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ABSTRACT

A central goal of information theory is to characterize the capacity regions
of communication networks. Due to the difficulty of the general problem,
research is primarily focused on families of problems defined by various clas-
sifiers. These classifiers include the channel transition function (i.e., noisy,
deterministic, network coding), demand type (i.e., single-source, 2-unicast),
network topology (i.e. acyclic network coding, index coding). To date, the
families of networks that are fully solved remain limited. Moreover, results
derived for one specific family often do not extend easily to other families of

problems.

Our work shifts from the traditional focus on solving example networks to one
that builds connections between problem solutions so that we can say where
and when solving a problem in one domain would also solve a corresponding
problem in another domain. Central to our approach is a technique called
“reduction”, in which we connect the solutions and results of communication
problems. We say that problem A reduces to problem B when A can be solved
by first transforming it to B and then applying a solution for B. We focus on
two notions of reduction: reduction in code design and reduction in capacity

region.

Our central results demonstrate reductions with respect to a variety of classi-
fiers. We show that finding multiple multicast network capacity regions reduces
to finding multiple unicast network capacity regions both when capacity is de-
fined as the maximal rate over all possible codes and when capacity is defined
as the optimal rate over linear codes. As a corollary to this result, we show
that the same capacity reduction holds for when network types are limited to
either network coding networks or index coding networks. In several instances,
we show that a reduction in code design extends to a reduction in capacity
region if and only if the edge removal conjecture holds. Here, the edge removal
conjecture states that removing an edge of negligible capacity from a network

does not change its capacity region.

One of the key challenges in network coding research is how to handle net-
works containing cycles. As a result, many papers on network coding restrict

attention to acyclic networks and some results derived for acyclic networks



vii
do not extend to networks containing cycles. We consider a streaming model
for network communication where information is streamed to its destination
under a constraint on maximal delay at the decoder. Restricting our attention
to this scenario enables us to prove a code reduction from network coding to
index coding in both acyclic and cyclic networks. Since index coding networks
are acyclic, a consequence of this reduction is that under the streaming model,

there is no fundamental difference between acyclic and cyclic networks.
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Chapter 1

INTRODUCTION

The question of how to derive capacity region characterizations for communi-
cation networks remain a central open problem in information theory. So far,
the capacity region is known only for a limited collection of networks, most
of which are quite small. Examples include the point-to-point channel 1] and
the multiple access channel [2], [3]. Knowledge of how to design good codes
is even more limited. The difficulty of both capacity characterization and
code design grows quickly with the number of terminals and demands. For
example, the problem of determining the capacity regions of both the relay
channel (which differs from the point-to-point channel in the addition of a
relay node) and the broadcast channel (which differs from the point-to-point
channel in the addition of a receiver) remains open. Due to the complexity of
the general problem, research is primarily focused on subclasses of problems.
These subclasses are defined by classifiers restricting network properties such
as the channel transition function, demand type, network topology and so on.
Results derived for one subclass do not extend easily to other subclasses in

general.

In this work, instead of solving example networks, we study the taxonomy of
communication problems by building connections between problem solutions
using the reduction technique. We say that problem A reduces to problem B
if A can be solved by first transforming it to B and then solving B. Reductions
can be proven even when solutions to both problems are unavailable; when a
solution for B is known, a reduction form A to B enables the propagation of
results from B to A. Thus, understanding these connections expands tools and

results.

We employ two notions of reduction: reduction in code design (“code reduc-
tion”) and reduction in capacity region (“capacity reduction”). Roughly speak-
ing, a reduction in code design refers to a mechanism for designing codes for
a network in class A using a code design algorithm for networks in class B.
Similarly, a reduction in capacity region refers to a mechanism for obtaining

the capacity region of a network in class A using an algorithm for deriving the
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capacity region of a network in class B. We derive code reduction and capac-
ity reduction results with respect to various classifiers. We also study known
code reduction results and show that these code reductions can be extended
to similar reductions in the capacity region if and only if the asymptotic edge
removal statement (AERS) holds. The edge removal statement studies how
incremental changes in network topology affect the network coding capacity
region. It is directly connected to the vanishment conjecture [4] which states
that the network coding capacity region remains unchanged when an edge of

negligible capacity is added to the network.

We next give a summary of the contributions of this thesis.

1.1 Contributions

We study code design and the characterization of the capacity region for gen-
eral memoryless networks. The general class of memoryless networks contains
traditional memoryless channel models for point-to-point and multi-terminal
channels as well as network coding and index coding networks. Full details of

our communication model are given in Chapter

Central to our approach is reduction and the edge removal statement, which
enable us to connect the results of communication problems. Chapter [3|intro-
duces these two concepts. We derive code reductions and capacity reductions
between subclasses of problems with respect to network demands and topolo-
gies. In some instances, we also connect code reduction to capacity reduction,
demonstrating that the extension from code reduction to capacity reduction
hinges on the edge removal statement. The tools and techniques that are used
to derive these connections are documented in Chapter In what follows,

we describe our contributions in the regime of various taxonomies.

Network Reductions Related to Network Topology

Network coding networks are memoryless networks comprised of independent,
noiseless, directed point-to-point channels. A network coding problem is spec-
ified by a directed graph comprised of capacitated edges and a set of network
demands. Both the demand type and the network topology play an important
role in the code design and the characterization of the capacity region. We
here differentiate between general network coding networks and acyclic net-
work coding networks, which differ only in that the former allow for directed

cycles in the underlying graph while the latter do not. The class of index
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coding networks introduced by [5] is a subset of the class of acyclic network
problems which restricts the network topology to a simple setting in which
a single node with access to all the sources broadcasts a common message
to all receivers, each of which has access to a subset of the sources as side

information.

The authors of 6], |7] prove a code reduction from acyclic network coding to
index coding. This reduction is proved under the assumptions of both general
codes and linear codes. This result is intriguing because it shows that the
complexity of acyclic networks is completely captured by the simple topology
of index coding networks in which encoding is required at only one node in the
network. Our work extends this idea by showing that under the same reduction
mapping, capacity region for acyclic network coding reduces to index coding
if and only if the edge removal statement holds (Chapter [7)). We show this
connection for both general and linear capacity regions. Since the edge removal
statement holds for linear capacity regions [§], we obtain as a corollary a linear

capacity reduction from acyclic network coding to index coding.

While many of the results derived in the field of network coding are derived
only for acyclic networks, it is unknown whether the same results hold for
networks with cycles or whether, instead, acyclic and cyclic networks are fun-
damentally different [9]. In acyclic networks, a valid network code can be char-
acterized by assigning a single function of the sources to each edge such that
each of these functions can be computed locally by internal nodes. However,
such a simple characterization does not exist for networks containing cycles.
As such, proofs that rely on this single-function characterization do not imme-
diately extend to networks containing cycles. Our work considers a streaming
network coding model [10], [11] in which each demand has to satisfy both
rate and reconstruction delay constraints. Motivated by the goal of extending
tools and results derived for acyclic networks to the more practically relevant
domain of cyclic networks, we derive a code reduction from general network
coding to index coding under the streaming model (Chapter , which en-
ables us to overcome the key challenges for the cyclic case. A consequence
of this reduction is that under the streaming model, there is no fundamental

difference between acyclic and cyclic networks.



Network Reductions Related to Demand Type

In the realm of network communication, one may also distinguish between
networks based on different demand types. Examples include single unicast,
single multicast, multiple unicast and multiple multicast networks. A single
unicast network is a network in which there is exactly one source and ex-
actly one terminal demanding that source. A multiple unicast network is a
network containing one or more sources and exactly one terminal demanding
each source. A single multicast network is a network in which there is exactly
one source and there are one or more terminals demanding that source. A
multiple multicast network is a network in which there are one or more sources
and one or more terminals demanding each source. The most general of these

demand types is the multiple multicast case.

The work of [12]| shows that code design for multiple multicast network coding
reduces to code design for multiple unicast network coding; that is, solving a
code design problem for any multiple multicast network can be achieved by
solving a related code design problem for a related multiple unicast network.
Similarly, the work of [13] shows that solving the linear code capacity region
for any multiple multicast index coding network reduces to solving the lin-
ear code capacity region for a related multiple unicast index coding network.
Thus, there is no loss of generality in restricting attention to multiple unicast

demands in the above scenarios.

In this work we tackle capacity derivation in a more general setting. We show
deriving the capacity region for multiple multicast networks reduces to deriving
the capacity region for multiple unicast networks. We derive this reduction
for both general codes and linear codes (Chapter . As a corollary, the
reduction results for both the general and linear capacity regions apply to
network coding as well as index coding. Thus, our work unifies some of the

existing results.

In network coding networks, the capacity region of a single unicast network are
fully characterized by the max flow of the underlying directed graph, and code
design is well understood. The code design problem is open for networks with
two or more sources. A surprising result of |14] shows that under the assump-
tion of zero-error codes, the code design problem for multiple unicast network
coding reduces to the code design problem for 2-unicast network coding. This

implies that 2-unicast network coding problems are representative of network
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coding problems with general demands. Our work connects the code reduction
in [14] to a capacity reduction by showing that the capacity region for multiple
unicast network coding reduces to the capacity region for 2-unicast network
coding if and only if the edge removal statement holds (Chapter @ We prove
this connection for both general and linear capacity regions. Again, we obtain
a linear capacity reduction from multiple unicast network coding to 2-unicast
network coding as a corollary since the edge removal statement holds for the

linear capacity region [8].

Reduction Related to Entropic Vectors Characterizations of Net-
work Capacity Region

The Yeung outer bound on the network coding capacity region is derived in |15,
Theorem 15.9] under the notion of entropic vectors. Although a characteriza-
tion of the capacity region is already known [16], due to the relative simplicity
of the Yeung outer bound, it is well-studied in the literature |17], [18].

While the tightness of the Yeung outer bound remains open, the authors of |17]
show that the Yeung outer bound is tight if the edge removal statement holds.
We extend the result of [17] to an if-and-only-if relationship. That is, we show
that the Yeung outer bound is tight if and only if the edge removal statement
holds (Chapter . If the Yeung outer bound is tight, it provides us with

another characterization of the network coding capacity region.

Zero-Error Versus Epsilon-Error Capacity Region

We study the zero-error network coding capacity region. The zero-error net-
work coding capacity region equals the epsilon-error capacity region for super-
source networks and networks with co-located sources [17], [19] but remains
open in general. The authors of [19] show that whether or not the zero-error
capacity region equals the epsilon-error capacity region is closely related to the
edge removal question. Bounds for the zero-error capacity region are derived
by relaxing the edge capacity constraint from a strict (worst case) requirement

to an average requirement [20].

In Chapter [9] we derive a full characterization of the zero-error network cod-
ing capacity region using a dense subset of the entropic region. Our approach
is inspired by [16|. Further, we show that the zero-error capacity region is
equal to the epsilon-error network coding capacity region when restricted to

linear codes.



Chapter 2

NETWORK MODELS

In this chapter, we give the formal definition of our main network model.
We consider communication over general multi-terminal memoryless channels
which we refer to as communication networks. The full model of a canonical
communication network is given in Section which also defines code and

capacity region.

General network coding networks and index coding networks are sub-classes of
general communication networks; these are defined in Sections [2.2 and [2.3], re-
spectively. The acyclic network coding model is introduced in Chapter [f] The

streaming network coding and index coding model is introduced in Chapter |10}

2.1 Canonical Communication Network

Here, we describe a canonical model for communication networks. We assume

all networks are canonical unless stated otherwise.

For a positive i, let [i| denote {1,---,[i¢]}. Following the canonical model
in 13|, we specify k by [ communication network instance Z by a vector of

network parameters

We define each of the terms in that vector below. The sets S and T represent

the k source nodes S = |J {s;} where source messages originate and the ki
i€[k]

terminal nodes T' = |J U {t;;} that demand those messages. We use s,
i[kli(l]

to represent the source node of the ith message and ¢;; to represent the jth
terminal node of message i. Thus, terminal node ¢; ; demands message from
source node s;. We require source nodes and terminal nodes to be unique
(i.e., [SUT| =k + kl). When [ = 1, we refer to the instance as a k-unicast
communication network. For ease of notation, when [ = 1, the second subscript

of the terminal node is dropped (i.e., t; = t;1).

The set U represents the relay nodes of the network, these nodes do not have
any demands and do not generate any source messages (i.e., UN(T'US) = @).

Any source messages that are available as side information to a relay node or



terminal node are captured by the “has” sets

H= | {H},

veUuT

where H, C S for each v € UUT. For each v € UUT and each s € H,,
we model the direct availability of the source using an infinite capacity link
going from node s to node v. These infinite capacity links are used not to
represent real physical channels but instead to capture the notion that source
information is available a priori to some subset of nodes in the network[[]. For
each v € UUT, we denote by

Wi, = (W,:s€H,)e [[ Wo=Wn,

v

SEH’U

the vector of source random variables available to node v.

We consider a channel model where all nodes except the source nodes S are
operated simultaneously in every time step. We refer to this as a “simultane-
ous” code schedule. That is, for n channel uses, the channel is operated over
the same n time steps 7 € [n]. Each relay node w € U transmits a channel
input variable X, ; € X, and receives a channel output variable Y, . € ), at
each time step 7 € [n]. Each terminal node t € T receives a channel output
variable Y; ; € ), at each time step 7 € [n] but transmits no network input.
The transition probability p(Y|X) is a function that describes the probability

at each time 7 of observing the channel output variables
Y=Y,=,,,veUUT)
given that the channel input variables are
X=X,=(X,,vel);

this probability is independent of 7 by assumption. It is also assumed to be
memoryless, so the channel output at time 7 is conditionally independent of
both the channel inputs and the channel outputs at prior times, given the

channel input at time 7. An example appears in Figure [2.1]

Given a rate vector R = (Ry,..., Ry) and a blocklength n, a (2"® n) com-

munication code C is a mechanism for simultaneous transmission of a rate R;

'Making sources directly available to those nodes would be technically equivalent but
notationally less convenient for our purposes.



S1 S2

Ul t1

—
Ytl,T

o t2

— —
Xu2,7' Yt2,7—

Figure 2.1: A 2 by 1 communication network with S = {s1,s2}, T = {t1,t2},
U ={uy,us} and H,, = {so}, Hy, = {s1}, Hy, = {s2}, Hi, = @.

message from each source s; € S to its corresponding terminals ¢; 1, - ,%;;
over n uses of the network Z. Each source node s € S holds an nR,-bit source
message random variable

W, € Fyfe

that is uniformly distributed over its alphabet and independent of all other

sources.

The communication code

C= <{fu,7-u SRUS S [n]}v {gtat € T})

consists of a set of encoders {f, .} and a set of decoding functions {¢;}. Code
C assigns n encoding functions {f,,,7 € [n]} to each relay node u € U, one
for each time step 7 € [n], and a single block decoding function d; for each
terminal ¢t € T. For v € T"U U and for each s € H,, we assume the entire
source message Wy is available to v, thus no encoding function is required for

source nodes.

The time-7 output at any node can rely only on inputs to the same node at
prior timesteps. Thus, for each w € U and 7 € [n], the relay node encoding
function

fur V0 x I B3 = A,

SeHu
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maps the previously received symbols Y.t = (Y1, -+, Yu,—1) and the avail-
able source messages Wy, = (W, s € H,) to the message X, ; transmitted by

node v at time 7.

For each t € T', the decoding function

g0 VP x [ B — Fp
sEH,
maps the complete vector of received symbols at the end of n channel uses and
the available source messages Wy, = (Ws, s € H;) to a reproduction Wt of the

message W, desired by terminal ¢.

For any non-source node v € U UT', denote by
Zy = (Y3, Wa,) € Vi X Wh, = Z,

the total information available to node v at the end of n channel uses. Through-
out, when s = s;, we use notation W, and W;, W, and W,, and R, and R;
interchangeably; that is W, = W;, W, = W;, and Ry, = R; when s = s;.
Similarly, when ¢t = ¢; ;, W, =W;, Ry = R;, and W, = W,.

The performance of a communication code is characterized by its rate vector

R and error probability Pe("), where

P = Pr <U{/MZ £ Wt}>

teT

is the probability that one or more terminal node decodes its desired source

in error.

Remark 1. There is no loss of generality in restricting attention to the canon-
ical form of [13] used here. For any terminal t that sends a network input or
demands q sources where ¢ > 1, we add q new terminal nodes t,---t; such
that each new terminal node t; receives the same channel output as t and has
the same set of sources messages available to t. The ith new terminal t; now
demands the ith source originally demanded by t; node t no longer demands
any source and becomes a relay node. Similarly, if there is a source message
Wi demanded by 0 < m < [ terminals t; 1, ,tim, we add | —m + 1 new
terminals t},--- ,t;_,. . such that each new terminal node t; receives the same
channel output as t;,, and has the same set of sources messages available to

tim-. Each new terminal node t; demands W;; node t; ,,, no longer demands any
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source and becomes a relay node. If m = 0, the message W; is removed from
the network. These modifications do not change the amount of information
that is available to any of the old terminal nodes. Further, no new informa-
tion s available to any of the new terminal nodes; hence the capacity region,

defined below, remains unchanged.

Code Feasibility and Capacity Regions

A communication network instance Z is said to be (R, ¢, n)-feasible if there
exists a code C with blocklength n such that operation of code C on source
message random variables W = (W : s € §) uniformly distributed on W =
[Lics Ws = I Lics F2fs yields error probability P <.

We apply the notion of feasibility to define two notions of capacity. Here A
denotes the closure of a set A. The e-error capacity region of Z, denoted by

R(Z), captures the asymptotic notion of reliability as

R(Z)={R :Ve >0, Zis (R, ¢, n)-feasible infinitely often in n}.

The 0-error capacity region of Z, denoted by Ro(Z), captures the notion of

perfect reliability as

Ro(Z) = {R: T is (R, 0, n)-feasible infinitely often in n}.
Since any code with P\ = 0 also satisfies P < ¢ for all € > 0,

Ro(Z) € Re(T).

Linear Codes and Capacities

It is sometimes useful for practical reasons to restrict attention to low com-
plexity coding modalities. In the discussion that follows, we consider both the
general case, where codes may be arbitrary, and the case of linear codes, which
are here defined to be codes with linear encoders and general decoders. In this
work, we consider linearity over Fy. Thus for a linear code, we require all input
and output alphabets to be vectors over Fy. Each encoder f, - is represented

by a matrix over Fy, giving
Xu,r = (YuT_la WHu)fu,T-

The decoding functions {g;,t € T'} are arbitrary (i.e., not necessarily linear)

functions.
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A network instance Z is (R, €, n) linearly-feasible if it is (R, €, n) feasible using

a linear code. The linear capacity regions are defined as

RE(T) = {R:Ve>0, Tis (R,¢n) linearly-feasible infinitely often in n}
RE(I) = {R:Zis (R,0,n) linearly-feasible infinitely often in n}.

2.2 Network Coding Networks

A network coding network is a communication network instance where nodes
are connected by independent, point-to-point, noiseless communication links.
These links are directed and each has a capacity value which describes the
maximal rate of communication across each link. For a directed link (u,v) of
capacity ¢ bits that connects node u to node v, the channel input alphabet
X,, channel output alphabet ), and the channel transition function p(Y,|X,)

are given by

X, = Fs,
yv :F(Q:a

A network coding network is therefore a communication network such that
the channel transition function is a product of channel transition functions of
point-to-point, noiseless links. We first give a description of a network coding
instance before formally describing the restriction on the channel transition

function.

By representing each of these directed links as an edge of a directed graph, a
network coding network can be described by Z = (G, S, T) where the graph
G = (V,E,C) is defined by a set of vertices V representing the nodes of
the network, a set of directed edges E C V? representing communication links
between these devices, and a vector C' = (¢, : e € E) specifying the capacity for
each edge. sets S, T C V are the source nodes and terminal nodes, respectively.
Each edge e is a noiseless channel of integerﬂ capacity ¢, from the edge’s input
node, here called In(e), to its output node, here called Out(e); for example, if
e = (u,v) and C, = 1, then information travels from node In(e) = u to node
Out(e) = v at a rate of C, = 1 bit per transmission. Figure shows an

2For an non-integral c., we may model each link to transmit [(7c.)] — | (7 — 1) ]c. bits
of information per time step. The same proofs presented in our work suffice to treat these
cases.
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example. Denote by S¢ =V \ § the set of non-source nodes in Z and by
Ese ={e € E :In(e) € S°}

the set of edges that do not originate from source nodes. Similarly, denote by
Es={e€ FE:In(e) € S}

the set of source edges. Similar to the setup of communication networks, any

source edge e € Fg are infinite capacity edges.

A network coding network is therefore a communication network with a chan-
nel transition function that can be described by Z = (G, S,T') and takes the
following form: The relay nodes are given by U = V' \ (SUT). The channel
alphabets (X,,u € U) and (Y,,v € TUU) are given by

Xu = H X(u,v)u

veUUT:(u,w)EEge

yv = H y(u,v)a
ueU:(u,v)EEgc
where for e = (u,v), each Xy0) = V) = F5°. The “has” sets (H,,v € UUT)

and channel transition function p(Y|X) are given by

H, = {s : (s,0) € ES}

Y|X H 5 (u,v) y(u,v))

(u ’U)GESC

Again, there is no loss of generality in restricting attention to the canonical
form. More specifically, in a canonical k by [ network coding network, there
are kl terminal nodes and each terminal ¢;;,7 € [k],j € [/] has no outgoing
edge and demands W; (see Remark [I)).

2.3 Index Coding Networks

An index coding network is network coding network with a graph G falling
in a restricted class of possible network coding topologies. A k by [ multiple
multicast index coding network is a network coding network with a set of k

source nodes S = {s1,---, s}, kl terminal nodes 7' = |J U {t;;} and two
i€lk]j€ll]
relay nodes U = {uj,us}. Following our convention from canonical network

coding instances, each s; holds the 7th source message variable and each ¢; ; is
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S1 $2
Vertex set V = {s1, s9,t1,t2, 01,02}
vy Edge set E = {(s1,v1), (s2,01),
(517t2)7 (32>t1)7 (Ula 1)2),
°3 (v2,t2), (v2, 1)}
Capacity vector | C' = (00, 00, 00,00, 1,1, 1)
v2 Source node S ={s1,82}
Terminal nodes T = {t1,1t2}
€2 €1
t2 t1

Figure 2.2: A network reminiscent of the “butterfly” network. All edges are
of infinity capacity except for ey, ey, and e3, which are of capacity 1. Each
terminal ¢; demands sources from s;.

S1 59 S3

Source nodes S = {s1, 52,53}
Terminal nodes T = {ty,ts,t3}
Has set Hy, = {s2},

Hy, = {51}, Hyy = {52}
Broadcast capacity CB

1 ta 3

Figure 2.3: Representation of an index coding instance (5,7, H, cg) as a net-
work coding problem (left). Node uy broadcasts a common message of rate cg
to all terminal nodes. For each terminal node ¢ and each source node s in the
has set H; of t, there is an edge going from node s to node ¢t. Edges (uy, us),
(ug,t1), (ug,ts), and (ug,t3) have capacity cg. All other edges have infinite
capacity.

the jth receiver of the ith source message. When expressed in the form of a

network coding network, we have

V:{Ul,UQ}USUT.

The set of links includes an infinite-capacity link from each source node to

node uy, a capacity cg “bottleneck link” B from node u; to node uy, a capacity
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cp link from node us to each terminal, and a collection of infinite-capacity
links from source nodes to terminal nodes. The source nodes connected to a
given terminal node ¢t € T are described by the “has” set H; of terminal ¢.
Thus,

E = [U{<s,u1>}]u{<u1,u2>}u[U{<u2,t>}]ulu U{<s,t>}]

seS teT teT seHy

{ cg if In(e) € {ug,us}

Ce = )
oo otherwise.

Given these restrictions, an instance Z = (G, S, T') of a k by [ canonical network

coding network that falls in the sub-class of k by [ index coding problems can be

entirely described by a set of source nodes S = {s, -, sx}, a set of terminal
nodes ' = |J U {ti;}, a set of has sets H = {H;,t € T}, and the capacity
€[kljell]

cp of the bottleneck link. We therefore alternatively describe instance Z as
Z=(S,T,H,cp). An example appears in Figure

Note that by [13] there is no loss of generality in restricting to index cod-
ing instances in canonical form (i.e., there are k sources, and each source is

demanded by [ terminals and each terminal only demands one source).



15
Chapter 3

PRELIMINARIES

In this chapter, we introduce two key concepts to our work: reduction and the

edge removal statement.

In this work, we use reduction to understand when solutions and results for one
type of network information theory can be used for another type of network
information theory problem. In Section [3.I} we formally describe reduction
in two different settings: reduction in code design and reduction in capacity

region. We also discuss some of the existing work in these two regimes.

One of the major contributions of our work is to show that in some cases the
connection between code reduction and capacity reduction hinges on the edge
removal statement. Determining whether of not the edge removal statement
holds may be considered a canonical open problem in information theory and
is shown to be connected to other open problems in information theory. We
introduce the edge removal statement in Section and give some background
on its development. We also introduce the cooperation facilitator and the
broadcast facilitator, which are important components in the proofs of our

work.

3.1 Reductions in Networks

Our work relies on a technique called reduction. When a problem A reduces
to problem A, it means that problem A can be solved by first mapping it to a
corresponding problem A, then applying a solution for A, and finally mapping
the solution for A back to a solution for A (See Figure )

Reduction is a very powerful technique because it allows us to draw connections
between problems even when the solutions to both A and A are unknown; if
A reduced to A, then solving problem A suffices to find a solution to .A.
Reduction can be used to show that a communication problem is easy if it
can be reduced to other problems for which solutions are well understood.
Reduction can also be used to show that a problem A is hard by showing that
a difficult open problem can be reduced to A.

We employ two distinct notions of reduction in this work. In each, some class
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Problem Solution

AR

Figure 3.1: In this figure, two different problems and their respective solu-
tions are represented by different shapes. If A reduces to A, then there exist
mappings ®, and @, such that A can be solved by first mapping it to a corre-
sponding problem A = ®,(A), solving A, and then mapping the solution S A
for A back to a solution Sy = ®,(S ) for A.

of problems on a family P of network coding instances is shown to be solvable
through solution to the same class of problems on a different family P of
network coding instances. We begin by describing both types of reductions
and then give a brief background of the edge removal statement, which plays

a central role in our derivation of new reduction results.

Code and Capacity Reduction

Consider two families of network coding instances, P and P.

Definition 1 (Code Reduction). We say that code design for P reduces to

code design for P if there eist the following two mappings:

1. a mapping from any instance T € P and code parameter triple (R, €, n)
to an instance T € P and triple (R, & 7) such that T is (R, €, n)-feasible
if and only if T is (R, & 7)-feasible.

2. a mapping from any (f{, €,n)-feasible solution for T to a corresponding
(R, €,n)-feasible solution for T.

Thus if code design for P reduces to code design for P, then solution of the
code design problem for all networks in P would solve the code design prob-
lem for all networks in P. Further, only one code design for one parameter

vector is required in P to yield one code design for one parameter vector in
P. Theorems give examples of code reductions. If the mappings
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described in 1) and 2) of Definition |1} are efficient then we say that the code

reduction is efficient.

Multiple multicast networks are networks in which every source message is
required by one or more receivers. Multiple unicast networks are a sub-class
of multiple multicast networks in which every source is required by exactly one
receiver. A network with k unicasts is also called a k-unicast network. Theo-
rem from [12] proves a code reduction from multiple multicast networks
(P) to multiple unicast networks (75) This result proves that code design for
the class of multiple multicast networks (P) can be solved by solving code

design for a subset of that class (P C P).

Theorem 3.1.1 (Code Reduction from Multiple Multicast to Multiple Unicast
Network Coding[12, Theorem II.1]). Multiple multicast network code design

reduces to multiple unicast network code design.

In some cases, code reduction results are known under restrictive assump-
tions on the parameters of either or both families of networks. For example,
Theorem 3.1.2] describes both the linear [6] and general [7] forms of the code re-
duction from network coding to index coding. While Theorem describes
the reduction from k-unicast to 2-unicast network coding when ¢ = 0, giving

a zero-error code reduction result.

Theorem 3.1.2 (Code Reductions from Network Coding to Index Coding).

1. [6, Theorem 5] Linear acyclic network code design reduces to linear index

code design.
2. |7, Theorem 1] Acyclic network code design reduces to index code design.

Theorem 3.1.3 (Zero-error Code Reduction from k-Unicast to 2-Unicast Net-
work Coding [14, Theorem 1|). Zero-error k-unicast network code design re-

duces to zero-error 2-unicast network code design.

Other examples also include the code reduction from network error correction
to multiple-unicast network coding [21], [22], and the code reduction from

secure network coding to multiple-unicast network coding [23].

Definition 2 (Capacity Reduction). We say that capacity characterization

for P reduces to capacity characterization for P if there exists a mapping from
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any instance T € P and rate vector R to an instance T € P and rate vector

R such that

ReR(Z) < ReRI).

Here R(-) is used as notational shorthand to describe a capacity region or
bound for a capacity region; the type used in any particular result is specified
in the result. Capacity reduction from A to A demonstrates how characterizing
the capacity regions for all networks in A would characterize the capacity
regions for all networks in A. Further, solving a single question of the form
“Is R in set R(Z)?” requires the solution of only a single question of the form
“Is R in set R(i’)?”. Similarly, if the mappings described in Definition [2| are
efficient then we say that the capacity reduction is efficient. In some cases,
reduction results are known under restrictive assumptions on the parameters
or capacity regions of either or both families of networks. Theorem [3.1.4] proves
a linear capacity reduction from multiple multicast index coding to multiple

unicast index coding.

Theorem 3.1.4 (Linear Capacity Reduction from Multiple Multicast to Mul-
tiple Unicast Index Coding|13, Theorem 2|). Multiple multicast index coding
linear capacity calculation reduces to multiple unicast index coding linear ca-

pacity calculation.

Does Code Reduction Imply Capacity Reduction?

The study of capacity reduction is motivated by the goal of understanding
an efficient way to compute the capacity of Z based on knowledge of how to
compute the capacity region of Z. So far, we have seen quite a few reductions
in code design [6], [7], [12], [14], but not all of these reductions have a corre-
sponding known capacity reduction. A central question of this work is whether

code reductions can be used to derive corresponding capacity reductions.

Consider the following region:

R:(Z) ={R:Ve > 0,7 is (R,¢,n)-feasible infinitely often in n}.

By definition of the capacity region, R.(Z) = R#(Z). If code reduction holds,
then the knowledge of R?(Z) would imply the knowledge of R*(Z), whose
closure is R(Z). It is therefore tempting to believe that code reduction from

A to A implies capacity reduction from A to A, yet, no such result is known
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in general. One key obstacle is that the knowledge of R.(Z) does not provide
enough information about R*(Z): R may get mapped to an R that falls on
the boundary of R(f), which then leaves open the question of whether or not
R is in R} (Z).

As a result, reductions in capacity characterization exist (see, for example, |24,
Theorem 3|), but they remain relatively rare. Our work shows that for the
scenarios to date where code reductions were not accompanied by correspond-
ing capacity reductions, bridging the gap between code reduction and capacity
reduction relies in some fundamental way on understanding how small changes
in a network coding instance affect the capacity of that instance. The next sec-
tion describes the edge removal statement, determining whether this statement

holds in general is an example question in that domain.

3.2 The Edge Removal Statement

11 173 11 [

Figure 3.2: Networks Z and Z, differ by an edge e of capacity A.

In this section, we focus on acyclic network coding instancesE]. The edge re-
moval question studies the change in network coding capacity that results
when a single edge of capacity A is removed from a network coding instance [8|.
Specifically, let Z, = (G,,S,T) be a network coding instance containing an
edge ey of capacity A\. Let Z = (G, S,T) be the network coding instance that
results when edge e is removed from graph G,. The edge removal statement
compares the capacity regions R(Z) and R(Z,). In particular, the literature

explores a variety of questions of the form

Does R € R(Z,) imply R — f(\) € R(Z)?

LAn acyclic network coding instance is a network coding instance with an underlying
graph that does not contain any directed cycle.
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Here, f(-) is some function of A\. This question has an increasingly rich his-
tory [4], [8], [19], [25]-]30], but remains unsolved in general. While this problem
seems deceptively simple, it is deeply connected to many other fundamental
properties of the capacity region. For example, in [19], the authors connected
the edge removal statement with the “dependent source coding problem,” which
studies the change in capacity region when we allow the source messages to be
dependent. In [25], the same authors show that determining whether or not
the edge removal statement holds is equivalent to the “zero vs epsilon error
problem,” which studies the change in the capacity region when we require
the source messages to be communicated without error. It is also known to be

related to the strong converse problem [28].

Further, as we show in this work, the edge removal statement is also connected
to a series of reduction results. Thus, deciding whether or not the edge removal
statement is true may be considered a canonical problem in network coding in
the sense that obtaining the answer to any one of them would yield answers
to the rest. Results to date include complete solutions for a variety of special

cases. Examples of two such results follow.

The edge removal question is solved in the case of linear codes on both acyclic
networks and networks containing cycles [8]. In this case, f(A) = A; that is,

f(A) is a vector with A in every dimension, giving the following result.

Theorem 3.2.1 (|8, Section V.D|). For any acyclic network coding instance
I)\}
RcRNT) = R-)XcRHD.

For this work, we focus on an asymptotic version of the edge removal state-
ment, where we seek to understand whether an edge of negligible capacity can
have a non-negligible impact on network coding capacity. This variation is
directly related to the vanishment conjecture |4], which studies the continuity

of the capacity region with respect to the capacity of edges at value 0.

Definition 3 (Asymptotic Edge Removal Statement (AERS)). For any acyclic

network coding instances Iy and I differing in a single edge ey of capacity \,

R € lim R(Z)) & R € R.(T).
A—0

The limit in the AERS is guaranteed to exist by Theorem [3.2.2]
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Theorem 3.2.2. The limit }\iH{l}RE(I)\) exists.
—

Proof. Let {\,}5°, be a monotonically decreasing sequence tending to zero,
then

hmRe(I,\) = lim Re(I/\n).

A—=0 n—00

Since Ay > Ay > - -+ implies R(Zy,) 2 R(Zy,) 2 -+ 2 Re(Zy, ), we have

limsup R.(Zy,) ﬂUR (Zy,) = ﬂR€(I)\n)

n—oo n>15>n n>1

and

liminf R(Zy,) = | J[Re(Zs,) = [ R(Tn))-

n—00 ]
n>1j5>n 7>1

Therefore limsup R(Z,,) = liminf R.(Z,,), and the limit exists and equals
n—oo

n—o0

N R(Zy,). O
n>1

The asymptotic edge removal question is solved in the case of super-source
networks and networks with co-located sources. A network with co-located
sources is a network where all sources originate from a single source nodd’ A
super-source network is one whose sources are not co-located but there is a
super-node in the network that has both full knowledge of all the information
present at the sources and low capacity outgoing edges connecting it with each
and every one of the source nodes [26], [30] (See Figure 3.3)). In the following,

we define two variations of super source networks.

Cooperation Facilitator

Instance Z¢/ = (G¢/, S¢/ T/} is obtained from T = (G, S, T,) by adding a co-
operation facilitator to the network FlgureE. Graph Gf\f = (Ve B, C’:\:f =
{c¢f e € E%}) is obtained from G = (V, E,C) by adding k new source nodes
sh, -+, s}, asuper source node sg,, a relay node s,., 2k infinite capacity links
{(s5, 51), (8}, Ssu) Yicw)» k links {(sye, 5i) }icir) and a bottleneck link b = (Sgy, Sre)

of capacity A. The source edges of the original instance Z are replaced with

2While a network with co-located sources is not considered canonical, it can be easily
converted to an equivalent canonical network [13, Footnote 5].
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SSU

t1 ty

Figure 3.3: The left network shows Z augmented with a cooperation facilitator
(Z¢/). The right network shows Z augmented with a broadcast facilitator (Z27).

links of capacity > .. B Cer- Thus, the resulting graph is defined by

Ve =V U {544, 8re} U { U {52}]

1€[k]
B = BU {(500:8,0)} U [ (5 500 (51500, (5000500}
1€[k]
Ce if e € Fge
Cgf _ Ze’EESc Ce! ifee ES
A if In(e) € {Ssus Sre}
o0 otherwise.

The old source nodes no longer hold any source random variable; hence,
S = J{si}
1€[k]

The set of terminal nodes remains the same; hence,
T =T,
Each terminal ¢; now demands s, instead of s;.

Broadcast Facilitator
Instance 7V = (GY, 5% %) is obtained from Z = (G,S,T) by adding a
broadcast facilitator (Figure . Similar to the cooperation facilitator, the

broadcast facilitator is a supersource node that receives all source messages
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and computes a function of them; however, instead of sending the computed
value to the source nodes in S, it broadcasts it to all the nodes in V. Thus,
If’\f can also be also be obtained from If\f by adding |V'| — k broadcast links of
capacity A. Therefore, defining the instance If\f that contains the broadcast
facilitator by comparison to the instance Iﬁf that contains the cooperation

facilitator, we have
be — ch
EY = By [ U{(sre,v)}}

veV

o f
i ¢ ifee k¢

‘ A otherwise.

For a fixed bottleneck rate A, the capacity region of Iif is a superset of that
of Iﬁf . Theorem summarizes what is known about the edge removal

question in these scenarios.

Theorem 3.2.3 (Asymptotic Edge Removal Property for Co-located Source
and Super-source Networks |26, Theorem 2, Proposition 5|). For any acyclic
network coding instances Iy and L differing in a single edge ey of capacity X,

if  is a co-located source or super-source network, then

R € lim R(Z,) & R € R.(T).
A—0

While [4, Definition 3.10] and [26, Conjecture 2| conjecture that the asymp-
totic edge removal statement is always true, even this very limited case of the
edge removal question remains unproven in general. The question turns out
to be intertwined with a variety of other open questions. For example, |19]
shows that solving the asymptotic edge removal question would suffice to prove
whether asymptotic and zero-error definitions of network coding capacity ever
yield different rate regions. Similarly, [25] shows that solving the same ques-
tion would determine whether asymptotically negligible source dependence can

change the network capacity region.
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Chapter /

CAPACITY REDUCTION FROM MULTIPLE MULTICAST
TO MULTIPLE UNICAST

The materials in this chapter are published in part as [31], [32].

In this chapter, we explore the question: how central is the demand type of a
given network to the difficulty of characterizing its capacity region. For general
networks, even the single unicast case remains open. For example, the single
unicast relay channel [33] has only been solved for the degraded case [34]. For
network coding, the single multicast capacity region has been solved [35]-[37],
but the general capacity region remains elusive. Our work aims to identify a
restrictive demand type that is representative of the general case in the realms

of memoryless networks, network coding networks, and index coding networks.

Using the notion of capacity reduction, we show that multiple multicast de-
mands reduce to multiple unicast demands. Our result implies that it suffices
to study the capacity regions of multiple unicast networks to obtain full under-
standing of the capacity regions of multiple multicast networks. Our results
hold for both general and linear coding capacity. As a corollary of our main
result, we also obtain capacity reductions in the settings of network coding and

index coding. As such our work generalizes and unifies previous works [12],
[13] (Section [3.1])

In what follows, we first describe the reduction mapping for the capacity re-
duction from multiple multicast to multiple unicast networks. The reductions
for both the general capacity and the linear capacity region use the same re-
duction mapping. We present our main result in Section 4.2l The proof of
the main theorem appears in Section Our proof relies on a random linear

channel outer coding argument; this technique is presented in Section

4.1 Reduction Mapping ¢,

One of the key challenges in proving a reduction result is to design a mapping
from each instance Z € A and rate vector R to its corresponding instance
7 € A and rate vector R in a way that preserves the properties needed for

the desired reduction. For our purposes, those conditions are described in
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Definition 2l in Section B.1]

We begin by describing our mapping a multiple multicast instance Z and its
rate vector R to a multiple unicast instance Z and its rate vector R. We use
tildes on all variables corresponding to the multiple unicast communication
network instance in order to distinguish the two instances from each other.
Our reduction mapping is inspired by but not identical to the constructions

found in [12], |13]. The multiple unicast communication network instance

7=(S,T,U,H,p(Y|X))
is constructed by augmenting Z = (5,7, U, H,p(Y|X)) with “butterfly” like
structures. This is achieved by replacing source nodes S in Z with kl new
source nodes S in Z and replacing has set H in Z with new has set H in Z. In
the following, we describe the formal construction of (Z, f{) and provide some

intuition. An example appears in Figure [4.1]

Define an index mapping function (i, j) = (i —1)l+j. For R = (Ry,--- , Ry),
each old source node s; is replaced by [ new source nodes Sg(; 1), -, S5(i1)

where each 53(; 1) carries a rate- R; independent source message variable Wg(i,j).

Thus
S=UU {gﬂ(iu’)}-
]

ielk]jEll
Each old terminal node ¢;; in Z is relabeled as fg(i,j) in f, it now demands

source message Wg(i7j); thus

7= YUt }

ic[klie(l]
and
R = (th 7R.€c)7
where each R. = (R;,- -+, R;) is an [-dimensional vector with R; in each com-

ponent. Each relay node u € U is relabeled as @ in Z; thus,
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The channel transition function for Z remains unchanged apart from the nodes

being relabeled, it is defined as follows,

Vi=Vu, VuelU
5}55(1‘,]') =V, Vi €[], J €[l]
Y =yX=x)=p(Y =y[X=x), ¥xe [[x.ye J] W

uelU veTUU

The remainder of 7 is designed to enable it to “reuse” the encoders and decoders
from Z. For each relay node u € U and each source s; € H, available to
node u, node u first combines the ! independent sources (Wﬂ(@l), e ,Wﬂ(i,l)>
into a single “mized source” variable V~Vf“m before applying the encoder from
7 to the “mixed sources” variable W™ To enable the the combination of
(Wagiay, -+, W) into W™, for each relay node u € U that has access to
source from node s; in Z, the corresponding relay node u in 7 is given access

to the source from nodes 5g(;1), -+ , Sg(iy) in i, giving

= U}

i:s;€Hy jeE(l]

In the decoding phase, each terminal ¢ € T uses the decoder from the cor-
responding node ¢ € T to reconstruct the “mixed source.” In order to en-
able node fg(; ;) to extract from the mixed source W its desired compo-
nent Wg(m), we provide each terminal {ﬁ(i}j) with just enough “side informa-
tion,” (Wpgiiny, i € [1]\ {4}), to solve for message Wy ;. Thus, for each

tNI gﬂ(i,j) € T,

E@:[ U U}{gﬁ(i’,j’)}} U L U {gﬁ(i,j”)}]-

i":5,,€Hyj' €|l "eliN{j}

4.2 Main Result

Here, we state our main capacity reduction result for both the general and

the linear capacity regions. The theorem relies on the mapping ®; defined in

Section E.11

Theorem 4.2.1 (Capacity Reduction from Multiple Multicast to Multiple

Unicast Communication Networks).
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p(Y|X) 2,2 5B(2,2) ~ p(Y|X) B(2,2)
A A

(a) (b)

Figure 4.1: (a) A 2 by 2 communication network Z. (b) A 4-unicast commu-
nication network Z corresponding to Z in (a).

1. Calculating the multiple multicast communication network capacity re-
gion reduces to calculating the multiple unicast communication network
capacity region. That is, under mapping ®1, for any communication

network instance T and rate vector R,
R € R.(I) & R € R(T).

2. Calculating the multiple multicast communication network linear capacity
region reduces to calculating the multiple unicast communication network
linear capacity region. That is, under mapping ®1, for any communica-

tion network instance T and rate vector R,

R e RLI) & R e RE(T).
Proof. See Section [4.6] O

4.3 Implications for Network Coding Networks

Recall that a network coding network Z = (G, S,T') is a communication net-
work instance consisting of independent point-to-point noiseless links. There-
fore, Theorem may be applied directly to any multiple multicast network

coding problem Z to obtain a corresponding multiple unicast network T.

Corollary 4.3.1 (Capacity Reduction from Multiple Multicast to Multiple
Unicast Network Coding).

1. Calculating the multiple multicast network coding capacity region reduces
to calculating the multiple unicast network coding capacity region. That

is, under mapping ®1, for any network coding instance I and rate vector

R,

ReR(Z) & ReR(D).
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2. Calculating the multiple multicast network coding linear capacity region
reduces to calculating the multiple unicast network coding linear capacity
region. That is, under mapping ®1, for any network coding instance T

and rate vector R,
R € RYT) & R e RE(T).

Proof. Since the construction in Section [4.1] only modifies source nodes S and
has sets H, 7 is a network coding instance then Z is also a network coding
network instance. Theorem thus gives a reduction in capacity region (and
linear capacity region) from multiple multicast network coding to multiple

unicast network coding. O

4.4 Implications for Index Coding Networks

An index coding network Z = (S, T, H, cp) is a network coding network with a
graph G falling in a restricted class of possible network coding topologies and
is therefore a communication network. We therefore apply Theorem to

obtain the following corollary.

Corollary 4.4.1 (Capacity Reduction from Multiple Multicast to Multiple
Unicast Index Coding).

1. Calculating the multiple multicast index coding capacity region reduces
to calculating the multiple unicast index coding capacity region. That is,

under mapping P, for any index coding instance I and rate vector R,

ReR(I) & ReR(D).

2. Calculating the multiple multicast index coding linear capacity region re-
duces to calculating the multiple unicast index coding linear capacity re-
gion. That is, under mapping ®1, for any index coding instance T and

rate vector R,

R € RYI) & R e RE(T).

Proof. Since mapping ®; only modifies the “has” set of Z, applying mapping ®,
to a multiple multicast index coding network Z yields a multiple unicast index

coding network Z. Thus, Theorem holds for index coding networks. [
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4.5 A Linear Code Reduction from Lossy Network Coding to Loss-
less Network Coding
The following result extends ideas from |24, Theorem 2| and [38, Section V.B].
Precisely, Lemma shows that a lossy code can be mapped to a lossless
code with a reduced rate using channel outer coding. Lemma differs
from |24, Theorem 2| and [38, Section V.B| in that we show the existence of
a linear outer code rather than one that may be non-linear. The term lossy
network code is here used to describe a set of blocklength-n encoders { f, ., u €
U} for the relay nodes of a communication network. Rather than considering
a sequence of codes that meets a certain asymptotic error constraint as in
lossless network coding, we here consider a code that meets a constraint on the
mutual information. Specifically, we consider the scenario where operation of
the encoders {f, ., u € U} on a set of independent sources W yields a mutual
information I(W;; Z;) > nR; for each terminal ¢ and its desired source W;

where Z; = (Y;*, Wy,) is the channel output for terminal node ¢.

Lemma 4.5.1. Let
Z=(S,T,U H,pY|X))

be a k by I communication network instance where the alphabet of the received
information at t;; is Z,,, = F3™7, for all (i, j) € [k] x [I]. Suppose that there
exist blocklength-n encoding functions {fur}rem) for each relay node u € U
such that if sources W; are uniformly distributed on W; = F3™ for each i € [k],
then under the operation of{fuj};gg}, the channel output 7, , = (YZLJ, WHti,j)
for the each of the terminals satisfies

for each terminal t;;, (i,7) € [k] x [l|. Then for any rate vector R' =
(R}, ..., R},) such that R, < R;, for all i and any € > 0, there exists a block-
length n' such that T is (R', €', n’)-feasible. Further, if the encoders {fUT};E[g]

are linear functions, then T is (R',€',n')-linearly feasible.

Proof. As in [24], [38], this result is proved using a random channel outer
coding argument, we extend this idea by applying a random linear outer coding
argument instead to prove a linear code reduction when the encoders { f,. -, u €
U} are linear. This is achieved by applying the random linear outer coding
argument for point-to-point channels from [39] simultaneously to all pairs of

demands in 7.
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In the following, we show that the multicast (R}, - - - , R},) rates can be achieved
by a linear random channel outer coding argument. We begin with an outline
of the proof before providing the details. We first maps source message W/,
i € [k], to a random blocklength N codeword W (W) using a set of random
linear outer encoding functions. Each terminal ¢, ;, (i, j) € [k]x[I] then decodes
a reconstruction /VIZ’ = w; if w; is jointly typical with the received symbol ZtJZj.
The overall blocklength is therefore nN. We show that there exists a set of
linear outer encoding functions that yields a small error probability as N tends

to infinity.

1. Random linear code generation. For a blocklength N, a random code-
word W (w!) for each source message realization w) € IF;LNRi is gener-
ated according to

WHN(w)) = w!M;,

)

where w} is a length-nN R, row vector over Fy and M; is an nNR] by
nNm; random matrix such that each entry is selected independently and

uniformly at random from F,.

2. Codeword distribution analysis. Let r; be the jth row of M;. Then each
r; is a random row vector over Fy. Denote by wj ; the jth component of

w; and denote by B(w;) the positions of 1’s in w}; thus
Bw) = { € VR ul, =1},
jeB(wy)

Thus, for any w] # 0"V = (0,...,0), the codeword for each w) is uni-
formly distributed over F3"™ . For any distinct, non-zero w/, and w},

consider the following decomposition:

ngl = Z T + Z Tj.

JEB(w)NB(wy) JEBW)\B(w])
wal = Z ] + Z ;.
JE€B(wi)NB(wy) FE€B(wi)\B(w;)

Since ZjeB(wg)\B(w;‘) r; and ZjeB(w;)\B(w;) r; are independent and uni-
formly distributed in F4™ | the codewords for any distinct, nonzero pair
of w; and w; are therefore also (pairwise) independent and uniformly dis-

tributed in T3V,
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3. Encoders for each uw € U. Each relay node u first applies the random
linear outer code in 1) to obtain (WN(W/),s; € H,). For each i € [k],
divide codeword W} into N chunks, i.e., (W;1,-- -, W; x) such that each
W, 4 is in F5™ for each ¢ € [N]. Next, apply the blocklength n encoders
{ fu,r }rem) sequentially to each of the N chunks, namely, (W4, s; € H,)
for each ¢ € [N]. This takes a total of n/N time steps.

4. Joint typicality decoder. At each terminal ¢, ;, the decoded message

ijs
estimate W\’i,j equals w; if w)] is non-zero (we address the case when
w; = 0 separately since 0M; = 0) and is the only source realization
whose codeword is 7, j-jointly typical with Ziv y otherwise, the decoded
message W’; ; equals the "error" symbol. Here, we pick 7; ; such that

3772'7]‘ < R; — R;

5. Error analysis. Each source message W/ is drawn according to a uniform
distribution over IF;NR". We use the jointly typical decoding as described
above. Let W/ = w, where w} is a non-zero source message. Define the

following events for (i, j) € [k] x [I] and w} € ]FnNR

E; j(w;) = {w;M; is n; j-jointly typical with ZN e

Let &, = {W\,z}j # W/} denote the event that an error occur at ¢; ;; then

&= Eij(w;) U [ U Ei,j(wf)]-
NR’
,w* 7,\{ 0

We therefore have

Pr(€,, W/ = w)) = P (Ef,j<w;> U { U Ei,j<w:>} \w _ w;-)
NR’
’LU* z\{ 0

< Pr(E7;(w;)) + Z Pf(Ez',j(w?)IWZ = w;).

NR/
wre F 1\{0w/}

The strong coding theorem for discrete memoryless channels [15, Theo-
rem 5.6.2] upper bounds Pr(Ef;(w})) by 27" and Pr(E; ;(w;)|W] =

_ N V4nN3n, - .
w;) by 2 IWSZE )+ Ngm”, which gives

- i NR —I(WN.zZN Nn; s
PI’(517J|W1/ — w;) S 2 nN’YZ,] _|__ 2” Rl ( i tl’])+37’b 77,])'

Note that this bound is independent of w; and is true for any non-zero

w;. The error probability averaged over all code books is then computed
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as follows:
1
Pr(&i;) = Z onNER] Pr(&;;|W; = wy)
wgeF;NRé
2nNR; - 1 .
! ! / n :
= v Pr& Wi = wi) + oy Pr(&iy Wi = 0m)

< Pr(& W] = w;) + AN

By the union bound and for some positive constant 7, the expected error
probability for all kI decoders is at most k127" which goes to zero as
N goes to infinity. This guarantees the existence of a good codebook

that satisfies any error probability constraint.

4.6 Proof of Theorem [4.2.1]

The proof of Theorem [4.2.1| relies on the mapping ®; described in Section [4.1]
We begin with a high level description of the proof.

The reductions for both the general capacity region and the linear capacity
region use the same reduction network Z, which depends only on Z. To prove
the “if and only if” statement in our theorem, we show that if a rate vector
R = (R, , Ry) is in the capacity region of Z, then the corresponding rate
vector R = (R},---, RL) is in the capacity region of Z. We then show the

converse.

The proof employs a code reduction, in which we transform an (R, €, n) net-
work code C for 7 into a rate (R(1 — p), ¢, 7) network code C for Z and vice
versa. The loss in rate, d, tends to zero as the blocklength, n, tends to infin-
ity. By taking the closure of these rates, we get the desired results. We now
present the proof of the assertion R € R.(Z) & R € R(Z). The proof for
linear capacity follows from that presented since our code reductions in both

directions preserve linearity.

R € R.(Z) = R € R.(I): Fix any ¢, > 0. Our starting point is an
(R(1 — p), €, n)-feasible network code C for Z. Our goal is to transform this
code into an (R(1 — p), ¢, 72)-feasible network code C for Z. The idea is to
augment C with a “butterfly” outer code. The outer code we use is linear.

Thus, if we start with a C that is linear, the resulting C will also be linear. We
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formally describe C as follows (recall that £(i,5) = i(l — 1) + j and for any
integer ¢, [i| = {1, -+ ,i}):

1. For each v € U and s; € H,, relay node v combines the [ sources
(Wg(m'), Jj €[l]) by applying an element-wise binary sum (denoted by

operators + and » ). We denote each “combined” source by

‘/T/'isum ZWB(’L,]

JE]

2. For the subsequent time step, each relay node in 7T operates the corre-
sponding encoders from C using (W™, i € [k]) as the source message in

place of W;. More precisely, if the encoders of C are

U U{#}

uelUre[n]

then the encoders of C for each @ € U = U and each 7 € [n] are defined
by
Xﬂﬂ' = fu,T()}g_17 (V"[“/isum’ S; € Hu))

3. At the end of n channel uses, each terminal ¢ = fg(i j) € T first obtains

—~sum

a reconstruction W; of Wsum using the decoders of t € T from C.
~->~sum

Then terminal ¢ extracts the reconstruction I/Vﬂ(Z ;) from W; using

side information (W jny, 7' € [I]\ j) and mixed sources (W™ s; € H,).

More precisely, if the terminal decoders of C are

{gtut € T}7

then for each ¢ (l j) € T, the decoder for terminal f is given by

W sy = de(Y7, (W™, s € Hy)) + < > W/B(m”))'
7'\ {5}

The resulting blocklength for C is # = n. Since C has error at most e and
source vector (W™ i € [k]) is drawn from the same distribution and has

the same support set as the source vector (W;,i € [k]) in C, each terminal

~—>~sum

{ € T can reconstruct W; Wlth error probability at most €. Further, since

—_~sum

the reconstruction of each Wg (i,j) from W; introduces no error, the error
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probability of C is thus bounded from above by the error probability ¢ = ¢
from C. Hence, T is (R(1 — p), ¢, n)-feasible. Since the rate of this code tends

to R as 4 tends to zero, we get the desired result.

R € R(Z) =R € R(I): Fix any ¢,/ > 0. We start with an (R(1 — ), €, 71)-
feasible network code C for Z. Again, our goal is to transform C into an
(R(1 — p), €, n)-feasible network code C for Z by augmenting it with a linear

channel outer code.

We begin by defining some notation. Denote by BZ] the side information
source variables available to terminal Eﬂ(z‘,j) that share the same ¢ subscript;
thus

Bij = (Wg(i,j/),j’ e 1] \j)-

Denote by D; € ]FglRi the [ source message variables associated with s;, giving
b= (Wﬂu,j/);j' € [l])-

Let A; j denote the vector of output variables available at terminal tﬂ( j) less

the side information source variables Bi,j at the end of n transmissions, giving

Zt}j(i’j) - (Biaj7 AZ:])

Consider network Z, suppose that each source originating at s; is the variable
W; = D;. Consider applying the encoders from C to each relay node in Z.
Since both Z and Z have the same channel transition function, the mutual
information between each W; and the variables received by terminal ¢;; is

then given by I(D;; A, ;). Note that

I(Dy; Aij) = I(Bij; Aij) + I(Wigy; Aij| Biy)
Z](W(w ; A; |B)
= I(Wa(i ) Ai IB i)+ T(Woijy; Biy) (4.1)
= I(Wps,; Bij, Aij)
Z R( p)’ (4'2)

where equation ({4.1]) follows from the fact that Wﬁ(i,j) and Bi’j are independent,
and equation (4.2]) follows from Fano’s inequality, with p going to zero as €

and p go to zero.
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By Lemma we have that for any rate R;(1 —p) < R;(1 —p') and € > 0,
there exists blocklength n such that Z is (R;(1 — p), €, n)-feasible. Hence, by
closure of the capacity region, R € R.(Z). Furthermore, since linearity is
preserved, R € R*(Z) implies that R € RE(T).
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Chapter &

FROM CODE REDUCTION TO CAPACITY REDUCTION

The materials in this chapter are published in part as [40].

In this chapter, we describe some of the tools that enable us to derive capacity
reduction results and to connect code reductions to their corresponding ca-
pacity reductions. In particular, we describe the tools that enable us to show
that the code reduction from multiple unicast to 2-unicast network coding,
and the code reduction from acyclic network coding to index coding, extend
to corresponding capacity reductions if and only of the AERS holds. These
tools also enable us to show that an entropic region outer bound for acyclic
network coding is tight if and only if the AERS holds.

Since the above mentioned connections are derived for acyclic network cod-
ing networks, we first introduce the model for acyclic network coding in Sec-
tion [5.1 which differs from the general network coding model in the descrip-
tion of a network code. We then introduce the concept of dependent sources in
Section [5.2] Dependent sources are employed as a tool to study the change in
capacity region when sources are correlated [25]. In [25], the authors show that
the same rates achievable by sources with an asymptotically small correlation
can be achieved by independent sources if and only if the AERS holds. Due
to its close connection to the AERS, the concept of dependent sources serves

as an important intermediate step in connecting reduction to the AERS.

In Section we present techniques and useful lemmas that are used to prove
our reduction results. In Section [5.4], we derive two equivalent formulation of
the AERS by identifying a network that is representative of the edge removal
statement. This enables us to study a particular network topology when ex-
ploring the AERS without losing generality. By focusing on these critical
network topologies, we derive a sufficient condition for a capacity reduction to
be equivalent to the AERS. This result is presented in Section [5.5

5.1 Acyclic Network Coding
An acyclic network coding instance Z = (G, S, T) is a network coding instance

in which we restrict the underlying graph G to be acyclic.



37

The model for acyclic network coding differs from that of general network cod-
ing in the definition of network codes. Instead of the “simultaneous” schedule
of encoders given in Section where encoders are operated simultaneously
at each time step, network codes for acyclic network coding networks are often
given as block network codes where we assign a single block encoding function
to each edge e. Under the schedule of block codes, the encoders operate in an
order that ensures each node v operates only after all “upstream” nodes (nodes
that have a directed path to v in GG) have completed their operations, taking
up to n|E| time steps in total. As a result of this schedule, a valid sequence of
transmissions exists if the function for each edge e can be computed locally by
each node In(e). This provides us with a clean single-function characterization

of valid codes.

Since G is acyclic by assumption, any code under the “simultaneous” schedule
can be converted to an equivalent block network code. While not all block
codes can be converted to precisely equivalent codes (i.e., codes with the same
blocklength) under a simultaneous schedule, they can be converted into re-
lated codes with asymptotically equivalent performance [41]. As a result, the
capacity region does not depend on the schedule of the code [41]. For ease of
notation and analysis, we use block network codes when dealing with acyclic

network coding instances.

In the following, we give the notation of block codes for acyclic network coding

as well as for index coding instances.

Block Network Code

Given a rate vector R = (Ry,..., R;) and a blocklength n, a (2"R® n) block
network code C is a mechanism for simultaneous transmission of a rate R;
message from each source s; € S to its corresponding terminal ¢; € T" over n

uses of the network G.

Similar to communication codes, for each s € S, we use
nR
Ws e W, =Fy™

to represent the source message originating at node s. Each element of 3
is represented by a length-m row vector over 5. Source messages are carried
through the network using edge messages. The blocklength n message carried
by edge e € Ege is

X, € &, =Fy“.
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Each source edge e = (s,v) € Fg is of infinite capacity. Again, infinite capacity
edges are used to capture the notion that source Wj is available apriori to node
v; thus,

X, =W,

For any non-source node v € S, the information available to node v after all

such transmissions is
Zy = (YIHWHU> € Wy X WHU = Z,.

Here, Y, is the vector of messages delivered to node v on its incoming edges

and Wy, is the vector of sources available to node v. Thus,
Y, = (Xe/, ¢’ € Ese A (Out(e) = ’U))

yv = H Xe’

e/’€Ege AN(Out(e’)=v)

WHU = (WS,SGHU)
Wu, = [[ W
SGHU

Each terminal ¢ € T uses its available information Z; to reproduce its desired
source. We use
W, e W, = F3f

to represent the reproduction.

A (2R n) network code C comprises an encoding function f, for each edge
e € FEge, and a decoding function ¢; for each terminal ¢ € T, giving C =

({fe},{g:}). For each e € Egsc, encoder f, is a mapping
fe : ZIn(e) — Xe

from the vector Zi,(e) € Vin(e) X WHIn(e) of information available to node In(e)

to the value X, € &, carried by edge e over its n channel uses; thus

Xe - fe(ZIn(e))-

By our assumption of the schedule of block network codes, the encoders operate
in an order that ensures that the encoders for all edges incoming to node v
operate before the encoders for all edges outgoing from the same node; this is

possible since the network is acyclic by assumption.
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We call f, a local encoding function since it describes the local operation used
to map the inputs of node In(e) to the output X, transmitted across edge e.
Since the network is deterministic, X, can also be expressed as a deterministic
function of the network inputs W = (W, : s € S5). The resulting global
encoding function

F, : HWS X,
seS

takes as its input the source vector W and maps it directly to X.. For each

source edge e € Fg, the global encoding function is given by
F.(W) =W,

Following the partial ordering on FE, the global encoding function for each
subsequent e € E' is then a function of the global encoding functions for its

inputs, giving
WIn(e) ife € Fg

F(W) = fe(Fe/(W):e’EE/\(OUt(e/)—In(e))) ife € By

Each decoder ¢;, t € T, is a mapping
gt : Zt — Wt

from the vector 7, € )V, x Wy, of information available to node ¢ to the

reproduction Wt of its desired source, giving
Wi = gi(Zy).

Block Index Code

An index code C is a block network code for the index coding network. Recall
that an index coding problems is described by Z = (S, T, H,cp) in which a
bottleneck link B = (ul,uy) that has access to all the sources broadcasts
a common rate-cy message to all the terminals. We assume without loss
of generality that any edge with sufficient capacity to carry all information

available to its input node carries that information unchanged; thus
fe(Zine)) = Z(e) for all e € E Nn(e) = us.

As a result, specifying an index code’s encoder requires specifying only the

encoder fg for its bottleneck link.
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5.2 Dependent Sources
In the classical network coding setting, independent sources are considered.
We employ dependent sources [25] to understand the rates achievable when

dependent sources are allowed.

For a blocklength n, a vector of nd-dependent sources of rate R = (Ry, ..., Rjg|)
is a random vector W = (W, --- , W},), where W; € F3f such that

> H(W;) - HW) < nd
1€[k]

and H(W,;) > nR; for all i € [k]. For § = 0, the set of nd-dependent sources
only includes random variables that are independent and uniformly distributed

over their supports.

We also consider linearly dependent sources [42, Section 2.2]. A vector of
nod-linearly-dependent sources are nd-dependent sources that are pre-specified
linear combinations of underlying independent processes [42]. We denote such
an underlying independent process by U, and we assume that U is uniformly

distributed over F4". Thus, each W; can be expressed as
W, =UT,

where each T; is an nRy X n(R; + §) matrix over Fy.

We now define communication with nd dependent sources. Network Z is
(R, €,n, d)-feasible if there exists a set of nd-dependent source variables W
and a network code C = {{f.},{g:}} with blocklength n such that opera-
tion of code C on source message random variables W' yields error probability
pm < e. When the feasibility vector does not include the parameter for

dependence (i.e., (R, €,n)), we assume that the sources are independent.

5.3 Code Reduction Results

In Lemmal5.3.1] below, we present code reduction results that are useful in our
proofs. In what follows, we map an epsilon-error code for dependent sources
to a zero-error code for independent sources by introducing a cooperation
facilitator to the network (Lemma [5.3.1(1),(3)). Similarly, we map an epsilon-
error code for a network augmented with a broadcast facilitator to a zero-error

code that can operate without the broadcast facilitator by using dependent
sources (Lemma [5.3.1)(2)).
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Lemma 5.3.1. For any network Z and rate vector R,

1. |43, Corollary 5.1] For any blocklength n and any €,6 > 0, if T is
(R, €,n,6)-feasible, then by adding a cooperation facilitator, the network
Iﬁf is (R—p,0,n,0)-feasible, where A and p tend to zero as € and 6 tend

to zero and n goes to infinity.

2. For any blocklength n and any e, \,d > 0, if If\f is (R, €,n,0)-feasible,
then for dependent sources, T is (R — p,0,n,d")-feasible, where §' and p

tend to zero as €, \, 0 tend to zero.

3. For any blocklength n and any €,6 > 0, if  is (R, €, n, 0)-linearly-feasible
for an nd-linearly-dependent source, then by adding a cooperation facili-
tator, the network Iﬁf is (R — p,€,n,0)-feasible, where \ and p tend to

zero as 0 tend to zero.

Proof. (2) Let T2 be (R, €,n,d)-feasible. By Lemma (1), I;’i/\* is (R —
p*,0,n,0)-feasible, where \* and p* tend to zero as € and ¢ tend to zero and n
tends to infinity. (Adding a A\* cooperation facilitator to If’\f is equivalent to
increasing the bottleneck capacity of Iif from A to A + A*.) Let ' = A+ A%,
and let C be an (R, 0, n, 0)-feasible network code for Iﬁf

Define Z, to be the value being sent on the bottleneck edge (sgu, sre) of the
broadcast facilitator in If’\f under the operation of C. The conditional entropy
H(W |Z,) can be expanded as

H(W|Z) = Y p(Zy=7)H(W|Z, =)
,Y/E]F;M’
By an averaging argument, there exists a 7 such that H(W|Z, = ~) >
H(W|Z,). We therefore have the following inequalities:
H(W|Z, =) > H(W|Z)
> H(W) — H(Z)
> H(W)—n\. (5.1)
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For each i € [k],

H(Wi|Zy = v) 2 HW|[Z, = v) = H(W},j € [K]\{i})|Z = 7)

>H(W)—nA— ) <nRj> (5.2)

Jelk\a}
= H(W,;) —n\.

Inequality (5.2) follows from bound on the support size of W, and equa-
tion (|5.1]).
N HWi|Z,=7) - HW|Z,=7) <Y _(nR;) — HW) +n)N  (53)
ic[k] i€[k]

<n\

Inequality follows from bound on support size of W.

Define the conditional random variable W* = W/ _,. The alphabet size of
W+ is the same as W, where for each i € [k], |[W;| = 2", We then have an
n\-dependent source W* such that Z is (R — X, 0,n, \')-feasible.

(3) Let W = (W7, --- ,W}) denote the né-linearly dependent source (See Sec-
tion with U as the underlying random process. Therefore, the source is

the result of a linear transformation of U, namely,
Ly Fy - [ F5™
i€[k]

In particular, we can express each source W; as
W; =UL;,
where each L; is an nRy by nR; matrix over Fs.

For any matrix M, denote by M (i) the ith column of M and by C'S(M) the
column space of M. For a row vector W;, denote by W, ; the jth element of
W;. For vector spaces V and W, let V + W denote the direct sum of V' and
W, (ie, {v+wlv € Vw € W}). Let B; C [nR;] be index sets such that for
B ={(i,j): 1 € [k],j € Bi},
U (L)}
(1,5)€B

is the minimum spanning set of the vector space ) ;) C'S(F;). Thus the rank
of Ly equals | B|.
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Let B; = [nR;]\ B;, then for each (4, j) such that i € [k],j € B;, we can express

UL;(j) as linear combinations of the spanning set, i.e.,

ULi(j) = > > myoyULe (i),

i'€lklj €Byr

where each 7;;;7; is a coefficient in [Fs.

i1 Uk

Figure 5.1: A schematic for generating dependent variables using a cooperation
facilitator.

Next, we describe a scheme to turn the dependent source code for Z into
a code for Igf that would operate on independent sources at the cost of a
small loss in rate. Let W' = (W7, --- | W/) be a set of independent sources
for Zg' where each W/ is uniformly distributes in ]FLB”. With the help of the

cooperation facilitator, we first transform W' into a set of dependent variables

W* = (W5, - W) using a full rank linear transformation
o [ E - T
i€[k] i€[k]

before applying the encoders of Z (See Figure . Due to the topology of
Igf , we need a distributed scheme to apply £*. We therefore need a two-step
procedure to generate W*. At the first step, the cooperation facilitator first

broadcast a common message X, = f,(W),

n|B; m
for [T F" = Fy,
1€[k]
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to each of the old source nodes sq,--- , s in Igf. In the second step, each s;

apply a local linear transformation
Lr - F"\Bﬂ % Fné N IFnRi
i T2 2 2

that maps (W/, X,,) to W/

To ensure correct operation of the code, L£* is designed such that the distri-
bution and the support set of W* equals that of W. By assumption of the
validity of the code, each terminal ¢; will be able to reconstruct W, with overall
error probability less than e. Finally, to allow for each terminal to reconstruct
W/ from W/, we also require W/ to be a function of W}. Thus, an appropriate
choice of £* and A will yield an (R — 4, €, n, 0)-linearly-feasible code for Igf .

In what follows, we give the definitions of f, and {£;} that satisfy the require-

ments.

o Let B={(i,j):i €[k],j € B;}. Recall that W, ; denotes the jth bit of
W;. The function f, is defined such that X, = fo(W') = (@, (i,]) €

B), where
Q5 = Z Z nlJZ]/W/ .

i'elk] j’€B]
The rate of the CF required to broadcast this function can be bounded

as follow,

=> |Bi| - H( (ZnR)—(ZnRi>+n§:n5.

i€[k] i€ (k] i€[k]

e For each i € [k], fix an arbitrary ordering of elements in B;. define an
index mapping function

Bi: Bi — || Bi]

that maps 7 to ¢ if j is the ¢th element in B;. The linear transformation
L* that maps W/ to W} is defined as follows:

w!
Bi(d
VVZ*] = ' ) _
Q; j ] € Bz

JE€B;

It can be verified that there exists a inverse map from W;* to W/ for each
i € [k], and the resulting £* is full rank.
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Finally, we show that W* and W has the same distribution and support set.
Observe that W is uniformly distributed over its support since it is a linear
function of U which is uniformly distributed over F4*V . This is due to the fact
that the pre-image of any element in the co-domain of £y has the same size.
Similarly, since W' is uniformly distributed, W* is also uniformly distributed
over its support. Let w = (wy, - -+, wi) € Whp, then w' = (wf, - -+ , wy,) defined

as follows satisfies L}, (w') = w,

Wi jeB;
Dien] 2ogres Mty Wij  J € B;.
Thus, the support set of W is contained in that of W*. Finally, since both Ly

and L£* has the same rank, the support set of W equals W*. Igf is therefore
(R — 6, €,n,0)-linearly-feasible. ]

5.4 Representative Topologies for The Edge Removal Statement

In Section [3.2] we introduce the cooperation facilitator (CF) and broadcast
facilitator (BF) from [30] which can turn any network into a super-source net-
work. Since the AERS is known to be true for networks super-source networks,
adding any negligible edge to a super-source network will not impact its ca-
pacity region. This implies that the key to understanding the AERS is to
understand the effect of adding a CF or BF to a network. Indeed, there is no
loss in generality in restricting ourselves to special network topologies when
studying the AERS. This observation is described in Theorem [5.4.1, which

gives two equivalent formulations of the AERS.

Theorem 5.4.1. The following statements are equivalent for any acyclic

network T.

(a) R € }\irr(l)Re(IA) —~+ReR(T).
_)

(b)) R € ;in%Re(Iif) ~ReR(D).
—

(¢c)R e liE%RE(I;f) R eRD).

Proof. This proof relies on Lemma [5.3.1]

(b) = (a): Let R € limR(Z,). Since the broadcast facilitator in Z/ can
A—=0 A

compute edge e in Z, and broadcast it to all nodes, we have R € }\in%Re (If\f ).
_>
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By assumption of (a), this implies R € R.(Z). Since R(Z) C }\in%Re(I,\), (b)
—

is true.

(a) = (c): Let Re ;iL%RG (Z¢). Let Z. be obtained from Z¢ by removing
the rate-\ bottleneck link in Z{/, then R.(Z) = R.(Z.). By assumption of
(a), this implies R € R.(Z.), and therefore, R € R.(Z). Since R.(Z) C
}\iir(l)Rg(Zf\:f), (c) is true.

(c) = (b): Let R € }\iLI[l)RE(Iif ), then for any €, \,p > 0, Z?/ is (R —
p, €,n, 0)-feasible for some blocklength n. By Lemma [5.3.1)(2), for all p/,§’ >
0, there exists blocklength n’ such that Z is (R — p/,0,n/,0’)-feasible. By
Lemma, (1), for all p”, " > 0, there exists blocklength n” such that Iﬁf,
is (R —p",0,n",0)-feasible. Thus, R € ii{)%Re(If\:f). By assumption of (c), we
have R € R.(Z). Since R(Z) C }\i_)I%RE(Isf ), (b) is true. O

Roughly speaking, equivalent form (b) in Theorem describes the obser-
vation that the bottleneck edge in a broadcast facilitator is the strongest edge
since it can compute any function of the sources and deliver it to any node,
it is therefore representative of any other edge in a network. Equivalent form
(¢) in Theorem describes the observation that even though the coopera-
tion facilitator is not as strong as a broadcast facilitator, their difference (with
respect to capacity region) becomes negligible when the bottleneck capacity
becomes asymptotically small. Thus, studying the effect of the removal of
the bottleneck edge of a cooperation facilitator (or broadcast facilitator) is
representative of the AERS.

5.5 A sufficient Condition for Capacity Reduction

In this section, we derive sufficient conditions for a capacity reduction to be
equivalent to the AERS or Linear AERS. The sufficient condition is presented
in Theorem below. Omne key observation of the capacity reductions
mentioned in this paper is that they are only known to be true for super-
source networks. Roughly speaking, Theorem [5.5.1] shows that if a broadcast
facilitator allows one to prove a capacity reduction from If\f to Z, then the
capacity reduction from Z to 7 is equivalent to the AERS. Similarly, if one
can prove a linear capacity reduction from Iﬁf to Z, since edge removal is true
for linear capacity regions (Theorem , a linear capacity reduction from
7 to Z holds. This result is captured in Theorem .
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R e R( R cRNT
AERS( \ Linear AERS( Linear CR

R € limy_,0 R. IA ReR(EIZ Re hmHOR ReREZ

SC Linear SC

Figure 5.2: The figure depicts the proof of Theorem which proves a
sufficient conditions for the equivalence between capacity reduction and AERS
for both the general and linear case.

Theorem 5.5.1. For a acyclic network coding instance I, rate vector R and a
reduction mapping P, let T and R be the corresponding network coding instance

and rate vector; then

1. {R ceR(I)=Re /l\irr(l)Rg(If\f)} implies
—

KR cR(I)=Re RE(I)) & AERS] :

2. lf{ eRNI) = Re }\ir%Rf(Iif)} implies lﬁ eRNI) = Re REL(I)} :
—

Proof. The proof idea is illustrated in Figure Suppose that the sufficient
condition (SC) is true; we show that capacity reduction (CR) is equivalent
to the AERS. There are two directions to be proven. For the first direction,
assume that the CR is true. By CR, R € R.(Z) if and only if R € R(Z). By
the SC, we have R € R(Z) if and only if R € /1\12(1)726 (Z?). This implies that
AERS is true. For the second direction, assume that AERS is true. By AERS,
R € R(Z)if and only if R € mRe(zﬁf ). By the SC, we have R € }\iir(l)RE(If\f )
if and only if R € R(Z). This implies that CR is true. The proof for the linear

case is similar. O
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Chapter 6

CAPACITY REDUCTION FROM MULTIPLE UNICAST TO
2-UNICAST

The materials of this chapter are published in part as [40].

Demand type plays a central role in characterizing the capacity region of net-
work coding networks. For single-source network coding problems, the maxi-
mum rate at which information can be multicast has a simple characterization
via the maximum flow of the underlying graph of the network coding problem.
However, the k-source network coding problem is a non-trivial extension of

the single-source case.

In the literature, results for k-source network coding problems are derived
for various values of “k”. For example, the authors of [44]| show that for k
equals 5, linear codes are insufficient to achieve the network coding capacity.
The authors of [45] show that the linear programming outer bound [46] is
loose when k equals 6. We have already seen from Chapter {4 that multiple
multicast networks reduce to multiple unicast networks. One may ask the
question how the difficulty of a k-unicast network coding problem depends on
k. It is tempting to believe that the k-unicast problems are inherently easier
for small values of k. For example, the authors of [47] show that the cut-set

bound is tight for undirected k-unicast network coding problems for k& = 2.

A surprising result in [14] proves a code reduction from k-unicast network
coding to 2-unicast network coding. The authors of [14] pose the question
of whether the reduction mapping in [14] (here we refer to as mapping )
can be used to prove a capacity reduction. We resolve this question partially
by showing that under mapping ®,, the linear capacity calculation reduces
from k-unicast to 2-unicast. Furthermore, the general capacity reduction from
k-unicast to 2-unicast holds if and only if the AERS holds.

In the next section, we first describe mapping ®5. Our capacity reduction re-
sult is formally captured in Theorem of Section and its proof is given
in Section A useful lemma that maps a lossy code for dependent sources

to a lossless network code for independent sources is given in Section
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6.1 Reduction Mapping &,
We begin by describing the mapping ®- used to prove the code reduction from
k-unicast network coding to 2-unicast network coding in [14], modified slightly

to fit our model.

Let ZT=((V,E,C),S,T) and R = (Ry,---, R). The corresponding network
7= ((V,E,C),S,T) and rate R is given below. The construction in [14] first
combines demands {(sy,t1),--- , (s, tx)} of Z into a single demand (3;,%;) in

Z. The instance Z employs a modified butterfly structure for each demand
(si,t;), © € [k]. The construction is illustrated in Figure

These butterflies are connected to network Z so that terminal node ¢; in Z acts
as the right-side “source” of the i butterfly in Z. The left-side source node, a;,
of the same butterfly is connected to $,, which carries an independent source

Wg. We therefore have
g - {51, 52}
Finally, the left-side and right-side “terminal nodes” of the ¥ butterfly are

connected to terminal nodes #; and #, of Z, respectively, giving
T = {t,,1,}.
Since we are combining k sources, the new rate vector for Z is
R = (ZRi,ZRi)
i€[k] 1€[k]
The resulting graph is given by

V=VUSuTuU {ul,u2} U [U{aiabiyciafiahi}]

ic[k]
E; = {(u1, s:), (uz, ai), (fi, 1) (hi, £2), (3, 02), (as, bi),
(aifi), (bi, ci), (cis ha), (ci fi), (80, i) }
E=EU {(Sl,ul), (52,u2)} U [ U E]
il

oo if In(e) € {51, 82}
te=1<R; ifecE;VIn(e)e S

c. feelk.
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Note that Z depends on both Z in its topology and R in its edge capacities.
Here, for each i € [k], edges (uy, s;), (ug,a;) and each edge in Ej is of capacity
R;. Infinite capacity edges (81, u1) and (Sq, uz) are added to capture the notion
that the sources are available a priori to u; and us. Sources from §; and §,

are demanded by nodes #; and ., respectively.

S2 S1

Figure 6.1: Graphical representation of corresponding network Z. Network
7 contains Z as a sub-network and is augmented with k “butterfly” network
structures.

6.2 Main Result
Theorem gives a partial solution to the question of whether &, can be

used to derive a reduction in capacity region, which is left open by authors
of [14].

Theorem 6.2.1 (Capacity Reduction from k-Unicast to 2-Unicast).
1. Linear capacity characterization for k-Unicast network coding reduces to

linear capacity characterization for 2-Unicast network coding. That is,

under mapping P, for any acyclic network coding instance T and rate
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vector R,

R € RL(I) & R e RE(T).

2. Capacity characterization for k-Unicast network coding reduces to capac-
ity characterization for 2-Unicast network coding under mapping ®o if
and only if the AERS holds. That is, for any acyclic network coding

mstance I and rate vector R,

(R €ER(I)=Re RG(I)) if and only if the AERS holds.

Proof. See Section [6.5] O

6.3 Insufficiency of Linear Coding in 2-Unicast Network Coding
One application of capacity reduction results is to generate new results from
existing ones that are proven for a different class of networks. In [44], the au-
thors construct a 5-source multiple multicast network (call it Z) to demonstrate
the insufficiency of linear coding in network coding networks. One application
of capacity reduction is to reduce this example network to a 2-unicast network
7. The result in [44] proved that there exists R* such that R* € R(Z) but
R* ¢ RE(T).

In the proof of Theorem [6.2.1] (2), we show that
R e limR.(ZY) & R € R.(T),
A—=0
which gives
R € R.(Z) = R € R.(T).
By Theorem [6.2.1] (1), we have

R e RXT) « R e RXD).

Thus, the resulting network Z preserves the gap between linear and optimal
codes. That is, R* € R(Z), but R* ¢ RE(Z). This yields a 2-unicast network

coding network demonstrating the insufficiency of linear coding.

6.4 A Linear Code Reduction from Lossy Source Coding to Lossless
Network Coding

We consider a lossy source coding scenario that is similar to that described in

Section except that the sources in this case are not independent. That is,
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we consider the scenario where operation of the encoders {f,,,u € U} on a
set of dependent sources W' yields a mutual information I(W;; Z,) > nR; for
each terminal ¢ and its desired source W, where Z, = (Y,*, Wy, ) is the channel

output for terminal node ¢.

Since the sources are dependent, Lemma cannot be applied directly be-
cause the random coding argument in its proof requires the sources to be
independent. Lemma below, describes a scheme that maps the lossy
source code to a lossless network code by first applying linear Slepian-Wolf
(SW) encoding scheme|48| (which enables terminals to reconstruct the sources
losslessly) and then applying Lemmam (which enables independent sources
of a reduced rate to be transmitted when Z is augmented with a cooperation

facilitator.) When the sources are linearly dependent and the encoders are
linear, Lemma yields a linear lossless network code.

Lemma 6.4.1. Let T = (G,S,T) be a k-unicast network coding network.
Let {f.,e € E} be a set of blocklength n encoders and let W be a vector of
rate R = (Ry,- -+, Ry), nd-dependent source message random variables such

that under the operation of {f.,e € Egc} on W, the information variable
Zy = (Y,", Wy,) received by each terminal t € T (See Figure[6.9(b)) satisfies

v = I?EaTX%H(Wt\Zt).
Then for any € > 0, there exists a blocklength n' such that Iff is (R —
P €, n' 0)-feasible, where X' and p' are positive numbers tending to zero as
d and v tend to zero. Further, if W is linearly dependent and {fe,e € Eg-}
are linear encoders, then for any € > 0, there exists blocklength n' such that
Iﬁf is (R — p/,€,n',0)-linearly-feasible, where X' and p' are positive numbers

tending to zero as 6 and vy tend to zero.

Proof. Consider the distributed Slepian-Wolf source coding set-up in Fig-
ure [6.2b). Here SW coding is employed to describe sources drawn i.i.d ~
p(Zy, W), where p(Z;, W) is the distribution induced by the operation of
{fe;e € E} on W. For a blocklength N, each terminal ¢ has side-information
ZY and would like to reconstruct W. By [48, Theorem 1], there exists a
linear encoder

frow  FONE IF;NR: foreacht € T
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such that for any R} > n+, each t can reconstruct WY from the received code-
word f; o (W) (using a minimum entropy decoder [48|) with error probability

€* which tends to zero as N tends to infinity.

Consider the following communication scheme for Z to transmit W = (W, ;,j €
[N]) toeach t € T

1. For the first nN time steps, apply the blocklength n encoders { f.,e €
Egsc} a total of N times. For each j € [N], during the jth block of
n timesteps, {fe,e € Esc} is applied on (W, ,,t € T). This yields the
information variable ZY that is received by each terminal t € T at the

end of time nV.

2. For the rest of the time steps, compute and route each SW codeword
Jrsw(WPY) from source node s to terminal ¢. Do this sequentially for
each (s,t) € {(si,t;),i € [k]} before each terminal reconstructs W'.
Assuming we can send a single unicast rate of at least R} (via routing)
across each source-destination pair (s,t), the total number of time steps
needed for this phase is

nNa = Z @,

/
teT t

R*
where a = —L tends to zero as v tends to zero.
t

This yields an (H%, e*,nN (1 + «), d)-feasible code for Z. By Lemma m(l),
VAU <1+_a — p,0,nN(1 4+ «),0)-feasible, where a, A and p tend to zero as

€*,y and § tend to zero and nN tends to infinity. If {f.,e € Esc} are linear
encoders and W is an nd-linearly-dependent, then the scheme above yields an

(1%, €, nN(1 + a),6)-linearly-feasible code for Z. By Lemma |5.3.1(3), UAURT

(1% — p,e,nN(1 + «),0)-linearly-feasible, where a, A, and p tend to zero as

€*,y, and 0 tend to zero and nN tends to infinity. O

6.5 Proof of Theorem [6.2.1]
Proof. We use variables without tildes for Z and variables with tilde for Z. It
suffices (Theorem [5.5.1)) to show the following two “if and only if” statements:

ReR.(I)=Re ;in[l)Re(Iif )and R € RE(Z) & R € iin(l)ReL(Iif ).
— —
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Wy Wy

S1 Sk

z
wh rate = R} i /WtN
o

(b)

Figure 6.2: (a) A channel used to illustrate the channel in Lemma [6.4.1} (b)
A Slepian-Wolf coding scheme for Z to convert a lossy code to a lossless one.
(c) Figure of 7 labeled with edge information variables.

We prove each statement in two parts, first showing that if a rate vector
R = (Ry,- -, R) is in the capacity region of If\f , then the corresponding rate
vector R = (Rsum, Rsum), where Rgy = > R;, is in the capacity region of 7,
1€[k]
and then showing the converse.
We now present the proof of the assertion R € R (Z) < R € iin(l)Re(If\f ).
ﬁ

The proof for linear capacity follows from that presented since it uses the
same reduction network Z and our code reductions preserve code linearity.

Parallel arguments for the proof for linear capacity are contained in square

brackets (i.e., [...]).

R € R(Z) = R € ;inéRe(Iif ): Fix any €5 > 0. We start with an
—

(R — j, € 7, 0)-feasible network code C for Z. Under the operation of C on

network Z, let the edge information variables be denoted (capital letters) as in
Figure (c) In particular, let each Z, be the information variable received
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by the old source node s € S and each Z, be the information variable received
by the old terminal node t € T in Z.

By Lemma [6.5.1] to be stated shortly, for each source-destination pair of Z,
(5,) € {(50,1:),1 € [k]}, we have

H(Zi|Z,) <7,

where 7 tends to zero as p and € tend to zero.

Next, we bound the dependence among the variables (Zs, s € S). We have

~ ~ (a) ~ ~ b
I(Wh;(Zs,s € 8)) > I(Wh; (Z, t €T)) > n(Reum — p — ’7/)

—
=

for some 4’ that tends to zero as € tends to zero, where (a) is due to the data

processing inequality and (b) is due to Fano’s inequality. This gives
H(Zy s €8S) > t(Roum — p— ) + H(Zy, s € S|W1) = t(Reum — p — 7).

Further, since each link carrying Z, has a capacity of R, the support size of
each Z, is bounded above by 2% giving H(Z,) < iR, for each s € S. Hence

H(Z)>H(Zy,s € S)— Y. H(Zy) > (R, ~j—7),
s'eS\{s}

(St(20) - H(Zos € 5) < i+ 7).

seS

If we consider (Zs,s € S) as source message variables, those source message

variables would be 7d-dependent for 6 = j + 7.

By Lemma [6.4.1} for any € > 0, there exists a blocklength n such that I;ff is

(R—p, €, n,0)-feasible where p and \ tend to zero as p and € tend to zero. This

implies that R € }\ir%Re (Z2) as desired. [Note that if C were a linear code,
—)

then (ZS, s € S) would be fo-linearly-dependent with W, as the underlying
random process (See Section [5.2). Lemma therefore yields a linear code
for Z¢ which in turn implies that R € /l\in%”REL (7))

—

R € R(I) « R ¢ }\in%Re(Zif): Fix any €,p,A\ > 0. We start with an
—
(R — p, €, n, 0)-feasible network code C for Z2/. By Lemma m<2), Zis (R—

p',0,n', 8 )-feasible (under code C’) for some ¢’ and p’ that tend to zero as
e, A\, and p tend to zero. Let W = (Wj,---  Wy) be the corresponding set
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of nd’-dependent sources. [If R € RE(ZY), then R — p € RE(Z) for some p
that tends to zero as A tends to zero (Theorem [3.2.1)). Using the fact that
RE(T) = RE(Z) (Theorem [9.1.1]), there exists a blocklength n’ such that Z is
(R — p',0,n,0)-linearly-feasible (under code C’), where p' tends to zero as A

tends to zero.|

Since C’ is a zero error code, any source realization in the support set Wy, of
W can be transmitted to the terminals without error. Using this fact, consider
the following communication scheme for 7 , in which we transmit independent

source messages Wi and Wo:
1. At source node 3,, the source message W € IFSIRS“’“ is split into k chunks,
giving W = (Z,,, -+ , Za, ), where each
Z; € TR
is transmitted on edge (usg,a;) and forwarded to nodes b; and f;.
2. We set W, to be in F’;'(Rsum"“”/“s'). At source node 31, the encoder
fi, F;’(Rsum—kp/—(s/) LW,

((Raum=kp'=0") 4 the ith element in the support

I(Rsumfkplfél)

maps the ith element in F;
set of W, with respect to an arbitrary but fixed ordering of I,
and Wj,. Note that this mapping is well defined since

logy, Wsp| > H(W) > (Z H(WZ)) —n'0" > n'(Reum — kp' — 7).
1€[k]

3. Consider operating C’ on the sub-network Z that is contained in Z. That
is, treating

fau (W) = (Wi, -+, Way)

as the dependent sources and applying encoders of C’ on nodes V' \ T
and the decoders on each of the terminals t € 7. By assumption of
the zero-error code C’, each terminal ¢; is able to obtain an error-free

reconstruction of W ;.

4. The rest of the network applies a “butterfly” network code. For each
i € [k], node t; forwards Wl,i to node b;, which computes the element-

wise binary sum (denoted by operator “+7)

WLZ‘ + W2,i
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and forwards it to nodes ¢;, f;, and h;.

5. Finally, each h; receives variable VVM from s; and extracts Wgﬂ» from
Wl,i + Wg,i, then transmits it to 5. Similarly, each f; computes Wu and

transmits it to #;.

Since the butterfly network code introduces no error, this scheme yields a code
C that is (R — kp' — §,0,n',0)-feasible for 7. Since p' and & tend to zero as
e, p and X tend to zero, R € R.(Z). [Note that if we start with a linear code
C’ that is feasible for independent sources, the corresponding support set then
becomes Wy, = [iciy Fy =7) the encoding function f;, described in Step
2) of the scheme can then be made linear. Further, since the butterfly network

code described in steps 4) and 5) is also linear, this yields a linear network
code C for Z. Thus R € RE(Z) |

]

Lemma 6.5.1. (Based on [14]) Let R = (35, R, % [ R). If T is (R —
p, €,1,0)-feasible, then for all i € [k], H(ZSJZZ.) < n7, where 5 goes to zero as

p and € goes to zero.

Proof. This proof follows the proof idea from [14] and uses variables from
Figure [6.2{(c). We bound I(B;; Ws) as follows,

R

~
—~

is Wa)
(Bj; Wy, Wa) — I(By; W |Ws) By chain rule of mutual information.
(By; Wy, Wa) — I(B;, Wy W) Independence of W; and Wy
(B;; Wy, Wa) — I(B;, Zi, Wa: W) Y; is a function of Wa, B;
<nR; — ](Z\t,-§ W)
— R~ 1((Zyy.j € [K): W)
—l—I((Zt],,j € [k]\ {i});:Wi1|Z,) By chain rule of mutual information.
< Zj er M By decoding condition
—((Zje[k] nR;) — néd;) = no; and Fano’s inequality.



Next, we bound I(B;; W, Zsi),

- 3 szj:sz,-—ﬁSi
jelkI\{i}

Finally we bound H (}73 |1~/t),

H(Z,
= H(Z,

Z:,)

|Zt17 527<Zaj’j € [k]))

o8

Independence of Wy and Z

Za is a function of BZ, ZSZ

By chain rule of mutual information.

By decoding condition

and Fano’s inequality.

By independence of

(Ws,, (Za,,j € [K]) with (Z,, Zs,)
Since B, is a function of Za ,Zt
Conditioning reduces entropy.
Expansion of I(B;; Z,|Ws).

By chain rule of mutual information.

Here each §; goes to zero as p and € goes to zero. It suffices to set 7 =

max 25,~.
i€[k]

[]
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Chapter 7

REDUCTION FROM NETWORK CODING TO INDEX
CODING

The materials of this chapter are published in part as [49].

The index coding problem [5] is a special case of the network coding problem
that can be interpreted as a “broadcast with side information” problem: a
broadcast node has access to all sources and wishes to communicate with
several terminals, each having and desiring to reconstruct potentially different

sets of sources.

A code reduction from acyclic network coding to index coding is derived in |7].
Thus, any efficient scheme that solves all index coding problems would yield
an efficient scheme that solves all acyclic general network coding problems.
Although the connection between network coding and index coding presented
in |7] is very general, it does not resolve the question of whether the network
coding capacity region can be obtained by solving the capacity region of a

corresponding index coding problem.

In this work, we show that the capacity reduction from acyclic network coding
to index coding is equivalent to the AERS. Section describes the mapping
&5 from an acyclic network coding instance to an index coding instance. We
describe the main result in Section and give its proof in Section [7.3]

7.1 Reduction Mapping ¢3
We begin by describing the reduction from Z to Z employed in [6], modified
slightly here in order to fit our model. Note that in the reduction of [6], the

instance Z depends only on Z (and not on the parameters n and € as permitted
by Definition .

Given network coding instance Z = (G, S, T') with topology G = (V, E,C') and
given any rate vector R, we define index coding problem 7 = (5,7, H,ép)
and rate vector R as follows. The source set S contains one source node ¢ for

each source node s € S and one source node s, for each edge e that is not a
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S Source Nodes S = {85,555, Sey Seqs Ses
e D Destination Nodes | ¢ = {ts,,tt,,te;, ey, tes b
Side Hy, = {50250, }
Information H;, = {34,,5¢,}
7 Sets  Hey ={55,3:,}
g ¥ 9 ¢ 3 He, = {Ses}s Hey = {Ses }
te, try tey Tey leg Broadcast Capacity cg =3
Rate R=(R,1,1,1)

Figure 7.1: The index coding network corresponding to the “butterfly” like
network in Figure 2.2 in Section [2.2]

source edge, giving
S={5:5€S5}U{5. :¢ec Eg}.

Similarly, terminal set T has one terminal #; for each terminal ¢ € T and one

terminal £, for each edge e that is not a source edge, giving
T={t,:tcTyU{t.: e € Es}.

The “has” set ]:Ig for terminal ¢ varies with the terminal type. When ¢ = ¢, for
some edge e € Fge, ﬁg includes the source nodes §. for all edges €’ incoming
to e and source nodes 3, for all source edge €' = (s,In(e)) € E incoming to e
in G; when t = ¢, for some terminal t € T, ﬁ]g includes the source nodes s,/ for
all edges €’ incoming to t and source nodes 3, for all source edge €/ = (s,t) € E

incoming to t in G. Thus
i — {5 : Out(e’) = In(e)} U {3, : (s,In(e)) € B} if t = ¢, for some e € Ege
o {5¢ : Out(e) =t} U {5 : (s,t) € £} if f =, for some t € T.

The bottleneck capacity ¢p is set to the sum of all finite edge capacities in Z,

giving

An example is shown in Figure , which gives the index coding network Z
corresponding to the butterfly network from Figure of Chapter
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7.2 Main Result

The authors in [7] pose the question of whether code reduction ®3 can be used
to derive a corresponding capacity reduction. Theorem gives a partial

solution to that question.

Theorem 7.2.1 (Capacity Reduction from Network Coding to Index Coding).

1. Linear capacity characterization for network coding reduces to linear ca-
pacity characterization for index coding. That is, under mapping ®3, for

any acyclic network coding instance Z and rate vector R,

R € RYI) & R e RE(T).

2. Capacity characterization for network coding reduces to capacity charac-
terization for index coding under mapping ®3 if and only if the AERS
holds. That is, for any acyclic network coding instance L and rate vector

R,

(R eR(I)=Re RE(I)) if and only if the AERS holds.

Since the question of whether the edge removal statement is always true or
sometimes false is unresolved, the question of capacity reduction between net-
work coding and index coding remains open in the general case. However,
our result provides another way to understand the capacity region of network

coding problems via the edge removal statement.

7.3 Proof of Theorem [7.2.7]
Proof. We first give a high level description of the proof. Throughout this

proof, we use “untilded” variables for Z and “tilded” variables for Z. It suffices
(Theorem [5.5.1)) to show the following two “if-and-only-if” statements:

ReR.(I)=Re }\in%RE(Iif )and R € RE(Z) & R € lin%Rf(Iif ).
— —
To prove each of the above two statements, we present two proof “directions”.
In the first direction, we show that if a rate vector R = (Ry, - , Rx) is in the
capacity region of If\f , then the corresponding rate vector R = (R, (c., e €

Esc)) is in the capacity region of Z. We show the converse in the second

direction.
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The proof uses the idea of code reduction, in which we transform an (R(1 —
p), €,n) network code C for ZY into a rate (R(1 — ), ¢, ) network code C for
7 and vice versa. The j-loss in rate tends to zero as p, € tends to zero and the
blocklength 7 tends to infinity. By taking the closure of these rates, we get the
desired result. We now present the proof of the assertion R € R.(Z) < R €

/l\irr(l)Re (If’\f ). The proof for linear capacity follows from that presented since
%

it uses the same reduction network Z and our code reductions preserve code
linearity. Parallel arguments for the proof for linear capacity will be contained

in square brackets (i.e., [...]).

First direction: R € R.(Z) = R ¢ }\iII(l)RE(If)\f). Define Wg = (W,,s € S)
_)

and V~VESC = (We, e € Fgc). Fix any €,p > 0, we start with a code C that is

(R(1 — p), &, 7)-feasible for Z. For any non-source node v € S, denote by

Wy, = ((We/,e' € E:Out(e) =v),(Wy,s' € S: (s,v) € ES))

the vector of source and edge messages in the has set H, of v in Z. Let the

broadcast encoder be denoted by
f5(Ws, W)
and the decoders be denoted by,

gfe (XBv WHIn(e) )
gt} (XBJ WHt)

We design a code C that operates on If\f in two phases, reusing these functions:

1. In the first phase, the super-node s, broadcasts an overhead message
Xo = (W, Fp,. (W))

to nodes in S of Il;f , where

FESc . HF;IRS(I_ﬁ) N H ]F'gce(l_ﬁ)

ses e€FEgec

is a suitable function that maps a realization of Wg to a realization of
Wi
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2. In the second phase, the sources W are transmitted through the rest of

If\f by having the following encoding function for each e € Ege,

fe(ZIn(e)) - Qfe (Xon ZIn(e))-

Each terminal ¢ implements the decoding function
Wi = g;,(Xa, Z4).

Note that if the original index code operates without error on a message
realization (Wg, Wg..) = (Wg, Fr,.(Ws)), then by induction on the
topological order of GG, C will also be able to operate without error on

message realization W = wg.

By Lemma [7.3.1] stated shortly, there exists a function fg. so that the super-
node in If\f can broadcast the overhead message X, using only a small alphabet
>) and that the coding scheme described above operates with error at most
2¢, where n!log || goes to zero as n goes to infinity and p goes to zero.
Therefore, VA, p,€ > 0, If\f is (R(1 — p), 2¢, n)-feasible for large enough 7,
which also means that R € }\iL%RE(Iif ). [Note that if C were linear, then
Lemma implies a linear encoder Fg,. (of a rate that tends to zero as p
tends to zero) for the broadcast facilitator, which will yield a linear C. Hence
R € ;E%Rf(ﬁf )

Second direction: R € R (Z) « R ¢ /l\irr(l]Re(Iif). Fix any €,p > 0. We
%
start with an (R(1 — p), €, n)-feasible code for Z/. Denote this code by

C>\ = ({fe}eEEm {gt}teT)’

where F) is the set of edges in instances Z and If\f , respectively. Let Z be
the corresponding index coding instance for Z and let Zy be the index coding
instance obtained from 7 by adding an extra A to the capacity of the bottle-
neck link. Let {F.}ecp, be the set of global encoding functions corresponding
to Cy and let o be the bottleneck edge of the broadcast facilitator in If\f )
Following [7], we construct an index code C for Z, by reusing the code for Z,

concatenating it with a linear outer code as follow.

1. Let “4+” denote the element-wise binary addition operator. We decom-

pose the broadcast encoder fB(WS, Wg..) = XB into components and
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define each component,

XB = (XB,ea e e Esc U {Ct})
~ We + FQ(WS) e < Esc
XB,e - ~

F,(Wg) e=a.

2. At the decoders, for each edge terminal ¢ = ., each decoder §; first

computes FE(WS) using its side information and the broadcast message,
Fo(Ws) = fu((Xpe + We, e : Out(e) = In(e)), Wy, )

and then finally obtains W, = X Be+ FG(WS). Similarly, for each t = ¢,
that demands W, each decoder dg outputs a reconstruction of W, by

applying the decoders from C)

—

W= g((Xpe + Wa, e : Out(e) =t), Wg,).

Note that this index code operates without error on inputs (WS, W Fee) =
(Ws, Wy ) if and only if the original network code operates without error

on inputs W = wg.

Therefore, for all \, p, e > 0, there exists blocklength n such that Z, is (R(l —
p), €, n)-feasible. Thus, R € Re(i,\). By Lemma , stated shortly, we have

R(1— %) € R.(Z) for all \. Since capacity regions are closed, R € R.(Z). [If
we start with a linear C,, the resulting C, will also be linear since the outer
code described above is linear. Thus Zy is (R(1 — p), €, n)-linearly-feasible. By
Theorem [3.2.1} Z is (R(1 — ), €, n)-linearly-feasible where 5 tends to zero as

p and A tends to zero, which implies R € RX(Z).] O

Lemma 7.3.1. (/7, Claim 1]) Let T = (G, S,T') be a network coding instance
and let T = (5', T.H, ¢p) be its corresponding index coding instance according
to ®3. For any index code that is (R(1 — p), € 7)-feasible on I, there exists a
function

Fg. : HFSLRS“"&) N H e =7)

ses e€FEge

and a set S C T3 satisfying |S| < 4i(1—p) (3 .eg Rs)2"7°8 such that at least

a (1 — 2€) fraction of source realizations Wg € [], g FgRs(l_ﬁ) satisfy

fB(Ws, Fgy.(Wg)) € X
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and the index code operate without error on message realization
(Ws, Wp,.) = (Ws, Fg. (Ws)).

Lemma 7.3.2. Let Z = (G, S,T) be a network coding instance and let T =
(5‘7 T.H, ¢p) be its corresponding index coding instance according to ®3. For
any linear index code that is (R(1— p),0,7)-feasible on I, there exists a linear
transformation matriz Fg,.,
FESC :H]FZRS(I_ﬁ) — H ]F;we(l_ﬁ)’
seS e€FEgc

and a linear subspace > C FgéB satisfying dim(X) < npég such that all Wg €
[Lcs FgRs(lfﬁ) satisfy

fB(Ws, WSFEsc) €.

Proof. Let
fB(Ws, WEg.) = Wsfs + Wee fEge
where fg and fg. are 3, ¢ AiR(1 — p) x fié and fiég(1 — p) X fiép matrices

over [y, respectively.

For any matrix M, denote by M (i) row i of M and by RS(M) the rowspace
of M. For vector spaces V and W, let V + W = {v+ wlv € V;w € W}. Let
Bp,. C [Aép(1—p)] such that {Fp,. (i)} forms a basis for RS(fg,.). Let
Bg; C [>segnRs(1 — p)] such that

U s | U )]

’iEBSl ZEBE

iEBESC

forms a basis for RS(fs) + RS(fg..). Since the index code is assumed to be
ZEro-error, fEsc is full rank, we must have |Bgl| < npcg or we would have more
than 7ég independent vectors in F3°5. Therefore, fg(z) can be decomposed as

follows:
fs = fs1+ foo,
where for each j € [ o R, fs1(4) is in the linear span of { fg(i)}
fs2(j) € RS(frs.)-
We observe that rank(fgl) < npép. Since RS(fSQ) C RS(fESC), we can find a

matrix Ff . that satisfies

icBsy and

FEscfEsc = _fSQ'
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i (1-7)

We therefore have for any wg € [, o,

fB(Ws, WsFgy. )= Wofs + V~VSFEscfEsc = W fs1.

]

Lemma 7.3.3. (24, Lemma 4] For any 0 < k < 1 and network coding instance
Z, let Z(k) be obtained from T by multiplying the capacity value of each edge
of T by k. Then for any rate vector R, R € R(Z) implies Rk € R(Z(k)).
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Chapter 8

THE TIGHTNESS OF THE YEUNG NETWORK CODING
OUTER BOUND

The materials of this chapter are published in part as [50].

An outer bound |15, Theorem 15.9] and an exact characterization [16] of the
capacity region for network coding are known, whether these regions differ
remains an open problem. These bounds are derived based on the notion of
entropic vectors and the entropic region I'* (Section [8.1). So far, and there
exists no full characterization on the entropic region I'*, there is no known
algorithm to evaluate these bounds. Hence these results are known as implicit

characterizations.

Throughout the paper, we shall refer to the network coding outer bound de-
veloped in [15, Theorem 15.9] as the Yeung outer bound. The Yeung outer
bound is tight when all sources are colocated |17] and for single-source network
coding. Whether the outer bound is tight in general remains open. Computa-

tionally efficient outer bounds are developed in [1§].

The tightness of the Yeung outer bound can be expressed in a form that is
similar to the definition of a capacity reduction (Theorem . We apply
tools from Chapter [5] and show that the Yeung outer bound is tight if and only
of the AERS holds. Before describing these bounds, we begin by defining the

entropic region.

8.1 Entropic Regions

An approach to characterize the network coding capacity region is to find all
information inequalities. For a long time, the knowledge of information in-
equalities are limited to the basic inequalities due to Shannon |1] (Shannon
inequalities). Shannon inequalities has the advantage of being able to be veri-
fied by a linear program [46]. Discovery of non-Shannon inequities [51] calls for
the definition of the entropic region, which in principle is capable of verifying
all information inequalities. Unfortunately, this region cannot be computed

explicitly.

In the following, we first define the entropic region I'*(+). For consistency, we
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employ notation from [15], [16]. For a given network coding problem Z, let
N@IZ)={W,,s€S;X.,ec E} ={Wg,Xg}

be a collection of discrete random variables corresponding to the source mes-
sage random variables and the edge information random variables. When the
underlying network Z is clear, we simply denote N'(Z) by N. Let Hx be the
|2W1 — 1|-dimensional Euclidean space where h € H,r consists of entries h4
labeled by A C N, for A # @&. A vector h € H, is called an entropic vector
(or an entropic function) if there exists a set of |[N| random variables such that

VACN A# 2,

The set of entropic vectors corresponding to A is denoted by I'*(N). When
the set AV is implied, we simplify I'*(\) to T'*.

Quasi-uniform and Individually-uniform Entropic Region

In this section, we introduce two subsets of the entropic region, namely the
quasi-uniform and the individually-uniform entropic region. The quasi-uniform
entropic region is employed in |17] to show that the Yeung outer bound is tight
when sources are collocated. Our definition of individually-uniform entropic
region is inspired by [17]. The individually-uniform entropic region enables us

to derive an implicit characterization of the zero-error capacity region (Chap-
ter @

We first give the definitions of quasi-uniform entropic vectors and entropic
region. A set of random variable { X7, ..., X, } is quasi-uniform if for any subset
a C [n], (Xa) = (X;,1 € «) is uniformly distributed over its support (sp(X,)),
or equivalently,

H(Xq) = log |sp(Xa)|. (8.1)

Define I'y)(N) to be the set of all entropic vectors that correspond to random
vectors N that are quasi-uniform. When the set N is implied, we simplify
I'H(N) to T'g,.

The requirement of (8.1]) allows a quasi-uniform variable X; to be transmitted
across an edge of capacity H(X;) by sending the indices of sp(X;). This is a
useful property in mapping an entropic vector directly to a network code in

the proof of Theorem [8.3.1]
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In the derivation of the zero-error network coding region, one crucial step in
the proof is to map a particular network code to a vector in the entropic region.
Since not all network code corresponds to a quasi-uniform random variable,
we relax the condition in (8.1) and define individually uniform variables. A
set of random variables { X1, ..., X,,} is individually-uniform if for any i € [n],

the random variable X is uniform over its support, or equivalently,
H(X;) =log |sp(X;)].

Define I';;(N) to be the set of all entropic vectors that correspond to random
vectors N that are individually-uniform. When the set A is implied, we
simplify I';;(N) to T,

The definition of individually-uniform random variables relaxes that of quasi-
uniform random variables by allowing variables with joint distributions that
are not uniform. Since I', C I';; € I'*, |17, Proposition 2| implies that I'}; is
also dense in I'* (and T'*) in the sense that for every element h € I'* and every

€ > 0 there is an element h' € I'j; within Euclidean distance € of h.

8.2 The Yeung Outer Bound R,
We define the following sub-spaces that will be used to describe the Yeung
outer bound [15] and the zero-error capacity region in Chapter [9] We denote

linear sub-spaces of Hx by L; and the intersection of L1, Lo, ..., L, by Lio. .
For A, B C N, define hajp = haup — hs.

e The sub-space
Ly(T) = {h € Hy : hwy — Y hw, =0}
s€S
describes the set of entropic vectors that corresponds to independent

source message variables {hy,,s € S}.
e For e € E, define Zp,(¢) = (Xo, ¢’ € E,Out(e’) = In(e)). The sub-spaces

Ly(T) = {h € Hy : Ve = (s,v) € E,s € S, hx w, =0}
Lg(I) = {h S HN : Ve € E71n<6> ¢ S, hXe\ZIn(e) = 0}

describe the set of entropic vectors whose edge information variables
match the topology of Z. That is, the edge information sent on edge e
must be a function of the edge variables entering In(e) or of the source

message variable originating at In(e).
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e The sub-space
Ly(Z) = {h € Hy : Ve, hx, < Ce}

describes the set of entropic vectors whose edge information variables
satisfy each edge capacity constraint (i.e., c.).
o Fort € T, define Y; = (Xo, e € E,Out(e’) =t). The sub-space

Ls(Z) ={h e My :Vt; € T, hy, z, =0}

describes the set of entropic vectors whose edge information variables
satisfy the decoding condition at each terminal ¢t. That is, the edge
information variables entering ¢ must contain enough information to re-

construct its desired sources.

The authors of [17] observed a connection between the tightness of the Yeung
outer bound and the AERS. They proved that the outer bound is tight if the
AERS holds. Inspired by their work, we extend the result to an “if-and-only-if”
relationship. We begin by defining the Yeung outer bound.

Theorem 8.2.1 (Yeung Network Coding Entropic Function Outer Bound |15,
Theorem 15.9]). For a given network coding problem I, an outer bound to its

capacity region is given by
Rout == Q(PTO]WS<D(F*) N L12345>>>.

The definitions of the functions appearing in the above expression are given by

Convex combination with origin | D(B) = {ah:0<«a <1,h € B}
Projection function Projw(B) = {{hw, }ses : h € B}
Inferior set function QB)={h: 0<h<h' heB}

8.3 Main Result
Theorem 8.3.1 (Tightness of the Yeung Outer Bound). The Yeung entropic
region outer bound is tight if and only if the AERS holds. Namely, for any

acyclic network coding instance Z and rate vector R,

<R ERum(Z)= Re Re(I)) if and only if the AERS holds.
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Proof. The tightness of the Yeung outer bound can be expressed in a form

that is similar to capacity reduction, namely
ReRouw(Z) = R eRA(D). (8.2)

We show that (8.2)) holds if and only if the asymptotic edge removal statement
holds. The proof of this result is given in Section [8.4] O

A full characterization of the capacity region R(Z) appears in [16] and is equal
to
Q(PI‘OjWS (D(F* N L123) N L45)))

Nevertheless, due to its relative simplicity, R, has seen various studies. A
variant of the outer bound R,,; is shown to be equal to the e-error capacity

region of a network when dependence is allowed among the sources [52].

8.4 Proof of Theorem [8.3.1]

Proof. This proof uses notation from Section[8.2] By Theorem [5.5.1] it suffices
to show that R € R,:(Z) < R € ;iir(l)Re(If\f ). Here the mapping from (Z,R)
to (Z,R) is the identity map (i.e., Z = Z and R = R). To prove this “if and

only if” statement, we present two proof directions,

R € Row(I) = R € limR, (7)) and R € Row(Z) = R € limR, (7).
— —

First direction: R € Rou(Z) = R € ;m%nﬁ(zif ). Let R’ € Row(Z), then
—

there exists an entropic vector h € D(I™*) N Lia345 and a rate vector R such
that
R’ <R = Projw,(h).

By Lemma [8.4.1] stated shortly, there exists a sequence of quasi-uniform ran-
dom variables {(W(Sm), X%n))} with corresponding entropic vector h(™ € I' |
a sequence of integers {n,,}, and a sequence of positive numbers {0,,} such

that the following are satisfied:

Ly(T) . Ve € 