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Abstract

Liquid is a state of matter that is intermediate between the gas state and the solid

state. Though it is an ordinary state of matter, the application of statistical mechanics

for understanding its properties is far from complete. Compared to the solid state, the

liquid state has molecules that can move around freely, and yet, unlike that in the gas

state, the intermolecular correlations are significant in the liquid state. Therefore, the

distance dependent correlations in a liquid need to be taken into account to properly

describe a liquid. In particular, all molecules are polarizable. The polarizable nature

allows the molecules to induce polarization in surrounding molecules, giving rise to

van der Waals interactions that have important consequences on the properties of

a liquid. In addition to polarizability, many molecules are intrinsically polar. The

long-ranged dipole-dipole correlations contribute to the complexity of interactions

and lead to a myriad of interesting properties special to a liquid.

In recent years, field-theoretic technique has emerged as a convenient and system-

atic tool for deriving coarse-grained theories for a wide range of complex-fluid and

soft-matter systems while preserving the essential physics. In this thesis, we present

the application of field-theoretic approaches to two problems of liquids and their mix-

tures. The first problem is to describe the dielectric properties of an ordinary liquid

or liquid mixture under equilibrium condition, where current field-theoretic methods

are inadequate. In this problem, we apply a variational field-theoretic approach to

develop a statistical field theory of the liquid, and predict the dielectric constant

and the miscibility of liquids using the variational free energies derived. The second

problem involves the nonequilibrium solvent composition and orientational polariza-

tion surrounding some charged solute in the context of electron transfer reactions.
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Using a self-consistent-field theory with constrained coarse-grained fields, we derive

expressions for the nonequilibrium solvation energy, and apply it to compute the

reorganization energy of electron transfer reactions. The theories presented in this

thesis lead to simple analytical expressions for the equilibrium and the nonequilib-

rium free energies, making it possible to theoretically survey a wide range of liquids.

In addition, our models involve only a few readily-available molecular parameters

and avoid the use of any adjustable parameters, allowing one to make a priori pre-

dictions on the properties of liquids and their mixtures. Liquid is a state of matter

that is intermediate between the gas state and the solid state. Though it is an or-

dinary state of matter, the application of statistical mechanics for understanding its

properties is far from complete. Compared to the solid state, the liquid state has

molecules that can move around freely, and yet, unlike that in the gas state, the

intermolecular correlations are significant in the liquid state. Therefore, the distance

dependent correlations in a liquid need to be taken into account to properly describe

a liquid. In particular, all molecules are polarizable. The polarizable nature allows

the molecules to induce polarization in surrounding molecules, giving rise to van der

Waals interactions that have important consequences on the properties of a liquid.

In addition to polarizability, many molecules are intrinsically polar. The long-ranged

dipole-dipole correlations contribute to the complexity of interactions and lead to a

myriad of interesting properties special to a liquid.

In recent years, field-theoretic technique has emerged as a convenient and system-

atic tool for deriving coarse-grained theories for a wide range of complex-fluid and

soft-matter systems while preserving the essential physics. In this thesis, we present

the application of field-theoretic approaches to two problems of liquids and their mix-

tures. The first problem is to describe the dielectric properties of an ordinary liquid

or liquid mixture under equilibrium condition, where current field-theoretic methods

are inadequate. In this problem, we apply a variational field-theoretic approach to

develop a statistical field theory of the liquid, and predict the dielectric constant

and the miscibility of liquids using the variational free energies derived. The second

problem involves the nonequilibrium solvent composition and orientational polariza-
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tion surrounding some charged solute in the context of electron transfer reactions.

Using a self-consistent-field theory with constrained coarse-grained fields, we derive

expressions for the nonequilibrium solvation energy, and apply it to compute the reor-

ganization energy of electron transfer reactions. The theories presented in this thesis

lead to simple analytical expressions for the equilibrium and the nonequilibrium free

energies, making it possible to theoretically survey a wide range of liquids. In addi-

tion, our models involve only a few readily-available molecular parameters and avoid

the use of any adjustable parameters, allowing one to make a priori predictions on

the properties of liquids and their mixtures.
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for fixed interionic separation 10 Å in water. The bulk linear dielectric

constant (BLDC) approximation is calculated using Eq. (4.4), with static

dielectric constant εs = 80.1 and optical dielectric constant ε∞ = n2 =

1.332, where n denotes the refractive index. . . . . . . . . . . . . . . . 92

4.4 Free energy curves vs. the charging parameter ζ for self-exchange re-

actions. Each dashed line is a parabolic fit to the corresponding free

energy curve that passes through the values of G(ζ = 0) and G(ζ = 1). 94

4.5 The magnitude of change in the orientational polarization |∆Por| be-

tween the reactant and the product equilibrium states for (a) the M2+/M3+

exchange reaction and (b) the M0/M1+ exchange reaction. The values

of polarization change has unit 10−3e/Å
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z = 2.75 Å respectively. The white semispherical region indicates the

space occupied by the donor and the acceptor, which is inaccessible to

the solvent molecules. . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.2 Solvent reorganization energy (λ) vs. the mole fraction of component

A (xA) for electron self-exchange reaction Fe2+ + Fe3+ → Fe3+ + Fe2+

in (a) water/methanol, (b)2-propanol/pyridine, and (c) water/DMSO

mixtures. The solid squares are results calculated with the DSCFT,

while the dashed lines are results calculated from the uniform dielectric

treatment using Eq. (5.25). . . . . . . . . . . . . . . . . . . . . . . . . 118

5.3 Equilibrium composition (mole fraction of solvent component A) around

the donor-acceptor complex at the reactant state for the Ag1+ + Ag0 →

Ag0 + Ag1+ reaction in a 50:50 mixture of (a) water and methanol, (b)

2-propanol and pyridine, and (c) water and DMSO. The mole fraction

of A is plotted on a cylindrical r-z coordinate with the centers of the

donor and the acceptor located on the r = 0 axis. The center of the

donor (Ag1+) and the acceptor (Ag0) are located at z = −2.75 Å and
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Chapter 1

Introduction

The liquid state of matter is perceived as being intermediate in nature between

the gas state and the solid state. However, in many aspects, the properties of a

liquid are vastly different from a solid and a gas. In a liquid, there is a lack of

translationally-ordered structure, and yet, the intermolecular interactions are strong

and the molecules are constantly influencing the molecular state of one another. In

particular, all molecules are polarizable, such that instantaneous induced dipole mo-

ments constantly appear and disappear as the molecules move towards and away from

one another. Additionally, many molecules are polar, and their permanent dipole mo-

ments have significant effects on the correlations between the molecules. The presence

of dipole moments gives rise to strong and long-ranged electrostatic interactions that

have important consequences on the macroscopic properties of liquids. Therefore,

to properly describe the basic nature of a liquid, one must carefully account for the

effects of dipole-dipole interactions, which, at present, are still of great theoretical

complexity to modern statistical-mechanical treatments of liquids.

In addition to pure liquids, there has also been long-standing interest in liquid

mixtures due to their technological and industrial importance, as they offer virtually

endless possibilities as tunable reaction media. Macroscopic properties such as di-

electric constants, refractive indices, and transport properties of liquid mixtures can

all be conveniently tuned by varying their mixture composition. Scientifically, liquid

mixtures are interesting because they often exhibit complex structural and dynamical

features that are not present in pure liquids. For example, charge solvation in a liquid
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mixture is profoundly influenced by the phenomenon of preferential solvation, where

the local composition of the solvent around a charged solute is significantly different

from the bulk composition of the mixture.2 In the realm of liquid mixtures, the devel-

opment of simple, convenient, and yet robust theories is particularly helpful, because

the sheer number of different solvent mixtures makes it too expensive to be surveyed

through experimental methods or computational simulations. To facilitate the search

of new reaction media for technological applications, a convenient and predictive the-

oretical framework for liquid mixtures is desirable. Presently, the generalization of

liquid theories to liquid mixtures remains challenging, because the additional inter-

actions and features in liquid mixtures often make the theories intractably complex.

The application of statistical mechanics to the study of liquids has progressed

through the past century, but the theoretical framework is far from being complete.3

Early attempts describe liquids as disordered solids with lattice model;4,5 they were

popular from the mid-1930s until the early 1960s, but they fail to predict a sufficiently

large entropy. An alternative and more fundamental approach is to model the liquids

using integral equation methods.6–8 The approach starts by writing down exact equa-

tions for the molecular distribution function, and then introduces approximations to

obtain a solution for the distribution function. This approach is able to provide the

distribution functions directly, and is applicable to a wide variety of properties, but

the theory often results in an integral equation that must be numerically solved in

most cases, and the computation for numerical solutions can be particularly cumber-

some for molecular liquids (for which the distribution functions involve orientational

dependence) and liquid mixtures (for which mixture distribution functions are in-

volved). Furthermore, the approach is often model-dependent, or includes adjustable

parameters for liquids that cannot be determined a priori. Another successful theo-

retical framework is based on the thermodynamic perturbation theories.6,7,9,10 In this

approach, a reference fluid is chosen, and the free energy of the system is written

as a perturbation from that of the reference system. However, the drawback in the

approach is that the reference system must be close enough to the actual system, and

as a result, it is difficult to apply the theory to general liquid systems.
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Presently, one of the great difficulties for statistical-mechanical treatment of liquid

is to account for the effects of molecular polarizability, which causes fluctuating in-

stantaneous dipoles to constantly appear and disappear in the molecules. For integral-

equation theories and perturbative approaches, it is a daunting task to include the

induced-dipole dependence in the correlation functions. Therefore, most work treats

solvent molecules as nonpolarizable molecules, for example, in the recently developed

molecular density functional theories.11,12 Other researchers approximate the effects

of induced dipoles by considering renormalized systems/energies of nonpolarizable

solvent.13 The challenge in treating solvent polarizability poses a particular difficulty

in the description of nonequilibrium properties of the solvent in the context of elec-

tron transfer reactions, where the permanent dipole moments and the induced dipole

moments respond to the charge transfer on different time scales. Therefore, it is de-

sirable to develop a convenient theoretical framework to treat both the permanent

and the induced dipole moments explicitly without adding much complexity to the

theory.

This thesis presents an alternative approach for the description of liquids and their

mixtures, based on field-theoretic methods. In recent years, field-theoretic approach

has been applied to a wide range of complex-fluid and soft-matter systems,14–16 includ-

ing polymeric systems,14,16 biomolecular systems,17,18 interfacial phenomena,19 and

amphiphiles,20 and liquid crystals.21 In a general field-theoretic approach, through a

series of identity transformations, the particle-particle interactions can be decoupled

by the introduction of a fluctuating field, such that each particle interacts with the

fluctuating field instead of one another. The procedure may also introduce fluctuating

densities (such as number density, charge density, or polarization density) that can

serve as convenient coarse-grained order parameters for the state of the system. In

a field-based partition function, the fluctuating fields and the fluctuating densities,

instead of the individual particle degrees of freedom, are integrated over in the con-

figurational integral. In addition, the fluctuating fields and the fluctuating densities

may serve to describe the coarse-grained states of the system on the macroscopic

scale. In the context of liquids, field-theoretic methods can provide a convenient and
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systematic coarse-graining procedure so that we can explicitly account for the molec-

ular permanent dipoles and induced dipoles without introducing much complexity to

the theory. The procedure also enables us to circumvent the difficulty of describ-

ing molecular interactions through correlation functions, allowing the theory to be

conveniently generalized to liquid mixtures. If a robust field-theoretical framework

is developed for dipolar solvents and their mixtures, we can readily incorporate the

framework to a myriad of other complex-fluid systems that has already been treated

with field-theoretic approach.

The thesis considers two main systems. The first system is an equilibrium system

of liquids or liquid mixtures. Presently, most field-theoretic approaches for equilib-

rium liquids have only been able to describe the liquid in the limit of dilute gases,

without taking into account how a dipole moment influences its surrounding, which

then exerts a field back on the dipole. In this thesis, we present a variational field-

theoretic approach for the dipolar liquid systems, such that the effects of reaction

field in the liquid can be taken into account. We apply the theory to calculate the

dielectric constants of pure liquids and liquid mixtures and to predict the miscibil-

ity between liquids. Our development of the variational field-theoretic approach is

presented in Part I (Chapters 2 and 3) of this thesis.

The second system that we consider is a system of nonequilibrium pure solvent or

solvent mixtures around charged solutes, in the context of electron transfer reactions.

In an electron transfer reaction, the electronic transition is a very fast process. While

the solvent electronic degrees of freedom (represented by their induced dipoles) can

react to the electronic transition on the same time scale, the solvent nuclear degrees

of freedom (represented by their positions and their permanent dipoles) respond on

a much slower time scale. Due to the different time scales for the fast electronic

and the slow nuclear response in the solvent, the electron transfer process involves

a nonequilibrium solvation state, where the solvent nuclear degrees of freedom are

out-of-equilibrium with the charge on the solute and with the solvent electronic de-

grees of freedom. The problem of nonequilibrium solvation requires one to separate

the electronic and nuclear degrees of freedom of the solvent. Our field-theoretic ap-
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proach provides a simple framework for naturally treating the solvent permanent

and induced dipoles as independent degrees of freedom. The orientational and elec-

tronic polarizations are described as independent coarse-grained fields, at the same

level of approximation. This provides great convenience for treating the problem of

nonequilibrium charge solvation. In this thesis, we present our development of a self-

consistent-field theory for nonequilibrium charge solvation in Part II (Chapters 4 to

6).

In developing the field-theoretic approaches for both the equilibrium and the

nonequilibrium systems, we describe the solvent molecules using only a few param-

eters that are readily available from physicochemical tables; the parameters include

the permanent dipole moment and the polarizability for each solvent molecule, as

well as the volume for each molecule. Our goal is to develop theories that use a

minimal set of parameters but account for the most important effects and provide

the key physical insights. By limiting the dependent variables to a few simple and

non-adjustable parameters, the theories are more convenient for making a priori pre-

dictions than more elaborate theories that are based on detailed molecular models

and require a large set of model-dependent, fitting parameters. Furthermore, since

detailed molecular models are not available for general liquids, the theories presented

in this thesis would serve as convenient tools for surveying properties of general liquids

and mixtures mixtures.

The thesis is organized as follows. In Chapter 2, using a variational field-theoretic

approach, we derive a theory for calculating the dielectric constants of a pure liq-

uid, allowing the effect of reaction field to be taken into account without casting

a cavity in the homogeneous system. The resulting theory evaluates the dielectric

constant of a liquid with two simple algebraic equations, based on readily-available

molecular quantities including the gas-phase permanent dipole moment, the molec-

ular isotropic polarizability, and the volume of each molecule in the liquid. Though

free of any adjustable parameters, the theory calculates dielectric constants of liquids

in better agreement with experimental values compared to earlier theories based on

field-theoretic methods with saddle-point approximation.
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In Chapter 3, we present a variational field-theoretical approach for studying polar

liquid mixtures, and apply the theory to compute the dielectric constants and misci-

bility of liquid mixtures. The theory results in a simple analytical expression for the

free energy of a mixture. Using only the dielectric constants and the molar volumes

of the pure-solvent components as inputs, and not any adjustable parameters, the

theory predicts the dielectric constants and miscibility of liquid mixtures in impres-

sive agreements with experimentally observed results. In addition, a short-ranged

polarization distribution function is introduced for each solvent molecule, removing

the divergence problems in the field-theoretic treatment.

In Chapter 4, we develop a molecularly-based dipolar self-consistent-field theory

(DSCFT) for charge solvation in pure solvents under equilibrium and nonequilibrium

conditions, and apply it to the reorganization energy of electron transfer reactions.

The DSCFT uses a set of molecular parameters, such as the solvent molecule’s per-

manent dipole moment and polarizability, thus avoiding approximations that are

inherent in treating the solvent as a linear dielectric medium. A simple, analytical

expression for the free energy is obtained in terms of the equilibrium and nonequilib-

rium electrostatic potential profiles and electric susceptibilities, which are obtained

by solving a set of self-consistent equations. With no adjustable parameters, the

DSCFT predicts activation energies and reorganization energies in good agreement

with previous experiments and calculations for the electron transfer reorganization

energies between metallic ions. Because the DSCFT is able to describe the properties

of the solvent in the immediate vicinity of the charges, it is unnecessary to distinguish

between the inner-sphere and outer-sphere solvent molecules in the calculation of the

reorganization energy as in previous work. Furthermore, examining the nonequilib-

rium free energy surfaces of electron transfer, we find that the nonequilibrium free

energy is well approximated by a double parabola for self-exchange reactions, but

the curvature of the nonequilibrium free energy surface depends on the charges of

the electron-transferring species, contrary to the prediction by the linear dielectric

theory.

In Chapter 5, we extend the DSCFT for liquid mixtures under equilibrium and



7

nonequilibrium conditions, and apply it to compute the solvent reorganization en-

ergy of electron transfer reactions. In addition to the nonequilibrium orientational

polarization, the reorganization energy in liquid mixtures is also determined by the

out-of-equilibrium solvent composition around the reacting species due to preferen-

tial solvation. Using molecular parameters that are readily available, the DSCFT

naturally accounts for the dielectric saturation effect and the spatially varying sol-

vent composition in the vicinity of the reacting species. We identify three general

categories of binary solvent mixtures, classified by the relative optical and static di-

electric constants of the solvent components. Each category of mixture is shown to

produce a characteristic local solvent composition profile in the vicinity of the reacting

species, which gives rise to the distinctive composition dependence of the reorganiza-

tion energy that cannot be predicted using the bulk dielectric constants of the solvent

mixtures.

In Chapter 6, using both the DSCFT and molecular dynamics simulations, we

calculate the solvent reorganization energies for the Fe2+/Fe3+ electron exchange re-

action in binary solvent mixtures, that are classified into three types based on the

relative magnitudes of permanent dipole moments and polarizabilities of the compo-

nents. Due to preferential solvation, the solvent reorganization energy in a mixed

solvent not only includes contributions from the nonequilibrium orientational polar-

ization, but also contributions from the nonequilibrium solvent composition around

the charged redox centers. Both theory and simulations suggest that solvent reorga-

nization energy in mixtures is predominantly determined by the solvent composition

in the vicinity of redox centers.

Finally, in Chapter 7, we offer some concluding remarks and point to some direc-

tions for future work.
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Part I

Equilibrium Properties
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Chapter 2

Dielectric Constants of Pure
Liquids: A Field-Theoretic
Variational Approach

2.1 Introduction

Dielectric constant is one of the most basic properties of a liquid. Since a century ago,

the computation of the dielectric constant from molecular properties has received a

great deal of interest in the scientific community.22,23 In 1912, Debye derived an equa-

tion relating the dielectric constant with the molecular permanent dipole moment and

the isotropic polarizability. As Debye assumed the “internal field” that acts on each

dipole to be equal to the external field, intermolecular dipole-dipole interactions are

completely ignored, and therefore, the Debye equation is only applicable for dilute

systems such as gases.24,25 In 1936, Onsager developed an improved model by consid-

ering a point dipole at the center of a spherical cavity that is embedded in a homo-

geneous dielectric continuum. The model accounts for the fact that the point dipole

instantaneously rearranges the dipoles in its surrounding medium, and the resulting

polarization in the surrounding gives rise to a reaction field that tends to enhance

the magnitude of the dipole moment in the cavity.26 The Onsager equation provides

better predictions of the dielectric constants than the Debye equation for condensed

systems such as liquids.27 Shortly after, Kirkwood extended Onsager’s model by intro-

ducing a g-factor that accounts for the short-range orientational correlation between
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the molecules.28 While Kirkwood’s formulation has become especially relevant for

determining dielectric constants with computer simulations,29 it is often difficult to

evaluate the g-factor analytically because detailed information about molecular in-

teractions is needed for calculation.27,30 Since then, more sophisticated theories for

dielectric constants have been developed based on perturbative expansions,31–33 clus-

ter expansions,34–36 and integral-equation theories,13,37–39 but the Debye equation and

the Onsager equation remain popular due to their simplicity.

Despite the large body of theoretical literature on the computation of dielectric

constants, the development of a simple parameter-free theory for calculating dielec-

tric constants based on readily-available molecular parameters remains a challenge.

Methods based on perturbative expansions are unsatisfactory because the series do

not converge with increasing number of terms.40 Cluster expansion methods are able

to relate dielectric constants to molecular properties, but the required correlation

functions are cumbersome to evaluate. Integral-equation theories often describe po-

larizable molecules using an effective permanent dipole moment with zero polariz-

ability, even though molecular polarizability has shown to have significant effect on

the dielectric property of a fluid.41–43 More recently, dielectric theories of liquids have

been developed using field-theoretic approaches with saddle-point approximation,44,45

providing a mean-field description for the system, whose results are comparable to the

predictions of the Dybye equation. In addition, Levy et. al.46,47 introduces a higher-

level field-theoretic treatment and derived an expression for the dielectric constant at

the one-loop level, but the resulting theory is very sensitive to the parameter chosen

for the momentum cut-off. Despite the downsides, a field-theoretic dielectric theory

has the advantage that it can be conveniently integrated into studies for a wide range

of soft-matter systems,14–16 and therefore, it is desirable to develop an accurate theory

for the dielectric constant based on field-theoretic methods.

In this work, our goal is to derive a field-theoretic theory for calculating the di-

electric constant of a pure liquid using a variational approach.48,49 By introducing a

physically meaningful reference potential, the variational approach allows us to take

into account the effects of reaction field. The resulting field-theoretic variational the-



11

ory (FTVT) presented in this work consists of simple analytical equations that allows

one to calculate the dielectric constant of a liquid based on readily-available molec-

ular parameters, including the gas-phase permanent dipole moment, the molecular

isotropic polarizability, and the average volume of a molecule, with the use of no

adjustable parameters. We compare the FTVT-calculated dielectric constants with

the experimentally-measured values for common liquid solvents, and observe that the

agreement between the theory and the experiment is satisfactory. For non-hydrogen-

bonding liquids, the slope of the best-fit line for the FTVT-calculated vs. experimental

values of dielectric constant is close to 1. Furthermore, unlike the Onsager derivation,

which casts a cavity in the system and treats the molecule in the cavity as a special

one, the FTVT does not involve the construction of a cavity. This feature makes it

straightforward to extend the FTVT to liquid mixtures, for which analytical models

are particularly desirable since it is inefficient to explore the huge parameter space of

mixture compositions with computer simulations.

Another feature of the theory is the introduction of a short-ranged polarization

distribution function for each molecule. The advantage of introducing such a short-

ranged polarization distribution function is that the molecules are not described as

point dipoles, and thus, the approach yields a theory that is free of divergences (which

is a common issue in field-theoretic treatments of electrostatic problems). Where no

divergence is caused, the short-ranged polarization distribution function can be taken

to the point-dipole limit to simplify the theory.

The chapter is organized as follows. In Section 2.2, we describe the model and

formulate the exact partition function in the field-theoretic representation. Then, we

introduce a Gaussian reference action and apply the variational approach based on the

Gibbs-Feynman-Bogoliubov variational principle. We solve the variational equations

in the limit of zero external field, and find the relation between the polarization and

the external field to calculate the dielectric constant. In Section 2.3, we apply the

FTVT to calculate the dielectric constants of common organic liquids, and compare

the results to the values calculated by the Onsager equation and the the dipolar

self-consistent-field theory (DSCFT) in Ref. 44, both of which compute dielectric
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constants with no adjustable parameters. Finally, in Section 2.4, we summarize the

key features of the FTVT and offer some concluding remarks.

2.2 The Field-Theoretic Variational Theory for Dipo-

lar Liquids

2.2.1 The System

We consider a system of N dipolar molecules in a field E0(r) applied by external

sources. Each dipolar molecule is characterized by its molecular volume v, its per-

manent dipole with magnitude µ̄, and its molecular isotropic polarizability α. We let

ri, µi, and pi denote the position, the permanent dipole moment (where |µi| = µ̄),

and the induced dipole moment of the ith molecule, respectively. The total dipole

moment of the ith molecule can be written as mi = µi + pi. To avoid numerical

divergences caused by the point-dipole approximation for the molecules, we assume

that the dipole moment finitely spread around the center of each molecule described

by a short-ranged function h(r). At this point, we do not specify the form of h(r),

and only require that the integral over h(r) in space is unity, i. e.
∫
drh(r) = 1. With

these, the instantaneous polarization of the ith molecule, P̂i(r), can be expressed as

P̂i(r) = mih(r− ri) = (µi + pi)h(r− ri) (2.1)

The electrostatic energy U of the system can be expressed as

U =
1

2

N∑
i=1

N∑
j=1
i 6=j

∫
dr

∫
dr′ P̂i(r)T(r− r′)P̂j(r

′) +
N∑
i=1

p2
i

2α

−
N∑
i=1

∫
dr P̂i(r) · E0(r) (2.2)

where T(r) = −∇∇(1/4πε0|r|) is the dipole-dipole interaction tensor. The first term

in U is the sum of the pairwise dipole-dipole interaction energy between the molecules,
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the second term is the distortion energy of the induced dipoles written within the

harmonic approximation,50,51 and the third term describes the interactions between

the dipoles and the applied external field E0. To proceed, we define P̂(r) =
∑N

i=1 P̂i(r)

to be the instantaneous polarization of the entire system, and rewrite the energy U

in terms of P̂(r) as:

U =
1

2

∫
dr

∫
dr′ P̂(r)T(r− r′)P̂(r′)−

N∑
i=1

1

2

∫
dr

∫
dr′ P̂i(r)T(r− r′)P̂i(r

′)

+
N∑
i=1

p2
i

2α
−
∫
dr P̂(r) · E0(r) (2.3)

As improper integrals involving the dipole-dipole interaction tensor T(r) is nonunique,

careful interpretation is required. In fact, the nature and the origin of problem has

been addressed in the literature, and the required interpretation that is consistent

with the Maxwell equations is to express the dipole-dipole interaction tensor as52

T(r) = lim
δ→0

[
H(|r| − δ)

(
1

4πε0r3

[
1− 3rr

r3

])
+

1

3ε0

1δ(r)

]
(2.4)

where H(x) is the Heaviside step function, and 1 is the unit tensor. We understand

that the δ → 0 limit is eventually taken.

For convenience, we choose to work with the grand canonical ensemble of the

system under chemical potential µ, inverse temperature β = 1/kBT , and volume V .

The particle-based grand partition function of the system is given by

Ξ =
∞∑
N=0

λN

N !
Z(N) (2.5)

with Z(N) being the canonical partition function in which the Boltzmann factor is

integrated over the configuration space of N particles and given by

Z(N) =

(∏
i

∫
dri

∫
dΩi

∫
dpi

)
e−βU(N) (2.6)
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where Ωi indicates the solid angle of the permanent dipole µi. λ = eβµ is the fugacity

of the molecule. The grand potential W of the system is

βW = − ln Ξ (2.7)

Using standard field-theoretic techniques, we transform the particle-based grand

partition function into the field-based grand partition function using the Faddeev-

Popov method.14,15,53 The transformation removes the quadratic terms of intermolec-

ular interactions, and introduces terms describing particles interacting with an aux-

iliary field. The resulting grand partition function is written as functional integrals

over the polarization and the auxiliary field, instead of over the molecular degrees

of freedom. We defer the details of the transformation to Appendix 2.A and simply

write down the resulting field-based grand partition function as

Ξ =

∫
DP

∫
DG e−L[P,G] (2.8)

where the field-theoretic action L is given by

L[P,G] =
1

2
〈P|T |P〉+ i 〈P| G〉 − 〈P| E0〉

−λ
∫
dr

∫
dΩ

∫
dp ei(µ+p)·Gh(r)−p2

2ᾱ
+ 1

2
(µ+p)·T h(r)·(µ+p) (2.9)

where we have defined T = βT, E0 = βE0, and ᾱ = α/β for notational symplicity.

The rules for the inner products are defined as

〈v1| v2〉 =

∫
dr v1(r) · v2(r) (2.10)

〈v1|M |v2〉 =

∫
dr

∫
dr′ v1(r)M(r− r′)v2(r′) (2.11)

and Gh(r) and T h(r) are respectively the fluctuating field and the dipole interaction
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tensor averaged over a single molecule, and they are given by

Gh(r) =

∫
dr′h(r′ − r)G(r′) (2.12)

T h(r) =

∫
dr′
∫
dr′′ h(r′ − r)T (r′ − r′′)h(r′′ − r) (2.13)

The field-based grand partition function Ξ in Eq. (2.8) is formally exact. However,

since the last term in L – which is the partition function of a single molecule under

the auxiliary field G – is not Gaussian, it is difficult to evaluate the partition function

exactly. In the following section, we introduce a variational approach to provide an

approximate treatment to the partition function.

2.2.2 Variational Treatment

We formulate the variational theory by introducing the reference action L0, which

has the last term in L replaced with an expression of the Gaussian form:

L0[P,G] =
1

2
〈P|T |P〉+ i 〈P| G〉 − 〈P| E0〉

+
1

2
〈G + iF|A−1 |G + iF〉 (2.14)

where A(r) = a1δ(r), with a and F being the variational parameters. The inverse

of operator A is A−1(r) = 1δ(r)/a, such that the relation
∫
dr′A(r − r′)A−1(r′ −

r′′) = 1δ(r− r′′) is satisfied. Because the last term in L involves only spatially local

interactions, a δ-function on spatial variable is introduced in the Gaussian kernel in

the last term of L0.

An upper bound for the field-based grand potential W can be obtained through

the Gibbs-Feynman-Bogoliubov inequality:54

βW ≤ βW0 = − ln Ξ0 + 〈L − L0〉0 (2.15)
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where Ξ0 is given by

Ξ0 =

∫
DP

∫
DG e−L0[P,G] (2.16)

and 〈O〉0 is the average of observable O evaluated in the reference ensemble, i.e.,

〈O〉0 =
1

Ξ0

∫
DP

∫
DGO[P,G]e−L0[P,G] (2.17)

As W0 is the upper bound for the grand potential W , we carry out the variational

treatment by minimizing the upper bound W0 with respect to variational parameters

a and F, and approximate W with the minimized upper bound. We present the

details of the evaluation of W0 in Appendix 2.B, and simply present the result here:

βW0 = − ln

(
detA

det(T + A)

) 1
2

− 1

2

∫
dr

β

v(β + ε0a)

−1

2

(
ε0

β + ε0a

)2

〈E0 − F|T |E0 − F〉

−λ
∫
dr

∫
dΩ

∫
dp e−f(µ,p; r) (2.18)

where f(µ,p; r) is the effective potential experienced by a molecular at position r,

given by

f(µ,p; r) =
p2

2ᾱ
+

1

2

(
ε0a

β + ε0a
− 1

)
(µ + p)T h(r)(µ + p)− (µ + p) · EI,h(r) (2.19)

where the field EI,h is given by

EI,h(r) =

∫
dr′ h(r− r′)EI(r′) (2.20)

with EI being a linear combination of the applied field E0 and the fluctuating field F

defined as

EI(r) = E0(r)− ε0

β + ε0a

∫
dr′T (r− r′) (E0(r′)− F(r′)) (2.21)

In addition, the determinant of a general kernel M is given in terms of functional
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integral as

(detM)−
1
2 =

∫
Dξe−

1
2
〈ξ|M|ξ〉 (2.22)

To further simplify the free energy, we now assume that the short-ranged polariza-

tion distribution function h(r) is a spherically symmetrical function. The assumption

allows us to reduce the tensor Th to

T h(r) =

∫
dr′
∫
dr′′ h(r′ − r)T (r′ − r′′)h(r′′ − r) = th1 (2.23)

with th being a scalar. With the simplification, the potential f(µ,p; r) can be rewrit-

ten as

f(µ,p; r) =
p2

2ᾱ
+

1

2

(
ε0a

β + ε0a
− 1

)
th(µ + p)2 − (µ + p) · EI,h(r) (2.24)

Next, we minimize the variational free energy W0 with respect to a and F(r). In

this chapter, for simplicity, we assume that the variation in the electrostatic fields

is much larger in length scale than the molecular size, such that Gh(r) = G(r) and

EI,h(r) = EI(r). With the details of the minimization procedure presented in Ap-

pendix 2.C, the minimization procedure leads to the following set of two constitutive

relations which can be solved simultaneously for the variational parameters a and F:

ε0

β + ε0a
[E0(r)− F(r)] = c(r)ᾱC

[
1 +

µ̄2

ᾱ
CG (µ̄C|EI(r)|)

]
EI(r) (2.25)

and

1

a
=

1

3
c(r)

{
3Cᾱ + C2µ̄2 + C2ᾱ2

[
1 + 2

µ̄2

ᾱ
CG (µ̄C|EI(r)|)

]
EI(r)2

}
(2.26)

where C =
(

1− βᾱth
β+ε0a

)−1

, and G(x) = (coth x− 1/x) /x, and c(r) is the number

concentration of the particles in the system given by

c(r) = λ

∫
dΩ

∫
dp e−f(µ,p;r) (2.27)
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2.2.3 Dielectric Constant of a Homogeneous System

The dielectric constant can be found from the linear relationship between the average

polarization of the system and the applied field in the limit of zero applied field. In

order to obtain a relationship between the polarization and the applied field, one needs

to take the derivative of free energy of the system with respect to E0(r). Furthermore,

we assume that the polarization is distributed uniformly in a spherical region with

molecular volume v, such that h(r) = 1/v inside the sphere and 0 otherwise. This

short-ranged distribution function leads to the self-interaction factor th = β/3ε0v (see

Section 3.A for the derivation). To obtain the dielectric constant, we first take the

derivative of the variational free energy with respect to E0(r) to obtain a relationship

between the polarization and the applied field:

〈P(r)〉 =
∂ lnZ

∂βE0(r)
≈ − ∂βW0

∂E0(r)
(2.28)

To obtain an expression for the dielectric constant, we only need to know the

expression for 〈P(r)〉 to linear order in E0(r), because the dielectric constant relates

to the polarization response in the limit of zero applied field. Evaluation of the

derivative in Eq. (2.28) above leads us to

〈P(r)〉

=

(
ε0

β + ε0a

)2 ∫
dr′
∫
dr′′ T (r− r′)

[
1δ(r′ − r′′)− δF(r′)

δE0(r′′)

]
(E0(r′′)− F(r′′))

+

∫
dr′
∫
dr′′ c(r′′)

{[
1δ(r− r′)δ(r′ − r′′)

− ε0

β + ε0a
T (r− r′)

(
1δ(r′ − r′′)− δF(r′)

δE0(r′′)

)]
〈µ + p〉f(r′′)

}
(2.29)

where 〈µ + p〉f(r) is given by Eq. (2.65) as

〈µ + p〉f(r) = ᾱC

[
1 +

µ̄2

ᾱ
CG (µ̄C|EI(r)|)

]
EI(r) (2.30)

To linear order, we let δF(r)/δE0(r′) = K(r, r′), and the Fourier transform of
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Eq. (2.29) leads to

〈P(k)〉

=

(
ε0

β + ε0a

)2

T (k) [1−K(k)] [1−K(k)]E0(k)

+
1

a

[
1− ε0

β + ε0a
T (k) (1−K(k))

] [
1− ε0

β + ε0a
T (k) (1−K(k))

]
E0(k) (2.31)

To obtain an expression for the electric susceptibility χ0(k), we compare Eq. (2.31)

with the following relation between the polarization of the system and the applied

field:

〈P(k)〉 = ε0χ0(k)E0(k) =
ε0

β
χ0(k)E0(k) (2.32)

Thus, the expression for χ0(k) is given by

χ0(k) =
β

ε0

(
ε0

β + ε0a

)2

T (k) [1−K(k)] [1−K(k)]

+
β

ε0a

[
1− ε0

β + ε0a
T (k) (1−K(k))

] [
1− ε0

β + ε0a
T (k) (1−K(k))

]
(2.33)

For a homogeneous system, the dependence on the spatial variable r could be

dropped. As we are interested the linear relationship between the polarization and

the applied electric field when the applied electric field is small, we solve the consti-

tutive relations Eqs. (2.62) and (2.63) to first order in E0. The result for solving the

constitutive relations to first order in E0 is

1

a
=

1

3v

[
3ᾱC + C2µ̄2

]
(2.34)

and

F = − 2β

β + 3ε0a
E0 (2.35)

Therefore, from Eq. (2.35), we also have

K(k = 0) = − 2β

β + 3ε0a
1 (2.36)
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The dielectric constant ε can be calculated from the trace of the susceptibility

matrix χ0(k) as8

lim
k→0

trχ0(k) =
(ε− 1)(2ε+ 1)

ε
(2.37)

Substituting Eqs. (2.34) to (2.36) into the expression for electric susceptibility in

Eq. (2.33), and evaluating the trace of χ0(k), we have

(ε− 1)(2ε+ 1)

ε
=

3β (2β2 + 3βε0a+ 9ε2
0a

2)

ε0a(β + 3ε0a)2
(2.38)

In the next section, we apply the FTVT to calculate the dielectric constants for

a range of fluids, and compare the values with those calculated using the Onsager

equation and the DSCFT.

2.3 Results and Discussions

In this section, we calculate the dielectric constants of common liquid solvents using

the FTVT, and compare the theory to the Onsager equation and the DSCFT. All

three theories considered in this section calculate the dielectric constant without using

adjustable parameters. To compare their performance, we examine the agreement

between the theoretically predicted dielectric constants of a wide range of liquids

with the corresponding experimentally-observed values.

The Onsager equation is derived by considering a single dipolar molecule in a

spherical cavity and treating the outside of the cavity as a dielectric continuum un-

der a uniform Maxwell field. A key insight of Onsager’s picture is to recognize the

presence of a reaction field, which describes the response of the surrounding dipoles

to each dipole. The reaction field is parallel to the dipole, such that it enhances the

electrostatic field on the dipole but does not contribute to the orienting force on the

dipole. By carving a spherical cavity for a chosen dipole in the system, and solving

for the dipole moment in the cavity self-consistently with the reaction field that it

generates, the Onsager model predicts the dielectric constant through the following
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relation:
(ε− ε∞) (2ε+ ε∞)

ε (ε∞ + 2)2 =
βµ̄2

9vε0

(2.39)

where ε∞ is the optical dielectric constant, and one can relate ε∞ to the isotropic

polarizability of each molecule through the Clausius-Mossotti equation:

ε∞ − 1

ε∞ + 2
=

α

3ε0v
(2.40)

As mentioned in the introduction, the DSCFT is a field-theoretic theory in which

the dielectric constant is calculated at the saddle-point level. The theory considers

an ion solvated in a dipolar solvent, but the dielectric constant can be recovered from

the Eq. (7) in Ref. 44 by calculating the local dielectric constant at positions far away

from the ion, where the local field approaches zero. Upon simplification, the dielectric

constant of a solvent predicted by the DSCFT is given by

ε = 1 +
3α2 + 6βαµ̄2 + β2µ̄4

3ε0v(α + βµ̄2)
(2.41)

In this work, we have chosen the DSCFT as a representative of field-theoretic theories

at saddle-point level. Generally, field-theoretic methods at saddle-point level predicts

values of dielectric constants comparable to the Debye equation, which is applicable

only when the system is sufficiently dilute.

Let us denote the value of dielectric constant calculated by the FTVT, the Onsager

equation, and the DSCFT by εFTVT, εOns, and εDSCFT, respectively. In Tables 2.1

and 2.2, we tabulate the values of theoretically predicted dielectric constants together

with the experimental dielectric constants εexp for a wide range of common liquid

solvents at 20oC. Table 2.1 contains liquids that do not form hydrogen bonds, and

Table 2.2 contains liquids that form hydrogen bonds. In addition, the calculation

parameters – the gas-phase permanent dipole moment µ̄, the molecular polarizability

α, the molecular volume v – are also listed in the table for each liquid. The molecular

volume v is calculated based on the density ρ of the liquid using v = M/(ρNA), where

M is the molar mass of the liquid and NA is Avogadro’s constant.
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In Fig. 2.1, we plot εFTVT, εOns, and εDSCFT vs. εexp for liquids that does not form

hydrogen bonds, which are listed in Table 2.1. A logarithmic scale is used because

the dielectric constant is often considered as a multiplicative screening factor for

electrostatic interactions. For each set of theoretically calculated dielectric constants,

we draw the line of best fit. If all data lies on the straight line with slope equal

1, the agreement between the theory and the experiment is perfect. We find the

slopes for the line of best fit to be 1.04, 0.96, and 0.73 for εFTVT, εOns, and εDSCFT,

respectively. This suggests that the FTVT predicts the dielectric constant much

better than the DSCFT. In addition, the agreement between theoretically predicted

values and the experimentally measured values are comparable for the FTVT and the

Onsager equation.

In Fig. 2.2, we similarly plot the theoretically-calculated dielectric constants vs. the

experimentally-measured values for liquids that form hydrogen bonds considered in

Table 2.2. The slopes of the lines of best fit are 0.79, 0.72, and 0.53 for εFTVT, εOns,

and εDSCFT, respectively. In this case, the FTVT predicts dielectric constants in closer

agreements to the experimental values than the Onsager equation and the DSCFT.

From Figs. 2.1 and 2.2, we first observe that the agreement between the FTVT

and experiment is much improved from the DSCFT. The DSCFT, at saddle-point

level, predicts dielectric constants comparable to the Debye equation which is appli-

cable when the system is sufficiently dilute. The key shortcoming in the saddle-point

approximation is that the effect of reaction field is not accounted for, such that the

inter-dipole interaction has not been taken into consideration. The improvement in

the FTVT over the saddle-point approximation is due to the inclusion of the field F

as the variational parameter, which allows the average field acting on a particle to

fluctuate away from the conjugate field G. If we instead carry out the variational

treatment without introducing F, i. e., by setting F = 0, we obtain ε = 1+βµ̄2/(3ε0v)

in the case of zero polarizability, which is exactly the Debye equation for a dilute gas

of permanent dipoles.

With the construction of a cavity in a homogeneous medium, the Onsager equation

accounts for the effect of reaction field by self-consistently solving for the magnitude
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Figure 2.1: Theoretically-calculated dielectric constants (εFTVT, εOns, and εDSCFT)
vs. experimentally-measured dielectric constants εexp for liquids considered in Ta-
ble 2.1, which do not form hydrogen bonds. The dashed line has slope equal to
1. The lines of best fit have slopes 1.04, 0.96, and 0.73 for the FVTV, the Onsager
equation, and the DSCFT, respectively.
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Figure 2.2: Theoretically-calculated dielectric constants (εFTVT, εOns, and εDSCFT)
vs. experimentally-measured dielectric constants εexp for hydrogen-bonding liquids
considered in Table 2.2. The dashed line has slope equal to 1. The lines of best
fit have slopes 0.79, 0.72, and 0.53 for the FVTV, the Onsager equation, and the
DSCFT, respectively.
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Table 2.1: The calculated values of dielectric constants compared with the experi-
mental values for common liquids that do not form hydrogen bonds. The values of
εFTVT, εOns, and εDSCFT are calculated from the FTVT, the Onsager equation, and
the DSCFT, respectively. The calculation parameters, including the gas-phase per-
manent dipole moment µ̄, the molecular polarizability α, and the molecular volume
v, are listed for each solvent.

Solvent µ̄[D] α[Å
3
] v[Å

3
] εexp εFTVT εOns εDSCFT

non-hydrogen-bonding liquids
acetone 2.69 6.30 122.94 21.01 22.33 15.84 8.15
benzene 0.00 10.40 147.98 2.28 2.10 2.25 1.88
2-butanone 2.76 8.13 149.69 18.56 19.62 14.32 7.39
chlorobenzene 1.54 12.30 169.02 5.69 6.50 6.11 3.87
chloroform 1.15 8.40 134.05 4.81 4.25 4.35 3.23
cyclohexane 0.00 11.00 180.58 2.02 1.91 2.03 1.77
cyclopentane 0.00 9.15 156.17 1.97 1.86 1.98 1.74
cyclopentene 0.20 9.00 146.52 2.09 1.96 2.09 1.85
dibromomethane 1.78 8.68 115.61 7.46 8.35 7.42 4.31
1,2-dichloroethane 1.83 8.30 131.95 10.42 10.05 8.56 4.90
dichloromethane 1.14 6.48 106.31 9.15 9.22 8.02 4.72
diethyl ether 1.15 8.90 172.43 4.27 3.15 3.35 2.78
diglyme 1.92 13.90 236.17 7.36 5.82 5.61 3.78
1,2-dimethoxyethane 1.71 9.50 173.27 7.42 5.90 5.68 3.84
dimethyl sulfoxide 4.10 8.00 117.84 47.24 71.22 41.54 16.18
dimethylformamide 3.86 7.81 128.51 38.25 54.28 32.83 14.02
1,4-dioxane 0.45 8.60 141.53 2.22 2.15 2.30 2.10
ethyl acetate 1.88 8.62 162.51 6.08 6.61 6.21 4.09
furan 0.69 7.40 118.81 3.19 2.71 2.90 2.52
heptane 0.00 13.70 244.87 1.92 1.81 1.92 1.70
hexane 0.08 11.90 216.62 1.89 1.80 1.90 1.70
methyl formate 1.77 5.05 102.67 9.02 10.09 8.59 5.16
methyl t-butyl ether 1.32 10.70 199.05 4.50 3.49 3.68 2.94
nitromethane 3.46 5.00 89.14 37.27 61.71 36.66 16.07
o-xylene 0.45 14.20 201.36 2.56 2.52 2.71 2.34
m-xylene 0.31 14.20 205.04 2.36 2.17 2.33 2.00
p-xylene 0.00 14.20 205.83 2.27 2.07 2.22 1.87
pentane 0.00 10.00 191.32 1.84 1.74 1.84 1.66
propanal 2.52 6.40 111.40 18.50 23.43 16.45 8.09
pyridine 2.37 9.50 133.77 13.26 17.16 12.89 6.24
pyrrole 1.71 8.20 114.87 8.03 11.48 9.47 5.07
tetrachloromethane 0.00 10.50 160.24 2.24 2.00 2.14 1.82
tetrahydrofuran 1.75 7.90 135.55 7.56 8.29 7.39 4.51
toluene 0.31 12.30 177.43 2.39 2.23 2.40 2.08
triethylamine 0.87 13.30 230.97 2.42 2.41 2.60 2.35



26

Table 2.2: The calculated values of dielectric constants compared with the experimen-
tal values for common liquids that form hydrogen bonds. The values of εFTVT, εOns,
and εDSCFT are calculated from the FTVT, the Onsager equation, and the DSCFT,
respectively. The calculation parameters, including the gas-phase permanent dipole
moment µ̄, the molecular polarizability α, the molecular volume v are listed for each
solvent.

Solvent µ̄[D] α[Å
3
] v[Å

3
] εexp εFTVT εOns εDSCFT

hydrogen-bonding liquids
allyl alcohol 1.60 7.65 112.93 19.70 9.59 8.25 4.71
aziridine 1.89 5.00 85.96 18.97 16.56 12.55 6.54
1-butanol 1.75 8.88 152.05 17.84 7.38 6.76 4.26
2-butanol 1.41 8.80 152.65 17.26 6.55 6.16 4.02
ethanol 1.66 5.11 96.92 25.30 10.20 8.67 5.13
ethylene glycol 2.27 5.70 92.56 41.40 26.45 18.12 8.50
glycerol 2.56 8.10 121.24 46.53 25.18 17.42 7.97
hydrazine 1.75 3.60 53.02 52.94 27.63 18.76 8.38
methanol 1.70 3.32 67.23 33.00 15.02 11.64 6.47
1-propanol 1.55 6.90 124.78 20.80 6.74 6.31 4.10
2-propanol 1.66 6.97 127.79 20.18 7.48 6.83 4.33
water 1.87 1.50 30.00 80.10 48.67 29.92 14.10

of the dipole moment under the reaction field due to the surrounding induced polar-

ization. Comparing εFTVT and εOns in Figs. 2.1 and 2.2, we find that FTVT and the

Onsager equation produce comparable dielectric constants. This observation suggests

that the FTVT, like the Onsager model, has taken the effect of reaction field into

consideration.

Hydrogen-bonding liquids, such as water and alcohols, have stronger angular cor-

relations between the molecules due to the larger quadrupolar moment present,55 and

therefore, we expect a simple theory like the FTVT would underestimate the dielectric

constant of hydrogen-bonding liquids. However, we note from Fig. 2.2 that the FTVT

provides better predictions of the dielectric constants than the Onsager equation and

the DSCFT. If we exclude the hydrogen-bonding liquids from our analysis and only

consider the non-hydrogen-bonding liquids, the line of best fit for εFTVT vs. εexp in

Fig. 2.1 has a slope of 1.04. Since the slope is very close to 1, this suggests that,

on average, the FTVT produces reliable predictions of dielectric constants of non-

hydrogen-bonding liquids. Also, the value of the slope for the FTVT is comparable
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to that of the line of best fit for εOns vs. εexp at 0.96.

2.4 Conclusions

In this work, we have developed a variational theory for dielectric constants of pure

liquids using field-theoretic methods. By introducing a Gaussian reference action,

with the interaction kernel and the average electrostatic field as variational parame-

ters, the theory allows the reaction field in the system to be accounted for. In addition,

as all particles are treated equivalently in the model and no particle is singled out

in a cavity, the theory provides more intuitive description for dipolar liquids as no

unphysical dielectric boundaries are introduced into the system. The resulting theory

– which is based completely on readily-available molecular parameters, including the

gas-phase permanent dipole moment, the molecular polarizability, and the volume of

each molecule – consists of an analytical expression for the grand potential and two

very simple algebraic constitutive relations, and it produces reliable estimates of the

dielectric constants of common liquid solvents. In this work, we have focused on find-

ing the dielectric constant when the applied field is small by solving the constitutive

relations to linear order of the external field. However, we note that the nonlinear

constitutive equations can be solved directly to study dielectric response under larger

applied external field, where the effect of dielectric saturation become.

The calculation of dielectric constant of a liquid mixture is still one of the chal-

lenges in statistical mechanics. The Onsager formulation requires one dipolar molecule

to be treated differently from the rest, and as a result, it is difficult to self-consistently

generalize the theory to binary mixtures. In addition, for theories of dielectric con-

stant based on integral equations, the generalization of the theory to liquid mixture

is often complicated, as multiple correlation functions are required to be evaluated.

However, in the FTVT, the derivation of the theory does not require any single

molecule to be distinguished from the rest of the particles. This feature of the FTVT

may allow the theory to be straightforwardly extended to the case of mixtures, for

which an accurate theory would be most desirable due to the inefficiency of exploring
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the mixture composition space with computer simulations.

In addition, by taking the effect of reaction field into consideration, the FTVT im-

proves the prediction of dielectric constant from the DSCFT, a previous field-theoretic

approach based on saddle-point approximation. Over the years, field-theoretic mod-

els of dielectric properties of soft matter have been hindered by inaccuracy due to

the absence of reaction field at the saddle-point level. As such, the FTVT brings an

important step forward towards better field-theoretic models for dielectric systems.

Furthermore, in recent years, field-theoretic methods have been applied to a vast

range of problems related to soft matter, including polymers and ionic solutions.14,56

As the framework of the FTVT can be naturally integrated into the field-theoretic

models for other systems of soft matter, it has a broad impact on the studies of

soft-matter systems involving dielectric substances or medium.

Appendix 2.A Identity Transformation of the Grand

Partition Function

As the dipole-dipole interaction tensor T (r) does not have an inverse operator, we

perform the identity transformations using the Faddeev-Popov method14,15 by intro-

ducing the δ-functional into the partition function:

1 =

∫
DP δ[P(r)− P̂(r)]

=

∫
DP

∫
DG ei

∫
dr G(r)·[P(r)−P̂(r)] (2.42)

where δ[f(r)] is the generalization of the multivariate δ-function which is zero unless

f(r) = 0. Applying Eq. (2.42), we transform the Boltzmann factor as

e−βU =

∫
DP

∫
DG e−

1
2
〈P|T |P 〉−i〈P|G〉+〈P|E0〉

×ei〈P̂|G〉−
∑N
i=1

p2
i

2ᾱ
+
∑N
i=1

1
2〈P̂i|T |P̂i〉 (2.43)
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where only the exponent in the second line of Eq. (2.43) depends explicitly on the

instantaneous molecular configurations of the system. Substituting Eq. (2.43) for the

Boltzmann factor in Z(N) leads to

Z(N) =

∫
DP

∫
DG e−

1
2
〈P|T |P〉−i〈P|G〉+〈P|E0〉

×
{∫

dri

∫
dΩi

∫
dpi e

i〈P̂i|G〉−p2
i /(2ᾱ)+ 1

2〈P̂i|T |P̂i〉
}N

=

∫
DP

∫
DG e−

1
2
〈P|T |P〉−i〈P|G〉+〈P|E0〉

×
{∫

dr

∫
dΩ

∫
dp ei(µ+p)·

∫
dr′h(r′−r)G(r′)−p2/(2ᾱ)

×e+ 1
2

(µ+p)·[
∫
dr′
∫
dr′′ h(r′−r)T (r′−r′′)h(r′′−r)]·(µ+p)

}N
(2.44)

Substitution of Eq. (2.44) into Eq. (2.5) leads to the field-based grand partition func-

tion given by Eqs. (2.8) and (2.9).

Appendix 2.B Evaluation of the Variational Bound

In this section, we present the evaluation of W0, which is the variational upper bound

for the grand free energy. The evaluation will involve the operator Q = T + A and

its inverse Q−1 defined through the relation
∫
dr′Q(r− r′)Q−1(r′− r′′) = 1δ(r− r′′).

Let us start by deriving an expression for Q−1 in the Fourier space:

Q̃−1(k)

= [T̃ (k) + Ã(k)]−1 =
1

a
[1 + a−1T̃ (k)]−1

=
1

a
[1− a−1T̃ (k) + a−2T̃ (k)2 − a−3T̃ (k)3 + . . .]

=
1

a

[
1−

(
β

ε0a

)
kk

k2
+

(
β

ε0a

)2
kk

k2
−
(
β

ε0a

)3
kk

k2
+ . . .

]

=
1

a

[
1− β

ε0a

1

1 + β
ε0a

kk

k2

]

=
1

a

[
1− ε0

β + ε0a
T̃ (k)

]
(2.45)
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We note that T̃ (k) = βkk/(ε0k
2) is the Fourier transform of the dipole-dipole in-

teraction tensor.8,52 In the fourth equality above, we have used the fact that kk/k2

is a projection operator and thus (kk/k2)n = kk/k2 for positive integers n. Inverse

Fourier transformation gives the expression of Q−1 in the real space:

Q−1(r) =
1

a

[
1δ(r)− ε0

β + ε0a
T (r)

]
(2.46)

Since the reference action L0 is Gaussian with respect to both P and G, we can

evaluate Ξ0 using standard techniques for gaussian integrals. The result is

Ξ0 =

(
detA

det(T + A)

) 1
2

e
1
2
〈E0−F|Q−1|E0−F〉 (2.47)

The average 〈L − L0〉0 can be expressed as

〈L − L0〉0 = −λ
∫
dr

∫
dΩ

∫
dp e−

p2

2ᾱ
+ 1

2
(µ+p)·T h(r)·(µ+p)

〈
ei(µ+p)·Gh(r)

〉
0

− 1

2a

∫
dr〈[G(r) + iF(r)]2〉0 (2.48)

The quantity 〈ei(µ+p)·Gh(r)〉0 can be evaluated using standard methods of Gaussian

integrals. The result is

〈
ei(µ+p)·Gh(r)

〉
0

= exp

{
(µ + p) ·

[∫
dr′ h(r− r′)F(r′)

]
− a

2
(µ + p)2

[∫
dr′ h(r− r′)2

]
+
a2

2
(µ + p) ·

[∫
dr′
∫
dr′′ h(r− r′)Q−1(r′ − r′′)h(r′′ − r)

]
· (µ + p)

+ a

∫
dr′
∫
dr′′
[
(E0(r′)− F(r′))Q−1(r′ − r′′)h(r′′ − r)

]
· (µ + p)

}
= exp

{
(µ + p) · EI,h(r)− ε0a

2(β + ε0a)
(µ + p) · T h(r) · (µ + p)

}
(2.49)

where the field EI,h is given by

EI,h(r) =

∫
dr′ h(r− r′)EI(r′) (2.50)
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with EI being a linear combination of the applied field E0 and the fluctuating field

F:

EI(r) = E0(r)− ε0

(β + ε0a)

∫
dr′T (r− r′)(E0(r′)− F(r′)) (2.51)

On the other hand, 〈[G(r) + iF(r)]2〉0 can be evaluated as

〈
[G(r) + iF(r)]2

〉
0

=
1

Ξ0

∫
DP

∫
DΓ Γ(r)2e−

1
2
〈P|T |P〉+〈P|E0−F−iΓ〉− 1

2
〈Γ|A−1|Γ〉

=
1

Ξ0

δ

iδJ(r)
· ∂

i∂J(r)

∫
DP

∫
DΓ e−

1
2
〈P|T |P〉+〈P|E0−F−iΓ〉− 1

2
〈Γ|A−1|Γ〉+i〈J|Γ〉

∣∣∣
J=0

= trA(0)− a2trQ−1(0)− a2

{∫
dr′Q−1(r− r′)[E0(r′)− F(r′)]

}2

=
βaδ(0)

β + ε0a
− a2

{∫
dr′Q−1(r− r′)[E0(r′)− F(r′)]

}2

(2.52)

We may further simplify the expression by noting that
∫
drT (r1− r)T (r− r2) =

β
ε0
T (r1 − r2), which can be straightforwardly derived in the Fourier space.

In addition, we note that δ(0) is the continuum limit for 1/v, as

δ(0) =
1

(2π)3

∫
dk eik·r

∣∣∣∣
r=0

=
1

V

∑
k

eik·r

∣∣∣∣∣
r=0

=
1

V
(number of modes in the k-space)

=
1

V
× V

v
=

1

v
(2.53)

where the second equality switches the integral over k-space in the continuum limit

to the sum over k-space in the discrete limit.57

To obtain the variational free energy, we substitute Eqs. (2.47) to (2.52) into

Eq. (2.15). Simplification of the expression leads to the variational grand potential in
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Eq. (2.18):

βW0 = − ln

(
detA

det(T + A)

) 1
2

− 1

2
〈E0 − F|Q−1 |E0 − F〉

−λ
∫
dr

∫
dΩ

∫
dp e

−p2

2ᾱ
+(µ+p)·EI,h(r)− 1

2

(
ε0a

(β+ε0a)
−1
)

(µ+p)·T h(r)·(µ+p)

− 1

2a

∫
dr

{
βaδ(0)

β + ε0a
− a2

[∫
dr′Q−1(r− r′)[E0(r′)− F(r′)]

]2
}

= − ln

(
detA

det(T + A)

) 1
2

− 1

2

∫
dr

β

v(β + ε0a)

−λ
∫
dr

∫
dΩ

∫
dp e

−p2

2ᾱ
+(µ+p)·EI,h(r)− 1

2

(
ε0a

(β+ε0a)
−1
)

(µ+p)·T h(r)·(µ+p)

−1

2

(
ε0

β + ε0a

)2 ∫
dr

∫
dr′ [E0(r)− F(r)]T (r− r′)[E0(r′)− F(r′)]

(2.54)

Appendix 2.C Minimization of the Variational Up-

per Bound of the Grand Potential

In this section, we minimize βW0 with respect to the variational parameters a and

F. First, by expressing the determinants in terms of Gaussian functionals, we obtain

d

da
ln

(
detA

det(T + A)

) 1
2

=
1

2a

∫
dr

∫
dr′T (r− r′) : Q−1(r− r′)

=

∫
dr

β

2av(β + ε0a)
(2.55)

where the last equality used the result
∫
dr
∫
dr′ T (r−r′) : T (r−r′) =

∫
dr β2/(vε2

0),

which can be easily derived by expressing T (r) as Fourier integrals. With this, the
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derivative of βW0 with respect to a is given by:

dβW0

da
= −

∫
dr

β

2av(β + ε0a)
+

∫
dr

βε0

2v(β + ε0a)2

−λ
∫
dr

∫
dΩ

∫
dp e−f(µ,p; r)

[
− βε0th

2(β + ε0a)2
(µ + p)2

+

(
ε0

β + ε0a

)2 ∫
dr′(µ + p)T (r− r′)[E0(r′)− F(r′)]

]

+

(
ε0

β + ε0a

)3

〈E0 − F|T |E0 − F〉 (2.56)

On the other hand, the derivative of βW0 with respect to F(r) is

δβW0

δF(r)
=

(
ε0

β + ε0a

)2 ∫
dr′T (r− r′) [E0(r′)− F(r′)]

−λ
∫
dr′
∫
dΩ

∫
dp e−f(µ,p; r)

[
ε0

β + ε0a
T (r− r′)(µ + p)

]
(2.57)

The constitutive relations are formed by setting

dβW0

da
= 0 (2.58)

δβW0

δF(r)
= 0 (2.59)

To further simplify the two constitutive relations, we introduce an expression for

the number of particles in the system derived from the variational grand potential:

〈N〉 = λ
∂βW0

∂λ

= λ

∫
dr

∫
dΩ

∫
dp

〈
ei(µ+p)·G(r)− p

2

2ᾱ

〉
0

(2.60)

where the 〈O〉 = 1
Ξ

∫
DP

∫
DGO[P,G]e−L[P,G]. The particle concentration can be

calculated through the relation 〈N〉 =
∫
dr c(r). Using Eq. (2.49), we find the follow-

ing expression for c(r):

c(r) = λ

∫
dΩ

∫
dp e−f(µ,p;r) (2.61)
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With the introduction of particle concentration c(r), algebraic simplifications leads

to the following constitutive relations:

1

a
=

1

3
c(r)

〈
(µ + p)2

〉
f(r)

(2.62)

and
ε0

β + ε0a
[E0(r)− F(r)] = c(r) 〈µ + p〉f(r) (2.63)

where 〈·〉f(r) is the average value taken with respect to f(µ,p; r), and it is defined as

〈O〉f(r) =

∫
dΩ
∫
dpOe−f(µ,p;r)∫

dΩ
∫
dp e−f(µ,p;r)

(2.64)

The expectation values 〈(µ + p)2〉f(r) and 〈µ + p〉f(r) can be algebraically evalu-

ated, and the results are

〈µ + p〉f(r) = ᾱC

[
1 +

µ̄2

ᾱ
CG (µ̄C|EI(r)|)

]
EI(r) (2.65)

and

〈
(µ + p)2

〉
f(r)

= 3Cᾱ + C2µ̄2 + C2ᾱ2

[
1 + 2

µ̄2

ᾱ
CG (µ̄C|EI(r)|)

]
EI(r)2 (2.66)

where C =
(

1− βᾱth
β+ε0a

)−1

and G(x) = (coth x− 1/x)/x.

Substituting Eqs. (2.65) and (2.66) into Eqs. (2.62) and (2.63) leads to the consti-

tutive relations in Eqs. (2.25) and (2.26).
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Chapter 3

A Variational Field-Theoretic
Approach for Polar Liquid
Mixtures: Miscibility and
Dielectric Constants

3.1 Introduction

The study of liquid mixtures is essential in many aspects of science and of practical

importance for miscellaneous technological applications. The sheer amount of differ-

ent solvent mixtures has given us a vast amount of possibilities for reaction media.

For example, if we create mixtures from a set of only about 50 common liquids, these

liquids can make up about 1200 binary mixtures and 20,000 ternary mixtures; on top

of that, each mixture can exist in different compositions. Given the immeasurable

number of different mixtures, it is impossible and too expensive to explore the prop-

erties of general mixtures with experimental measurements or computer simulations.

Therefore, in the realm of mixtures, the development of a robust theory is particularly

important, and the goal of this chapter is to develop a reliable theory that captures

the interactions between polar molecules in a mixture.

In Chapter 2, we have developed a field-theoretic variational theory for pure liq-

uids. By introducing a physically meaningful reference potential, the variational

approach allows us to take into account the effects of reaction field. In this chapter,

we extend the framework developed in Chapter 2 to consider a mixture of polar liq-
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uids. For simplicity, we consider each solvent component to be nonpolarizable in this

chapter, and focus on capturing the interactions between permanent dipole moments.

The resulting field-theoretic variational theory (FTVT) presented in this chapter con-

sists of simple analytical equations that allow one to calculate the free energy of a

mixture based on the permanent dipole moments and the molecular volumes of the

solvent components and the mixture compositions. Without the use of any adjustable

parameters, we are able to predict the dielectric constants and the miscibility for a

wide range of liquid mixtures in good agreement with experimental observations. In

particular, by computing the miscibility between liquids, we provide a quantitative

explanation to the common saying “like dissolves like, and unlike does not.”

This chapter is organized as follows. In Section 3.2, we introduce the model for

the liquid mixture, and provide a detailed derivation for our theory. A reference field-

based Hamiltonian is introduced to perform a field-theoretic variational treatment

on the partition function of the system. Expressions for the mixing free energy and

the mixture dielectric constant are derived. In Section 3.3, we apply the theory to

calculate the dielectric constants and predict the miscibility of binary mixtures. The

results are shown to be in good agreement with experimental observations. Finally,

in Section 3.4, we provide some concluding remarks.

3.2 Theory

3.2.1 The Model and the Partition Functions

We consider a mixture of polar liquids in a canonical ensemble of volume V and

temperature T , where there are Ns molecules of each solvent type s. For simplicity,

we consider a binary solvent mixture, with s = A,B, but we note that the theory can

be straightforwardly extended to multicomponent mixtures. Each molecule of solvent

type s has a permanent dipole moment of magnitude µ̄s and an average molecular

volume vs. We assume that the dipole moment finitely spread around the center of

each molecule, described by a short-ranged polarization distribution function hs(r).
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For now, we do not specify the form of hs(r), but only require that its integral over

space is 1, i. e.
∫
drhs(r) = 1. Let rs,i and µs,i denote the position and the permanent

dipole moment of the ith molecule of type s, we write the instantaneous polarization

of this molecule as:

P̂s,i(r) = µs,ihs(r− rs,i) (3.1)

The instantaneous polarization P̂(r)of the system, given by the sum of instantaneous

polarization of all molecules, is given by

P̂(r) =
∑
s=A,B

Ns∑
i=1

µs,ihs(r− rs,i) (3.2)

We apply an electric field E0(r) to the system by external sources. The total

energy of the system U can be written as the sum of the dipole-dipole interactions

and the interaction between the dipoles and the external field as

βU =
β

2

∫
dr

∫
dr′ P̂(r)T(r− r′)P̂(r′)− β

∫
dr P̂(r) · E0(r)

=
1

2

∫
dr

∫
dr′ P̂(r)T (r− r′)P̂(r′)−

∫
dr P̂(r) · E0(r) (3.3)

where E = βE and T = βT, with β = 1/kBT being the inverse temperature and

T (r) being the dipole-dipole interaction tensor scaled by the inverse temperature.

The dipole-dipole interaction tensor can be expressed as52

T(r) = −∇∇ 1

4πε0|r|

= lim
ε→0

[
−H(|r| − ε)∇r∇r

1

4πε0|r|
+

1

3ε0

1δ(r)

]
= lim

ε→0

[
−H(|r| − ε) 1

4πε0r3

(
1− 3rr

r2

)
+

1

3ε0

1δ(r)

]
(3.4)

where 1 is the identity tensor, with its Fourier transform given by

T(k) =
kk

ε0k2
(3.5)
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We note that the expression for total energy in Eq. (3.3) involves the self interaction

energy of a dipole. However, because each molecule has a permanent dipole that

is fixed in magnitude, the self interaction energy is a constant; the inclusion of self

energy only shifts the energy scale and does not have physical consequences.

The canonical partition function of the system can be written as

Z =
∏
s=A,B

Ns∏
i=1

∫
drs,idµs,i

Λs

e−βU

=
∏
s=A,B

Ns∏
i=1

∫
drs,idµs,i

Λs

exp

[
−1

2

∫
dr

∫
dr′ P̂(r)T (r− r′)P̂(r′)

+

∫
dr P̂(r) · E0(r)

]
(3.6)

To proceed, we transform the particle-based canonical partition function into a

field-based one. The terms involving the instantaneous polarization density P̂(r) can

be transformed as

exp

[
−1

2

∫
dr

∫
dr′ P̂(r)T (r− r′)P̂(r′) +

∫
dr P̂(r) · E0(r)

]
=

∫
DPδ[P− P̂] exp

[
−1

2

∫
dr

∫
dr′P(r)T (r− r′)P(r′) +

∫
dr P(r) · E0(r)

]
=

∫
DP

∫
DG ei

∫
dr,G(r)·[P−P̂]

× exp

[
−1

2

∫
dr

∫
dr′P(r)T (r− r′)P(r′) +

∫
dr P(r) · E0(r)

]
=

∫
DP

∫
DG exp

[
−1

2

∫
dr

∫
dr′P(r)T (r− r′)P(r′)− i

∫
dr P(r) ·G(r)

+

∫
dr P(r) · E0(r) + i

∫
dr P̂(r) ·G(r)

]
(3.7)

Substituting Eq. (3.7) into the particle-based canonical partition function Eq. (3.6)
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and reorganizing the order of the terms, we arrive at

Z =

∫
DP

∫
DG exp

[
−1

2

∫
dr

∫
dr′P(r)T (r− r′)P(r′)

−i
∫
dr P(r) ·G(r) +

∫
dr P(r) · E0(r)

] ∏
s=A,B

qs[G(r)]Ns (3.8)

where qs[G] is the single-particle partition function for the solvent type s under the

field G(r), given by

qs[G(r)] =

∫
drdµs

Λs

exp

[
i

∫
dr′ hs(r

′ − r)µs ·G(r′)

]
(3.9)

It is more convenient to carry out variational treatments in the grand canonical

ensemble. The grand partition function can be derived from the canonical partition

function as follows:

Ξ =
∞∑

NA=0

∞∑
NB=0

eβµANA

NA!

eβµBNB

NB!
Z(NA, NB)

=

∫
DP

∫
DG exp

[
−1

2

∫
dr

∫
dr′P(r)T (r− r′)P(r′)− i

∫
dr P(r) ·G(r)

+

∫
dr P(r) · E0(r)

] ∞∑
NA=0

eβµANA

NA!
qA[G]NA

∞∑
NB=0

eβµBNB

NB!
qB[G]NB

=

∫
DP

∫
DG e−Hg [P,G] (3.10)

where Hg[P,G] is the effective Hamiltonian in the grand canonical ensemble given

by

Hg[P,G] =
1

2

∫
dr

∫
dr′P(r)T (r− r′)P(r′) + i

∫
dr P(r) ·G(r)

−
∫
dr P(r) · E0(r)

−
∑
s=A,B

eβµs

Λs

∫
dr

∫
dµs exp

(
i

∫
dr′ hs(r

′ − r)µs ·G(r′)

)
(3.11)
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In the grand canonical ensemble, the grand potential Wg of the system is given by

βWg = − ln Ξ (3.12)

3.2.2 Variational Treatment

In this subsection, we develop a variational approach to approximate the grand po-

tential Wg. In the exact field-theoretic Hamiltonian in Eq. (3.11), only the last term

is not Gaussian. We observe that this non-Gaussian term describes a single dipole

interacting in the conjugate field G(r). Before we proceed, let us examine the value

of G∗ at the saddle point. By extremizing the effective Hamiltonian HG with respect

to P, i. e. letting δHg/δP(r) = 0, we have the following saddle point condition:

∫
dr′T (r− r′)P∗(r′) + iG∗(r)− E0(r) = 0

iG∗(r) = E0(r)−
∫
dr′T (r− r′)P∗(r′) (3.13)

where P∗ and G∗ are the saddle-point values of P and G, respectively. From the

above saddle-point constitutive relation, we see that the field iG(r) represents the

local field at position r when the saddle-point approximation is used. In Onsager’s

theory for the dielectric constant, the insight is that only part of the local field is

exerting a torque on the dipole moment. The other part is the reaction field, which

always points in the same direction as the particle and thus does not exert a torque

on the particle. Keeping this insight in mind, we propose the following variational

Hamiltonian by modeling the last term in H as a Gaussian fluctuation around an

average field F:

H0[P,G] =
1

2

∫
dr

∫
dr′P(r)T (r− r′)P(r′) + i

∫
dr P(r) ·G(r)

−
∫
dr P(r) · E0(r)

+
1

2

∫
dr

∫
dr′ [G(r) + iF(r)]A−1(r− r′) [G(r′) + iF(r′)] (3.14)
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where A and F are the variational parameters. We then apply the Gibbs-Feynman-

Bogoliubov inequality to obtain an upper bound W for the grand potential:

βWg ≤ βW = − ln Ξ0 + 〈Hg −H0〉0 (3.15)

where W is the variational grand potential, and

Ξ0 =

∫
DP

∫
DG e−H0[P,G] (3.16)

〈O〉0 =

∫
DP

∫
DGO[P,G]e−H0[P,G]∫
DP

∫
DG e−H0[P,G]

(3.17)

Our goal is to minimize W with respect to A and F to obtain the upper bound of

the grand potential.

The reference grand partition function Ξ0 is a Gaussian integral, which can be

evaluated to be

Ξ0 =

(
detA

det(T + A)

) 1
2

e
1
2

∫
dr
∫
dr′ [E0(r)−F(r)][T (r−r′)+A(r−r′)]−1[E0(r′)−F(r′)] (3.18)

where the determinant of a matrix M is defined as

(detM)−
1
2 = (detM−1)

1
2

=

∫
Dξ exp

[
−1

2

∫
dr

∫
dr′ ξ(r)M−1(r− r′)ξ(r′)

]
(3.19)

The term 〈Hg −H〉0 in Eq. (3.15) can be simplified as

〈Hg −H〉0 = −
∑
s=A,B

eβµs

Λs

∫
dr

∫
dµs

〈
exp

(
i

∫
dr′ hs(r

′ − r)µs ·G(r′)

)〉
0

−1

2

∫
dr

∫
dr′
〈
V(r)A−1(r− r′)V(r′)

〉
0

(3.20)

where V = G+iF. The first expectation value with respect to the reference Hamilto-

nian involved in Eq. (3.20) can be exactly evaluated because it is a Gaussian integral;
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the result of the evaluation is

〈
exp

(
i

∫
dr′ hs(r

′ − r1)µs ·G(r′)

)〉
0

= exp

[∫
drhs(r− r1)µs · F(r)− 1

2

∫
dr

∫
dr′µshs(r− r1)A(r− r′)hs(r

′ − r1)µs

+

∫
dr

∫
dr′
∫
dr′′ [E0(r)− F(r)][T (r− r′) + A(r− r′)]−1A(r′ − r′′)hs(r

′′ − r1)µs

+
1

2

∫
dr

∫
dr′
∫
dr′′
∫
dr′′′µshs(r1 − r′′)A(r′′ − r)[T (r− r′) + A(r− r′)]−1

·A(r′ − r′′′)hs(r
′′′ − r1)µs

]
(3.21)

The second expectation value with respect to the reference Hamiltonian involved in

Eq. (3.20) can also be evaluated using derivatives of a Gaussian integral as:

〈
V(r1)A−1(r1 − r2)V(r2)

〉
0

=
1

Ξ0

∫
DP

∫
DV

δ

δiJ(r1)
A−1(r1 − r2)

δ

δiJ(r2)

[
e−

1
2

∫
dr
∫
dr′P(r)T (r−r′)P(r′)

×e−i
∫
dr P(r)·V(r)+

∫
dr P(r)·[E0(r)−F(r)]− 1

2

∫
dr
∫
dr′V(r)A−1(r−r′)V(r′)−i

∫
drJ(r)·V(r)

]∣∣∣
J=0

= A−1(r1 − r2) :

{
−
∫
dr

∫
dr′A(r1 − r)[T (r− r′) + A(r− r′)]−1A(r′ − r2)

}
+A−1(r1 − r2) : A(r1 − r2)

−
∫
dr

∫
dr′
∫
dr′′
∫
dr′′′ (E0(r)− F(r)) [T (r− r′) + A(r− r′)]−1A(r′ − r1)

·A−1(r1 − r2)A(r2 − r′′)[T (r′′ − r′′′) + A(r′′ − r′′′)]−1 (E0(r′′′)− F(r′′′)) (3.22)

Substituting Eqs. (3.18), (3.20), (3.21), and (3.22) into the expression for varia-
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tional free energy in (3.15), we write the variational free energy as

βW = − ln

(
detA

det(T + A)

) 1
2

−1

2

∫
dr

∫
dr′ [E0(r)− F(r)][T (r− r′) + A(r− r′)]−1[E0(r′)− F(r′)]

−
∑
s=A,B

eβµs

Λs

∫
dr1

∫
dµs e

∫
drhs(r−r1)µs·F(r)− 1

2

∫
dr
∫
dr′µshs(r−r1)A(r−r′)hs(r′−r1)µs

×e+ 1
2

∫
dr
∫
dr′
∫
dr′′

∫
dr′′′ µshs(r1−r′′)A(r′′−r)[T (r−r′)+A(r−r′)]−1·A(r′−r′′′)hs(r′′′−r1)µs

×e+
∫
dr
∫
dr′
∫
dr′′ [E0(r)−F(r)][T (r−r′)+A(r−r′)]−1A(r′−r′′)hs(r′′−r1)µs

+
1

2

∫
dr1

∫
dr2

∫
dr

∫
dr′A−1(r1 − r2)

:
{
A(r1 − r)[T (r− r′) + A(r− r′)]−1A(r′ − r2)

}
−1

2

∫
dr1

∫
dr2 A−1(r1 − r2) : A(r1 − r2)

+
1

2

∫
dr1

∫
dr2

∫
dr

∫
dr′
∫
dr′′
∫
dr′′′ (E0(r)− F(r))

·[T (r− r′) + A(r− r′)]−1A(r′ − r1)A−1(r1 − r2)A(r2 − r′′)

·[T (r′′ − r′′′) + A(r′′ − r′′′)]−1 (E0(r′′′)− F(r′′′)) (3.23)

3.2.3 The Structure of Variational Parameter A

If we expand the last term in the exact effective Hamiltonian in Eq. (3.11), we obtain

the following quadratic term:

∑
s=A,B

eβµs

Λs

∫
dr

∫
dr′G(r)

∫
dr1hs(r− r1)hs(r1 − r′)

(∫
dµsµsµs

)
G(r′) (3.24)

The integral over µs is a constant times an identity matrix. Thus we may let A−1 to

take the form

A−1(r− r′) =
1

a′
1
∑
s=A,B

eβµs

Λs

∫
dr1hs(r− r1)hs(r1 − r′) (3.25)

where a′ is some constant from the integral over µs. Using the above form would make

it difficult for us to exactly evaluate the tensor [T +A]−1 involved in the variational
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grand potential. Therefore, instead, as hs is a short-ranged function centered around

the position of the particle, we take the limit hs(r)→ δ(r) whenever it does not cause

a singularity in the free energy. When the limit of δ-function is taken, the operators

A and A−1 becomes

A(r− r′) = a1δ(r− r′) (3.26)

A−1(r− r′) =
1

a
1δ(r− r′) (3.27)

where 1
a′

∑
s=A,B

eβµs

Λs
= 1

a
. Using the δ-function limit of A, we may evaluate the

inverse operator of T + A. Let M be the inverse of T + A such that

∫
dr′ [T (r− r′) + A(r− r′)]M(r′ − r′′) = 1δ(r− r′′) (3.28)

To find M, we perform Fourier transform to the above equation

∫
dr′
[∫

dk

(2π)3

(
T̃ (k) + Ã(k)

)
eik·(r−r′)

] [∫
dk′

(2π)3
M̃(k′)eik

′·(r′−r′′)

]
=

∫
dk

(2π)3
1eik·(r−r′′) (3.29)

which leads to

M̃(k) =
(
T̃ (k) + Ã(k)

)−1

(3.30)

With A(r) = a1δ(r) and T (k) = βkk/ε0k
2,52 its Fourier transform is given by
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Ã(k) = a1. Thus, M̃(k) can be evaluated as

M̃(k) =
(
T̃ (k) + a1

)−1

= a−1
[
1 + a−1T̃ (k)

]−1

= a−1

[
1− 1

a
T̃ (k) +

1

a2
T̃ (k)2 − 1

a3
T̃ (k)3 + . . .

]
= a−1

[
1− 1

a

(
β

ε0

)(
kk

k2

)
+

1

a2

(
β

ε0

)2(
kk

k2

)2

− 1

a3

(
β

ε0

)3(
kk

k2

)3

+ . . .

]

= a−11− a−1

(
β

ε0a

)[
1− β

ε0a
+

(
β

ε0a

)2

− . . .

](
kk

k2

)
=

1

a

[
1− ε0

β + ε0a
T (k)

]
(3.31)

Inverse Fourier transform of the above equation gives

M(r− r′) = [T (r− r′) + A(r− r′)]
−1

=
1

a

[
1δ(r− r′)− ε0

β + ε0a
T (r− r′)

]
(3.32)

Now, we take the limit of A(r − r′) = a1δ(r − r′) in the variational grand po-

tential in Eq. (3.23) wherever a singularity does not arise, and use A(r − r′) =

a1
∫
dr2 h

−1
s (r − r2)h−1

s (r2 − r′) wherever the δ-function creates a singularity. The

resulting variational grand potential is given by

βW

= − ln

(
detA

det(T + A)

) 1
2

− 1

2

ε0a

β + ε0a

∫
dr

∫
dr′A−1(r− r′) : T (r− r′)

+
1

2a

ε0

β + ε0a

∫
dr

∫
dr′ [E0(r)− F(r)]T (r− r′)[E0(r′)− F(r′)]

−
∑
s=A,B

eβµs

Λs

∫
dr

∫
dµs exp

[
− ε0

β + ε0a

∫
dr1 [E0(r1)− F(r1)]T (r1 − r)µs

+E0(r)µs −
1

2

ε0a

β + ε0a

∫
dr1

∫
dr2 µshs(r− r1)T (r1 − r2)hs(r2 − r)µs

]
−1

a

ε0

β + ε0a

∫
dr

∫
dr′ (E0(r)− F(r))T (r− r′) (E0(r′)− F(r′))

+
1

2a

(
ε0

β + ε0a

)2 ∫
dr

∫
dr′
∫
dr′′ (E0(r)− F(r))T (r− r′)T (r′ − r′′)

· (E0(r′′)− F(r′′)) (3.33)
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We may further simplify the last line above by noting that

∫
dr′ T (r− r′)T (r′ − r′′)

=

∫
dr′
∫

dk1

(2π)3

∫
dk2

(2π)3
T̃ (k1)T̃ (k2)eik1·(r−r′)eik2·(r′−r′′)

=

∫
dk

(2π)3

β

ε0

T̃ (k)eik·(r−r′′)

=
β

ε0

T (r− r′′) (3.34)

Therefore,

βW = −1

2
ln

(
detA

det(T + A)

)
− 1

2

ε0a

β + ε0a

∫
dr

∫
dr′A−1(r− r′) : T (r− r′)

− ε2
0

2(β + ε0a)2

∫
dr

∫
dr′ (E0(r)− F(r))T (r− r′) (E0(r′)− F(r′))

−
∑
s=A,B

eβµs

Λs

∫
dr

∫
dµs

× exp

[
−1

2

ε0a

β + ε0a

∫
dr1

∫
dr2 µshs(r− r1)T (r1 − r2)hs(r2 − r)µs

+µs · E0(r)− ε0

β + ε0a

∫
dr1 [E0(r1)− F(r1)]T (r1 − r)µs

]
(3.35)

The first term in βW , involving the logarithm of a quotient of two determinants,

may be evaluated using the procedure outlined in Appendix B of Ref. 19. Let us

define a matrix Λ(λ) = A + λT , where λ is a scalar parameter. Then, we may

rewrite

ln

(
det(T + A)

detA

)
= ln

(
det Λ(λ = 1)

det Λ(λ = 0)

)
= ln (det Λ(λ = 1))− ln (det Λ(λ = 0))

=

∫
dr

∫
dr′
∫ Λ(λ=1)

Λ(λ=0)

δ ln det Λ

δΛ−1(r, r′;λ)
: δΛ−1(r, r′;λ) (3.36)

where the last equality is due to the chain rule. Since det Λ can be written as a
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Gaussian integral as in Eq. (3.19), we have

δ ln det Λ

δΛ−1(r, r′;λ)
= −Λ(r, r′;λ) (3.37)

and thus,

ln

(
det(T + A)

detA

)
= −

∫
dr

∫
dr′
∫ Λ(λ=1)

Λ(λ=0)

Λ(r, r′;λ) : δΛ−1(r, r′;λ) (3.38)

Using a procedure similar to that presented in Eq. (3.31), we may derive an

expression for Λ−1 as

Λ−1(r, r′;λ) = [A(r− r′) + λT (r− r′)]−1

=
1

a

[
1δ(r− r′)− ε0

β

(
λβ

λβ + ε0a

)
T (r− r′)

]
(3.39)

With this, the differential of the inverse operator may be written as

δΛ−1(r, r′;λ) =
dΛ−1(r, r′;λ)

dλ
dλ = − ε2

0

(λβ + ε0a)2
T (r− r′)dλ

and therefore,

ln

(
det(T + A)

detA

)
=

∫
dr

∫
dr′
∫ 1

λ=0

[A(r− r′) + λT (r− r′)] :
ε2

0

(λβ + ε0a)2
T (r− r′)dλ

=
ε0

a(β + aε0)

∫
dr

∫
dr′A(r− r′) : T (r− r′)

− ε
2
0

β2

(
ln

[
aε0

β + aε0

]
+

β

β + aε0

)∫
dr

∫
dr′T (r− r′) : T (r− r′)

(3.40)

With this result, and taking the δ-function limit for A and A−1, the variational grand
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potential is simplified as

βW = −1

2

ε2
0

β2

(
ln

[
aε0

β + aε0

]
+

β

β + aε0

)∫
dr

∫
dr′ T (r− r′) : T (r− r′)

− ε2
0

2(β + ε0a)2

∫
dr

∫
dr′ (E0(r)− F(r))T (r− r′) (E0(r′)− F(r′))

−
∑
s=A,B

eβµs

Λs

∫
dr

∫
dµs

× exp

[
−1

2

ε0a

β + ε0a

∫
dr1

∫
dr2 µshs(r− r1)T (r1 − r2)hs(r2 − r)µs

+µs · E0(r)− ε0

β + ε0a

∫
dr1 [E0(r1)− F(r1)]T (r1 − r)µs

]
(3.41)

The double dot product of the dipole interaction tensor in the first term can be

simplified by considering

∫
dr′ T (r− r′) : T (r′ − r′′)

=

∫
dr′
∫

dk1

(2π)3

∫
dk2

(2π)3
T (k1) : T (k2)ei(k2−k1)·r′eik1·r−ik2·r′′

=

(
β

ε0

)2 ∫
dk

(2π)3

kk

k2
:

kk

k2
eik·(r−r′′)

=

(
β

ε0

)2
1

(2π)3

∫
dk

∫
dθ

∫
dφ k2 sin θ1eik|r−r′′| cos θ

=

(
β

ε0

)2 ∫
dk

(2π)3
eik·(r−r′′) (3.42)

Therefore,

∫
dr′ T (r− r′) : T (r′ − r) =

(
β

ε0

)2 ∫
dk

(2π)3
1 =

(
β

ε0

)2

nk (3.43)

with nk being the number of modes in the k-space per unit volume, defined as

nk =

∫
dk

(2π)3
1 =

1

V

∑
k

1 (3.44)

where in the second equality, we have represented the integral over k-space as a
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discrete sum over the k-space. The details of this can be found in Ref. 57.

With this, the variational grand potential can be simplified as

βW = −1

2

(
ln

[
aε0

β + aε0

]
+

β

β + aε0

)∫
drnk

− ε2
0

2(β + ε0a)2

∫
dr

∫
dr′ (E0(r)− F(r))T (r− r′) (E0(r′)− F(r′))

−
∑
s=A,B

eβµs

Λs

∫
dr

∫
dµs

× exp

[
−1

2

ε0a

β + ε0a

∫
dr1

∫
dr2 µshs(r− r1)T (r1 − r2)hs(r2 − r)µs

+µs · E0(r)− ε0

β + ε0a

∫
dr1 [E0(r1)− F(r1)]T (r1 − r)µs

]
(3.45)

3.2.4 Particle Number and Concentration

The average number of particles 〈Ns〉 can be calculated from the variational grand

potential as

〈Ns〉 = −∂βW
∂βµs

=
eβµs

Λs

∫
dr

∫
dµs

× exp

[
−1

2

ε0a

β + ε0a

∫
dr1

∫
dr2 µshs(r− r1)T (r1 − r2)hs(r2 − r)µs

+µs · E0(r)− ε0

β + ε0a

∫
dr1 [E0(r1)− F(r1)]T (r1 − r)µs

]
(3.46)

The number concentration of particles 〈cs(r)〉 can be obtained through the relation

〈Ns〉 =
∫
dr 〈cs(r)〉, which gives

〈cs(r)〉 =
eβµs

Λs

∫
dµs e

−fs(µs;r) (3.47)
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where fs(µs; r) is given by

fs(µs; r) =
1

2

ε0a

β + ε0a

∫
dr1

∫
dr2 µshs(r− r1)T (r1 − r2)hs(r2 − r)µs

−µs · E0(r) +
ε0

β + ε0a

∫
dr1 [E0(r1)− F(r1)]T (r1 − r)µs (3.48)

3.2.5 Minimizing the Variational Grand Potential with Re-

spect to the Variational Parameters

We then minimize the variational grand potential with respect to a and F to obtain

its lower bound. Differentiating βW with respect to a gives

dβW

da
= − 1

2a

(
β

β + ε0a

)2 ∫
drnk

+

(
ε0

β + ε0a

)3 ∫
dr

∫
dr′ (E0(r)− F(r))T (r− r′) (E0(r′)− F(r′))

−
∑
s=A,B

∫
dr〈cs(r)〉

[(
ε0

β + ε0a

)2 ∫
dr1 [E0(r1)− F(r1)]T (r1 − r) 〈µs〉fs(r)

−1

2

βε0

(β + ε0a)2

∫
dr1

∫
dr2 〈µshs(r− r1)T (r1 − r2)hs(r2 − r)µs〉fs(r)

]
(3.49)

and differentiating βW with respect to F(r) gives

δβW

δF(r)
=

(
ε0

β + ε0a

)2 ∫
dr′T (r− r′) (E0(r′)− F(r′))

−
∑
s=A,B

∫
dr′ 〈cs(r′)〉

[
ε0

β + ε0a
T (r− r′) 〈µs〉fs(r′)

]
(3.50)

where the expectation value 〈O〉fs(r) is defined as

〈O(µs)〉fs(r) =

∫
dµsOe−fs(µs; r)∫
dµs e

−fs(µs; r)
(3.51)

Setting dβW/da = 0 and dβW/dF(r) = 0, we have the following constitutive
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relations:

1

2a

(
β

β + ε0a

)2 ∫
drnk

+

(
ε0

β + ε0a

)3 ∫
dr

∫
dr′ (E0(r)− F(r))T (r− r′) (E0(r′)− F(r′))

=
∑
s=A,B

∫
dr〈cs(r)〉

[
−
(

ε0

β + ε0a

)2 ∫
dr1 [E0(r1)− F(r1)]T (r1 − r) 〈µs〉fs(r)

+
1

2

βε0

(β + ε0a)2

∫
dr1

∫
dr2 〈µshs(r− r1)T (r1 − r2)hs(r2 − r)µs〉fs(r)

]
(3.52a)

and

(
ε0

β + ε0a

)∫
dr′T (r− r′) (E0(r′)− F(r′))

=
∑
s=A,B

∫
dr′ 〈cs(r′)〉

[
T (r− r′) 〈µs〉fs(r′)

]
(3.52b)

Substitution of Eq. (3.52b) into Eq. (3.52a) simplifies the constitutive relations to

β

ε0a

∫
drnk

=
∑
s=A,B

∫
dr〈cs(r)〉

[∫
dr1

∫
dr2 〈µshs(r− r1)T (r1 − r2)hs(r2 − r)µs〉fs(r)

]
(3.53a)

and

(
ε0

β + ε0a

)∫
dr′T (r− r′) (E0(r′)− F(r′))

=
∑
s=A,B

∫
dr′ 〈cs(r′)〉

[
T (r− r′) 〈µs〉fs(r′)

]
(3.53b)

In Eq. (3.53a), taking hs(r)→ δ(r) does not result in a singularity, and therefore
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we take the δ-function limit for hs as

β

ε0a

∫
drnk =

∑
s=A,B

∫
dr〈cs(r)〉

×
[∫

dr1

∫
dr2 〈µsδ(r− r1)T (r1 − r2)δ(r2 − r)µs〉fs(r)

]
β

ε0a

∫
drnk =

∑
s=A,B

∫
dr〈cs(r)〉

[
〈µsT (r− r)µs〉fs(r)

]
β

ε0a

∫
drnk =

∑
s=A,B

∫
dr〈cs(r)〉 β

3ε0

nkµ̄
2
s

1

a
=
∑
s=A,B

〈cs(r)〉 µ̄
2
s

3
(3.54)

where, in the third equality, we have used the following result:

µsT (r− r)µs = µs

(∫
dk

(2π)3

βkk

ε0k2
eik·0

)
µs =

∫
dk

(2π)3
µs

βkk

ε0k2
µs

=
β

ε0

∫
dk

(2π)3

(
µs ·

k

k

)2

=
β

ε0

µ̄2
s

∫
dk

(2π)3
(cos θk)

2

=
β

3ε0

µ̄2
s

∫
dk

(2π)3
1

=
β

3ε0

µ̄2
snk (3.55)

To solve the second constitutive relation, we need to find an expression for 〈µs〉fs(r),

which can be evaluated as

〈µs〉fs(r) =

∫
dµsµse

−fs(µ; r)∫
dµs e

−fs(µ; r)

=

∫
dµsµse

− 1
2

ε0a
β+ε0a

∫
dr1

∫
dr2 µshs(r−r1)T (r1−r2)hs(r2−r)µs+µs·EI(r)∫

dµs e
− 1

2
ε0a

β+ε0a

∫
dr1

∫
dr2 µshs(r−r1)T (r1−r2)hs(r2−r)µs+µs·EI(r)

=

∫
dµsµse

µs·EI(r)∫
dµs e

µs·EI(r)

=

(
coth(µ̄s|EI(r)|)− 1

µ̄s|EI(r)|

)
µ̄sEI(r)

|EI(r)|
(3.56)

where the quadratic term in fs can be ignored as it is a constant that does not depend
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on the direction of µs, and

EI(r) = E0(r)− ε0

β + ε0a

∫
dr′ T (r− r′)[E0(r′)− F(r′)] (3.57)

Therefore, Eq. (3.53b) can be simplified as

(
ε0

β + ε0a

)
(E0(r)− F(r))

=
∑
s=A,B

〈cs(r)〉
[(

coth(µ̄s|EI(r)|)− 1

µ̄s|EI(r)|

)
µ̄sEI(r)

|EI(r)|

]
(3.58)

In summary, in this subsection we have derived the constitutive relations to be

1

a
=
∑
s=A,B

〈cs(r)〉 µ̄
2
s

3
(3.59a)

(
ε0

β + ε0a

)
(E0(r)− F(r)) =

∑
s=A,B

〈cs(r)〉
[(

coth(µ̄s|EI(r)|)− 1

µ̄s|EI(r)|

)
µ̄sEI(r)

|EI(r)|

]
(3.59b)

3.2.6 Dielectric Constant for a Homogeneous System

To find the dielectric constant of the mixture, we first derive a relation between the

polarization of the system and the externally applied field:

P(r) = − δβW

δE0(r)

=
ε2

0

(β + ε0a)2

∫
dr′
∫
dr′′ T (r− r′)

[
1δ(r′ − r′′)− δF(r′)

δE0(r′′)

]
(E0(r′′)− F(r′′))

+
∑
s=A,B

∫
dr′
∫
dr′′ 〈cs(r′′)〉

×
[
1δ(r− r′)δ(r′ − r′′)− ε0

β + ε0a
T (r− r′)

(
1δ(r′ − r′′)− δF(r′)

δE0(r′′)

)]
×
(

coth(µ̄s|EI(r′′)|)−
1

µ̄s|EI(r′′)|

)
µ̄2
sEI(r′′)

µ̄s|EI(r′′)|
(3.60)
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To linear order, we let the solution to the constitutive equation give F = −γE0.

Then, linearizing Eq. (3.60) gives

〈P(k)〉 =
ε2

0(1 + γ)2

(β + ε0a)2
T (k)E0(k)

+
1

a

[
1− ε0(1 + γ)

β + ε0a
T (k)

] [
1− ε0(1 + γ)

β + ε0a
T (k)

]
E0(k) (3.61)

which gives an expression for the electric susceptibility of the system

χ0(k) =
β

ε0

ε2
0(1 + γ)2

(β + ε0a)2
T (k)

+
β

ε0a

[
1− ε0(1 + γ)

β + ε0a
T (k)

] [
1− ε0(1 + γ)

β + ε0a
T (k)

]
(3.62)

Using the relation trχ0(k) = (ε−1)(2ε+1)
ε

, we have

(ε− 1)(2ε+ 1)

ε
=

β

ε0a

(2 + γ2)β + 3ε0a

β + ε0a
(3.63)

In the limit of small electric field, we can solve Eq. (3.59b) to linear order in E0

as

(
ε0

β + ε0a

)
(E0(r)− F(r)) =

∑
s=A,B

〈cs(r)〉1
3
µ̄s|EI(r)| µ̄sEI(r)

|EI(r)|(
ε0

β + ε0a

)
(E0(r)− F(r)) =

∑
s=A,B

〈cs(r)〉1
3
µ̄2
sEI(r)(

ε0

β + ε0a

)
(E0(r)− F(r)) =

1

a
EI(r) (3.64)

For a homogeneous system, the field EI in Eq. (3.57) can be evaluated as

EI = E0 −
ε0

β + ε0a

β

3ε0

[E0 − F]

= E0 −
β

3(β + ε0a)
[E0 − F] (3.65)

Then, in a homogenous system under a very small applied field, we obtain the fol-
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lowing relationship between F and E0 by solving Eq. (3.64):

F = − 2β

β + 3ε0a
E0

γ =
2β

β + 3ε0a
(3.66)

Therefore, for homogeneous mixture at the limit of small applied field, we have

(ε− 1)(2ε+ 1)

ε
=

3β

ε0a

(
2β2 + 3βε0a+ 9ε2

0a
2

(β + 3ε0a)2

)
(3.67)

3.2.7 Legendre Transform of the Variational Grand Potential

to the Helmholtz Free Energy

We are hoping to calculate the solubility of two polar liquids in a mixture, and to do

so requires the Helmholtz free energy in the canonical ensemble. Before we do the

Legendre transform, we need an expression for nk in the variational grand potential

in Eq. (3.45). To regularize the singularity, we make use of the derived constitutive

relation in Eq. (3.53a), and write

∫
drnk =

ε0a

β

∑
s=A,B

∫
dr〈cs(r)〉

×
[∫

dr1

∫
dr2 〈µshs(r− r1)T (r1 − r2)hs(r2 − r)µs〉fs(r)

]
(3.68)
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With this expression, we rewrite the variational grand potential as

βW = −1

2

(
ln

[
aε0

β + aε0

]
+

β

β + aε0

)
ε0a

β

×
∑
s=A,B

∫
dr〈cs(r)〉

[∫
dr1

∫
dr2 〈µshs(r− r1)T (r1 − r2)hs(r2 − r)µs〉fs(r)

]
− ε2

0

2(β + ε0a)2

∫
dr

∫
dr′ (E0(r)− F(r))T (r− r′) (E0(r′)− F(r′))

−
∑
s=A,B

eβµs

Λs

∫
dr

∫
dµs exp

[
− ε0

β + ε0a

∫
dr1 [E0(r1)− F(r1)]T (r1 − r)µs

+µs · E0(r)− 1

2

ε0a

β + ε0a

∫
dr1

∫
dr2 µshs(r− r1)T (r1 − r2)hs(r2 − r)µs

]
(3.69)

To simplify the grand potential, we introduce the following function for hs(r) that

describes a uniform distribution of the polarization within the spherical volume vs of

the molecule:

hs(r) =


1
vs
|r| <

(
3vs
4π

) 1
3

0 otherwise

(3.70)

With this functional form for hs, we can evaluate the following product as

∫
dr1

∫
dr2 µshs(r− r1)T (r1 − r2)hs(r2 − r)µs =

β

3ε0vs
µ̄2
s (3.71)

The derivation for Eq. (3.71) will be deferred to the Appendix 3.A. The variational

grand potential can then be simplified as

βW = −1

2

(
ln

[
aε0

β + aε0

]
+

β

β + aε0

)
ε0a

β

∑
s=A,B

∫
dr〈cs(r)〉 β

3ε0vs
µ̄2
s

− ε2
0

2(β + ε0a)2

∫
dr

∫
dr′ (E0(r)− F(r))T (r− r′) (E0(r′)− F(r′))

−
∑
s=A,B

eβµs

Λs

∫
dr

∫
dµs exp

[
−1

2

ε0a

β + ε0a

β

3ε0vs
µ̄2
s + µs · EI(r)

]
(3.72)

Now we shall perform the Legendre transform on the grand potential. Based on
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Eq. (3.46), we can express the chemical potential µs as

e−βµs =
1

Λs

∫
dr 〈cs(r)〉

∫
dr

∫
dµs exp

[
−1

2

ε0a

β + ε0a

β

3ε0vs
µ̄2
s

+µs · E0(r)− ε0

β + ε0a

∫
dr1 [E0(r1)− F(r1)]T (r1 − r)µs

]
βµs = ln Λs + ln

∫
dr 〈cs(r)〉

− ln

∫
dr

∫
dµs exp

[
−1

2

ε0a

β + ε0a

β

3ε0vs
µ̄2
s + µs · EI(r)

]
(3.73)

Thus, the Helmholtz free energy is given by

βF = βW +
∑
s=A,B

βµs〈Ns〉

= −1

2

(
ln

[
aε0

β + aε0

]
+

β

β + aε0

)
ε0a

β

∑
s=A,B

∫
dr〈cs(r)〉 β

3ε0vs
µ̄2
s

− ε2
0

2(β + ε0a)2

∫
dr

∫
dr′ (E0(r)− F(r))T (r− r′) (E0(r′)− F(r′))

+
∑
s=A,B

(∫
dr 〈cs(r)〉

)
ln

(∫
dr 〈cs(r)〉

)
+
∑
s=A,B

(∫
dr 〈cs(r)〉

)
×
[
ln Λs − 1− ln

∫
dr exp

(
−1

6

βa

vs(β + ε0a)
µ̄2
s

)
4π sinh(µ̄s|EI(r)|)

µ̄s|EI(r)|

]
(3.74)

In the limit E0 → 0, the Helmholtz free energy becomes

βFlimE0→0 = −1

2

ε0a

β

(
ln

[
aε0

β + aε0

]) ∑
s=A,B

∫
dr〈cs(r)〉 β

3ε0vs
µ̄2
s

+
∑
s=A,B

(∫
dr 〈cs(r)〉

)
ln

(∫
dr 〈cs(r)〉

)
+
∑
s=A,B

(∫
dr 〈cs(r)〉

)[
ln Λs − 1− ln

∫
dr 4π

]
(3.75)
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For a homogeneous system,

βFlimE0→0 = −V
2

ε0a

β

(
ln

[
aε0

β + aε0

]) ∑
s=A,B

〈cs〉
β

3ε0vs
µ̄2
s

+V
∑
s=A,B

〈cs〉 ln (〈cs〉V ) + V
∑
s=A,B

〈cs〉 [ln Λs − 1− ln 4π] (3.76)

For a binary system, let us introduce the volume fraction φs for the solvent type

s. The number concentration relates to the volume fraction through 〈cs〉 = φs/vs.

Using the volume fraction, we rewrite the free energy as

βFlimE0→0 = −V
2

ε0a

β

(
ln

[
aε0

β + aε0

]) ∑
s=A,B

φs
vs

β

3ε0vs
µ̄2
s

+V
∑
s=A,B

(
φs
vs

)
lnφs + V

∑
s=A,B

(
φs
vs

)[
ln

ΛsV

4πvs
− 1

]
(3.77)

where

a =

( ∑
s=A,B

φsµ̄
2
s

3vs

)−1

(3.78)

as given by Eq. (3.59a).

Then the mixing free energy can be expressed as

∆βFmix,E0→0

= βFlimE0→0 −
∑
s=A,B

φsβFlimE0→0(φs = 1)

= −V
∑
s=A,B

φsµ̄
2
s

6v2
s

[
a ln

(
aε0

β + aε0

)
− as ln

(
asε0

β + asε0

)]
+ V

∑
s=A,B

(
φs
vs

)
lnφs

(3.79)

where as = 3vs/µ̄
2
s.



59

3.3 Results and Discussions

3.3.1 Dielectric Constants of Polar Liquid Mixtures

In this section, we apply the FTVT to calculate the dielectric constants of liquid

mixtures. We assume that the molar volumes and the dielectric constants of the pure

solvents are known. The liquid components are assumed to be nonpolarizable, and

we determine the effective permanent dipole moment of each liquid from its dielectric

constant, molecular volume, and temperature by applying Eq. (3.67) to a pure solvent

component. In this work, for simplicity, we do not model the polarizability and the

specific molecular correlations explicitly; instead, their effects are renormalized into

the effective permanent dipole moment. For simplicity, we also assume that the liquid

mixture is incompressible and that the volume change upon mixing is zero.

In Figure 3.1 and 3.2, we plot the mixture dielectric constant vs. the solvent com-

position calculated by the FTVT for aqueous and non-aqueous mixtures, respectively.

In both figures, we compare the values predicted by the FTVT to the experimen-

tally measured dielectric constants, shown as scattered points of the same color for

each mixture. In Figure 3.1, we observe that there is very good agreement between

the FTVT predicted dielectric constant and the experimental values for all aqueous

mixtures considered except the water/DMSO mixture. The general good agreement

suggest that the FTVT can serve as a robust and convenient method for calculating

the mixture dielectric constants based on pure-solvent dielectric constants and molar

volumes. We note that the use of an effective permanent dipole for each solvent com-

ponent is found to be applicable for the hydrogen-bonding liquids, even though the

specific interactions around a molecule, such as the tetrahedral order around a water

molecule, are not taken into account. We observe from Figure 3.1 that the FTVT

underestimates the dielectric constant of a water/DMSO mixture. This is because the

presence of DMSO enhances the hydrogen bonds in water, and the hydrogen bonds

between DMSO and water is longer lived that the water-water hydrogen bonds.58–60

As the additional correlation caused by the hydrogen bonds are not captured with

the FTVT, the FTVT underestimates mixture dielectric constant of the water/DMSO
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Figure 3.1: Dielectric constants of mixtures calculated by the FTVT (lines) plotted
against the mixture composition for a range of aqueous mixtures. The mixtures
are distinguished with different colors as indicated by the legend. The results are
compared with the experimentally observed values shown as scattered points of the
same color.
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Figure 3.2: Dielectric constants of mixtures calculated by the FTVT (lines) plotted
against the mixture composition for a range of nonaqueous mixtures. The mixtures
are distinguished with different colors as indicated by the legend. The results are
compared with the experimentally observed values shown as scattered points of the
same color.
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mixture.

For the nonaqueous mixtures considered in Figure 3.2, we observe good agreement

between theoretically predicted dielectric constants and experimentally measured val-

ues for all mixtures except the methanol/aniline mixture. This again suggests that

the FTVT is able to provide reliable predictions for the dielectric constants of gen-

eral mixtures. In particular, we note that, for nonpolar molecules such as hexane

and cyclohexane, the use of an effective permanent dipole moment seems to be able

to capture the effects of polarizability. For water/aniline mixture, the deviation be-

tween the FTVT-predicted dielectric constants and the experimental results are most

probably due to the strong hydrogen-bonding interaction inside the mixture.61

3.3.2 Miscibility of Liquids

In this section, we apply the mixing free energy derived in Eq. (3.79) to predict the

miscibility of liquids. Using the mixing free energy derived in the FTVT, we can

determine whether these two solvents are miscible by looking at the convexity of the

mixing free energy: if the mixing free energy is convex for all compositions, the two

solvents are miscible; otherwise, there exist compositions at which the mixture sepa-

rates into two phases of different compositions, and the two solvents are not miscible

with each other. Based on Eq. (3.79), the only inputs required for the FTVT to

predict the miscibility of two solvents are the effective permanent dipole moments

and the molecular volumes of the solvent components. The molecular volume can be

computed from the molar volume of the liquid, and the effective permanent dipole

moment can be computed from both the molar volume and the dielectric constant

by applying Eq. (3.67) to a pure solvent component. Therefore, the miscibility be-

tween any liquids can be predicted based on only two macroscopic properties of each

component: the dielectric constant and the molar volume.

In Figures 3.3(a) to 3.5(b), we have plotted the miscibility maps for six solvents:

water, methanol, ethanol, acetone, cyclohexane, and benzene. We call these solvents

the “host solvent” for the miscibility map. These miscibility maps are plotted on
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the axes of dielectric constant and molar volume of a second solvent. If the second

solvent has molar volume and dielectric constant that falls in the green region of the

miscibility map, it is predicted to be miscible with the host solvent; otherwise, if the

second solvent falls in the blue region of the miscibility map, it is predicted to be

immiscible with the host solvent. On each of the miscibility maps, we also indicate

the experimentally observed miscibility for real solvents: a yellow circle indicates

that the solvent is observed to be miscible with the host solvent, while a red cross

indicates that the solvent is immiscible with the host solvent. The numbers next

to the experimentally measured miscibility correspond to the solvent serial numbers

listed in Table 3.1.

In Figures 3.3(a) to 3.5(b), we find that there are excellent agreements between

the FTVT-predicted miscibility and the experimentally measured miscibility for real

solvents. This suggests that the FTVT is able to give good predictions for the mis-

cibility between two liquids. In addition, we observe that water, being a small and

highly-polar molecule, is miscible with liquids that have relatively small molar volume

and large dielectric constant. On the other end of the spectrum, cyclohexane and ben-

zene, being large in molecular size and nonpolar, are miscible with liquids that have

relatively large molar volume and small dielectric constant. In the middle of the spec-

trum, for molecules such as ethanol and acetone, having intermediate molecular size

and intermediate dielectric constant allows them to be miscible with most solvents,

as indicated by the largest green region in their miscibility maps. Thus, the FTVT

has provided a quantitative explanation to the common saying “like dissolves like,

and unlike does not”. Here, we have observed that, for two solvents to be miscible,

they need to be alike both in their dielectric constants (polarity) and molar volumes

(molecular volumes).

From the miscibility map for water in Figures 3.3(a), we find that acetic acid, 1,4-

dioxane, and tetrahydrofuran are predicted to be immiscible with water by the FTVT,

but are experimentally observed to be miscible with water. We note that acetic acid

is known to form dimers in its pure liquid. In a dimer, the permanent dipole moment

of the acetic acid cancel out, and therefore, the permanent dipole moment calculated
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Figure 3.3: The miscibility maps for host solvents (a) water and (b) methanol plot-
ted on the axes of dielectric constant and molar volume of a second solvent. The
green/blue region indicates that a solvent with dielectric constant and molar volume
at the point is miscible/immiscible with the host solvent. The yellow circles indicate
actual solvents that are miscible with the host solvent, while the red crosses indicate
actual solvents that are immiscible with the host solvent. The numbers next to the
experimentally measured miscibility correspond to the solvent serial numbers listed
in Table 3.1.
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Figure 3.4: The miscibility maps for host solvents (a) ethanol and (b) acetone plot-
ted on the axes of dielectric constant and molar volume of a second solvent. The
green/blue region indicates that a solvent with dielectric constant and molar volume
at the point is miscible/immiscible with the host solvent. The yellow circles indicate
actual solvents that are miscible with the host solvent, while the red crosses indicate
actual solvents that are immiscible with the host solvent. The numbers next to the
experimentally measured miscibility correspond to the solvent serial numbers listed
in Table 3.1.
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Figure 3.5: The miscibility maps for host solvents (a) cyclohexane and (b) benzene
plotted on the axes of dielectric constant and molar volume of a second solvent. The
green/blue region indicates that a solvent with dielectric constant and molar volume
at the point is miscible/immiscible with the host solvent. The yellow circles indicate
actual solvents that are miscible with the host solvent, while the red crosses indicate
actual solvents that are immiscible with the host solvent. The numbers next to the
experimentally measured miscibility correspond to the solvent serial numbers listed
in Table 3.1.
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Table 3.1: The serial numbers (SN), the dielectric constants, and the molar volumes
for the solvents considered in the miscibility maps in Figures 3.3(a) to 3.5(b).

SN Solvent Name Dielectric Constant Molar Volume [mL/mol]
1 acetic acid 6.25 57.49
2 acetone 20.51 74.03
3 acetonitrile 35.68 52.25
4 benzene 2.27 89.12
5 1-butanol 17.34 91.56
6 butyl acetate 5.07 131.62
7 tetrachloromethane 2.23 96.50
8 trichloromethane 4.81 80.73
9 cyclohexane 2.02 108.75

10 1,2-dichloroethane 10.12 79.46
11 dichloromethane 8.97 64.02
12 dimethylformamide 37.47 77.39
13 dimethyl sulfoxide 47.24 70.96
14 1,4-dioxane 2.21 85.23
15 ethanol 24.75 58.37
16 ethyl acetate 5.93 97.86
17 diethyl ether 4.24 103.84
18 heptane 1.91 147.46
19 hexane 1.88 130.45
20 methanol 33.45 40.49
21 2-butanone 18.24 90.14
22 pentane 1.84 115.22
23 1-propanol 20.52 75.15
24 2-propanol 19.26 76.96
25 tetrahydrofuran 7.51 81.63
26 toluene 2.38 106.85
27 trichloroethene 3.39 89.73
28 water 78.34 18.07
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from the dielectric constant of pure acetic acid significantly underestimates the actual

permanent dipole moment of the acetic acid. For 1,4-dioxane and tetrahydrofuran,

they do not form hydrogen bonds in their pure solvents, but are able to form hydrogen

bonds with water. Therefore, the interactions between 1,4-dioxane or tetrahydrofuran

and water are more favorable than that captured by the FTVT theory. On the other

hand, for 1-butanol and 2-butanone, the FTVT predicts that they are miscible with

water by experimental observations indicate otherwise. However, these two solvents

lie close to the miscible-immiscible boundary on water’s miscibility map and we can

still consider the theory-experiment agreement to be good. The discrepancy between

theory and experiment for 1-butanol and 2-butanone may be because of the fact that

the effective permanent dipole does not describe their interactions with water most

accurately. Since 1-butanol and 2-butanone are large molecules, it may be important

to consider their polarizability explicitly.

3.4 Summary and Outlooks

In this chapter, we have developed a variational field theoretical approach for studying

polar liquid mixtures, and applied the theory to compute the dielectric constants and

miscibility of liquid mixtures. The theory results in a simple analytical expression

for the free energy of the mixture. Using only the dielectric constants and the molar

volume of the pure-solvent components as inputs, and not any adjustable parameters,

the theory predicts the dielectric constants and miscibility of liquid mixtures in im-

pressive agreements with experimentally observed results. In addition, a short-ranged

polarization distribution function is introduced for each solvent molecule, removing

the divergence problems in the field-theoretic treatment.

The FTVT in this work provides a general and systematic approach for obtaining

a free energy for a system of liquid mixtures. While we have only considered binary

solvent mixtures in this chapter, it is straightforward to generalize the theory to multi-

component mixed solvents. In addition, the shape of the molecule can be incorporated

with more details through the short-ranged polarization distribution function. An
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important next step is to account for the effects of polarizability of the solvents, as

their effects can be crucial for the property of mixtures too. In future work, it will

be interesting to consider ionic solutions by including ions into the solvent mixture,

and to integrate the treatment of solvent mixture in this work with existing models

for charge solvation in computer simulations.

Appendix 3.A Evaluation of the Self-Interaction

Factor for Uniformly Polarized Spheres

In this section, we provide the details for the evaluation of Eq. (3.71):

∫
dr1

∫
dr2 µshs(r− r1)T (r1 − r2)hs(r2 − r)µs =

β

3ε0vs
µ̄2
s (3.80)

with hs(r) given by

hs(r) =


1
vs
|r| <

(
3vs
4π

) 1
3

0 otherwise

(3.81)

The integral is essentially the self-interaction energy (multiplied by inverse tem-

perature β) of a uniformly polarized sphere of radius R such that 4
3
πR3 = vs. One

of the easy way to perform the calculation is to make use of the result from Example

4.2 in Ref. 62, which gives the electric field inside the sphere of a uniformly polarized

sphere of polarization P is

E = − 1

3ε0

P = − 1

3ε0

µs

vs
(3.82)

Thus the energy for such a sphere is

E = −µs · E =
µ2
s

3ε0vs
(3.83)

and therefore we arrive at Eq. (3.71).
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Part II

Nonequilibrium Properties
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Chapter 4

A Molecularly-Based Theory for
Electron Transfer Reorganization
Energy in Pure Solvents

This chapter includes content from our previously published article:

Zhuang, B.; Wang, Z.-G. A Molecularly Based Theory for Electron Transfer Reorga-

nization Energy. J. Chem. Phys. 2015, 143, 224502.

4.1 Introduction

Electron transfer (ET) is a ubiquitous mechanism in many chemical, electrochemical

and biological processes. The ET kinetics depends on the nonequilibrium free energy

surfaces of the reactant and the product states generated by the electron-transferring

species and the solvent degrees of freedom.63–68 The celebrated Marcus theory69,70

envisions the nonequilibrium free energy surface as two equal-curvature parabolic

functions of a one-dimensional macroscopic coordinate – the solvent orientational

polarization, based on a linear dielectric treatment of the solvent in terms of its static

and optical dielectric constants. This simple picture has had wide successes in many

experimental and simulation tests. In particular the prediction – and subsequent

experimental observation – of an inverted region in the energy gap law67 represents

a great triumph of the Marcus theory.
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The treatment of the solvent as a linear dielectric medium is clearly an approxi-

mation, as recognized by Marcus himself and others.71–73 Two notable discrepancies

have been known in the literature. First, computer simulations indicated that the sol-

vent reorganization energy depends on the charges of the donor-acceptor system,74–80

and not only on the amount of charge transfer as predicted by the Marcus theory.

Second, time-resolved spectroscopic measurements of electron-transferring species re-

vealed differences in the energies and shapes of the absorption and the emission bands,

while the Marcus picture predicts a perfect symmetry between the two bands.73,81,82

The explanation of these phenomena requires theoretical methods that account for

solvent properties beyond the linear dielectric approximation, such as spatially vary-

ing dielectric response and dielectric saturation.

Molecular dynamics (MD) simulations with explicit solvents can include the mi-

croscopic molecular structure and interactions, allowing dynamical details of ET pro-

cesses to be studied.79,80,83–92 However, multiple long trajectories are required to per-

form umbrella sampling, making it impractical to perform calculations for general

solvents. Integral-equation theories12,93–99 is a more convenient alternative to the la-

borious nonequilibrium sampling schemes in MD simulations, but nanosecond MD

simulations are still required to compute the solvent correlation functions in these

approaches. Also, it is cumbersome to include the induced dipoles of the solvent in

simulations and integral-equation theories; as such, these methods often treat solvent

molecules as nonpolarizable, with the effects of solvent electronic response approxi-

mated or ignored. Furthermore, these methods require specific, well-parameterized

solvent models.

On the other hand, phenomenological treatments73,100–117 are convenient tools that

elucidate the essential physics in electron transfer reactions, and provide good expla-

nations for experimental and simulation data by invoking ad hoc fitting parameters.

However, for any specific ET system, to make a priori predictions of the reorgani-

zation energy, it is desirable to develop a theory that captures the most important

properties of each solvent using only readily-available parameters from physicochem-

ical handbooks.
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Recently, Nakamura et al.44 developed a coarse-grained theory for equilibrium ion

solvation in liquids and liquid mixtures using field-theoretic techniques. The term

‘coarse-grained’ refers to a simplified description of the solvent molecules using a

reduced set of degrees of freedom. The theory accounts for the molecular nature

of the solvents by using a small number of molecular parameters that are readily

available – the permanent dipole, the polarizability, and the molecular volume for

the solvent and the ionic radius for the ionic solute. The theory naturally captures

spatially varying dielectric responses and dielectric saturation in the close vicinity of

the ion. With no adjustable parameters, the theory predicts solvation energies in both

single-component liquids and binary liquid mixtures that are in excellent agreement

with experimental data. A key insight of the work in Ref. 44 is that the solvation

energy of an ion is largely determined by the local response of the permanent and

induced dipoles, as well as the local solvent composition in the case of mixtures, and

bears no strong correlation with the bulk dielectric constant.

In this chapter, we extend the work of Nakamura et al. to the calculation of

nonequilibrium solvation energy (the reorganization energy) for electron transfer re-

actions in simple molecular liquids. In contrast to equilibrium ion solvation where

both the electronic and orientational components of the solvent polarization reach

full equilibrium, the nonequilibrium solvation energy in ET involves conditions where

only the electronic polarization responds to the instantaneous solute charges while the

orientational component is kept at nonequilibrium values because of the longer time

scales for solvent orientational relaxation compared to the electronic motion. The field

theoretical formulation naturally accounts for these two different degrees of freedom

by introducing two respective conjugate fields (which become identical under full equi-

librium conditions). With the same set molecular input as for equilibrium solvation,

and with no adjustable parameters, our theory predicts reorganization energies for

a variety of charge transfer reactions involving simple metal ions in good agreement

with experimentally obtained data. Furthermore, by treating all solvent molecules on

equal footing and representing the solvent polarization as spatially varying quantities,

our theory provides a unified description of the solvation energy contributions from
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all the solvent molecules, thus avoiding the need to separately treat the inner-sphere

and the outer-sphere molecules, as is commonly done in existing ET theories. Our ap-

proach allows ET reorganization energy to be calculated with minimal computational

effort, typically less than half a minute on a personal computer.

The rest of this chapter is organized as follows. In Section 4.2, after a brief

description of the setup of the problem to identify the relevant energies, we formu-

late our dipolar self-consistent-field theory (DSCFT) for charge solvation under both

equilibrium and nonequilibrium conditions for a single-component liquid. (Extension

to liquid mixtures will be deferred to a forthcoming work.) The key equations and

main steps in the derivation are presented, while some of the technical details are

delegated to the two appendices. In Section 4.3, we present the results for the re-

organization and activation energies for several prototypical ET reactions. We show

that the DSCFT is able to unify the treatment of inner-sphere and outer-sphere sol-

vent molecules to provide a reliable estimate of the total reorganization energy. In

addition, we show that the nonequilibrium free energy surface is well described by a

parabolic function, but contrary to the prediction by the linear dielectric theory, the

curvature of the free energy surface is not independent of the magnitude of charge

on the electron-transferring species. Finally, in Section 4.4, we summarize the main

points of this work and offer some concluding remarks.

4.2 Dipolar Self-Consistent-Field Theory (DSCFT)

In this section, we derive the DSCFT by extending the equilibrium theory for ion

solvation by Nakamura et al. to the case of nonequilibrium solvation with arbitrary

solute charge distribution. We start with a brief review of the key concepts in ET

theory to define the relevant free energies. Next, we formulate the field-theoretic

DSCFT theory for the solvation of a solute with arbitrary charge under equilibrium

and nonequilibrium conditions. We then apply the DSCFT to ET between two simple

ions, detailing the procedure for calculating the reorganization energy and the free

energy change of the reaction.
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Figure 4.1: Free energy vs. solvent orientational polarization for electron transfer
reactions. The linear dielectric theory predicts that the two free energy curves are
parabolic and have equal curvature. R and P are the equilibrium states when the
solute is at the reactant charge state and the product charge state, respectively. N
is the nonequilibrium state in which the solute is in the product charge state while
the solvent orientational polarization is in equilibrium with the reactant charge state.
T labels the transition state. The activation energy, the free energy change of the
reaction, and the reorganization energy are ∆G‡, ∆G0, and λ, respectively.

4.2.1 Key Concepts in Electron Transfer Theory

We consider the typical ET in a weakly-coupled donor-acceptor complex (the solute)

in a polar solvent. The solute has charge distribution ρ̂
(R)
c (r) in the reactant state and

ρ̂
(P )
c (r) in the product state. The macrostate of the solvent can be described by its

electronic polarization Pel and orientational polarization Por. Due to the separation of

timescale between the fast-responding electronic polarization and the slow-responding

orientational polarization, the ET kinetics is controlled by the thermally-induced

nonequilibrium reorganization in the solvent orientational polarization. Based on the

linear dielectric description for the solvent, the free energies in the reactant and the

product charge states relate to the nonequilibrium orientational polarization through

two parabolas of equal curvature, as sketched in Fig. 4.1.

The key insight in the Marcus theory69,70 is that a thermally-activated ET pro-

cess must satisfy both the Franck-Condon principle and energy conservation. As such,
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prior to the electron transfer, the solvent orientational polarization must reorganize

to a transition state (T ) such that the free energy in the reactant state equals the free

energy in the product state. The difference in the free energy of the transition state

and the reactant equilibrium state (R) defines the activation energy ∆G‡ of the ET

process. However, it is generally difficult to directly obtain a simple expression for

the orientational polarization at the transition state. Instead, the activation energy is

calculated by its relation to the free energy change of the reaction ∆G0 and the reor-

ganization energy λ through the following expression, based on the double-parabola

picture of the free energy surface:

∆G‡ =
λ

4

(
1 +

∆G0

λ

)2

(4.1)

where the free energy change and the reorganization energy are given by

∆G0 = GP −GR (4.2)

λ = GN −GP (4.3)

In the above expressions, GS denotes the free energy of the state S. States R and

P are the equilibrium states corresponding to the reactant and the product charges,

where both the solvent orientational and the electronic polarizations are in full equi-

librium with the solute charge. State N is a nonequilibrium state in which the solute

is in the product charge state but the solvent orientational polarization is kept at its

previous equilibrium value in state R. In State N , the solvent electronic polarization

equilibrates with both the solute charge and the nonequilibrium orientational polar-

ization. These states as well as the relevant energies are indicated in the sketch in

Fig. 4.1.

The usual treatment of reorganization energy in the linear dielectric theory in-

volves the separation of the inner-sphere (solute) and the outer-sphere (solvent) con-

tributions. For an ET process between two simple ions, the coordinated metal com-

plexes, instead of the bare ions, are usually treated as the solute in the inner sphere.
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For example, for the Fe2+/Fe3+ exchange reaction in aqueous medium, the hexaaquo-

complexes [Fe(H2O)6]2+ and [Fe(H2O)6]3+ are considered as the solutes. The inner-

sphere reorganization energy considers the nonequilibrium coordinate bond lengths

between the ion and the solvent ligands, while the outer-sphere reorganization energy

considers nonequilibrium solvent orientational polarization outside the hexaaquocom-

plexes. Using classical linear dielectric theory, Marcus derived the following expression

relating the outer-sphere reorganization energy λo and the geometry of the solute:69

λo =
(∆q)2

4πε0

(
1

2aD
+

1

2aA
− 1

d

)(
1

ε∞
− 1

εs

)
(4.4)

where aD and aA are respectively the radii of the donor and the acceptor, d is the

distance between them, and ∆q is the amount of charge transferred. ε∞ and εs are

respectively the bulk optical and the static dielectric constants of the solvent. In this

work, we refer to the reorganization energy calculated by Eq. (4.4) as the bulk linear

dielectric constant (BLDC) approximation.

The Marcus theory thus establishes that the key to the study of an ET process is to

find the free energies of charge solvation under the equilibrium condition, where both

the orientational and the electronic polarizations of the solvent are in equilibrium

with the solute charge, as well as the nonequilibrium condition, where the solvent

orientational polarization is kept at an out-of-equilibrium value. In the following

subsection, we formulate a molecularly-based mean-field theory for calculating these

free energies.

4.2.2 Dipolar Self-Consistent-Field Theory (DSCFT) for Equi-

librium and Nonequilibrium Solvation

In this section, we formulate the DSCFT for charge solvation under both the equi-

librium and the nonequilibrium situations. We consider a set of solutes immersed in

a polar solvent, as schematically illustrated in Fig. 4.2. The set of solutes is mod-

eled as a charge distribution ρ̂c(r) inside some solute cavity C representing the space
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Figure 4.2: A schematic representation of the system of solutes in a dipolar solvent.
The solute cavity C is represented in green and the solvent is represented by the red
and blue dipoles.

inaccessible to solvent molecules. The solvent consists of N dipolar molecules, each

characterized by its molecular volume v, permanent dipole µ̄, and polarizability α.

The state of the ith solvent molecule is described by {ri,µi,pi}, which respectively

denote its position, permanent dipole (with magnitude |µi| = µ̄), and induced dipole.

We write the total charge density of the solute-solvent system as:

ρ̂(r) = ρ̂c(r) + ρ̂or(r) + ρ̂el(r) (4.5)

where ρ̂or and ρ̂el are respectively the charge densities due to the orientational and

the electronic polarizations. As the solvent orientational polarization is due to the

permanent dipole moments that are related to the nuclear degrees of freedom, and the

electronic polarization is due to the induced dipole moments that are related to the

electronic degrees of freedom, we express ρ̂or and ρ̂el in terms of their corresponding

dipole moments as50

ρ̂or(r) = −
N∑
i=1

µi · ∇δ(r− ri) (4.6)

ρ̂el(r) = −
N∑
i=1

pi · ∇δ(r− ri) (4.7)

The energy of the system consists of the Coulomb interaction and the deformation
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energy of the induced dipoles, and it can be expressed as

U =
1

2

∫
dr

∫
dr′

ρ̂(r)ρ̂(r′)

4πε0|r− r′|
+

N∑
i=1

p2
i

2α
(4.8)

where the second term is the deformation energy of the induced dipoles in the har-

monic approximation.50,51 For convenience, we work in a semi-grand canonical en-

semble of open-solvent and incompressible system with volume V , temperature T ,

and solvent chemical potential µ, for which the partition function is

Ξ =
∞∑
N=0

eβµN

N !

(
N∏
i=1

1

η

∫
dri

∫
dµi

∫
dpi

)
×δ[vn̂(r)− 1]e−βU (4.9)

where β = 1/kBT and η is the analog of thermal de Broglie wavelength that makes

the configurational integral dimensionless. The actual value of η is inconsequential

as it only contributes to a reference energy. δ[f(r)] is the δ-functional, which is the

generalization of the Dirac delta function to the function space, such that δ[f(r)] = 0

unless f = 0 for all r, and the integral of the functional over the function space

satisfies
∫
Dfδ[f(r)] = 1. n̂(r) =

∑N
i=1 δ(r − ri) is the number density operator for

the solvent molecules. Rather than accounting for the non-electrostatic interactions

between the solvent molecules explicitly, in our coarse-grained approach, we treat

the liquid as incompressible and use the δ-functional constraint to enforce a constant

density everywhere in the system. The integral runs over the configurational space of

solvent molecules; the integral over µi runs over the 4π solid angle as the magnitude

of the permanent dipole is fixed.

Next, we transform the particle-based partition function in Eq. (4.9) into a field

representation by performing a series of identity transformations.14 This process in-

troduces coarse-grained particle densities and coarse-grained potentials that decouple

the particle-particle interactions. These coarse-grained variables are introduced as
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integration variables using the property of the δ-functional:

F [f(r)] =

∫
Dg δ[f(r)− g(r)]F [g(r)] (4.10)

where f represents a general function and F is a general functional. The δ-functionals

can be further rewritten using its Fourier representation:

δ[f ] =

∫
Dh exp

[
i

∫
drh(r)f(r)

]
(4.11)

The resulting partition function after the transformations is

Ξ =

∫
Dw

∫
Dρor

∫
Dρel

∫
Dwor

∫
Dwel

×
∞∑
N=0

eβµN

N !

(
N∏
i=1

1

η

∫
dri

∫
dµi

∫
dpi

)

× exp

[
i

∫
drw(r)[vn(r)− 1]− β

2

∫
dr

∫
dr′

ρ(r)ρ(r′)

4πε0|r− r′|

−
N∑
j=1

βp2
j

2α
+ i

∫
drwor(r)ρor(r) + i

∫
drwel(r)ρel(r)

−i
∫
drwor(r)ρ̂or(r)− i

∫
drwel(r)ρ̂el(r)

]
(4.12)

where ρ(r) = ρ̂c(r) + ρor(r) + ρel(r). The procedure introduces the coarse-grained

orientational and electronic charge densities ρor and ρel (represented without a hat)

that do not depend explicitly on the solvent microscopic configuration. The identity

transformation decouples the interactions terms and makes the partition function into

one of a single-particle in effective fluctuating fields. Integration over the microscopic

configurational space {ri,µi,pi} leads to the field-theoretic grand partition function,

given by

Ξ =

∫
Dw

∫
Dρor

∫
Dρel

∫
Dwor

∫
Dwel e

−βH (4.13)
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with the field Hamiltonian

βH[w, ρor, ρel, wor, wel]

= i

∫
drw(r)− i

∫
drwor(r)ρor(r)− i

∫
drwel(r)ρel(r)

+

∫
dr

∫
dr′

βρ(r)ρ(r′)

8πε0|r− r′|
− eβµQ[w,wor, wel] (4.14)

whereQ[w,wor, wel] is the single-particle partition function under the fluctuating fields

given by

Q[w,wor, wel]

=
4πµ̄2

η

(
2πα

β

) 3
2
∫
dr

{
Γ(r)

sin(µ̄|∇wor(r)|)
µ̄|∇wor(r)|

exp

[
ivw(r)− α

2β
(∇wel(r))2

]}
(4.15)

Here, Γ(r) serves to limit the integration to space outside of the cavity, with Γ(r) = 0

if r ∈ C and Γ(r) = 1 otherwise.

The functional integration in the field-theoretic partition function in Eq. (4.13)

cannot be evaluated in closed form. To proceed, we make the saddle-point approx-

imation by taking the maximum of the integrand corresponding to the set of func-

tions {w∗, ρ∗or, ρ
∗
el, w

∗
or, w

∗
el} that extremizes the Boltzmann factor exp(−βH), i. e. Ξ ≈

exp{−H[w∗, ρ∗or, ρ
∗
el, w

∗
or, w

∗
el]}. At equilibrium, the saddle-point values of the func-

tional arguments are determined by extremizing H with respect to all of its functional

variables. Under the nonequilibrium condition where electronic polarization can re-

spond but the orientational polarization is kept at its previous equilibrium value,

we extremize H with respect to all functional variables except ρor and its conjugate

field wor. We delegate the details of the extremization procedure to Appendix 4.A.

Here, we simply write down the two sets of resulting constitutive relations, one set

applicable under equilibrium conditions, and the other set applicable under nonequi-

librium conditions. Since the saddle-point values of the functional variables lie on

the imaginary axis, in order to work with real quantities and for the convenience of
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relating our theory to the classical electrostatics theory, we make a change of variables

wor = −iβφor, wel = −iβφel, and w = iβu.1 Upon simplification and rearrangement

of the resulting equations, the set of constitutive relations for equilibrium is

∇ ·D = ρ̂c(r) (4.16a)

χor(r) = Γ(r)
βµ̄2

ε0v
e−βvu(r)+βα

2
|∇φ(r)|2G(βµ̄|∇φ(r)|) (4.16b)

χel(r) = Γ(r)
α

ε0v
(4.16c)

1 = e−βvu(r)+βα
2
|∇φ(r)|2 sinh(βµ̄|∇φ(r)|)

βµ̄|∇φ(r)|
(4.16d)

where G(x) = [1/ tanh(x) − 1/x] sinh(x)/x2. D is electric displacement given by

D = −ε0[1 + χel + χor(r)]∇φ(r), and χor and χel are respectively the orientational

and electronic electric susceptibilities. χor and χel are zero inside the solute cavity,

which is a vacuum with no solvent. The electric susceptibilities relate to the local

static dielectric function εs(r) and the local optical dielectric function ε∞(r) through

χor(r) and χel(r) through εs(r) = 1 + χor(r) + χel(r) and ε∞(r) = 1 + χel(r). At the

saddle-point level, the bulk dielectric constant is only accounted for in the limit of

dilute gases, but the effect of this approximation is inconsequential as the solvation

energy is determined by the local dielectric response and not directly related to the

bulk dielectric constant.44 We have dropped the superscripts ∗ in these equations for

notational simplicity, but it should be understood that the effective charge densities

and potentials are at their saddle-point values. The subscripts on the electric po-

tentials are dropped because φ(r) = φel(r) = φor(r) from the minimization of H, as

evident from Eqs. (4.28) and (4.29).

1The saddle-point approximation is also known as the method of steepest descents. Roughly
speaking, it involves the deformation of the integration path to the complex plane, and we expect
the integral to be dominated by the stationary point of the integrand in the complex plane. The
detailed analytical structure is out of scope for this manuscript. We refer interested readers to
pp. 203-209 of Ref. 14.
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For nonequilibrium situations, the constitutive relations become

∇ ·D = ρ̂c(r) (4.17a)

χel(r) = Γ(r)
α

ε0v
(4.17b)

1 = e−βvu(r)+βα
2
|∇φel(r)|2 sinh(βµ̄|∇φor(r)|)

βµ̄|∇φor(r)|
(4.17c)

where the values of φor and χor for the nonequilibrium state N are from their values

at the reactant equilibrium state R. The electric displacement is given by D =

−ε0(1 + χel)∇φel(r) − ε0χor(r)∇φor(r), since φor and φel must now be distinguished

because the relation φor = φel no longer holds under the nonequilibrium condition.

The free energy of solvation can be obtained by substituting the saddle-point

values of the functional arguments into the Hamiltonian in Eq. (4.14). Upon simpli-

fication, for which the details are given in Appendix 4.A, the free energy of solvation

is written as

G[C, ρ̂c(r)]

=

∫
dr

{
1

2
ε0(1 + χel(r))|∇φel(r)|2 + ε0χor(r)|∇φor(r)|2

− 1

βv
Γ(r) log

[
sinh βµ̄|∇φor(r)|
βµ̄|∇φor(r)|

]
− 1

βv
Γ(r)

}
(4.18)

where C = {χor, φor,Γ} is the nuclear configuration set that contain all necessary

information describing the nuclear configuration, and χel and φel are calculated using

the constitutive relations. The saddle-point free energy as an integral over the whole

space is infinite, but the divergent parts cancel in the evaluation of reorganization

energy as presented in Appendix 4.B.

It is known that field-theoretic treatment of electrostatically interacting systems at

the saddle-point level leads to the Poisson equation, as in Eqs. (4.16a) and (4.17a).44,46,47

The spatially-varying orientational and electronic electric susceptibilities χor(r) and

χel(r) describe the collective response of the permanent dipoles and the induced

dipoles, respectively, given by Eqs. (4.16b), (4.16c), and (4.17b). The equations for
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electric susceptibilities are equivalent to the nonlinear Langevin-Debye model when

the field −∇φ is taken as the local field.24,118–120 The incompressibility condition is

accounted for at the mean-field level by Eqs. (4.16d) and (4.17c). Eqs. (4.16) to (4.18)

are the key equations in the DSCFT. In the next section, we apply the DSCFT to a

simple ET process between two ions and present results of our numerical calculations.

4.2.3 Application of DSCFT to Simple Electron Transfer Be-

tween Two Ions

In this section, we apply the DSCFT framework to a simple ET reaction Dm +

An → Dm+1 + An−1 between two ions. Following Marcus’s two-sphere model, the

donor (D) and the acceptor (A) are modeled as two spherical cavities, each with

a point charge at the center. The reactant state has charge distribution ρ̂
(R)
c (r) =

meδ(r−RD) +neδ(r−RA), and the product state has charge distribution ρ̂
(P )
c (r) =

(m+1)eδ(r−RD)+(n−1)eδ(r−RA), where RD and RA are respectively the positions

of the donor and the acceptor, and e is the elementary charge. The distance between

the donor and the acceptor is d = |RD − RA|. The solute cavity CS(S = P ,R,N )

is represented by the set {r : |r − RD| < aSD or |r − RA| < aSA}, where aSD and aSA

are, respectively, the radii of the species D and A in State S.2 For the equilibrium

state R/P , a
R/P
D and a

R/P
A are taken to be the ionic radii of Dm/Dm+1 and An/An−1,

respectively. For the nonequilibrium State N , the solute cavity takes the ionic radii of

the species in State R, such that aND/A = aRD/A, because States N and R, having the

same solvent nuclear configuration, have the same region inaccessible to the solvent.

ΓS(r), the indicator function of the solute cavity CS , equals 0 when r ∈ CS and 1

otherwise.

Under a particular distribution of the solute charge, the nonequilibrium free energy

can be evaluated with respect to the free energy at the equilibrium state for the same

solute charge distribution. In doing so, the free energy surface G(R) in the reactant

2For solutes with a more complex structure, it may be the most convenient to describe the solute
cavity as a union of van der Waals spheres of the atoms. The topic of solute cavity has been
extensively reviewed in Ref. 121.
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charge state and the free energy surface G(P ) in the product charge state are expressed

as

G(R) = G[C, ρ̂(R)
c ]−G(R)

eq (4.19)

G(P ) = G[C, ρ̂(P )
c ]−G(P )

eq + ∆G0 (4.20)

where ∆G0 is the free energy of the reaction. G
(R)
eq and G

(P )
eq are the free energies

at the equilibrium states R and P , respectively, given by G
(R)
eq = G[CR, ρ̂(R)

c ] and

G
(P )
eq = G[CP , ρ̂(P )

c ], where CS = {χSor, φ
S
or,Γ

S} (S = R,P) is the nuclear configuration

set of state S. χRor, φ
R
or, and ΓR are the values of χor, φor, and Γ in the reactant

equilibrium state R; χPor, φ
P
or, and ΓP are defined similarly. The reorganization energy

λ is then

λ = G[CR, ρ̂(P )
c ]−G[CP , ρ̂(P )

c ] (4.21)

A strategy for evaluating λ is presented in Appendix 4.B, where allowance is made for

the solute cavities in the reactant and the product states to be different (i. e. ΓR = ΓP

is not required).

To simplify the calculation further, we approximate the solution to Eqs. (4.16a)

and (4.17a) by assuming that the electric displacement D can be written as the

superposition of the displacement due to each individual point charge as 3

D(r) =
q1

4πr2
D

r̂D +
q2

4πr2
A

r̂A (4.22)

where rD/A = r −RD/A and r̂D/A indicates the unit vector in the direction of rD/A.

We expect that the error due to this approximation is small, as the jump in dielectric

constant at the boundary of the solute cavity is not significant because of dielectric

saturation.

For each state, we perform numerical calculations on a bispherical coordinate

3We note that the equation ∇ · D = ρ̂c(r) does not imply the superposition principle. The
superposition principle holds for the electric displacement D only when the dielectric continuum is
uniform.
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(σ, τ, ϕ), which is related to the cylindrical coordinate (r, z, ϕ) by z = a0 sinhσ/(coshσ−

cos τ) and r = a0 sin τ/(coshσ− cos τ).122 Each constant-σ surface in the bispherical

coordinate is circle of radius a0/| sinhσ| with its center located at z = a0 cothσ. The

value of a0 is determined by the ionic radii of the donor and the acceptor and their

distance, and by requiring that the cavity boundaries of the donor and the acceptor

are each a surface of constant σ, and that the region accessible by the solvent is simply

described by σA < σ < σD. This is achieved by simultaneously solving

a0

| sinhσD|
= aD (4.23a)

a0

| sinhσA|
= aA (4.23b)

a0 cothσD − a0 cothσA = d (4.23c)

That is, the donor cavity surface is σ = σD = cosh−1
(
a2
D−a

2
A+d2

2aDd

)
, and the acceptor

cavity surface is σ = σA = − cosh−1
(
a2
A−a

2
D+d2

2aAd

)
, and a0 = aD sinhσD. Due to the

cylindrical symmetry in the problem, we only have to perform calculations on the

two-dimensional στ -plane. The integration for the free energy is carried out on a

240 × 680 στ -grid between σ ∈ (σA, σD) and τ ∈ (0, π). The potential φ in the

equilibrium state is found by iteration until the next iteration produces a reduced

electric field ∇φ/[ e
4πε0(2aDaA/(aD+aA))

] within 10−6 from its current value at all grid

points.

4.3 Results and Discussions

In this section, we consider ET reactions in water, for which the molecules have

a vacuum permanent dipole moment µ̄ = 1.85 D, polarizability α = 1.45 Å3, and

molecular volume v = 30.0 Å3. The temperature is T = 298.15 K. Here, we consider

self-exchange reactions, which involve only two species before and after the reaction,

and thus, we simplify the notation for the solute radii as aD = aRD = aPA and aA =

aRA = aPD.
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4.3.1 A Unified Description of Solvent Molecules

As a first step, we evaluate the outer-sphere solvent reorganization energy using the

DSCFT for the Fe2+/Fe3+ exchange reaction. We set the radii of the solute cavi-

ties to be aD = 3.31 Å and aA = 3.18 Å, which are the radii of [Fe(H2O)6]2+ and

[Fe(H2O)6]3+, respectively.4 We note that in the product equilibrium state P , the

radii of the ET species are switched. For self-exchange reactions, the reorganization

energy can be calculated as the free energy difference between the nonequilibrium

state N and reactant equilibrium state R, both involving the same nuclear configura-

tion, and thus the same solvent accessible space. At the contact distance of d = 6.5 Å

between the two spherical ions, the DSCFT predicts the outer-sphere solvent reorga-

nization to be 26.2 kcal/mol, in good agreement with the earlier value of 27.6 kcal/mol

given in the literature.65

Even though the separation of the inner- and the outer-sphere contributions is

a widely-used strategy for evaluating reorganization energies, the discrimination be-

tween the inner- and the outer-sphere molecules introduces additional parameters to

the theory . Furthermore, the treatment ignores dipolar interactions between the

inner- and the outer-sphere solvent molecules. In contrast, MD simulations do not

distinguish between the inner- and the outer-sphere molecules – the same forcefield

is used on all solvent molecules, regardless of their distances from the ions. A theory

based on molecular-level interactions around the ions should be able to treat all sol-

vent molecules on equal footing. Since the DSCFT is able to account for the spatial

variation in the solvent response at the molecular length scale, we expect that dis-

tinction of the inner- and the outer-sphere solvent molecules may not be necessary,

and the reorganization energy due to all solvent molecules can be directly evaluated.

To test how well DSCFT can predict the reorganization energy by treating all

solvent molecules in a unified manner, we calculate the total reorganization energy

for a variety of ET reactions between simple ions. We set the cavity radii aD and

aA to be the crystal ionic radii of the donor and the acceptor, and use earlier litera-

4The radii of Fe(H2O)2+6 and Fe(H2O)3+6 are calculated based on their sum (contact distance)
6.5 Å and their difference 0.13 Å. See Ref. 65 and 88.
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ture values of the donor-acceptor distance for the value of d. Table 4.1 tabulates the

reorganization energy and the activation energy for selected ET reactions calculated

by the DSCFT, together with values from earlier calculations in the literature that

treat the inner- and outer-sphere reorganization energies separately, as well as values

obtained from experiments.5 In reality, the electron transfer occurs at a range of

donor-acceptor separation d (e. g. around 4.5 Å to 5.5 Å for Fe2+/Fe3+ exchange),123

and thus, the comparison between the calculated value based on a typical value of

d within this range and the experimentally-measured values serves only to provide

qualitative validation of our approach. We observe that the activation energies cal-

culated using DSCFT are generally within a few kilocalorie per mole from literature

values. This suggests that the DSCFT, with readily-available parameters describing

the solvent and the solutes, can make reliable predictions for the direct evaluation

of the total reorganization energy by a unified treatment of the inner-sphere and the

outer-sphere solvent molecules. We note in addition that, even though explicit solvent

structure and molecular specific interactions have not been taken into account in the

DSCFT, the DSCFT predicts the value of 20.3 kcal/mol for ET activation energy for

Fe2+/Fe3+ exchange in water, in excellent agreement with the value of 20 kcal/mol

from atomistic simulations by Kuharski et al.88

5The activation free energy ∆G‡ is calculated from the values of temperature T , enthalpy of
activation ∆H‡, and entropy of activation ∆S‡ compiled in Ref. 63 through ∆G‡ = ∆H‡ − T∆S‡.
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Some ionic solutes have a high-spin state and a low-spin state. It has been pro-

posed that spin-exchange may couple to ET reactions, such that the less prevalent

spin state serves as the reaction intermediate.126 Therefore, for ionic species that

have a high-spin state and a low-spin state, we calculate the activation energy of

electron transfer for both the high-spin and the low-spin species. For the Fe2+/Fe3+

exchange, the Co2+/Co3+ exchange, and the Mn2+/Mn3+ exchange considered in this

work, we found that the ET processes between ions of low-spin states have lower

activation energies than those between ions in the high-spin state. By comparing the

calculated ET activation energies and the experimentally obtained value, our result

suggests that the Mn2+/Mn3+ exchange may primarily occur between the low-spin

Mn2+ and Mn3+, as the experimentally obtained activation energy is comparable to

the DSCFT-calculated activation energy between the low-spin Mn2+ and Mn3+. For

the Fe2+/Fe3+ exchange, the experimentally obtained activation energy is in between

the DSCFT-calculated activation energies for the high-spin and the low-spin Fe ions,

thus our result suggests that both the exchange between the high-spin ions and the

exchange between the low-spin ions occur under experimental conditions. For the

Co2+/Co3+ exchange, the DSCFT-calculated activation energy, as well as the activa-

tion energy calculated in earlier literature, are much higher than the experimentally

obtained activation energy. The reason for this may be the presence of an alternative

pathway for electron transfer, as discussed in several earlier papers127,128 and reviewed

by Sutin in Ref. 65.

Since the DSCFT is able to compute the all-solvent contribution towards the

reorganization energy, we further investigate its dependence on the size of the solutes.

In the immediate vicinity of an ion, the effect of dielectric saturation causes the static

dielectric constant εs to approach the optical dielectric constant ε∞, and thus the

Pekar factor (1/ε∞ − 1/εs) in this region is small compared to its bulk value. Such

effect of dielectric saturation is not accounted for in the linear dielectric theory, which

predicts /the solvent reorganization energy to be proportional to the Pekar factor of

the bulk solvent as given by Eq. (4.4). When the ionic radius of the solute is small

or the charge on the solute is large, the effect of dielectric saturation is significant,
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and we expect that the actual solvent reorganization energy in these situations will

be much smaller than that predicted by the linear dielectric theory.

Here, we compare the solvent reorganization energies calculated using the DSCFT

and the linear dielectric theory for the reaction Mm + Mm+1 → Mm+1 + Mm at

m = 0, 1 and 2. We fix the donor-acceptor distance at d = 10 Å, and ignore the size

difference between the donor and the acceptor by assuming aD = aA = a. In Fig. 4.3,

we plot the reorganization energy as a function of solute radius a. We observe that

the linear dielectric theory works well only for solute radius more than approximately

3.5 Å, comparable to the radii of typical coordinated ion complexes. This is probably

the reason for separating the inner- and the outer-sphere treatments for the solvent

in the linear dielectric theory, since solvent molecules in the outer-sphere are at a

sufficient distance away from the ion to be reasonably treated using linear dielectric

theory. For smaller solutes with radii less than 3.5 Å, the reorganization energy not

only depends on the amount of charge transferred, but also on the magnitude of charge

on the solutes, contrary to the prediction of linear dielectric theory. Furthermore, it

is intriguing that the solvent reorganization energy for self-exchange between charged

solutes stays constant for a / 2.5 Å, but this effect is absent for the 0/1+ exchange

reaction. This can be understood as a manifestation of dielectric saturation – as the

orientational dipoles are fully saturated within a / 2.5 Å from an ion, this saturated

region is not much affected if the charge on the ion changes by e, and therefore, the

polarization in this region does not contribute to the reorganization energy.

The unified treatment of the inner-sphere and the outer-sphere solvent molecules

considerably simplifies the calculation of reorganization energies. Although we have

ignored the specific interactions between the ions and their coordinated solvent molecules,

by treating the spatially dependent electrostatic interaction between the ions and the

solvent molecules, we are able to capture the energetics of the coordination bonds.

This is most likely because electrostatic interaction is the main factor in determin-

ing the energetics of ion-solvent interactions. We also note that while the DSCFT

accounts for the excluded volume of the solvent molecules by the incompressibility

constrain, it does not account for the liquid-state packing structure of the solvent
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Figure 4.3: The reorganization energy λ as a function of the radius of solutes a for
fixed interionic separation 10 Å in water. The bulk linear dielectric constant (BLDC)
approximation is calculated using Eq. (4.4), with static dielectric constant εs = 80.1
and optical dielectric constant ε∞ = n2 = 1.332, where n denotes the refractive index.

molecules. Yet the previous success of the DSCFT in capturing the equilibrium sol-

vation free energy of ions in both single-component liquids and binary mixtures44 and

the current success in describing the reorganization energy for ET reactions, seem to

suggest that geometric packing of the solvent, at least for simple molecules, may not

be important, due to the long-range nature of the electrostatic interactions, which is

not much affected by smearing out the local molecular density.

4.3.2 The Nonequilibrium Solvation Free Energy Surface

A consequence of the linear dielectric description for the solvent is that the nonequi-

librium free energy surfaces in the reactant and the product charge states are two

parabolas of equal curvature. This leads to Eq. (4.1), a simple relationship between

the activation energy and the reorganization energy, and Eq. (4.4), the prediction that

the solvent reorganization energy depends on the amount of charge transfer but not
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on the magnitude of charge on the electron-transferring species. In this section, we

apply the DSCFT to calculate the nonequilibrium free energy surface as a function

of the reaction coordinate, and explore the alterations to predictions of the linear

dielectric theory as a result of a more refined description of solvent response.

We calculate the free energy surfaces for two model reactions of the form Mm +

Mn → Mm+1 + Mn−1 with (i) m = +2 and n = +3, and (ii) m = 0 and n = +1.

For simplicity, we set the radii of all solute species to be a = 1 Å, regardless of their

charge states, so that Γ(r) is independent of the states. The distance between the

donor and the acceptor is set to be d = 5.25 Å apart. It is common to calculate the free

energy as a function of a charging parameter ζ, with χor(ζ) and φor(ζ) representing

the equilibrium value of χor and φor when the solute is Mm+ζ +An−ζ . We write G(R)

and G(P ) as a function of ζ as

G(R)(ζ) = G[C(ζ), ρ̂(R)
c ]−G(R)

eq (4.24)

G(P )(ζ) = G[C(ζ), ρ̂(P )
c ]−G(P )

eq + ∆Go (4.25)

where C(ζ) = {χor(ζ), φor(ζ),Γ}.

In Fig. 4.4, we plot G(R)(ζ) and G(P )(ζ) for the exchange reactions between M2+

and M3+ and between M0 and M1+. We note that for both reactions, the free energy

curves are well represented as parabolas in the relevant part of the reaction coordinate.

This is because, for a self-exchange reaction, anharmonicity in solvent response cancels

out due to the symmetry of the reaction.71 Our result is in agreement with earlier

MD simulations, which have also found the parabolic free energy surfaces to be a

good description for self-exchange reactions.88,129

However, the curvature of the free energy parabola depends strongly on the charge

on the electron-transferring species, contrary to the prediction of linear dielectric the-

ory. The reorganization energy for the electron exchange between M0 and M1+ is

larger than that between M2+ and M3+ by about a factor of four. Our results are

consistent with earlier findings in molecular simulations of ET reaction in nonpolar-

izable solvents.79,80
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Figure 4.4: Free energy curves vs. the charging parameter ζ for self-exchange reac-
tions. Each dashed line is a parabolic fit to the corresponding free energy curve that
passes through the values of G(ζ = 0) and G(ζ = 1).

We expect that the change in the solvent orientational polarization between the

reactant and the product states is a key factor determining the magnitude of reor-

ganization energy. To gain insight on how the reorganization energy depends on the

charge of the solutes, we examine the change in the solvent orientational polarization

∆Por between the reactant and the product equilibrium state given by

∆Por = P(P )
or,eq −P(R)

or,eq

= −ε0χPor∇φPor + ε0χ
R
or∇φRor (4.26)

where P
(R)
or,eq and P

(P )
or,eq denote the equilibrium solvent orientational polarization in

the reactant and the product charge states. Fig. 4.5 plots the spatial variation of

|∆Por| around the donor and the acceptor. As suggested by the figure, the change

in orientational polarization in the M0/M1+ exchange reaction is more substantial in

magnitude and more extensive in space than that in the M2+/M3+ reaction, resulting

in the larger reorganization energy in the M0/M1+ exchange reaction.
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Figure 4.5: The magnitude of change in the orientational polarization |∆Por| between
the reactant and the product equilibrium states for (a) the M2+/M3+ exchange reac-
tion and (b) the M0/M1+ exchange reaction. The values of polarization change has

unit 10−3e/Å
2

on a cross section around the donor and the acceptor in the cylindrical
coordinate.
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4.4 Conclusions

Using field-theoretic techniques, we have developed a dipolar self-consistent-field the-

ory (DSCFT) for treating charge solvation under both equilibrium and nonequilibrium

conditions, and applied the theory to study solvent reorganization in ET reactions.

The central result of the DSCFT theory consists of two sets of easily-solvable constitu-

tive relations, one applicable under the equilibrium condition and the other under the

nonequilibrium condition, as well as an expression for the free energy of the system.

With readily available parameters, the DSCFT provides a coarse-grained molecular

theory for the reorganization energies and activation energies in self-exchange ET

reactions.

Because the DSCFT naturally accounts for the spatial variation in the solvent

response, it can be used to directly calculate the total solvent reorganization en-

ergy without making a distinction between the inner-sphere and outer-sphere sol-

vent molecules. The activation energies of a range of simple ET reactions calculated

with the DSCFT are within a few kilocalories per mole from previous calculated

or experimentally-obtained values. The dependence of the reorganization energy on

the size of the solutes suggests that a saturation zone within approximately 2.5 Å

from the center of the charged solutes contributes insignificantly to the reorganiza-

tion energy. In addition, we find that for solutes with radii larger than approximately

3.5 Å, the solvent can be reasonably described by the bulk optical and static dielectric

constants. Furthermore, by calculating the free energy landscape for model charge-

exchange reactions, we find that the free energy surfaces are well described by two

equal-curvature parabolas. However, contrary to the prediction of linear dielectric

theory, the reorganization energy depends strongly on the magnitude of charge on

the solutes. In fact, for the geometry considered in this work, there is a four-fold

difference between the solvent reorganization energies of the M0/M1+ exchange and

the M2+/M3+ exchange. This large difference in reorganization energy would be very

significant for the kinetics of ET reactions.

We have focused on applying the DSCFT to ET reactions between two simple
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ions in this chapter, but the method can be extended to solutes with more compli-

cated geometries, such as multiatom molecules and proteins, by altering the solute

charge distribution ρ̂c(r) and the solute cavity C. Furthermore, while in this work we

have only applied the DSCFT to self-exchange reactions, the theory can be applied

to asymmetric ET reactions where there is a change in charge and/or solute cavity,

provided that the free energy change of the reaction ∆G0 is given. Since the DSCFT

makes no assumptions on the form of the reorganization energy, it is a suitable tool

for studying nonlinearity and asymmetry in the solvent response for general ET pro-

cesses.100 In addition, the framework of the DSCFT can be easily extended to ET

reactions in solvent mixtures, where preferential solvation is expected to have signifi-

cant effects in the solvent reorganization.44,130–132 We will examine such effects on ET

reactions in solvent mixtures in a forthcoming work.

Finally, we note that while field-theoretical techniques are widely used in soft-

matter and polymeric systems, we are not aware of its application to chemical reac-

tions. We believe the application of field-theoretical techniques to chemical systems is

a fruitful direction, particularly in cases where there are a large number of fluctuating

environmental degrees of freedom.

Appendix 4.A Extremization of the Field Hamil-

tonian

Starting from Eq. (4.14), extremization of H with respect to w, ρor, ρel, wor, and wel

respectively gives

1 =
eβµ

η
4πµ̄2

(
2πα

β

) 3
2

v

×eivw(r) sin(µ̄|∇wor(r)|)
µ̄|∇wor(r)|

e−
α
2β

(∇wel(r))2

(4.27)

iwor(r) = β

∫
dr′

ρ̂c(r
′) + ρor(r

′) + ρel(r
′)

4πε0|r− r′|
(4.28)
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iwel(r) = β

∫
dr′

ρ̂c(r
′) + ρor(r

′) + ρel(r
′)

4πε0|r− r′|
(4.29)

ρor(r) = −ie
βµ

η
4πµ̄2

(
2πα

β

) 3
2

×∇ ·
[
Γ(r)eivw(r)e−

α
2β

(∇wel)
2

G(µ̄|∇wor|)µ̄2∇wor

]
(4.30)

ρel(r) = i
eβµ

η
4πµ̄2

(
2πα

β

) 3
2
(
α

β

)
×∇ ·

[
Γ(r)eivw(r)e−

α
2β

(∇wel)
2 sin(µ̄|∇wor|)

µ̄|∇wor|
∇wel

]
(4.31)

where G(x) = (1/ tanx− 1/x)(sinx)/x2.

Eq. (4.27) is obtained by extremizing w outside the solute cavity. Inside the solute

cavity where w is not defined, we set w = 0. Furthermore, by letting the fields u, wor,

and wel goes to zero as |r| → ∞, Eq. (4.27) gives

1 =
eβµ

η
4πµ̄2

(
2πα

β

) 3
2

v (4.32)

Furthermore, Eqs. (4.28) and (4.29) can be rewritten by taking the Laplacian on both

sides of the equation:

−iε0
β
∇2wor(r) = ρ̂c(r) + ρor(r) + ρel(r) (4.33)

−iε0
β
∇2wel(r) = ρ̂c(r) + ρor(r) + ρel(r) (4.34)

With these, the constitutive relations in Eq. (4.16) can be derived by noting that

Eqs. (4.27) to (4.31) all hold under the equilibrium condition. On the other hand,

Eq. (4.17) can be derived by noting that ρor and wor are out of equilibrium under the

nonequilibrium condition, and therefore only Eqs. (4.27), (4.29), and (4.31) holds.

To derive the saddle-point free energy, we substitute the nonequilibrium set of

constitutive relations and the out-of-equilibrium value of ρor into the field Hamiltonian
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in Eq. (4.14). Following integration by parts, we arrive at

G =

∫
dr

{
1

2
ε0|∇φel(r)|2 + ε0χel(r)|∇φel(r)|2

+ε0χor(r)|∇φor(r)|2 − Γ(r)u(r)− Γ(r)
1

βv

}
=

∫
dr

{
1

2
ε0|∇φel(r)|2 + ε0χel(r)|∇φel(r)|2

+ε0χor(r)|∇φor(r)|2 − 1

βv
Γ(r)

− 1

βv
Γ(r) log

[
sinh βµ̄|∇φor(r)|
βµ̄|∇φor(r)|

e
βα
2

(∇φel(r))2

]}
=

∫
dr

{
1

2
ε0(1 + χel(r))|∇φel(r)|2 + ε0χor(r)|∇φor(r)|2

− 1

βv
Γ(r) log

[
sinh βµ̄|∇φor(r)|
βµ̄|∇φor(r)|

]
− 1

βv
Γ(r)

}
(4.35)

which is the expression for saddle-point free energy, Eq. (4.18). The last term in the

integrand describes the translational entropy of the solvent molecules.14

Appendix 4.B Treatment of the Solute Cavity in

the Evaluation of Reorganization En-

ergy

In this section, we present the general strategy for evaluating the reorganization

energy and show that the divergent part in the saddle-point free energy G is canceled

in the evaluation. In this work, the solute cavity is treated as part of the nuclear

configuration parameter C to the saddle-point free energy. To allow for difference in

solute cavities in the reactant and the product states, we reference each free energy

to that of a state in vacuum with the same charge distribution, so that the free

energy contribution from within the cavity is canceled. The resulting dependence of

reorganization energy λ on the solute cavities ΓR and ΓP is explicitly included in

Eq. (4.39).
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Let G0[ρ̂c] be the free energy of the charged distribution ρ̂c(r) in vacuum. In a

vacuum, χor = χel = 0, and the saddle-point free energy reduces to

G0 =

∫
dr

1

2
ε0|∇φ0(r)|2 (4.36)

where φ0(r) is the electric potential in the vacuum calculated through the Poisson

equation Eq. (4.16a), or

φ0(r) =

∫
dr′

ρ̂c(r)

4πε0|r− r′|
(4.37)

Starting from Eq. (4.21), we subtract and add the free energy of vacuum charge

distribution ρ̂Pc , i. e.,

λ = (G[CR, ρ̂(P )
c ]−G0[ρ̂(P )

c ])− (G[CP , ρ̂(P )
c ]−G0[ρ̂(P )

c ]) (4.38)

In each of the brackets in the above equation, the contributions to the free energy

from the region within the solute cavity cancel off, so the integral in each bracket

only needs to be evaluated outside the solute cavity. Therefore, the reorganization

energy can be calculated as

λ =

∫
dr ΓR(r)

{
1

2
ε0(1 + χNel (r))|∇φNel (r)|2

+ε0χ
R
or(r)|∇φRor(r)|2 − 1

βv
log

[
sinh βµ̄|∇φRor(r)|
βµ̄|∇φRor(r)|

]
− 1

2
ε0|∇φ(P )

0 (r)|2
}

−
∫
dr ΓP(r)

{
1

2
ε0(1 + χPel(r))|∇φPel(r)|2

+ε0χ
P
or(r)|∇φPor(r)|2 − 1

βv
log

[
sinh βµ̄|∇φPor(r)|
βµ̄|∇φPor(r)|

]
− 1

2
ε0|∇φ(P )

0 (r)|2
}

−
∫
dr

1

βv
(ΓR(r)− ΓP(r)) (4.39)

where the superscripts R, N , and P refers to the states (indicated in Fig. 4.1) at

which the susceptibilities, potentials, and solute cavities are defined, and φ
(P )
0 denotes

the potential in a vacuum with the product charge distribution ρ̂
(P )
c .
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Chapter 5

A Molecularly-Based Theory for
Electron Transfer Reorganization
Energy in Solvent Mixtures

This chapter includes content from our previously published article:

Zhuang, B.; Wang, Z.-G. Molecular-Based Theory for Electron-Transfer Reorganiza-

tion Energy in Solvent Mixtures. J. Phys. Chem. B 2016, 120, 6373-6382.

5.1 Introduction

It has long been established that solvent fluctuation plays a central role in the ki-

netics and dynamics of electron transfer (ET) processes. The groundbreaking work

by Marcus in 1956 envisioned fluctuation of solvent orientational polarization on two

crossing parabolic nonequilibrium free energy surfaces – whose curvature is deter-

mined by a linear dielectric treatment of the solvent – and elucidated the relationship

between the free energy for solvent reorganization and the rate of ET processes.69,70

Since then, the area of ET has seen much research activity and growth,67,68 for exam-

ple, with subsequent theoretical work on dynamical85,133–139 and quantum-mechanical

effects,83,113,140–148 experimental confirmation of the inverted region,149 and charac-

terization of ET mechanism in proteins and photosynthetic systems.150–153 However,

relatively little attention has been given to solvent mixtures, despite their common



102

usage as solvent media, for instance, in recent developments of lithium-ion batter-

ies.154 Solvent mixtures are paramount to technological and industrial applications,

since they offer virtually endless possibilities as reaction media, allowing continuous

tuning of the macroscopic solvent properties for optimal performance. To facilitate

the search of new reaction media for technological applications, a convenient and

predictive theoretical framework for solvent reorganization in liquid mixtures is de-

sirable.

The lack of understanding for ET processes in solvent mixtures is due in large

part to the complex effects mixed solvents have on the ET rates.155 Experimental

studies have shown distinctive behaviors in the ET rates depending on the specific

electron transferring species and the solvent components. However, no systematic

trend has emerged for understanding the observed behaviors and for predicting the

behaviors in general mixtures.138,156–165 Moreover, the kinetic,160,166 dynamic,167,168

and spectroscopic behaviors169 for ET processes in solvent mixtures cannot be di-

rectly correlated with the corresponding properties in the pure solvent components.

It is generally recognized that ET in mixed solvents is not controlled by macroscopic

solvent parameters because of preferential solvation,132,166,169–174 as the local compo-

sition of the solvent around a charged solute is significantly different from the bulk

composition.2

Despite its importance, there have been very few theoretical studies for ET in

liquid mixtures. Zusman developed an analytical theory to study the dynamical sol-

vent effect in ET, connecting the ET rate to the solvent diffusion coefficients and the

mixture correlation functions.175 For the solvent reorganization energy, Chandra con-

sidered a nonpolarizable solvent mixture model using density functional theory with a

constrained variational approach, and found that preferential solvation of the reacting

system by the more polar species of the mixture is crucial.176 One current theoretical

challenge, in order to better understand the effect of solvent on ET kinetics, is to take

into account the electronic polarizability of the solvent mixture, which is responsible

for the solvent induced dipoles that respond on the same time scale as the charge

transfer. Furthermore, as mixture correlation functions, which are required inputs
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in density functional approaches, are not readily available, it is desirable to develop

a simple analytical theory based on readily-available pure-solvent properties, which

can be efficiently used for surveying the vast number of possible solvent mixtures.

Recently, we developed a molecularly-based dipolar self-consistent-field theory

(DSCFT) for calculating reorganization energies in pure liquids using statistical-

field techniques.177 The theory models the polarizable solvent molecules using a few

readily-available molecular parameters, including the permanent dipole moment, the

polarizability, and the molecular volume. The statistical-field transformations yield

orientational and electronic polarizations of the solvent that are continuous, spatially

dependent functions. The resulting theory naturally accounts for the effect of di-

electric saturation around the reacting species, and as a result, it is unnecessary to

distinguish between the inner-sphere and the outer-sphere solvent molecules in the

calculations. Despite the simplicity of the theory, the solvent reorganization energies

predicted by the DSCFT, with no adjustable parameters, are in good agreement with

previous calculations and experimental measurements for a range of reactions.

In this chapter, we extend the DSCFT to charge solvation in liquid mixtures under

equilibrium and nonequilibrium conditions, and apply the theory to the solvent reor-

ganization energy of ET processes. For ET in solvent mixtures, the slow-responding

nuclear degrees of freedom not only relate to the solvent orientational polarization

– as in earlier works for pure solvents – but also to the solvent composition around

the reacting species. In constructing the nonequilibrium free energy, we keep both

the orientational polarization and the solvent composition at their values in the re-

actant state, and perform a constrained extremization on the free energy with the

reacting species at the product state. The resulting theory naturally accounts for

the spatially-varying solvent composition and response. Our theory suggests three

general categories of binary mixtures, classified by the relative static and optical di-

electric constants of the solvent components. We explore the relationship between

the reorganization energy and the bulk solvent composition in these three mixture

categories. We find that each category of mixture produces a distinctive local sol-

vent composition profile in the vicinity of the reacting species, which gives rise to
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the distinctive composition dependence of the reorganization energy that cannot be

predicted using the dielectric constants of the homogeneous solvent mixtures.

The rest of the chapter is organized as follows. In Section 5.2, we present the for-

mulation of the DSCFT for solvation of a general solute under both equilibrium and

nonequilibrium conditions in a binary liquid mixture. The free energy of solvation as

well as two sets of constitutive relations, one applicable under equilibrium conditions

and the other applicable under out-of-equilibrium conditions, are derived. In Section

5.3, we apply the general DSCFT to solvent reorganization energy in ET reactions.

For comparison, we also briefly describe a uniform dielectric treatment for calculat-

ing the solvent composition dependence of the reorganization energy, based on the

dielectric constants of the homogeneous solvent mixtures. In Section 5.4, we study the

relationship between the solvent composition and the reorganization energy for elec-

tron exchange reactions between Fe2+ and Fe3+, where both the donor and acceptor

are charged, and between Ag0 and Ag1+, where the ET occurs between a neutral and

a charged species, in three general categories of binary solvent mixtures. We highlight

the connection between the reorganization energy and the local solvent composition

profile around the reacting species. Finally, in Section 5.5, we recapitulate the main

points in this work and offer some concluding remarks and outlook.

5.2 Dipolar Self-Consistent-Field Theory (DSCFT)

for Charge Solvation in Solvent Mixtures

In this section, we formulate the dipolar self-consistent-field theory (DSCFT) for

charge solvation in liquid mixtures under equilibrium and nonequilibrium conditions.

Here, equilibrium refers to a condition in which both the nuclear and the electronic

degrees of freedom of the solvent are in equilibrium with the charge on the solute;

nonequilibrium refers to a condition where the nuclear degrees of freedom of the

solvent are out-of-equilibrium due to their longer relaxation times while the electronic

degrees of freedom are allowed to equilibrate.
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For simplicity, we consider a charged solute in a binary mixture consisting of

solvent A and solvent B, with a bulk composition specified by the mole fraction of

one of the species (A for concreteness), xA; the theory can be easily generalized to

multi-component mixtures. We characterize each solvent molecule by its permanent

dipole moment µ̄S, polarizability αS, and molecular volume vS (S = A,B). The solute

is described by its charge distribution ρ̂c(r) inside a cavity C that is inaccessible to

the solvent molecules. The charge distribution of the system can be described as

ρ̂(r) = ρ̂c(r) + ρ̂or(r) + ρ̂el(r) (5.1)

where ρ̂or and ρ̂or are the charge densities due to the permanent and the induce dipole

moments, respectively, given by

ρ̂or(r) = −
∑
S,i

µS,i · ∇δ(r− rS,i) (5.2)

ρ̂el(r) = −
∑
S,i

pS,i · ∇δ(r− rS,i) (5.3)

In the above expressions, rS,i, µS,i, and pS,i respectively denote the position, the

permanent dipole moment, and the induced dipole of the ith molecule of type S, and

the summation runs over all solvent molecules. The permanent dipole moments have

fixed magnitude |µS,i| = µ̄S.

The energy of the system consists of the Coulomb interaction and the deformation

cost of the induced dipoles, and it can be written as

U =
1

2

∫
dr

∫
dr′

ρ̂(r)ρ̂(r′)

4πε0|r− r′|
+
∑
S,i

p2
S,i

2αS
(5.4)

where ε0 is the permittivity of the vacuum.

To proceed, we consider a large enough volume V around the charged solute at

temperature T that is open to both solvent species, each with chemical potential µS.
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The particle-based grand partition function is given by

Ξ =
∞∑

NA=0

∞∑
NB=0

1

NA!

1

NB!
eβµANAeβµBNB

×
∏

S=A,B

(
NS∏
i=1

1

ηS

∫
drS,i

∫
dµS,i

∫
dpS,i

)

×δ

[∑
S

vSn̂S(r)− 1

]
e−βU (5.5)

where NS is the number of molecules of solvent S, β = 1/kBT , and ηS is the analog of

thermal de Broglie wavelength that makes the configurational integral dimensionless.

The value of ηS is inconsequential as it only contributes to a reference energy. The

integral runs over the configurational space of the solvent molecules, with integration

over rS,i extends the space outside the solute cavity, and integration over µS,i spans

the 4π solid angle (as the magnitude of the permanent dipole is fixed). n̂S(r) =∑NS
i=1 δ(r − rS,i) is the number density operator for solvent S. vS is the molecular

volume of solvent S which reflects the effects of the non-electrostatic intermolecular

forces in giving rise to the particular density of the liquid at a given temperature and

pressure. The δ-functional in Eq. (5.5) enforces an incompressibility condition for the

liquid mixture, and amounts to assuming no volume change upon mixing.

Using statistical field techniques, we decouple the quadratic interactions between

the charge density with a series of identity transformations. The procedure for the

transformations is similar to that presented in our early work in Ref. 177, and it leads

to the following exact field-theoretic partition function:

Ξ =

∫
Dρor

∫
Dwor

∫
Dρel

∫
Dwel

∫
Dw

×

(∏
S

∫
DϕS

∫
DwS

)
e−βH (5.6)
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with the effective field Hamiltonian H given by

βH[ρor, wor, ρel, wel, w, ϕS, wS]

=

∫
dr

∫
dr′

βρ(r)ρ(r′)

8πε0|r− r′|
+ i
∑
S

∫
drwS(r)ϕS(r)

−i
∫
drwor(r)ρor(r)− i

∫
drwel(r)ρel(r)

−i
∫
drw(r)

(∑
S

ϕS(r)− 1

)
−
∑
S

eβµSQS (5.7)

where ρ(r) = ρ̂c(r) + ρor(r) + ρel(r), and QS is the single-particle partition function

in the fields wS(r), wor(r) and wel(r),

QS =
4πµ̄2

S

ηS

(
2παS
β

) 3
2
∫
dr

{
Γ(r)

sin(µ̄S|∇wor(r)|)
µ̄S|∇wor(r)|

× exp

[
ivSwS(r)− αS

2β
(∇wel(r))2

]}
(5.8)

Here, Γ(r) serves to limit the integration to space outside the solute cavity, with

Γ(r) = 0 if r ∈ C and 1 otherwise. The transformation to the field-theoretic partition

function has introduced the coarse-grained charge density fields ρor and ρel for the

solvent permanent and induced dipoles, respectively; wor and wel are the scaled ori-

entational and electronic electric potentials that are the conjugate fluctuating fields

to ρor and ρel, respectively. w is a coarse-grained pressure-like field arising from the

incompressibility condition. ϕS is the coarse-grained spatially-dependent volume frac-

tion of species S, with wS being the volume fraction potential that is conjugate to

ϕS.

The functional integration in the field-based partition function in Eq. (5.6) cannot

be evaluated exactly in closed form. To proceed, we take the saddle-point approx-

imation by extremizing the effective Hamiltonian H with respect to its functional

arguments. In the equilibrium condition, we obtain the constitutive relations by ex-

tremizing H with respect to all of its functional arguments. In the nonequilibrium

condition, the solvent composition in the system and the orientational polarization are
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out of equilibrium because of the longer response time of nuclear degrees of freedom;

therefore, the functions ρor and ϕS keep their values from the previous equilibrium

state, and we perform a constrained extremization of H with respect to the rest of

the functional arguments. Details of the derivation are provided in the supporting

information. In order to work with real quantities and for the convenience of relating

our theory to classical electrostatics, we make a change of variables wor = −iβφor,

wel = −iβφel, and wS = iβuS. The resulting set of constitutive relations for charge

solvation under equilibrium condition is

∇ ·D = ρ̂c(r) (5.9)

ϕS(r) = Γ(r)ϕ
(∞)
S exp

[
−βu(r)vS +

βαS
2
|∇φ(r)|2

]
sinh(βµ̄S|∇φ(r)|)
βµ̄S|∇φ(r)|

(5.10)

∑
S

ϕS(r) = 1 (5.11)

where D is the electric displacement given by

D = −ε0[1 + χel(r) + χor(r)]∇φ(r) (5.12)

and χor(r) and χel(r) are the electric susceptibilities due to the permanent and the

induced dipoles, respectively, given by

χor(r) = Γ(r)
∑
S

βµ̄2
SϕS(r)

ε0vs

L(βµ̄S|∇φ(r)|)
βµ̄S|∇φ(r)|

(5.13)

χel(r) = Γ(r)
∑
S

ϕS(r)αS
vSε0

(5.14)

with L(x) = (coth x−1/x) being the Langevin function. We recognize that Eq. (5.9)

is just the Poisson equation. Eqs. (5.9) – (5.11) are to be solved for the fields φ, ϕS

and u. The bulk volume fraction ϕ
(∞)
S of solvent S is related to the mole fractions

of the species through ϕ
(∞)
S = xSvS/ (

∑
S′ xS′vS′). The subscripts on the functions φ
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and u are omitted because at full equilibrium the extremization procedure results in

φ = φor = φel and u = uA = uB.

Under the nonequilibrium condition in which the nuclear degrees of freedom (re-

flected in the values of ϕS and φor) are fixed from the corresponding equilibrium state,

the constitutive relations are

∇ ·D = ρ̂c(r) (5.15)

ϕS(r) = Γ(r)ϕ
(∞)
S exp

[
−βuS(r)vS +

βαS
2
|∇φel(r)|2

]
sinh(βµ̄S|∇φor(r)|)
βµ̄S|∇φor(r)|

(5.16)

where the electric displacement D is now given by

D = −ε0 [(1 + χel(r))∇φel(r) + χor(r)∇φor(r)] (5.17)

Note that Eqs. (5.15) and (5.16) have similar form to Eqs. (5.9) and (5.10), except that

we have to distinguish between the electric potentials φel and φor, and between the

conjugate fields to the composition uA and uB. The value for χel is given by Eq. (5.14).

Eqs. (5.15) and (5.16) are then solved for the values of φel and uS, with χor, φor, ϕS,

and Γ from the corresponding equilibrium state that has the same nuclear config-

uration.1 We note that Γ describes the space accessible to solvent molecules, and

therefore, it is related to the nuclear configuration of the solvent. Since ϕS remains

unchanged from the corresponding equilibrium value, Eq. (5.11) is automatically sat-

isfied, and the electric susceptibilities χel and χor in the nonequilibrium state turn

out to be equal to those in the corresponding equilibrium state.

The free energy of solvation is obtained by evaluating the field-theoretic Hamilto-

nian H at the saddle-point values of its functional arguments. Upon simplification,

1While the effective Hamiltonian H is extremized over φor in the nonequilibrium state, it can be
shown from the constitutive relations that φor in the nonequilibrium state has the same value as itself
in the corresponding equilibrium state where the orientational polarization and solvent composition
are in equilibrium with the solute charge distribution. See supporting information.
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the free energy of solvation G can be written as

G[C, ρ̂c]

=

∫
dr

[
−
∑
S

(
uS(r)ϕS(r) +

ϕS(r)

βvS

)
+ε0

(
1

2
+ χel(r)

)
|∇φel(r)|2 + ε0χor|∇φor(r)|2

]
(5.18)

where C = {ϕS, φor, χor, C} is the nuclear configuration set, which contains all nec-

essary information describing the solvent nuclear configuration. In the above free

energy expression, the values of χel, φel, and uS used for evaluating G are to be cal-

culated using the set of constitutive relations appropriate for the solvation condition

(i.e., equilibrium vs. nonequilibrium).

The constitutive relations under equilibrium condition (Eqs. (5.9) – (5.11)) and

nonequilibrium condition (Eqs (5.15) and (5.16)), and the free energy of solvation

(Eq. (5.18)) are the key equations in the theory, and can be applied to study the

energetics of general ET processes in solvent mixtures. In the following section, we

focus on electron transfer between simple ions, and outline the calculation of the

solvent reorganization energy.

5.3 Calculation of Solvent Reorganization Energy

Broadly speaking, the solvent composition impacts the ET kinetics through two main

effects: first, the composition-dependent dielectric properties of the solvent affects

the donor-acceptor association constant; second, the local composition of the sol-

vents around the reacting species strongly influences the solvent reorganization en-

ergy. Both effects are important for the rate of ET reactions. However, in this chapter,

we focus on how the local solvent composition around the donor-acceptor complex

affects the solvent reorganization energy.
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5.3.1 The DSCFT Calculation

We consider electron transfer between two simple ions in the form Dm + An →

Dm+1+An−1, where D and A respectively denote the electron donor and the acceptor,

with their centers located at RD and RA, respectively. The solute charge distribution

is described by ρ̂
(R)
c (r) = meδ(r − RD) + neδ(r − RA) in the reactant state, and

ρ̂
(P)
c (r) = (m + 1)eδ(r − RD) + (n − 1)eδ(r − RA) in the product state, where e is

the elementary charge. The solute cavity C(R) in the reactant state has the shape of

two spheres, described by {r : |r −RD| < a
(R)
D or |r −RA| < a

(R)
A }, where a

(R)
D and

a
(R)
A are the ionic radii (or atomic radii if the species is neutral) of Dm and An. The

solute cavity C(P) in the product state is defined similarly, with a
(P)
D and a

(P)
A being

the ionic radii of Dm+1 and An−1.2

The solvent reorganization energy λ is the free energy difference between the

following two states: (i) the equilibrium state under the product charge distribution

and (ii) the nonequilibrium state under the product charge distribution but with the

nuclear configuration from the reactant state. The nuclear configuration of a state

includes the solvent composition, orientational polarization, and the accessible space

to the solvent outside the solute cavity, and we denote this information in a nuclear

configuration set C(S) = {ϕ(S)
S , φ

(S)
or , χ

(S)
or , C(S)}, (S = R,P). Algebraically, we express

λ as

λ = G[C(R), ρ̂(P)
c ]−G[C(P), ρ̂(P)

c ] (5.19)

In computing the reorganization energy, the integral only needs to be evaluated

for the region outside the cavity by referencing the free energy to a vacuum state with

the same charge distribution. Details for the procedure are given in Appendix B of

Ref. 177.

To simplify the calculation, we solve Eqs. (5.9) and (5.15) by assuming that the

2For calculating the reorganization energy, one only needs the ionic radii in the reactant and
the product states. The determination of the variation of ionic radii with the reaction coordinate
is intrinsically a quantum mechanical problem, which is beyond the scope of the current work. As
far as charge solvation is concerned, Eq. 18 allows us to calculate the nonequilibrium solvation free
energy for any ionic radii/solute cavity. More details for the treatment of solute cavity are described
in Appendix B of our earlier work in in Ref. 177.
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electric displacement D can be written as a superposition of the displacement due to

each individual point charge as

D(r) =
qD

4πr2
D

r̂D +
qA

4πr2
A

r̂A (5.20)

where rD/A = r−RD/A and r̂D/A indicates the unit vector in the direction of rD/A.

We perform numerical evaluations on a two-center bispherical coordinate (σ, τ, ϕ),

which relates to the cylindrical coordinate (r, z, ϕ) by z = a0 sinhσ/(coshσ − cos τ)

and r = a0 sinσ/(coshσ−cos τ). Each constant-σ surface in the bispherical coordinate

is a circle of radius a0/| sinhσ| with its center located at z = a0 cothσ. The value of

a0 is determined by the ionic radii of the donor and the acceptor and their distance,

and by requiring that the cavity boundaries of the donor and the acceptor are each a

surface of constant σ, and that the region accessible by the solvent is simply described

by σA < σ < σD. This is achieved by simultaneously solving

a0

| sinhσD|
= aD (5.21a)

a0

| sinhσA|
= aA (5.21b)

a0 cothσD − a0 cothσA = d (5.21c)

Geometrically, these set of equations describe the donor cavity surface by σ = σD =

cosh−1
(
a2
D−a

2
A+d2

2aDd

)
, and the acceptor cavity surface by σ = σA = − cosh−1

(
a2
A−a

2
D+d2

2aAd

)
,

and a0 = aD sinhσD. Due to the cylindrical symmetry in the problem, we only have

to perform calculations on the two-dimensional στ -plane. The integration for the free

energy is carried out on a 60× 170 στ -grid between σ ∈ (σA, σD) and τ ∈ (0, π). The

electric potential field φ in the equilibrium state is found by iteration until the next

iteration produces a reduced potential field ∇φ/[ e
4πε0(2aDaA/(aD+aA))

] within 10−8 from

its current value at all grid points.
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5.3.2 The Uniform Dielectric Treatment

As mentioned in the introduction, a key effect that influences the ET reorganization

energy in a mixture is preferential solvation due to the difference in the local solvent

composition around the charged redox species from the bulk. In order to highlight

the effects of preferential solvation in a liquid mixture, in this subsection we examine

the consequence of ignoring the preferential solvation on the reorganization energy

by assuming the solvent to be a uniform dielectric medium. In Section 5.4, we will

compare results from our DSCFT calculation with results from the uniform dielectric

treatment presented in this subsection. We start with the familiar Marcus equation70

for reorganization energy

λcl = (∆e)2

(
1

2aD
+

1

2aA
− 1

d

)(
1

ε∞
− 1

εs

)
(5.22)

where ε∞ and εs are respectively the optical and static dielectric constants of

the solvent. If we assume the solvent mixture to be spatially uniform, then the

dielectric response can be characterized by the optical and static dielectric constants of

a homogeneous bulk mixture, which are commonly approximated using the Clausius-

Mossotti equation27,178 and the Onsager equation26,179, respectively given by

ε∞ − 1

ε∞ + 2
=
∑
S=A,B

ϕ
(∞)
S

ε∞,S − 1

ε∞,S + 2
(5.23)

and
(εs − 1)(2εs + 1)

εs
=
∑
S=A,B

ϕ
(∞)
S

(εs,S − 1)(2εs,S + 1)

εs,S
(5.24)

where ε∞,S and εs,S are respectively the corresponding optical and static dielectric

constants of pure solvent S.

The Pekar factor P = 1/ε∞ − 1/εs is the only solvent-dependent factor in the

expression for reorganization energy in Eq. (5.22). Given the reorganization energies

λA and λB in pure solvents A and B, respectively, the reorganization energy in an
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A/B mixture follows from Eq. (5.22) to be

λcl = λA +
P − PA
PB − PA

(λB − λA) (5.25)

where PS is the Pekar factor for the pure solvent S. Here, for consistency and to

provide a meaningful interpolation that matches the pure solvent results, we use the

DSCFT-predicted reorganization energies for the pure solvents.3 Note that Eq. (5.25)

is invariant with respect to switching labels A and B. We refer to Eq. (5.25) as the

uniform dielectric treatment for calculating the mixture reorganization energy.

5.4 Solvent Reorganization Energy of Self-Exchange

Reactions in Binary Mixtures

In this section, we study the solvent reorganization energy for electron transfer in

binary liquid mixtures. We consider two simple electron-exchange reactions: (i)

Fe2+ + Fe3+ → Fe3+ + Fe2+ and (ii) Ag0 + Ag1+ → Ag1+ + Ag0. In case (i), the

electron transfer occurs between two multiply-charged species, whereas in case (ii)

the electron transfer occurs between a singly-charged species and a neutral species.

We note that, even though we apply the DSCFT to self-exchange reactions in the

present work, the calculation of reorganization energy with the DSCFT is applicable

to general reactions. The radii of the electron-transferring species are taken to be

their crystallographic ionic or atomic radii, whose values are 0.92 Å, 0.785 Å, 1.29 Å,

and 1.60 Å for Fe2+, Fe3+, Ag1+, and Ag0, respectively. The distance between the

centers of the donor and the acceptor is kept at d = 5.5 Å.

Because charge solvation has different time and length scale dependence on the

permanent and induced dipoles, we classify binary solvent mixtures into the following

three general categories based on the relative static and optical dielectric constants of

the two liquid components, and examine a representative solvent mixture from each

3One may substitute the radii aD and aA as well as the donor-acceptor distance d into Eq. (22)
to obtain the reorganization energy. However, we have shown in Ref. 177 that the use of bare ion
radius significantly overestimates the reorganization energy in a pure solvent.
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Table 5.1: Parameters for the pure solvents involved in the binary mixed solvents
considered in this work. The permanent dipole µ̄, the molecular polarizability α,
and the molecular volume v are used in the DSCFT calculation. v is the volume per
molecule calculated from the liquid density at 25oC. The static and optical dielectric
constants, εs and ε∞ are listed here for reference and for calculations using the uniform
dielectric treatment.

DSCFT Bulk
Solvent µ̄ [D] α [Å3] v [Å3] εs ε∞
Water 1.85 1.45 30.0 80.1 1.78
Methanol 1.70 3.29 67.2 33.0 1.77
DMSO 3.96 8.00 117.8 47.2 2.19
2-Propanol 1.58 6.97 127.8 20.2 1.90
Pyridine 2.22 9.65 133.8 13.3 2.28

category:

1. The two components have comparable optical dielectric constants, but one

component has a higher static dielectric constant than the other; e.g. wa-

ter/methanol mixture

2. The two components have comparable static dielectric constants, but one com-

ponent has a higher optical dielectric constant than the other; e.g. 2-propanol/pyridine

mixture

3. One of the components has a higher static dielectric constant but a lower optical

dielectric constant than the other component; e.g. water/DMSO mixture

We note that, in comparing the dielectric constants of polar liquids, a difference

of 10 in static dielectric constant is considered quite moderate, while a difference

of 0.1 in optical dielectric constant can be considered quite large. In referring to

the binary solvent mixtures, we adopt the notation that the component with a higher

static dielectric is followed by the component with the lower static dielectric constant,

separation by a slash. For example, an A/B mixture is one where A has a higher

static dielectric constant than B. Henceforth, we use the mole fraction to denote the

mixture composition. We calculate the solvent composition and the reorganization

energy in the chosen example of solvent mixture mentioned in each category. In
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Table 5.1, we list the permanent dipole µ̄, the molecular polarizability α, and the

molecular volume v for the five solvent species studied in this work, together with

their experimental static dielectric constants εs and optical dielectric constants ε∞.

5.4.1 Electron Self-Exchange Between Charged Species

We first examine the self-exchange reaction Fe2+ + Fe3+ → Fe3+ + Fe2+ in binary

mixtures. Since both the donor and the acceptor are multiply charged, preferential

solvation takes place around both the donor and the acceptor. The local solvent

composition in the immediate vicinity of the donor and acceptor is insensitive to the

global solvent composition. We thus expect that the electron transfer reorganization

energy – which is largely determined by the local composition of the solvent around

the donor-acceptor complex – to be a weak function of the bulk solvent composition

in a broad composition range.

The first case we consider is the water/methanol mixture. Since the two solvent

components have similar optical dielectric constants, water is expected to be enriched

around both the donor and the acceptor because of its higher static dielectric constant.

In Fig. 5.1(a), we plot the equilibrium solvent composition around the donor-acceptor

complex for a 50:50 water/methanol mixture in cylindrical coordinate, in which the

centers of Fe2+ and Fe3+ are located on the z-axis. The solute cavity is represented by

the white semispherical region, labeled with the charge of the ion. The region around

the electron-transferring species appears bright-yellow, indicating that the ET species

is essentially surrounded by pure water. As a result, the solvent reorganization energy

in a water/methanol mixture over most of the composition range approximately equals

to that in pure water, except at exceedingly low water concentration. This is shown

in the plot of solvent reorganization energy vs. mole fraction of water in Fig. 5.2(a).

The observation here provides a qualitative explanation to the experimental result

by Wada and Endo.160. These authors found that the rate of Fe2+/Fe3+ exchange in

the water/methanol mixture stays constant for mole fraction of methanol between 0

and 0.3. At higher concentrations of methanol, however, the experiment observed a
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Figure 5.1: Equilibrium composition (mole fraction of solvent component A) around
the donor-acceptor complex at the reactant state for the Fe2+ + Fe3+ → Fe3+ + Fe2+

reaction in a 50:50 mixture of (a) water and methanol, (b) 2-propanol and pyridine,
and (c) water and DMSO. The mole fraction of A is plotted on a cylindrical r-z
coordinate with the centers of the donor and the acceptor located on the r = 0 axis.
The center of the donor (Fe2+) and the acceptor (Fe3+) are located at z = −2.75 Å and
z = 2.75 Å respectively. The white semispherical region indicates the space occupied
by the donor and the acceptor, which is inaccessible to the solvent molecules.
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Figure 5.2: Solvent reorganization energy (λ) vs. the mole fraction of component
A (xA) for electron self-exchange reaction Fe2+ + Fe3+ → Fe3+ + Fe2+ in (a) wa-
ter/methanol, (b)2-propanol/pyridine, and (c) water/DMSO mixtures. The solid
squares are results calculated with the DSCFT, while the dashed lines are results
calculated from the uniform dielectric treatment using Eq. (5.25).
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gradual decrease in the rate of reaction with increasing methanol content. A likely

explanation is the increased energy penalty for Fe2+ and Fe3+ to approach to a reactive

distance (of approximately 6 Å ) from each other, as a result of the decreased solvent

dielectric constant with increasing methanol content.

The second case is the 2-propanol/pyridine mixture. While 2-propanol and pyri-

dine have comparable static dielectric constants, pyridine has a significantly higher

optical dielectric constant, and therefore is more polarizable. Under the strong electric

fields around a multiply-charged ion, the more polarizable pyridine molecule develops

a significantly larger induced dipole. As a result, pyridine interacts more favorably

with the ions and is enriched around the ions. In Fig. 5.1(b), we present the equi-

librium solvent composition in a 50:50 2-propanol/pyridine mixture. The blue region

suggests that pyridine is enriched around the donor-acceptor complex, despite having

a smaller static dielectric constant than 2-propanol. As the immediate vicinity of

Fe2+ and Fe3+ are exclusively occupied by pyridine, the solvent reorganization energy

for Fe2+/Fe3+ exchange in 2-propanol/pyridine mixtures should be nearly equal to

that in pure pyridine, except at very low pyridine concentration. This behavior is

confirmed by the plot of solvent reorganization energy vs. mole fraction of 2-propanol

shown in Fig. 5.2(b).

The third case is Fe2+/Fe3+ self-exchange process in the water/DMSO mixture.

In this case, water has a higher static dielectric constant, but DMSO has a higher

optical dielectric constant. Because both larger permanent dipole moment and larger

polarizability lead to favorable interactions with the ions, we expect both water and

DMSO to be present in the immediate vicinity of both Fe2+ and Fe3+. Fig. 5.1(c)

shows the equilibrium solvent composition around the Fe2+−Fe3+ complex in a 50:50

water/DMSO mixture. The composition profile clearly indicates the presence of both

water and DMSO in the neighborhood of the donor and the acceptor – while water

is the preferred solvent in most region within about 5 Å from the centers of the ions,

DMSO is enriched in the immediate vicinity of the ions, where the electric field is the

strongest. We should caution that such coarse-grained composition profile must be

interpreted with discretion, as the size of individual solvent molecules could be bigger
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than the structural features in the composition profile. Nevertheless, if we average the

composition over the typical size of a molecule, the composition profile in Fig. 5.1(c)

suggests that there are more DMSO molecules around the Fe3+ than the Fe2+ be-

cause of the stronger electric field around the charge +3 ion. The unequal solvent

concentration around the donor and the acceptor gives rise to a compositional con-

tribution to the solvent reorganization energy, in addition to the contribution from

the orientational polarization. Consequently, the solvent reorganization energy for

Fe2+/Fe3+ exchange in water/DMSO is significantly higher than that in either of the

pure components, as shown in Fig. 5.2(c). These results provide a qualitative under-

standing for the earlier experimental observation by Wada and Aoki, who found the

rate of reaction for the Fe2+/Fe3+ exchange vary nonmonotonically with the solvent

composition in a water/DMSO mixture, with a minima in the reaction rate at some

intermediate concentration of DMSO.159

To highlight the effect of preferential solvation, in Fig. 5.2 we include results for

the reorganization energy calculated using the uniform dielectric treatment, Eq. (5.25)

(shown as dashed lines in the figure). In all cases, the reorganization energy calculated

by the DSCFT is larger than that predicted by the uniform dielectric treatment. This

suggests that the solvent reorganization energy for the Fe2+/Fe3+ exchange reaction

is primarily determined by the local solvent composition around the donor-acceptor

complex, and is insensitive to the global solvent composition.

5.4.2 Electron Self-Exchange Between a Charged and a Neu-

tral Species

In contrast to Fe2+/Fe3+ exchange reaction studied in the last subsection where both

the donor and acceptors carry multiple charges, in this subsection we explore the

reaction Ag1+ + Ag0 → Ag0 + Ag1+, an exchange between a singly-charged and a

neutral species, again in the three classes of binary solvent mixtures. In this reaction,

the vicinity of the charged Ag1+ is enriched in the preferred solvent component,

while the surrounding of the neutral Ag0 is mostly at the bulk solvent composition.
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Unlike the previous case of charge transfer between multiply-charged solutes, where

the solvent reorganization energy primarily depends on the local solvent composition,

this reaction, involving a neutral species, is expected to exhibit a stronger dependence

of its reorganization energy on the bulk solvent composition.

First, we consider the Ag1+/Ag0 exchange in the water/methanol mixture. At

equilibrium, water is enriched around the Ag1+ ion, while the solvent composition

around the Ag0 atom is essentially at the bulk composition, as presented in the equi-

librium solvent composition profile for a 50:50 water/methanol mixture in Fig. 5.3(a).

Because of the enrichment of water around Ag1+, addition of a small amount of water

to pure methanol should lead to a large increase in the solvent reorganization energy.

Further addition of water continues to change the solvent composition around the Ag0,

causing a gradual increase in reorganization energy with increasing water content in

the solvent. This dependence of reorganization energy on the solvent composition

is observed in Fig. 5.4(a). Because of the preferential solvation around Ag1+, the

reorganization energy at all compositions are above that predicted by the uniform

dielectric treatment shown as a dashed curve in Fig. 5.4(a).

We now consider the 2-propanol/pyridine mixture. In this case, pyridine is en-

riched around the Ag1+ ion because of its higher optical dielectric constant, as ob-

served in the equilibrium composition of a 50:50 2-propanol/pyridine mixture in

Fig. 5.3(b). We plot the solvent reorganization energy vs. the bulk mole fraction

of 2-propanol in Fig. 5.4(b). Because of preferential solvation of pyridine around the

Ag1+ ion, addition of a small amount of pyridine to pure 2-propanol leads to a steep

increase in the solvent reorganization energy. Further addition of pyridine gradually

change the solvent reorganization energy towards the value in pure pyridine. As in the

previous cases, preferential solvation results in a larger solvent reorganization energy

than that predicted by the uniform dielectric treatment.

Next we consider the water/DMSO mixture. Since water has a higher static di-

electric constant and DMSO has a higher optical dielectric constant, it is not obvious

which component in enriched in the vicinity of Ag1+. Our DSCFT calculation indi-

cates that it is water that is enriched around Ag1+, as shown in Fig. 5.3(c), because
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Figure 5.3: Equilibrium composition (mole fraction of solvent component A) around
the donor-acceptor complex at the reactant state for the Ag1+ + Ag0 → Ag0 + Ag1+

reaction in a 50:50 mixture of (a) water and methanol, (b) 2-propanol and pyridine,
and (c) water and DMSO. The mole fraction of A is plotted on a cylindrical r-z
coordinate with the centers of the donor and the acceptor located on the r = 0 axis.
The center of the donor (Ag1+) and the acceptor (Ag0) are located at z = −2.75 Å and
z = 2.75 Å respectively. The white semispherical region indicates the space occupied
by the donor and the acceptor, which is inaccessible to the solvent molecules.
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Figure 5.4: Solvent reorganization energy (λ) vs. the mole fraction of component
A (xA) for electron self-exchange reaction Ag1+ + Ag0 → Ag0 + Ag1+ in (a) wa-
ter/methanol, (b)2-propanol/pyridine, and (c) water/DMSO mixtures. The solid
squares are results calculated with the DSCFT, while the dashed line are results
calculated from the uniform dielectric treatment using Eq. (5.25).
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the DMSO molecules are not sufficiently polarized by the low charge on Ag1+ to out-

weigh the Ag1+-water interaction. Therefore, as shown in Fig. 5.4(c), the addition

of a small amount of water to pure DMSO creates a sharp increase in the solvent

reorganization energy, while further addition leads to gradual increase in the solvent

reorganization energy towards the value in pure water.

5.5 Conclusion

In this work, we have developed a molecularly-based theory for equilibrium and

nonequilibrium charge solvation in mixed solvents, and applied the theory to the

solvent reorganization energy of ET reactions. Using statistical field methods with

the saddle-point approximation, the theory naturally leads to two sets of constitutive

relations, one applicable under full equilibrium condition and the other applicable

under nonequilibrium condition, as well as a simple, analytical expression for the sol-

vation free energy. The theory considers both the nuclear and the electronic degrees

of freedom of the solvent dipoles, and self-consistently accounts for the spatially-

varying composition and dielectric response of the mixed solvent around the reacting

species. As numerically solving the constitutive relations requires minimal computa-

tional effort, the theory provides a convenient and efficient tool for evaluating the ET

reorganization energy in mixed solvents.

Our results show that the composition dependence of the solvent reorganization

energy is largely determined by the local solvent composition around the reacting

species, which is often very different from the bulk solvent composition due to pref-

erential solvation. This observation is in agreement with Ref. 44, which compared

the DSCFT-predicted solvation energies to experimental values and found that the

equilibrium ion solvation energy in a mixture is predominantly attributed to the sol-

vent composition in vicinity of the ion. Generally, the solvent component with the

larger static or optical dielectric constant is enriched around the charged solutes, and

the solvent reorganization energy is dominated by the contribution from the enriched

component. However, if one component has a larger static dielectric constant and the
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other has a larger optical dielectric constant, as in the case of water/DMSO mixture,

the local solvent composition is sensitive to the the solute charge: the solvent compo-

sition around the donor and the acceptor can be quite different. Most interestingly,

for the Fe2+/Fe3+ exchange in water/DMSO mixture, we predict a reorganization

energy that is much larger than that in either of the pure components. Such com-

positional contribution to the reorganization energy is significant in magnitude and

represents a new feature addressed by our work.

By consideration of the local solvent composition profiles around the charged

solutes, we identify three classes of binary solvent mixtures, each characterized by

the different relative magnitudes of the static and optical dielectric constants of the

two components. This classification can serve as a convenient guide for the general

behavior in the composition dependence of reorganization energy in mixed solvents.

In all three classes of solvent mixtures considered, we observe large deviation in solvent

reorganization energy from the value predicted by the uniform dielectric treatment,

illustrating the important effects of preferential solvation.

The DSCFT in this work provides a general and systematic approach for calculat-

ing solvent effects on the ET reorganization energy. While we have only considered

ET processes in binary solvent mixtures in this work, it is straightforward to gen-

eralize the theory to multi-component mixed solvents. In addition, the shape and

the charge distribution of the donor-acceptor complex can be generalized to describe

intermolecular or intramolecular charge transfer of macromolecules. At present, the

effects of mixed solvent on ET reaction rate remain largely unexplored; we hope that

our theory can facilitate further exploration in the subject by providing a fast and

reliable approximation to the solvent reorganization energy. An important direction

is to combine the DSCFT with transition state sampling methods, such as the string

method,180,181 to locate the reaction path of ET. It will be useful to understand how

coupled changes in local solvent composition and orientational polarization influence

the activation as the reaction proceeds from the equilibrium to the transition state.

Furthermore, we note that as a simple coarse-grained theory, the DSCFT involves

several assumptions and approximations that can be improved with further devel-
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opment. For instance, the local liquid structure around the reacting species can be

incorporated using liquid-state density functional theory.182,183 Due to the small num-

ber of solvent molecules in the first solvation shell of the ions, such local structures

can lead to more pronounced solvent composition effects than captured in the current

theory. It will be interesting to explore these effects in future work.

Appendix 5.A Derivation of the Constitutive Re-

lations

In this supporting information, we derive the constitutive relations under equilibrium

condition (Eqs. (5.9) – (5.11)) and nonequilibrium condition (Eqs. (5.15) and (5.16)).

We start by extremizing the effective Hamiltonian H in Eq. (5.7) with respect to its

functional arguments. Under full equilibrium H is extremized with respect to all the

field variables ϕS, ρor, ρel, wor, wel, wS, and w, respectively giving rise to the following

seven relations:

w(r) = wS(r) (5.26)

iwor(r) = β

∫
dr′

[ρ̂c(r) + ρor(r) + ρel(r)]

4πε0|r− r′|
(5.27)

iwel(r) = β

∫
dr′

[ρ̂c(r) + ρor(r) + ρel(r)]

4πε0|r− r′|
(5.28)

ρor(r) = −i
∑
S

eβµS

ηS
4πµ̄2

S

(
2παS
β

) 3
2

∇ ·
[
Γ(r)eiwS(r)vS−

αS
2β

(∇wel(r))2

×
(

cot(µ̄S|∇wor(r)|)− 1

µ̄S|∇wor(r)|

)
sin(µ̄S|∇wor(r)|)
(µ̄S|∇wor(r)|)2

µ̄2
S∇wor(r)

]
(5.29)
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ρel(r) = i
∑
S

eβµS

ηS
4πµ̄2

S

(
2παS
β

) 3
2 αS
β
∇ ·
[
Γ(r)eiwS(r)vS−

αS
2β

(∇wel(r))2

×sin(µ̄S|∇wor(r)|)
µ̄S|∇wor(r)|

∇wor(r)

]
(5.30)

ϕS(r) =
eβµS

ηS
4πµ̄2

S

(
2παS
β

) 3
2

vSΓ(r)eiwS(r)vS−
αS
2β

(∇wel(r))2 sin(µ̄S|∇wor(r)|)
µ̄S|∇wor(r)|

(5.31)

∑
S

ϕS(r) = 1 (5.32)

Under nonequilibrium condition in which ρor and ϕS are fixed at their out-of-equilibrium

values, H is extremized with respect to ρel, wor, wel, wS, and w, and therefore, only

Eqs. (5.28) – (5.32) are applicable.

To further simplify the equations, we substitute Eq. (5.31) into Eqs. (5.29) and

(5.30), and rewrite Eqs. (5.29) and (5.30) respectively as

ρor(r) = −i∇·

[∑
S

ϕS(r)

vS

(
cot(µ̄S|∇wor(r)|)− 1

µ̄S|∇wor(r)|

)
1

µ̄S|∇wor(r)|
µ̄2
S∇wor(r)

]
(5.33)

and

ρel(r) = i∇ ·

[∑
S

αS
β

ϕS(r)

vS
∇wor(r)

]
(5.34)

Because Eq. (5.33) holds under both equilibrium and nonequilibrium conditions, one

can show that the conjugate field to the orientational polarization wor is determined

once ρor and ϕS are specified. Therefore, when an equilibrium state and a nonequi-

librium state have equal values for ρor and ϕS due to their unchanged nuclear con-

figurations, the two states have the same values for wor as well. To simplify the

expressions further, we introduce the the orientational and electronic electric suscep-

tibilities χor(r) and χel(r), and rewrite Eqs. (5.33) and (5.34) as

ρor(r) = i∇ ·
[
ε0
β
χor(r)∇wor(r)

]
(5.35)
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and

ρel(r) = i∇ ·
[
ε0
β
χel(r)∇wel(r)

]
(5.36)

where χor(r) and χel(r) are, respectively, given by

χor(r) = − β
ε0

∑
S

ϕS(r)

vS

(
cot(µ̄S|∇wor(r)|)− 1

µ̄S|∇wor(r)|

)
1

µ̄S|∇wor(r)|
µ̄2
S (5.37)

and

χel(r) =
β

ε0

∑
S

αS
β

ϕS(r)

vS
(5.38)

Furthermore, upon taking the Laplacian on both sides of Eqs. (5.27) and (5.28),

we can write these equations respectively as

−iε0
β
∇2wor(r) = ρ̂c(r) + ρor(r) + ρel(r) (5.39)

−iε0
β
∇2wel(r) = ρ̂c(r) + ρor(r) + ρel(r) (5.40)

To make the calculations more convenient, we remove ρor and ρel from Eqs. (5.39)

and (5.40) equations using Eqs. (5.35) and (5.36). The resulting equations are

−iε0
β
∇ · [∇wor(r) + χor(r)∇wor(r) + χel(r)∇wel(r)] = ρ̂c(r) (5.41)

−iε0
β
∇ · [∇wel(r) + χor(r)∇wor(r) + χel(r)∇wel(r)] = ρ̂c(r) (5.42)

Furthermore, by letting the fields wS, wel, and wor go to zero as |r| → ∞ in

Eq. (5.31), we may equate the bulk volume fraction ϕ
(∞)
S with the following factor

ϕ
(∞)
S =

eβµS

ηS
4πµ̄2

S

(
2παS
β

) 3
2

vS (5.43)

With these simplifications, we summarize the constitutive relations as follows:

w(r) = wS(r) (5.44)
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−iε0
β
∇ · [∇wor(r) + χor(r)∇wor(r) + χel(r)∇wel(r)] = ρ̂c(r) (5.45)

−iε0
β
∇ · [∇wel(r) + χor(r)∇wor(r) + χel(r)∇wel(r)] = ρ̂c(r) (5.46)

ϕS(r) = Γ(r)ϕ
(∞)
S eiwS(r)vS−

αS
2β

(∇wel(r))2 sin(µ̄S|∇wor(r)|)
µ̄S|∇wor(r)|

(5.47)

∑
S

ϕS(r) = 1 (5.48)

where

χor(r) = − β
ε0

∑
S

ϕS(r)

vS

(
cot(µ̄S|∇wor(r)|)− 1

µ̄S|∇wor(r)|

)
1

µ̄S|∇wor(r)|
µ̄2
S (5.49)

and

χel(r) =
β

ε0

∑
S

αS
β

ϕS(r)

vS
(5.50)

The saddle-point condition yields purely imaginary values for the fields wor, wel,

w, and wS. In order to work with real quantities and for the convenience of relating

our theory to classical electrostatics, we make a change of variables wor = −iβφor,

wel = −iβφel, w = iβu, and wS = iβuS in Eqs. (5.44) – (5.48). This results in Eq. (9)

– (11) in main text. The nonequilibrium constitutive relations in Eqs. (15) and (16)

correspond to Eqs. (5.46) – (5.48).
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Chapter 6

Electron Transfer Reorganization
Energy in Solvent Mixtures:
Theory and Simulations

Solvent mixtures are commonly used as the medium for electron transfer (ET) re-

actions, such as in recent developments of lithium-ion batteries,154 as one can tune

the mixture composition for optimal performance.132,161,162,168,172,174,175,184 However,

even though a mature theoretical framework has been developed for ET in pure sol-

vents since the landmark work by Marcus in 1956,68–70 the chemical physics of ET

in solvent mixtures is far from being elucidated. In a solvent mixture, the ET dy-

namics would be influenced by the phenomenon of preferential solvation, where the

local composition of the solvent around the charged redox centers differs from the

bulk composition.2,173,185 In addition, the solvent reorganization energy not only have

contributions from the nonequilibrium solvent orientational polarization as in a pure

solvent, but also from the nonequilibrium solvent composition.186 As the variation

in the solvent composition occurs at molecular length scale,44,131 one must use a

molecularly-based method that accounts for both the nuclear and electronic degrees

of freedom of the molecules to study ET dynamics in mixed solvents.187

In a recent work, we developed the dipolar self-consistent-field theory (DSCFT)

for calculating the ET reorganization energy in solvent mixtures using field-theoretic

techniques.177,186 The theory describes each solvent molecule by its permanent dipole

moment, polarizability, and molecular volume, all of which are readily-available pa-
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rameters in physicochemical tables. The coarse-graining procedure provides a conve-

nient way to separate the fast electronic and the slow nuclear response in the mixed

solvent. Under saddle-point approximations, we self-consistently determine the com-

position and dielectric response of the solvent, and the solvent property in the vicinity

of the redox centers is found to have a predominant effect on the reorganization en-

ergy.186 However, as a coarse-grained theory, the DSCFT does not take into account

the specific molecular structures and interactions. In this work, we examine equilib-

rium and nonequilibrium solvation of charged redox centers using molecular dynamics

(MD) simulations with explicit solvent molecules. The solvent reorganization energy

and the solvent compositions calculated using the MD simulations will be directly

compared with the predictions from the DSCFT to evaluate the robustness of our

previous field-theoretic coarse-grained approach. As the solvent electronic response is

due to the induced dipoles of solvent molecules, we employ polarizable solvent models

with the Drude polarizable force field; to the best of our knowledge, this is the first

MD simulation for studying nonequilibrium solvation and ET reorganization energy

in polarizable solvent mixtures.

In this work, we study the Fe2+/Fe3+ electron exchange in mixed solvents, with

the distance between Fe2+ and Fe3+ fixed at 5.5 Å.88 To demonstrate the essential

behaviors of charge solvation in mixed solvents, we consider the reaction in three

binary solvent mixtures, each consisting of water and one of the three prototype

molecules that has the same structure as water by differs from water only in its

permanent dipole moment and/or polarizability. The three prototype molecules are

named MODEL-A, MODEL-B, and MODEL-C; their relative permanent dipole mo-

ment µ̃ and the relative polarizability α̃ to that of water are listed in Table 6.1. In

particular, MODEL-A has the same polarizability as water but a smaller permanent

dipole moment, MODEL-B has the same permanent dipole moment as water but a

larger polarizability, and MODEL-C has a smaller permanent dipole moment but a

larger polarizability than water. The mixture of water and MODEL-X is correspond-

ingly denoted as Mixture X (X = A,B,C).
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Table 6.1: The permanent dipole and the polarizability of the prototype solvent
models relative to water.

Prototype Model MODEL-A MODEL-B MODEL-C
µ̃ 0.616 1 0.628
α̃ 1 1.300 1.711

6.1 The DSCFT

The DSCFT is a field-theoretic coarse-grained theory for calculating the energy for

charge solvation under equilibrium and nonequilibrium conditions. The nonequilib-

rium condition refers to situation at which the solvent orientational polarization and

composition are out of equilibrium. The theory describes the electron-transferring

solute by its charge distribution ρc(r) in a region C that is inaccessible to the solvent

molecules. Each solvent molecule of type s is characterized by its permanent dipole

moment µ̄s, polarizability αs, and volume vs. We formulate the theory by transform-

ing the particle-based partition function of the system into a field representation in the

grand canonical ensemble of open solvent, introducing coarse-grained fields including

the orientational polarization (due to permanent dipoles) and the electronic polar-

ization (due to induced dipoles), their conjugate fields, and the solvent composition.

We then extremize the Boltzmann factor in the partition function according to proce-

dures of saddle-point approximation: under the equilibrium condition, we perform a

full extremization with respect to all coarse-grained fields; under the nonequilibrium

condition, we perform a constrained extremization instead, keeping the orientational

polarization, its conjugate field, and the solvent composition fixed at their values

from the previous equilibrium state. The details of the derivation are provided in

Refs. 177 and 186. Here, we present the key equations obtained in the theory. In

the equilibrium condition, the following set of constitutive relations is satisfied:

∇ ·D(r) = ρc(r) (6.1a)

D(r) = −ε0[1 + χel(r) + χor(r)]∇φ(r) (6.1b)
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χor(r) = Γ(r)
β

ε0

∑
s

ϕ
(∞)
s

vs
µ̄2
sBs[u(r), φ(r)]G(βµ̄s|∇φ(r)|) (6.1c)

χel(r) = Γ(r)
∑
s

ϕs(r)αs
vsε0

(6.1d)

ϕs(r) = Γ(r)ϕ(∞)
s Bs[u(r), φ(r)]

sinh(βµ̄s|∇φ(r)|)
βµ̄s|∇φ(r)|

(6.1e)

where β = 1/kBT is the inverse temperature, ε0 is the vacuum permittivity, G(x) =

(1/ tanhx − 1/x) sinhx/x2, and Bs[u(r), φ(r)] = exp[−βu(r)vs + βαs
2
|∇φ(r)|2]. D

denotes the electric displacement, while χor and χel are the electric susceptibilities

due to the permanent and the induced dipoles, respectively. ϕ
(∞)
s and ϕs(r) are

respectively the bulk and the local volume fractions of the sth solvent component,

satisfying
∑

s ϕs = 1. φ and u are the electrostatic potential and the incompressibility

potential to be solved through the set of equations. Γ(r) is the indicator function for

the space outside the solute cavity that is accessible to the solvent, such that Γ(r) = 0

if r ∈ C and 1 otherwise.

In addition, the following set of constitutive relations holds under the nonequilib-

rium condition:

∇ ·D = ρc(r) (6.2a)

D = −ε0 [(1 + χel(r))∇φel(r) + χor(r)∇φor(r)] (6.2b)

χel(r) = Γ(r)
∑
s

ϕs(r)αs
vsε0

(6.2c)

ϕs(r) = Γ(r)ϕ(∞)
s Bs[us(r), φel(r)]

sinh(βµ̄s|∇φor(r)|)
βµ̄s|∇φor(r)|

(6.2d)

where the values χor, φor, and ϕs are from the corresponding equilibrium state.

Superscripts are added to φ and u under the nonequilibrium condition as the con-

ditions φ = φor = φel and u = us holds in the equilibrium condition but not in the

nonequilibrium condition.

Using the saddle-point values for the coarse-grained field variables obtained by
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solving the constitutive relations, the free energy of solvation is

G[ρc,C] =

∫
dr

[
−
∑
s

(
us(r)ϕs(r) +

ϕs(r)

βvs

)
+ε0

(
1

2
+ χel(r)

)
|∇φel(r)|2 + ε0χor|∇φor(r)|2

]
(6.3)

where C = {ϕs, χor, φor, C} is the nuclear configuration set that includes all informa-

tion specifying the coarse-grained nuclear configuration. In evaluating the solvation

energy with Eq. (6.3), the fields χel, φel, and us are solved with Eq. (6.1) under the

equilibrium condition or Eq. (6.2) under the nonequilibrium condition.

For the electron exchange reaction Fe2+ + Fe3+ → Fe3+ + Fe2+, the solute charge

distribution in the reactant and the product states are ρ
(R)
c (r) = 2eδ(r − RD) +

3eδ(r −RA) and ρ
(P )
c (r) = 3eδ(r −RD) + 2eδ(r −RA), respectively, where e is the

elementary charge and RD and RA are the positions of the donor and the acceptor.

The solute cavity C(R) in the reactant state is a region of two spheres described by

{r : |r − RD| < a2 or |r − RA| < a3}, where a2 = 0.92 Å and a3 = 0.785 Å are the

ionic radii of Fe2+ and Fe3+ respectively. Similarly, the solute cavity in the product

state is given by C(P ) = {r : |r −RD| < a3 or |r −RA| < a2}, with the radii of the

charge-transferring species exchanged after the reaction. The reorganization energy

of the reaction is given by

λ = G[ρ(P )
c ,C(R)]−G[ρ(P )

c ,C(P )] (6.4)

where the superscript (R)/(P ) indicates that the quantity is in equilibrium with the

reactant/product’s charge distribution. We solve Eqs. (6.1a) and (6.2a) by assuming

that D can be written as a superposition of the displacements due to the individual

solute charges. The detailed procedure for the numerical evaluation is given in Ref.

186. In our calculation, the solvent parameters for water are µ̄w = 1.85 D, αw =

0.978 Å3, and vw = 30.0053 Å3 (with subscript w stand for water), corresponding to

the values for the SWM4-NDP model used in MD simulations. The solvent parameters

for the prototype molecules are scaled accordingly.
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Figure 6.1: The fraction of water molecules around the donor-acceptor pair in (a)

Mixture A at ϕ
(∞)
w = 0.35, (b) Mixture B at ϕ

(∞)
w = 0.53, and (c) Mixture C at

ϕ
(∞)
w = 0.48 at the equilibrium state calculated by the DSCFT. The fraction of water

is displayed in the cylindrical rz−coordinate where the centers of the Fe2+ and Fe3+

ions are located at (r, z) = (0,−2.75) and (0, 2.75) respectively.
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Figure 6.2: The fraction of water molecules around the donor-acceptor pair in (a)

Mixture A at ϕ
(∞)
w = 0.35, (b) Mixture B at ϕ

(∞)
w = 0.53, and (c) Mixture C at

ϕ
(∞)
w = 0.48 at the equilibrium state from the MD simulation. The fraction of water

molecules is calculated based on the frequency of appearance of oxygen atoms in an
rz−grid in the cylindrical coordinate. The centers of the Fe2+ and Fe3+ ions are
located at (r, z) = (0,−2.75) and (0, 2.75) respectively. The grids points that do not
have any appearance of the oxygen atom are colored in black.
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6.2 MD Simulations

We perform MD simulations using the Drude polarizable force field with the SWM4-

NDP model for water.188–190 To create the models for the prototype solvents, the

charges on the SWM4-NDP water responsible for the permanent and the induced

dipoles are scaled according to µ̃ and α̃ correspondingly. The description of the force

field and the parameters are provided in the supporting information. The Fe ions

are described by the Lennard-Jones parameters (σFeO = 2.53 Å, εFeO = −1.2kcal/mol

for the FeO interaction only) with point charges +2e/ + 3e at the center.79,88 We

perform the simulation using the OpenMM package.191 The trajectory is propagated

using the extended Lagrangian dynamics with a dual-Langevin thermostat scheme,

where the relative position of each Drude-nucleus pair is simulated at temperature

1 K and damping coefficient 5.0 ps−1, and the rest of the degrees of freedom are

at 298.15 K and damping coefficients 20.0 ps−1.192 All simulations are carried out

with a pair of Fe ions and 430 solvent molecules in a cubic simulation cell of size

23.46 Å × 23.46 Å × 23.46 Å under periodic boundary condition. Following initial

equilibration for 1300 ps, the microstate of the system is collected every picosecond

for 3000 ps. For each solvent composition, 12 repeated simulations are carried out

starting from different randomly-generated initial configurations.

In the MD simulation, the nuclear degrees of freedom of the solvent are repre-

sented by the positions of all atomic sites {rγ,i}, where rγ,i is the position of the γth

atomic site on the ith solvent molecule. The electronic degrees of freedom due to the

induced dipoles are represented by the positions of all Drude particles {rD,i}, with

rD,i denoting the position of the Drude particle on the ith molecule. The solvent

reorganization energy can be calculated as a function of the energy gap ∆ε between

the reactant state and the product state at given nuclear configuration {rγ,i}, which
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can be expressed as

∆ε({rγ,i}) = min
{rD,i}

U
(
ρ(R)
c , {rγ,i}, {rD,i}

)
− min
{rD,i}

U
(
ρ(P )
c , {rγ,i}, {rD,i}

)
(6.5)

where U is the potential energy of the microstate. The minima of the potential energy

with respect to {rD,i} is taken so that the induced dipoles are equilibrated with the

charge distribution and the nuclear configuration. We use the free energy perturbation

(FEP) method193,194 to sample the free energy surface away from equilibrium using

intermediate values of charges on the two redox centers. The details of the FEP

method are provided in the supporting information. By using intermediate solute

charge given by ρ
(m)
c = ρ

(R)
c +m(ρ

(P )
c −ρ(R)

c ) with m being a coefficient between 0 and

1, the FEP method calculates the nonequilibrium free energy surface ∆GR(x) over

the reactant state and ∆GP (x) over the product state using the following expressions:

∆GR(x) = −β−1 ln
〈
δ(∆ε− x)e−β[UR−Um]

〉
m

+ ∆Gmr (6.6)

∆GP (x) = −β−1 ln
〈
δ(∆ε− x)e−β[UP−Um]

〉
m

+ ∆Gmr (6.7)

where Us = U
(
ρ

(s)
c , {rγ,i}, {rD,i}

)
for s = R,P,m, and ∆Gmr is the free energy

difference between the equilibrium states under charge distributions ρ
(m)
c and ρ

(R)
c

(whose actual value can be found by connecting the free energy surfaces calculated at

different values of m). In addition, 〈O〉m is the time average of the observable O in a

system with solute charge ρ
(m)
c . In our calculation, we have used m = 0, 0.17, 0.32, 0.5.

Assuming parabolicity in the free energy surfaces, the reorganization energy is given

by four times the free energy difference between the transition state at ∆ε = 0 and

the product equilibrium state as69

λ = 4(∆G(0)−∆G(P )) (6.8)

where G(P ) is the free energy of the product equilibrium state.



139

To calculate the volume fraction of the solvent ϕs at the position (r, z) in the

cylindrical coordinate, we count the total number Ns of oxygen atoms of solvent s

appearing in the space bounded by (r − h/2, r + h/2) and (z − h/2, z + h/2) in all

sampled microstates, with h being the grid size. The volume fraction ϕX for an

X/Y mixture is given by ϕX = NX/(NX +NY ). In addition, as the simulations are

performed in canonical ensemble with fixed volume fraction in a box, we find the bulk

composition by averaging the volume fraction in the region r > 10 Å in the cylindrical

coordinate.

6.3 Effects of Preferential Solvation on the Solvent

Reorganization Energy

In a mixed solvent, the solvent component with the larger permanent dipole moment

or the larger polarizability is enriched around the charged solutes to lower the free

energy of the system. We expect that the local solvent composition around the

charged redox centers, instead of the bulk solvent composition, would have a dominant

effect over the ET dynamics in mixed solvents. Here, we examine the connection

between the solvent composition around the donor-acceptor complex and the solvent

reorganization energy in Mixtures A, B, and C. The three mixtures have different

relative permanent dipole moments and polarizabilities between the two components,

and each represents a class of binary solvent mixtures. Using both the DSCFT

and the MD simulations, we calculate the equilibrium solvent composition profiles

around the redox centers, with results displayed in Figs. 6.1 and 6.2. In addition, the

solvent reorganization energy as a function of the bulk solvent composition for the

Fe2+/Fe3+ exchange reaction are computed using both methods, with results plotted

in Fig. 6.3. Below, we discuss the connection between the local solvent composition

and the reorganization energy in each of the three mixtures.

Mixture A can be described as permanent-dipole dominated, as water has a larger

permanent dipole moment than MODEL-A while the two have equal polarizability.
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The larger permanent dipole moment on water interacts more favorably with the the

strong electric field around the multiply-charged solutes, causing water to be enriched

around the charged species. In Figs. 6.1(a) and 6.2(a), both the DSCFT and the MD

simulation predict that, in Mixture A at ϕ
(∞)
w = 0.35, the region around the redox

centers is predominantly water. The enrichment of water around the redox centers

results in water dominating the solvent reorganization energy in Mixture A. As we

observe in Fig. 6.3, both the DSCFT and the MD simulations predict that the solvent

reorganization energy at intermediate compositions of Mixture A is approximately

equal to that in the pure water.

Mixture B is a induced-dipole dominated mixture, as the two components have

equal permanent dipole moments but MODEL-B has a much larger polarizability.

As observed in Figs. 6.1(b) and 6.2(b), MODEL-B is enriched around the redox

centers in this case, because its higher polarizability allows larger induced dipole

moments to be developed in very strong electric field around the ions. We also find

that the region where MODEL-B is enriched is more extensive around the Fe3+ than

the Fe2+, as the larger ionic charge on Fe3+ polarizes MODEL-B to a greater extent.

Due to the enrichment of MODEL-B around the donor-acceptor complex, the solvent

reorganization energy in Mixture B is predominantly determined by MODEL-B, as

Fig. 6.3 shows that the solvent reorganization energy at intermediate compositions of

Mixture B is comparable to that in the pure MODEL-B.

Mixture C represents a more interesting case, as MODEL-C has a larger polariz-

ability but a smaller permanent dipole moment than water, resulting in permanent-

and induced-dipole competition around the charged solute. In this case, both water

and MODEL-C may be enriched around the redox centers. In Fig. 6.1(c), the DSCFT

predicts that the region within approximately 2 Å from the ions is favored by the more

polarizable MODEL-C, while water is favored in the region between 2 Å to 5 Å from

the ions. Additionally, the MODEL-C-enriched region is larger around the Fe3+ than

around the Fe2+, suggesting that MODEL-C is more favorable around Fe3+. On the

other hand, with explicit molecular structures taken into account, the MD simulation

predicts that there is a region enriched with MODEL-C in the immediate vicinity of



141

0 0.2 0.4 0.6 0.8 1

50

60

70

80

90

100

110

Mole % water in the bulk solvent

λ
 [

k
c
a

l/
m

o
l]

 

 

Mixture A (DSCFT)

Mixture B (DSCFT)

Mixture C (DSCFT)

Mixture A (MD)

Mixture B (MD)

Mixture C (MD)

Figure 6.3: The solvent reorganization energy vs. the bulk solvent composition as
calculated by the DSCFT and the MD simulations.

Fe3+, but not around the Fe2+. Both the DSCFT and the MD simulations suggest

that, at equilibrium, the solvent compositions in the immediate vicinity of the donor

and the acceptor are unequal. The spatial inhomogeneity in the solvent composition

would lead to an additional contribution to the solvent reorganization energy beyond

that contributed by the orientational polarization. As observed in Fig. 6.3, both the

DSCFT and the MD simulations predict that the solvent reorganization energy in

mixtures of water and MODEL-C are significantly greater than that in either of the

pure solvents due to the additional compositional contribution.

6.4 Effects of Polarizability on Solvent Reorgani-

zation Energy

In comparing the solvent reorganization energies for Fe2+/Fe3+ exchange in pure wa-

ter and MODEL-B, we find that both the DSCFT and the MD simulations suggest

that the reorganization energy is larger in the more polarizable MODEL-B (Fig. 6.3).

This is in contrast to the prediction of the commonly-used Marcus theory for re-
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organization energy, which predicts that the solvent reorganization decreases with

increasing solvent polarizability.1 There are two competing effects at work when the

polarizability increases: on one hand, a more polarizable solvent is able to respond

to electronic transitions more easily, and thus reduces the free energy for reorgani-

zation; on the other hand, a more polarizable solvent may also interacts with the

charged solutes more favorably at the equilibrium state, which lowers the equilibrium

free energy and results in a larger energy barrier for the ET process. In this case,

the later outpowers the former because of the favorable nonlinear solvent-induced

dipole interaction around the redox centers; this nonlinear solvent-solute interaction

can be captured with MD simulations or the molecularly-based DSCFT, but not by

a linear-dielectric description of solvent as in the Marcus theory.

6.5 On the Validity of Field-Theoretic Coarse-Grained

Approach

Comparing the equilibrium solvent composition around the redox centers calculated

by the DSCFT (Fig. 6.1) and by the MD simulations (Fig. 6.2), we find that the

MD simulations, with specific molecular structures and interactions taken into ac-

count, produces more compositional details such as solvation shells. Additionally,

as the DSCFT only accounts for the molecular volume at the self-consistent-field

level, the solvent compositional features produced may be unphysical, such as in

Fig. 6.1(c), where the region enriched with MODEL-C is narrower than the size of

solvent molecules. Such compositional features must be interpreted with discretion by

averaging the solvent compositional features over molecular sizes. Nevertheless, the

DSCFT correctly predicts the asymmetry of solvent composition around the donor

and the acceptor in Mixture C. Furthermore, with the additional steric constraints

1The Marcus theory predicts that the solvent reorganization energy is proportional to the Pekar
factor (1/ε∞ − 1/εs), where ε∞ and εs are the solvent optical and static dielectric constants, re-
spectively. The dielectric constants can be further expressed in terms of the orientational electric
susceptibility χor and the electronic electric susceptibility χel as ε∞ = 1 +χel and εs = 1 +χor +χel.
With increasing polarizability, χel increases and the Pekar factor decreases.
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included in MD simulations, the compositional contribution to the solvent reorga-

nization energy is more significant, as we observe that the reorganization energy at

intermediate concentrations of Mixture C is much greater in the MD simulations than

in the DSCFT (Fig. 6.3).

For the solvent reorganization energy in the pure solvents as well as in Mixtures

A and B, we observe in Fig. 6.3 that the DSCFT predicted value agrees well with

the full-atom MD simulations. The solvent compositional profile predicted by the

DSCFT also bear many similarities with that sampled by the MD simulations. This

is remarkable as the DSCFT is a highly coarse-grained theory with no adjustable

parameters. The computational time for the DSCFT is only about an hour on a

personal computer, while the MD simulations take weeks of computation time on a

GPU cluster.

We note that the DSCFT may predict a sharp change in the solvent reorganization

energy on addition of a small amount of one solvent component. This is because the

DSCFT is formulated in a grand canonical ensemble, where there is an infinite particle

reservoir for the solvent molecules. In comparison, the MD simulations are performed

in a simulation cell with a finite number of solvent molecules, and the small and finite

simulation box may not provide sufficient number of particles to be comparable to

the system in the grand canonical ensemble. Therefore, the predictions of DSCFT

and the MD simulations may be more differing when the composition of solvent is

highly asymmetric.

6.6 Conclusion

The DSCFT and the MD simulations suggest that the solvent reorganization energy

for an ET reaction is largely determined by the local solvent composition around

the electron-transferring species. Based on the relative permanent dipole moments

and the relative polarizabilities of the solvent components in the mixture, we classify

binary mixtures into three categories: permanent-dipole dominant, induced-dipole

dominant, as well as one that involves permanent- and induced-dipole competition.
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Each class of mixtures produce a distinct compositional profile around the donor-

acceptor complex, which predominantly determines the solvent reorganization energy.

While the MD simulations provide greater structural details in the solvent composi-

tion around the redox centers, the DSCFT, at the self-consistent-field level, is able

to capture the general behavior in the solvent composition and the reorganization

energy remarkably well.

Appendix 6.A The Drude Polarizable Force Field

The SWM4-NDP model189,190 has four interaction sites: an oxygen atom, two hy-

drogen atoms, and an additional massless site “M” located at a fixed distance lOM

from the oxygen atom along the bisector of the HOH angle. The OH bond length

and the HOH angle are kept fixed. A Drude particle with a small mass is attached to

the oxygen atom through a harmonic spring with force constant kD to describe the

induced dipole of the molecule.

All pairwise interactions are truncated at rcut = L/2, where L is the dimension of

the simulation box. The Lennard-Jones interactions are exerted between O-O pairs

and O-Fe pairs. All other pairs of atomic sites have zero Lennard-Jones interaction

energy. The Coulomb interactions between all interaction sites are multiplied by

a damping function S(r), such that both the potential and the derivative vanish

smoothly at r = rcut:
83

S(r) =

 1− 2r

rcut

+
r2

r2
cut

r ≤ rcut

0 r > rcut

(6.9)
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The total interaction energy of the system can be written as

U =
∑
i

1

2
kD|rO,i − rD,i|2 +

∑
i<j

∑
γ,γ′

S(|rγ,i − rγ′,j|)
qγqγ′

4πε0|rγ,i − rγ′,j|∑
i<j

∑
γ,γ′

4εγ,γ′

[(
σγ,γ′

|rγ,i − rγ′,j|

)12

−
(

σγ,γ′

|rγ,i − rγ′,j|

)6
]

(6.10)

where εγ,γ′ and σγ,γ′ are the Lennard-Jones coefficients between atomic sites of type

γ and type γ′. The index i and j counts over the molecules (including the Fe ions

and the solvent molecules) in the system.

Appendix 6.B The Model Parameters for the Sol-

vents

The parameters for the solvent molecules are provided in 6.2. To avoid polarization

catastrophe when the molecules approach the multiply charged Fe2+ and Fe3+ ions,

the spring constant for the Drude particle has been set to kD = 5000 [kcal/mol/Å
2
],

with the charges on the O and the D particles adjusted accordingly to keep the

polarizability of the molecule constant.

Appendix 6.C The Free Energy Perturbation Method

(FEP)

In this section, we derive the free energy perturbation method (FEP) for calculating

the free energy surface as a function of the energy gap in the MD simulations. Let εr

and εp be the energies when the solute charge is at the reactant state and the product

state respectively. εr and εp are functions of the nuclear configurations denoted by the

set of all atomic sites {rγ,i}. In addition, we denote the potential energy of system

by U , which is specified by the charge on the solute ρc(r), the positions of all atomic
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Table 6.2: Parameters for water and the prototype solvent models used in the MD
simulation and the DSCFT

Model SWM4-NDP(water) MODEL-A MODEL-B MODEL-C
Relative parameters
µ̃ 1 0.616 1 0.628
α̃ 1 1 1.300 1.711

MD simulation parameters
µ̄ [D] 1.85 1.14 1.85 1.16
α [Å3] 0.978 0.978 1.27 1.67
qO[e] 3.8379 3.8379 4.9893 6.5663
qD[e] -3.8379 -3.8379 -4.9893 -6.5663
qH[e] 0.5573 0.3434 0.5573 0.3500
qM[e] -1.1146 -0.6868 -1.1146 -0.7000
εOO [kcal/mol] 0.21094 0.21094 0.21094 0.21094
σOO [Å] 3.18395 3.18395 3.18395 3.18395
lOH [Å] 0.9572 0.9572 0.9572 0.9572
θHOH[o] 104.52 104.52 104.52 104.52
lOM [Å] 0.240304 0.240304 0.240304 0.240304
kD [kcal/mol/Å2] 5000 5000 5000 5000

DSCFT parameters
µ̄ [D] 1.85 1.14 1.85 1.16
α [Å3] 0.978 0.978 1.27 1.67
v [Å3] 30.0053 30.0053 30.0053 30.0053

sites {rγ,i}, and the positions of all Drude particles {rD,i}. With these, the energy of

the reactant and the product states are given by

εr({rγ,i}) = min
{rD,i}

U
(
ρ(R)
c , {rγ,i}, {rD,i}

)
(6.11)

εp({rγ,i}) = min
{rD,i}

U
(
ρ(P )
c , {rγ,i}, {rD,i}

)
(6.12)

and the energy gap is given by

∆ε({rγ,i}) = εp({rγ,i})− εr({rγ,i}) (6.13)

and the electron transfer process occurs at ∆ε = 0 on the reaction coordinate.

Let us first find the free energy curve when the donor-acceptor pair is in the
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reactant state. The probability for finding the system in a configuration with ∆ε = x

can be expressed as a time average over the trajectory as

pr(x) =
nr(x)

ntotal

=
1

ntotal

ntotal∑
i=1

δ(∆ε(ti)− x) (6.14)

where nr(x) is the number of frames in the trajectory when the configuration gives

∆ε = x when the solute is in the reactant state, and ntotal is the total number of

frames. ∆ε(ti) denotes the energy gap at the ith timestep in the trajectory. The

operational definition of the delta function in the simulation is δ(∆ε(ti) − x) = 1

when |∆ε(ti)− x| ≤ ∆x/2, with ∆x = (xmax − xmin)/nbins being the size of bins.

On the other hand, pr(x) may also be written as a configurational average as

pr(x) =

∫
dξ δ(∆ε({rγ,i})− x)e

−βU
(
ρ

(R)
c ,{rγ,i},{rD,i}

)
∫
dξ e

−βU
(
ρ

(R)
c ,{rγ,i},{rD,i}

) (6.15)

where
∫
dξ =

∏
γ,i

∫
drγ,i

∏
i

∫
drD,i denotes the integral over the configuration space.

To derive an equation for the FEP method, we perform identity transformation

on 6.15 by multiplying the same factor simultaneously to the numerator and the

denominator as

pr(x)

=

∫
dξ δ(∆ε({rγ,i})− x)e

−β
[
U
(
ρ

(R)
c ,{rγ,i},{rD,i}

)
−U
(
ρ

(m)
c ,{rγ,i},{rD,i}

)]
−βU

(
ρ

(m)
c ,{rγ,i},{rD,i}

)
∫
dξ e

−βU
(
ρ

(m)
c ,{rγ,i},{rD,i}

)

×
∫
dξ e

−β
[
U
(
ρ

(m)
c ,{rγ,i},{rD,i}

)
−U
(
ρ

(R)
c ,{rγ,i},{rD,i}

)]
−βU

(
ρ

(R)
c ,{rγ,i},{rD,i}

)
∫
dξ e

−βU
(
ρ

(R)
c ,{rγ,i},{rD,i}

)

=

〈
δ(∆ε({rγ,i})− x)e

−β
[
U
(
ρ

(R)
c ,{rγ,i},{rD,i}

)
−U
(
ρ

(m)
c ,{rγ,i},{rD,i}

)]〉
m

×
〈
e
−β
[
U
(
ρ

(m)
c ,{rγ,i},{rD,i}

)
−U
(
ρ

(R)
c ,{rγ,i},{rD,i}

)]〉
R

(6.16)
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where ρ
(m)
c is an intermediate value of the charge distribution on the solute given by

ρ(m)
c = ρ(R)

c +m(ρ(P )
c − ρ(R)

c ) (6.17)

and the average 〈O〉s is defined as

〈O〉s =

∫
dξOe−βU

(
ρ

(s)
c ,{rγ,i},{rD,i}

)
∫
dξe

−βU
(
ρ

(s)
c ,{rγ,i},{rD,i}

) (6.18)

with s = R,m describing the charge state of the solute. The average 〈O〉s can

be sampled as a time average from the trajectory in an MD simulation with the

corresponding charge state of the solute.

The free energy of the system when the solute is at the reactant state can be

calculated by

∆Gr(x)

= −β−1 ln pr(x)

= −β−1 ln

〈
δ(∆ε({rγ,i})− x)e

−β
[
U
(
ρ

(R)
c ,{rγ,i},{rD,i}

)
−U
(
ρ

(m)
c ,{rγ,i},{rD,i}

)]〉
m

+ ∆Gmr(6.19)

where

∆Gmr = −β−1 ln

∫ dξe−βU(ρ(m)
c ,{rγ,i},{rD,i}

)
∫
dξe

−βU
(
ρ

(R)
c ,{rγ,i},{rD,i}

)
 (6.20)

Similarly,

∆Gp(x)

= −β−1 ln pp(x) + ∆Gpr

= −β−1 ln

〈
δ(∆ε({rγ,i})− x)e

−β
[
U
(
ρ

(P )
c ,{rγ,i},{rD,i}

)
−U
(
ρ

(m)
c ,{rγ,i},{rD,i}

)]〉
m

+ ∆Gmr(6.21)
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Chapter 7

Summary and Outlook

This thesis has presented field-theoretic treatments for two main systems: an equi-

librium system with polar liquids and their mixtures, as well as a nonequilibrium

system in the context of electron transfer reactions, where the solvent orientational

polarization and composition are out of equilibrium with the charge on the electron-

transferring solute. For the equilibrium system of polar liquids and their mixtures,

we have introduced a variational approach, such that the effects of reaction field in

the system can be accounted for. We have compared the dielectric constants of the

liquids and their mixtures and the miscibility of liquids predicted by our theory to

experimental results, and found that the agreements between theoretical predictions

and experimental observations are impressive. For the nonequilibrium system where

the solvent orientation polarization is out-of-equilibrium with the solute charge, we

have employed a self-consistent-field approach with a constrained orientational po-

larization and solvent composition to derive a nonequilibrium solvation energy for

the situation. In particular, for nonequilibrium charge solvation in solvent mixtures,

we have identified three classes of binary solvent mixtures, each characterized by the

different relative magnitudes of the static and optical dielectric constants of the two

components. This classification can serve as a convenient guide for the general be-

havior in the composition dependence of reorganization energy in mixed solvents. In

all three classes of solvent mixtures considered, we observe large deviation in solvent

reorganization energy from the value predicted by the uniform dielectric treatment,

illustrating the important effects of preferential solvation.
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The field-theoretic treatments for solvent presented in this thesis represent a par-

ticularly systematic and convenient approach to perform coarse-graining for the pure

solvents and their mixtures. With a small number of readily-available, non-adjustable

molecular parameters, the basic physics of the solvent is captured. The resulting free

energy expressions and constitutive relations derived from the theories are also simple

and convenient to use. Since the field-theoretic approaches present a convenient way

for coarse-graining the solvent while capturing the basic solvent properties, such as

the effect of preferential solvation in the immediate vicinity of the charged solute,

we see the potential of incorporating the field-theoretic treatment for the solvent in

computer simulations. We expect that the approach can help to improve on some

of the current implicit solvent models without significantly increasing the computa-

tional cost, and yet capture certain properties can could only be captured by explicit

solvent models previously. In particular, spectra for electronic transitions in liquid

mixtures is still an area that is poorly understood, and we believe that integrating

our self-consistent-field approach for nonequilibrium solvent mixtures and electronic

structure calculation will be a fruitful direction to achieve a better understanding for

the electronic spectra.

As field-theoretic techniques have been applied to a wide range of soft matter

and complex fluid systems, we also see the potential of integrating our treatment of

solvents in this thesis with existing field-theoretic description of other systems. For

example, presently, the field-theoretic approaches for polyelectrolyte solution gener-

ally describe the dipolar solvent at the mean-field level;195–199 it will be interesting

to incorporate the effects of reaction field in the solvent. Our variational approach

for dipolar mixtures also provide an idea for incorporating the reaction field effects

in condensed-phase liquid systems; such an idea would be useful for other systems

where the dipolar interactions are important, for example, in the phase separation

induced by dipolar interactions in polymer blends.197

The methods presented in this thesis also represent a step forward in account-

ing for polarizability effects in solvents. In the popular integral equation theories

and density functional theories for liquids, the consideration for liquid polarizability
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has been a challenging issue. In this thesis, we have seen that the field-theoretic ap-

proach can provide a particularly convenient treatment for the polarizability of solvent

molecules. In the near future, we expect to see the strength of field-theoretic approach

to be combined with other existing theories for liquids. Currently, the application of

field-theoretic approaches to liquid systems is still a relatively nascent field; many im-

portant effects, including hard-sphere interactions and specific correlations between

molecules, have yet to be accounted for. We hope that the continued development of

field-theoretic approaches can help to bring a more complete statistical-mechanical

theory for liquids.
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[22] Fröhlich, H. Theory of Dielectrics; Oxford University Press: London, 1958.

[23] Mandel, M.; Mazur, P. On the Molecular Theory of Dielectric Polarization.

Physica 1958, 24, 116–128.

[24] Debye, P. J. W. Einige Resultate Einer Kinetischen Theorie Der Isolatoren.

Phys. Z. 1912, 13, 97–100.

[25] Debye, P. J. W. Polar Molecules; Chemical Catalog Company: New York, 1929.

[26] Onsager, L. Electric Moments of Molecules in Liquids. J. Am. Chem. Soc. 1936,

58, 1486-1493.
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[163] Muriel, F.; Jiménez, R.; López, M.; Prado-Gotor, R.; Sánchez, F. Sol-

vent Effects on the Oxidation (electron Transfer) Reaction of [Fe(CN)6]4− by

[Co(NH3)5pz]3+. Chem. Phys. 2004, 298, 317–325.
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