 1.30;1.29 1.25;1.23 1.22;1.21 1.30;1.28 1.09;1.07 **
Cerebral Cortex 1.34;1.31 2.64;3.85 1.24;1.20 1.34;1.31 1.26;1.23 1.29;1.25 1.35;1.32 1.13;1.10 **
Lateral Ventricle 0.88;1.01 3.06;3.10 0.89;0.90 0.87;0.96 0.89;0.91 0.76;0.80 0.85;0.94 0.67;0.70 *
Inferior Lat Vent 1.64;1.55 2.62;3.53 1.44;1.43 1.55;1.48 1.45;1.44 1.40;1.46 1.55;1.50 1.48;1.45

Cerebellum Cortex 1.35;1.35 1.76;1.74 1.23;1.19 1.34;1.32 1.28;1.25 1.26;1.24 1.35;1.33 1.18;1.14 *
Cerebellum WM 1.19;1.20 1.61;1.65 1.09;1.08 1.17;1.19 1.12;1.12 1.10;1.08 1.18;1.19 1.04;1.01 *
Third Ventricle 0.68 0.72 0.65 0.68 0.68 0.62 * 0.67 0.59 *
Fourth Ventricle 0.68 2.54 0.68 0.68 0.67 0.61 ** 0.67 0.62 **

Brain Stem 0.80 1.08 0.75 0.79 0.74 0.74 0.79 0.69
CSF 1.22 1.30 1.12 1.20 1.08 1.14 1.21 1.05

outperformed the others in 6 cases. It must be noted that ties occurred, as
it can can be seen in Tables 2.11 and 2.12.

However, more interesting than the absolute number of regions in which
one method was better than others, is the study of the particularities of
those regions. Specifically, and for illustrative purposes, we will look at
two particular structures: the lateral ventricles and the pallidum. The
two lateral ventricles conform the largest part of the ventricular system of
the brain and appear as a dark region on T1 MR images (see Fig. 2.13).
They are mainly surrounded by cerebral white matter, which shows a much
brighter gray level. The caudate, a nucleus within the basal ganglia, is
also in contact with the lateral ventricles and, even though the intensity
difference is smaller, it is still clearly distinguishable. It is in this kind of
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Figure 2.13: T1 MR slice of human brain, with different anatomical

structures delineated manually. Pallidum and puta-

men are the two paired structures below. The puta-

men is in the external part and the pallidum is in

the interior. The lateral ventricles are the darkest

structures delineated above, with the caudates next

to them. The lack of gray level difference between

pallidum, putamen and cerebral white matter voxels

can be observed, together with the large contrast be-

tween the ventricles and the surrounding structures.

structures with large intensity contrast in which the advantage of using
local weighting approaches is larger. The average SI of the two-side lateral
ventricles using LWV-MSD is 0.825, in contrast with 0.760 for the Majority
Voting. This difference was very significant, according to the Wilcoxon
matched-pairs signed-ranks test (p ≤ 10−7) [59]. An illustrative slice with
the corresponding segmentation can be seen in Fig. 2.14. The cerebral and
cerebellum cortex, the cerebral white matter and the caudate belong to the
group of structures with this kind of characteristics.

The pallidum or globus pallidus is part of the basal ganglia. It is sur-
rounded by many regions, mainly cerebral white matter and the putamen,
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Table 2.13: Average SI and MASD for Majority Voting and the best

segmentation combination method for each structure,

selected a-posteriori according to its SI value.

Evaluation Measure
Combination Strategy

Majority Voting Best Combination Method
SI 0.733 0.758

MASD 0.967 0.851

but also the caudate, the amygdala and other close structures. The inten-
sity contrast with most of them is very low (see Fig. 2.13). In this case,
LWV-MSD performs worse than Majority Voting (p ≤ 0.03 with Wilcoxon
matched-pairs signed-ranks test), and GWV-MI achieves second best SI,
after LWV-MI (p ≤ 0.02). A slice comparing LWV-MSD and GWV-MI
is shown in Fig. 2.15. A comparable results arises for other regions as
the putamen or the cerebellum white matter, which also show low contrast
with neighboring structures.

If, for each brain structure, the best fusion rule is selected according
to its SI value, the mean values for SI and MASD shown in Table 2.13
result. For comparison, the same parameters for Majority Voting are also
presented. There is a 3.41% gain in SI and 12.00% reduction in the average
distance between surfaces with respect to Majority Voting.

With our current implementation and on an Intel Xeon 3.20 GHz pro-
cessor, approximate average computation times for segmentation combina-
tion in each brain scan were: 10 seconds for Majority Voting, 1 hour for
STAPLE, 2 minutes for GWV-MI, 4 minutes for GWV-NCC, 4 minutes for
GWV-MSD, 5 minutes for LWV-MSD, 10 minutes for LWV-NCC and 2
hours for LWV-MI. The long time required by LWV-MI is due to the high
computational burden of estimating the entropies from the histograms for
each voxel in which local weighted voting is required.

2.7.4.6 Influence of tunable parameter selection

As it was done in the phantom images, we also studied the effect of
varying both the gain (p) and neighborhood radius (r) parameters on the
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(a) Manual Segmentation (b) Majority Voting (c) Local WV-MSD

Figure 2.14: Axial slice showing different segmentations of the lat-

eral ventricles. The Local Weighted Voting based on

the Mean Square Distance approaches the manual seg-

mentation better than the Majority Voting.

(a) Manual Segmentation (b) Global WV-MI (c) Local WV-MSD

Figure 2.15: Coronal slice showing different segmentations of the

pallidum. The Local Weighted Voting based on Mean

Square Distance results in a more noisy delineation

than the Global Weighted Voting based on Mutual

Information.

performance of the different combination methods. Results are summed up
in Fig. 2.16 and Fig. 2.17.
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In the case of varying p, results are in principle not as clear as in the
phantom dataset. As expected, GWV-MSD shows the greatest variability,
p = 1 being the optimum solution. Both GWV-NCC and LWV-NCC vary
very slightly through all values, implying that gain selection is not relevant.
GWV-MI also varies smoothly and shows a maximum at p = 5. LWV-MI
shows a continuous improvement from p = 1 to p = 8, in contrast with,
LWV-MSD which degrades its performance in that direction. In all cases
the proposed method was able to detect the optimum p value except for
LWV-MI, where the second best was found.

For local combination strategies, varying the neighborhood radius r had
varying effects on the different combination techniques. For LWV-MSD,
r = 5 proved the optimum global radius with a considerably sharp peak.
In the case of LWV-MI and LWV-NCC the radius value does not greatly
influence the overall performance, except for the r = 2 value for LWV-MI
which clearly causes worse results.

2.7.5 DISCUSSION AND CONCLUSION

Results from experiments with phantom images and real brain MR im-
ages differ slightly. While for the phantom images LWV-MSD performs
better or equal as all the other methods for all regions with a single excep-
tion, this is not the case with the brain images. On the phantom images,
LWV-MSD is in general the best combination method, followed by LWV-
MI and GWV-MI. The difference between them is lower in regions with low
contrast with the background. We believe that this is due to the lack of
contrasted edges. For each voxel, each segmentation is weighted according
to a local similarity measure between the target image and the registered
atlas image. If a high contrast between neighboring regions exists at that
point, the similarity measure will be able to distinguish between accurate
and inaccurate segmentations, because it will be sensitive to the overlap
between the different regions. However, if no intensity difference exists, the
similarity measure will not be able to assess the accuracy of the registration
at that point. Moreover, the weights derived from the local mean square
distance might be influenced by noise.

On the IBSR dataset, though, LWV-MSD is not the best choice for all
regions. As pointed out in the results section, in regions that show low
contrast with neighboring structures, other methods should be preferred.
Even global voting strategies perform better than LWV-MSD in those cases.
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Figure 2.16: Plots showing the effect of varying the gain factor p on

mean SI and MASD over all regions for different com-

bination strategies on IBSR images. p is varied from 1
to 8. S indicates selection, that is, the voxel with the

highest weight is selected, without any further voting

process. r = 5 was set for all LWV methods.

One of the reasons for global approaches to perform as good as or even
better than local ones in low-contrast regions has been explained above.
Another one, which applies only when a manual segmentation is used as
the ground truth, is related to the accuracy of manual segmentations in
low-contrast regions. It is obvious that it is hard to manually delineate a
structure such as the pallidum in an MR image, due to its lack of contrast.
As a result, manual segmentations might be less accurate than those from
other better defined regions. In this kind of regions, features as shape
or relative position play a much more important role than actual voxel
intensity. Then, global voting approaches have an advantage over local
methods, for they favour typical shapes and relative positions rather than
voxel intensity distributions.
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Figure 2.17: Plots showing the effect of varying the neighborhood

region radius r on mean SI and MASD over all regions

for different combination strategies on IBSR images.

For all methods, p was set to the value employed in

the rest of experiments.

If LWV-MI and LWV-MSD are compared, the latter is better for more
regions but the former proved less sensitive to noise. This means that in
low-contrast regions, LWV-MSD can yield worse accuracies than Majority
Voting, for example in the case of the putamen or the pallidum. If dif-
ferences in voxel gray values are only due to noise, as it is the case when
there are no intrinsic intensity differences, MSD as local similarity measure
might lead to incorrect weights in the voting process. A possible solution
would be to increase the neighborhood radius r in order to increase the in-
trinsic regularization. However, our experiments have shown that this can
reduce the mean SI and MASD. It must be noted that LWV-MSD could be
used on this image dataset because voxel gray levels had been previously
normalized, and the basic assumption of intensity conservation among the
images was fulfilled [82]. We believe this is the reason why LWV-MSD
outperformed LWV-NCC.
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We proposed using a representative image from the dataset to set the
two variable parameters -gain factor and neighborhood radius- of the lo-
cal combination algorithms. The simple assumption behind this approach
is that the parameters that are optimum for a single image should not
be far from the globally optimum parameters, given that all images have
approximately the same intensity distribution. In our two test datasets,
parameter selection proved generally not critical and a wide range of pa-
rameters yielded comparable results. However, higher robustness could be
obtained by employing more images for the parameter selection.

The fact that STAPLE yields worse SI values than the rest of the meth-
ods is an unexpected outcome, for it departs from results reported in [75].
Reasons might be multiple. First, in the referred publication recognition
rate is used for evaluation, instead of SI and MASD. Second, STAPLE was
tested on a completely different image dataset. Third, the lack of any a
priori probabilities may affect the algorithm negatively, and performance
could improve significantly if performance estimates could be initialized
within a reasonable range [74]. Moreover, in [77] majority voting and STA-
PLE showed mostly not statistically significant differences when combining
segmentations of MR image of the prostate, and in some atlas sets majority
voting performed better.

Many publications on segmentation present a new method for a partic-
ular task, compare it with previous techniques and show the advantages of
the novel contribution. Results from our experiments suggest that, when
combining multiple segmentations in atlas-based segmentation, the prin-
ciple of the ’no-panacea theorem’ applies [89]. No method is better than
others always, for all regions and images. One must select the best strategy
among the existing (Majority Voting, Global Weighted Voting, any kind of
Local Weighted Voting, etc.) according to the particular characteristics of
the images and the regions. This can lead to substantial gain compared
to majority voting, as results from Table 2.13 show. We believe that a
major contribution of our work is the study of the conditions in which local
weighting methods perform consistently better than global methods. As it
was explained, regions that have large intensity contrast with neighboring
tissue, such as the ventricles in T1 MR images, benefit specially from lo-
cal strategies. We believe that the same concept can be applied to other
imaging modalities and segmentation tasks that show similar contrast char-
acteristics, such as lungs in Computed Tomography images. In contrast,
there might be little or no benefit from using local approaches in regions
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that show similar intensities as their surrounding structures, and global
methods should be preferred.

The main limitation of voting strategies is that they can not correct
incorrect segmentations when all candidate segmentations have failed in a
certain area. An extensive atlas which is representative of the whole pop-
ulation and a good registration algorithm can greatly limit this problem,
by maximizing the probability that at least one of the candidate segmen-
tations will be correct in all locations. Then, the local similarity measure
would need to be sensitive enough to detect that correct registration and
discard the incorrect ones.

The advantage of using local approaches being mainly in high-contrast
edges, suggests that it might be worth adding information on the edge
strength when locally selecting a combination method. That is, a given
structure might have different kind of borders: It might have a high-contrast
border with one structure and a low-contrast border with another. Then,
if local strategies were applied only on the high-contrast borders, overall
accuracy might be better. This could be applied in lungs affected by in-
flammation: borders with normal intensity contrast would benefit from lo-
cal combination strategies, while areas without contrast -i.e., high intensity
areas in the lungs- would require global strategies.

In conclusion, we have addressed the issue of combining segmenta-
tions to achieve the highest possible accuracy in multi-atlas medical image
segmentation. We proposed a general local weighted voting method and
showed how it can be applied with different similarity measures on different
image datasets. We studied the performance of global and local weighted
voting strategies for multi-atlas segmentation combination, and concluded
that local methods should be preferred in regions that show high contrast
with neighbor areas. To achieve optimum overall results, the best fusion
method for each region must be found.
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The plural of anecdote is not
data.

Roger Brinner, economist

3
Experiments

In this chapter, we detail the experiments carried out to character-
ize different models of lung disease in mice, mainly using micro-CT as
a non-invasive imaging technique. The studied models are: silica-induced
chronic pulmonary inflammation, elastase-induced emphysema and a com-
bined model of emphysema and urethane-induced lung cancer. Results and
limitations of each study are discussed at the end of each section.

3.1 SILICA-INDUCED CHRONIC PULMONARY INFLAMMA-
TION

3.1.1 INTRODUCTION

Silica-induced pulmonary inflammation in mice is a good model for
chronic pulmonary inflammation and fibrosis, which are processes related to
multiple diseases such as interstitial lung disease and pneumonitis [90]. Due
to the significantly different X-ray absorption properties existing between
the air and lung parenchyma, high resolution X-ray computed tomography
(micro-CT) is very well suited for non-invasively imaging animal models
of lung disease [10]. In particular, micro-CT is appropriate in longitudinal
studies, aimed at understanding the dynamics of lung diseases. Indeed,
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micro-CT has been recently used to image in vivo animal models of lung
cancer, emphysema and fibrosis [12,13,18,22].

The use of micro-CT to assess the presence and extent of lung inflam-
mation and fibrosis in rodents has been reported in a few recent works.
Jobse et al. studied a model of allergic inflammation in rats [14]. They
scanned the rats at baseline and longitudinally at different time points,
using retrospective gating. Semi-automatic methods for segmentation and
quantification of the images were used. Ask et al. looked at a model of
pulmonary fibrosis without any respiratory gating and with semiautomatic
tools for quantification [13]. They complemented their results with pul-
monary function tests. Cavanaugh et al. showed correlation between semi-
automatic quantifications of micro-CT images of bleomycin-induced lung
injury in mice, acquired with respiratory gating at end inspiration [18]. Lee
et al. employed the same animal model, and tried to detect different disease
patterns on the micro-CT images [91]. Very good results were achieved in
ex vivo scans, but they were considerably worse in in vivo scans, due to
lack of respiratory gating. In fact, in the same work a preliminary study
with gating on intubated mice was reported, which was not applied in the
rest of the work due to a mortality rate of 80%.

Therefore, different options for respiratory gating have been reported
and applied in assessment of fibrosis and inflammation models in rodents.
Nevertheless, a gating technique that offers high quality images applied
successfully to the longitudinal study of a lung disease model has not
been reported and would be very useful. Moreover, fibrosis and inflamma-
tion measurements on micro-CT images have always been done manually
or semi-automatically, which requires long operator times and introduces
operator variability. In this work, we present a quantitative micro-CT
based longitudinal study of a silica-induced mouse model of chronic pul-
monary inflammation. To improve the sensitivity of the detection, we re-
duce movement-related artifacts caused by respiratory motion, by using an
iso-pressure breath hold technique, following a carefully devised protocol to
reduce mortality. Lungs on micro-CT images are automatically segmented
and the extent of damage tissue is computed. Results are validated by
comparison with histomorphometry.

Along with histological analysis, we compare our image-based measure-
ments with several parameters of pulmonary function. Several methods
exist to measure lung function in murine models of pulmonary disease, as
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explained in section 2.3 of this thesis. In this study, we employ both the
single compartment model, which consists of a flow resistive conduit (with
resistance R) serving a single elastic compartment (with compliance C) [20],
and the constant phase model, which separates the contribution of the main
airways and the lung tissue, resulting in four different parameters: airway
resistance (Raw), inertance (I), tissue damping (G) and tissue elastance
(H) [31]. Both models require animal intubation to carry out the measure-
ments, which can be easily done with commercially available equipment.
One of the aims of this study was to compare the information given by
quantitative micro-CT with lung functional parameters.

In summary, this study was performed to evaluate the feasibility and
use of iso-pressure breath hold gated micro-CT to capture the dynamics
of a mouse model of chronic pulmonary inflammation, and to compare
quantitative micro-CT derived lung damage parameters with the results of
pulmonary function tests.

3.1.2 MATERIAL AND METHODS

A total of 49 A/J 8-week-old mice (Harlan UK Limited, Oxon, UK)
were used in the study. Inflammation was produced by a single oropharyn-
geal aspiration of crystalline silica as explained in section 2.1. Control mice
aspired 90 µl of saline instead. Fourteen animals were used in the longitu-
dinal study, divided into the inflammation (7 mice) and control groups (7
mice). These animals were imaged at baseline and then 4, 14 and 34 weeks
after the first scan. At each time point, 5 additional control and treated
animals were imaged and then sacrificed for histological analysis.

Parameters of pulmonary function were computed for all animals in
the study following the method described in section 2.3 of this thesis. In
particular, six different parameters were obtained: lung resistance (R),
lung compliance (C), airway resistance (Raw), airway inertance (I), tissue
damping (G) and tissue elastance (H). The protocol for micro-CT image
acquisition is described in section 2.5.

The lungs in micro-CT images were automatically segmented from the
rest of the chest using the method described in subsection 2.5.3. The air-
ways were segmented and the radii of the right and left bronchi were mea-
sured, using the method explained in section 2.6.2. Two parameters were
computed from the segmentations: the mean lung voxel intensity (MLVI)
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and the percentage of damaged lung volume (DLVF). As damaged vol-
ume, we considered all voxels of the lung that displayed intensity above the
threshold that we used to find the dark areas of the lung.

Lungs were fixated as explained in section 2.4. One section per lobe
(5 lobes per mice) was stained with hematoxylin and eosin and used for
qualitative histological analysis. Mosaic images of the two sections corre-
sponding to the left lobe were acquired with a Zeiss Axioplan 2ie microscope
(Carl Zeiss, Jena, Germany) with a 12.5x magnification, and the damaged
area fraction (DAF), or percentage of damaged area, was computed semi-
automatically using custom software, which detects damaged tissue based
on the staining differences with respect to normal healthy lung tissue.

Another section per lobe was stained with picro-sirius red. To quantify
alveolar fibrosis, two fields per mouse containing mainly alveoli were ran-
domly selected, and a fibrosis score was computed as the ratio between the
area occupied by collagen and the total area occupied by tissue. The used
magnification was 200x.

For statistical analysis, the mean and standard deviation of each micro-
CT and pulmonary function test parameters were computed separately for
each animal group (control and inflammation) and time point (baseline,
and weeks 4, 14 and 34 after treatment). For each time point and param-
eter, the values of the two groups were compared using the Mann Whit-
ney U tests (online tool available from the Institute of Phonetic Sciences,
University of Amsterdam). A p value below 0.01 was considered to yield
statistically significant results. For the parameters that resulted in statis-
tically significant differences between the control and inflammation groups
at least in one time point, a receiver operating characteristic (ROC) curve
was generated. Animals of the chronic inflammation group were considered
positive results, while control animals were considered negative results. If
each of the computed parameters is regarded as a classifier, the ROC curve
displays the true positive rate versus the false positive rate. Then, the
area under the ROC curve (AUC) was computed, to evaluate the ability of
each parameter to discriminate between healthy and diseased subjects [92].
Both ROC and AUC were computed with the GNU Octave software [93].
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3.1.3 RESULTS

3.1.3.1 Image analysis

Figure 3.1 shows two representative examples of transversal micro-CT
slices of a healthy mouse lung and the lung of a silica-treated animal 14
weeks after the silica aspiration. In Figure 3.2, three-dimensional recon-
structions at consecutive time points are shown, together with micro-CT
slices and histological samples. The evolution of disease can be observed.

At all time points, the MLVI, DLVF and radii of the left and right
bronchi were computed for the control and the inflammation groups, and
differences between the groups were evaluated.

The MLVI was significantly different in the control versus the inflamma-
tion groups at all time points except at baseline (p < 0.01). In particular,
the inflammation group showed an increase in MLVI of 19.15% at week 4,
23.75% at week 14 and 48.80% at week 34, when compared to the con-
trol group. Regarding the evolution of the absolute values, in control mice
MLVI decreased from an average of -550 HU at baseline to -631 HU at week
34 (14.72%, p < 0.01), while in the silica-treated group it increased from a
mean of -560 HU to -323 HU (42.32%, p < 0.01).

The difference in DLVF between the control and inflammation group
was 171.83% at week 4, 314.92% at week 14 and 642.23% at week 34,
statistically significant in all cases. The DLVF value remained constant
with time in the control group (5.23% at baseline, 5.66% at week 34, p =
0.21), but it increased steadily from 5.25% at baseline to 42.01% at week
34 (800.19%, p < 0.01) in the silica-treated group.

The radii of the right and left mainstem bronchi were smaller in the
silica-treated group than in the control group at all time points (p < 0.01).
The right bronchus of the treated mice was 16.38% smaller than the controls
at week 4, 20.08% at week 14 and 37.60% at week 34. These differences
in the left bronchus were 14.92%, 17.57% and 31.14%. An evolution could
also be seen in both radii in the diseased group. During the 34 weeks, the
radius of the right bronchus decreased in average from 763.83 µm to 447.16
µm (41.46%, p < 0.01), and the left bronchus from 555.01 µm to 349.31
µm (37.06%, p < 0.01).
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Figure 3.1: Sample transversal micro-CT slices of a healthy mouse

lung (top left), and a lung affected by silica-induced

chronic inflammation 14 weeks after silica aspiration

(top right). Below, detailed view of the same slices.

Note inflammatory changes affecting predominantly

central broncovascular structures. The heart (H), an

airway (A) and an inflamed area (I).

Figure 3.3 shows the MLVI and DLVF for each animal group and time
point. In Figure 3.4 the evolution of the mainstem bronchi radii can be
seen. Figure 3.5 shows the ROC curves for MLVI, DLVF and the bronchi
radii. The AUC values were 0.967 for MLVI, 0.999 for DLVF, 0.939 for the
right mainstem bronchus radius and 0.892 for the left mainstem bronchus
radius.
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Figure 3.2: 3D reconstruction from the automatic micro-CT im-

age segmentations (normal tissue in blue, lung injury

in red, airways in yellow), representative coronal slices

and hematoxilin-eosin staining sections of lung in con-

trol and silica-treated mice after 4, 14 and 34 weeks.

Original magnifications for HE: x9. Inset magnifica-

tion: x145.

3.1.3.2 Pulmonary function tests

Six parameters of lung function were measured: resistance (R), compli-
ance (C), airway resistance (Raw), inertance (I), tissue damping (G) and
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Figure 3.3: Mean Lung Volume Intensity (MLVI, right) and Dam-

aged Lung Volume Fraction in percentage (DLVF, left)

for the control and silica groups at the different time

points. Both show the time dependent evolution of lung

damage as well as the clear difference with the control

untreated group in every time point after baseline. **

indicates statistical significance (p < 0.01).

tissue elastance (H). R, C, Raw and G showed statistically significant dif-
ferences between the control and the inflammation groups at some time
point of the study, while H and I did not yield any statistically significant
difference at any time point.

In particular, the inflammation group showed a statistically significant
increase in Raw at weeks 14 (54.76%, p < 0.01) and 34 (96.61% , p < 0.01)
but not at week 4. Differences in R, G and C are statistically significant only
at week 34. R increased 155.08% in the inflammation group, G increased
98.52% and C decreased 42.37%, all p < 0.01. Figures 3.6 and 3.7 show the
mean values of these parameters separately for each group. ROC curves
for R, C, Raw and G are shown in Figure 3.5. The AUC values were 0.642
for R, 0.547 for C, 0.657 for Raw and 0.627 for G.
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Figure 3.4: Radii of the right and left mainstem bronchi for the con-

trol and silica-treated mice in the different time points.

A statistically significant difference (p < 0.01) is seen

between the two groups at all time points and for both

bronchi.

3.1.3.3 Histological examination

The Pearson correlation coefficient was R2 = 0.62 between MLVI and
DAF, and R2 = 0.59 between DLVF and DAF. The relationship between
the parameters can be seen in Figure 3.8. DLVF seems to correlate better
with low levels of damage, while MLVI correlates better with histomor-
phometry in the cases of mild and severe lung damage.

There was no difference in the fibrosis score between control and silica-
treated animals at week 4, but at weeks 14 and 34 silica-treated animals
showed a significantly higher collagen content (7.10%±3.59% vs. 1.05%±0.77%
at week 14, and 8.86%±5.48% vs. 1.71%±0.88%, at week 34, p¡0.01 in both
cases).

Qualitative analysis of histological sections revealed chronic inflamma-
tion at all stages and lung lobes analyzed, and a time related progression of
the inflammation and damage was observed (see Figure 3.2). At 4 weeks,
silicotic granulomas were observed in all the lung lobes, located mainly in
central areas close to branching and terminal bronchioles. These granu-
lomas were often nodular, discrete and prominent. They were composed
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Figure 3.5: ROC curves for the MLVI, DLVF and right and left

mainstem bronchi radius (RMBR and LMBR, respec-

tively), and the functional parameters R, Raw, C and

G. The former four measurements were derived from

the micro-CT images of the control and silica-treated

mice. DLVF shows the best performance, because high-

est true positive rates can be achieved for the same false

positive rate.

of macrophages and some fibroblasts showing a central area with dust de-
posits, cellular debris and some fibrosis. Epithelial hyperplasia was ob-
served in lung parenchyma regions, near or around the granulomas. More-
over, a slight perivascular lymphocytic reaction and focal areas of alveo-
lar proteinosis were observed. As previously published, this shows that
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Figure 3.6: Total lung Resistance (R) and airway resistance (Raw)

in different time points for the two animal groups.

** indicates statistical significance between the control

and the disease groups (p < 0.01).

macrophages are the first defense mechanism against silica particles that
reach the terminal airways and alveolar spaces [94].

At 14 weeks, many silicotic nodules could also be seen, most of them
clustered. The inflamed region was larger than in the previous stage, and
was located in the same areas of the lung lobes. At this time point, gran-
ulomas showed large acellular centers with extensive cellular debris and
crystalline silica. The parenchyma between the silicotic nodules showed
sparse alveolar proteinosis, thickened septa with interstitial macrophages,
and groups of living and necrotic macrophages in alveolar spaces. More-
over, moderate bronchiolar hyperplasia, and hyperplastic type II pneumo-
cytes were also observed surrounding the silicotic lesions. The perivascular
lymphoid reaction was increased at this time.

Finally, at 34 weeks, silicotic granulomas remained similar in size to
those observed at week 14, and showed larger central necrotic areas with
lipid clefts and moderate fibrosis in the periphery. Parenchyma between sil-
icotic nodules showed increased alveolar proteinosis and thickened alveolar
septa. Bronchiolar hyperplasia remained near and between the granulomas,
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Figure 3.7: Compliance (C) and tissue damping (G) in different

time points for the two animal groups . ** indicates

statistical significance between the control and the dis-

ease groups (p < 0.01)

but areas with hyperplastic type II pneumocytes were reduced as compared
to the previous time point. Interestingly, perivascular and peribronchiolar
inflammatory reaction was more remarkable than at week 14. The inflam-
matory cells observed were predominantly lymphocytes and macrophages.

In summary, the inflammatory lesion induced by the silica insult was
initially an acute granulomatous reaction that grew in size over the first 14
weeks. The overall damaged tissue area increased from week 14 to week 34.
The morphological appearance and cellular composition of the granulomas
and the alterations of the lung parenchyma surrounding them also showed
time-related modifications.

3.1.4 DISCUSSION AND CONCLUSION

High-resolution micro-CT is an optimal tool for the in vivo study of the
dynamics of animal models of pulmonary disease [52], and previous studies
have shown a good correlation between micro-CT and histological findings
in animal models of lung inflammation and fibrosis [13,14,18,91].
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Figure 3.8: (a) Correlation between Mean Lung Volume Intensity

(MLVI) automatically measured from micro-CT im-

ages and damaged area fraction (DAF), measured from

histological sections. Pearsons correlation coefficient

is indicated. (b) Correlation between Damaged Lung

Volume Fraction (DLVF) automatically measured from

micro-CT images and DAF, measured from histological

sections. Pearsons correlation coefficient is indicated.

Medium correlation scores are achieved in both cases.

We have studied the evolution of a mouse model of chronic inflammation
using micro-CT, pulmonary function tests and histology. We took quanti-
tative image-based measurements and contrasted them with the results of
tests of pulmonary function as well as with histomorphometry.

Regarding the acquisition protocol, an important contribution of this
work is the use of an iso-pressure breath hold gating technique, which results
in increased image quality and highly accurate and repetitive quantifica-
tion [17]. To the best of our knowledge, no study to date has evaluated the
use of this technique to quantify and follow up lung damage in a longitudi-
nal study. Precise anesthetic dosage and the use of a saline warm injection
before disconnecting the animal from the ventilator proved helpful to ob-
tain very high survival rates and rapid recovery. Breath hold gating has
many advantages compared to other gating techniques. In contrast with
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prospective gating on free breathing animals, lungs are kept filled with at a
constant air pressure, virtually removing movement artifacts and increasing
tissue contrast at the same time. The use of retrospective gating can be
considered if a flat panel detector is available, since the long exposure times
required by other kinds of detectors would result in very blurry images. As
flat panel detectors have lower resolution, retrospective gating inevitably
results in images with larger voxel sizes. The main drawback of breath
hold gating is the need to intubate the animals and the potential damage
resulting from artificial ventilation. In this work, we showed that follow-
ing a carefully defined protocol, this method can be used even on heavily
diseased animals.

Another technical contribution of this study is the use of automatic
tools for airway measurement and lung disease quantification in micro-CT
images. These methods are being actively developed and used in CT re-
search [33,34,50,95], but their application to animal studies has been very
limited. We believe that these automatic algorithms are indeed key tools,
because they provide reliable and reproducible means of quantifying the dis-
ease, while reducing drastically the required operator time. In particular,
we have evaluated the performance of two parameters based on the image
intensities (MLVI and DLVF) along with the radii of the two mainstem
bronchi in detecting the presence of disease. We found that all parameters
offer very high sensitivity and specificity, DLVF being a practically perfect
classifier (AUC of 0.999). We also analyzed the correlation between the
micro-CT measurements and histomorphometry. Modest correlation lev-
els were achieved, which were in any case higher than the ones previously
reported with different gating and quantification techniques [13, 18, 91]. It
must be noted that histological measurement of disease extent was lim-
ited to two representative sections of the left lobe, while MLVI and DLVF
consider the whole lung volume. Thus, it was unlikely to reach strong
correlation levels.

We also calculated parameters of pulmonary function, which are gen-
erally used to study the respiratory mechanics in animal models [96]. Our
results suggest that histopathologically evident changes in the lung do not
necessarily affect the pulmonary function parameters measured by these
tests. Airway resistance (Raw) was the parameter that discriminated best
between diseased and healthy animals, although with a rather low AUC
value (0.657). However, we believe that PFT parameters are of great value
to complement micro-CT findings, since they provide relevant physiological
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information on lung function. In fact, R, Raw, G and C do reveal the pres-
ence of disease at weeks 14 and 34. The increases in R and Raw are likely
to be caused by the decrease in airway radius measured in the micro-CT
images. It seems that at week 4 the difference in radii is not large enough
to cause a significant increase in air flow obstruction. The changes in C
may well be caused by the large extent of inflammation, which results in
increased lung stiffness. As explained in [97], severe airway constriction
and less lung tissue being sampled can also contribute to reduce C. The
same reason, together with increased lung parenchyma inhomogeneity, can
explain the increase in G seen at week 34 [97].

The X-ray dose delivered to the animals is far from lethal levels, but can
not be dismissed. Intubation and artificial ventilation can also affect the
normal functioning of the lungs. The control group can be used to analyze
those effects. In the longitudinal study, we observed slight inflammation on
only one of the control animals at week 4, which disappeared at 14 weeks.
On histological evaluation at all time points, no evident changes in normal
lung morphology were detected.

This work has several limitations. An exhaustive ROC curve analysis
would require the computation of the variance of the curve. This requires
multiple datasets, for which the ROC curve should be independently com-
puted and the results averaged. However, the available dataset was limited
and dividing the data in different groups would have resulted in too small
groups. Nevertheless, differences in ROC curves and AUC values between
micro-CT parameters and lung function parameters are very large and we
believe they are sufficient to support our conclusions. The small sample
size is particularly relevant in the measurements of pulmonary function,
because their variability depends on factors which are hard to control, such
as the relative position of the cannula in the animal trachea. This vari-
ability was limited by performing the measurements three times in each
animal. A third limitation is related to the animal model. As any animal
model of human disease, the silica-induced chronic inflammation in mice
does not reproduce exactly any disease occurring naturally on humans.
However, relevant information can be gained on pulmonary diseases that
show fibrosis and inflammation.

In conclusion, iso-pressure breath hold gated micro-CT enables detect-
ing inflammatory changes in a mouse model of chronic lung inflammation,
and disease evolution can be followed in a longitudinal study. Quantitative
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measurements obtained from breath hold gated micro-CT images show dif-
ferences between the control and the diseased animals before function test
parameters, and discriminate the groups with higher sensitivity and speci-
ficity. The methods and results presented here may be the basis for further
studies involving other lung diseases, such as emphysema or asthma.
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3.2 ELASTASE-INDUCED EMPHYSEMA

3.2.1 INTRODUCTION

Emphysema and chronic bronchitis are the two possible forms of chronic
obstructive pulmonary disease (COPD). COPD is currently a major health
problem in the developed world, and it is predicted to be the third leading
cause of death worldwide by 2030 [98]. Emphysema is defined pathologically
as the permanent enlargement of the airspaces distal to the terminal bron-
chioles, accompanied by destruction of their walls, without obvious fibro-
sis [99,100]. The main cause of emphysema in humans is tobacco cigarette
smoke. Many studies in animals and humans have looked at the causes of
the initiation and progression of emphysema, being a protease-antiprotease
imbalance the most accepted hypothesis [7]. Briefly, continuous smoking
induces a chronic inflammatory process which results in abnormal secretion
of proteases, subsequent chemical damage to structural proteins and poten-
tially continuous collagen failure and tissue breakdown due to mechanical
forces [101–104].

In order to better understand emphysema, several animal models have
been developed and serve as important experimental tools [7]. For instance,
cigarette smoke exposure is known to cause emphysema in guinea pigs, as
well as in some mice strains [105]. Genetically modified mice can also be
used to study the effects of particular genes [53]. However, probably the
most widely used model is the elastase-induced emphysema. Administer-
ing porcine pancreatic elastase consistently causes airspace enlargement in
a large variety of animals, and it is relatively inexpensive and simple to
perform [7].

Several methods exist to quantify emphysema and related processes in
mice, which are essential for a correct detection and characterization of
the disease, as well as to assess the response in pharmacological studies.
We propose to characterize and compare a variety of currently available
methods, in order to analyze the potential and limitations of each technique,
as well as the possible synergies between them.

Histomorphometry is the most accurate method for emphysema quan-
tification [106], but it is an ex-vivo technique and cannot be used in follow
up studies. Spirometry is clinically used to diagnose COPD. Although
spirometry is not easily translated into animals, there are several invasive
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and noninvasive pulmonary function tests that can provide physiological
data about lung function in animals [20]. Micro-computed X-ray tomogra-
phy (micro-CT) can also be used to detect emphysema in rodents in vivo
with minimal or no invasiveness [11]. Finally, some studies have looked at
the role of inflammatory cytokines in COPD and emphysema [107], suggest-
ing that cytokine measurements could become relevant for both diagnosis
and treatment planning. In mice, the inflammatory response of the lungs
can be evaluated looking at protein or RNA cytokine levels, using blood
plasma or lung tissue extracts, respectively.

All these techniques can provide quantitative measurements of emphy-
sema and related processes. In this study we compare and characterize
the type of information provided by each of them and put that informa-
tion in the framework of the current standard i.e. histomorphometry-. To
this end, we have studied the initiation and progression of elastase-induced
emphysema in A/J mice using all five technical approaches, providing an
exhaustive characterization of this model, which is of great interest due to
its low cost and rapid development [7, 108].

3.2.2 MATERIAL AND METHODS

Two studies were done, one short-term and one long-term. 60 A/J
mice, 11 weeks old, were used in the short-term experiment. They were
divided into treatment (n=30) and control (n=30) groups. Animals of
the treatment group were intratracheally instilled with porcine pancreatic
elastase as described in section 2.1.

Five treated animals and five control animals were then sampled 1, 6, 12,
24 hours, 7 and 17 days after elastase administration. At each time point,
animals were subject to micro-CT thoracic imaging and pulmonary function
tests, and then were sacrificed while collecting samples for histomorphom-
etry and cytokine measurements (RNA and protein). 30 additional A/J
mice were used in a long-term experiment to confirm the trends seen in the
short time group. These mice were 8 weeks old and were equally divided
into control and treatment groups. Five treated and five control animals
were studied 4 weeks, 14 weeks and 34 weeks after elastase treatment. On
these animals, micro-CT imaging, pulmonary function tests and cytokine
concentration measurements in blood plasma were performed.
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Pulmonary function tests were performed following the method pre-
sented in section 2.3. For the sake of simplicity, only the results for the
single compartment model will be shown.

Micro-CT image acquisition was done according to the previosuly re-
ported protocol ( section 2.2). Lung segmentation was done according to
the method in section 2.5.2, and two parameters were computed in the
lung volumes: mean lung voxel intensity (MLVI) and relative volume be-
low −900Hounsfield Units (RVB −900 HU). This threshold was selected
because intensity values below −900 HU are not generally present in scans
of healthy mice (the RVB −900 HU is less than 5% in all healthy animals
of any age).

After micro-CT imaging, lungs were excised and fixed as explained in
section 2.4. Three different paraffin blocks were built from each lung, di-
viding the lobes in the following way: block 1 contained right lobes 1 and
2; block 2 contained right lobe 3 divided in two; and block 3 contained the
left lobe divided in two. The right lobe 4 was reserved for RNA extraction.
Three non-consecutive sections per paraffin block were stained with hema-
toxylin and eosin, resulting in 9 slides per mouse, each containing two lobe
pieces.

All lobe sections were then imaged at 10x magnification using a Zeiss
Axioplan 2ie microscope (Carl Zeiss, Jena, Germany). Lobular walls were
automatically segmented and analyzed in order to detect and remove ves-
sels and alveolar walls. This step was necessary because these structures
would otherwise affect the quantification of emphysema. Finally the Lm
and D2 parameters were automatically computed [106]. D2 represents the
mean area of the alveoli sections corrected with the standard deviation and
the skew to account for variability in alveolar sizes. In order to reduce com-
putation time, the analysis was executed in parallel on 5 machines. The
algorithms were programmed in hybrid Python/C++ code and made use
of the ITK library.

RNA cytokine expression was measured from the right accesory lobe.
The lobe was dissected and frozen in isopentane previously cooled in liquid
nitrogen. Tissue was then stored at -80◦C for further analysis. Lysate was
obtained by physic homogenization of the frozen tissue with a steel mor-
tar and a mixer mill (Retsch MM301). Total RNA isolation of the lysate
was performed using standard QUIAGEN RNeasy Micro KIT (including
the DNase step) following manufacturer’s instruction. RNA concentrations
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Table 3.1: Annealling temperature, primers and product size for the

genes used in the qRT-PCR process for measurement of

inflammatory cytokine RNA expression.

GENE Annealing Temperature Sense 5′ → 3′ Antisense 3′ → 5′ Product size (bp)
IL1-β 59◦C GGATGAGGACATGAGCACCT TAATGGGAACGTCACACACC 108
IL6 60◦C TCTCTGGGAAATCGTGGAAA TTCTGCAAGTGCATCATCGT 83
IP10 60◦C AATCATCCCTGCGAGCCTAT TTTTTGGCTAAACGCTTTCATT 131
KC 58◦C TGGGATTCACCTCAAGAACA TTTCTGAACCAAGGGAGCTT 137

MCP1 60◦C AGGTCCCTGTCATGCTTCTG GGGATCATCTTGCTGGTGAA 128
MIP1-α 60◦C CTGCCTGCTGCTTCTCCTAC CCCAGGTCTCTTTGGAGTCA 148
TNF-α 58◦C GCCTCTTCTCATTCCTGCTT AGGGTCTGGGCCATAGAACT 134
B2M 60◦C ACCCTGGTCTTTCTGGTGCT ATGTTCGGCTTCCCATTCTC 111

and the A260/A280 ratio were measured with a a NanoDrop ND-1000 (Nan-
oDrop Technologies, Montchanin, DE, USA). Absence of DNA contamina-
tion was checked by running samples on 2% agarose gels. 1 µg purified
RNA was reverse transcribed. Before transcription, RNA was denatured
for 5 min at 65◦C followed by cooling on ice. First strand cDNA synthesis
was carried out with SuperScript III Reverse Transcriptase (Invitrogen) and
random primers (Invitrogen) in a total volume of 20 µl. Reverse transcrip-
tion was performed at 50◦C for 50 minutes followed by 70◦C for 15 min.
Finally, RNase H was added to the reaction mixture followed by incuba-
tion for 20 min at 37◦C. cDNA was stored at -80◦C until RT-PCR analysis.
Each RNA sample was controlled for genomic DNA contamination by a re-
action mix without reverse transcriptase addition. All cDNAs were diluted
1:10 before being used as PCR template. qRT-PCR was performed with
an Applied Biosystems 7900HT Fast Real-time PCR System.

A set of seven inflammatory cytokines was selected based on a litera-
ture search on cytokines present in chronic obstructive pulmonary disease
(COPD). The selected cytokines were: interleukin 1-β (IL1-β), interleukin
6 (IL6), inmune protein 10 (IP10), keratinocyte chemoattractant (KC),
monocyte chemoattractant protein 1 (MCP1), macrophage inflammatory
protein 1 α (MIP1-α), and tumor necrosis factor α (TNF-α). In addi-
tion, Beta-2 microglobulin (B2M) was used as an endogenous control for
each sample, because it provided homogeneous results at different melting
temperatures. The primers for each gene are specified in Table 3.1.

The 2−∆∆CT method was used to quantify relative changes in gene
expression between control and treated animals, where:
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∆∆CT = (CT,Target gene−CT,B2M )Treated−(CT,Target gene−CT,B2M )Control

(3.1)

We calculated the median and interquartile ranges (IQR) of each pa-
rameter obtained with the different techniques, at all time points. The
control and elastase-treated groups were compared at each time point us-
ing the Mann-Whitney U test. To measure progression, the same test was
performed on the elastase-treated animals at successive time points. p val-
ues below 0.05 were considered statistically significant and are indicated in
the figures with an asterisk (*). The relationship between histomorphome-
tric and micro-CT measurements was analyzed by linear regression. The R
language and environment for statistical computing [109] and Open Office
Calc software were used for statistical analysis.

3.2.3 RESULTS

3.2.3.1 Micro-CT imaging

Figure 3.9 shows, at four time points, images of representative micro-CT
slices and three-dimensional reconstructions obtained from entire micro-CT
data sets, together with corresponding histological images. The increase in
emphysema extent can be clearly appreciated in the microCT images, and
confirmed by histological analysis. Histology, besides emphysema, reveals
recruitment of inflammatory cells and the presence of hemorrhage starting
6 hours after elastase aspiration and disappearing after day 7.

Figure 3.10 shows the temporal evolution of MLVI and RVB -900 HU,
automatically calculated from the micro-CT images. As can be seen from
the short-term experiment (Figure 3.10a), the MLVI values of elastase-
treated animals start being significantly lower than the corresponding con-
trol values 7 days after treatment. The long-term experiment (Figure 3.10b)
reveals that the MLVI values stabilize, while remaining significantly lower
than the controls in the last time points (14 and 34 weeks after treatment).

Regarding the RVB -900 HU values, significantly higher values can be
detected in the elastase-treated compared to the control animals 6 hours
after treatment (Figure 3.10c). The destructive effect of elastase in the
lungs -as revealed by the RVB -900 HU values- peaks at 14 weeks and
remains constant after that time point (Figure 3.10d). In summary, both
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measurements agree in detecting a maximum of lung destruction 14 weeks
after treatment, but RVB -900 HU is able to detect changes in the lungs
earlier than MLVI.

3.2.3.2 Pulmonary function tests

Lung resistance was not significantly affected in the animals treated
with elastase at any time point (data not shown). Figure 3.11 shows the
evolution of lung compliance (C) for the short- term (Figure 3.11a) and the
long-term (Figure 3.11b) experimental groups. Within the first 24 hours,
elastase-treated mice show lower compliance than the controls, implying
that elastase administration increases lung stiffness temporarily. At days 7
and 17 no statistically significant difference was found between the groups.
In contrast, elastase-treated mice show higher compliance from the fourth
week onwards, with an increment in the value depending on time of pro-
gression. These data suggest that compliance measurements reveal not
only emphysema development, but other processes involved in this partic-
ular model.

3.2.3.3 Histological analysis

The mean linear intercept (Lm) and a weighted mean measure of alve-
olar size (D2) were computed from histological samples to estimate the
extent of emphysema. The evolution of both parameters throughout the
experimental period is shown in Figure 3.12. From the first experimen-
tal hour, both parameters suffer a steady increase, stopping after the first
week. Although both parameters yield similar results, D2 is slightly more
sensitive to detect differences between the emphysematous mice and the
controls, as it has been previously reported [106].

3.2.3.4 Cytokine RNA expression

Cytokine RNA expression was measured as an indicator of inflamma-
tion. Figure 3.13a shows the RNA expression of inflammatory cytokines
in the elastase-treated mice compared to controls for the short-term exper-
imental group. During the first 24 hours, all the inflammatory cytokines
measured in the treated animals display significantly higher expression lev-
els than those measured in control animals. At day 7, only IL-6, MCP-1
and MIP1-α were overexpressed in the elastase-treated group. Interest-
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ingly, at day 17, the RNA expression levels of this set of cytokines returned
to control levels.

3.2.3.5 Cytokine concentration in plasma

Figure 3.13b shows the protein concentration of the inflammatory cy-
tokines in the plasma of treated and control mice. A marked, statistically
significant increase in the plasma concentration of IL-6, IP-10, KC, MCP1
and TNF-α was detected at 6 hours. At 12 hours the plasma levels of these
cytokines returned to control levels. The results for the long term exper-
iment are omitted because no differences with the controls were observed
at any time point.

3.2.3.6 Micro-CT/Histomorphometry correlation

The best correlation between image-based and histomorphometric em-
physema measurements was found between RVB -900 HU and D2, with a
coefficient of determination R2 of 0.63 (Figure 3.14). However, it can be
seen that mice with very high RVB -900 HU values do not have correspond-
ingly high D2 values, suggesting that D2 might saturate for very high levels
of emphysema. Generally, a tendency towards the upper right side (larger
D2, larger RVB -900 HU) can be seen as time progresses.

Finally, Figure 3.15 presents a summary graph containing the four most
representative parameters measured: RVB -900 HU from the micro-CT
images, D2 from histological section, compliance (C) from the pulmonary
function tests and IL6 RNA expression from the cytokine measurements.
The evolution of each parameter can be observed.
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Figure 3.9: In the upper row, sample transversal micro-CT slices

with areas of density lower than -900 HU in red, from

different time points. The second and third row show

front and back views of three-dimensional reconstruc-

tions, with main airways in solid blue, lungs in transpar-

ent blue and low density areas in red. The evolution of

emphysema can be seen, as the concentration and area

covered by the red volume increases (RVB -900 HU is

8.18% at 6 hours, 13.97% at 24 hours and 28.95% at

17 days, in these images). In the lower row, samples

of histological sections stained with H& E can be seen.

At 6 hours airspace size increases (D2 = 119.19 µm),

but there is also inflammation and hemorrhage in the

alveolar spaces. The latter reduce significantly at 24

hours, while airspaces keep growing (D2 = 183.67 µm).

Finally, at 17 days there is virtually no inflammation

visible and airspaces are larger than in previous time

points (D2 = 187.42 µm).
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Figure 3.10: Evolution of automatic measurements on micro-CT

images of the mice chest after elastase aspiration. The

MLVI for the short time (a) and long time (b) exper-

imental groups and the RVB -900 HU for the same

groups (c and d, respectively). Statistically signifi-

cant differences between the control and the elastase-

treated groups are indicated, as well as differences

between successive time points in the elastase group

(p < 0.05, *). First differences in MLVI appear at

day 7 days. Differences in RBV -900 HU are evident

already 6 hours after treatment and the parameter

keeps growing until the 14th week. The large differ-

ences in RBV -900 HU between the short time and the

long time groups are due to the age and size difference

between the mice in the two experiments.
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Figure 3.11: Evolution of lung compliance (C) after elastase aspi-

ration for the short time (a) and long time (b) ex-

perimental groups. Statistically significant differences

between the control and the elastase-treated groups

are indicated, as well as differences between successive

time points in the elastase group (p < 0.05, *). During

the first 24 hours, the elastase treatment causes a re-

duction in C, which disappears after the first week.

From 4 weeks onwards, elastase-treated mice show

higher C than controls.
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Figure 3.12: Evolution of Lm (a) and D2 (b) parameters derived

from histology at different times after elastase aspira-

tion. Statistically significant differences between the

control and the elastase-treated groups are indicated,

as well as differences between successive time points in

the elastase group (p < 0.05, *). Lm shows significant

differences at all time points except 6 hours, while for

D2 there are significant differences in all time points.

A tendency towards growing airspaces through time

can be observed, which stops after day 7.
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Figure 3.13: (a) Cytokine RNA expression fold change in the elas-

tase short time group. Controls at paired time points

were taken as reference. Each cytokine shows a differ-

ent time course, but generally a high expression can

be seen in the first hours, which decreases to normal

levels from 7 to 17 days, depending on the cytokine.

(b) Cytokine protein concentration in plasma change

in the elastase short time group. High protein levels

were detected 6 hours after elastase aspiration. The

concentration levels after 24 hours are similar to the

control group (data omitted for the sake of clarity).
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Figure 3.14: Relative Volume -900 HU measured from micro-CT

images plotted versus D2 measurement computed

from histological sections. A coefficient of determina-

tion R2 of 0.63 was computed between the two vari-

ables. The observations are separated according to

their time point. C stands for control and E for elas-

tase, and time points are indicated after the group.

Most control mice have been removed for the sake

of clarity. A tendency towards the upper right side

(larger D2, larger RVB -900 HU) can be seen as time

progresses.
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Figure 3.15: Graph combining the results of a micro-CT measure-

ment (Relative Volume Below -900 HU), a histomor-

phometric measurement (D2), a lung function mea-

surement (Compliance, C) and a RNA cytokine mea-

surements (Interleukin 6, IL6) for the elastase group.

Each measurement has been divided its the maximum

value, so that the y axis has a maximum value of 1 for

all curves and it is dimensionless. The very different

trend of each measurement can be observed.
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3.2.4 DISCUSSION AND CONCLUSION

Our aim was to evaluate and compare the information provided by five
methods that can be used to assess emphysema in animal models. To this
end, we have performed a detailed multiplatform study with a large animal
number at multiple time points, on the elastase-induced emphysema model
in mice. By studying our results globally, new light can be shed on the
advantages and drawbacks of each technique for emphysema assessment in
mice.

Histological analysis is the most used technique to quantify the extent
of emphysema in animal models [106]. Recently, several groups have shown
the validity of micro-CT for studying these models, showing good correla-
tion between micro-CT image measurements and histology [11,22,110,111].
The main advantage of micro-CT based emphysema quantification, espe-
cially if compared to histological analysis, is that animals do not need to be
sacrificed, thus allowing longitudinal studies. Moreover, three-dimensional
information on the emphysema extent and distribution can be gained with
relatively simple image analysis tools.

Compared to previous studies, our histomorphometry values were ob-
tained based on a considerably larger sample size. Furthermore, since we
concentrated most of the observation time points in the initial phase of
disease development, our results show that histomorphometry is more sen-
sitive than micro-CT at initial stages. This may be due in part to the
histologically detected inflammation, which causes important cellular re-
action, and thus increased X-ray absorption values in micro-CT images,
leading to lower intensity-based emphysema values. Among the micro-
CT measurements used, RVB -900 HU proved more sensitive than MLVI
in detecting emphysema. It must be noted that previous studies, which
did not use breath hold gated image acquisition, employed higher thresh-
olds (around -600 HU) [11, 22, 110]. This means that, as in humans, the
thresholds for emphysema quantification in small animals depend on the
acquisition protocol and scanner settings.

Regarding the functional tests, different methods exist to obtain lung
function parameters in mice, with a general trade-off between invasiveness
and accuracy [20]. The forced oscillation techniques can be performed in
a relatively short time with commercially available equipment, and pro-
vide the most accurate results. The main drawback is the need to perform
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tracheotomies or endotracheal intubation. We employed endotracheal intu-
bation, which might reduce measurement accuracy but allows longitudinal
studies. As expected, lung resistance (R) did not change in the elastase-
treated animals, since the mouse airways which contribute the most to the
resistive component of the lungs- are not largely affected by the elastase
treatment. However, lung compliance (C) did show remarkable changes in
our model. C reflects the ease with which the lungs can be expanded or,
in other words, the level of lung stiffness. Our results show that the initial
tissue loss does not cause an increase in C. Quite the opposite, C decreases
during the first 24 hours. It is only at week 4, when the emphysema ex-
tent revealed by histology and micro-CT is already very remarkable, that C
starts to increase. Previous studies have underlined that elastase-induced
emphysema is associated with an increase in lung compliance [112, 113],
and others have pointed at the lack of correlation between emphysema and
compliance in other models [114]. However, to the best of our knowledge,
this shift from early phase to late phase emphysema has not been yet re-
ported. To explain this shift, we hypothesize that it may be related to the
acute inflammatory reaction detected at very early stages: Confirming this
point, prominent presence of inflammatory cells and intraalveolar hemor-
rhage was histologically detected at 6 hours, remained at lower levels at 24
hours, and completely disappeared by day 7. This increased density may
compensate for the loss of alveolar walls, thus contributing to a decrease in
lung compliance. Accordingly, the C value reaches its minimum at 6 hours,
and starts recovering only after 12 hours, when the inflammatory recruit-
ment and hemorrhage levels decrease. Therefore, lung compliance must be
carefully used when assessing emphysema in animal models, especially if
concomitant inflammation exists.

Inflammatory cytokines can be regarded as markers of inflammatory
processes, and they can be measured either at RNA level or at protein
level. Measurement of cytokine RNA concentration on RNA extracted
from lung samples requires sacrifice. In contrast, blood extracted from liv-
ing mice can be used to measure cytokine protein concentration in plasma.
In agreement with histological observations, our cytokine data reveals an
acute inflammatory process starting immediately after treatment and last-
ing approximately 24 hours. This observation also supports the decrease
in lung compliance (C) observed shortly after elastase treatment. A set
of 7 cytokines was chosen, which represent a wide variety of inflammatory
mechanisms involving different cell types. At days 7 and 17, only very
faint signs of inflammation remain. Changes of cytokine concentrations in
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plasma were much less evident than in RNA expression in the lungs, sug-
gesting that the elastase-induced emphysema model has a limited systemic
effect. To the best of our knowledge, this is the first study in which the
cytokine concentration in plasma was measured for this animal model. We
confirmed that the elastase-induced model is characterized by a brief ini-
tial acute inflammatory response, but shows few or absent signs of chronic
inflammation. Therefore, at least in this model, cytokine expression is not
directly related to emphysema severity.

In the elastase mouse model, mice develop emphysema very rapidly
after elastase instillation or aspiration. Then, according to our data and to
previous reports, emphysema development slows down progressively, until
practically disappearing after the first month [7]. The model does not
require very specific equipment or highly sophisticated expertise, which
makes it very attractive for the study of the disease and the evaluation
of candidate treatments. Using a diverse set of quantification techniques,
we thoroughly characterized this model, adding dynamic, temporal and
correlative values that were not addressed in previous studies. Based on our
experimental results, direct elastase administration causes a severe alveolar
wall breakdown, inducing an acute inflammatory response. The latter may
also contribute to the initial protease-antiprotease imbalance caused by
elastase. However, once the elastase is cleared from the lungs, which occurs
at around 24 hours [115], inflammation clearly decreases, as well as the
tissue destruction rate. In this second phase, morphological changes of the
lung are progressively attenuated, until alveolar wall breakdown virtually
disappears, and we were not able to detect increased cytokine concentration
neither in the lungs nor in plasma. Thus, the main difference between
the elastase mouse model and the cigarette smoke-induced emphysema in
humans may be the early resolution of the acute inflammatory process and
the low degree of chronic inflammatory development.

One of the limitations of this study is the distribution of the sampling
time points. There is a considerable leap between the 24 hours and the 7
days points, as well as between the 7 days and the 17 days points. The
analysis of the biological events taking place on days one to seven after
elastase aspiration would have given extra information on each technique,
as well as on the disease development. However, instead we chose to cover
very thoroughly the first 24 hours, which are very relevant to assess the
sensitivity of the quantification techniques that we have studied.
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In conclusion, both histomorphometry and micro-CT give reliable mea-
surements of emphysema. However, micro-CT allows longitudinal studies,
thus reducing the required number of animals and providing more relevant
information on the progression of the disease. The variables automatically
computed from micro-CT images can be used as measurements of the extent
of emphysema in preclinical trials. Lung compliance and cytokine expres-
sion provide different information, which can be related to the presence of
emphysema and concomitant inflammation but does not reveal its extent.
These measurements can be of interest depending on the animal model and
the particular processes under study. Our results confirm that the elastase-
induced model of emphysema is characterized by an acute inflammation
within the first hours and a subsequent decreasing rate of tissue loss.
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3.3 COMBINED MODEL: ELASTASE-INDUCED EMPHYSEMA
AND URETHANE-INDUCED CARCINOGENESIS

3.3.1 INTRODUCTION

It has been recently shown that both components of COPD, emphysema
and airflow obstruction, are related to lung cancer in high risk popula-
tions [116,117]. It seems that patients with COPD are more likely to suffer
lung cancer, compared to other patients with similar smoking history and
age but without COPD. This observation raises the question of what is the
biological link between these two apparently unrelated diseases. In Section
3.2, the inflammatory component of COPD and the potentially resulting
protease-antiprotease imbalance was underlined, and the link between in-
flammation and cancer has been discussed since as early as 1863 [118].
Therefore, the currently most accepted hypothesis is that inflammation
triggered by cigarette smoke can be a common origin for both COPD and
lung cancer [19]. Although the precise mechanisms are unknown, it has
been suggested that bronchoalveolar stem cells (BASCs) involved in tissue
repair might be partially responsible for carcinogenesis.

Houghton et al. underlined the relevance of animal models to under-
stand the link between COPD and lung cancer [19]. Following that intu-
ition, we have developed and analyzed an animal model which combines em-
physema and lung cancer. In particular, we have combined two well-known
models into a single model: elastase-induced emphysema and urethane-
induced lung cancer. Urethane induces lung hyperplasia, adenoma, and
adenocarcinoma in a time-dependent manner in A/J mice [119], and the
elastase-induced emphysema model has been analyzed in section 3.2 of this
thesis.

We analyzed the hypothesis that emphysema might alter tumorigene-
sis and tumor growth by comparing the elastase-urethane combined model
with the simple urethane model. The technique chosen to study the pres-
ence and size of nodules was micro-CT, which has been previously used for
this purpose [12,120].

3.3.2 MATERIAL AND METHODS

A total of 33 A/J mice initially aged 8 weeks were used, divided in two
groups: a urethane (simple) model and an elastase-urethane (combined)



104 Chapter 3. Experiments

model. Animals from the simple model were injected with urethane as
explained in section 2.1. The combined model was created by first admin-
istering porcine pancreatic elastase by aspiration and injecting urethane
one week later (see section 2.1).

In the simple model group, 3 animals were scanned twice, at 14 and
34 weeks after urethane injection. Other 5 animals were scanned at each
time point, and sacrificed for histological analysis. In the combined group,
8 animals were scanned and sacrificed at week 14, and 8 at week 34.

The protocol explained in section 2.2 was applied to all animals, to
obtain micro-CT images.

Nodules were detected by consensus between a radiologist and a small
animal imaging technician. To this end, a modified version of the Point-
Picker plugin for ImageJ was used. The viewer was set at a lung window for
visualization (level -650 HU, window 1500 HU). Measurements of largest di-
ameter in axial slices were performed by a small animal imaging technician,
using the ImageJ tool.

The mean and standard deviations of the nodule number and size were
computed, and the Mann-Whitney U test was used to compare the two
groups. A p-value of 0.05 was set as threshold for statistical significance.
The tumor sizes were plotted in histograms, in order to compare their dis-
tributions. To further quantify the possible differences in size distributions,
a cumulative distribution function (CDF) was estimated for each group at
each time point, directly from the data. The CDF represents the probablity
that the random variable X (in this case nodule diameter) takes on a value
less than or equal to x:

FX(x) = P (X ≤ x). (3.2)

The R language and environment for statistical computing [109] and
GNU Octave [93] were used for the statistical analysis.

3.3.3 RESULTS

At 14 weeks, animals of the combined model had in average 46.8% fewer
nodules than those of the simple model. However, at week 34 there were no
statistically significant differences between both models. Neither was any
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Table 3.2: Mean and standard deviation of number of nodules and

nodule size for the the combined and the simple lung

carcinoma models at 14 and 34 weeks after treatment.

Statistically significant differences are indicated with an

asterisk (*). Note the large standard deviation of the

nodule sizes in the combined model at week 34.

Time Point
Number of Nodules Nodule Size

Urethane Urethane-Elastase Urethane Urethane-Elastase
14 weeks 19.75* (5.44) 10.50 (6.32) 13.62 (4.41) 13.17 (4.02)
34 weeks 29.63 (6.50) 24.75 (6.61) 24.04 (8.59) 25.59 (17.42)

difference in the mean nodule size at week 14 nor at week 34. However, the
sizes of the nodules in the combined model at week 34 showed considerably
larger variability than the simple model (standard deviation 17.42 vs. 8.59).
These results are shown in Table 3.2.

The distribution of the nodule sizes at 14 and 34 weeks is given in Figure
3.16. At week 14 no difference can be seen, but at week 34 a slight tendency
towards largest nodules in the combined model can be detected. This can
be also seen in Figure 3.17, where the CDF for the two groups at 14 and
34 weeks is plotted. At week 14 no clear tendency can be seen, but at 34
weeks the combined model displays a slower increase of the CDF curve for
large diameters.

3.3.4 DISCUSSION AND CONCLUSION

The clinical observation that COPD and lung cancer are related arises
the question of what is the basis of this relationship. In this preliminary
study, we compared the nodule number and size in two different animal
models: a model of urethane-induced lung cancer and a combined model,
adding elastase-induced emphysema to the simple model.

Regarding the number of nodules, the fact that the simple model con-
tained fewer nodules than the combined model at 14 weeks was an unex-
pected outcome. A possible explanation is the reduced lung tissue density
in the combined model, caused by emphysema. If we assume that the prob-
ablity of developing a nodule is proportional to the tissue volume that can
be affected, a reduced tissue volume might be responsible for a reduced
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Figure 3.16: Histograms of nodule diameters for the urethane and

combined groups 14 weeks (a) and 34 weeks (b) after

initiation. Generally, there are fewer nodules in the

combined model. At 14 weeks the distributions are

comparable, but at 34 weeks a tendency towards large

nodules can be seen in the combined model.

nodule number. Even though at 34 weeks the difference is not statistically
significant, in average animals in the simple model also have more nodules
in the lungs.

The nodule size in the two groups was similar at week 14. However,
at week 34 a slight tendency was observed towards large nodules in the
combined model. Again, this result was not completely expected. Urethane
is known to produce hyperplasia detectable in histological sections around
4 weeks after injection. The most extended hypothesis being that it is
the inflammatory component of COPD which promotes tumorigenesis [19],
and knowing that this emphysema model causes an acute inflammatory
response that decreases in time and virtually disappears after the first week
(see Section 3.2), we expected to detect differences between the simple and
the combined model at earlier times.

We hypothesize that emphysema imposes an initial burden to nodule
initiation, probably due to the reduced tissue volume. However, once a
nodules appears, it is likely to grow at a faster rate than those caused by
urethane only. It is still unclear why this happens, a possibility being that
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Figure 3.17: Cumulative density distribution for the urethane and

combined groups 14 weeks (a) and 34 weeks (b) after

initiation. CDF-s are comparable at week 14, but at

34 weeks the combined model has a higher concentra-

tion of nodules larger than 1500 µm.

the inflammation involved in emphysema may generate some advantages for
nodule growth. However, in section 3.2 it was shown that the inflammatory
component of this emphysema model is very low. Another possibility is
that an emphysematous environment, with less tissue density and degraded
cellular matrix, might be beneficial to tumor growth.

Our observations were limited to nodule number and size as detected on
a reduced number of micro-CT images. Therefore, care must be taken when
deriving conclusions from the data. Before concluding that emphysema
increases the probability of developing large nodules, the histological nature
of those large nodules has to be studied, to determine whether they indeed
correspond to different nodule types. Moreover, detected differences were
rather slight, and new experiments would be important to confirm the
results.

The chosen animal model combines lung cancer and emphysema. We
started by elastase aspiration, and a carcinogen (urethane) was injected one
week after. As the acute inflammation caused by elastase aspiration dis-
appears in a few days (see Section 3.2), studying whether a different order
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or timing in the process would change the experiment outcome would be
of great interest. In particular, it would be interesting to see whether as-
pirating elastase after urethane injection, or administering smaller elastase
doses at regular time intervals would result in a different nodule phenotype.
Other models of COPD and lung cancer should also be considered. Previous
experiments combining urethane and silica-induced chronic inflammation
did not have any influence on tumorigenesis [121], but other models, such
as cigarette smoke-induced COPD, might be more appropiate.

In further studies, modifying or adding observation time points should
also be considered. Extra nodule measurements between the 14th and the
34th weeks would provide more information on nodule growth rate, which
is a key parameter to define their nature. With information on growth rate,
more directed histological or genetical studies could be performed.

In summary, we have studied a simple model of lung cancer and a
combined model of emphysema and cancer. A slightly increased probability
of developing large tumors in the combined model was observed. Further
experiments to confirm and interpret the results are required.



The most exciting phrase to
hear in science, the one that
heralds new discoveries, is not
’Eureka!’, but ’That’s funny...’

Isaac Asimov, writer and
professor of biochemistry

4
Conclusions

In this chapter, the main implications of the thesis are summarized.

COPD and lung cancer are among the deadliest diseases in the devel-
oped world. Animal models of both diseases have been developed, which
are very useful to study their pathological mechanisms and potential treat-
ments. In this thesis, a set of methods have been developed for the analysis
of mouse models of lung disease. These methods have been validated and
applied to the characterization of several pulmonary disease models.

A protocol was devised for micro-CT and pulmonary function test data
acquisition. The protocol provides high quality images with very high ani-
mal survival rate. Advanced image analysis algorithms were also developed,
validated and applied to data analysis. In particular, algorithms for airway
and lung segmentation and measurement were implemented, and tested in
animals suffering from different diseases. Relevant contributions were also
made in the field of atlas-based segmentation, which has applications in
multiple medical imaging modalities and segmentation problems. Although
only basic atlas-based methods were applied in our experiments with mice,
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results on other image modalities suggest that specific multi-atlas methods
might also be useful.

The methods developed were applied to characterize different models of
lung disease. In a silica-induced model of chronic pulmonary inflammation,
the information provided by pulmonary function tests and micro-CT image
analysis was compared and contrasted with histology. We showed that using
breath hold gated micro-CT and automated image quantification, good
correlation with histomorphometry can be obtained. Moreover, high animal
survival rates were achieved. This implies that longitudinal studies can
be performed, which reduce the number of required animals by providing
dynamic information on disease evolution. It was also concluded that, in
this animal model, micro-CT based analysis detects pathological changes
with higher sensitivity than tests of pulmonary function.

The widely used elastase-induced emphysema model was thoroughly
studied. Five different techniques were applied on a large number of an-
imals: micro-CT, histomorphometry, pulmonary function tests, RNA cy-
tokine expression and cytokine concentration in plasma. The information
provided by each method was evaluated and compared. We concluded that
both histomorphometry and micro-CT give reliable measurements of em-
physema. However, micro-CT allows longitudinal studies, thus reducing
the required number of animals and providing more relevant information
on the progression of the disease. Lung compliance and cytokine expression
provide different information, which can be related to the presence of em-
physema but does not necessarily correlate with its extent. These measure-
ments can be of interest depending on the animal model and the particular
processes under study. Our results confirm that elastase-induced emphy-
sema develops rapidly at the beginning along with an acute inflammation,
and both disease progress and inflammation are reduced afterwards.

Finally, a mouse model combining emphysema and lung cancer was
analyzed and compared to a model of lung cancer without emphysema.
We observed a tendency towards larger nodules in the combined model,
suggesting that emphysema might increase the probability of having large
tumors. However, this observation needs to be confirmed in further studies.
These studies should also address the mechanisms through which emphy-
sema and lung cancer are related. Our detailed characterization of the
elastase model should be considered when designing new models to test
different hypotheses.
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In this thesis, methods have been devised and applied for both data
acquisition and analysis in mouse models of lung disease. In future work,
data acquisition methods might be improved by the use of more modern
technology. For instance, most recent fast flat panel micro-CT allows for
image acquisition in few seconds, which would ease the process considerably.
Regarding the image analysis, the methods presented in this thesis will be
of use for basic disease progress assessment in pre-clinical studies. However,
more detailed analysis, such as emphysema or nodule localization studies,
will require additional tools.

In summary, several methods have been developed and used to study
different mouse models of lung disease. Automated analysis of micro-CT
images, combined with other techniques, allowed for an extensive character-
ization of the models. Developed techniques and model characterizations
will be key in further studies, involving drug testing or different animal
models.



112 Chapter 4. Conclusions



A
Spatially Variant Convolution with Scaled

B-splines

We present an efficient algorithm to compute multidimensional spatially
variant convolutions -or inner products- between N-dimensional signals and
B-splines -or their derivatives- of any order and arbitrary sizes. The mul-
tidimensional B-splines are computed as tensor products of 1D B-splines,
and the input signal is expressed in a B-spline basis. The convolution is
then computed by using an adequate combination of integration and scaled
finite differences as to have, for moderate and large scale values, a com-
putational complexity that does not depend on the scaling factor. To show
in practice the benefit of using our spatially variant convolution approach,
we present an adaptive noise filter that adjusts the kernel size to the local
image characteristics and a high sensitivity local ridge detector.

A.1 INTRODUCTION

The convolution of an image with scaled Gaussian kernels -or their
derivatives- is a basic operation in many image processing tasks such as
smoothing or feature detection using rotating matched filters [122–125].
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Specifically, we are interested in efficiently computing convolutions with
kernels whose size vary locally within the image. The common drawback of
this type of algorithms is a computational complexity proportional to the
size of the convolution kernel, which can be quite high on average.

Unser et al. [126] were the first to prove the convergence of B-splines
to Gaussians. Following their seminal work, and inspired by the work of
Heckbert et al. [127], we previously presented a 1D algorithm that computes
spatially variant convolutions between spline signals and an approximation
of scaled Gaussian kernels based on B-splines [128]. The algorithm is based
on a generalized two-scale relation that expresses the equivalence between
an arbitrarily expanded B-spline and its unit-scaled counterpart. The al-
gorithm performs the integration of the B-spline coefficients using running
sums followed by an inner product with a pre-calculated finite difference
filter kernel. The values and locations of the filter kernel depend on the
scale value while the number of taps remains constant. This results in an
algorithm that has a fixed computational cost per pixel, regardless of the
scale. Based on the same principles, Chaudhury et al. [129] approximated
arbitrarily rotated 2D Gaussian windows as tensor products of four radially
uniform zero-degree splines.

In this chapter, we extend toND the 1D spatially variant, adaptive filter
presented in [128]. We choose to approximate the anisotropic Gaussian
windows as tensor products of 1D B-splines aligned to the main axes. This
way, our algorithm results in a simpler implementation than Chaudhury’s,
and can be explicitly and straightforwardly extended to ND. Furthermore,
since the components of the scale vector are of arbitrary size, our method
adapts well to the anisotropy of the sampling rate (e.g., the z-dimension
in confocal microscopy data or the temporal dimension in any time-lapse
application). In the implementation of the ND algorithm, we take into
account that i. the integration of the B-spline coefficients is a separable
operation and ii. the subsequent filtering with a FIR differentiation mask
cannot be performed in a separable fashion when the kernel is spatially
variant.

We illustrate the use of the algorithm with two examples of application:
an edge preserving smoothing filter and a ridge detector. Our spatially vari-
ant, adaptive filter performs image denoising by convolving with a kernel
whose size matches the underlying local image characteristics. Wide kernels
are used in smooth regions and narrow ones in edges and highly textured
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areas. The filter was first evaluated quantitatively on phantoms and then
qualitatively on real image data. Our results improved those obtained using
fixed scale B-spline filtering or anisotropic diffusion.

The second example is a ridge detector. Since our algorithm can ap-
proximate derivatives of isotropic Gaussians, we use it as a framework to
construct steerable filters of the class introduced by Freeman and Adel-
son [130]. Then, by imposing the flatness criterion introduced in Meijering
et al. [131], we design a B-spline ridge detector, which is more sensitive
to elongated image structures than the standard template (i.e., the sec-
ond derivative of a B-spline). Moreover, we present a novel, truly spatially
variant ridge detector based on a local optimization, which performs com-
parable to a less efficient classical ridge detector, using the same scale range
and resolution. Finally, we show a qualitative example of filament detection
on a real fluorescent microscope image.

The chapter is organized as follows. In Section A.2, we review the linear
operators and B-spline related expressions that are useful for our work. We
start Section A.3 with the derivation of the convolution algorithm of 1D
signals with B-splines (or their derivatives). We end the section presenting
the extension of the algorithm to N -dimensions. Section A.4 deals with the
description of an efficient implementation. In Section A.5, we analyze the
propagation of round-off errors and propose a number of error minimization
strategies. Section A.6 presents the construction of B-spline ridge detector.
Two examples of application are given in Section A.7: Feature adaptive
denoising and ridge detection. We end in Section A.8 with some concluding
remarks.

A.2 OPERATORS AND DEFINITIONS

In this section, we define operators and present some B-spline expres-
sions that will be useful for the derivation of the ND spatially variant
algorithm. As we are working in a Cartesian lattice, we can use tensor
products to implement the extension of operators and expressions from 1
to N -dimensions. In this section, we neglect boundary condition issues by
assuming signals f(x), x ∈ R and discrete sequences sk, k ∈ Z that are
specified over the entire line.
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A.2.1 FINITE DIFFERENCE OPERATORS

The forward finite difference operator at scale a ∈ R+ is defined as
∆1

a(x) = δ(x)−δ(x−a). In the Fourier domain, we have ∆̂1
a(e

jaω) = a−1(1−
e−jaω). The n-order finite difference is ∆n+1

a (x) = a−(n+1)
∑n+1

k=0 q(k)δ(x−
ak) where q(k) =

(
n+1

k

)
(−1)k are the modulated binomial coefficients and

δ is the Dirac’s delta distribution.

The inverse finite difference operator is defined as ∆−1
1 (x) =

∑
n≥0 δ(x−

n). In the Fourier domain, we have ∆̂−1
1 (ejω) = (1− e−jω)−1.

Note that by definition, ∆−(n+1)
1 ∗∆n+1

1 ∗s = ∆n+1
1 ∗∆−(n+1)

1 ∗s = s, ∀n.

A.2.2 GENERALIZED TWO SCALE RELATION

The centered B-spline βn(x/a) = βn
a (x) of degree n, at scale a ∈ R+

can be related to its unit-scaled counterpart as

βn
a (x) = ∆−(n+1)

1 (x) ∗∆n+1
a (x) ∗ βn

1 (x+ τ) (A.1)

with τ = (a−1)(n+1)
2 . See [128] for the proof. Note that this is a generalized

version of the two-scale relation encountered in wavelet theory.

A.2.3 DERIVATIVES OF THE SCALED CENTERED B-SPLINE

The derivative of order d ≤ (n + 1) ∈ N of the centered B-spline of
degree n and scale a ∈ R+ is [122]

dβn
a (x)
dxd

= ∆d
a(x) ∗ βn−d

a

(
x+

ad

2

)
(A.2)

= ∆−(n+1−d)
1 (x) ∗∆n+1

a (x) ∗ βn−d
1

(
x+ τ ′

)
.

(A.3)

with τ ′ = (a−1)(n+1)+d
2 with β−1

1 (x) = δ(x). See [132] for the proof. To
be able to generalize the derivations, we introduce the notation βn

a,d(x) to
denote the d-derivative of the B-spline βn

a (x). Note that βn
a,0(x) = βn

a (x).
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A.2.4 SPLINE INTERPOLATION

We assume that the continuous input signal fi(x) is a spline that inter-
polates the discrete input samples fi(k). We can write

fi(x) = (c ∗ βm
1 )(x) (A.4)

where ck = fi ∗ (bm)−1 and bm = βm
1 (x)|x=k as shown elsewhere [122].

In the rest of the chapter and for the sake of simplicity the unit-scale in-
dex will drop off from the finite difference operators and B-splines. Namely,
βn

1 = βn, ∆n+1
1 = ∆n+1 and ∆−(n+1)

1 = ∆−(n+1).

A.3 DERIVATION OF THE ALGORITHM

A.3.1 1D CONVOLUTION

The discrete output f0(b) of the convolution of the input function fi(x), x ∈
R with a scaled B-spline (or its d-derivative) βn

a,d evaluated at position b ∈ Z
is

f0(b) = (fi ∗ βn
a,d)(b). (A.5)

The expression above can be written as in [128]

f0(b) = (g ∗ ζa)(b) =
∑

l∈Z
g(b− l)ζa(l) (A.6)

where
g = ∆−(n+1−d) ∗ c (A.7)

is an integrated signal and

ζa(l) = (∆n+1
a (·) ∗ βm+n+1−d(·+ τ ′))(l) (A.8)

is the 1D filter kernel. Note that ζa corresponds to the sampled (n + 1)-
finite differences of a shifted B-spline of degree (m+n+1− d). Due to the
finite support of the B-splines, the size of the filter kernel is finite. Namely,
the filter kernel size is

M = m+ n+ 1− d+ da(n+ 1)e. (A.9)
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Proposition A.3.1. The convolution Eq. (A.6) can be written as an inner
product of the integrated signal g with a filter kernel wa of scale-dependent
size M

f0(b) =
M−1∑

k=0

g(b+ k + k0)wa(k) (A.10)

where b+ k0 is the first significative index of g for each filter kernel with

k0 = −b((a+ 2)(n+ 1) +m+ 1− 2d)/2c (A.11)

and

wa(k) = a−(n+1)
n+1∑

r=0

q(r)βm+n+1−d(−ar − k − k0 + τ ′). (A.12)

The proof of the above proposition follows:

Proof. Inner-Product using a Filter Kernel of Scale-Dependent Size

The support of the filter kernel ζa is [mL,mU ] = [−(m+n+ 2− d)/2−
τ ′, (m+n+2−d)/2+a(n+1)−τ ′].We take advantage of the finite filter kernel
size to reduce the number of terms on the sum over l. We make the following
change of variable b− l = k + k0, where k ∈ [kL, ..., kU ] = [0, ...,M − 1], to
write the inner product

f0(b) =
M−1∑

k=0

g(k + k0)wa,b(k) (A.13)

where k0 = db − a(n + 1) − (m + +2 − d)/2 + τ ′e is the solution of
mL = b − kU − k0 (mU = b − kL − k0) and wa,b(k) = ζa,b(b − k − k0) =
a−(n+1)

∑n+1
r=0 q(r)β

m+n+1−d(b− ar − k − k0 + τ ′).

In practice, we are only interested in values of b that correspond to the
discrete locations of the original samples. Then, we can use the fact that
wa,b(k) = wa,0(k − b) = wa(k − b) if b ∈ Z, i.e., the value of the weights
does not depend on the position b. Therefore, the algorithm is equivalent
to a discrete convolution. The expression (A.13) can then be re-written as
eq. (A.10).
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Proposition A.3.2. Alternatively, the convolution Eq. (A.6) can be writ-
ten as an inner product of the integrated signal g with a filter kernel χa of
scale-independent size [128]

f0(b) =
n+1∑

r=0

m+n−d∑

p=0

g(b+ p+ p0)χa(r, p) (A.14)

where b+ p0 is the first index of g for each cluster with

p0 = −b(2ar − (a− 2)(n+ 1) + (m+ 1− 2d))/2c (A.15)

and

χa(r, p) = a−(n+1)q(r)βm+n+1−d(−ar − p− p0 + τ ′). (A.16)

The number of weights in the filter kernel χa is (n + 2) in the first
dimension (the number of coefficients of the finite differences ∆n+1

a ) and
(m + n + 1 − d) in the second dimension (the support of the B-spline
βm+n+1−d). This takes into account that the last B-spline sample is always
zero. The proof of the proposition is shown below:

Proof. Inner Product using a Filter Kernel of Scale-Independent Size From (A.6)
and (A.8) we can derive the following expression f0(b) =

∑n+1
r=0

∑
l∈Z g(b−

l)χa,b(r, l) where the 2D filter kernel χa,b(r, l) is defined as χa,b(r, l) =
a−(n+1)q(r)βm+n+1−d(b− ar + l + τ ′).

If we do the change of variable l = −(p+ p0) and take into account the
fact that χa,b(r, l) = χa(r, l − b), if b ∈ Z, we have (A.14).

A.3.2 ND CONVOLUTION

Now, we would like to calculate the ND convolution of the input spline
fi(x),x = (x1, ..., xN ) ∈ RN with a scaled B-spline kernel (or one of its
derivatives) βn

a,d(x) =
∏N

i=1 β
n
ai,di

(xi), being a = (a1, ..., aN ) ∈ RN
+ and

d = (d1, ..., dN ) ∈ NN . The discrete output f0(b) evaluated at integer
positions b = (b1, ..., bN ) ∈ ZN can be expressed as

f0(b) =
(
fi ∗ βn

a,d

)
(b). (A.17)
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Proposition A.3.3. The convolution in eq. (A.17) can be written as the
inner product of the integrated signal g with a filter kernel wa of scale
dependent size M as follows

f0(b) =
M−1∑

k=o

g(b + k + k0)wa(k) (A.18)

where

• The matrix g contains the ND integrated spline coefficients where
each 1D component is given by (A.7).

• Each index ki,0, i = 1, ..., N , of the vector k0 = (k10, .., kN0), is given
as (A.11).

• o = (0, · · · , 0) is an all-null vector of length N .

• The size of the filter kernel is M = M1×M2×· · ·×MN with Mi, i =
1, ..., N, as in (A.9).

• The filter kernel of scale-dependent size is calculated as wa(k) =∏N
i=1wai(ki) with wai defined as in (A.12).

Proposition A.3.4. Alternatively, the convolution in eq. (A.17) can be
written as an inner product of the integrated signal g with a filter kernel χa

of scale-independent size as follows

f0(b) =
u∑

r=o

u′∑
p=o

g(b + p + p0)χa(r,p) (A.19)

where

• Each index p0i, i = 1, ..., N, of the vector p0 = (p01, ..., p0N ) is given
as (A.15).

• u = (n+ 1, · · · , n+ 1) is an all (n+ 1) vector of length N .

• u′ = (m+ n− d1, ...,m+ n− dN ) is a vector of length N .

• The filter kernel of scale independent size is calculated as χa(r,p) =∏N
i=1 χai(ri, pi) with χai defined as (A.16).
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Figure A.1: Schematic representation of the algorithm that effi-

ciently calculatesND spatially variant convolutions (or

inner products) with scaled B-splines (or their deriva-

tives). M is the scale image that at each pixel b stores

the appropriate scale vector a.

A.4 EFFICIENT IMPLEMENTATION

We now present the implementation of the convolution of the input fi(b)
with a scaled B-spline βn

a,d(x). Figure A.1 shows a schematic representation
of the algorithm.

A.4.1 FILTER KERNELS

As explained in Section A.3.B, the ND filter kernels (wa and χa) are
efficiently computed as a separable tensor product of the 1D components
(wa1 and χai , i = 1, ..., N). In consequence, the ND filter kernels inherit all
the convenient properties of their 1D components. Most importantly, the
weights of the ND filter kernels are independent of the image to be filtered.
Therefore, they can be pre-calculated for each scale and stored in a look-up
table which is valid for any image [128]. The ND filter kernel wa is the
spatially explicit version of χa. The size of wa is (m+n+1−di+dai(n+1)e)
per dimension i. The maximum number of non-null weights of wa equals
(n+ 2)(m+ n+ 1− di) per dimension i. The ND filter kernel χa has the
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Figure A.2: 2D filter kernel examples for m = n = 1 and scale val-

ues a = (8, 8) (Left) and a = (2, 2) (Right). The filter

kernel size per dimension is 19 and 7, respectively. The

frequencies of non-null weights are 22.44% and 100%,

respectively. The background grey value corresponds

to zero, darker grey to negative values and lighter grey

to positive values.

structure of an a trous filter [128]. In particular, smoothing is done by
filtering the coefficients g with (n+2) clusters of size (m+n+1− di) each
cluster being separated from its neighbors a distance ai at each dimension.
When the scale ai is smaller than the cluster size ai < (m+ n+ 1− di) in
any of the dimensions, the clusters overlap, and the most efficient approach
to compute f0(b) is to calculate the convolution with the compact filter
wa. When filtering at locations with moderate or large scale values, ai >
m+n+1−di,∀i, an efficient algorithm will only take into account the non-
null filter weights χa at the appropriated coefficient positions. Figure A.2
(left) shows an example of a filter kernel wa for m = n = 1 and a = (8, 8).
The filter kernel size is 361 and the number of non-null weights (which
form χa) is 81. The reduction in computational complexity when filtering
with χa is in this case 77.56 %. See Figure A.2 (right) for an example of a
compact filter kernel wa for m = n = 1 and a = (2, 2).

A.4.2 GLOBAL PREPROCESSING

The spline coefficients and the running sums are calculated over the
entire signal at once, with a significant saving in computational complexity
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over a point-wise implementation. This is possible because the outputs (c
and g) do not depend on the scale vector a [128].

A.4.2.1 Calculation of the Spline Coefficients

To calculate the spline coefficients c over the entire image, we apply the
1D IIR inverse interpolation filter (bm)−1 successively to each dimension of
the data. The filter is implemented as described in [122].

A.4.2.2 Computation of the Inverse Finite Differences

The running sum operator ∆−1
1 is applied (n+1−di)-times successively

to each i-dimension of the data. Note that the operator ∆−1 can be defined
as the running sum filter yk = (∆−1s)k =

∑
n≤k sn that can be implemented

recursively [132].

A.4.3 SPATIALLY DEPENDENT FILTERING

The output of the filter f0(b) at each position b is calculated by non-
separable ND filtering with the most appropriate set of weights, wa or χa.
The finite difference filter kernel depends on the value of the scale vector
a, which can be different at each point. A different filter kernel needs to be
applied at every point. In other words, the operation is non-separable.

Note that if a unique scale vector a is used, the finite difference filter
kernel will be the same for the whole image and the scheme reduces to a
spatially-invariant filtering. In that case the algorithm can be implemented
in a separable fashion with the corresponding reduction in computational
complexity.

A.4.4 BOUNDARY CONDITIONS

We extend our 1D signal {sk}k=0,...,L−1 using symmetric mirror bound-
ary conditions defined as s−k = sk and sL−1−k = sL−1+k, for k = 0, ..., L−1.
As proposed in [132], we work with zero-mean signals, i.e., s = s′−T . This
way we implement the running-sums -inverse finite difference operator- in a
way that ensures consistent propagation of the boundary conditions. The
mean T is calculated over the period of the extended signal T = (2L −
2)−1

(
2

∑L−1
k=0 s

′
k − s′0 − s′L−1

)
. Thus, assuming that s is zero mean, the
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inverse finite difference operator is given by
(
∆−1

1 ∗ s)
k

=
∑kmod (2L−2)

l=0 sl.
For zero mean signals, the application of the above operator reverses the
symmetry of the boundary conditions, as was proven in [132]. That is
to say, if the input signal has symmetric boundary conditions, the out-
put will have anti-symmetric boundary conditions defined as sk = −s−k−1

and sL−1+k = −sL−2−k, for k = 0, 1, ..., L− 1. Our implementation of the
spatially dependent filtering considers the appropriate boundary conditions
resulting from the computation of the running sums.

A.4.5 NORMALIZATION

A.4.5.1 1D Normalization

Since the mean T was subtracted before the inverse finite difference
filtering, it must be restored at the final step of the algorithm. Nevertheless,
to get the true output f0 at a given point b, we have to multiply the
previously subtracted mean T by a normalization factor Fa that corrects
for the intensity scaling caused by the computation of the inner product
with the filter kernel, for a /∈ Z. The normalization factor Fa is computed
as:

• Inner product using a filter kernel of scale-dependent size: Fa =∑M−1
l=0 (k + k0)(l)n+1−d/(n+ 1− d)! · wa(l).

• Inner product using a filter kernel of scale-independent size: Fa =∑n+1
r=0

∑m+n−d
l=0 (p+ p0)(r, l)n+1−d/(n+ 1− d)! · χa(r, l).

The normalization factor can be pre-calculated at the same time as the
finite difference filter kernel and stored in a look-up table.

As an example, let us consider the input signal to be a delta fi(b) = δ(b)
for b = −3 : 3, interpolated with a delta basis (m = −1) and convolved with
the B-spline of degree zero (n = 0). The integral signal does not depend on
the scale, and the difference between the values is given by (fi − T ), with
T = 0.1667. For a = 1, the filter kernel is [−1, 1], so the inner product
recovers the signal (fi − T ) and the addition of T suffices to recover β0

1(b).
For a = 1.1, the filter kernel is 0.9091[−1, 1], and the inner product becomes
0.9091(fi − T ). Therefore, to recover the true output β0

1.1(b), we need to
add F1.1 · T with F1.1 = 0.9091.
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Figure A.3: Illustration of the implementation of the 1D algorithm.

A sampled scaled B-spline β0
π(b) with b = −8 : 8 is

constructed: (a) Input: δ(k) − T with k = −8 : 8
and T = 0.0625. (b) Integral (running-sum result) of

(a). (c) Result of the inner products given by: eq.

(A.10) with wπ = [−0.3103 0 0 0.3183] and eq. (A.14)

with χπ = [−0.3103; 0.3183]. (d) Output: β0
π(b) with

b = −8 : 8. It is computed by adding to (c) Fπ ·T with

Fπ = 0.9549. We choose m = −1.

An illustration of the implementation of the 1D algorithm is shown in
Figure A.3, where we show the sequence of steps required to construct
the sampled scaled B-spline β0

π(b). Figure A.3 (a) shows one extended
period of the sampled mean subtracted- input signal. In this case, we
chose m = −1 as to have fi(k) = c(k) = δ(k) − T with k = −8 : 8 and
T = 0.0625. Figure A.3 (b) shows the result of the running sum i.e., the
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integral coefficients g in eq. (A.7). The integral signal has anti-symmetric
boundary conditions and zero mean. Figure A.3 (c) shows the result of
the inner products given by eq. (A.10) with wπ = [−0.3103, 0, 0, 0.3183]
and eq. (A.14) with χπ = [−0.3103; 0.3183]. In simple terms, f0(0) =
−0.3103 · g(−2) + 0.3183 · g(1). For each sample b, the output f0(b) is
computed as a simple linear combination of a number of integral coefficients
g. The values of the weights depend on the local scale a. As n = 0 the
clusters (..., g(k), g(k − 1), ...) are of one sample. Note that the distance
between the sample of clusters equals three. As π > (m+ n+ 1) = 1, it is
more efficient to implement (A.14) than (A.10). Figure A.3 (d) shows the
sampled scaled B-spline β0

π(b) with b = −8 : 8. This is computed by adding
f0(b) and Fπ · T with Fπ = 0.9549.

Finally, we have tested the validity of our implementation by choosing
fi(b) = δ(b), for b = −31 : 31, n = 0, ..., 3, and fixing a scale value a. For
a range of scale values a from 1 to 5, using a step of 0.1, we can recover
f0(b) = βn(b/a) with an error in the order of the computer precision.

A.4.5.2 ND Normalization

Since the inverse finite difference filter is applied to each dimension of
the data, one mean value is extracted from each 1D signal vector in each
dimension. For example, in 2D, we have T1 = (T1,0, ..., T1,L1−1), a mean
vector calculated over the L1-rows and T2 = (T2,0, ..., T2,L2−1) calculated
over the L2-columns.

To obtain the true output f0 at a given point b = (b1, b2):

• if M(b) = a ∈ ZN , add T1,b1 + T2,b2 to f0(b). M is an image that
stores the scale vector a, for each pixel b of the input image.

• else, if the scale has non-integer values, calculate the 1D expanded
value Rj of Tj , j = 1, 2, following the algorithm described in the
previous section. Then, add the factor (R1,b1 · NFa2 + R2,b2 · NFa1)
to f0(b).

We have tested the validity of the implementation using the same method
as for the 1D case.
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A.4.6 SPECIAL CASE: INTEGER SCALES

For the special case of using integer scales, there is an efficient im-
plementation of the spatially-invariant spline-based filtering, which uses
moving sums [133]. Such an implementation also avoids the use of global
integration operators which can cause accumulated round-off errors and
overflows for large images (see Section A.5).

Namely, when the scale a is an integer, we have the identity [128]

∆−(n+1)(z)∆n+1
a (z) =

(
1− za

1− z

)n+1

= (U0
a (z))n+1 (A.20)

where U0
a (z) =

∑a−1
k=0 z

k. The convolution with an integer-scaled B-spline
can then be written as

f0(b) =
(
h ∗ (u0

a)
n+1

)
(b) (A.21)

where h contains the ND spline coefficients, each 1D component is given
by h = fi ∗ (bm)−1 ∗ bm+n+1 and (u0

a)
n+1 =

∏N
i=1(u

0
ai

)n+1 with r(k) =
(u0

ai
∗ s)(k) =

∑k+ai−1
l=k s(l).

When the convolution is spatially-invariant, (u0
a)

n+1 can be implemented
by separable filtering. Each filter (u0

ai
) can be computed recursively using

a moving-sum method that requires only one addition and one subtraction
per point, i.e., r(k) = r(k − 1) + s(k + ai − 1) − s(k − 1) [133]. In this
particular case, the computational complexity is smaller than needed to
implement a separable version of eq. (A.19). See [128] for the proof.

When the convolution is spatially variant, (u0
a)

n+1 cannot be imple-
mented by separable filtering and therefore, an optimization using moving
sums cannot be applied. In other words, implementing eq. (A.21) does
not provide any computational advantage with respect to implementing
eq. (A.19).

A.5 NUMERICAL ERRORS

We now analyze the constraints that machine accuracy imposes on the
computation of the ND convolution with a scaled B-spline, especially for
large values of n and for large images (L1 × L2), along with the strategies
we propose to minimize the errors.
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A.5.1 FLOATING POINT REPRESENTATION

Let s ≈ fl(s) = sg · M · Be−E , be the floating point representation
of a number s ∈ R, where sg is the sign, M is an integer mantissa, e an
integer exponent, B is the base (usually 2) and E is a fixed bias required
to represent both negative and positive exponents [134].

We can write fl(s) = s(1 + κ), for some |κ| ≤ 1
2ε, with the machine

epsilon defined as ε = B−emax where emax is the total number of bits used for
the mantissa M in the floating point representation. Then, the maximum
possible relative error when representing a real number in floating point
format is 1

2ε. The relative machine precision of s is eps(s) = Be−emax where
e is the integer that fulfills Be ≤ s < Be+1. A large magnitude of s results
in a larger eps. Note that ε = eps(1) and 1 = eps(ε−1).

To represent floating point numbers, most CPUs follow the IEEE 754−
1985 Standard for Binary Floating Point Arithmetic [135]. The two most
widely used formats specified by this standard are single precision (32 bits)
and double precision (64 bits). The latest revision of the standard (un-
approved draft) supports the long double precision (128 bits). Table A.1
contains the machine epsilon and the number of decimal digits of accuracy
for all three IEEE floating point types.

A.5.2 PROPAGATION OF ROUND-OFF ERRORS

A round-off error occurs when a number cannot be exactly represented
with the available number of bits. Any operation using floating-point num-
bers involves round-off errors in the operands, which propagate to the re-
sult. In certain circumstances this propagation can lead to a large error that
can jeopardize the accuracy of the result. This could happen in two critical
steps of our algorithm: the computation of the inverse finite differences
computation and the scale dependent filtering.

A.5.2.1 Computation of the Inverse Finite Differences

The 1D inverse finite difference operator ∆−1 can be implicitly ex-
pressed as yk =

∑k
l=0 sl, where each output value is calculated as the

addition of the precedent ones. If |yk| > Bemax , then eps(yk) > 1 and
the number yk cannot be represented with integer precision. The over-
flow problem becomes more critical when working with higher values of
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Table A.1: Machine epsilon and decimal digits of accuracy of the

IEEE Floating Point types.

Table A.2: Estimation of the maximum size of 1D signals to have

eps(yk) ≤ 1 for different IEEE floating point types and

n values.

n and multiple dimensions, as the error growths faster. Table A.2 shows
an estimate of the maximum value ∆−(n+1) of a 1D signal that fulfills
eps(yk) ≤ 1 for different IEEE floating point types and n values. The in-
crease in magnitude of the inverse finite differences output is polynomial
with degree (n + 1). For example, if we consider that {sk = 1}k=0,··· ,L−1,
then yk = kn+1/(n+ 1)!. For N dimensions, the corresponding increase in
magnitude is polynomial with degree N(n+ 1).

A.5.2.2 Space Dependent Filtering

Due to the scaled finite differences, the filter kernels (wa and χa) be-
have as derivative filters (see Figure A.2). The computations defined by
eqs. (A.18) and (A.19) involve:

• the multiplication of large integral values g with small filter weights
wa (or χa) The multiplication is a relatively safe operation but small
errors may accumulate in the process.
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• the addition of the results of the multiplication, i.e. g · wa (or g · χa)
Adding large numbers with different signs may result in significant
loss of precision leading to an incorrect result. If the two operands
differ by less than the lowest of their respective eps, a catastrophic
cancelation occurs: The result contains no correct digits but only
round off errors from previous computations.

A.5.3 ERROR MINIMIZATION STRATEGIES

We implemented our algorithm using the IEEE long double floating
point data type (128 bits) because it provides the highest significant preci-
sion. From our estimates, given in Table A.2, it is safe to work with images
of size 1024 × 1024 and n = 3. When applied to larger images, round-off
errors and their propagation can be limited by calculating the integrals over
independent image blocks so as to limit the maximum magnitude that the
integral can reach. We consider that a maximum block size of 1024× 1024
remains on the safe side for the typical requirements. For instance, if we
have a 1024× 1024 2D noise image with a Gaussian intensity distribution
of mean 1000, and standard deviation 15, the estimated error bound with
the double data type is 40, when working with n = 3. Using the long double
type, the error is reduced to 4 · 10−16. We confirmed these values by filter-
ing the noise image with B-splines of fixed scale a = 4 with the minimum
block-size -equal to the filter kernel size- and comparing the result when
processing the whole image in one block. The difference between the two
outputs was zero when represented with 16 bits.

A.6 STEERABLE FILTERING

In this section, we use the filter that we have just developed as a build-
ing block of a novel B-spline based steerable filter that detects features of
unknown position and orientation.

A.6.1 ROTATED MATCHED FILTERING

The detection of features of unknown position and orientation can be
formulated as a rotated matched filtering task [136]. We assume the signal
model

f(x) = r · ft(Rθ(x− x0) + x0) + n(x), (A.22)
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where ft is the signal we want to detect; x0 is its position in the image;
r is a weight; Rθ = [rθ r′θ] is the rotation matrix with rθ = (cos θ, sin θ),
r′θ = (− sin θ, cos θ), θ is the rotation angle and n(x) is Gaussian white
noise. The maximum likelihood estimation algorithm, for this signal model
is

θ∗(x0) = arg maxθ(f(x) ∗ h(Rθ(x− x0) + x0)))

r∗(x0) = f(x) ∗ h(Rθ∗(x− x0) + x0)), (A.23)

where r∗ is the magnitude, θ∗ is the orientation of the feature at position
x0 and h(x) = ft(−x) is the feature template.

The exhaustive search of the maximum argument in (A.23) is not prac-
tical as it requires the computation of inner products with an extensive
set of shifted and rotated versions of the feature template. The common
practice used to reduce computational complexity is to select the detec-
tor within the class of steerable filters introduced by Freeman and Adel-
son [130]. Namely, the template is chosen such as any rotated version
of itself can be computed as a linear combination of a small number of
derivatives of an isotropic prototype function. A common choice is for the
prototype function to be a Gaussian, i.e. the standard Gaussian steer-
able template is h(x) = gσ,(2,0)(x) where gσ(x) is a Gaussian function with
standard deviation σ. Here, we propose instead to use B-splines.

A.6.2 B-SPLINE STEERABLE FILTERING

We focus our attention on a simple task: ridge detection, and choose
the idealized line model ft(x1, x2) = δ(x1). Although we particularize the
derivations to the ridge detector, this very idea can be extended to any
steerable filter of the class introduced in [130].

We start by showing the convergence of the second derivative of a ro-
tated B-spline to a steerable template.

Proposition A.6.1. Consider the sequence of centered B-splines {βn
a (x)}n≥3

of degree n at scale a ∈ R+ with x = (x1, x2) ∈ R2. Then, we have the fol-
lowing convergence result limn→∞ βn

a,(2,0)(Rθx) = limm→∞(cos2 θβm
a,(2,0)(x)+

2 cos θ sin θβm
a,(1,1)(x)+sin2 θβm

a,(0,2)(x)), where βn
a,(d1,d2) = βn

a,d1
(x1)βn

a,d2
(x2).
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Proof. We define β̂n
a (Rθω) = β̂n

a (rT
θ ω)β̂n

a (r
′T
θ ω). In the Fourier domain, we

have
β̂n

a,(d1,d2)(Rθω) = (jrT
θ ω)d1(jr

′T
θ ω)d2 β̂n

a (Rθω). (A.24)

Thus, we can write β̂n
a,(2,0)(Rθω) = (jrT

θ ω)2β̂n
a (Rθω). From the Central

Limit Theorem each of the constituent B-spline components converge to a
1D Gaussian as n → ∞ [126]. Then, β̂n

a (ω) converges to an isotropic 2D
Gaussian

lim
n→∞ β̂

n
a (ω) =

1
2πσ2

e−
ωT ω
σ2 (A.25)

with σ =
√

n+1
12 a. So, we have

lim
n→∞(jrT

θ ω)2β̂n
a (Rθω) = lim

m→∞(jrT
θ ω)2β̂m

a (ω). (A.26)

Developing the right hand side of eq. (A.26) and applying the correspond-
ing definition of the derivative in the Fourier domain, we get to desired
convergence result.

Jacob et al. [136] proposed a modified Gaussian steerable template es-
pecially sensitive to elongated image structures. Specifically, they increased
the flatness of the template in the longitudinal direction near the origin.
In particular, the template was modified as to satisfy the flatness crite-
rion [131]

lim
x→0

(r
′T
θ · ∇)2h1(Rθx) = 0. (A.27)

For the template h1(x) = gσ,(2,0)(x) + αgσ,(0,2)(x), the left-hand side
equals (1 + 3α)‖r‖4/σ4 and consequently, the α-factor is α = −1/3. Luck-
ily, the optimal template h1(x) is invariant to the angle θ, and thus the
estimation (A.23) can still be solved using an eigenvalue decomposition of
the Hessian matrix Hf∗h1 . In particular, the optimal response and the an-
gle are given by r∗ = λmax and θ∗ = arc tan(v2/v1) [137]. Here, λmax is
the maximum eigenvalue of Hf∗h1 and v = (v1, v2) is the corresponding
eigenvector.

In this work, we have imposed the flatness criterion (A.27) to our B-
spline template (i.e., h2(x) = βn

a,(2,0)(x) + αβn
a,(0,2)(x)) and solved for the

factor α. We have
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α = −AB
(

cos4 θ + 2 cos2 θ sin2 θ(B/A− 2) + sin4 θ

cos4 θ + 2 cos2 θ sin2 θ(3A/B) + sin4 θ

)
(A.28)

with A = 2(βn−2(1) − βn−2(0))2 and B = βn(0)(βn−4(2) − 4βn−4(1) +
3βn−4(0)).

To derive this equation, we compute the α-factor for the template
h2(x) = βn

a,(2,0)(x) + αβn
a,(0,2)(x) such as the flatness criterion

lim
x→0

(r
′T
θ · ∇)2h2(Rθx) = 0. (A.29)

is satisfied. The rotated template is given by

h2(Rθx) = cos2 θϑ1(x) + 2 cos θ sin θϑ2(x) + sin2 θϑ3(x) (A.30)

with ϑ1(x) = βn
a,(2,0)(x) + αβn

a,(0,2)(x); ϑ2(x) = (1 − α)βn
a,(1,1)(x); ϑ3(x) =

βn
a,(0,2)(x) + αβn

a,(2,0)(x).

We use that (r
′T
θ · ∇)2h2(Rθx) = r

′T
θ ·Hh2 · r′θ where Hh2 is the Hessian

matrix of h2(x), to have (r
′T
θ · ∇)2h2(Rθx) = r1 cos4 g1(x) + 2r31r2g2(x) +

r21r
2
2g3(x) + 2r1r32g4(x) + r42θg5(x) with

g1(x) = βn
a,(2,2)(x) + αβn

a,(0,4)(x)

g2(x) = −βn
a,(3,1)(x) + (1− 2α)βn

a,(1,3)(x)

g3(x) = βn
a,(4,0)(x) + (−4 + 6α)βn

a,(2,2)(x) + βn
a,(0,4)(x)

g4(x) = −βn
a,(1,3)(x) + (1− 2α)βn

a,(3,1)(x)

g5(x) = βn
a,(2,2)(x) + αβn

a,(4,0)(x)

and r1 = ‖r‖ cos θ and r2 = ‖r‖ sin θ.

Taking limits, we have

lim
x→0

g1(x) = lim
x→0

g5(x) = A+ αB
lim
x→0

g2(x) = lim
x→0

g4(x) = 0

lim
x→0

g3(x) = 2(B + (−2 + 3α)A) (A.31)

withA = limx→0 β
n
a,(2,2)(x), and B = limx→0 β

n
a,(4,0)(x) = limx→0 β

n
a,(0,4)(x).

Substituting in eq. (A.29) and solving for α we get eq. (A.28).
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Figure A.4: Graphical illustration of the variation of α with θ ∈
[0, π/2] for different B-spline degrees. The grey line

α = −1/3 corresponds to a rotationally invariant tem-

plate around the origin.

Figure A.4 shows how the α-factor changes as a function of the angle
θ ∈ [0, π/2] for B-splines of degrees from n = 3 to 6. Since the α-factor is
π/2 periodic, only one of the quadrants is shown. Note that for any B-spline
degree and for an orientation θ = π/8, the template obtained is rotationally
invariant around the origin, i.e. limx→0(r

′T
θ ·∇)2h2(Rθx) = (1+3α)‖r‖4/a4.

In this case α = −1/3, which is the same α-factor used in a Gaussian
prototype function. Moreover, as the B-spline degree n increases we observe
the convergence towards a constant α-factor of −1/3.

Therefore, we choose as steerable template

h3(x) = −N (βn
a,(2,0)(x)− 1/3 · βn

a,(0,2)(x)). (A.32)

The negative sign is used because the template is designed to detect
bright filaments in a dark background. The normalization factor N is used
to have a template of a2(n + 1) energy, i.e.,

∫ |h3(x)|2dx = a2(n + 1). By
normalizing the template energy values we will be able to compare energies
calculated using different scales and/or B-splines of different degrees. In
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particular, we have

N
a(n+ 1)

=
(

10
9

∫
(βn

a,(2,0)(x))2dx

−2
3

∫
βn

a,(2,0)(x)βn
a,(0,2)(x)dx

)− 1
2

where
∫

(βn
a,(2,0)(x))2dx = 2

a2β
2n+1(0)(3β2n−3(0) − 4β2n−3(1) + β2n−3(2))

and
∫
βn

a,(2,0)(x)βn
a,(0,2)(x)dx = 4

a2 (β2n−1(1)− β2n−1(0))2.

Then, the rotated feature template can be written as h3(Rθx) = −N (cos2 θϑ1(x)+
2 cos θ sin θϑ2(x) + sin2 θϑ3(x))

with ϑ1(x) = βn
a,(2,0)(x)− 1

3
βn

a,(0,2)(x),

ϑ2(x) =
4
3
βn

a,(1,1)(x) and

ϑ3(x) = βn
a,(0,2)(x)− 1

3
βn

a,(2,0)(x).

Figure A.5 displays the cubic B-spline template h3(Rθx) for a scale of
6 and rotation angles (a) θ = 0; (b) θ = π/8; (c) θ = π/4.

The convolution of the input image f(x) with the rotated feature tem-
plate is f(x) ∗h3(Rθx) = −N (cos2 θf1(x) + 2 cos θ sin θf2(x) + sin2 θf3(x))
with fi(x) = (f ∗ ϑi)(x), i = 1, 2, 3. Therefore, the responses fi(x) can
be computed as a linear combination of the convolution of f(x) with the
basis functions {βn

a,(2,0)(x), βn
a,(1,1)(x), βn

a,(0,2)(x)}. Finally, the eigenvec-
tors and eigenvalues used to solve for the optimal response and orienta-
tion are computed from the modified second derivative matrix Hf∗h3 =
[f1(x) f2(x); f2(x) f3(x)].

A.7 APPLICATIONS

The algorithm that we have described can be used in any task involving
the spatially variant convolutions of an image with scaled B-spline kernels
(or their derivatives). Here, we present two examples that illustrate the
benefit of using our method: adaptive denoising and ridge detection.
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Figure A.5: Illustration of the steerable templates: (a) β3
6,(2,0)(x)

and h3(Rθx) for different orientations: (b) θ = 0 (c)

θ = π/8 (d) θ = π/4.

A.7.1 FEATURE ADAPTIVE DENOISING

We propose to implement an edge-preserving denoising filter as the
convolution of the image with isotropic scaled B-spline kernels f0(b1, b2) =
(fi ∗ βn

a )(b1, b2) with βn
a (x1, x2) = βn

a (x1)βn
a (x2).

A.7.1.1 Scale-Vector Computation

The local scale value used to define the size of the B-spline kernel to
be convolved at each image position is calculated using Saha and Udupa’s
method [138]. Namely, to calculate the scale at each pixel, we recursively
measure the homogeneity of a hyper-ball-shaped growing region-of-interest
centered at the pixel. The evaluation iterates until a given inhomogeneity
value is reached. This value can be adjusted depending on the expected
noise level and the degree of detail to be preserved. In presence of diffuse
borders, caused for instance by motion artifacts, non-zero scale values might
be assigned to edge pixels, leading to unwanted diffusion of the edges. To
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avoid this problem, we added the algorithm an extra step that detects
diffused borders and forces the scale value to be null on them.

A.7.1.2 Experimental Results

A.7.1.2.1 Quantitative Results on Synthetic Images

Our filter was first evaluated quantitatively, by comparing it to other
commonly used denoising filters. For the comparison, we used the Shepp-
Logan phantom with two different kinds of noise and artifacts. First, we
modified the intensities of the phantom to force them to follow a Rician
distribution, as in Magnetic Resonance Imaging (MRI) images [139]. Al-
ternatively, we reconstructed the phantom image from a limited number of
projections (128, 256 and 512) using a filtered back-projection algorithm
with a Ram-Lak filter [140], to simulate the acquisition process of X-ray
computed tomography (micro-CT) images. Gaussian noise was added to
the images, with a standard deviation of 15, which was estimated from
homogeneous regions of real micro-CT images. The performance of the
filter was evaluated using two parameters: the Residual Noise (RN), which
is the standard deviation of pixel intensities in homogeneous areas of the
image [138], and the Average Edge Width (AEW), calculated as the ratio
between the total number of pixels that belong to an edge and the number
of edges in the image [141]. We compared our filter to a fixed scale smooth-
ing filter and to an anisotropic diffusion filter [142]. The scale values used
in the B-spline adaptive smoothing filter ranged from 0 to 15. The scale
value used for the fixed scale smoothing filter was set to 10, which was
approximately the mean scale value calculated over the entire phantom. In
both fixed and variable scale filtering- cases, we used linear B-splines, i.e.,
m = n = 1. The parameters used for the anisotropic diffusion were typical:
0.1 time step, 10 iterations and 3.0 conductance.

Table A.3 shows the average RN values in 23 manually selected homo-
geneous regions of the phantom, for three different levels of Rician noise
(Gaussian σ of 500, 1000 and 1500). The mean AEW values for the three
filters compared are shown in Table A.4. Tables A.5 and A.6 show the
results on the Shepp-Logan phantom with micro-CT-like noise and arti-
facts. In all cases our adaptive B-spline smoothing outperforms fixed scale
smoothing and anisotropic diffusion, since it provides both higher homo-
geneity and better-defined edges. When compared to anisotropic diffusion,
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Figure A.6: (a) Detail of the Shepp-Logan phantom reconstructed

from 128 projections. (b) Shepp-Logan phantom after

anisotropic diffusion filtering. (c) Shepp-Logan phan-

tom after adaptive B-spline smoothing.

the average improvement in homogeneity is 54% for the MRI phantom and
43% for the micro-CT phantom, with a reduction in AEW of 0.73 and 1.08
pixels respectively. The difference in homogeneity is statistically signifi-
cant (p < 0.001), as shown using a Wilcoxon matched-pairs signed-rank
test. The effect can be qualitatively observed in Figure A.6, which shows
the results of applying both filters to the phantom reconstructed from 128
projections.

A.7.1.2.2 Qualitative Results on Real Images

We then tested our filter on real biomedical images. Figure A.7 shows
an MRI image of a human head. We found that, for a comparable level of
smoothing in homogeneous areas, our adaptive B-spline filtering blurs edges
considerably less than the other filters. The same effect can be observed in
Figure A.8, which shows a micro-CT image of a mouse lung with multiple
small details, mainly tumors and blood vessels.



139

Table A.3: Mean RN values for different levels of Rician noise and

denoising filter.

Table A.4: Mean AEW values averaged over the three different lev-

els of Rician noise, for all three denoising filters

Table A.5: Mean RN values for different number of projections and

denoising filter.

A.7.2 RIDGE DETECTION

As a second example of application we used of our B-spline steerable
template (A.32) as a building block of a ridge detector, in a spatially variant
setting.
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Table A.6: Mean AEW values averaged over the three different

numbers of projections for all three denoising filters.

Figure A.7: (a) Region of MRI image of human head. (b) Scale

image that corresponds to (a). (c) The same region in

(a) after anisotropic diffusion filtering. (d) The same

region in (a) after adaptive B-spline smoothing.

A.7.2.1 Quantitative Results on Synthetic Images

A.7.2.1.1 Synthetic image

We created a synthetic image with a spatially variant sinusoidal func-
tion. The ridges are almost vertical in the image center, and become in-
creasingly inclined towards the sides of the image. The ridges are wider
towards the bottom of the image than they are at the top. We added Gaus-
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Figure A.8: (a) Left region of a micro-CT image of a mice lung

with a moderate tumor load (white arrows indicate

tumors). (b) Scale-scene that corresponds to (a). (c)

The same region in (a) after anisotropic diffusion filter-

ing. (d) The same region in (a) after adaptive B-spline

smoothing.

sian noise with different standard deviations (σ = 0, 0.25, 0.5 and 0.75), to
create noisy versions of the synthetic image. Figure A.9 shows the synthetic
image with Gaussian noise of 0.75 standard deviation.
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Figure A.9: Noisy synthetic image (σ = 0.75).

A.7.2.1.2 Improvement in sensitivity using α = −1/3

We first compared the performance of the standard B-spline detector
to that of our optimal detector. So, we performed a brute force ridge
detection sequence using either a geometric or arithmetic progression of
the scale steps (GPSS or APSS). The GPSS sequence was: 2, 4 and 8. In
the APSS, the scale varied from 2 to 9 in 1, 0.25 or 0.1 steps.

The brute force detection method proceeded as follows:

• We first computed the basis images {(f∗β3
a,(2,0))(x), (f∗β3

a,(1,1))(x), (f∗
β3

a,(0,2))(x)} for each scale and template type.

• Then, we calculated the functions {fi(x)}3
i=1, as linear combinations

of the basis images.

• Next, for each scale value of the series, the response of the detector
and ridge orientation was calculated using an eigenvalue decomposi-
tion of the Hessian (or the modified Hessian) matrix.

• The scale that produced the maximum response, along with the cor-
responding response value and ridge orientation were stored for each
pixel of the image, forming a maximum response map.

• Finally, a binary mask containing an estimate of the bright ridges was
calculated from the maximum response map using an Isodata thresh-
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olding algorithm [143]. Most of the spurious edges were eliminated
by discarding objects smaller than 20 pixels.

To compare the sensitivity of the detectors we used i. the detector
response (DR), ii. the ridge orientation error (ROE), iii. the ridge width
error (RWE). The detector errors were calculated as the sum of squared dif-
ferences (SSD) between the detected ridges and a ground truth, which was
analytically pre-computed from the function used to create the synthetic
image.

Specifically, ROE was measured as the difference between the ground
truth angle and the estimated angle, i.e., θe = θgt−θ. We took into consid-
eration the fact that both θ and θ+ π correspond to the same orientation.
Thus, ROE was distributed between 0 and π/2. We compute the SSD
of the horizontal and vertical components of the unitary vector for each
orientation error [144]

SSD1 =
1

L1L2


∑

i

∑

j

(cos θe(i, j))2


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1
2

,

SSD2 =
1

L1L2


∑

i

∑

j

(sin θe(i, j))2




1
2

.

The ridge width is approximately proportional to the detector scale
[145]. In particular, we empirically found the weight factor to be 1.3209.
The SSD of the ridge width was thus computed as

SSDw =
1

L1L2


∑

i

∑

j

we(i, j)2




1
2

, (A.33)

with the RWE we computed as the difference between the true width and
the width estimation, i.e., we(i, j) = wgt(i, j)− w(i, j)

To test the significance of the differences found, we applied a Wilcoxon
rank test of differences of means. For the error measurements, we inter-
preted the mean square error as a mean of the squared differences, i.e.,
MSE = L1 · L2 · SSD2.



144 Appendix A: Spatially Variant Convolution with Scaled B-splines

Table A.7: Mean (first entry) and standard deviation (second en-

try) of DR, ROE and RWE through three different lev-

els of Gaussian noise for the brute force ridge detector

method, the standard and the optimal template, and

GPSS.

Tables A.7 and A.8 compare the sensitivities of the optimal and stan-
dard templates, for both GPSS and APSS. In both cases the difference
in ROE was not significant, since both detectors were able to accurately
detect the orientation of the ridges. Therefore, we focus the rest of this
section in the evaluation of DR and RWE.

DR was significantly (p < 0.001) higher when we used the optimal de-
tector compared to the standard one, both for GPSS (see Table A.7) and
APSS with all tested scale steps (see Table A.8). Furthermore, RWE was
significantly (p < 0.001) lower for the optimal detector than for the stan-
dard one, both for GPSS and APSS with scale step equal to one. Therefore,
it seemed reasonable to work with the feature template (A.32) with n = 3
and α = −1/3 in the rest of the experiments.

The response maps obtained using a GPSS and either the standard or
optimal template are shown in Figure A.10 (a) and (b), respectively. The
input image used was the synthetic noisy image with σ = 0.75. The ridges
look noisier when detected by the standard template. This effect is more
significant at wider filament regions.

To the best of our knowledge, this experiment is the first quantitative
proof of the sensitivity improvement provided by our modified steerable
template. Jacob et al. in [136] had predicted that a Gaussian steerable
template with α = −1/3 would be more sensitive than the standard one,
but their argument was simply based on the template shape and their
intuition was not quantitatively confirmed.
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Table A.8: Mean (first entry) and standard deviation (second en-

try) of DR, ROE and RWE through three different lev-

els of Gaussian noise for the brute force ridge detector

method, the standard and the optimal template, and

three cases of APSS.

Figure A.10: Response map for the brute force ridge detector with

a GPSS for: (a) the standard template (α = 0) (b)

the optimal template (α = −1/3). The input image

was the synthetic noisy image with σ = 0.75.

A.7.2.1.3 Spatially variant ridge detector

In our second experiment, we present a novel non-integer spatially vari-
ant ridge detector. To estimate the scale that maximizes the response at
each pixel, our approach uses a local iterative optimization algorithm on a
pre-computed ridge map. This is more efficient that finding the optimum
output using pure brute force, specially if non-integer scale values are used.
Namely, the detection is now done in two steps:
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Table A.9: Mean (first entry) and standard deviation (second en-

try) of DR, ROE and RWE for three different levels of

Gaussian noise using the spatially variant ridge detector

method, the optimal template and three cases of APSS.

• First, a coarse ridge detection is performed using the method de-
scribed in the previous subsection, using the optimal template and
GPSS. Since the progression of the scales is geometric and the scale
is kept constant for the whole image, very efficient algorithms exist
to compute the basis images. After the detection, a coarse scale map
was computed by applying the binary mask to the scale output.

• Second, fine ridge detection is performed using our spatially variant
ridge detector. For each pixel, the value stored in the coarse scale map
served as initialization value of a Brent optimization algorithm [146]
that finds the scale that maximizes the response of the detector. The
output is now a fine scale map, the maximum response map and the
orientation map.

The results are shown in Table A.9. If we compare these results to
the results shown in Table A.8, we can see that our efficient two-phase
algorithm provides DR, ROE and and RWE values that are not significantly
different from those of the brute force algorithm. We observe also that the
number of iterations needed for the optimization algorithm to converge does
not increase significantly with the number of scales (6, 59 for 36 scales, 8, 09
for 90 scales). Therefore, our algorithm becomes more efficient -compared
to the classical brute force method- as the ridge width distribution and the
desired resolution increases.



147

Figure A.11: (a) Ridge width ground truth image. Width esti-

mation for the brute force ridge detector using: (b)

GPSS; (c) APSS. (d) Width estimation of the spa-

tially variant ridge detector using an APSS with a

scale step of 0.1. The input image was the synthetic

noisy image with σ = 0.75.

Figure A.11 illustrates the width estimates obtained using our novel
spatially variant ridge detection algorithm. The input image is the noisy
synthetic image with σ = 0.75. Figure A.11 (a) shows the analytically
computed true ridge width. Figure A.11 (b) shows the width estimates
using the brute force ridge detector with GPSS. Note the coarse width
estimates with uncertainties due to the noise in the transition between
widths. Figure A.11 (c) shows the width estimates using the brute force
ridge detector with APSS and a scale step of 0.1. Observe how the smooth
increase in the estimated ridge width from top to bottom correlates well
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with the ground truth. Figure A.11 (d) shows the width estimation of our
novel spatially variant ridge detector with the same scale series as in (c).
Observe that both look very similar.

A.7.2.1.4 Improved Performance with the Reduction of the Scale Step

We have measured -for both the optimal and the standard templates-
the reduction in RWE and the increase in the DR value as we increase
the resolution of the scales. We observe in all the cases an increase in the
mean of the DR and a decrease in RWE. We have found the differences
in the measurements to be statistically significant (p < 0.001) in all cases.
This result assigns an added value to carrying out ridge detection using
non-integer scales, for which our method is specially suited.

A.7.2.2 Qualitative Results on a Real Image

Next, we show an example of filament detection on a real fluorescent
microscopy image. Figure A.12 (a) shows fluorescent labeled actin fila-
ments that form the cell cytoskeleton. The image consist of a cellular body
surrounded by a black background. Filament detection is accomplished
with our spatially variant ridge detector as described for synthetic images.
The scales in geometric progression used for the estimation of the coarse
scale map were [2 4 8]. The scales in arithmetic progression used for the
refinement were from 2 to 8 in a step of 0.1. The resulting orientation and
maximum response maps are shown in Figure A.12 (b) and (c), respectively.
The scale that provided the maximum response is given in Figure A.12 (d).

A.8 CONCLUSION

In this chapter, we have presented an efficient algorithm to compute
spatially, scale-variant convolutions between a ND spline signal and B-
splines of any order and arbitrary size. One key aspect of our algorithm
is a computational load independent of the scale, and depending only on
the order of the B-splines used for the interpolation and the convolution.
Our algorithm is specially designed to work with arbitrary scales but is also
appropriated when dealing with integer scales. This is because an efficient
moving average implementation do not hold for ND spatially variant B-
spline filtering. The main drawback of the method is that is prone to
round off errors and overflows as running sums are computed over entire
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Figure A.12: (a) Cytoskeleton image. (b) Orientation map. (c)

Maximum response map. (d) Scale giving the maxi-

mum response (c) at orientation (b).

images. In the chapter, we have discussed the ways to handle and minimize
these numerical errors.

Our algorithm, particularized to approximate derivatives of isotropic
Gaussians, has been used as a framework to construct steerable filters. In
particular, we have modified the B-spline standard template to make it
more sensitive to elongated structures.

Finally, we have included, as a proof-of-concept, two examples of appli-
cation: an edge preserving smoothing filter and a ridge detector. We have
shown that our spatially variant B-spline filtering yields satisfactory results
at denoising biomedical images of different modalities. In our experiments,
our adaptive B-spline smoothing provides a better trade-off between re-
moval of noise and edge degradation than anisotropic diffusion.
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Then we have used our filter to perform ridge detection. We started by
quantifying the improvement in sensitivity obtained by our optimal tem-
plate over the standard B-spline one. Next, we have presented a novel, truly
spatially variant ridge detector. The algorithm performs a local -per pixel-
optimization on a coarse pre-computed ridge map, to find the non-integer
scale that maximizes the response. We have shown that the performance
of this efficient ridge detector is not significantly different from the classical
brute force one. Finally, we have evaluated the accuracy of the approach
using scale series of different resolutions. We obtained a statistically signif-
icant improvement when using high-resolution scales. This result demon-
strates the added value of carrying out non-integer detection, for which our
method is particularly well suited.
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• X. Artaechevarria, A. Muñoz-Barrutia and C. Ortiz-de-Solorzano, ”Restora-
tion of Micro-CT Images using Locally Adaptive B-Spline Smooth-
ing”, IEEE International Symposium on Biomedical Imaging 2007,
pp. 800-803, Arlington (VA), USA, 2007.



Curriculum Vitae

Xabier Artaechevarria studied Telecommunication Engineering at Tecnun,
the School of Engineering of the University of Navarra in San Sebastian,
Spain. He received the MSc degree with a thesis on frequency synchroniza-
tion for mobile communications, developed at Siemens Communications,
Munich, Germany. His academic record was awarded with a special men-
tion at the 2006 National End of Degree Awards.

This PhD thesis was carried out at the Cancer Imaging Laboratory
of the Center for Applied Medical Research (CIMA) of the University of
Navarra in Pamplona, Spain, under the supervision of Dr. Muñoz-Barrutia
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