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ABSTRACT

It has been recently noted in a paper by Brandão et al. that the structure of a
linear program in a classical semidefinite programming algorithm lends itself to
quantization, such that the classical algorithm may experience a quantum speedup
if the step of solving a linear program is replaced with the preparation of a Gibbs
state of classical Hamiltonian on a quantum computer, where the Hamiltonian is
given by a linear combination of the semidefinite program’s constraint matrices.
The quantum speedup would be exponential if the complexity of the Gibbs sampler
used to execute the update step is polynomial in system size. The Gibbs samplers
with explicitly defined runtimes are exponential in system size; however, while the
quantum Metropolis sampling algorithm by Temme et al. does not have a runtime
bounded explicitly in system size, the algorithm heuristically runs in polylogarithmic
time. Since the inverse spectral gap of the quantumMetropolis map varies inversely
with the running time of the algorithm, we simulate the behavior of the quantum
Metropolis map’s spectral gap as a function of system size and row sparsity. We
also examine how different definitions of fixed row sparsity affect the spectral gap’s
behavior when the system size is increased linearly. While more numerical evidence
is needed to draw a definitive conclusion, the current results appear to indicate that
for system sizes ranging from three to ten qubits, if fixed row sparsity is defined as a
fixed polynomial function of the system size, then the quantum Metropolis spectral
gap behaves as a polynomial function of system size.
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NOMENCLATURE

Affine function. A function composed of a linear function followed by its transla-
tion..

Completely positive map. A mapping describing quantum evolution by mapping
from a set of density matrices onto itself..

Frustration free system. A system whose Hamiltonian can be written as the sum
of terms whose ground states match that of the Hamiltonian..

Hilbert space. The configuration space of a quantum system..

Phase space. A multidimensional space that contains all of the particle’s possible
states, which are characterized by position and momentum..

Positive semidefinite matrix. A Hermitian matrix with nonzero eigenvalues..

Slater’s condition. A sufficient condition that a primal problem must satisfy if
strong duality is to hold. The condition holds if the primal problem is strictly
feasible; the weak form of the condition allows a relaxation of the strictly
feasible rule if the function in question is affine..

Sparsity pattern. An explicitly defined pattern of nonzero elements in a matrix..

Spectral gap. The largest difference between the eigenvalues of the map..

Spectral norm. The square root of the maximum eigenvalue of a matrix..

Stochastic map. A completely positive map that also preserves the trace..

Strong duality. A condition under which the duality gap is zero..

Wavefunction. A complex-valued function that describes the quantum state of a
system..
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C h a p t e r 1

INTRODUCTION

The concept of quantum computers was born in 1981, when Feynman presented
the difficulties of simulating quantum systems with classical approximations. In his
seminal lecture on simulating physics with computers, he posed a question to physi-
cists: is it possible to build a computer in which the elements required to simulate
a physical system is proportional to the space-time volume of the system? Such
a computer wouldn’t be classical – quantum mechanics is inherently probabilistic,
but simulating probabilities for large physical systems is an intractable problem for
classical computers. If a classical computer is asked to calculate all of the pos-
sible configurations of R particles for N points in space, then the computer must
be able to hold N R configurations – something that cannot be done by a computer
of order N . For realistic physical systems, the number of particles is on the same
order of the number of points in space – in such cases, the computer must hold
N N elements. Feynman concluded that if a polynomial increase in the size of a
physical system results in an exponential increase of required computing elements,
then a classical computer can’t efficiently simulate quantum physics by computing
the evolution of a wavefunction [1]. Could a classical computer imitate the be-
havior of quantum mechanics by directly generating the probabilities encountered
in nature? The probability of finding a classical particle at a certain point in the
phase space is characterized by the phase-space probability distribution, which is
non-negative and yields one when integrated over the phase space. The counterpart
to the classical phase-space probability distribution in the quantum domain is the
Wigner quasiprobability distribution. The Wigner function gives the probability of
locating a particle at x when it is integrated overmomentum, and it gives themomen-
tum distribution when it is integrated over position [2]. However, the results of the
Wigner quasiprobability distribution cannot be interpreted as probabilities, because
the Wigner function admits negative values – how would negative probabilities be
interpreted [3]?

The question then became: is there a way to circumvent the negative probabilities?
Can the Wigner function’s probabilities serve as quantum mechanical probabili-
ties? Feynman proved with a two-photon correlation experiment how probabilities
calculated by classical means do not agree with the probabilities given by quantum
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mechanical formulas, demonstrating that classical systems cannot accurately imitate
quantum mechanics [1]. Thus a quantum computer becomes very desirable – if a
quantum system can directly replicate the circumstances required to generate the
probabilities relevant to the problem at hand, then the probabilities will always be
non-negative, and the problem of the exponential explosion of the Hilbert space
with the system size can be circumvented. Feynman hypothesized that there must
exist a class of quantum operators that when locally coupled with one another can
simulate the Hamiltonian of any discrete quantum mechanical system with a finite
number of degrees of freedom. In 1996, Lloyd verified Feynman’s hypothesis – he
demonstrated that the local Hamiltonian evolution of a quantum many-body system
can be efficiently simulated on quantum computers. Since local Hamiltonians can
be written as the sum of operators that operate on local Hilbert spaces, the time evo-
lution operator can be broken up into local time evolution operators, which can then
be simulated by discretizing time into small slices. The total number of operations
required to simulate a quantum system within a given error is then proportional to
the system size [4]. This was heartening, because most of the classical attempts at
solving the many-body Schrödinger equation, such as perturbation theory, density
functional theory, and the Hartree-Fock method, only yield approximate solutions
limited to describing weak interaction systems. Yet many interesting problems
in quantum chemistry, condensed matter physics, and high energy physics lie in
strong interaction systems. Fortunately, spin systems of interest, such as the Ising
and Heisenberg models, as well as both strong and weak interaction systems are
local systems; indeed, any system that obeys the laws of special and general rela-
tivity is local [4]. As the advent of quantum computing nears, the hope that these
problems will no longer be computationally intractable continues to grow. Lloyd
posited towards the end of his paper that while a quantum computer operating on
only three to four qubits is too small to solve classically intractable problems, it is
still sufficient to verify quantum computing hypotheses. In the absence of quantum
computers, we can only classically simulate a quantum algorithm’s running time
on a realistic quantum computer, and thus we are still limited by the exponentially
growing Hilbert space – thus, we limit our analysis to systems ranging from three
to eleven qubits. Nevertheless, a prediction of a quantum algorithm’s behavior on
a small-scale quantum computer should be indicative of how the algorithm will
behave for larger systems.
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1.1 Applications to Traditional Computing
Up until now, we have limited our discussion of the practical applications of quantum
computers to simulating quantum physics. However, the influx of quantum algo-
rithms – namely, algorithms that run on quantum computers – has piqued interest in
applying quantum computing techniques to problems in classical computer science.
One class of algorithms of particular interest to our research is the quantum Gibbs
sampler – a class of quantum Markov chain Monte Carlo algorithm that allows
random samples to be generated from arbitrary distributions without calculating
the probability density function [5]. Gibbs sampling is primarily used in physics
to find a statistical ensemble’s Gibbs state, or the system’s equilibrium distribution
that remains stationary under further evolution. Since it is a statistical technique,
it can be utilized in any statistical context, and thus plays a role in solving convex
optimization problems. Convex optimization is a category of problems that can be
solved by minimizing a convex function over a convex set – practical applications
of convex optimization range from operations research to communications to con-
trol systems to finance. We limit ourselves to discussing the application of Gibbs
sampling to semidefinite programming, a subfield of convex optimization that min-
imizes a linear function over the cone defined by a linear combination of positive
semidefinite matrices with coefficients that add up to one.

A semidefinite programming algorithm that may be quantized through quantum
Gibbs sampling is Arora’s and Kale’s primal-dual approach that utilizes the matrix
multiplicative weights update method [6]. The matrix multiplicative weights update
step calculates a matrix exponential and uses it to compute a density matrix, which
is then passed as the input of an auxiliary algorithm called ORACLE. The auxiliary
algorithm ORACLE checks whether the candidate primal solution of the semidef-
inite program violates the primal constraints and outputs a vector y, which will be
used in the update step as well as in the attempt to find a dual solution. Brandão
et al. proved in a recent paper that the output of ORACLE can be interpreted as
the Gibbs state of a Hamiltonian that can be expressed as a linear combination of
the constraint matrices, thus introducing the connection between quantum Gibbs
sampling and a quantum version of a semidefinite program solver. [7]. Known
quantum Gibbs samplers can be separated into two classes: the first class has an
explicitly defined exponential running time in the system size, and the second class
has a running time that has not been defined or bounded, and thus offers hope for
an exponential speed-up. Only the quantum Metropolis algorithm developed by
Temme et al. offers a method for numerically estimating its running time on a
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quantum computer [8]. The quantum Metropolis stochastic map can be simulated
classically by performing a random walk on the Hamiltonian’s eigenstates, discard-
ing rejections, and accounting for all possible consecutive moves. The spectral gap
of the resulting map is shown to be inversely proportional to the running time of the
quantum algorithm; in our case, the map is represented as 2N x2N matrix, where N
is the number of qubits in the system, and the spectral gap is the difference between
the largest and the second largest eigenvalues. Thus, a program hoping to model
the running time of the quantum Metropolis sampling algorithm as a function of
system size or sparsity must compute the spectral gap for random Hamiltonians.
While the quantum Metropolis algorithm has been shown to increase linearly in the
system size, our study focuses on Hamiltonians generated randomly from normal
distributions. While there is no guarantee that the algorithm will yield exponential
speedups for arbitrary local Hamiltonians – indeed, the recent work of Brandão
and Svore only demonstrate that a quadratic speedup can be achieved for quantum
semidefinite programming with existing quantum Gibbs samplers [7] – the linear
combinations of the constraint matrices used in semidefinite programming are best
represented as randomly generated Hamiltonians.

The focus of this thesis is to observe and discuss the effects that preparing the Gibbs
states on a quantum computer has on the performance of classical semidefinite
programming with the matrix multiplicative weights update method. Since the
update step is prepared by Gibbs sampling, the running time of the quantum Gibbs
sampler dominates the quantum semidefinite programming algorithm’s running
time, and thus an exponential speedup in the preparation ofGibbs states on a quantum
computer will result in an exponential speedup in semidefinite programming. The
numerical simulations of the running time of a quantum Gibbs sampler – in this
case, the quantumMetropolis algorithm by Temme et al. – for different system sizes
and different sparsities will shed light on the question of whether there exists certain
circumstances under which the Gibbs states of randomly generated Hamiltonians
are prepared exponentially faster on a quantum computer.
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C h a p t e r 2

CLASSICAL SEMIDEFINITE PROGRAMMING

Before the quantization of the semidefinite programming algorithm can be discussed,
we must clarify what Arora’s and Kale’s combinatorial, primal-dual semidefinite
programming entails. We use Arora’s and Kale’s definition of a primal-dual algo-
rithm – that is, an algorithm that gives both primal and dual solutions, and bounds
the duality gap, or the difference between the two solutions, with weak duality.
Weak duality states that the duality gap is always greater than or equal to zero,
which indicates that the primal solution is always greater than or equal to the dual
solution [1]. For a general semidefinite programwith n2 variables and m constraints,
the primal problem is generally formulated as the following [2].

max tr(CX)
∀ j ∈ [m] : tr(A jX) ≤ b j

X � 0

The corresponding dual problem is as follows [2].

min by
m∑

j=1
A j y j � C

y ≥ 0

We can convert a semidefinite program given in the primal form to the dual form
and vice versa. We observe that the n2 variables are presented as a nxn positive
semidefinite matrix X. Because there are m constraints, there are m nxn Hermitian
matrices A j for j ∈ [m]. The matrix C is a nxn positive-semidefinite matrix. For
the dual program, the dual variables are held in the vector y =< y1, y2, ..., ym > and
the constraints are real numbers packed into the vector b =< b1, b2, ..., bm >. A
positive semidefinite matrix X that satisfies all of the primal constraints outlined by
the primal problem is a primal feasible solution; likewise, a nonnegative vector y
that satisfies all of the dual constraints outlined by the dual problem is a dual feasible
solution.
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2.1 Arora-Kale Algorithm for Semidefinite Programming
The Arora-Kale algorithm for semidefinite programming seeks a primal feasible
solution to a primal-dual semidefinite program; simultaneously, it attempts to in-
crementally build a dual solution with the help of an auxiliary function called the
ORACLE. It takes as its initial inputs the following parameters: α, which serves
as a guess for the optimum value of the solution; an error parameter represented
by an arbitrarily small constant ε > 0; a width parameter ρ ≥ 0 for the ORACLE;
and a scaling constraint R [2]. By taking A1 = I and b1 = R, Arora and Kale
guarantee that tr(X) ≤ R, which gives a constraint that bounds the feasible region of
the semidefinite program [2]. Furthermore, setting A1 = I allows us to find values
y1, y2, ...ym > 0 that satisfy A j y j � C. The weak form of Slater’s condition then
holds, ensuring that strong duality holds in our semidefinite program. Thus the
duality gap is zero, and the primal problem and the dual problem share the same
optimum solution [3]. Nevertheless, in order to account for error, we introduce ε
as the gap between the primal feasible solution and the dual feasible solution. The
algorithm is searching for a positive semidefinite matrix as a primal feasible solution
that is ≥ α – if ORACLE never fails, then the algorithm successfully yields a dual
feasible solution that is ≤ α + ε [2].

The parameterα bounds the range thatORACLE searches – it appears as a constraint
on the vector y outputted by the ORACLE. The width parameter ρ is defined as
the smallest nonnegative value that bounds the ORACLE’s output y such that
| |A j y j − C| | ≤ ρ. The significance of the width parameter is twofold: ρ serves
as both a measure of progress and a scaling factor for the loss matrices M that
guarantee the spectral norm of M is bound by one. A large width would indicate
that the ORACLE has not been effective in helping the algorithm make progress.
The loss matrix M is required to perform the matrix multiplicative weights update
step, as are the other parameters ε and R. The last two parameters are gathered
with ρ and α into a new parameter ε , which plays a role in the matrix multiplicative
weights algorithm.

The ORACLE
Before we discuss the matrix multiplicative weights algorithm, which not only
serves as the backbone of this class of semidefinite programming algorithms, but
also the foundation upon which the quantum semidefinite programming algorithm is
based, we must first discuss the concept of the ORACLE. Arora and Kale classify
the ORACLEs by the type of problem encountered and offer definitions for the
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ORACLE based on whether the problem is a maximization semidefinite program
or a minimization semidefinite program. We reproduce their definitions here:

Definition 2.1 (ORACLE for Maximization Semidefinite Programs) For maximiza-
tion semidefinite programs, the auxiliary algorithm ORACLE must be constructed
so that it takes as its input a positive semidefinite matrix X � 0, or the candidate
primal solution, and tries to output a vector y that meets the following constraints:

b · y ≤ α
m∑

j=1
tr(A jX)y j ≥ tr(CX)

y ≥ 0

If no such vector y exists, then the ORACLE outputs FAIL and returns X. Arora
and Kale prove that if the ORACLE fails, then an appropriately scaledX is a primal
feasible solution ≥ α. But if a y is found, then the current candidate primal solution
X fails as the primal feasible solution, and the algorithm must proceed with its
iterations. If the ORACLE never fails for T iterations, where T is determined by
the matrix size and the four parameters defined earlier, then the algorithm outputs a
dual feasible solution.

The definition of the ORACLE for minimization semidefinite programs is similarly
constructed and reproduced below:

Definition 2.2 (ORACLE for Minimization Semidefinite Programs) For maximiza-
tion semidefinite programs, the auxiliary algorithm ORACLE must be constructed
so that it takes as its input a positive semidefinite matrix X � 0, or the candidate
primal solution, and tries to output a vector y that meets the following constraints:

b · y ≥ α
m∑

j=1
tr(A jX)y j ≤ tr(CX)

y ≥ 0

Likewise, should the ORACLE fail to find such a vector y in the region bounded by
the constraints, then it will fail and a primal feasible solution X will be returned. If
the ORACLE never fails, then a linear combination of all of the vectors y generated
throughout the iterations will be used to construct the dual feasible solution. Rather
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than reproduce the proof of the algorithm and the required lemmas below, we will
point interested readers in the direction of the original paper [2]. But we will delve
into a discussion of the mechanisms used in their paper, especially the mechanisms
that are crucial to developing the quantum version of this algorithm.

Matrix Multiplicative Weights Algorithm
The backbone of the Arora-Kale primal-dual algorithm for solving semidefinite
programs is the matrix multiplicative weights algorithm, which takes as its input
the number of iterations T and a parameter ε , and uses the density matrix P(t)

created from the previous weight matrix W(t), along with a loss matrix generated
by an external source M(t), to output a new weight matrix W(t+1). This final matrix
is responsible for updating the algorithm. The superscript (t) denotes the current
iteration. The algorithm in its entirety is reproduced below from [2]:

Algorithm 1 (Matrix Multiplicative Weights Algorithm)

Let η ≤ 1. Let T be the number of iterations. For t = 1, ...,T:

1. Find the density matrix P(t) = W(t)
tr(W(t)) .

2. Find the loss matrix M (t) from the external source.

3. Compute the weight matrix for the next iteration:
W(t+1) = exp

(
−η(∑t−1

τ=1 M(τ))
)
.

The matrix multiplicative weights algorithm is the matrix version of the multiplica-
tive weights update method described in [4], which allows iterative updates to be
made to the weights assigned to players associated with elements in a distribution.
In this framework, the loss matrix M(t) represents the penalty paid in the t-th itera-
tion for the yielded output. The goal of the algorithm is to minimize the total loss
so that it isn’t much greater than the minimum loss λn(

∑T
t=1 M

(t)), where λn is the
smallest eigenvalue of

∑T
t=1 M

(t) [2]. While the primal-dual semidefinite program
solver makes use of loss matrices, it disassociates the loss matrix from the concept
of penalties – the main algorithm uses the matrix multiplicative weights framework
because the following theorem and its corollary, which we reproduce from [2], yield
an inequality that imposes the desired constraints upon the update step:
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Theorem 2.1: For any collection of loss matrices {M (1), M (2), ...M (T)}, the ma-
trix multiplicative weights algorithm generates a collection of density matrices
{P(1), P(2), ...P(T)} that satisfies the following inequality:

tr

(
T∑

t=1
M(t)P(t)

)
≤ λn(

T∑
t=1

M(t)) + η
T∑

t=1
tr

(
(M(t))2P(t)

)
+

log n
η

(2.1)

Corollary 2.2: For any collection of loss matrices {M (1), M (2), ...M (T)}, the ma-
trix multiplicative weights algorithm generates a collection of density matrices
{P(1), P(2), ...P(T)} that satisfies the following inequality:

tr

(
T∑

t=1
M(t)P(t)

)
≤ λn(

T∑
t=1

M(t)) + ηT +
log n
η

(2.2)

We will not reproduce the proofs, but we will discuss the significance of the derived
conclusions to the final algorithm. In the Arora-Kale primal-dual algorithm for
solving semidefinite programs, we have η = ε

2ρR and T = d4ρ
2R2 log(n)
ε2 e. The

main algorithm uses the slack matrix M (t) =
∑m

j=1 A j y j − C as the loss matrix
during the matrix multiplicative weights update step. The slack matrix does not
represent loss; mathematically speaking, it encodes the structure of the polytope
Dα = y : y ≥ 0, b · y ≤ α for maximization problems, and of the polytope Dα =

y : y ≥ 0, b · y ≥ α [5]. The slack matrix can also be intuitively interpreted as a
matrix that represents the dual constraints [2]. The goal of the main algorithm is to
produce such a dual feasible solution y that the slack matrix is positive semidefinite
– this is a costly task, so rather than pursue this goal directly, the algorithm uses the
ORACLE to seek a slack matrix that has a nonnegative matrix inner product with
X(t) = RP(t), the candidate primal solution that is updated iteratively along with the
density matrices. This reduces the semidefinite dual problem to a linear program
with two nontrivial constraints, which is an easier problem to solve [2].

The reason that findingM(t) such that tr(M(t)P(t)) ≥ 0 for all t is a feasible alternative
to finding y such that the slack matrix is positive semidefinite rests in the inequality
yielded by Corollary (2.2). Corollary (2.2) guarantees that the smallest eigenvalue
of the average loss matrix 1

T
∑T

t=1 M
(t) is not a large negative number – the corollary

bounds it so that it is at least −η − log(n)
ηT . This implies that after a few iterations,

the average slack matrix becomes almost positive semidefinite – thus, the algorithm
will yield an almost feasible dual solution [2].
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The Primal-Dual Solver
Wehave discussed thematrixmultiplicativeweights updatemethod and theORACLE
in depth. These two auxiliary algorithms are the key mechanisms of the main al-
gorithm: the matrix multiplicative weights update method urges the slack matrix in
the positive semidefinite direction, which speeds up the search for a dual feasible
solution, and the ORACLE checks iteratively which solution – primal or dual –
is close to feasibility. The ORACLE may not necessarily output the dual feasible
solution even when such a solution exists – in cases when the candidate primal
solution has become almost primal feasible, but the dual feasible solution has not
been reached yet, the ORACLE may choose to fail and simply output the primal
feasible solution [2].

The original version of the Arora-Kale semidefinite programming algorithm was
published in proceedings back in 2007 [6], spurring a surge in semidefinite pro-
gramming algorithms that use the multiplicative weights method. There have been
slight changes made in the 2016 publication of the final paper, but besides minor
modifications to the error parameter and the loss matrix, the algorithm remains
largely the same. The primal-dual algorithm for solving semidefinite programs is
reproduced below in its entirety from Arora et al’s 2016 publication [2]:
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Algorithm 2 (Arora-Kale Semidefinite Programming Algorithm (2016))

Set X(1) = R
n I. Let T be the number of iterations. We have η = ε

2ρR and T =

d4ρ
2R2 log(n)
ε2 e. For t = 1, ...,T:

1. Run the matrix multiplicative weights algorithm and find the density matrix
P(t).

2. Set X(t) = RP(t).

3. Input X(t) into ORACLE and run the auxiliary algorithm.

4. If ORACLE fails, then abort and return X(t). Otherwise, store the results
obtained as vector y(t).

5. Compute the loss matrix M (t) =
∑m

j=1 A j y j − C and feed it into the matrix
multiplicative weights algorithm for the next iteration.

6. IfORACLE doesn’t fail for T iterations, then output the dual feasible solution
ȳ = 1

T
∑T

t=1 y(t) + ε
Re1, where e1 =< 1, 0, ...0 >T∈ Rm.

Brandão et al. uses the 2007 version of the Arora-Kale algorithm for their quantum
semidefinite programming algorithm, where the parameters are defined in a slightly
different way. The error parameter is defined as δ, such that the dual feasible solution
is at most (1 + δ)α, and what is defined as η in the 2016 publication is separated
into two parameters ε and ε′ in the 2007 proceedings paper. We reproduce the 2007
version of the matrix multiplication weights algorithm from [6]:

Algorithm 3 (Matrix Multiplicative Weights Algorithm)

Let ε < 1
2 and let ε′ = − log(1 − ε). Let T be the number of iterations. For

t = 1, ...,T:

1. Compute the weight matrix: W(t) = exp
(
−ε′(∑t−1

τ=1 M(τ))
)
.

2. Find the density matrix P(t) = W(t)
tr(W(t)) .

3. Find the loss matrix M (t) from the external source.
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The main algorithm witnesses one more change in its transformation from the 2007
version to the 2016 version: in its previous incarnation, the loss matrix was defined
as M (t) =

(∑m
j=1 A j y j − C + ρI

)
/2ρ. The full algorithm is reproduced below from

[6]:

Algorithm 4 (Arora-Kale Semidefinite Programming Algorithm (2007))

Set X(1) = R
n I. Let T be the number of iterations. We have ε = δα

2ρR and ε′ =

− log(1 − ε). In addition, we let T = ρ2R2 log(n)
δ2α2 . For t = 1, ...,T:

1. Input X(t) into ORACLE and run the auxiliary algorithm.

2. If ORACLE fails, then abort and return X(t). Otherwise, store the results
obtained as vector y(t).

3. Compute the loss matrix M (t) =
∑m

j=1 A j y j − C and feed it into the matrix
multiplicative weights algorithm for the next iteration.

4. Run the matrix multiplicative weights algorithm and find the density matrix
P(t).

5. Set X(t) = RP(t).

6. IfORACLE doesn’t fail for T iterations, then output the dual feasible solution
ȳ = 1

T
∑T

t=1 y(t) + δα
R e1, where e1 =< 1, 0, ...0 >T∈ Rm.

The worst case running time for the algorithm above is Õ
(
ρ2R2mns

δ2

)
, where m is the

number of input matrices A j , n is the dimension of the input matrices, and s is the
row sparsity of the input matrices [6]. Alternate semidefinite programming algo-
rithms using the multiplicative weights method published in the wake of the 2007
publication may have faster running times, but we have chosen to focus on the quan-
tum version of the Arora-Kale algorithm. Nevertheless, other classical algorithms
for solving semidefinite programs that uses the matrix multiplicative weight method
may also be viable candidates for quantization. The runtimes described in Brandão’s
and Svore’s paper will not necessarily hold, but as long as the matrix multiplicative
weight method is used, then the algorithm can be given a quantum speedup by using
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a quantum computer to prepare the Gibbs states of the Hamiltonians constructed by
the linear combinations of the program’s input matrices [7]. Thus the numerical
results of our runtime simulations for the quantum Metropolis algorithm will have
implications for classical semidefinite programming algorithms that are not neces-
sarily primal-dual but use the matrix multiplicative weight algorithm, such as the
ones outlined by Peng et al. [8]and Allen-Zhu et al. [9].
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C h a p t e r 3

QUANTUM SEMIDEFINITE PROGRAMMING

As in the classical version of the algorithm, the quantum semidefinite programming
algorithm proposed by Brandão et al. takes in m+ 1 n× n constraint matrices, finds
the optimal values of primal and dual problems presented in the previous chapter,
and outputs the primal feasible solution and/or the dual feasible solution. However,
while the classical algorithm takes in the input matrices through the loss matrix
M (t), the quantum algorithm uses a different method to access the input matrices.

In [1], there are two methods of accessing the input matrices. The first method is
to define an oracle that takes as its input the index j denoting the constraint matrix
A j , the index k ∈ [n] denoting the row of A j , and l ∈ [s] denoting the number of
nonzero elements in row k, where l ≤ s, and outputs a bit string representation of
the l − th non-zero element in the k − th row in the j − th constraint matrix A j ,
which would yield the following map:

| j, k, l, z〉 → | j, k, l, z ⊕ (A j)k fjk (l)〉 , (3.1)

where f j k(l) is a function that outputs the column index corresponding to the position
of the l − th nonzero element in the k − th row of A j .

The second method is more complicated and rests on the spectral decomposition of
Ai. We define two sets of oracles: the first set takes in the input matrices Ai, prepares
their eigenstates, and uses oracles to access their eigenvalues and the numbers bi.
The decomposition of the input matrix Ai is: Ai =

∑ri
l=1 κ

i
l |η

i
l〉 〈η

i
l |. The value ri will

be defined shortly. The second set of oracles only contains one oracle, which takes
as its input (i, l), where i takes on the role of row index, and ri := λtr(Aiρ) + µbi

for real numbers λ and µ, and quantum state ρ; the oracle outputs an approximation
of A j’s eigenstate |ηi

l〉 and the corresponding eigenvalue κi
l up to an error ν. The

value ri is defined such that it is the i-th eigenvalue of the Hamiltonian defined as
H(ρ, λ, µ) :=

∑m
i=1 ri |i〉 〈i | [1].

The output is the same for both methods of input. Rather than output the dual
feasible solution y or the primal feasible solution X, the algorithm outputs a simpler
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result in the interest of efficiency – it yields an estimated optimal value, an estimated
| |y | |1 and/or tr(X), and samples from y/| |y | |1 and/or from ρ := X/tr(X).

The essence of the algorithm is that the time-consuming linear programs and matrix
exponentials in the classical algorithm [2, 3] are replaced with Gibbs states prepared
on a quantum computer, a replacement that offers a quantum speedup. The Gibbs
samplers used to prepare the Gibbs states may range from [4–8], although Brandão
et al. express hope that the quantum Metropolis sampling algorithm by Temme
et al. [7] may work best heuristically. Brandão et al. noted that the density
matrix generated with the matrix exponential of the loss matrix using the matrix
multiplicative weights method from [3] can be replaced with a Gibbs state of a
Hamiltonian composed from a linear combination of the input matrices [1]. They
also demonstrate how the output of the classical oracle in [2, 3] can be approximated
with a Gibbs state using a modified version of Jayne’s principle of maximum entropy
[9, 10], which we reproduce from [10] with modifications from [1]:

Lemma 3.1 (Lemma 4.6 from [10]) LetM(Cn) be the set of Hermitian matrices over
Cn, and D(Cn) be the set of density matrices over Cn. We define T ⊆ M(Cn) as
compact set of matrices and define ∆T := supA∈T | |A| |. Define π ∈ D(Cn). Finally,
define γ = d 8

κ2 log(m)∆(T)2e. We define one more input parameter κ. Then for
every κ > 0, there exists a set of matrices X1, ..., Xγ ∈ T such that:

π̃ :=
exp

(
− κ

4∆(T)2
∑γ

i=1 Xi

)
tr

(
exp

(
− κ

4∆(T)2
∑γ

i=1 Xi

)) (3.2)

is bounded by [π − π̃]T ≤ κ. It should be obvious by now that κ is related to the
error parameter ν in our case.

Brandão et al. then adapt this lemma so that the output of theORACLE(ρ) becomes:

qρ,λ,ν(i) :=
exp(λtr(Aiρ) + µ

∑
i bi)∑

i exp(λtr(Aiρ) + µ
∑

i bi)
. (3.3)

The constants λ and ν are reparameterized into k so that for an integer k we have
[1]:

λ = − κ

4R2 k, (3.4)
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ν = − κ

4R2 (γ − k), (3.5)

and

γ = d 8
κ2 log(m)R2e . (3.6)

As in the classical algorithm, R is the upper bound on the trace of the primal optimal
solution [1]. We can now write qρ,λ,ν as qρ,k . We then give the definition that
Brandão et al. use for a Gibbs sampler.

Definition 3.2 (Gibbs Sampler) A quantum circuit that takes as its input ν, a Hamil-
tonian H, and an oracle to access the entries of H [11], and outputs a state ρ that
obeys the constraint | |ρ − eH/tr(eH)| |1 ≤ ν.

We see then that the output of the ORACLE used in [2, 3] can be approximated
with Gibbs sampling. We won’t reproduce the algorithm in [1] for instantiation of
ORACLE(ρ) through sampling, but it should be noted that the algorithm samples
from distributions q̄ρ,k that are close in variational distance to qρ,k rather than from
qρ,k itself.

We now reproduce the quantum semidefinite programming algorithm in its entirety
below [11]:
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Algorithm 5 (Brandão-Svore Quantum SDP Algorithm (2016))

Oracles for accessing {A1, ...Am,C} where | |C | |, | |Ai | | ≤ 1. Oracles for accessing
{b1, ..., bm} where bi ≥ 1. Parameter R where R is the upper bound on the
trace of the primal optimal solution. Parameter α, which a guess for the optimal
solution, and the error δ > 0 such that that dual feasible solution is at most
α(1 + δ). A free parameter Ξ that features in the lower bound on the probability
of success: 1 − O(exp(− logΞ(nm))). Set ρ(1) = I

n , ε =
δ

28R2 , ε′ = −ln(1 − ε), M =

80 log1+Ξ(8R2nm/ε)/ε2, L = 80 log1+Ξ(nm)/ε2, and Q = (10R)6ln2+Ξ(nm)/ε4.
Set γ = d 8

ε2 log(m)R2e. Define GH(ρ) as the maximum number of calls made by
the Gibbs sampler to the oracle that accesses the entries of H(ρ, k) for k ∈ [γ].
Let T be the number of iterations. Set T = 500R3ln(n)

δ2 . For t = 1, ...,T:

1. Set y(t) = (0, ...0).

2. For k = 1, ..., γ and N = 1, ..., dαε e, use the Gibbs sampler on H(ρ, k)
to create M copies of q with up to an error of ε/4. Obtain M inde-
pendent samples {i1, ...iM} from q. Using (M + 1)L samples from ρ(t),
approximate {tr(Ai1ρ

(t)), ..., tr(AiM ρ
(t)), tr(Cρ(t))} up to accuracy ε/2 and

store the results as {ei1, ..., eiM }, f . If 1/M ∑M
j=1 ei j ≥ f /(Nε) − ε and

1/M ∑M
j=1 bi j ≤ α/(Nε) + Rε , then set kt = k, Nt = N , q(t) = q, and

y(t) = Nεq(t).

3. Abort and indicate failure if y(t) = (0, ..., 0).

4. Use the Gibbs sampler on H(ρ(t), kt) to create Q + 1 copies of q(t) with up to
an error of ε/4.

5. Obtain Q independent samples {i1, ...iQ} from q(t).

6. Compute M (t) =
εNtQ−1 ∑Q

j=1 Ai j−C+2αI
4α .

7. Define Ct := 10 log(m)
ε2

( γα
ε M +Q

)
GH(ρ(t)) + 2γα

ε ML and the Gibbs sampler
on −ε′

(∑t
τ=1 M (τ)

)
with an error up to ε/4 to make Ct copies of ρ(t+1).

If the algorithm runs without failing, then it will output | | ȳ | |1 and a sample from
ȳ/| | ȳ | |1 for ȳ = δα

2R e1 +
1
T
∑T

t=1 y
(t), where e1 = (1, 0, ...0). We won’t replicate the

proofs leading to the final runtimes, but we will give a brief description of the
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quantum speedups that have been rigorously verified in Brandão et al. The quantum
semidefinite programming algorithm by Brandão et al. has a worst case runtime
of n

1
2 m

1
2 spoly(log(n), log(m), R, 1/δ), where we once again emphasize that n is the

dimension of the input matrices and thus the Hilbert space dimension and s is the
row sparsity of the input matrices. The quantum algorithm offers a square root
speedup in n and m over classical methods; Brandão et al. demonstrate that this
is the best possible runtime in terms of n and m and give a lower bound for the
complexity of the algorithm: Ω(n 1

2 + m
1
2 ) for a given (s, δ, R). However, there is

one case in which the algorithm can witness exponential speedups in n – when the
quantumGibbs states used in the algorithm can be efficiently prepared on a quantum
computer [1].

While there is no way to rigorously prove that using the quantum Metropolis sam-
pling scheme [7] to prepare the required Gibbs states will exponentially speed up
the quantum semidefinite programming algorithm by Brandão et al. for arbitrary
row-sparse Hamiltonians, we seek to demonstrate numerically that for three to ten
qubits, the quantum semidefinite programming algorithm experiences an exponen-
tial speedup in n when the quantum Metropolis algorithm is the chosen Gibbs
sampler.
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C h a p t e r 4

QUANTUMMETROPOLIS SAMPLING

Metropolis et al. devised the Metropolis algorithm in 1953 to calculate the prop-
erties of classical many-body systems with the Markov chain Monte Carlo method
[1]; while ground-breaking for classical simulations, it was not until recently that
attempts to generalize the algorithm to quantum systems have succeeded. Pre-
vious quantum Monte Carlo methods failed after encountering fermionic systems
and the related sign problem, a catchall phrase describing the complications and
difficulty surrounding the evaluation of a highly oscillatory integral [2]. Long af-
ter the publication of Lloyd’s paper on the viability of quantum computing, there
was still a dearth of quantum algorithms that allowed the efficient preparation of a
Hamiltonian’s thermal or ground state.

The quantum algorithms that did prepare ground states efficiently only worked for
frustration free systems, which limited research to a subset of physical systems [3].
In 2000, Terhal andDivincenzo discussed sampling from a physical system’s thermal
state usingmethods reminiscent of the classicalMetropolis algorithm; however, they
neglected to provide a way to circumvent the no-cloning problem, which posed an
obstacle to the crucial rejection step in the Metropolis algorithm. Furthermore,
computing the eigenvalues of the Hamiltonian with the Fourier transform, a step
that makes up half of the algorithm, may require a runtime exponential in system
size [4]. In 2005, Aspuru-Guzik et al. expanded the phase estimation algorithm
developed by Abrams et al. [5] into a quantum algorithm that prepares ground states
of more general Hamiltonians; the stringent requirement that the variational state
overlap greatly with the ground state nevertheless limits the algorithm’s range of
applicability [6].

In 2009, Temme et al. synthesized a quantum Metropolis algorithm that allows
the efficient preparation of ground states and Gibbs states of many-body quantum
systems, and thus may be widely used in simulations of such systems. While this
algorithm does not guarantee the efficient preparation of the ground or thermal states
of random Hamiltonians, heuristically the update step can always be chosen so that
the algorithm thermalizes in polynomial time if the physical system does so too.
Since the quantum Metropolis algorithm samples directly from the given Hamil-
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tonian’s eigenstates, it dispenses with the sign problem, offering an exponential
speedup to quantum algorithms still plagued with the task of dealing with negative
statistical weights. Furthermore, Temme et al. gives a method of circumventing
the no-cloning problem and resolving the issue of the rejection step; the analysis
of the algorithm’s total runtime includes the runtime of the rejection procedure.
The running time is bounded by a function of the quantum Metropolis stochastic
map’s spectral gap; since the relationship between the spectral gap and the system
size is unknown for random Hamiltonians, the quantum Metropolis algorithm does
not have a running time that is explicitly defined in system size [7]. Thus the
quantum Metropolis algorithm in theory may offer an exponentially faster method
of preparing a quantum computer in the ground or thermal state of the physical
system at hand.

4.1 The Algorithm
Before the quantum version of the classical Metropolis algorithm is presented, we
must introduce the classical Metropolis sampling method. We use the simplest
example presented in the original 1953 paper: a lattice of N points where the
distances between all of the points are known, so that the potential energy of the
system E is easily calculated. Configurations with a probability of exp(−E/kT) are
chosen beforehand and equally weighed. The particles are then moved randomly;
after a move, the change of energy ∆E is calculated. If ∆E < 0, then the move has
caused the system to shift to a state of lower energy – such a move is permitted and
thus retained. But if ∆E > 0, then the probability of such a move is exp(−E/kT)
– an implementation of a probabilistic move can be done by randomly selecting a
number from [0, 1] and retaining the move if the number < exp(−E/kT) [1].

Temme et al. have devised a quantum algorithm that performs the same procedure
on a given Hamiltonian’s eigenstates. Instead of moving a particle to a new location,
a random local unitary operator is selected to act upon the qubits; the acceptance
and rejection terms remain the same as in the classical case. But in the quantum
case, the difficulties are threefold: the algorithm has to account for computing
the Hamiltonian’s eigenstates and their corresponding energies, undoing quantum
transformations if the move is rejected, and proving that the desired Gibbs state is
the stationary state of the Markov chain [7].

The first objective can be easily accomplished if there are no instances where no
action by the randomly selected local unitary operator needs to be undone. Since
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finding the phase of a unitary operator is equivalent to calculating the operator’s
energy eigenvalue, the quantum phase estimation algorithm can be used to prepare
a random eigenstate |ψi〉 as the initial guess for the Hamiltonian’s ground state
and calculate its energy, which is stored in an empty register, yielding |ψi〉 |Ei〉.
An implementation of the phase estimation algorithm can be found in [8]. A
random local unitary operation C is then applied to the eigenstate, yielding C |ψi〉 =∑

k xi
k |ψk〉. The quantum phase estimation algorithm is performed again to calculate

the energy of the new configuration, which is stored in the second register, yielding∑
k xi

k |ψk〉 |Ei〉 |Ek〉.

If there were no rejection procedure, then we could proceed to measure the second
register to find the energy and collapse the wavefunction. If this were a classi-
cal algorithm, then we could store a copy of the original wavefunction so that we
could simply return to it should the update be rejected; however, the no-cloning
theorem rules out this possibility for quantum algorithms. Thus the quantum
Metropolis circuit must include another gate – a gate that doesn’t perform a full
energy measurement, but rather only slightly disturbs the state. The only infor-
mation that is yielded by such a measurement is whether to accept or reject the
update. A final register is introduced in this step, as the gate transforms the state into∑

k xi
k

√
f i
k |ψk〉 |Ei〉 |Ek〉 |1〉+

∑
k xi

k

√
1 − f i

k |ψk〉 |Ei〉 |Ek〉 |0〉, where the amplitudes

xi
k

√
f i
k are the quantum analog of the classical Metropolis transition probabilities.

The function f i
k is f i

k = min(1, exp(−β(Ek − Ei))).

The quantum Metropolis circuit up to the rejection procedure can be summed up as
[7]:

|ψi〉 |Ei〉 |0〉 |0〉 → C |ψi〉 |Ei〉 |0〉 |0〉
→

∑
k

xi
k |ψk〉 |Ei〉 |0〉 |0〉

→
∑

k

xi
k |ψk〉 |Ei〉 |Ek〉 |0〉

→
∑

k

xi
k

√
f i
k |ψk〉 |Ei〉 |Ek〉 |1〉 +

∑
k

xi
k

√
1 − f i

k |ψk〉 |Ei〉 |Ek〉 |0〉

Ameasurement of the last qubit will reveal the acceptance decision – if the outcome
is |0〉, then the third register containing the energy Ek should be measured and
the inverse quantum phase estimation gate should be applied. The new eigenstate
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will then be fed into the algorithm again at the start of a new iteration. This
measurement is denoted as Q. But if the outcome is |1〉, then the move has been
rejected and the algorithm must return to the original state [7]. In the case that the
update is rejected, the algorithm can return to the original state using a procedure
similar to the witness-preserving amplification scheme for QMA described in [9].
The circuits used to implement the quantum Metropolis algorithm are described in
detail below in Fig. (4.1), which is reproduced from [7]:

Figure 4.1: Circuits for Each Step of the Quantum Metropolis Algorithm.
a, This subfigure depicts the initial application of the quantum phase estimation
algorithm. The input is the initial guess for the ground state and two r-qubit
registers. The quantum phase estimation circuit, represented by Φ in the diagram,
acts on the state and the second register. The resulting energy is copied from the
second register to the first register by a sequence of r CNOT gates. The inverse
quantum phase estimation circuit, represented by Φ†, is then applied to the second
register and the state. b, The quantum Metropolis circuit takes as its input the state,
one r-qubit register initialized to |0〉r , and a single qubit register initialized to |0〉.
The circuit can be separated into the local unitary operator C, which acts upon the
state, and two quantum phase estimation gates, which act upon both the state and the
r-qubit register. The quantumMetropolis gate acts upon the single-qubit register |0〉.
c, The operations required for returning to the original state if the update is rejected
are shown in this subfigure. The quantum phase estimation gate is applied to both
the state and the new r-qubit register; once the energy is compared to the original
energy Ei, the quantum phase estimation can be undone with inverse quantum phase
estimation gates. Reprinted by permission from Macmillan Publishers Ltd: Nature
471:87, copyright 2011.

The rejection procedure – more specifically, the process for returning to the original
state – is best described as an alternating sequence of two measurements. The first
measurement determines whether the update is accepted or rejected. The second
measurement determines whether the algorithm has returned to the original state
|ψi〉. If both measurements yield negative results, the sequence is repeated until
the second measurement gives a positive outcome. The probability of obtaining

http://www.nature.com/nature/index.html
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two negatives is constant, so repeated applications of this sequence gives a success
probability that exponentially approaches one [7]. The circuit for the rejection
procedure can be found below in Fig. (4.2), which is reproduced from [7]:

Figure 4.2: A single application of the quantumMetropolis map. The circuit for
a single application of the quantum Metropolis stochastic map is presented above.
The two gates E act on the state |ψ〉 and the r-qubit register prepare the eigenstate
as the input of the algorithm. The first U gate proposes an update; the first Q
measurement determines whether it is accepted or rejected. Should the update be
rejected, then the P measurement will be performed. The alternating measurements
of Q and P will continue until a positive measurement outcome of P1 is obtained.
Reprinted by permission fromMacmillan Publishers Ltd: Nature 471:87, copyright
2011.

The possible results of the measurement, represented as the Hermitian projectors
Q0, Q1, P0, and P1 are defined as below:

Q0 = U†(I ⊗ I ⊗ I ⊗ |0〉 〈0|)U
Q1 = U†(I ⊗ I ⊗ I ⊗ |1〉 〈1|)U
P0 =

∑
i

∑
Eα,Ei

|ψα〉 〈ψα | ⊗ |Ei〉 〈Ei | ⊗ I ⊗ I

P1 =
∑

i

∑
Eα=Ei

|ψα〉 〈ψα | ⊗ |Ei〉 〈Ei | ⊗ I ⊗ I

It is obvious from the definition of P1 that if P1 is obtained, then the measurement
P, as positioned in part c of Fig. (4.1), has compared the energy of the state to its
original energy and found them to be the same.

Before we reproduce the algorithm in its entirety, we will first discuss how the
third obstacle – proving that the desired Gibbs state is the stationary state of the
Markov chain – was overcome and then give the algorithm’s runtime. Temme et al.

http://www.nature.com/nature/index.html
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came up with the concept of quantum detailed balance, which holds that if {ψi} is
a set of complete basis states on a physical Hilbert space and {pi} is its probability
distribution, then if a completely positive map E satisfies the following condition,
σ =

∑
i pi |ψi〉 〈ψi | is the map’s fixed point. The condition is as follows [7]:

√
pnpm 〈ψi | E(|ψn〉 〈ψm |) |ψ j〉 =

√
pi p j 〈ψm | E(|ψ j〉 〈ψi |) |ψn〉 (4.1)

This condition only guarantees that the Gibbs state is a possible fixed point of E –
the uniqueness of the fixed point and the rate of convergence are dependent on the
choice of updates {C} [7]. It is known from [10] that if the set of possible updates
is chosen to be the universal gate set, then the completely positive map E is ergodic,
and the fixed point is unique. In our implementation, we choose the set of Pauli
operators {I, X,Y, Z} as our set of possible updates {C}.

The runtime of the algorithm is given by the mixing time, or the number of times
that the completely positive map E must be applied to reach the Gibbs state. Before
we reproduce the mixing time mmix , we first discuss the mixing error εmix used to
bound the mixing time [7]:

| |Emmix [ρ0] − σ∗ | |1 ≤ εmix (4.2)

In other words, the mixing error is defined as the upper bound of the trace norm
distance of the completely positive map E. In the equation above, ρ0 is the initial
state and σ∗ is the steady state. Since the trace norm distance is also bounded by
the following equation [11]:

| |Em[ρ] − σ∗ | |1 ≤ Cexp(1 − ∆)m, (4.3)

where Cexp is a constant that scales exponentially with the system size and ∆ is the
spectral gap, or the difference between the largest and the second largest eigenvalues
of E, it is obvious that the mixing time is bounded as below [7]:

mmix ≥ O
(
ln(1/εmix)
∆

)
(4.4)

While this algorithm has a clearly bounded mixing time in the spectral gap of its
stochastic map, the relationship between the mixing time and the system size is not
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explicitly defined. Thus there is no way to observe how the mixing time behaves
as the system size increases. However, it is known that the classical Metropolis
algorithm converges quickly if the physical system thermalizes – in fact, it may
converge even more quickly, because theMetropolis algorithm is allowed to perform
unphysical updates in its simulation of thermalization [7]. The resemblance between
the classical and the quantum versions of the algorithm gives hope that the quantum
Metropolis algorithm will behave similarly.

We now reproduce the entire algorithm from [7], assuming that no errors occur
during quantum phase estimation:

Algorithm 6 (Quantum Metropolis Algorithm by Temme et al.)

1. Initialize four quantum registers. The first will hold the quantum states.
The second and third registers need to hold r-qubits and will respectively
encode the energy of the original state and be used during quantum phase
estimation. The last register only needs to hold a single qubit and is used to
accept or reject the Metropolis update.

2. Reinitialize the last three ancillas and implement the circuit shown in part a
of Fig. (4.1).

3. Define {C} such that the probability of randomly selecting C is the same
as selecting C†. Implement the circuit shown in part b of Fig. (4.1). For
energies Ei and Ek , the unitary W(Ei, Ek) is defined as:

W(Ei, Ek) =
©«
√

1 − f i
k

√
f i
k√

f i
k −

√
1 − f i

k

ª®¬ (4.5)

4. Measure the last ancilla qubit. If the result is |1〉 or Q1, then the update is
accepted with probability ∝ |xi

k

√
f i
k |

2, and the second ancilla qubit should
be measured to obtain the energy required for a new iteration of the quantum
Metropolis algorithm. If the result is |0〉 or Q0, then the update has been
rejected. Apply U† and proceed.

5. Apply the circuit in Fig. (4.2) until P1 is obtained. Then the algorithm has
returned to the initial state and the rejection procedure has been completed.
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4.2 Other Gibbs Samplers
A brief discussion of other Gibbs samplers will follow to demonstrate why the
quantum Metropolis algorithm is shown preference in this paper. As Brandão et al.
discussed in their 2016 paper on Gibbs samplers, the quantumGibbs samplers devel-
oped in the past twenty years can be sorted into two types: samplers with explicitly
defined runtimes that are exponential in system size, and samplers that should be
efficient but lack a bounded convergence time [12]. The quantum Metropolis al-
gorithm belongs to the latter category. We will briefly discuss the Gibbs samplers
that fall into the first category, and then expand on the other Gibbs sampler of the
second type that offers a slight improvement upon the quantumMetropolis sampling
algorithm by Temme et al.

The quantum Gibbs sampler developed by Poulin et al. falls squarely into the first
category [13]. We will point readers interested in the mechanisms of this sampler in
the direction of their 2009 paper and forgo describing theworkings of their algorithm
in favor of simply giving the runtime: O

(√
D
Z(β)

)
, where D is the dimension of

the Hilbert space and Z(β) is the partition function at of the quantum system at
inverse temperature β. The expression inside the big O notation is equivalent to Dα,
where the scaling exponent is a function of the Helmholtz free energy density and
approaches 1/2 at low temperatures [13]. Since the complexity of this algorithm
scales with the Hilbert space dimension, the runtime is still exponential in the system
size.

A recent Gibbs sampler developed in 2016 by Chowdhury et al. shares a similar
complexity with the previous sampler, but enjoys a quadratic speedup in β [14]. The
runtime of this algorithm is: O

(√
Dβ
Z(β)

)
. It can be deduced from an analysis of the

previous algorithm that the runtime of this Gibbs sampler remains exponential in
system size.

The quantum-quantum Metropolis algorithm developed by Yung et al. is the other
Gibbs sampler that is efficient but does not have a clearly bounded convergence time
that we will discuss in this paper [15]. Nevertheless, Yung et al. demonstrate in
their paper that this new sampler enjoys a quadratic speedup of O( 1√

∆
), where ∆

is the spectral gap of the completely positive map. This speedup comes from the
use of a different basis – the quantum-quantum Metropolis algorithm uses pairs of
eigenstates that are connected by time-reversal operations as its basis states, thus
allowing it to avoid the inefficiency of working around the no-cloning theorem [15].
However, this requirement also makes a classical simulation of the algorithm’s
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runtime more difficult to implement, which is why we conduct our investigation of
quantum semidefinite programming with the quantum Metropolis algorithm. If the
outcomes of the quantumMetropolis algorithm are positive, then it is likely that this
algorithm is just as, if not more, efficient than the quantum Metropolis sampling
scheme.
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C h a p t e r 5

SPARSITY AND HAMILTONIAN SIMULATION

The original definition of matrix sparsity is 1 − d, where the density d is defined
as the ratio of the number of nonzero elements in the matrix to the total number
of elements. But in a quantum Hamiltonian, especially in a quantum Hamiltonian
that can be separated into independent terms and simulated efficiently on a quantum
computer, the traditional definition of sparsity holds little physical significance –
this is because if a quantum spin-1

2 Hamiltonian that acts on n qubits is written as
a matrix, then the matrix has dimensions N2, where N = 2n. Thus the traditional
definition of sparsity, where the total number of nonzero elements is defined as
(1 − d)N2, makes sparsity a polynomial function of the total Hilbert space size,
rather than a function of the system size. This does not make sense physically, and
so we discard this definition.

Row sparsity fills the gap left behind. The original concept of row sparsity arose in
the Sparse Hamiltonian lemma proposed by Aharonov and Ta-Shma in [1], where
they seek to give a condition for the efficient simulation of a Hamiltonian on a
quantum computer, but it must be noted that the Hamiltonians described in Lloyd’s
work are sparse [2]. Indeed, Lloyd requires that the Hamiltonian is composed of
a sum of smaller Hamiltonians that act on subsystems; the requirements are not as
stringent in the work by Aharonov and Ta-Shma, for they no longer demand that the
Hamiltonian take on a tensor product structure. We reproduce the definitions of row
sparse and row computable, as well as the Sparse Hamiltonian lemma below [1].

Definition 5.1 (Row Sparse) A Hamiltonian acting on n qubits is said to be row
sparse if the number of nonzero elements in each row is bounded polynomially by
a function of n.

Definition 5.2 (D Sparse) A Hamiltonian acting on n qubits is said to be D sparse if
the number of nonzero elements in each row is bounded by D, where D is a constant
that satisfies the constraint D ≤ poly(n).

Definition 5.3 (Row Computable) A Hamiltonian is said to be row computable if
there is an efficient algorithm that given a row index generates a list containing the
values and positions (column index) of the nonzero elements in the given row.
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Lemma 5.4 (Sparse Hamiltonian Lemma) A Hamiltonian H acting on n qubits can
be efficiently simulated on a quantum computer if H is row sparse, row computable,
and | |H | | ≤ poly(n).

We won’t reproduce the entire proof for Lemma 5.4, but we will sketch out its
reasoning. The essence of the proof is the decomposition lemma, which we will
reproduce below [1]:

Lemma 5.5 (Decomposition Lemma) If H is a D-sparse, row computable Hamilto-
nian acting on n qubits, then it can be decomposed into H =

∑(D+1)2n6

m=1 Hm, where
Hm is a 2 × 2 combinatorially block diagonal, row sparse, and row computable
Hamiltonian that acts on n qubits.

In other words, if a Hamiltonian satisfies the conditions enumerated by the sparse
Hamiltonian lemma, then it can be written as a sum of smaller Hamiltonians Hm

whose norm is bounded by a polynomial function of the system size. The Hamilto-
nians Hm are 2×2 combinatorially block diagonal, row sparse, and row computable,
and thus can be simulated; the entire Hamiltonian H can then be simulated with
Trotter’s formula, which approximates e−itH with products of e−itHm [3].

The methods proposed by Lloyd in 1996 and Aharonov and Ta-Shma in 2003 are
the foundations on which more efficient ways of Hamiltonian simulation have been
crafted. The method used to simulate the quantum Hamiltonians in the quantum
semidefinite programming algorithm by Brandão et al. enjoys optimal performance
in the all of the relevant parameters – not only does the algorithm by Berry et al.
have a complexity that is logarithmic in inverse error, it also has a complexity that
scales almost linearly with the product of the evolution time, the row sparsity, and
the magnitude of the Hamiltonian’s largest element [4]. In this case, complexity is
defined as both the number of queries the algorithm makes to the oracle that yields
the positions and values of the Hamiltonian’s nonzero elements, and the number
of 2-qubit gates used to simulate the Hamiltonian. Unlike previous methods, this
algorithm doesn’t decompose the Hamiltonian into the sum of easily simulated
terms; rather, it approximates Hamiltonian evolution with steps from a Szegedy
quantumwalk. Berry et al. show that theHamiltonian can be prepared in a procedure
called controlled state preparation, where every eigenstate of the Hamiltonian is
mapped onto a linear combination of two eigenstates |µ±〉 of a quantum walk step
U, where U is defined such that its eigenvalues µ± is related to the eigenvalues of
the Hamiltonian λ in the following way:
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µ± = ±e±i arcsin(λ/XD), (5.1)

where X is greater or equal to the magnitude of the Hamiltonian’s largest entry, and
D is the row sparsity. It can be shown that for small λ/XD, if a linear combination of
quantum walk steps is prepared with coefficients generated by Bessel functions, the
quantum walk steps give a phase factor proportional to the phase factor generated
by Hamiltonian evolution [4].

During the controlled state preparation, the algorithm makes a call to an oracle that
takes as its input j the row index and l for the l − th nonzero element in row j and
calculates the column index of the l − th nonzero element in the j − th row of a
Hamiltonian. It then makes a call to another oracle that given a row index and a
column index outputs a nonzero value for the input position.

We will reproduce the complexities of the algorithm as well as the accompanying
theorems below, but point readers interested in their proofs to the original paper [4].

Theorem 5.5 For a Hamiltonian acting on n qubits that has a row sparsity of D, a
simulation time of t, and an error of ε , the Hamiltonian can be simulated with a
number of queries that scales as O

(
τ

log(τε)
log log(τε)

)
and a number of 2-qubit gates that

scales as O
(
τ[n + log5/2(τ/ε)] log(τε)

log log(τε)

)
, where τ is the product of the row sparsity,

the magnitude of the largest element in the Hamiltonian, and the simulation time.

The theorem above gives two upper bounds for the number of queries and 2-qubit
gates used to simulate the Hamiltonian. The theorem below gives a lower bound for
the number of queries [4].

Theorem 5.6 For a given error ε , a simulation time t > 0, a row sparsity D greater or
equal to 2, and a fixedmagnitude for its largest magnitude, there exists a Hamiltonian
that can be simulated with a number of queries that scales as Ω

(
τ +

log(τε)
log log(τε)

)
.

Berry et al. also demonstrate that there can be tradeoffs between the different
parameters τ and ε by slightly modifying their algorithm so that the following
theorem stands [4]:

Theorem 5.7 For any row sparsity D, simulation time t, error ε , system size n, and
α ∈ (0, 1], the Hamiltonian can be simulated with a number of queries that scales
as O

(
τ1+α/2 + τ1−α/2 log(1/ε)

)
.

The theorems above demonstrate that as long as our random row-sparseHamiltonians
are the results of a black box that efficiently generates the values and positions of
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the nonzero elements given the row index and the number of nonzero elements in
the indicated row, they can be efficiently simulated with the algorithm outlined in
[4]. It is also worth noting that in the algorithm sketched out by Berry et al., the
Hamiltonian is always defined by its size n and its row sparsity D, where both n and
D are constants. It is possible to classify Hamiltonians in a manner independent of
size, i.e. based on the interactions between its spins. The question becomes whether
we can classify classes of random Hamiltonians based on their sparsities in a similar
fashion. While the convention of defining a Hamiltonian with constants n and D

seems to hint that it is physically viable to classify random Hamiltonians based on
a constant row sparsity D, the stipulation that D ≤ poly(n) suggests that it may
be wiser to classify these random Hamiltonians with sparsities that are polynomial
functions of the system size. We shall see how the different interpretations of "fixed
row sparsity" affect the spectral gap behavior of the random Hamiltonians’ quantum
Metropolis maps in the following section.
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C h a p t e r 6

NUMERICAL SIMULATIONS

We enumerated several quantum Gibbs samplers in a previous chapter and dis-
cussed in particular how the quantum Metropolis sampling algorithm doesn’t have
a explicitly defined running time, but may offer an exponential speedup to classi-
cal semidefinite programming. There is no theoretical guarantee that the quantum
Metropolis algorithm will always thermalize in polynomial time for an arbitrary
Hamiltonian – such an ability would signify that the quantum Metropolis algorithm
is capable of solving QMA-complete problems. Nevertheless, heuristically it is
always possible to guide the updates of the classical Metropolis algorithm in such
a fashion that it thermalizes efficiently if the physical system itself thermalizes effi-
ciently; in the absence of reasons of why this should prove different for the quantum
Metropolis algorithm, it is not far-fetched to assume that the quantum Metropolis
sampling algorithm may offer substantial – even exponential – speedups to quantum
Gibbs sampling [1]. Although there is no quantum computer to directly test this
heuristic method, we are able to use numerical methods to investigate the behavior
of the quantum Metropolis algorithm’s running time for arbitrary physical systems.
We know that the runtime, or the mixing time, of the quantumMetropolis algorithm
scales as the following:

mmix ≥ O
(
ln(1/εmix)
∆

)
(6.1)

where ∆ is the spectral gap of the quantum Metropolis stochastic map, or the
difference between the map’s two largest eigenvalues, and εmix is the mixing error. It
can be observed that the runtime scales as the inverse gap of the quantumMetropolis
stochastic map; thus, demonstrating that the gap scales polynomially in the physical
system’s size, or the number of qubits involved in the physical system, is sufficient
to show that the runtime scales as an inverse polynomial in system size. Such a
finding would indicate that the quantumMetropolis algorithm allows an exponential
speedup in the preparation of the Gibbs state for the physical system in question.

Temme et al. simulated the runtime of the algorithm for the XX-chain in a transverse
field at T = 0 and showed that the inverse gap of the quantumMetropolis map scales
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as O(1/N), where N is the number of spins in the system. Their results are shown
below in Fig. (6.1):

Figure 6.1: Inverse spectral gap of the quantum Ising model’s quantum
Metropolis map. The inverse spectral gap of the quantum Ising model’s quantum
Metropolis stochastic map, 1/∆, has been plotted as a function of N, the number of
spins in the system. The quantum Ising model can be represented as the following
Hamiltonian:

∑
k Xk Xk+1 + YkYk+1 + gZk . A single spin flip is used as the up-

date rule. The linear relationship indicates that the quantum Metropolis algorithm
mixes in polynomial time for the specific quantum Ising model used. Reprinted by
permission from Macmillan Publishers Ltd: Nature 471:87, copyright 2011.

Of course, the Ising model is well-understood; it is also expected that the algorithm
will thermalize in polynomial time for realistic physical systems. The difficulty is
demonstrating that the gap of the quantum Metropolis map scales polynomially in
the system size for the Hamiltonians we are using. Our Hamiltonians are randomly
generated but reflect physical systems – they are represented as sparse, Hermitian
matrices. We seek to model how the spectral gap of randomly generated Hamil-
tonians behaves as the system size increases linearly – if the relationship remains
polynomial, then the quantumMetropolis sampler can be used to efficiently prepare
Gibbs states for the quantum semidefinite programming algorithm, and thus offers
an exponential speedup to semidefinite programming.

6.1 Defining Fixed Sparsity
We start by modeling the linear combinations of the input constraint matrices as
Hamiltonians, and simulating the behavior of the spectral gaps of the quantum
Metropolis maps generated by these Hamiltonians in system size. Since the input

http://www.nature.com/nature/index.html
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constraint matrices are randomly generated, these Hamiltonians too must be ran-
domly generated; in order for reasonable trends to emerge from the data, it is prudent
to classify our Hamiltonians by sparsity. Thus the task at hand becomes modeling
the quantum Metropolis map’s spectral gap for Hamiltonians of fixed sparsity.

Fixed sparsity is easy to define formatriceswhen they are not discussed in the context
of quantum computing – it is simply the density of the matrices. The density of the
matrix can be defined as the fraction of the matrix’s total elements that are nonzero.
Thus a square matrix that has a total of n2 elements has a density of 0.3, if there
are a total of b0.3n2c nonzero elements in the matrix. However, classifying our
Hamiltonians with this definition of fixed sparsity yields nonsensical results when
the spectral gap’s behavior is simulated for varying system size. The inverse spectral
gap will appear to decrease exponentially for systems ranging from three to nine
qubits, indicating that the mixing time of the quantumMetropolis sampler decreases
exponentially as the system size increases from three qubits to nine qubits. At nine
qubits, the inverse gap appears to start increasing – not enough data was gathered
to determine the behavior of the gap for systems larger than ten qubits, but no more
data was needed to determine that this definition of sparsity does not pertain to
Hamiltonians used in quantum computing. The results are counterintuitive – the
mixing time should increase with the system size.

Since the Hamiltonians will be simulated using the methods discussed in the chapter
on sparsity, it is logical that we will classify our Hamiltonians using row sparsity.
Indeed, the runtime of the quantum semidefinite programming algorithm discussed
in this paper is linear in the row-sparsity of the input matrices. However, a second
question arises: how is fixed row sparsity defined in the context of varying system
size? We know that a Hamiltonian H acting on n qubits is row sparse if the number
of non-zero entries in each row is polynomially bounded in n; we also know that a
Hamiltonian is d − sparse if each row has at most d non-zero elements [2]. If we
define fixed row sparsity as a constant d, then we sort Hamiltonians by the maximum
number of nonzero elements it has in each row. If we define fixed row sparsity as a
fixed polynomial that is a function of the system size n, then we sort Hamiltonians
by the polynomial function governing the row sparsity. The spectral gap behavior
for both interpretations of fixed row sparsity will be presented and discussed in the
section on results. Based on the results, it would appear that defining the fixed row
sparsity as a fixed polynomial function seems to be the correct course of action.
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6.2 Simulating the Runtime
Wewill sketch a outline of the algorithm used to simulate the runtime of the quantum
Metropolis sampler for varying system size and sparsity, and give a brief discussion
on its implementation. The chapter on the quantum Metropolis sampling algorithm
discusses in detail how the amplitudes xk

l

√
f k
l correspond to the classical definition

of transition probabilities; in our case, they represent the probability of transitioning
from initial state k to the state l. Given the following:

f k
l = min(1, exp(−β(Ek − El))), (6.2)

we can write our quantum Metropolis stochastic map as:

N(k, l) = exp(− β(El − Ek)
2

)M(k, l), (6.3)

where M(k, l) is defined as:

M(k, l) = 1
n

n∑
i=1

1
4

3∑
j=0
| 〈Ek | σi

j |El〉 |2 min(1, exp (−β (Ek − El)) , (6.4)

In short, we have generated a Markov chain using the eigenstates of a Hamiltonian
acting on n qubits. The σi

j in our stochastic map is defined as a Pauli operator where
the identity operator σ0 = I2 operates on all of the qubits except for the i-th qubit;
instead, σj operates on the i-th qubit, where σj is chosen from the Pauli matrices
{I, X,Y, Z}. The Pauli operator σi

j is the tensor product of the identity matrices and
σj . We generate a total of 2n eigenstates; thus, the indices k and l both range from
[1, 2n].

Our algorithm is as follows:
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Algorithm 7 (Quantum Metropolis Map Spectral Gap Estimation)

Set n as the number of qubits. Let sparsity be defined as s ≤ poly(n). Let
β = 0.00366300366. Let T be the number of iterations. For t = 1, ...,T:

1. Generate a row-sparse Hamiltonian H with the given n and s.

2. Diagonalize H and find all 2n eigenvalues and eigenvectors.

3. Compute the quantum Metropolis stochastic map N(k, l) as defined above.

4. Compute the spectral gap by finding the largest two eigenvalues of the
quantum Metropolis stochastic map.

It is trivial to generate a random sparse Hamiltonian, but less trivial to generate
a random row-sparse and row-computable Hamiltonian. This is because we must
ensure that the number of nonzero elements varies from row to row while staying
within the limits defined by the row sparsity. We use random number generators
to determine the positions and values of the nonzero elements in each row, which
meet the requirements of the black box used to specify Hamiltonians that can be
efficiently simulated on quantum computers [3].

We will not attempt to generate Hamiltonians where the value and position of each
nonzero element is determined by an algorithm that runs in polylog(N), where N

is the system size [2]. The goal of our paper is to model the spectral gap’s behavior
for random row-sparse Hamiltonians, because we wish to see whether the quantum
Metropolis sampling algorithm is a good heuristic method to use during the update
step in a quantum semidefinite program solver – such a solver should work for a
general semidefinite program, where the number and contents of the input matrices
vary arbitrarily so long as they remain positive semidefinite.

The algorithm for generating row-sparse Hamiltonians is as follows:
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Algorithm 8 (Row Sparse Hamiltonian Generation)

Set n as the number of qubits. Let sparsity be defined as s ≤ poly(n).

1. Initialize a sparse 2nx2n matrix S.

2. Determine the number of nonzero elements in each row by sampling from
U(0, s) for each row and store the results in a vector v.

3. For t = 1, 2, ...2n:

• Assign one-dimensional indices to the elements in the cross formed
by the t-th row and column. Determine the positions of the nonzero
elements by sampling vt numbers fromU(0, 2n+1 − 1).

• Generate the values of the nonzero elements by sampling fromU(0, 1)
and assign the values to the one-dimensional indices.

• Convert the one-dimensional indices to two-dimensional indices in the
form of (i, j). Insert the values into the S according to their assigned
coordinates.

4. Compute the transpose of thematrix ST and add it to itself to yield H = S+ST .

5. For t = 1, 2, ...2n:

• Determine the number of nonzero elements in row t and find their row
indices.

• Determine the number of nonzero elements that need to be removed so
that the maximum number of nonzero elements in each row is bounded
by the sparsity parameter.

• Randomly shuffle the row indices and remove the excess nonzero ele-
ments in that order. If (i, j) is removed from the matrix, then ( j, i) must
also be removed to ensure that the matrix remains Hermitian.

It must be noted that step 3.2 of the algorithm for generating random row-sparse
Hamiltonians can be substituted so that the values of the nonzero elements are
sampled from N(0, 1). However, in order to ensure that the Hamiltonian is positive
semidefinite, since the input matrices for our semidefinite program are positive
semidefinite, an identity matrix multiplied by a suitable scalar should be added to
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the Hamiltonian. To maximize efficiency, we sampled fromU(0, 1) in our program.
To ensure that the results do not vary, the spectral gap’s behavior in system size is
modeled for two polynomial sparsities and two constant sparsities when the nonzero
elements are sampled from N(0, 1).

Optimizing the Implementation
The algorithm used to model the spectral gap behavior was implemented in C++.
The following C++ libraries were used: Armadillo 7.200.2 (Plutocratic Climate
Change Denialist), ARPACK, SuperLU 5.2.1, OpenBLAS, and LAPACK [4]. In
order to optimize the implementation, the sparse matrix structure is used for most of
the row-sparse Hamiltonian generation procedure. However, after the transpose of
the sparse matrix is added to itself, the sparse matrix is converted to a dense matrix.
The sparse matrix eigensolver operates faster than the dense matrix eigensolver,
but only if the eigensolver is solving for a limited number of eigenvalues and
eigenvectors. Since the generation of the Markov transition matrix requires all the
eigenvalues of the sparse matrix, it is more efficient to construct the Hamiltonian
as a sparse matrix and then convert it to a dense matrix before diagonalizing. The
eigenvectors and the transposes of the eigenvectors are stored in matrices, which
are then converted to complex matrices; we will respectively denote the matrices
containing the eigenvectors and the transposed eigenvectors as V and VT . The Pauli
operators are generated as complex matrices – we denote the Pauli operator where
σj operates on the target qubit as P j . The target qubit is the qubit where the default
operator is not the identity matrix.

Armadillo is optimized so that calculating the Hadamard product using element-
wise multiplication is an efficient process. Thus we can compute the stochastic map
using the following operations:

n∑
i=1

1
4

3∑
j=0
| 〈Ek | σi

j |El〉 |2 = VTP0V ◦ (VTP0V)∗ + VTP1V ◦ (VTP1V)∗

+ VTP2V ◦ (VTP2V)∗ + VTP3V ◦ (VTP3V)∗,

(6.5)

where (VTP jV)∗ denotes the complex conjugate of the matrix VTP jV, and A ◦ B
denotes the Hadamard product of matricesA andB. Since the eigenvalues are stored
in a vector, we may denote this vector as U and calculate:
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exp (−β (Ek − El)) = exp (−βU) (exp (βU))T . (6.6)

We then compute min(1, exp (−β (Ek − El)) by finding all the elements that are
larger than 1 in the matrix defined above and replacing them with ones. We can
apply this matrix, as well as the Boltzmann weights, to

∑n
i=1

1
4
∑3

j=0 | 〈Ek | σi
j |El〉 |2

through element-wise multiplication. Once the quantum Metropolis stochastic map
is completely generated, it is converted back to a sparse matrix. The sparse matrix
eigensolver is then used to compute the two largest eigenvalues of the quantum
Metropolis map.

6.3 Spectral Gap Behavior
Wewill first examine how the spectral gap behaves when the system size is increased
linearly from three to ten qubits, and the row sparsity is fixed as a constant. We will
mainly examine Hamiltonians where the nonzero values are generated fromU(0, 1),
but two plots of the spectral gap behavior in system size will be attached for fixed
sparsities of s = 3 and s = 6 when the nonzero elements of the Hamiltonians are
sampled from N(0, 1). The differences do not appear to be significant, as will be
demonstrated below. We will then examine how the spectral gap and the inverse
spectral gap behave when the system size is increased linearly from three to ten
qubits, but the row sparsity is fixed as a polynomial function of the system size.
Once again, we will mainly examine Hamiltonians where the nonzero values are
generated from U(0, 1), but two plots of the spectral gap behavior in system size
will be attached for fixed sparsities of s = n and s = n2 − n + 1 when the nonzero
elements of the Hamiltonians are sampled from N(0, 1). Finally, the spectral gap
behavior for a fixed system size and varying sparsity will be examined for system
sizes n = 6 and n = 8. Further details about how the data was gathered – and the
limitations of our methods – can be found in Appendices C through E.

Spectral Gap Behavior for Varying System Size and Constant Row Sparsities
It is apparent from the graphs below that the spectral gaps appear to decrease and
then start increasing from fixed sparsities of s = 6 and s = 8, and steadily increase
for a fixed sparsity of s = 3. An increasing spectral gap indicates that the running
time decreases as the system size increases, which does not make sense physically.
Thus we discard the notion of using a fixed constant as row sparsity for increasing
system sizes, and turn to using a polynomial function of the number of qubits to
determine row sparsity.
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Figure 6.2: The spectral gap behavior is modeled for varying system size from three
to ten qubits for a fixed row sparsity of s = 1. The values of the nonzero elements
were generated from a uniform distributionU(0, 1). The mean spectral gaps for the
different system sizes are used as the data points. We use a constant fit of y(x) = a
and obtain a = 0.0588073, σa = 0.00368339, and χ2/(n − 1) = 0.0582212.
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Figure 6.3: The spectral gap behavior is modeled for varying system size from three
to ten qubits for a fixed row sparsity of s = 3. The values of the nonzero elements
were generated from a uniform distributionU(0, 1). The mean spectral gaps for the
different system sizes are used as the data points. We use a linear fit of y(x) = a+bx
and obtain a = 0.224419, σa = 0.0620334, b = 0.00286737, σb = 0.00722124,
and χ2/(n − 2) = 0.0265796.
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Figure 6.4: The spectral gap behavior is modeled for varying system size from three
to ten qubits for a fixed row sparsity of s = 3. The values of the nonzero elements
were generated from a normal distribution N(0, 1). The mean spectral gaps for the
different system sizes are used as the data points. We use a linear fit of y(x) = a+bx
and obtain a = 0.217747, σa = 0.0559457, b = 0.00277423, σb = 0.00637303,
and χ2/(n − 2) = 0.0437704.
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Figure 6.5: The spectral gap behavior is modeled for varying system size from three
to ten qubits for a fixed row sparsity of s = 6. The values of the nonzero elements
were generated from a uniform distribution U(0, 1). The mean spectral gaps for
the different system sizes are used as the data points. We use a quadratic fit of
y(x) = a + bx + cx2 and obtain a = 0.566395, σa = 0.174746, b = −0.0593442,
σb = 0.0485003, c = 0.00348011, σc = 0.00322192, and χ2/(n − 3) = 0.0358664.
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Figure 6.6: The spectral gap behavior is modeled for varying system size from three
to ten qubits for a fixed row sparsity of s = 6. The values of the nonzero elements
were generated from a normal distribution N(0, 1). The mean spectral gaps for
the different system sizes are used as the data points. We use a quadratic fit of
y(x) = a + bx + cx2 and obtain a = 0.560406, σa = 0.190018, b = −0.0624437,
σb = 0.0533355, c = 0.00384023, σc = 0.00360865, and χ2/(n − 3) = 0.0696112.
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Figure 6.7: The spectral gap behavior is modeled for varying system size from three
to ten qubits for a fixed row sparsity of s = 8. The values of the nonzero elements
were generated from a uniform distribution U(0, 1). The mean spectral gaps for
the different system sizes are used as the data points. We use a quadratic fit of
y(x) = a + bx + cx2 and obtain a = 0.664627, σa = 0.159184, b = −0.0799266,
σb = 0.0461287, c = 0.00463503, σc = 0.00314, and χ2/(n − 3) = 0.048682.
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Spectral Gap Behavior for Varying System Size and Fixed Polynomial Row
Sparsities
There appears to be some odd behavior for systems of three and four qubits, but that
may be due to large uncertainties in the spectral gap behavior for very small systems.
As the system sizes increase, the uncertainties decrease; however, we only have data
going up to ten qubits. The χ2 values are within a reasonable range. Nevertheless,
while the results imply that the spectral gaps of the quantum Metropolis stochastic
map behave as desired, i.e. polynomially in system size, we cannot say decisively
that the Gibbs states of random row-sparse Hamiltonians can be efficiently prepared
on a quantum computer using quantum Metropolis sampling for all system sizes.
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Figure 6.8: The spectral gap behavior is modeled for varying system size from three
to ten qubits for a linear row sparsity of s = n, where n is the number of qubits. The
values of the nonzero elements were generated from a uniform distributionU(0, 1).
The mean spectral gaps for the different system sizes are used as the data points.
We use a constant fit of y(x) = a and obtain a = 0.320328, σa = 0.0133158, and
χ2/(n − 1) = 0.027536.
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Figure 6.9: The spectral gap behavior is modeled for varying system size from three
to ten qubits for a linear row sparsity of s = n. The values of the nonzero elements
were generated from a normal distribution N(0, 1). The mean spectral gaps for the
different system sizes are used as the data points. We use a constant fit of y(x) = a
and obtain a = 0.31912, σa = 0.0129121, and χ2/(n − 1) = 0.0528075.
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Figure 6.10: The spectral gap behavior is modeled for varying system size from three
to ten qubits for a quadratic row sparsity of s = n2 − 4. The values of the nonzero
elements were generated from a uniform distribution U(0, 1). The mean spectral
gaps for the different system sizes are used as the data points. We use a linear fit
of y(x) = a + bx and obtain a = 0.631437, σa = 0.0467774, b = −0.0309497,
σb = 0.00580634, and χ2/(n − 2) = 0.573525.
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Figure 6.11: The spectral gap behavior is modeled for varying system size from
three to ten qubits for a quadratic row sparsity of s = n2 − n + 1. The values of the
nonzero elements were generated from a uniform distribution U(0, 1). The mean
spectral gaps for the different system sizes are used as the data points. We use a linear
fit of y(x) = a + bx and obtain a = 0.626823, σa = 0.0421773, b = −0.0302081,
σb = 0.0050857, and χ2/(n − 2) = 0.480315.
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Figure 6.12: The spectral gap behavior is modeled for varying system size from
three to ten qubits for a quadratic row sparsity of s = n2 − n + 1. The values of
the nonzero elements were generated from a normal distributionN(0, 1). The mean
spectral gaps for the different system sizes are used as the data points. We use a linear
fit of y(x) = a + bx and obtain a = 0.648627, σa = 0.0538921, b = −0.0339071,
σb = 0.00628929, and χ2/(n − 2) = 0.409645.
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Figure 6.13: The spectral gap behavior is modeled for varying system size from
three to ten qubits for a cubic row sparsity of s = b0.5n3 − n2 − n − 2c . The values
of the nonzero elements were generated from a uniform distribution U(0, 1). The
mean spectral gaps for the different system sizes are used as the data points. We use
a quadratic fit of y(x) = a + bx + cx2 and obtain a = 0.274312, σa = 0.110236,
b = 0.0844276, σb = 0.0317495, c = −0.00682071, σc = 0.00227522, and
χ2/(n − 3) = 1.41193.
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Spectral Gap Behavior for Fixed System Size and Varying Row Sparsities
The spectral gap behavior for a fixed system size and varying row sparsity is plotted
below for six qubits and eight qubits; it appears from the graphs that the spectral
gap behaves as a logarithmic function of the row sparsity for a fixed system size.

Figure 6.14: The spectral gap behavior is modeled for varying row sparsity from 1
to 2n, where n is the number of qubits, for a fixed n = 6. We fit the model with the
function y(x) = a log(bx) and obtain a = 0.105908, σa = 0.00371134, b = 2.7578,
and σb = 0.368026. The p-values for a and b are respectively 4.59 × 10−17 and
4.37 × 10−7.
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Figure 6.15: The spectral gap behavior is modeled for varying row sparsity from
1 to 2n, where n is the number of qubits, for a fixed n = 8. We fit the model
with the function y(x) = a log(bx) and obtain a = 0.0637553, σa = 0.00385493,
b = 11.8402, and σb = 4.61932. The p-values for a and b are respectively
3.09 × 10−17 and 0.015.
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C h a p t e r 7

QUANTUM SPEEDUPS

While the numerical data appears to indicate that the quantum Metropolis map’s
spectral gap [1] behaves polynomially in system size for random Hamiltonians with
a fixed polynomial row sparsity, we can only speak confidently for system sizes
ranging from three to ten qubits. Further data is needed for larger systems – indeed,
a pressing question to answer is whether this behavior holds as the system size
increases to a few hundred qubits, or the size of a small scale quantum computer.
Currently we can only expand on the result of Brandão et al. and say that quadratic
speed-ups in the parameters n and m, respectively the Hilbert space size and the
number of input matrices, are possible in the worst case, and exponential speedups
are possible under the specific circumstances outlined in [2] and possible for small,
random Hamiltonians.

Brandão et al. enumerate a list of open questions to solve in regards to this semidef-
inite programming algorithm in [2]. One of the questions listed is improving the
scaling of the parameters R and δ – even if an exponential speedup is achieved in n,
it will still be beneficial to work towards an algorithm that enjoys optimal scaling in
all of the relevant parameters.

We expanded upon the second question listed, which asks if there are more specific
instances where a more significant speedup can be achieved in n. In the context
of our thesis, we asked the questions: how does sparsity affect the behavior of the
quantumMetropolis stochastic map’s spectral gap in system size? Does the sparsity
of a Hamiltonian affect how efficiently the Gibbs state can be prepared on a quantum
computer with the quantum Metropolis algorithm? In our numerical simulations,
we fixed row sparsity as a constant, which yielded nonsensical results, and then fixed
row sparsity as a polynomial function of the system size, or the number of qubits.
While there aren’t enough data points to say definitively that the quantumMetropolis
stochastic map’s spectral gap is absolutely polynomial in system size, the results
seem to indicate so for small Hamiltonians. They also appear to imply a relationship
between the row sparsity function and the relationship between the spectral gap
and the system size. We also explored whether varying the random distribution
from which the nonzero elements’ values came from changed the behavior, but
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the changes are not significant. One question that we believe is worth exploring,
asides from the spectral gap behavior for larger systems, is whether there are sparsity
patterns that guarantee an efficient mixing time, and whether it’s viable to classify
Hamiltonians based on sparsity patterns. Another question worth exploring, if the
results for the spectral gap behavior for larger system sizes are positive, is whether
the spectral gap behavior in system size is related to the first order derivative of the
sparsity function, or if the spectral gap behavior can be modeled with a polynomial
function of order d, if the sparsity pattern is of order d + 1. The results from the
two different quadratic row sparsity functions imply that the spectral gap behavior
is predominantly dependent on the highest order term in the row sparsity function.
The results for row sparsity functions of a higher polynomial order can be explored
if the system size is increased.
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A p p e n d i x A

PAULI OPERATOR GENERATOR

# inc lude <math . h>
# inc lude <cmath >
# inc lude <complex >
# inc lude < a rmad i l l o >

us ing namespace s t d ;
us ing namespace arma ;

c l a s s P a u l i
{
pub l i c :

/ /
/ / C o n s t r u c t o r s
/ /

P a u l i ( i n t s i z e , i n t ga te , i n t o r d e r ) ;

operator cx_mat ( ) { i n i t ( ) ; re turn ma t r i x ; }

/ /
/ / Fun c t i o n s
/ /

/ / r e t u r n s t h e Pau l i ma t r i x c o r r e s pond i ng t o t h e i n t e g e r .
cx_mat
m a t r i x _ g e n e r a t o r ( i n t o r d e r ) ;

/ / r e t u r n s t h e t e n s o r p roduc t .
cx_mat
t e n s o r _ p r o d u c t _ g e n e r a t o r ( i n t s i z e , i n t ga te , i n t o r d e r ) ;
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pr i v a t e :

/ / / / / / / /
i n t s i z e_ ,

ga te_ ,
o r d e r _ ;

bool i n i t t e d _ ;
cx_mat ma t r i x ;

/ / / / / / / /

void
i n i t ( ) ;

} ;

i n l i n e P a u l i : :
P a u l i ( i n t s i z e , i n t ga te , i n t o r d e r )

:
i n i t t e d _ ( f a l s e )
{
s i z e _ = s i z e ;
g a t e _ = g a t e ;
o r d e r _ = o r d e r ;
}

cx_mat i n l i n e P a u l i : :
m a t r i x _ g e n e r a t o r ( i n t o r d e r )
/ / g e n e r a t e s t h e Pau l i ma t r i x I , X , Y , or Z
/ / c o r r e s pond i ng t o t h e i n t e g e r n .

{
cx_mat m(2 , 2 ) ;
i f ( o r d e r == 0)

{
m. a t ( 0 , 0 ) = cx_doub le ( 1 . 0 , 0 . ) ;
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m. a t ( 1 , 0 ) = cx_doub le ( 0 . , 0 . ) ;
m. a t ( 0 , 1 ) = cx_doub le ( 0 . , 0 . ) ;
m. a t ( 1 , 1 ) = cx_doub le ( 1 . 0 , 0 . ) ;
}

e l s e i f ( o r d e r == 1)
{
m. a t ( 0 , 0 ) = cx_doub le ( 0 . , 0 . ) ;
m. a t ( 1 , 0 ) = cx_doub le ( 1 . 0 , 0 . ) ;
m. a t ( 0 , 1 ) = cx_doub le ( 1 . 0 , 0 . ) ;
m. a t ( 1 , 1 ) = cx_doub le ( 0 . , 0 . ) ;
}

e l s e i f ( o r d e r == 2)
{
m. a t ( 0 , 0 ) = cx_doub le ( 0 . , 0 . ) ;
m. a t ( 1 , 0 ) = cx_doub le ( 0 . , 1 . 0 ) ;
m. a t ( 0 , 1 ) = cx_doub le ( 0 . , −1 . 0 ) ;
m. a t ( 1 , 1 ) = cx_doub le ( 0 . , 0 . ) ;
}

e l s e i f ( o r d e r == 3)
{
m. a t ( 0 , 0 ) = cx_doub le ( 1 . 0 , 0 . ) ;
m. a t ( 1 , 0 ) = cx_doub le ( 0 . , 0 . ) ;
m. a t ( 0 , 1 ) = cx_doub le ( 0 . , 0 . ) ;
m. a t ( 1 , 1 ) = cx_doub le ( −1 .0 , 0 . ) ;
}

re turn m;
}

cx_mat i n l i n e P a u l i : :
t e n s o r _ p r o d u c t _ g e n e r a t o r ( i n t s i z e , i n t ga te , i n t o r d e r )
/ / g e n e r a t e s t h e t e n s o r p roduc t o p e r a t o r c o r r e s pond i ng
/ / t o t h e number o f q ub i t s , d eno t ed as s i z e ,
/ / t h e q u b i t t h a t t h e op e r a t o r o p e r a t e s on , deno t ed as
/ / ga te , and t h e Pau l i o p e r a t o r chosen , deno t ed as o rde r .

{
cx_mat m;
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cx_mat i d e n t i t y = ma t r i x _ g e n e r a t o r ( 0 ) ;
cx_mat p a u l i _m a t r i x = ma t r i x _ g e n e r a t o r ( o r d e r ) ;
i f ( g a t e == 1)

{
m = p a u l i _m a t r i x ;
f o r ( i n t i = 1 ; i < s i z e ; ++ i )

{ m = kron (m, i d e n t i t y ) ; }
}

e l s e i f ( g a t e == s i z e )
{
m = i d e n t i t y ;
f o r ( i n t i = 1 ; i < s i z e −1; ++ i )

{ m = kron (m, i d e n t i t y ) ; }
m = kron (m, p a u l i _m a t r i x ) ;
}

e l s e
{
m = i d e n t i t y ;
f o r ( i n t i = 1 ; i < g a t e ; ++ i )

{ m = kron (m, i d e n t i t y ) ; }
m = kron (m, p a u l i _m a t r i x ) ;
f o r ( i n t i = g a t e + 1 ; i < s i z e ; ++ i )

{ m = kron (m, i d e n t i t y ) ; }
}

re turn m;
}

void i n l i n e P a u l i : :
i n i t ( )

{
i f ( i n i t t e d _ ) re turn ;
ma t r i x = t e n s o r _ p r o d u c t _ g e n e r a t o r ( s i z e_ , ga te_ , o r d e r _ ) ;
i n i t t e d _ = t rue ;
}
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A p p e n d i x B

SPECTRAL GAP ESTIMATOR

# inc lude < io s t r e am >
# inc lude <iomanip >
# inc lude < s t d i o . h>
# inc lude <complex >
# inc lude <random>
# inc lude <math . h>
# inc lude <cmath >
# inc lude <vec t o r >
# inc lude <a l go r i t hm >
# inc lude < a rmad i l l o >
# inc lude " p a u l i . h "

us ing namespace s t d ;
us ing namespace arma ;

/ / A rmad i l l o documen ta t i on i s a v a i l a b l e a t :
/ / h t t p : / / arma . s o u r c e f o r g e . n e t / docs . h tm l

i n t
main ( i n t argc , char∗∗ a rgv )

{
/ / I n p u t pa rame t e r s .
i n t q u b i t s = 10 ;
i n t n = pow (2 , q u b i t s ) ;
i n t i t e r a t i o n s = 20 ;
/ / Ra the r than use t h e na i v e d e f i n i t i o n o f s p a r s i t y ,
/ / we choose t o use t h e d e f i n i t i o n o f row− s p a r s i t y ,
/ / which w i l l e i t h e r be p o l y n om i a l l y bound
/ / i n n or be a f i x e d c o n s t a n t .
i n t s p a r s i t y = q u b i t s ;
f l o a t b e t a = 0 .00366300366 ;
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double s a n i t y _ c h e c k ;

/ / Genera te t h e Hami l t on ian

/ / Seed t h e random gen e r a t o r .
arma_rng : : s e t _ s eed_ r andom ( ) ;
/ / De f i n e a v e c t o r f o r c o l l e c t i n g t h e s p e c t r a l gaps
/ / o f t h e quantum Me t r o p o l i s s t o c h a s t i c map .
vec s p e c t r a l _ g a p s ( i t e r a t i o n s ) ;
/ / Ensure t h a t d u p l i c a t e l o c a t i o n s do no t s t o p
/ / t h e program i n i t s t r a c k s .
bool add_va l u e s = t rue ;
bool s o r t _ l o c a t i o n s ;
bool c h e c k _ f o r _ z e r o s ;
/ / S t a r t t h e i t e r a t i o n s .
f o r ( i n t i = 0 ; i < i t e r a t i o n s ; ++ i )

{
cou t << i << end l ;
sp_mat A = sp_mat ( n , n ) ;
/ / De termine t h e number o f nonzero e l emen t s i n each row .
vec i n i t i a l _ r o w _ s p a r s i t y = r and i <vec >(n , \
d i s t r _ p a r am (0 , s p a r s i t y ) ) ;
/ / S t a r t b u i l d i n g t h e Hami l t on ian w i t h c r o s s shapes ,
/ / i . e . g e n e r a t i n g v a l u e s f o r t h e j − t h row
/ / and t h e j − t h column f o r j = 0 , . . . n .
f o r ( i n t j = 0 ; j < n ; ++ j )

{
/ / De termine t h e one−d imen s i o na l i n d i c e s
/ / o f t h e nonzero e l emen t s .
vec r ow_ c o l _ i n d i c e s = r and i <vec >( i n i t i a l _ r o w _ s p a r s i t y ( j ) , \
d i s t r _ p a r am (0 , 2∗n − 1 ) ) ;
/ / Genera te t h e v a l u e s o f t h e nonzero e l emen t s .
vec v a l u e s = randu <vec >( r ow_ c o l _ i n d i c e s . n_elem ) ;
/ / Genera te t h e l o c a t i o n s ma t r i x t h a t c o n t a i n s
/ / t h e i n d i c e s i n ( i , j ) f o rma t .
umat l o c a t i o n s = umat ( 2 , r ow_ c o l _ i n d i c e s . n_elem ) ;
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/ / Conver t t h e one−d imen s i o na l i n d i c e s
/ / t o ( i , j ) f o rma t .
f o r ( i n t k = 0 ; k < r ow_ co l _ i n d i c e s . n_elem ; ++k )

{
i f ( r ow_ c o l _ i n d i c e s ( k ) < n )

{
l o c a t i o n s ( 0 , k ) = j ;
l o c a t i o n s ( 1 , k ) = r ow_ co l _ i n d i c e s ( k ) ;
}

e l s e
{
l o c a t i o n s ( 0 , k ) = r ow_ co l _ i n d i c e s ( k ) − n ;
l o c a t i o n s ( 1 , k ) = j ;
}

}
/ / Genera te t h e s pa r s e ma t r i x f o r t h e j − t h c r o s s .
sp_mat B( add_va lue s , l o c a t i o n s , v a l u e s , n , \
n , s o r t _ l o c a t i o n s = true , c h e c k _ f o r _ z e r o s = t rue ) ;
/ / Add i t t o t h e main s pa r s e ma t r i x .
A = A + B;
}

/ / Genera te t h e Hami l t on ian by add ing t h e s pa r s e ma t r i x ’ s
/ / t r a n s p o s e t o i t s e l f so t h a t t h e ma t r i x i s s ymme t r i c a l .
sp_mat Hami l t on i an = A. t ( ) + A;
/ / Conver t t h e s pa r s e Hami l t on ian t o a dense ma t r i x .
mat den s eHami l t on i a n ( Hami l t on i an ) ;
/ / Make su r e t h e row− s p a r s i t y i s bound by
/ / t h e s p a r s i t y parame te r .
f o r ( i n t j = 0 ; j < n ; ++ j )

{
rowvec row = den s eHami l t o n i a n . row ( j ) ;
/ / Genera te v e c t o r c o n t a i n i n g t h e i n d i c e s
/ / o f t h e nonzero e l emen t s i n each row .
uvec i n d i c e s _ o f _ n o n z e r o s = f i n d ( row , 0 ) ;
/ / De termine t h e number o f nonzero
/ / e l emen t s t h a t need t o be removed .
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i n t r emoved_e lemen t s = i n d i c e s _ o f _ n o n z e r o s . n_elem \
− s p a r s i t y ;
/ / Remove e l emen t s i f t h e row− s p a r s i t y
/ / e x c e ed s t h e s e t c o n s t r a i n t .
i f ( r emoved_e lemen t s > 0)

{
/ / S h u f f l e t h e i n d i c e s o f t h e nonzero e l emen t s
/ / t o d e t e rm i n e t h e f i r s t e l emen t s t o remove .
uvec o r d e r _o f _ r emova l = \
s h u f f l e ( i n d i c e s _ o f _ n o n z e r o s ) ;
f o r ( i n t k = 0 ; k < o r d e r _o f _ r emova l . n_elem ; ++k )

{
/ / Remove t h e e x t r a e l emen t s from t h e row .
den s eHami l t o n i a n ( j , o r d e r _o f _ r emova l ( k ) ) = 0 ;
/ / Remove t h e co r r e s pond i ng e l emen t s from
/ / t h e column .
den s eHami l t o n i a n ( o r d e r _o f _ r emova l ( k ) , j ) = 0 ;
}

}
}

/ / C a l c u l a t e a l l t h e e i g e n v a l u e s and t h e e i g e n v e c t o r s .

vec e i g v a l ;
mat e i g v e c ;
/ / Compute a l l o f t h e e i g e n v a l u e s and e i g e n v e c t o r s .
eig_sym ( e i g v a l , e igvec , d en s eHami l t on i a n ) ;
/ / Make t h e Hami l t on ian complex .
mat z e r o s ( n , n , f i l l : : z e r o s ) ;
cx_mat e i g e n v e c t o r s ( e igvec , z e r o s ) ;
cx_mat t _ e i g e n v e c t o r s = e i g e n v e c t o r s . s t ( ) ;

/ / Compute t h e quantum Me t r o p o l i s map .

cx_mat me t ropo l i s_map ( n , n , f i l l : : z e r o s ) ;
f o r ( i n t j = 0 ; j < q u b i t s ; ++ j )
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{
cx_mat p a u l i 0 = P a u l i ( q u b i t s , j +1 , 0 ) ;
cx_mat p a u l i _ i = t _ e i g e n v e c t o r s ∗ p a u l i 0 ∗ e i g e n v e c t o r s ;
cx_mat f i n _ p a u l i _ i = p a u l i _ i % con j ( p a u l i _ i ) ;
cx_mat p a u l i 1 = P a u l i ( q u b i t s , j +1 , 1 ) ;
cx_mat p a u l i _ x = t _ e i g e n v e c t o r s ∗ p a u l i 1 ∗ e i g e n v e c t o r s ;
cx_mat f i n _ p a u l i _ x = p a u l i _ x % con j ( p a u l i _ x ) ;
cx_mat p a u l i 2 = P a u l i ( q u b i t s , j +1 , 2 ) ;
cx_mat p a u l i _ y = t _ e i g e n v e c t o r s ∗ p a u l i 2 ∗ e i g e n v e c t o r s ;
cx_mat f i n _ p a u l i _ y = p a u l i _ y % con j ( p a u l i _ y ) ;
cx_mat p a u l i 3 = P a u l i ( q u b i t s , j +1 , 3 ) ;
cx_mat p a u l i _ z = t _ e i g e n v e c t o r s ∗ p a u l i 3 ∗ e i g e n v e c t o r s ;
cx_mat f i n _ p a u l i _ z = p a u l i _ z % con j ( p a u l i _ z ) ;
me t ropo l i s_map = me t ropo l i s_map + f i n _ p a u l i _ i + \
f i n _ p a u l i _ x + f i n _ p a u l i _ y + f i n _ p a u l i _ z ;
}

vec we igh t1 = exp (− b e t a ∗ e i g v a l ) ;
rowvec we igh t2 = exp ( b e t a ∗ e i g v a l ) . t ( ) ;
mat we i gh t s = we igh t1 ∗weigh t2 ;
we i gh t s . elem ( f i n d ( we i gh t s > 1 . ) ) . ones ( ) ;
we i gh t s = we i gh t s / ( 4 . ∗ q u b i t s ) ;
/ / C a l c u l a t e and app l y t h e Bol t zmann we i g h t s .
vec g i bb s_we i gh t 1 = exp ( b e t a ∗ e i g v a l / 2 . ) ;
rowvec g i bb s_we i gh t 2 = exp (− b e t a ∗ e i g v a l / 2 . ) . t ( ) ;
mat g i b b s _we i g h t s = g i bb s_we i gh t 1 ∗ g i bb s_we i gh t 2 ;
mat f i n a l _w e i g h t s = we i gh t s % g i b b s _we i g h t s ;
me t ropo l i s_map = f i n a l _w e i g h t s % me t ropo l i s_map ;
/ / Conver t t h e quantum Me t r o p o l i s map t o a s pa r s e ma t r i x .
sp_mat s p a r s e _m e t r o p o l i s ( conv_to <mat > : : from ( me t ropo l i s_map ) ) ;
/ / Compute t h e two l a r g e s t e i g e n v a l u e s o f t h e map .
vec f i n _ e i g v a l = e igs_sym ( s p a r s e _me t r o p o l i s , 2 , " l a " ) ;
/ / S o l v e f o r t h e s p e c t r a l gap .
double s p e c t r a l _ g a p = f i n _ e i g v a l [ 1 ] − f i n _ e i g v a l [ 0 ] ;
s a n i t y _ c h e c k = f i n _ e i g v a l [ 1 ] ;
s p e c t r a l _ g a p s [ i ] = s p e c t r a l _ g a p ;
}
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cou t << mean ( s p e c t r a l _ g a p s ) << end l ;
c ou t << s a n i t y _ c h e c k << end l ;
c ou t << s t d d ev ( s p e c t r a l _ g a p s ) << end l ;
re turn 0 ;
}

Note that the values of the nonzero elements in the row-sparse Hamiltonians can
be generated from a random uniform distribution using randu or a random normal
distribution using randn. If the behavior of spectral gaps for polynomial row
sparsity is of interest, the sparsity can be set to a function polynomial in the number
of qubits. If the behavior of spectral gaps for constant row sparsity is of interest, then
the sparsity should be a fixed integer. Keeping the number of qubits constant and
varying the sparsity linearly will give plots describing the behavior of the spectral
gap for varying sparsities.
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A p p e n d i x C

TABLES OF SPECTRAL GAPS FOR CONSTANT ROW
SPARSITIES

We must note beforehand that the program was run 1000 times for system sizes
ranging from 3 to 7 qubits, 200 times for 8 qubits, 100 times for 9 qubits, and 20
times for 10 qubits. This is due to both the decreasing width of the spectral gap
distribution for an increasing system size, and to the exponentially increasing run
time of the program.

System Size Mean Spectral Gap Standard Deviation
3 0.131948 0.12906
4 0.0752339 0.0625002
5 0.0594832 0.0350691
6 0.0573202 0.0232473
7 0.0571217 0.0165054
8 0.059097 0.0120008
9 0.0591058 0.00900822
10 0.0586839 0.00457439

Table C.1: Table of Spectral Gaps for a Constant Row Sparsity of 1. The spectral
gaps of random Hamiltonians with varying system sizes and a constant row sparsity
of one are recorded in this table. The Hamiltonians were generated using a uniform
distribution, and the system sizes range from three to ten qubits. The spectral gaps
for each size and row sparsity form a Gaussian distribution over the iterations; the
values chosen to generate the plots are the means of the distribution. The standard
deviations are recorded in this table for bookkeeping purposes.
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System Size Mean Spectral Gap Standard Deviation
3 0.28057 0.134129
4 0.235667 0.0882728
5 0.230318 0.0641031
6 0.236346 0.0425841
7 0.245281 0.0329522
8 0.2478 0.0278092
9 0.250355 0.0228699
10 0.253413 0.0200079

Table C.2: Table of Spectral Gaps for a Constant Row Sparsity of 3 (Uniform).
The spectral gaps of random Hamiltonians with varying system sizes and a constant
row sparsity of three are recorded in this table. The Hamiltonians were generated
using a uniform distribution, and the system sizes range from three to ten qubits. The
spectral gaps for each size and row sparsity form a Gaussian distribution over the
iterations; the values chosen to generate the plots are the means of the distribution.
The standard deviations are recorded in this table for bookkeeping purposes.

System Size Mean Spectral Gap Standard Deviation
3 0.259648 0.131798
4 0.218389 0.086442
5 0.21552 0.0598587
6 0.229392 0.0399262
7 0.238811 0.0298309
8 0.246696 0.0245005
9 0.2436 0.0220569
10 0.243649 0.015332

Table C.3: Table of Spectral Gaps for a Constant Row Sparsity of 3 (Normal).
The spectral gaps of random Hamiltonians with varying system sizes and a constant
row sparsity of three are recorded in this table. The Hamiltonians were generated
using a normal distribution, and the system sizes range from three to ten qubits. The
spectral gaps for each size and row sparsity form a Gaussian distribution over the
iterations; the values chosen to generate the plots are the means of the distribution.
The standard deviations are recorded in this table for bookkeeping purposes.
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System Size Mean Spectral Gap Standard Deviation
3 0.430745 0.0838608
4 0.391826 0.0805519
5 0.34664 0.0692611
6 0.322693 0.0527776
7 0.319027 0.0423004
8 0.317716 0.0312893
9 0.319619 0.0249236
10 0.319361 0.0154517

Table C.4: Table of Spectral Gaps for a Constant Row Sparsity of 6 (Uniform).
The spectral gaps of random Hamiltonians with varying system sizes and a constant
row sparsity of six are recorded in this table. The Hamiltonians were generated using
a uniform distribution, and the system sizes range from three to ten qubits. The
spectral gaps for each size and row sparsity form a Gaussian distribution over the
iterations; the values chosen to generate the plots are the means of the distribution.
The standard deviations are recorded in this table for bookkeeping purposes.

System Size Mean Spectral Gap Standard Deviation
3 0.430213 0.0935425
4 0.368988 0.0817553
5 0.336248 0.0646967
6 0.312305 0.0497601
7 0.313092 0.0381403
8 0.303306 0.0317458
9 0.318659 0.0237178
10 0.314262 0.0243659

Table C.5: Table of Spectral Gaps for a Constant Row Sparsity of 6 (Normal).
The spectral gaps of random Hamiltonians with varying system sizes and a constant
row sparsity of six are recorded in this table. The Hamiltonians were generated
using a normal distribution, and the system sizes range from three to ten qubits. The
spectral gaps for each size and row sparsity form a Gaussian distribution over the
iterations; the values chosen to generate the plots are the means of the distribution.
The standard deviations are recorded in this table for bookkeeping purposes.
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System Size Mean Spectral Gap Standard Deviation
3 0.450002 0.0708793
4 0.444523 0.06722
5 0.384432 0.0705576
6 0.343187 0.0573291
7 0.32892 0.0437149
8 0.320327 0.0357085
9 0.323633 0.0270114
10 0.328503 0.0158702

Table C.6: Table of Spectral Gaps for a Constant Row Sparsity of 8. The spectral
gaps of random Hamiltonians with varying system sizes and a constant row sparsity
of eight are recorded in this table. The Hamiltonians were generated using a uniform
distribution, and the system sizes range from three to ten qubits. The spectral gaps
for each size and row sparsity form a Gaussian distribution over the iterations; the
values chosen to generate the plots are the means of the distribution. The standard
deviations are recorded in this table for bookkeeping purposes.
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A p p e n d i x D

TABLES OF SPECTRAL GAPS FOR POLYNOMIAL ROW
SPARSITIES

Again, we make note of the fact that the program was run 1000 times for system
sizes ranging from 3 to 7 qubits, 200 times for 8 qubits, 100 times for 9 qubits, and
20 times for 10 qubits. This is due to both the decreasing width of the spectral gap
distribution for an increasing system size, and to the exponentially increasing run
time of the program.

System Size Mean Spectral Gap Standard Deviation
3 0.272414 0.135028
4 0.304903 0.0898785
5 0.324757 0.0660137
6 0.320201 0.0513793
7 0.324599 0.0434523
8 0.321034 0.0337077
9 0.323744 0.0273422
10 0.318483 0.021793

Table D.1: Table of Spectral Gaps for a Linear Row Sparsity (Uniform). The
spectral gaps of random Hamiltonians with varying system sizes and a linear row
sparsity of s = n, where n is the system size, are recorded in this table. The
Hamiltonians were generated using a uniform distribution, and the system sizes
range from three to ten qubits. The spectral gaps for each size and row sparsity form
a Gaussian distribution over the iterations; the values chosen to generate the plots
are the means of the distribution. The standard deviations are recorded in this table
for bookkeeping purposes.



76

System Size Mean Spectral Gap Standard Deviation
3 0.266152 0.134391
4 0.288471 0.0867833
5 0.308333 0.0635762
6 0.31281 0.0490572
7 0.317535 0.0412417
8 0.320002 0.0346115
9 0.32223 0.0226928
10 0.322739 0.0236867

Table D.2: Table of Spectral Gaps for a Linear Row Sparsity (Normal). The
spectral gaps of random Hamiltonians with varying system sizes and a linear row
sparsity of s = n are recorded in this table. The Hamiltonians were generated using
a normal distribution, and the system sizes range from three to ten qubits. The
spectral gaps for each size and row sparsity form a Gaussian distribution over the
iterations; the values chosen to generate the plots are the means of the distribution.
The standard deviations are recorded in this table for bookkeeping purposes.

System Size Mean Spectral Gap Standard Deviation
3 0.399488 0.0951201
4 0.508677 0.0385238
5 0.509545 0.0396221
6 0.465924 0.0466627
7 0.408253 0.0535563
8 0.368671 0.0446162
9 0.338309 0.029967
10 0.32759 0.0230782

Table D.3: Table of Spectral Gaps for a Quadratic Row Sparsity with No Linear
Term. The spectral gaps of random Hamiltonians with varying system sizes and a
quadratic row sparsity of s = n2 − 4 are recorded in this table. The Hamiltonians
were generated using a normal distribution, and the system sizes range from three
to ten qubits. The spectral gaps for each size and row sparsity form a Gaussian
distribution over the iterations; the values chosen to generate the plots are the
means of the distribution. The standard deviations are recorded in this table for
bookkeeping purposes.
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System Size Mean Spectral Gap Standard Deviation
3 0.448036 0.0734268
4 0.513912 0.0343196
5 0.508291 0.0408527
6 0.46293 0.0483015
7 0.403323 0.0536587
8 0.362505 0.0416005
9 0.340279 0.0320261
10 0.329493 0.0182348

Table D.4: Table of Spectral Gaps for aQuadratic Row Sparsity (Uniform). The
spectral gaps of randomHamiltonians with varying system sizes and a quadratic row
sparsity of s = n2−n+1 are recorded in this table. The Hamiltonians were generated
using a uniform distribution, and the system sizes range from three to ten qubits. The
spectral gaps for each size and row sparsity form a Gaussian distribution over the
iterations; the values chosen to generate the plots are the means of the distribution.
The standard deviations are recorded in this table for bookkeeping purposes.

System Size Mean Spectral Gap Standard Deviation
3 0.449535 0.0861218
4 0.530828 0.047366
5 0.529576 0.0661663
6 0.461994 0.0482608
7 0.396148 0.0523911
8 0.360419 0.0443507
9 0.335 0.0314762
10 0.313142 0.019848

Table D.5: Table of Spectral Gaps for a Quadratic Row Sparsity (Normal). The
spectral gaps of randomHamiltonians with varying system sizes and a quadratic row
sparsity of s = n2−n+1 are recorded in this table. The Hamiltonians were generated
using a normal distribution, and the system sizes range from three to ten qubits. The
spectral gaps for each size and row sparsity form a Gaussian distribution over the
iterations; the values chosen to generate the plots are the means of the distribution.
The standard deviations are recorded in this table for bookkeeping purposes.
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System Size Mean Spectral Gap Standard Deviation
4 0.483848 0.0514376
5 0.539165 0.0132614
6 0.532461 0.00739548
7 0.527287 0.00453272
8 0.521715 0.00613425
9 0.470675 0.0236658
10 0.395194 0.0335142

Table D.6: Table of Spectral Gaps for a Cubic Row Sparsity. The spectral gaps
of random Hamiltonians with varying system sizes and a cubic row sparsity of
s = b0.5n3−n2−n−2c are recorded in this table. The Hamiltonians were generated
using a uniform distribution, and the system sizes range from four to ten qubits. The
spectral gaps for each size and row sparsity form a Gaussian distribution over the
iterations; the values chosen to generate the plots are the means of the distribution.
The standard deviations are recorded in this table for bookkeeping purposes.
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A p p e n d i x E

TABLES OF SPECTRAL GAPS FOR VARYING SPARSITIES

We note beforehand that the program was run 1000 times for every row sparsity
value when the system size was fixed at six qubits. The program was run 200 times
for every row sparsity value when the system size was fixed at eight qubits.

System Size Mean Spectral Gap Standard Deviation
1 0.0573202 0.0232473
2 0.164776 0.047922
3 0.236346 0.0425841
4 0.279917 0.0452841
5 0.307812 0.0514049
6 0.322693 0.0527776
7 0.33135 0.0540615
8 0.343187 0.0573291
9 0.347102 0.0584836
10 0.354374 0.0592948
15 0.379749 0.0619381
20 0.399062 0.0636982
25 0.428592 0.0596389
30 0.456042 0.0524913
35 0.478275 0.0425512
40 0.500415 0.0317799
45 0.52329 0.0235721
50 0.534084 0.0120081
55 0.534482 0.00770926
60 0.532918 0.00730745
64 0.532431 0.00725479

Table E.1: Table of Spectral Gaps for Varying Sparsity at 6 Qubits. The spectral
gaps of random Hamiltonians with varying row sparsities for a fixed system size
of six qubits are recorded in this table. The Hamiltonians were generated using
a uniform distribution. The spectral gaps for each size and row sparsity form a
Gaussian distribution over the iterations; the values chosen to generate the plots are
the means of the distribution. The standard deviations are recorded in this table for
bookkeeping purposes.
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System Size Mean Spectral Gap Standard Deviation
1 0.059097 0.0120008
2 0.207349 0.0244815
3 0.2478 0.0278092
4 0.287381 0.0312335
5 0.30578 0.0317456
6 0.317716 0.0312893
7 0.317794 0.0350901
8 0.320327 0.0357085
9 0.325122 0.0359037
10 0.328836 0.0370275
20 0.336872 0.0411096
30 0.343144 0.0395401
40 0.354005 0.0418522
50 0.358094 0.0411936
60 0.366935 0.0466386
70 0.374319 0.0441991
80 0.388093 0.0477802
90 0.402302 0.0447742
100 0.417807 0.0454497
110 0.429714 0.0443658
120 0.438333 0.109476
130 0.471791 0.0306441
140 0.478555 0.0267372
150 0.487398 0.0179878
160 0.494481 0.0169873
170 0.512532 0.0172845
180 0.521308 0.00888657
190 0.522598 0.00283208
200 0.52192 0.00295168
210 0.52172 0.00304521
220 0.521245 0.00307243
230 0.520854 0.00299041
240 0.520439 0.0031063
250 0.52004 0.00278052

Table E.2: Table of Spectral Gaps for Varying Sparsity at 8 Qubits. The spectral
gaps of random Hamiltonians with varying row sparsities for a fixed system size
of eight qubits are recorded in this table. The Hamiltonians were generated using
a uniform distribution. The spectral gaps for each size and row sparsity form a
Gaussian distribution over the iterations; the values chosen to generate the plots are
the means of the distribution. The standard deviations are recorded in this table for
bookkeeping purposes.
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