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Abstract 

 

It seems well established that CpG oligonucleotides Th1 biased adjuvant activity 

can be improved when closely associated with a variety of antigens in, for example, 

microparticles. In this context, we prepared 1-µm near non-charged PLGA 502 or 

PLGA 756 microparticles that loaded with high efficiency an antigen (50% ovalbumin 

(OVA), approximately) into their matrix and CpG-chitosan complexes (near to 20%) 

onto their surface maintaining OVA and CpG integrity intact. In the intradermal 

immunization studies, whereas OVA microencapsulated into PLGA 756 alone induced 

a strong humoral immune response assisted by a very clear Th1 bias 

(IgG2a/IgG1=0.875) that was decreased by CpG co-delivery (IgG2a/IgG1=0.55), the 

co-encapsulation of CpG with OVA in PLGA 502 particles significantly improved the 

antibody response and isotype shifting (IgG2a/IgG1=0.73) in comparison with mice 

immunized with OVA loaded PLGA 502 (IgG2a/IgG1=0). This improvement was not 

correlated with the cellular immune response where the effect of co-encapsulated CpG 

was rather negative (2030.2 pg/mL and 335.3 pg/mL IFN-γ for OVA PLGA 502 for 

OVA CpG PLGA 502, respectively). These results underscore the critical role of 

polymer nature and microparticle characteristics to show the benefits of co-

encapsulating CpG motifs in close proximity with an antigen. 

 

Keywords: Microparticles, antigen, immunotherapy, CpG sequences, Th1/Th2 immune 

response, poly(lactic-co-glycolic) acid. 
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1. Introduction 

 

Current studies in the field of vaccination are based on subcellular compounds of 

pathogens [1-3], avoiding the potential pathogenicity of using attenuated organisms. 

However, the lack of immunogenicity applies for adjuvants and/or immunomodulators. 

Between the adjuvants described in the literature only aluminium hydroxide (alum) and 

the emulsion MF59 have been approved for human applications due to their confirmed 

efficacy and safety [4]. In spite of being the most used adjuvant, alum is a pro-Th2 

response enhancer. This outcome is not suitable for some disorders like intracellular 

infections and allergy [5, 6]. Moreover, the possibility of some undesirable side effects 

(including hypersensibility to aluminium [7], granuloma [8] and the relationship 

between the accumulation of aluminium and the Alzheimer disease [9]) have been 

reported. Consequently, the search for novel adjuvants remains a health priority. 

Microparticles have been widely reported in the literature as carriers for antigen 

delivery [10-12]. Poly(lactic-co-glycolic) acid (PLGA) appears as an attractive 

candidate for the fabrication of microparticles since its use in resorbable sutures [13] for 

humans has been approved by the FDA. The protection that microparticles provide to 

the antigen and the improvement in the uptake by the antigen presenting cells (APC) 

result in the enhancement of the antigen poor immunogenicity [14]. Besides, the nature 

of degradation of the carrier maintains a sustained release [15] throughout the time 

which would be in concordance with a few shot protocol of vaccination.  

Pathogen associated molecular patterns (PAMP) have been confirmed as potent 

immunomodulators due to their interaction with the APC. Their signalization pathway 

starts in Toll-like receptors (TLR), specific for each PAMP, and ends triggering the 
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immune response. In the case of oligodeoxynucleotides containing immunostimulatory 

CpG motifs (CpG ODN), the association with their endosomal specific receptor (TLR-

9) [16, 17] initiates a complex molecular cascade which encourages the transcription of 

pro-inflammatory cytokines encoding genes, such as IL-12 and tumor necrosis factor 

(TNF) [18]. Afterwards, the presence of these molecules in the environment potentates 

the differentiation of naïve Th0 cells into Th1 and cytotoxic T lymphocytes [19]. Thus, 

the deviation exerted in the immune response could be taken in advantageous to co-

administer antigens as well as CpG sequences, leading to a potent antigen-specific Th1 

type response and being a promising strategy for a wide range of diseases, such as 

bacterial infections [20], cancer [21, 22] and allergy [23].  

In vivo, both CpG sequences and antigens have been administered directly in a 

physical mixture or after their covalent association [24]. Also, CpG motifs have been 

combined with drug delivery systems in a solution [25] but all these strategies could 

result in CpG and/or antigen damaging by enzymes in the biological environment. 

Therefore, the association of both antigen and oligonucleotide into the same carrier is 

supposed to offer several advantages [25-28]. Despite CpG sequences are under clinical 

trials, some authors have reported adverse effects such as splenomegaly, 

lymphadenopathy [29] or the activation of autoimmune responses [30] in animal models 

after the administration of high doses of CpG motifs (over than 100 µg). In this context, 

the particle would protect both molecules from degradation so it would not be necessary 

to administer a high amount of CpG sequences. Besides, the particulated antigen and 

immunomodulator would be recognized by the immune system like a “danger signal” so 

the phagocytosis/endocytosis would be improved. In consequence, both molecules 
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would interact with the same APC, displaying a strong antigen specific immune 

response.  

In this context, the association of CpG sequences with positive molecules has 

been described as a successful strategy to load both molecules into the same particle 

[31, 32]. The milestone of this idea is the counterbalancing of the CpG negative charges 

and the reduction of its hidrophylicity. In our work conditions, preliminary studies have 

confirmed that the absence of cationic molecules lead to insignificant CpG 

encapsulation efficiency. 

The aim of the present study was to co-encapsulate both ovalbumin (OVA), as 

an antigen model, and CpG sequences into PLGA 502 and 756 microparticles using a 

recently described emulsion and solvent evaporation method called Total Recirculation 

One Machine System (TROMS). For this purpose, chitosan was used to form a complex 

with the oligonucleotide, which would decrease its hydrophylicity achieving a high 

CpG pay-load. Moreover, the immunostimulatory potency of the CpG loaded 

microparticles was analysed in vitro after incubation with bone marrow-derived 

dendritic cells (BMDC) and in vivo conditions after immunizing BALB/c mice by 

intradermal route. 
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2. Materials and methods 

 

2.1. Materials 

 

The copolymers formed by lactic and glycolic acid, Resomer� RG 502 (MW 

12,000) and Resomer� RG 756 (MW 98,000), were supplied by Boehringer Ingelheim. 

Phosphorotiorated oligonucleotide containing CpG sequences (#1826, seq. (5`-3`): 

tccatgacgttcctgacgtt) was obtained from Coley Pharmaceutical Group (USA) and sense 

oligonucleotide (5`-3`: AACGTCAGCAACGTCATGGA) was purchased by Bonsai 

Technologies (Spain). Ovalbumin (grade V) and Pluronic® F68 were supplied by 

Sigma-Aldrich Chemie (Germany) and methylene chloride (reagent grade) was obtained 

from Scharlau (Spain). Chitosan (MW 150,000) was purchased from Fluka (Germany) 

and polyvinyl alcohol (PVA), molecular weight 125,000, was obtained from 

Polysciences Inc. (USA). Oligreen� ssDNA Quantitation kit and SYBR Green� I 

nucleic acid gels stain were purchased from Molecular Probes (Oregon, California, 

USA). Microbicinchoninic acid (MicroBCA) protein assay kit was purchased from 

Pierce (USA). Other chemical compounds were of reagent grade and were obtained 

from Sigma-Aldrich (USA). 

 

2.2. Microparticle fabrication 

 

Microparticles (MP) were fabricated by the solvent evaporation method using 

TROMS [33, 34]. Briefly, the polymer dissolved in methylene chloride (50 mg PLGA 

502 or 756, 4% w/v) was injected under a turbulent regime (50 mL/min) through a 
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needle with an inner diameter of 0.17 mm onto a solution of Pluronic® F68 (6%) and 

chitosan containing ovalbumin (3 mg) and/or CpG sequences (300 nmol, 

approximately), depending on the formulation. Then, this W1/O emulsion was forced to 

circulate through the system for 2 min in order to homogenize the droplet size. 

Afterwards, this emulsion was injected onto the outer water phase, PVA (0.5% w/v), 

maintaining the pumping flow constant. This turbulent injection resulted in the 

formation of a double emulsion (W1/O/ W2), which was homogenized for 4 min. Later, 

the final emulsion was magnetically stirred to allow solvent evaporation and 

microparticles formation. The microparticles were centrifuged (9300 x g, 12150-H, 

Sigma 3K30) and washed with distilled water twice. Finally, the microparticles were 

freeze dried, lyophilized (Genesis 12EL, Virtis, USA) and stored at 4ºC for their 

conservation. 

Besides, empty microparticles were fabricated in the same way as described 

above but without adding either ovalbumin or CpG sequences.  

 

2.3. Microparticle characterization 

 

The size of the particles was determined by laser diffractometry using a 

Mastersizer S laser sizer (Malvern Instruments, UK). The mean size was expressed as 

the volume mean diameter in micrometers (µm). Microparticles zeta potential was 

assessed by laser Doppler velocimetry in a Zetasizer Nano ZS (Malvern Instruments, 

UK). For these analyses, the samples were diluted in distilled water at room temperature 

and the measurements were performed in triplicate.  



 

 

8 

The yield of the preparation process was calculated as the difference between the 

initial amount of polymer used to fabricate the microparticles and the final weight of 

lyophilized samples, expressed as percentage (%). 

The shape and morphology of the microparticles were evaluated by scanning 

electron microscopy. The samples were coated with a platinum/palladium layer 

(Cressington Sputter Coater 208 HR, UK) under argon atmosphere. The micrographs 

were obtained using a scanning electron microscope (LEO 1530, France). 

The amount of OVA associated to the microparticles was calculated using the 

MicroBCA protein assay. Lyophilized microparticles (5 mg) were degraded with 1 mL 

of NaOH 0.1N under magnetic stirring at room temperature overnight. The samples 

were centrifuged (27100 x g, 10 min) and the resulting pellets were incubated with the 

MicroBCA reagent for 2 h at 37ºC. Then, the solutions were measured in a 

spectrophotometer (iEMS Reader MF, Labsystems, Finland) at 562 nm and compared 

with the absorbance data obtained with OVA in solution. For this purpose, calibration 

curves (1.5-50 µg/mL) were performed using control OVA dissolved in NaOH 0.1N. 

Each sample was assessed in triplicate and the results were expressed as the amount of 

protein per milligram of microparticle. Besides, the encapsulation efficiency was 

defined as the percentage of OVA loaded relating to the initial amount of protein. 

To determine the CpG sequences loading, 5 mg of microparticles were shaked 

with NaOH 0.1 overnight at room temperature. Oligreen� ssDNA Quantitation reagent 

was added to the samples and the resulting fluorescence was measured at 522 nm 

(PerkinElmer LS 50B Luminiscence Spectrometer, USA). CpG motifs were dissolved 

in buffer TE in order to perform a sigmoidal-fitted calibration curve (0.05-1.5 µg/mL). 

The results were expressed as the amount (in µg) of oligonucleotide per milligram of 
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microparticle. Also, the entrapment efficiency was calculated as the ratio between the 

loaded and the initial quantity of CpG sequences, expressed in percentage (%). 

 

2.4. In vitro release study  

 

Microparticles containing OVA and/or CpG sequences (5 mg) were dispersed in 

1 mL of phosphate buffer saline (PBS 0.15M, pH 7.4) in eppendorf tubes. Then, the 

samples were maintained under rotating agitation at 37ºC and at predetermined 

intervals, the eppendorf tubes were centrifuged at 27100 x g for 20 min (12150-H, 

Sigma 3K30). In the supernatants, the amount of OVA and CpG sequences released 

from the particles were determined as described above (MicroBCA protein assay and 

Oligreen� ssDNA Quantitation kit, respectively). Meanwhile the pellets were 

resuspended in 1 mL of PBS. Empty microparticles were used as controls and subjected 

to the same procedure. Release data were expressed as the cumulative percentage of 

OVA and oligonucleotide released in comparison with the initial content of these 

molecules in the microparticles versus time. 

 

2.5. Structural integrity and antigenicity of the entrapped OVA 

 

Protein profile of encapsulated OVA and OVA released from the microparticles 

was determined by SDS-PAGE and its antigenicity by immunoblotting. 

OVA loaded microparticles (5 mg) were dissolved in methylene chloride. The 

organic solvent was evaporated with nitrogen and the residue was suspended in 

electrophoretic sample buffer (TRIS-HCl 62.5 mM (pH 6.8), 10% glycerol, 2% SDS, 



 

 

10

5% β-mercaptoethanol and 0.05% bromophenol blue). Then, the suspensions were 

centrifuged (2300 x g, 10 min) to remove polymeric residues. Afterwards, the samples 

were boiled during 10 min to separate possible ovalbumin degradation fragments.  

For SDS-PAGE, samples were analysed by using 15% acrylamide slabs with the 

discontinuous buffer system of Laemmli [35] and gels stained with Coomasie Brilliant 

Blue R-250 [36]. Immunoblotting was carried out as described previously [37] with 

immunoglobulin G against OVA from mouse and with horseradish conjugated rabbit 

anti-IgG, and 4-chloro, 1-naphtol as chromogen. 

 

 2.6. Integrity of CpG sequences 

 

 The integrity of CpG sequences after the preparative process and released from 

the microparticles was analysed by means of the determination of its melting 

temperature [38]. On one hand, the oligonucleotide was extracted from the particles 

using NaOH 0.1N under shaking overnight at room temperature. On the other hand, 

microparticles were incubated with PBS under rotating agitation at 37ºC to allow CpG 

sequences to be released for 35 days. Both solutions were adjusted to a concentration of 

4 ng/µL and incubated with their complementary sense oligonucleotide in a ratio 1:1 in 

the presence of 1 µL of SYBR Green� I nucleic acid gel stain diluted in buffer 100 mM 

Tris-HCl (pH 8.9), 100 mM NaCl and 14 mM MgCl2. Throughout the incubation 

period, sense and antisense oligonucleotides formed a double strand, which enclosed the 

SYBR Green� I. This molecule emitted fluorescence when it is associated to the duplex 

and its signal is proportional to the hybridization capacity. This parameter was 

measured in a fluorescence temperature cycler (Lyghtcycler, Roche Diagnostics GmbH, 
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Germany). Precisely, the duplex was heat at 0.2ºC/s to 95ºC measuring the fluorescence 

signal during the process and obtaining a melting curve. For improved visualisation of 

the melting temperature or Tm (temperature at which 50% of the oligonucleotide is 

forming a double strand) the initial data were derived to obtain melting peaks 

(fluorescence (F) versus temperature (T) by plotting the negative derivative of 

fluorescence over temperature versus temperature; (-dF/dT) versus T). 

 

 2.7. Bone marrow-derived dendritic cells (BMDC) generation and activation 

 

 C57BL/6 mice (8 weeks, female) were obtained from Harlan Interfauna Ibérica 

(Spain) and housed in pathogen-free conditions according to the guidelines of the 

Ethical Committee of the University of Navarre in line with the European legislation on 

animal experiments (86/609/EU). As described before [39], femurs and tibia were 

extracted after cervical dislocation and the bone marrow was flushed out using a 26 

gauge needle with RPMI 1640 medium supplemented with 0.1% �-mercaptoethanol 50 

mM, 0.5% sodium pyruvate 100 mM, 1 IU/Ml penicillin, 1 µg/ml streptomycin and 

10% v/v foetal bovine serum (all from Gibco-BRL, UK). After the lysis of the 

erythrocytes, the cell suspension was purified and deplected of lymphocytes and 

granulocytes by incubation with a mixture of antibodies against CD4, CD8, Ly-6G/Gr1 

and CD45R and rabbit complement. The resulting solution was grown at 106 cells/mL 

in 6-well plates with RPMI 1640 medium containing GM-CSF and IL-4 (25 ng/mL; 

PrepoTech EC, UK). After confirming that the BMDC precursors were CD11c+, two-

thirds of the medium was replaced with fresh medium containing GM-CSF and IL-4 at 

days 2, 4, 5 and 6. Afterwards, CpG microparticles (2 µg/mL) were incubated for 24 h 
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at 37ºC to evaluate their capability to induce BMDC maturation and the resulting 

supernatants were collected for IL-12 determination using a commercial ELISA kit 

(Pharmingen, BD Biosciences, USA). Free CpG and LPS used as controls and subjected 

to the same experimental conditions.  

 

 2.8. Mice immunization 

 

 Female BALB/c mice were purchased from Harlan Interfauna Ibérica (Spain), 

housed in specific pathogen-free conditions and used at 8 weeks of age. The 

experiments were performed in compliance with the regulations of the Ethical 

Committee of the University of Navarre in line with the European legislation on animal 

experiments (86/609/EU). 

 Groups of 7 mice were immunized twice (days 0 and 14) by the intradermal 

route with OVA (10 µg)  and/or CpG sequences (2 µg) in one of the following: i) PBS; 

ii) free OVA in 50 µL of PBS; iii)CpG sequences; iv) free OVA and CpG sequences 

physically mixed; v) OVA loaded microparticles (OVA PLGA 502 and OVA PLGA 

756); vi) CpG loaded microparticles (CpG PLGA 502 and CpG PLGA 756); vii) OVA 

and CpG co-encapsulated into microparticles (OVA CpG PLGA 502 and PLGA 756) 

and viii) OVA  emulsified with Freund´s Adjuvant (CFA).  

 Blood samples were collected from the retro-orbital plexus at day 0, 14, 28, 35, 

42 and 49 after the first immunization. The samples were centrifuged and the resulting 

sera were pooled. Finally, the sera were diluted 1:10 in PBS and stored at –80ºC until 

assayed by ELISA. 
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 2.9. Measurement of anti-OVA antibody levels in serum  

 

 An indirect ELISA was performed to determine the level of OVA-specific 

antibody isotypes in the serum [40]. The experiment was carried out as follows: 96-well 

microtitre plates (Thermo Labsystems, Finland) were coated overnight with 1 µg per 

well of ovalbumin in carbonate-bicarbonate buffer (pH 9.6) and maintained at 4ºC. 

After being washed in buffer (phosphate buffer saline containing 0.05% Tween® 20, 

PBS-T20), serum samples (100 µl) at different dilutions were added to wells and 

incubated during 4 h at 37ºC. Then, unbound antibody was washed prior to the addition 

of 100 µl of goat anti-mouse IgG1 or IgG2a horseradish peroxidase conjugate (Nordic 

Immunology, Netherlands) diluted 1:1000 in PBS-T20 (37ºC, 1 h). After a final wash 

step, 100 µl of chromogen and substrate solution (2, 2�-Azino-bis(3-

ethylbenzothiazoline-6-sulfonic acid and hydrogen peroxide) was added. The plates 

were incubated at room temperature for 30 min, and, finally, the absorbance was 

measured at 405 nm by an iEMS Reader MF (Labsystems, Finland). 

 

 2.10. Cytokine assay  

 

 Naïve and immunized mice were sacrificed by cervical dislocation at day 13 

after immunization and their spleens removed and placed in RPMI 1640 media (Gibco-

BRL, UK) under sterile conditions. Each spleen was smashed and cells within 

experimental groups were pooled in one flask. The cellular suspension was centrifuged 

at 400 x g for 10 min, the supernatant discarded and the pellet washed twice with PBS. 

The splenocytes were suspended in lysis buffer (NH4Cl 0.15 M, KHCO3 10 mM, EDTA 



 

 

14

0.1 mM) for 2 min to eliminate erythrocytes and refilled with RPMI 1640 to stop the 

reaction. This suspension was centrifuged (400 x g, 5 min) and the pellet was 

resuspended in RPMI 1640 medium supplemented with 0.1% �-mercaptoethanol 50 

mM, 0.5% sodium pyruvate 100 mM, 1 IU/Ml penicillin, 1 µg/ml streptomycin and 

10% v/v foetal bovine serum (all from Gibco-BRL, UK). The lymphocyte suspension 

was added to 96-well round bottom microtitre plates (Iwaki, UK) (4 x 10 5 cells/well) 

along with test antigen (20, 80 and 160 µg OVA/ml in a final volume of 200 µl per 

well). Negative (wells without antigen) and positive (wells containing 2 µg/ml 

concanavalin A, used as mytogen) controls were used. The culture supernatants were 

collected for cytokine assay at 48 h after the stimulation. Then, the supernatants were 

kept frozen at -80ºC in a 96-well flat bottom microplate until testing. IFN-γ and IL-4 

levels were determined using a commercial ELISA kit (Biosurce International, USA). 

 

 

3. Results 

 

 3.1. Optimization of CpG loading in microparticles 

 

 Table 1 displays the main characteristics of CpG containing PLGA 502 

microparticles (without including the model antigen) fabricated at three different N/P 

ratio of chitosan. Though the size and the zeta potential were similar in all cases (1-1.4 

µm and -5 mV, approximately), the CpG loading tended to decrease to the half (from 

11.5±5.1 to 6.4 µg/mg) when the N/P ratio increased. Thus, the following microparticles 

batches were performed at fixed N/P ratio of 0.26.  
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 3.2. Microparticle characterization  

 

 CpG and/or OVA encapsulated microparticles were prepared using two types of 

PLGA copolymers, PLGA 502 and PLGA 756. Their differences in molecular weight 

and hidrophylicity could influence OVA and CpG loading, release and immune 

response. The results are summarized in Table 2. In all cases the yield of the method of 

preparation was close to 70%. PLGA 502 microparticles were slightly smaller in 

comparison with the ones fabricated with PLGA 756 (1.43±0.06 µm for PLGA 502 and 

1.94±0.38 µm for PLGA 756). The zeta potential was neutral in all the cases (data not 

shown) although moved towards slightly negative when CpG motifs were encapsulated 

(from 3.1±0.8 mV to -5.1±0.3 mV, in the case of PLGA 502 microparticles and from 

1.2±1.3 mV to -2.8±2.9 mV, for PLGA 756 microparticles). Irrespective of polymer, 

OVA loading was very high and significantly increased when the antigen was co-

encapsulated with CpG oligonucleotides (42.4±9.7-43.1±15.9 vs. 60.7±2.9-66.4±13.3 

for respectively OVA microparticles and OVA CpG microparticles). Finally, the 

amount of CpG sequences associated to the particles was close to 12 µg/mg 

microparticles and was independent on antigen co-encapsulation and polymer nature.  

 From SEM micrographs studies (Fig. 1), microparticles were found to be 

spherical, homogenous, without pores and with similar sizes than those obtained by 

laser diffractometry.  
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 3.3. OVA and CpG sequences release from the microparticles 

 

 Fig. 2a shows the release of OVA from the microparticles. As expected, the 

antigen release was higher for PLGA 502 microparticles than for PLGA 756 

microparticles although very slow and continuous for 35 days in any cases. On day 35, 

approximately 30% and 10% of loaded OVA was released from, respectively, 502 and 

752 microparticles. Further, it seems that CpG motifs affected OVA release because 

OVA and CpG co-encapsulated formulations displayed a burst effect (around 10% of 

the protein was released within first 24 h incubation) not observed in OVA-loaded 

microparticles. Regarding the CpG sequences, the oligonucleotide was totally released 

in the first 24 hours in all the formulations, with the exception of CpG encapsulated 

PLGA 756 that sustained CpG release until 80% after 7 days incubation. This fact 

indicated that the CpG motifs might be located onto or near to the surface of the 

microparticles. 

 

 3.4. OVA structural analysis and antigenicity and CpG integrity 

 

 The effect of the preparative process on both the structural integrity and 

antigenicity were studied by SDS-PAGE and immunoblotting, respectively (Fig. 3). All 

the formulations tested showed a similar band corresponding with the native protein (45 

kDa) indicating that the integrity and the antigenicity was not altered following 

entrapment in any of the microparticle formulations. When studying these parameters in 

samples from release experiments, the structure and the antigenicity of the protein were 

unaltered in any of the formulations assessed (data not shown). 
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 The integrity of the CpG sequences was determined by means of the melting 

temperature, which is related with the capability of the CpG strand to form a duplex. 

Fig. 4 shows the Tm values for all the microparticles. As it can be observed, 

encapsulated CpG displayed a similar temperature comparing with free CpG sequences 

so the method of preparation did not modify the structure of the oligonucleotide. For the 

CpG sequences released from the microparticles, the Tm values were similar than the 

one obtained for free oligonucleotide (data not shown). Therefore, the integrity of the 

encapsulated oligonucleotide was maintained throughout the release studies. 

 

 3.5. Activation of immature DC by CpG loaded microparticles  

 

 IL-12 production was determined to evaluate if CpG microparticles were able to 

induce immature DC functional activation (Fig. 5). This cytokine level was assessed 

after incubation at two different CpG concentrations, 0.5 and 1 µg/mL. The IL-12 

produced after incubation with CpG microparticles was slightly higher (14512.5 and 

13487.5 pg/mL for CpG PLGA 756 and 502 microparticles, respectively, at 1�g/mL) 

than the one produced by CpG sequences in solution (8241.2 pg/mL at 1�g/mL) at any 

CpG concentrations. 

 

 3.6. Antibody response 

 

 IgG1 and IgG2a antibodies levels were studied in BALB/c mice immunized at 

days 0 and 7 with 10 µg OVA or the equivalent amount of microparticles (Fig. 6 and 7). 

The administration of OVA loaded PLGA 756 enhanced the antibodies production (15 
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titres of IgG total (IgG1 + IgG2a) vs. 9.5 titres of the mixture of antibodies for OVA in 

solution) and induced a more balanced immune response than the one elicited by the 

administration of the antigen in solution (from high titres of IgG1 (IgG2a/IgG1=0) 

towards a balance between IgG2a and IgG1 (IgG2a/IgG1=0.875) at the end of the 

experiment). However, when the protein was encapsulated in PLGA 502 neither the 

immune profile nor the antibody production was modified (IgG2a/IgG1=0.125 and 9 

titres of IgG total compared with IgG2a/IgG1=0 and 9.5 titres of IgG1 plus IgG2a 

observed after the administration of OVA in solution). 

 Consistent with studies reported by other authors, the co-administration of CpG 

with OVA significantly increased the production of antibodies (18 titres, approximately) 

and also IgG2a:IgG1 ratio (IgG2a/IgG1=0.54) compared with mice immunized with 

OVA alone. Despite the antibody production was not enhanced as a consequence of the 

microencapsulation (approximately, 18 titres of IgG2a and IgG1 for both treatments), 

the immune profile displayed by OVA CpG PLGA 502 microparticles treated mice was 

more Th1 biased than the one observed after the administration of the mixture of the 

antigen and the oligonucleotide in solution (IgG2a/IgG1=0.73 for OVA CpG PLGA 502 

and IgG2a/IgG1=0.54 for the combination of OVA and CpG sequences in solution). 

Nevertheless, the co-encapsulation of both molecules into PLGA 756 microparticles did 

not success either in the stimulation of the immune system (19 titres of IgG1 and IgG2a) 

or the deviation of the immunological profile (IgG2a/IgG1=0.55) in comparison with 

the injection of both OVA and CpG sequences in a physic mixture. 
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 3.7. Cellular immune response 

 

 IFN-γ (Fig. 8) and IL-4 (data not shown) levels were studied in order to 

characterize the Th1 and Th2 immune responses, respectively, in BALB/c mice after 

single shot intradermal immunization with the previously described formulations. The 

IL-4 production (the Th2 main cytokine) was almost undetectable (below 5 pg IL-4/mL) 

for any of the treatments evaluated in this work and under these experimental conditions 

except for OVA emulsified with CFA, which elicited a poorly higher level (7 pg IL-

4/mL). Hence, the single immunization with microparticulated or free OVA did not 

generate a Th2 cellular response. 

 Regarding the IFN-γ production, the administration of CpG sequences plus 

ovalbumin resulted in an increase of the cytokine level compared with the ovalbumin in 

solution (from 422 pg/mL to 1094 pg/mL). When the protein was encapsulated in both 

types of microparticles, the production raised to 2030 pg/mL, in the case of PLGA 502, 

and to 9146 pg/mL, for PLGA 756 microparticles. When the CpG sequences were co-

encapsulated into the carriers, OVA CpG PLGA 502 and 756 produced 335 pg/mL and 

1976 pg/mL IFN-γ, higher level for 756 and lower production for 502 in comparison 

with the administration of the protein and the oligonucleotide in solution (1094 pg/mL). 

Hence, the co-encapsulation of CpG sequences along with OVA into PLGA 

microparticles was not able to ameliorate the IFN-γ produced by the formulations 

containing only the antigen. If compared with the physical combination of the antigen 

and the oligonucleotide, the polymer induced different results. Whereas OVA CpG 

PLGA 502 particles decreased the IFN-γ level, OVA CpG PLGA 756 treated mice 

displayed a more Th1 biased response. 
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4. Discussion 

 

 This work aimed at the preparation of CpG and a model shed antigen 

(ovalbumin) loaded microparticles by a new double emulsion solvent evaporation 

method called "Total Recirculation One-Machine System" (TROMS). In the recent past, 

we have shown the performance of this novel technique for loading adenoviruses [41], 

plasmid DNA [33] and Brucella antigens [34] without compromise their integrity. In 

this study, TROMS is used for achieving non charged microparticles with high antigen 

and CpG pay-loads and avoiding destruction of the protein and CpG oligonucleotides. 

The immunogenicity of these formulations was evaluated in BALB/c mice and 

compared with the co-administration of soluble forms of CpG and antigen. 

 The improvement of CpG stimulatory potency by liposomes or microparticles 

based delivery has been clearly established [42-44]. Nearly all of these reports are based 

on the absorption of CpG onto preformed positive particles except for few works which 

tested the adjuvant effect inside the polymeric matrix with more [25] or less [45] 

success. In another context, some studies have applied for the complexation of CpG 

oligonucleotides or CpG DNA with positive molecules (such as PEI [31] or DOTAP) to 

modify the intracellular uptake and route with negative or positive effect in their 

stimulatory activity. In the current study, we investigated the immune response induced 

by the co-delivery of CpG-chitosan complexes (not characterized in this research work) 

and OVA in non-charged PLGA microspheres. In first trials, we recorded several 

cationic molecules (data not shown) and chitosan was almost the only one (i) suitable 

for adequate loading of CpG into PLGA particles and (ii) that did not have negative 

effect in CpG stimulatory potency, evaluated as IL-12 production by BMDC in vitro 
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(data not shown). As compared with other works [25, 32, 46], it is remarkable that 

TROMS methodology loaded appreciable amounts of CpG motifs onto around 1 µm 

PLGA particles that did not exhibit positive zeta potential because of low chitosan 

percentage (lower than 0.1% w/w) (Table 2). Several attempts, concerning the amount 

of chitosan included in the formulation, were carried out to obtain higher CpG 

encapsulation efficiency. Unfortunately, the more presence of chitosan in the 

microparticles could lead to an excess of viscosity inducing a potent instability of the 

inner aqueous phase and reducing the CpG encapsulation. In this context, the included 

chitosan could be insufficient to ensure the total complexation of the oligonucleotide. 

Consequently, it is possible to expect that certain CpG molecules would not associate 

with the cation reducing their potential loading. Also, similarly that previously reported 

with other antigens [33, 34], TROMS microencapsulated the antigen, OVA, with high 

efficiency whereas OVA antigenic properties were maintained (Fig. 3), also during 

sustained release periods (data not shown). The integrity of CpG molecules was also 

preserved during the preparative process as long as Tm values remained unchanged (Fig. 

4).  

 There are some factors that can affect the immune response elicited by the 

administration of microencapsulated antigens. Among them, the polymer type has been 

shown able to modify the antigen intrinsic cytokine profile [47, 48]. In the current study 

mice were immunized with two different formulations containing PLGA756 or 

PLGA502 as the polymers. Whereas OVA alone or OVA loaded into PLGA502 

microparticles triggered IgG1 antibody response, OVA microencapsulated into 

PLGA756 displayed higher antibody titers and increased production of IgG2a 

antibodies (Fig. 6 and 7), accompanied by strong IFN-γ production. This fact could be 
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explained by the more enhanced interaction between hydrophobic polymers (such as 

PLGA 756) and antigen presenting cells, and, consequently, the promotion of the Th 

activation [49]. 

 The ability of CpG ODN to trigger the production of T-helper 1 and pro-

inflammatory cytokines and IFN-� dependent IgG2a antibodies has been observed with 

a variety of co-administered antigens [50-53]. This adjuvant effect was clearly dose 

dependent and mediated by cytokines produced following stimulation of APC, as for 

example, IL-12.  

 The co-association of CpG ODN or CpG DNA with antigens in delivery systems 

have been previously shown to be very more effective to elicit specific T cell response 

that CpG simply co-administered with antigen and also that induced by the 

administration of the antigens microencapsulated alone. On the contrary, the 

immunopotentiation effect of the particulate delivery on antibody response has not been 

clearly established. For the first time, our data give clear evidence of the critical 

influence of PLGA polymer in particulate CpG adjuvanticity and clear differences 

between both arms of the adaptive immunity.  

 CpG motifs co-encapsulated into PLGA 502 induced higher antibodies titres and 

increased production of IgG2a antibodies that OVA microencapsulated alone, being 

more effective that both co-administered freely in solution (Fig.6 and 7). On the 

contrary, co-delivery of CpG and OVA in PLGA 756 microparticles decreased IgG2a 

antibodies levels. Previous studies gave explanations for both, increase or decrease of 

antibody response when CpG was delivery into particles. So, nanoparticles that loaded 

CpG inside their matrix could release CpG in a sustained manner that resulted in 

suboptimal doses for B cell stimulation [45]. On the contrary, CpG presented onto the 
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surface of cationic microspheres was able to augment the antibody response and it was 

suggested due to a certain effect of surface nature in B cells engagement [28, 32]. Both 

factors, CpG release (slower from PLGA 756 microparticles) and a certain influence of 

carrier nature could explain the improved antibodies response (stronger and bias 

towards IgG2a subtype) observed in mice immunized with OVA CpG PLGA 502 in 

comparison with CpG simply co-administered with the antigen. 

 Regarding the results of antigen-specific cytokine production, only the co-

delivery of CpG and antigen into PLGA 756 formulation elicit stronger T cell response 

that the immunization with the antigen and CpG in solution (Fig. 8). For any 

formulation, CpG co-encapsulation decreased IFN-production in comparison with the 

cellular response induced by the antigen microencapsulated alone. The observation 

contrasts with BMDC stimulation (IL-12 production) induced by both types of 

microparticles that was similar between them and to that induced by CpG ODN 

administered in solution (Fig. 5). Our unfavourable results suggest that, in spite of the 

adjuvanticity at modest doses, a certain antigen:CpG ODN ratio (1:5 or superior) must 

be preserved (face to 5:1 in the current study) to have clear evidence of the benefits of 

CpG administration [24, 25, 42, 54]. So far, the absence of correlation with the observed 

antibodies production could be due to the direct effect of CpG oligonucleotide in B 

cells. Also, the cellular response was determined after one immunization whereas the 

antibodies levels were evaluated after two administrations (prime and boost). Other 

authors have reported differences in antibodies subtypes induced by CpG ODN when 

given in the primary immunization and/or in the boosting [55].  

 In summary, our results established the critical role of PLGA microparticle 

characteristics, i.e. the hydrophobicity of the polymer used, in the antigen-specific 
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adjuvanticity of encapsulated CpG motifs. Although further studies should be carried 

out to characterise chitosan-CpG complex, this combination of molecules into 

microparticles succeeds in high encapsulation efficiencies of both the antigen and the 

oligonucleotide which would avoid multiple injection schedule and its possible side-

effects. 
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Table 1: Physico-chemical characteristics of CpG loaded microparticles (without OVA) 

using chitosan in their fabrication a different N/P ratio. Data are expressed as mean ± 

SD (n=1-3). 

 

N/P ratio Size (µm) 
Zeta potential 

(mV) 
CpG content 
(µg/mg MP) 

Encapsulation 
efficiency (%) 

0.26 1.36± 0.11 -4.9±2.0 11.5± 5.1 17.5±8.0 

1 1.07 -4.99±0.5 5.5 11.0 

1.30 1.03 -5.48±0.9 6.4 7.2 
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Table 2: Physico-chemical characterization of microparticles of PLGA 502 and 756 

containing ovalbumin and/or CpG sequences and prepared using chitosan (N/P 

ratio=0.260) to form a complex with the oligonucleotide. Data are expressed as mean ± 

SD (n=4). 

 

Polymer Formulation Size (µm) 
OVA loading 

(µg/mg MP) 

Encapsulation 

efficiency (%) 

CpG content 

(µg/mg MP) 

Encapsulation 

efficiency (%) 

OVA 1.47± 0.35 41.4±4.6 42.4±9.7 - - 

CpG 1.36± 0.11 - - 11.5± 5.1 17.4±8.0 502 

OVA CpG 1.46± 0.34 55.1±1.5 60.7±2.9 15.9± 4.4 24.1±6.6 

OVA 2.37± 0.54 51.0±15.4 43.1±15.9 - - 

CpG 1.84± 0.68 - - 10.8± 5.8 18.7±6.9 756 

OVA CpG 1.62± 0.47 58.6±6.0 66.4±13.3 14.1± 1.7 22.5±4.2 
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Figure 1: Scanning electron microscopy of lyophilized OVA (a) and OVA CpG (b) 

loaded microparticles prepared by TROMS, showing homogeneous sized and spherical 

shaped particles. 

 

Figure 2: In vitro release of a) OVA and b) CpG sequences from OVA PLGA 502 (�), 

CpG PLGA 502 (�), OVA CpG PLGA 502 (�), OVA PLGA 756 (�), CpG PLGA 756 

(�) and OVA CpG PLGA 756 (�). Microparticles were incubated under rotating 

agitation in PBS at 37ºC. Data are expressed as the cumulative release (in %) versus 

time (days). 

 

Figure 3: Study of the integrity of the OVA after encapsulation using TROMS. Panel 

(a) shows SDS-PAGE stained for proteins (Coomasie Brilliant Blue R-250) and panel 

(b) expose the Western-blot analysis with an anti-OVA immunoglobulin G and 

horseradish conjugated anti-IgG from rabbit: 1) molecular marker, 2) OVA PLGA 502, 

3) OVA CpG PLGA 502, 4) OVA PLGA 756, and 5) OVA CpG PLGA 756. Load was 

the equivalent to 10 µg OVA/well. 

 

Figure 4: Fluorescence melting curve analysis of Chit and DOTAP microparticles 

containing CpG sequences after extracting the oligonucleotide from the particles with 

NaOH 0.1N overnight. Data are expressed plotting the negative derivative of 

fluorescence over temperature versus temperature. Free oligonucleotide () was 

subjected to the same experimental conditions and used as control. CpG PLGA 502 

(�), OVA CpG PLGA 502 (�), CpG PLGA 756 (�) and OVA CpG PLGA 756 (�).  
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Figure 5: IL-12 level (pg/mL) produced after the incubation of CpG loaded PLGA 502 

(grey) and 756 (dark grey) microparticles with immature BMDC for 24 h at 37ºC. The 

experiment was carried out at two different concentrations of CpG (0.5 and 1 µg/mL). 

Free CpG (light grey) and LPS (first column) were used as control and subjected to the 

same experimental conditions. 

 

Figure 6: Serum antibody response to ovalbumin (panel a for IgG2a and panel b for 

IgG1) measured by indirect ELISA on sera from BALB/c mice intradermically 

immunized (10 µg OVA) with the following: i) OVA in PBS (�), ii) OVA and CpG 

sequences physically mixed (�), iii) OVA PLGA 502 (�), iv) OVA CpG PLGA 502 

(�) and v) OVA emulsified with Freund`s adjuvant (�). The antibody titre is defined as 

the reciprocal of a serum dilution whose optical density was equal or above 0.2 than 

blank samples reading the absorbance at 405 nm, starting from sample dilution 1:40. 

 

Figure 7: Serum antibody response to ovalbumin (panel a for IgG2a and panel b for 

IgG1) measured by indirect ELISA on sera from BALB/c mice intradermically 

immunized (10 µg OVA) with the following: i) OVA in PBS (�), ii) OVA and CpG 

sequences physically mixed (�), iii) OVA PLGA 756 (�), iv) OVA CpG PLGA 756 

(�) and v) OVA emulsified with Freund`s adjuvant (�). The antibody titre is defined as 

the reciprocal of a serum dilution whose optical density was equal or above 0.2 than 

blank samples reading the absorbance at 405 nm, starting from sample dilution 1:40. 

 

Figure 8: Cytokine production (IFN-γ and IL-4) by spleen cells obtained from BALB/c 

mice 13 days after intradermal immunization (10 µg OVA) with one of the following: i) 
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OVA in solution, ii) OVA and CpG sequences physically mixed, iii) OVA PLGA 502, 

iv) OVA CpG PLGA 502, v) OVA PLGA 756, vi) OVA CpG PLGA 756 and vii) OVA 

emulsified with Freund`s adjuvant. The resulting splenocytes suspensions were in vitro 

restimulated with 80 µg OVA/mL for 48 h to analyse IFN-� and IL-4 production 

(pg/mL).   
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Beatriz San Román, Juan M. Irache,  Sara Gómez, Nicolas Tsapis, Carlos Gamazo, 

Socorro Espuelas 
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Figure 3 

Beatriz San Román, Juan M. Irache,  Sara Gómez, Nicolas Tsapis, Carlos Gamazo, 

Socorro Espuelas 
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Figure 4 

Beatriz San Román, Juan M. Irache,  Sara Gómez, Nicolas Tsapis, Carlos Gamazo, 
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Figure 5 

Beatriz San Román, Juan M. Irache,  Sara Gómez, Nicolas Tsapis, Carlos Gamazo, 

Socorro Espuelas 
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Figure 6 

Beatriz San Román, Juan M. Irache,  Sara Gómez, Nicolas Tsapis, Carlos Gamazo, 

Socorro Espuelas 
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Figure 7 

Beatriz San Román, Juan M. Irache,  Sara Gómez, Nicolas Tsapis, Carlos Gamazo, 

Socorro Espuelas 
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Figure 8 

Beatriz San Román, Juan M. Irache,  Sara Gómez, Nicolas Tsapis, Carlos Gamazo, 

Socorro Espuelas 

 


