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ABSTRACT 

 

Thrombospondin 1 (TSP-1), an anti-angiogenic factor and TGF-β activity regulator, has 

been recently recognized as an adipokine that correlates with obesity, inflammation and 

insulin-resistance processes. In the present study, epididymal adipocytes of rats that 

were fed a chow (C) or a high fat diet (HFD) for 50 days, were isolated and incubated 

(24-72 h) in low (LG; 5.6 mM) or high (HG; 25 mM) glucose, in presence or absence of 

1.6 nM insulin. Rats fed the HF diet showed an established obesity state. Serum TSP-1 

levels and TSP-1 mRNA basal expression of adipocytes from HFD rats were higher 

than those from controls. Adipocytes from HFD animals presented an insulin-resistance 

state, as suggested by the lower insulin-stimulated glucose uptake as compared to 

controls. TSP-1 expression in culture was higher in adipocytes from obese animals at 24 

h, but when the adipocytes were treated with HG, these expression levels dropped 

dramatically. Later at 72 h, TSP-1 expression was lower in adipocytes from HFD rats, 

and no effects of the other treatments were observed. Surprisingly, the secretion levels 

of this protein at 72 h were increased significantly by the HG treatment in both types of 

adipocytes, although they were even higher in adipocytes from obese animals. Finally, 

cell viability was significantly reduced by HG treatment in both types of adipocytes. In 

summary, TSP-1 expression/secretion was modulated in an in vitro model of insulin-

resistant adipocytes. The difference between expression and secretion patterns suggests 

a post-transcriptional regulation. The present study confirms that TPS-1 is closely 

associated with obesity-related mechanisms. 
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INTRODUCTION 

 

An excessive body fat accumulation could drive to several associated clinical 

complications such as type 2 diabetes, metabolic syndrome features, cardiovascular 

diseases, inflammatory disturbances, etc [8]. These manifestations have been linked to 

an impaired production and secretion of endogenous products by the enlarged 

adipocytes or the accompanying macrophages from the white adipose tissue (WAT) 

stroma-vascular fraction [8]. Actually, several inflammatory products derived from this 

tissue (TNF-α, IL-6, MCP-1, iNOS) have shown positive associations with body 

adiposity [16]. Besides the pro-inflammatory molecules secreted by WAT, this tissue 

also produces numerous adipokines that may have also important local and systemic 

effects [15]. 

Thrombospondin 1 (TSP-1) is a molecule that was first identified as a thrombin-

sensitive protein released upon activation of platelets by thrombin [6]. It was initially 

isolated from platelets and megakaryocytes [28], but was later detected in several cell 

types such as macrophages and adipocytes [21, 22, 30, 32]. Nowadays, it is known that 

TSP-1 is a multifunctional protein composed by multiple structural domains [5, 10], and 

it has been especially related with several anti-angiogenic pathways [20, 23, 24]. 

Recently, this protein has been included among the group of adipokines, since its 

expression is increased in WAT of obese and insulin-resistant subjects, presenting 

positive correlations with the level of adiposity [35, 41]. Furthermore, it has been 

reported as an important factor in the adipocyte- and macrophage-driven inflammation 

in the adipose tissue, and that could mediate the elevation of PAI-1, promoting a 

prothrombotic state [41]. Also, TSP-1 has been described as a major regulator of the 

transforming growth factor (TGF)-β activity [11, 31], which, together with the increased 
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PAI-1 levels, are correlated with different features of obesity, insulin-resistance, and 

metabolic syndrome [1, 29, 37]. Finally, it has been described higher TSP-1 gene 

expression in visceral respect to subcutaneous adipose tissue in obese subjects [35]. 

Moreover, it has been described that the expression of TSP-1 in blood vessels is 

increased in diabetes, perhaps by a direct effect of the elevated glucose levels in blood 

[39]. Nevertheless, no effects of glucose incubation have been studied so far in 

adipocytes from obese specimens. Thus, the purpose of this study was to characterize 

TSP-1 expression and secretion patterns in adipocytes isolated from either lean or diet-

induced obese rats, in order to demonstrate that this important protein is involved in the 

modulation of the inflammatory processes occurring in WAT. 

 

 4



MATERIALS AND METHODS 

 

Materials 

Dulbecco’s modified eagle’s medium (DMEM), 100X minimal essential medium 

(MEM) non-essential amino acids, penicillin/streptomycin, heat-inactivated fetal bovine 

serum (FBS), 10X MEM, nystatin, Trizol Reagent, and M-MLV reverse transcriptase 

were obtained from Invitrogen (Paisley, UK). Bovine serum albumin (BSA), HEPES, 

insulin and 2′,7′-dichlorofluorescein were all obtained from Sigma-Aldrich Company 

(St. Louis, USA). Collagen (Purecol) was purchased from Nutacon (Leimuiden, The 

Netherlands). Type I collagenase was supplied by Worthington Biochemical 

Corporation (Lakewood, USA). Glycerol-3-phosphate dehydrogenase (GPDH), glycerol 

kinase (GK), adenosine triphosphate (ATP), and nicotinamide adenine dinucleotide 

(NAD) were obtained from Roche Diagnostics (Mannheim, Germany). 

 

Animals and dietary treatment 

Eight-week-old male Wistar rats (n=20) supplied by the Center for Applied 

Pharmacobiology Research (CIFA, Pamplona, Spain), were housed in a temperature-

controlled room at 21-23 ºC with a 12 h light cycle (lights goes off at 8 pm). The 

animals were assigned into two different dietary groups: a control group (n=10) that was 

fed a standard chow diet (2014 Tekland Global 14% Protein Rodent Maintenance Diet; 

Harlan Iberica, Barcelona, Spain) containing 16.6% of energy as protein, 73.1% of 

energy as carbohydrate (7% as simple sugars) and 10.3% of energy as lipid by dry 

weight, and a high fat diet-fed group (HFD, n=10) that was fed a high fat diet (D12330 

diet, 58 kcal% fat w/cornstarch Surwit Diet; Research Diets Inc., New Brunswick, 

USA) containing 16.4% of energy as protein, 25.5% of energy as carbohydrate (4.5% as 
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simple sugars) and 58.0% of energy as lipid by dry weight, as previously described [3]. 

Both groups of animals had ad libitum access to water and food during the trial, being 

their body weight and food intake daily recorded. After 50 days of dietary treatment the 

animals were euthanized. The final body weights were recorded and blood and tissue 

samples of several WAT depots were immediately collected and weighed. About 3-4 g 

of epididymal WAT were immediately isolated from total tissue for adipocyte isolation 

and primary culture experiments. All the procedures were performed according to 

European, national and institutional guidelines of the Animal Care and Use Committee 

at the University of Navarra. 

 

Serum measurements 

The circulating glucose levels were measured with the HK-CP kit (ABX diagnostic, 

Montpellier, France) using an automatized COBAS MIRA equipment (Roche, Basel, 

Switzerland). Serum insulin (Mercodia AB, Uppsala, Sweden), TSP-1 (Uscn Life 

Science Inc., Wuhan, China), and leptin (Linco Research, St. Charles, USA) levels were 

determined by different ELISA kits, using an automatized Triturus equipment (Grifols 

International, Barcelona, Spain). 

 

Adipocyte isolation 

Primary cultures were obtained according to protocols described elsewhere [18]. 

Epididymal WAT (3-4 g) of each rat was minced with scissors in HEPES-phosphate 

buffer (pH 7.4; containing 5 mM D-glucose, 2% BSA, 135 mM NaCl, 2.2 mM 

CaCl2·2H2O, 1.25 mM MgSO4·7H2O, 0.45 mM KH2PO4, 2.17 mM Na2HPO4, and 10 

mM HEPES). WAT fragments were digested in the same buffer with type I collagenase 

(1.25 mg/ml per 0.5 g tissue) at 37°C with gentle shaking for 30 min. The resulting cell 
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suspension was diluted in the buffer, and then the adipocytes were isolated from the 

undigested tissue by filtration through a 400 μm nylon mesh and washed three times 

with alternated centrifugations at 500 rpm for 6 minutes. Isolated adipocytes were then 

resuspended in DMEM supplemented with 1% FBS, 100 U/ml penicillin and 100 μg/ml 

streptomycin, 100 U/ml nystatin and with 1X MEM non-essential amino acids, followed 

by incubation for 40 min at 37°C in 5% CO2. The resulting isolated adipocytes (150 μl 

of a 2:1 mix of packed cells/culture medium) were then plated on 500 μl of a collagen 

matrix (pH 7, 7 parts collagen : 1 part 10X MEM) in six well’s culture plates and at 

37°C / 5% CO2. 

 

Isolated adipocytes measurements 

Before primary culture, some measures on the isolated adipocytes were performed. In 

the first instance, intracellular ROS concentrations were determined using 2′,7′-

dichlorofluorescein (DCFH) according to a protocol described elsewhere [17]. Once 

inside the cell, this molecule is cleaved by endogenous esterases and can no longer pass 

out of the cell membrane. The de-esterified product becomes a fluorescent compound 

after oxidation by ROS [7]. Briefly, cells were incubated with 10 µM DCFH for 40 

minutes in 37 ºC / 5% CO2, frozen for at least 1 h at -80ºC and then lysed with 500 µl of 

lysis buffer (150 mM NaCl, 0.1% Triton and 10 mM Tris). Then, 200 µl of each lysate 

was plated on a 96-well black plate (Labsystems, Barcelona, Spain). Finally, 

fluorescence intensity was measured with a POLARstar spectrofluorometer plate reader 

(BMG Labtechnologies, Offenburg, Germany), at an excitation of 485 nm and an 

emission of 530 nm wavelengths. 

Also, morphologic characteristics of the isolated adipocytes were analyzed. Cells were 

placed on a Neubauer chamber and coupled on an Olympus CK30 microscope 
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(Olympus Corporation, Barcelona, Spain). Then, pictures were taken with an Olympus 

C-5060WZ Digital Camera (Olympus Corporation, Barcelona, Spain) using a Camedia 

Adapter C5060-ADUS for IUS Microscope (Olympus Corporation, Barcelona, Spain) at 

40X magnification. Pictures in TIFF format with 400 x 300 pixels resolution were 

processed with Scion Image for Windows software (Scion Corporation, Maryland, 

USA) for cell number and diameter determinations. Finally, mRNA expressions of TSP-

1 and leptin in these isolated adipocytes were also measured according to the protocol 

described below (gene expression assays section). 

 

Adipocytes culture 

After the final 40-50 min incubation, the adipocytes were cultured with high (HG, 25 

mM; n=5) and low (LG, 5.6 mM; n=5) glucose concentrations, in presence or absence 

of 1.6 nM insulin. Cells were maintained in an incubator at 37°C in 5% CO2. Aliquots 

of the culture medium, and culture plates were collected at 24 h and at the end of the 

experimental trial (72 h) and frozen at -80 ºC for further assays. 

 

Culture medium determinations 

All the assays were performed on 24 and 72 h samples. Glucose and lactate 

concentrations in the medium were measured with the HK-CP kit from ABX diagnostic 

(Montpellier, France) and with the L-lactate kit from Randox Laboratories (Crumlin, 

UK), respectively, using an automatized COBAS MIRA equipment (Roche, Basel, 

Switzerland). The cellular glucose uptake was estimated by the difference between the 

content of glucose in the culture medium at the beginning and at the end of the 

experiment (24- 72 h), and the lactate value detected in the medium corresponds to the 

lactate production by the cells after the trial. Increasing glycerol concentration in the 
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medium after 24 or 72 h, as a measure of the adipocyte lipolytic response, was 

determined by a colorimetric method [9]. Briefly, culture medium of each sample was 

incubated with 25 μg/ml GPDH and 250 mU/ml GK, in the presence of 43.6 mM 

MgCl2, 200 mM glycine, 5.2 % hydrazine, 1.24 mM ATP and 573 μM NAD for 40 

minutes. Then, samples absorbance was measured at 340 nm in a microplate reader 

(Multiskan Spectrum, Thermo Fisher Scientific, Waltham, USA). Finally, TSP-1 

secretion at 72 h was determined by the ELISA kits as previously indicated in the serum 

measurements section. 

  

Gene expression assays 

Total RNA was isolated from isolated epididymal adipocytes using Trizol (Invitrogen, 

Paisley, UK) according to the manufacturer protocol. Purified total RNA from 

adipocytes were then treated with DNAse (DNAfree kit; Ambion Inc., Austin, USA) 

and used to generate cDNA with M-MLV reverse transcriptase (Invitrogen, Paisley, 

UK). Relative real-time PCR was performed on an ABI PRISM 7000 HT Sequence 

Detection System (Applied Biosystems, California, USA). Taqman probes for rat leptin 

(Rn00565158_m1) and TSP-1 (Rn01513690_m1) mRNA and 18S (Hs99999901_s1) 

rRNA, were also supplied by Applied Biosystems (California, USA). All the expression 

levels of the target genes studied were normalized by the expression of the selected 

internal control, 18S. All procedures were performed according to protocols described 

elsewhere [18]. 

 

Cell viability assay 

The LDH activity (μU/ml) in culture medium was used as an indicator of cell 

membrane integrity, thus as a measurement of cells necrosis/apoptosis [33]. Cell 
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viability was measured with the lactate dehydrogenase (LDH) Cytotoxicity Assay Kit 

according to manufacturer indications (Cayman Chemical Company, Ann Arbor, USA), 

and was assayed at the end of the experimental period (72 h) in all treatments. 

 

Statistical analyses 

For body, biochemical and isolated adipocytes-related measurements that were 

performed before the primary culture, Student t tests were used for analyzing 

differences among experimental groups. For primary culture samples, two-way 

ANOVA was performed. For association analyses, the Pearson correlation coefficient 

was calculated. All results are expressed by mean ± standard error of the mean. A 

probability of p<0.05 was set as statistically significant. All the analyses were 

performed using the SPSS 15.0 for Windows software (SPSS Inc., Chicago, USA). 
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RESULTS 

 

High fat diet-induced obesity 

The high-fat dietary treatment effectively induced overweight in the animals, as 

evidenced by the elevated body and WAT weights, and higher levels of some 

biochemical blood markers, such as glucose, insulin, and leptin, that were observed in 

rats fed the HFD as compared to rats fed the chow diet (Figures 1A and 1B). TSP-1 

blood levels in obese animals were slightly although not significantly higher than those 

found in the controls (Figure 1B). Also, the adipocytes isolated from epididymal WAT 

of HFD-fed rats presented different morphological and functional characteristics as 

compared to the adipocytes from chow-fed rats, such as higher cell diameter and 

intracellular ROS content, higher leptin gene expression and lower cell number (Figure 

1C). TSP-1 gene expression was significantly higher in adipocytes from obese than 

from control rats (Figure 1C). 

Furthermore, positive correlations were found between TSP-1 blood levels and 

retroperitoneal WAT weight (r = 0.676, p<0.05) and insulin blood levels (r = 0.671, 

p<0.05), and between gene expression levels of TSP-1 and leptin in epididymal WAT (r 

= 0.615, p<0.05). 

 

Biochemical measurements in adipocyte culture 

Glucose uptake, lactate production and glycerol release of isolated adipocytes from both 

groups of animals were determined after 24-72 h of treatment (Figure 2). The glucose 

uptake was decreased in adipocytes from obese animals respect to controls (Figure 2A). 

At 24 h, only the adipocytes from control animals presented positive responses toward 

insulin and HG treatments (Figure 2A). At 72 h, insulin induced glucose uptake only in 
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adipocytes from control animals, and HG treatment inhibited the glucose uptake in both 

types of adipocytes (Figure 2A). Regarding lactate production, the release of this 

metabolite to culture medium was reduced in adipocytes from obese rats (Figure 2B). 

At 24 h, insulin induced lactate release only in adipocytes from control animals, but it 

affected both types of adipocytes at 72 h (Figure 2B). HG treatment produced no 

significant effects. Finally, concerning glycerol release, once again the previous HFD 

treatment induced lower rates of glycerol liberation respect to controls (Figure 2C). No 

effect was observed by insulin treatment, and a marginal effect of HG was shown at 24 

h in adipocytes from obese animals (Figure 2C). 

 

TSP-1 gene expression and secretion in culture 

The dietary treatment induced important differences in expression and secretion of TSP-

1 (Figures 3A and 3B). At 24 h, TSP-1 gene expression was significantly higher in 

adipocytes from obese animals than in those from control rats (Figure 3A). When the 

cells were incubated with HG, no differences were observed in the expression of this 

protein in control adipocytes. However, the TSP-1 mRNA expression in adipocytes 

from obese rats presented a drastic decrease (Figure 3A). At 72 h, TSP-1 gene 

expression was lower in HFD adipocytes, and the insulin treatment inhibited the 

expression of this protein in both types of cells (Figure 3A). On the other hand, and 

normalizing 24-72 h data to 0h for taking into account the overall effect of the culture, 

the number of TSP-1 mRNA copies significantly decreased with time, except for the 

adipocytes from HFD-LG group (data not shown). 

Finally, concerning the secretion of this molecule at 72 h, it was higher in adipocytes 

from obese animals (Figure 3B). Interestingly, TSP-1 secretion was induced when the 
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cells were incubated with HG (Figure 3B) in opposition to that found for the gene 

expression analysis. This effect was observed in both types of adipocytes. 

 

Cell viability analysis 

The cell integrity of the cells in culture was evaluated at the end point of the experiment 

(72 h) (Figure 4). No significant effects were induced neither by the dietary treatment 

nor the insulin incubations. However, the HG treatment significantly reduced cell 

viability in both types of adipocytes. 
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DISCUSSION 

 

In the present report, a nutrigenomic analysis of TSP-1 in insulin-resistant adipocytes 

under several obesity-related conditions was performed. The HFD-fed rats utilized in 

this work showed an obesity state [4] that correlated positively with the TSP-1 levels in 

blood, and with the mRNA expression of this protein in adipocytes from epididymal 

WAT, which is consistent with a previous report [41]. Interestingly, when the 

adipocytes were subjected to culture treatments, cells from HFD rats showed lower 

TSP-1 gene expression than controls, except when the adipocytes where cultured under 

LG conditions. Also, gene expression pattern differed drastically from the protein 

secretion levels under HG conditions, being inhibited and induced by this treatment, 

respectively. These phenomena could be attributed to post-translational mechanisms [2]. 

Several functions have been attributed to TSP-1 including antiangiogenic [14, 38] and 

proatherogenic [36, 40] properties. More recently, this protein has been studied as a 

potential link between vasculature mechanisms and hyperglycemia [2, 39]. An increase 

in TSP-1 production has been related with atherogenesis and restenosis in diabetes, 

since this increase could be a response of vascular cells to higher levels of glucose [39]. 

Moreover, in this same study, it was observed that glucose incubations stimulated the 

expression and secretion of TSP-1 in cultured endothelial cells [39]. This stimulation 

seems to be mediated by glycosylation of specific nuclear proteins that participate in the 

hexosamine pathway of glucose catabolism [34]. However, in another report from the 

same investigation group, a cell-type specific modulation by HG treatment was 

observed [2]. In such work, the authors described that, unlike in macrovascular cells, 

TSP-1 levels dropped as a result of the HG treatment in microvascular endothelial cells 

and retinal pigment epithelial cells. This downregulation was suggested to be post-

 14



transcriptional, since the mRNA levels of TSP-1 were increased. The authors proposed 

that this post-transcriptional suppression was controlled by untranslated regions of TSP-

1. This mechanism would not be present in vascular smooth cells and fibroblasts, where 

the levels of TSP-1 mRNA expression correlate positively with the increased secretion 

of this protein as a result of HG exposure [39]. 

However, these results contradict the findings of the present work, since these authors 

described higher TSP-1 gene expression and lower TSP-1 secretion upon glucose 

stimulation. In spite of this, a recent study revealed that, in smooth muscle cells, the 

difference in the amount of TSP-1 levels upon high or low glucose concentration could 

be due to a difference in the uptake and degradation of this molecule [26]. Moreover, 

the authors described that using lysosomal degradation inhibitors it is possible to restore 

the TSP-1 levels in normal glucose concentration respect to HG treatment, and the same 

inhibitor treatment in HG treated cells produced no significant increase in TSP-1 protein 

levels. The authors suggested also that the increase in TSP-1 protein levels in 

hyperglycemia could be a protection from lysosomal degradation. Furthermore, it has 

also been described that the TSP-1 mRNA is regulated by a rapid internalization 

through the endocytic receptor LRP-1 (low density lipoprotein-related protein) leading 

to its degradation [12, 13, 27]. Other reports have also shown that LRP-1 levels are 

related with insulin resistance status, since they were inhibited in the aortic arch of 

diabetic hamsters [42] and in the brain vessels of streptozotocin-induced diabetic rats 

[19]. All this facts could explain why the degradation of TSP-1 mRNA is higher in 

presence of HG in this work, and opposed to its secretion in culture. Moreover, this 

effect is dependent of the dietary history of the adipocytes, being mRNA degradation 

delayed in cells from obese animals. 
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This is the first time that TSP-1 modulation is evaluated in adipocytes from obese 

animals under hyperglycemia conditions. According to the present findings, adipocytes 

could also contribute to the development of collateral symptoms of diabetes through 

TSP-1 signaling [25]. This observation is consistent with the fact that in the present 

results: 1) insulin significantly inhibited TSP-1 gene expression, lowering the secretion 

levels of this proatherogenic agent, and 2) TSP-1 expression and secretion were 

augmented in adipocytes from obese animals. Finally, it is worth to mention that it has 

been reported that TPS-1 exerts antiangiogenic activities in the adipose tissue and 

modulates the activity of TGF-β and PAI-1, both proteins closely related with insulin-

resistance and metabolic syndrome [41]. 

Summing up, the present study shows that TSP-1 secretion is highly modified in an in 

vitro model that mimics insulin-resistance/obesity conditions, showing a higher 

response to glucose in adipocytes from rats fed a HF diet. This pattern was opposite to 

mRNA levels, suggesting a strong post-transcriptional regulation of this gene in 

adipocytes. The present nutrigenomics study confirms an interaction between diet and 

glucose in adipose tissue regarding this adipokine and reinforces the idea that TSP-1 is 

closely related with metabolic obesity-related processes. 
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FIGURE LEGENDS 

 

Figure 1. Body, biochemical and adipocyte-related data of rats from both dietary 

groups. Data (n = 10) are expressed as mean ± standard error of the mean. Student t test 

was applied for comparisons. *, p<0.05; ***, p<0.001; n.s., not significant; WAT, white 

adipose tissue; ROS, reactive oxygen species; HFD, high fat diet. 

 

Figure 2. Glucose and lipid metabolism measurements in the primary culture. Effects of 

1.6 nM insulin, and high (25 mM) or low (5.6 mM) glucose concentrations on 24-72 h 

(A) glucose uptake, (B) lactate production, and (C) glycerol release in adipocytes 

isolated from rats fed chow (white bars) or high fat (HF) diet (black bars). Data (n = 5) 

are expressed as mean ± standard error of the mean. Two-way ANOVA was performed. 

n.s., not significant; INS, insulin; HG high glucose; HFD, high fat diet. 

 

Figure 3. TSP-1 gene expression and protein secretion in the primary culture. Effects of 

1.6 nM insulin, and high (25 mM) or low (5.6 mM) glucose concentrations on (A) 24-

72 h mRNA expression, and (B) 72 h protein secretion in adipocytes isolated from rats 

fed chow (white bars) or high fat diet (black bars). Data (n = 5) are expressed as mean ± 

standard error of the mean. Two-way ANOVA was performed. n.s., not significant; 

INS, insulin; HG high glucose; HFD, high fat diet. 

 

Figure 4. Viability assay of the primary culture. Effects of 1.6 nM insulin, and high (25 

mM) or low (5.6 mM) glucose concentrations on the 72 h lactate dehydrogenase activity 

in culture medium in adipocytes isolated from rats fed chow (white bars) or high fat diet 

(black bars). Data (n = 5) are expressed as mean ± standard error of the mean. Two-way 
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ANOVA was performed. n.s., not significant; INS, insulin; HG high glucose; HFD, 

high fat diet. 
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