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ABSTRACT 

 

Despite recent consensus on eligibility of adjuvant systemic therapy in lymph-node negative breast 

cancer (NNBC) patients based on clinico-pathological criteria, specific biological markers are needed to 

predict sensitivity to the different therapeutic options. We examined the feasibility of developing a 

genomic predictor of chemotherapy response and recurrence risk in 185 patients with NNBC using 

assembled arrays containing 2,460 BAC clones for scanning the genome for DNA copy number 

changes. After surgery, 90 patients received anthracycline-based chemotherapy whereas ninety-five 

did not. Tamoxifen was administered to patients with hormone-receptor positive tumors. Association of 

genomic and clinico-pathological data and outcome was computed using Cox proportional hazard 

models and multiple testing adjustment procedures. Analysis of NNBC genomes revealed a common 

genomic signature. Specific DNA copy number aberrations were associated with hormonal receptor 

status, but not with other clinico-pathological parameters. In patients treated with chemotherapy, none 

of the genomic changes was significantly correlated with recurrence. In patients not receiving 

chemotherapy, deletion of eight BAC clones clustered to chromosome 11q was independently 

associated with relapse (DFS at 10 years±SE, 40±14% vs. 86±6%;p<00001). Patients with 11q 

deletion did not show more aggressive clinical-pathological features than those without 11q loss. The 

adverse influence of 11q deletion in clinical outcome was confirmed in an independent validation series 

of 88 NNBC patients. Our data suggest that NNBC patients with 11q deletion may benefit from 

anthracycline-based chemotherapy despite other clinical, pathological or genetic features. However, 

these initial findings should be evaluated in randomized clinical trials.  
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INTRODUCTION 

 

The use of adjuvant systemic chemotherapy and/or endocrine therapy in the treatment of lymph-node 

negative breast cancer (NNBC) has increased greatly in the last decade.(1-5) Despite recent 

consensus, the group of patients with NNBC that will obtain clinical benefit from the use of adjuvant 

chemotherapy is still a problematic debate. In patient with young age, with large sized or high 

pathological grade tumors, or with hormone receptor–negative tumors, systemic chemotherapy 

improves the odds of disease-free and overall survival.(1, 2, 5, 6) Among the different chemotherapy 

regimens, those containing anthracyclines are on average more effective.(5, 6) Therapy with 

trastuzumab seems to be effective in the subset of HER2 positive NNBC.(7) However, despite obvious 

therapeutic advances, approximately one fourth of NNBC patients will have tumor recurrence that is 

potentially treatable but ultimately fatal. These data highlight the need for more sensitive and specific 

therapy-predictive indicators to refine the use of the multiple treatment options.  

 

Using gene expression profiling, several investigators have reported gene-expression signatures of 

breast tumor cells that were more powerful predictors of disease outcome than standard clinical and 

histological criteria.(8-12) However, the apparent variability and lack of reproducibility observed among 

these previous transcriptional analyses and the requirements for high-quality RNA obtained from fresh 

tissues have limited their application to the clinical setting. A different type of microarray technology, 

termed comparative genomic hybridization (CGH) to microarrays (array CGH), allows a quantitative 

detection of DNA copy number changes in tumor genomes with high resolution.(13, 14) This method 

enables the identification of precise areas in which genetic changes occur, including loss of genomic 

material (deletion) and genomic gain (amplification). These genomic alterations usually result in 

damage of specific genes involved in cancer development and progression.  In breast cancer, definition 

of recurrent genomic aberrations has revealed loci encoding genes involved in the pathogenesis of the 
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disease,(15-18) some of which have been correlated with the different pathological subtypes.(19) As 

the most prominent example, amplification of chromosome 17q12 targets HER2 gene, which results 

deregulated at the RNA and protein levels.(20) Recently, array CGH has also proven its value for 

predicting clinical outcome in prostate carcinoma, lymphoma, gastric carcinoma and acute myeloid 

leukemia.(21-23) However, to date, no similar studies have been attempted in breast cancer.  

 

In the present study, we examined the feasibility of developing a predictor of recurrence risk and 

therapeutic response for 185 NNBC patients using array CGH for scanning the entire genome for DNA 

copy number changes.  
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METHODS 

 

STUDY DESIGN AND SELECTION OF PATIENTS 

From September 1979 to June 2000, over 3.100 new breast cancer patients were diagnosed at the 

University of Valencia. Of them, 1.482 tumors were criopreserved at -80ºC. For this study, biopsies 

were randomly selected based on the following criteria for inclusion: (1) diagnosis of primary invasive 

breast carcinoma of any size; 2) treatment by modified radical mastectomy or breast-conserving 

surgery, including dissection of axillary lymph nodes, followed by radiotherapy if indicated; 3) the apical 

axillary lymph nodes were tumor-negative (pathological examination, pN0); and 4) complete clinical 

data were available. Over 363 samples fulfilled the criteria. Previous to DNA extraction, these frozen 

tumor sections were stained by hematoxylin/eosin (H&E) and reviewed for tumor infiltratrion: only those 

with clear >50% of tumoral cells were selected. A cohort of 185 patients fulfilled these final criteria. 

Clinico-pathological variables including tumor size, histological grade and subtype and ER and PR 

status were determined following standard methods as reported.(24) Human investigations were 

performed after approval by an institutional review board on scientific and ethical affairs. 

 

MICROARRAY-BASED COMPARATIVE GENOMIC HYBRIDIZATION (ARRAY CGH)  

DNA extraction, hybridization and imaging. Frozen tumors were included in OCT compound. 

Previous to DNA extraction, H&E stained tumor sections were examined to select samples with more 

than 50% of tumoral cells. Around 20-30 sections of 25µm were used for DNA extraction. After 

removing the OCT with PBS washes, DNA was extracted as previously described.(24) Genome-wide 

analysis of DNA-copy number changes was performed using array CGH on a microchip with ∼2.460 

BAC and P1 clones printed in triplicate (UCSF Hum Array 2.0) with a resolution of 1.4 Mb across the 

genome.(25) Methods and analytical procedures have been described elsewhere in detail.(23, 25) 

Briefly, 0.5 µg of test (tumor) and reference genomic DNAs were labeled by random priming using Cy3 
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and Cy5, respectively. After 48 hour of hybridization, slides were washed and mounted with DAPI. The 

images of the arrays were captured using a CCD camera, and the “UCSF SPOT” 2.0 software 

(available at http://www.jainlab.org/downloads.html) was used to analyze the images and measure 

tumoral vs. control fluorescence intensity ratios that were converted to the log2 scale. A second 

program, the “UCSF SPROC” was used to associate clones with each spot and to create a mapping 

information file that allows the data to be plotted relative to the position of the BACs on the draft human 

genome sequence (http://genome.cse.ucsc.edu; May 2004 freeze). A formal data filtering procedure 

was then performed, and a SPROC output file consisting of averaged ratios of the triplicate spots for 

each clone, standard deviations of the replicates and plotting positions for each clone on the array, was 

obtained (Figure 1). For visualization of genomic data, the TreeView program 1.60 (Stanford, CA) was 

used. To confirm array CGH data, CGH to chromosomes was performed in 44 biopsies included in the 

study.  

Interphase FISH analysis. To confirm specific gains and losses of BAC clones observed in the array 

CGH analyses, fluorescence in situ hybridization (FISH) studies using individual BAC clones as probes 

on isolated nuclei from frozen tumor sections was performed using a reported technique.(26) The gene 

loci examined corresponded to 5 overrepresented and 4 deleted BAC clones, using appropriate 

centromeric probes as controls. A total of 100 cells were examined on each of the 22 tumors examined. 

These clones were obtained from RZPD German Resource Center (Berlin, Germany) or purchased 

from Vysis (Downers Grove, IL, US).  

 
 

STATISTICAL ANALYSIS 

Array preprocessing. In order to process the genomic data obtained with array CGH and to compare 

the genomic alterations with different clinical phenotypes we used a previously described analytical 

model.(27) Clones with ratios missing in 2 or more replicate spots (out of 3) were excluded from further 

analysis, as well as when the standard deviation of the replicates log2 ratios was above 0.2. In 

addition, clones that were successfully mapped to May 2004 release of human genome sequence and 
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were declared present in more than 75% of the samples were included in the final analysis. Duplicate 

clones were averaged. The final dataset contained 2117 unique BACs, and clone values were missing 

in a median of 5.4% of the samples. Arrays were normalized by subtracting the median of each array 

from the average log2 ratio for every clone. 

Copy number changes identification. The array CGH data were analyzed using Hidden Markov 

Model (HMM) as implemented in the Bioconductor package aCGH using the default tunning 

parameters.(27) Log2 ratios as ordered in the genome were segmented into regions of constant copy 

number. In addition, the HMM model was employed to impute missing values by using the estimated 

copy number ratio for the segment containing the clone(s) with missing values. Clones with missing 

values located between segmented regions were assigned the mean value of the segment that is 

closer in genomic distance. Thus, each clone was assigned a segment value referred to as its 

"smoothed" value. Median absolute deviation (MAD) of the difference between the observed and 

smoothed values was used to estimate the tumor-specific experimental variation. All of the tumors had 

MAD less than 0.22. Clones for each array were assigned into three groups: gained - the smoothed 

log2 ratio of a clone in a particular tumor was higher than 3 times the MAD; lost - when the smoothed 

log2 ratio was less than 3 times the -MAD; and finally, not changed - when the log2 ratio can not be 

assigned to the lost or gained groups. 

Association of copy number with phenotypes. Smoothed, imputed data was used to study 

association with the following phenotypes: age, tumor size, histological grade and subtype, stage, 

estrogen and progesterone receptor status, and recurrence/survival. For example, for the right 

censored data we used Cox proportional hazards model, where we tested for difference in survival 

given different baseline log2 ratio for a given clone. We corrected for multiple hypotheses testing by 

controlling the False Discovery Rate. Significance was claimed at the FDR < 0.05, which corresponds 

to the expectation of at most 5% of false discoveries among the loci declared significant. In addition, we 
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tested for difference in recurrence/survival outcome for patients subgroups defined by the treatment 

assigned to them.  

Cross-tabulation of clinical variables. We used Fisher’s two-sided exact test 2x2 crosstabs to 

compare genomic events or clinical variables among both groups of treatment. To evaluate differences 

in disease-free survival, Kaplan-Maier survival curves for the sets of patients were examined. 

GO validation. Finally, we performed a statistical analysis to check if there were any gene Ontology 

(GO) categories that were enriched in the genes located in the region of deletion in chromosome 

11q23-q24 with respect to the whole genome 

 

CLINICAL SERIES FOR VALIDATION OF ARRAY CGH RESULTS 

To validate the possible association of chromosome 11q deletion with increased relapse rate, this was 

tested in a validation group of 88 tumor biopsy samples from an independent cohort of NNBC patients. 

These were 18 Spanish patients treated in different Institutions within the Valencia area whose 

genomes were analyzed with array CGH as described above. In addition, data from 70 patients were 

obtained from a recently published series of American breast cancer patients analyzed using similar 

whole-genome array CGH techniques (Chin et al, submitted). All patients fulfilled the reported inclusion 

criteria of the study. Kaplan-Maier survival curves for the two sets of patients were evaluated. Clinico-

pathological characteristics of the validation series are shown in Supplemental Table S1. 
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RESULTS 

 

CHARACTERISTICS OF THE PATIENTS 

Clinico-pathological characteristics of the 185 patients and tumors are summarized in Table 1. Based 

on the clinico-pathological features, 90 women received anthracycline-based chemotherapy (CHEMO 

group) whereas 95 patients did not (non-CHEMO group). In both groups, women with ER/PR positive 

tumors were treated with tamoxifen: 42 in the CHEMO group (47%) and 56 in the non-CHEMO group 

(59%) (Supplemental Table S2). With a median duration of follow-up time of 82 months (range, 9 to 

218 months), 45 of the 185 patients (24%) have relapsed. Median duration of follow-up time for 

patients who are free of disease was 96 months in both CHEMO and non-CHEMO groups. Death from 

the disease was assessed in 16 of 185 patients (9%). We initially determined differences in clinico-

pathological features and outcome between patients in the CHEMO group vs. those in the non-CHEMO 

group. Women in CHEMO group were younger (mean, 51 vs. 67 years; p=0,003) and had a more 

frequent pre-menopausal status (43 vs. 17%; p=0,001). We did not observe statistically significant 

differences in any other histopathological feature (Table 1 and Supplemental Fifure S1A). In addition, 

no statistically significant differences in disease-free survival (DFS) and overall survival (OS) were 

found between CHEMO and non-CHEMO groups (Supplemental Fifure S1B and S1C). 

 

GENOMIC PROFILING OF LYMPH-NODE NEGATIVE BREAST CANCER 

Array CGH analysis was performed in the 185 tumor biopsies, and allowed the identification of specific 

regions of gain and loss throughout the genome with high resolution in all of the biopsies. All tumors 

showed genomic changes (Figure 2). A total of 112 clones that were mapped to 40 different 

chromosome loci in 9 different chromosome arms were found. These corresponded to 23 genomic 

gains and 17 genomic losses involving regions known to be commonly involved in breast cancer as 

well as uncharacterized genomic aberrations. The most common gains corresponded to chromosomes 
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1q31 and 20q12 (91 of 185, 49%), 8q24.2 (40%), 17q21 (39%), 1q32, 8q23.1 and 20q13.1 (35%), 1q23 

(34%) and 8q24.1 at MYC gene locus (32%). In addition, high-level amplification (defined as log2 ratio 

>1 observed in at least 10 different samples) was identified in 5 different regions of chromosomes 

11q13-q14 at CCND1 gene (17 of 185 tumors, 9%), HER2 (13 tumors, 7%), 1q31 and 8p12 at FGFR1 

gene (11 tumors, 6%) and 8q21-q24.1 including MYC gene (10 tumors, 5%). The most frequently 

deleted regions were observed at chromosomes 13q14-q22 (66 of 185 tumors, 36%), 17p12-p13 

including P53 gene locus (34%), 16q21-q22 including the CDH1 gene (30%), and 11q21-q25 (29%), 

16q24 and 16p12-p13.1 (26%), 11q12 (25%), 8p21.3-p22 (25%) and 22q11.2. A total of 18 

homozygous deletions (defined as log2 ratio below -1,4) were identified, being the loss of 13q21.3-q22 

at KLF12 gene observed in two different tumors. The full array CGH data has been deposited in GEO 

database (Platform GPL3632). 

 

To initially validate the array CGH results, a subset of 44 samples was also analyzed with CGH to 

chromosomes, and the two techniques showed concordant values (Supplemental Figure S2). To 

further validate our data, the analysis of 9 individual BAC clones in 22 frozen tumor sections using 

fluorescence in situ hybridization (FISH) also showed a high concordance with array CGH results 

(Supplemental Table S3).  The array CGH data defined a common genomic signature of NNBC (Figure 

2; detailed information in Supplemental Table S4).  

 

CORRELATION OF GENOMIC ALTERATIONS AND CLINICOPATHOLOGICAL FEATURES 

We tested the association of clinical and pathological variables with each of the BAC clones in the 185 

patients. After adjustment for multiple testing, these analyses showed that the only variables correlated 

with genomic changes were ER and PR status (Figure 3). Tumors that showed expression of ER (ER+) 

presented with frequent gain of chromosomes 1q21-q43 (35% vs. 14%; p<0,05), and 16p12 (17% vs. 

1%; p<0,01) and losses of chromosome 16q21-q24 (25% vs. 7%; p<0,01). Tumors negative for PR 
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(PR-) also presented with frequent deletion of chromosomes 4p13-p16 (19 vs. 5%; p<0,001) and 

5q11.2-q31 (16 vs. 3%; p<0,001) (Figure 3B and Supplemental Table S5). We also determined the 

correlation of the genomic status of 17q12 locus at HER2 gene (determined by array CGH analysis) 

with other clinical variables. Amplification or gain of HER2 gene was observed in 29 tumors (16%) and 

was correlated with negativity for PR expression (p=0,007), but not with other clinico-pathological 

features. 

 

ASSOCIATION OF GENOMIC ABNORMALITIES WITH CLINICAL OUTCOME: 11q LOSS 

PREDICTS RESPONSE TO CHEMOTHERAPY 

We compared the genomic profiles of tumors in the CHEMO and non-CHEMO groups. None of the 

abnormal BAC clones showed a significantly different distribution between the two cohorts, indicating 

that both groups were comparable at the genomic level (Figure 2).  To develop a genomic predictor of 

clinical outcome, we examined the association of the genomic aberrations with disease recurrence in 

the two differently treated cohorts. In the CHEMO group, after adjustment for multiple testing, none of 

the abnormal BAC clones was associated with tumor relapse (Figure 4A). In the non-CHEMO group, 

however, there were statistically significant differences (p<0,05) in 8 BAC clones that showed more 

common deletion in tumor recurrences with respect to non-recurrences (Figure 4B). Notably, these 8 

clones clustered to the long arm of chromosome 11 from 11q23.1 to 11q24.1, spanning ∼9 Mb. in size 

(Figure 4C). Therefore, deletion of chromosome 11q was associated with decreased DFS in NNBC 

patients in the non-CHEMO group (DFS ± SE at 10 years, 40± 14% vs. 86± 6%, p<0,0001) but not in 

the non-CHEMO group (DFS at 10 years ± SE, 92 ±  21% vs. 65 ± 9%, p=0,13). Analysis of the 

association of the genomic changes with OS in the two treatment cohorts did not reveal any significant 

correlation, probably due to the low number of patients who have died of the disease so far. Finally, we 

performed a statistical analysis to check if there were any GO categories that were enriched in the 

genes located in the region of deletion in chromosome 11q23.1-q24.1. Among them, DNA repair genes 
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and meiotic-related genes were significantly enriched (hypergeometric test pvalue <0.00092). Four 

genes belonged to this category (CHK1, H2A, ATM and ZW10). 

 

CHARACTERISTICS OF PATIENTS WITH 11q DELETIONS 

To determine whether the negative impact of 11q deletion on DFS was dependent on other clinical and 

biological features, we compared the clinical and biological characteristics of the 54 patients with 11q 

deletion vs. those 131 patients without deletion of 11q. In the whole group of 185 patients, there were 

no statistically significant differences for age, clinical stage, hormonal status, tumor size and grade, and 

expression of ER/PR for 11q-deleted vs. non-deleted tumors (Supplemental Table S6). These data 

indicate that the influence of 11q deletions in the relapse rate of the patients in the non-CHEMO group 

is independent of other known clinical and pathological features. We also analyzed possible differences 

in patients with and without 11q deletion for genetic alterations reported in correlation with aggressive 

breast cancer (HER2, CCND1, MYC and FGFR1 amplifications and P53/P16 deletions). We did not 

observe changes in the distribution of these genomic alterations, with the exception of CCND1 

amplification that was more common in tumors harboring deletion of chromosome 11q: among 17 

cases with CCND1 amplification, 12 (70%) presented deletion of 11q whereas only 42 cases (25%) 

showed 11q deletion among the 168 non-amplified CCND1 cases (p<0,001). This association can 

probably be explained by the proximity of CCND1 gene (which maps to 11q13 band) to the 11q23.1-

q24.1 deletion (Supplemental Figure S4B). Notably, genomic amplification of CCND1 was not 

associated with decreased DFS in both the non-CHEMO and CHEMO groups. In summary, tumors 

with 11q deletion do not show a more aggressive phenotype or genotype that can distinguish them 

from those without this chromosome deletion. 

 

VALIDATION OF 11q DELETION AS A THERAPY-PREDICTIVE INDICATOR  



 13 

To validate the association of chromosome 11q deletion with worse outcome in patients not receiving 

anthracycline-based chemotherapy, we analyzed a second series (validation group) of 88 NNBC 

biopsies.  After surgery, 27 of the patients received chemotherapy whereas the remaining did not. 

Sixty-two patients with ER/PR positive expression received hormonal therapy based on tamoxifen. In 

the group treated with chemotherapy, 6 of 15 patients (40%) without 11q deletion relapsed whereas 3 

of 12 patients (25%) with 11q deletion had a recurrence (p=0,23). However, in the group not receiving 

chemotherapy, tumor recurrence was observed in 4 of 33 patients (12%) without 11q deletion and in 10 

of 28 patients (35%) with 11q deletion (p=0,02) (Figure 5). Kaplan-Meier curves also showed that 

deletion of chromosome 11q was associated with inferior DFS in patients not treated with 

chemotherapy (DFS ± SE at 10 years, 65± 13% vs. 88± 8%, p<0,1). Notably, in the non-CHEMO 

group, patients with 11q deletion had a tendency to show a superior DFS compared to those without 

11q loss (73± 18% vs. 50± 18%, p<0,7). These differences, however, did not reach statistically 

significant values, probably because of the limited number of patients and the relatively short median 

follow-up time (Figure 5D). In summary, the results observed in this validation set were coincident with 

the results obtained in the training set of 185 patients, and confirms that deletion of 11q is associated 

with relapse in patients with NNBC who are not treated with anthracycline-based chemotherapy.  
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DISCUSSION 

 

Following current therapeutic guidelines, one fourth of NNBC patients will have tumor recurrence and 

ultimately die of the disease. In addition, many patients treated with systemic therapy who will never 

have disease recurrence could have been cured with surgery alone. These over- and under-treatments 

are owing to limitations of the current prognostic factors, which largely rely on clinical characteristics 

and classical histopathological features.(2-4). Recently, HER2 amplification/over-expression has been 

accepted as a risk factor for prognostication in the St Gallen criteria and moreover, recent reports 

demonstrate that a recombinant monoclonal antibody against HER2 combined with chemotherapy 

improves outcomes among women with HER2-positive breast cancer.(4, 7, 28) Still, as this therapy will 

benefit ∼20% of NNBC women with HER2-positive tumors, there is an urgent need of similar therapy-

predictive factors to tailor optimal individualized therapies in the remaining women. In the present 

study, by using CGH to BAC microarrays for scanning NNBC genomes, we have identified the single 

deletion of chromosome 11q as a novel genomic marker that predicts response to anthracycline-based 

chemotherapy. Thus, patients receiving anthracycline-based chemotherapy with 11q deletion had lower 

tumor relapse rates (although it was not statistically significant) than those not having 11q deletion. On 

the contrary, in the group of patients not receiving chemotherapy, tumors with 11q deletion relapsed 

more frequently than those without 11q loss. Notably, the presence of 11q deletion in tumors was not 

correlated with classical prognostic factors such as age, clinical stage, tumor size, histological grade 

and subtype, and ER and PR expression status, nor with other genetic alterations correlated with poor 

outcome in breast cancer (HER2, MYC and FGFR1 amplification and P53 and P16 deletion).(20, 29) 

There was however a regional association between 11q deletion and amplification of CCND1 gene at 

11q13 band, although genomic amplification of CCND1 did not influence patient outcome. Thus, the 

adverse outcome of 11q deletion in the non-CHEMO group was independent of all tested prognostic 

factors. Therefore, our data suggest that NNBC patients with 11q deleted tumors may benefit from the 
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use of systemic chemotherapy that could be considered as the first treatment option for these patients 

despite other clinical, histopathological and genetic characteristics.  

 

In the attempt of delineating the minimal region of common loss of 11q, we observed that most tumors 

in our study showed large 11q deletions extending from bands 11q21 to 11q25. These data confirm 

previous studies using LOH, standard CGH and array CGH techniques that have reported the loss of 

large areas of 11q as a common event in breast cancer.(17, 19, 30-35) The wide region defined in our 

study overlaps with all these early reports. A number of candidate target tumor suppressor genes 

involved in breast and/or ovarian cancers are mapped to this chromosome region, including the ataxia-

teleangiectasia mutated gene ATM,(36) the gene coding for the CHK1 kinase, which coordinates cell 

cycle progression and preserves genome integrity,(37) the tumor suppressor in lung cancer-1 gene 

TSLC1,(38) and the breast cancer suppressor candidate-1 gene BCSC1.(39) As a consequence of the 

chromosome deletion, we may speculate that any of these genes (or several of them) become altered 

in the tumor cells. Further support to the hypothesis suggesting that 11q may contain gene/s important 

for the suppression of tumorigenesis was provided using microcell-mediated chromosome 11 transfer 

into cancer cells.(40, 41) In addition to the deletion of one allele with loss-of-function mutation of the 

remaining allele as the causative mechanism of inactivation of the putative 11q tumor suppressor 

genes, the 11q loss may also act as haploinsufficient mutation, being the deletion of one chromosome 

enough to perturb gene/s that contribute to cancer progression through a gene-dosage effect.(42) Our 

studies lead us to hypothesize that the large non-random deletions of chromosome 11q are the 

consequence of a yet-unidentified common molecular hit occurring in tumor cells at early stages that 

confers chromosome instability and predisposition to regional 11q loss. Further ongoing genetic and 

functional studies will address these initial questions.  
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The bottom line of our findings is that the loss of chromosome 11q makes tumor cells responsive to 

anthracycline-based chemotherapy. Why 11q-deleted cells become more sensitive to chemotherapy is 

currently unknown. Theoretically, adjuvant systemic chemotherapy is administered to the patients to kill 

any remaining malignant cell (wherever they may be) after surgical removal of the tumor. Cellular DNA 

is the primary target for anthracyclines, by binding and inserting between DNA bases, leading to 

chromatin unfolding and aggregation. These chromatin structural changes primarily interfere with DNA 

replication and transcription, thus leading to the apoptosis undergone by the cells treated with 

anthracyclines.(43) The selectivity of these drugs for targeting cancer cells but not non-tumoral cells 

may reside in the lower ability of cancer cells to repair the damage induced by the drugs.(43) We may 

speculate that deletion of chromosome 11q in breast tumor cells leads to functional impairment of 

gene/s involved in DNA repair, thus contributing to the increased sensitivity to anthracyclines reported 

in our study. Indeed, we have observed that genes involved in DNA repair were enriched in the deleted 

11q region with respect to the rest of the genome. Two of the most prominent candidate targets for 11q 

deletion in breast cancer are 1) the ataxia-teleangiectasia mutated gene ATM that codifies for a protein 

involved in DNA repair and cell cycle control;(44, 45) and 2) the cell cycle checkpoint kinase CHK1, 

that acts downstream of ATM in response to DNA damage.(37) Other candidate targets include the 

gene encoding for the H2AFX histone, which is critical for facilitating the assembly of specific DNA-

repair complexes on damaged DNA;(46) and the gene encoding for the mitotic checkpoint protein 

ZW10.(47) In this theoretical scenario, 11q-deleted tumor cells that become deficient for these DNA 

repair genes cannot detect and/or repair DNA damage induced by anthracyclines whereas tumor cells 

with intact chromosome 11q and functional DNA repair proteins are able of repairing DNA efficiently, 

evade apoptosis, and ultimately metastasize.(48, 49) We may also suggest that deletion of 11q targets 

the non-coding microRNA gene miR125b-1, which is specifically down-regulated in breast cancer and 

may potentially regulate oncogenes such as ETS1, that plays a role in cell growth and has been shown 

over-expressed in breast cancer.(50) 
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Finally, our study could be valuable in the clinical management of patients with NNBC, by adding the 

11q deletion status to the currently accepted prognostic and therapy-predictive markers.(4) According 

to our data, tumors should be screened for the presence or absence of 11q deletion at diagnosis using 

rapid quantitative PCR, FISH and/or mini-array CGH devices using a reduced set of BAC clones. 

These diagnostic tests should allow clinicians to prospectively identify patients who are candidates to 

receive anthracycline-based chemotherapy, such as standard AC/FAC, which are widely used as front-

line therapies in NNBC, irrespective of other clinico-pathological features. In patients presenting factors 

that imply a good prognosis, such as age >35, clinical stage I, low-grade tumors sized >1 cm, and 

ER/PR positivity, systemic chemotherapy could be avoided only if 11q deletion is not identified. 

Although our study requires further validation and refinement, future application of 11q deletion 

measurement as a novel therapeutic indicator in NNBC is clearly challenged. 
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TABLES 

 

Table 1. Clinico-pathological features of 185 patients and tumors with NNBC. Differences 

between patients treated with chemotherapy (CHEMO group) and patients who did not receive 

chemotherapy after surgery (non-CHEMO group).  

 

SUPPLEMENTAL TABLES 

S1. Clinico-pathological characteristics of the 88 NNBC patients and tumors in the validation series. 

S2. Chemotherapeutic schemes of 185 breast cancer patients.  

S3. FISH analysis of frozen tumor samples. Correlation with array CGH results. 

S4. Description of common regions of genomic gain and amplification, hemizygous loss and 

homozygous deletion in lymph node negative breast tumors.  Mb position is based on UCSC Genome 

Browser Human May 2004 version, http://genome.cse.ucsc.edu/ 

S5. Correlation of abnormal BAC clones in ER+ vs. ER- tumors and in PR+ vs. PR- tumors.  

S6. Clinico-pathological and genetic characteristics, and survival rates of patients with 11q deletion vs. 

those without 11q deletion. In CCND1 and HER2 amplification subgroups, no separate statistical 

analysis for CHEMO and non-CHEMO groups could be performed because of the small number of 

patients. NS, non significant.  
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FIGURES 

Figure 1. Representation and description of genome-wide array CGH technique. Genome-wide 

analysis of DNA-copy number changes was performed using array CGH on a microchip with ∼2.460 

BAC and P1 clones printed in triplicate. Briefly, 0.5 µg of test (tumor) and reference genomic DNAs 

were labeled by random priming using Cy3 and Cy5, respectively. After 48 hour of hybridization, slides 

were washed and mounted with DAPI. The images of the arrays were captured using a CCD camera, 

and the “UCSF SPOT” 2.0 software (available at http://www.jainlab.org/downloads.html) was used to 

analyze the images and measure tumoral vs. control fluorescence intensity ratios that were converted 

to the log2 scale. A second program, the “UCSF SPROC” was used to associate clones with each spot 

and to create a mapping information file that allows the data to be plotted relative to the position of the 

BACs on the draft human genome sequence (http://genome.cse.ucsc.edu; May 2004 freeze). A 

formal data filtering procedure was then performed, and a SPROC output file consisting of averaged 

ratios of the triplicate spots for each clone, standard deviations of the replicates and plotting positions 

for each clone on the array, was obtained.  

Figure 2. Representation of array CGH results of 185 NNBC. Genomic gains and losses are 

depicted in green and red, respectively.  

Figure 3. Correlation of ER/PR expression status with genomic data. A. The genomic gain of BAC 

clones mapped to 1q21-q43 and to 16p12 chromosome regions and the genomic loss of clones 

mapped to 16q21-q24 were associated with positive ER (marked with arrowheads). B. The 

progesterone receptor (PR) status is not significantly associated with abnormalities of 1q, 16p or 16q 

arms, but a borderline significance in chromosome 16 is observed. Instead, the genomic loss of clones 

mapped to 4p13-16 and 5q11.2-q31 were observed associated statistically with negative PR (marked 

with arrowheads). C. Frequency plot of all BAC clones in chromosome 16 comparing ER positive (C2) 

versus ER negative (C1) tumors. D. Representation of log2ratios from clones in chromosome 16 in one 

ER-positive breast tumor. 
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Figure 4. Association of genomic results with clinical outcome in NNBC patients. Association of 

genomic results with clinical outcome in NNBC patients. A. In the CHEMO group, after adjustment for 

multiple testing, none of the 2,460 BAC clones was associated with tumor relapse. B. In the non-

CHEMO group, however, there were statistically significant differences (p<0,05) in 8 BAC clones, 

clustered to the long arm of chromosome 11, that showed more common deletion in the group of tumor 

recurrences. Kaplan Meier curves showed differences in disease-free survival (DFS) for 11q deleted 

tumors vs. those without deletion in the non-CHEMO group (DFS ± ES at 10 years, 40± 14% vs. 86± 

6%, p<0,0001) but not in the non-CHEMO group. Considering the patients harboring deletion of 

chromosome 11q, five of 31 patients in the CHEMO group (16%) had recurrence of the disease 

whereas the relapse rate was much higher in the non-CHEMO group: 14 of 23 with 11q deletion (62%) 

had a relapse (p<0,0001). Among the 59 patients in the CHEMO group who did not show deletion of 

11q, 19 (30%) presented recurrence of the disease whereas only 8 of 72 without 11q deletion (11%) in 

the non-CHEMO group relapsed. C. Representation of the region of deletion in chromosome 11q. The 

eight clones clustered to chromosome 11 from bands 11q23.1 to 11q24.1 are highlighted in yellow. 

When the adjusted value for statistical significance was of <0,1 instead of <0,05, the number of BAC 

clones correlated with relapse increased to 24, all of them mapped to 11q21-q25.  

Figure 5. Correlation of 11q deletion in the test and validation series. A. Bars show the 

comparative relapse rates of tumors with 11q vs. non-deleted in 185 NNBC patients (training set). B. 

Relapse rates in the validation set of 88 NNBC patients. C. The distribution of recurrences between the 

11q vs. non-11q subgroups is shown in the training and validation sets. D. Kaplan–Meier curves show 

differences in DFS for the validation group, resembling the data obtained in the training set of 185 

patients. 

 

SUPPLEMENTAL FIGURES. 
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S1. A. Boxplot representing differences between presentation age in both treatment groups (p=0,003). 

Kapplan Meier curves for (B) Disease Free Survival (DFS) and (C) Overall Survival (OS) in CHEMO 

group and non-CHEMO group. 

S2. Comparison of array CGH and CGH to metaphase chromosome techniques in 44 NNBC samples. 
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p-value

Nº % Nº % Nº %

Follow-up (Months) Range NS
Median

Recurrence 45 24% 23 26% 22 23% NS

Age (years) range
47 25% 48 25% 50 25%

mean 58 50% 51 50% 67 50%
70 75% 62 75% 75 75%

0,003
<35 11 6% 9 10% 2 2%

35-50 54 29% 32 36% 22 23%
51-55 16 19% 13 14% 3 3%

>55 104 56% 36 40% 68 72%

Hormonal Status Post- 115 63% 48 53% 67 70% 0,001
Pre- 55 30% 39 43% 16 17%

No data 14 7% 3 4% 11 13%

Tumoral Size
T1 < 2cm 70 39% 27 30% 43 48%
T2 2 - 5cm 100 55% 56 63% 44 48% NS
T3 >5cm 10 6% 6 7% 4 4%

Histologic Type
Ductal Infilt 146 79% 76 85% 70 74% NS

Lobulillar Infilt 13 7% 7 8% 6 6%
Other 26 14% 7 7% 19 20%

Hormonal Receptors ER - 60 32% 33 36% 27 28%
ER+ 101 55% 42 47% 59 62% NS

No data 24 13% 14 16% 9 10%
PgR - 65 35% 32 36% 33 35%
PgR+ 96 52% 43 48% 53 56% NS

No data 24 13% 15 16% 9 9%

Histologic Grade I 41 22% 13 14% 28 30%
II 90 49% 44 49% 46 48% NS

III 17 9% 12 14% 5 5%
No data 37 20% 21 23% 16 17%

Adjuvant Chemotherapy (CHEMO) No Adjuvant Chemotherapy (non-CHEMO)All PatientsClinical Characteristics
N = 90 N = 95N = 185
9 - 218 11 - 1749,2 - 218

85 7782

21 - 73 30 - 8621 - 86

TABLE 1
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microchip with ∼2.460 BAC and P1 clones in triplicate (UCSF 

Hum Array 2.0) with a resolution of 1.4 Mb across the 

genome.
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n = 185CHEMO Group (n= 90) Non-CHEMO Group (n= 95) 

Recurrence

(n=23)
Disease-free (n=67) Disease-free (n=73)Recurrence

(n=22) 

11q
genomic loss

Array Position teststat raw p-value adjusted p-value Clone Name Chromosome band kb_position*
1386 11.41698229 0.0007 0.073 RP11-163O18 11q21 92996.6955

1388 10.21369871 0.0014 0.092 RP11-267L1 11q22.1 97463.707

1401 10.95068946 0.0009 0.076 CTD-2057A4 11q22.2 107741.5585

1402 12.04782451 0.0005 0.072 RP11-2F21 11q22.3 109509.3825

1403 10.030896 0.0015 0.096 RP11-759M17 11q23.1 111035.0265

1404 12.49746445 0.0004 0.072 RP11-262J9 11q23.1 111290.463

1406 23.15356975 <0.00001 0.003 CTD-2059P15C 11q23.1 112785.8575

1407 10.70468829 0.0011 0.078 RP11-5N6 11q23.2 112997.6715

1408 14.04187609 0.0002 0.042 RP11-36M5 11q23.2 113584.738

1409 10.92877968 0.0009 0.076 RP11-279M1 11q23.2 113774.6505

1412 10.07186966 0.0015 0.096 RP11-45N4 11q23.3 118074.5135

1413 11.98966618 0.0005 0.072 RP11-62A14 11q23.3 118911.0545

1414 14.52419201 0.0001 0.039 RP11-8K10 11q23.3 119246.8955

1415 16.06357515 0.0001 0.039 RP11-94C16 11q23.3 119453.736

1416 14.43729836 0.0001 0.039 RP11-133I16 11q23.3 120253.4105

1417 11.97553908 0.0005 0.072 RP11-126D18 11q23.3 120505.2235

1418 15.23734287 0.0001 0.039 RP11-145I11 11q24.1 121749.67

1419 14.41421677 0.0001 0.039 RP11-87O12 11q24.1 122754.1105

1420 14.87119157 0.0001 0.039 RP11-35M6 11q24.1 122891.6035

1421 11.11141066 0.0009 0.076 RP11-15J15 11q24.2 125504.1225

1422 11.59377006 0.0007 0.072 RP11-20M1 11q24.2 125867.245

1423 12.47527265 0.0004 0.072 RP11-112M22 11q24.3 127718.138

1424 11.94894584 0.0005 0.072 RP11-17M17 11q25 132129.163

1426 11.53493118 0.0007 0.072 RP1-26N8 11q25 134452.384
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