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ABSTRACT

This thesis establishes advanced theoretical-computational techniques to understand
and predict the mechanical properties of structural lattice metamaterials with a focus
on the effective elastic properties. First, attention is devoted to the effective stiffness
of hierarchical nanolattices, which depends on lattice topology, architecture, and
inherent geometric imperfections. A computational substructuring technique is ap-
plied to predict the mechanics of hierarchical truss networks containing thousands to
millions of truss members, with each solid, hollow-tube, or composite truss member
requiring full-detail 3D resolution. By applying this methodology to hierarchical
nanolattices structural hierarchy is shown to span several decades of relative den-
sity and effective stiffness with near-ideal effective stiffness scaling. Comparisons
between experimental data and model predictions show convincing agreement and
highlight the lattice sensitivity to fabrication-induced geometric imperfection. Sec-
ond, elastic stress wave propagation in structural lattices is investigated with a focus
on wave beaming (i.e., directional energy flow) under harmonic mechanical exci-
tation. A new technique is introduced to obtain pseudo-continuous maps of group
velocity magnitude vs. propagation direction vs. frequency to predict directional
wave propagation, demonstrating traditional beaming prediction techniques are in-
sufficient for many scenarios. The method is applied to two-dimensional structural
lattices to predict directional energy flow. Predictions are verified by comparison
to explicit dynamic simulations showing the limitations of the classical dispersion
relationmethod. Overall, improved computational techniques are presented to better
described, understand, predict and optimize the elastic behavior of truss lattices.
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C h a p t e r 1

INTRODUCTION

1.1 Motivation
From the clothes we wear to the food we eat, every product has been touched by
engineering. In making these product one must consider the material it will be built
from. Every year society demands more from its products and in turn from the
material itself. An excellent example is that of a cell phone screen protected by a
transparent, engineeredmaterial. The specific example of Corning® Gorilla®Glass
promising to give "consumers the drop protection they need if they fumble their
phones while snapping photos, texting on the go, watching videos, or performing
other everyday activities at or below shoulder level" (Corning, 2016). The dropping
and subsequent breaking of the protective glass is of concern to nearly all of today’s
society from young teenagers to the elderly. Simultaneously society expects the
display protection material to offer excellent sensitivity for touch interaction, near
flawless optical clarity, ever improving toughness, and all at a reasonable price.
This impressive feat is not accomplished by a single material exhumed from the
ground, but instead by a meticulously engineered composite material. Taking a
step back into the broader picture, cell phone screen protection is but a tiny case of
vast industries such as automotive, construction, and aerospace where consumers
demand improved performance. Admittedly such improved characteristics can come
from design of a part or assembly, but here the focus is on the fundamental building
blocks of these products, i.e. materials.

Materials can be characterized in many ways with primary properties for techno-
logical applications including density, stiffness, strength, fracture toughness, loss
coefficient, electrical conductivity, thermal conductivity, and optical properties. In
his book (Ashby, 2005) introduced a visual interpretation of material properties,
which as since become known as "Ashby Charts", viz. the mapping of one material
property vs. another. The four specific properties this work will focus on are stiff-
ness, strength, loss coefficient, and mass density. An example Ashby plot is shown
in Fig. 1.1.

Engineering materials can be generally sorted into six categories; metals, ceramic,
polymer, glass, elastomers, and hybrids (Ashby, 2005) as illustrated in Fig. 1.2.
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Figure 1.1: Natural and man-made material Young’s modulus versus mass density
distribution taken from (Fleck, Deshpande, and Ashby, 2010) with permission from
copyright holder, The Royal Society.

Within each of the outer family systems (i.e. excluding hybrids) nearly all materials
are made of several types of fundamental elements on the molecular level. An ex-
ample of molecular composite materials are metal alloys such as steel. One achieves
significantly varying material properties within the steel material system by com-
bining iron atoms with other molecules such as manganese, nickle, chromium, and
titanium. Further processing, such as heat treatment, can enhance the material prop-
erties by changing the microstructure. To further improve on material properties,
one turns to hybrid materials, illustrated by the inner circle of Fig. 1.2. Hybrids are a
composite of the bulk material families where geometric shapes and configurations
are created on the tens of nanometers and larger length-scale. To better characterize
these materials one refers to the volume fraction of a particular component defined
as

fi =
Vi∑
j Vj

, (1.1)

where Vi and is the total volume of material i in a given sample. A common use of
this is in describing carbon-fiber composite materials containing matrix and fiber
volume fractions. This concept of volume fraction can then allow us to calculate the
expected properties of our hybrid material. Knowing the volume fraction of each
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Figure 1.2: Illustrating the breadth of bulk materials combined to create hybrid
materials, including lattices. Taken from (Ashby, 2005).

constituent allows us to predict the density of our new material using

ρh =
∑

i

fiρi , (1.2)

where ρi is the density of the ith constituent material. One can also, with less
accuracy than the density calculation due to assumptions, predict the modulus using
the famed Voigt and Reuss bounds for a two-phase composite material. The Voigt
upper bound on the modulus (which results from assuming that the two components
are under the same strain and the stress is the volume average of local stresses) the
effective modulus is described as

Ev = f1E1 + f2E2 . (1.3)

As a lower bound one can assume the two constituent materials have the same stress
and the strain is the volume average of the local strains, so that the effective modulus
is described as

Er =
E1E2

f1E2 + f2E1
. (1.4)

For illustration purposes the upper and lower bounds of a fictional compositematerial
system are presented in Fig. 1.3. This implies that the effective stiffness of any solid
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Figure 1.3: Illustration of the Voigt and Reuss bounds of a composite material
system with E2/E1 = 10, ρ2/ρ1 = 10 with the volume fractions varying from
f1 = 1, f2 = 0 continuously.

composite is bounded from above and below by the Voigt and Reuss estiamtes,
and that the mass density is given exactly by the volume average of the constituent
densities. If one revisits Fig. 1.1 one can see this idea of average properties played
out in the upper corner dominated by metal alloys. However, if one was interested in
the extremely-low-density materials, the second phase is oftentimes no longer solid
and instead is a fluid. These materials are referred to as cellular solids.

Characterized by their extremely efficient distribution of mass, engineered cellular
solids achieve properties such as strength and stiffness at incredibly low effective
densities. A simple example of beams and panels increasing stiffness while mini-
mizing material is illustrated in Fig. 1.4.

Examples of cellular solids taking advantage of geometric arrangementwithminimal
mass include foams, honeycombs, and lattices. An excellent overview of these
materials can be found in (Gibson and Ashby, 1988; Deshpande, Ashby, et al.,
2001). Each of these materials can be made from different constituent materials
such as polymers and metals, nevertheless, the general classification is determined
by the use of stochastic or non-stochastic geometric configurations. Foams are
geometrically stochastic but statistically similar in qualties such as pore size, shape,
and distribution. In contrast, honeycombs and lattices are defined by a single
repeating representative unit cell with specifically engineered geometry. As shown
in Fig. 1.1 lattices are able to achieve higher stiffness for a given density than
foams and therefore are more structurally mass-efficient. With more mass efficient
materials one is helping fulfill the societal need of enhanced materials in a material
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Figure 1.4: Demonstration of mass distribution used to leverage increased stiffness
and strength. From top to bottom example beam geometries are solid rectangular,
I-beam, round tube, and square tube. Panel examples, from top to bottom, show
a solid panel, waffled core, truss core, and honeycomb core. For the same mass
flexural stiffness can be as much as 50 times that of the solid beam or panel (Ashby
and Bréchet, 2003). Reprinted from (Ashby and Bréchet, 2003) with permission
from copyright holder, Elsevier.

space very few other material system can venture and is therefore worthy of further
investigation.

1.2 Lattices
Lattice materials, aside from unprecedented stiffness, feature incredible strength,
fracture toughness, energy absorption, and even energy directivity at exceptionally
low densities. Commonly, these properties are evaluated in terms of the relative
density defined as

ρ̃ =
mRUC
VRUC

, (1.5)

wheremRUC andVRUC are themass contained in and volume of theRUC, respectively.
Relative density allows one to more clearly isolate the effect of unit cell architecture
rather than evaluating the effective density of the lattice influenced by its constituent



6

materials.

Some of the influential theoretical (Deshpande, Fleck, and Ashby, 2001) and ex-
perimental (Wadley, 2006) work on lattice materials was with open-cell trusses and
closed-cell honeycombs as panel cores providing high bending stiffness at low den-
sities. In a review of micro-architectured materials, Fleck, Deshpande, and Ashby
(2010) explored concepts of nodal connectivity and structural hierarchy and their
effects on effective material properties such as stiffness and strength. In the pur-
suit of multi-functional cellular structures, Valdevit et al. (2011) outlined past and
present manufacturing approaches and identified experimental and computational
tools required to further the field. In more recent work, Schaedler and Carter (2016)
detailed the latest fabrication methods for architected materials including metal,
polymer, and ceramic with possible coating techniques. In particular, this thesis
extends work on ultra-lightweight solid (Deshpande, Fleck, and Ashby, 2001) and
hollow (Valdevit, 2014; Jang et al., 2013; Schaedler, Jacobsen, et al., 2011; Meza,
Das, et al., 2014; Meza and Greer, 2014) structural lattices.

As interest in latticematerials developed, so didmanufacturing techniques at increas-
ingly smaller length-scales. The following examples are meant as state-of-the-art
manufacturingmethods for the smallest length scale and by nomeans are exhaustive.
The reader is referred to (Valdevit et al., 2011) for a more extensive listing. Wadley
et al. (2003) manufactured sandwich cores consisting of lattices with millimeter-
scale feature sizes, shown in Fig. 1.5, by bending perforated sheets of metal. The
process was able to create multiple layers of truss structure but at the cost of geomet-
ric freedom and a relatively work-intensive process. Moving down in length-scale to
microlattices, Schaedler, Jacobsen, et al. (2011) used collimated ultra-violet light,
a light mask, and a photo monomer to create polymer and metal microlattices as
shown in Fig. 1.6. Unfortunately, the obtainable geometric space was limited due to
the manufacturing technique’s requirement of straight wave guides creating straight
member lattices. Venturing to the nano-scale, The Nanoscribe machine in the lab
of Julia R. Greer at Caltech is able to print nearly any geometry nano-scale lattices
via two-photon lithography, see Fig. 1.7, with nanometer-scale precision.

Although the manufacturing methods have allowed lattices to be manufactured at
smaller scales allowing the lattice to act as an effectivematerial instead of a structure,
the fundamental question remains of which architecture is the best, e.g., in terms
of the effective (meta) material stiffness. In the following section past and present
perspectives on maximizing effective stiffness are presented.
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(a)Manufacturing a single layer of lattice-
core material by bending perforated sheet
metal.

(b) Sandwich panel made of 304 stainless
steel with relative density of 12.6%.

Figure 1.5: Millimeter scale lattice-core sandwich material made from individually
assembled layers. Reprinted from (Wadley et al., 2003) with permission from
copyright holder, Elsevier.

Figure 1.6: Manufacturing of a metal microlattice. (A) Collimated light is sent
through a mask into self-propagating waveguide photometer. (B) The developed
polymer lattice. (C) Resultant Ni-P hollow-member lattice after plating and polymer
etching. Reprinted from (Schaedler, Jacobsen, et al., 2011) with permission from
the copyright holder, The American Association for the Advancement of Science.

Figure 1.7: Nanolattice with octahedron unit cells made of polymer and created via
two-photon lithography. Image courtesy of Carlos Portela (Caltech).
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1.2.1 Effective stiffness
One possible prospect of lattice materials is to produce controllable mechanical
performance in a mass-efficient manner. However, the natural question, is what
lattice architecture is the most efficient. Throughout literature the scaling of the
relative modulus with relative density is used as a measure of lattice geometry
efficiency, where the relationship is described as

Eh = c1Es ρ̃
c2 , (1.6)

where Eh is the effective modulus of the lattice material, c1 is a fitted, geometry
dependent constant, Es is the modulus of the constitutive material, and c2 is a
fitting scaling parameter which is also geometry dependent. Ideally c2 is as close
to one as possible indicating a stretching-dominated lattice. Illustrated by Fig. 1.8,
stretching-dominated were shown to scale better than bending-dominated lattices
such that the relative modulus of the design scaled linearly with the relative density,
allowing one to reach higher stiffness at lower relative density. Until recently, it was
believed that all lattice materials could be categorized into stretching-dominated and
bending-dominated lattices, as outlined in (Deshpande, Ashby, et al., 2001), based

Figure 1.8: Ashby plot of relative modulus to relative density of foams, lattices, and
honeycombs taken from (Ashby, 2006) with permission from copyright holder, The
Royal Society.
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on nodal connectivity. However, in recent work by Meza, Phlipot, et al. (2016)
it was shown that the stiffness-density scaling of nanolattices cannot be predicted
simply based on nodal connectivity. The classical theory only applied to slender
structures, whereas manufacturable nanolattices do not fall into that category. It
was shown that stretching-dominated and bending-dominated predictions, based
on nodal connectivity alone, apply only to lattices whose beam members have a
slenderness of approximately 10 or greater, where slenderness is defined as

λ =
L
D
, (1.7)

where L is the length of the member measured node to node and D is the effective
diameter of the lattice member (Meza, Phlipot, et al., 2016). As an example, Fig. 1.9
presents experiments and simulations of a hollow octet lattice and demonstrates how
hollow lattice member geometric factors, such as slenderness and wall thickness-
to-length ratios, effect stiffness scaling. In this figure, full-resolution finite element
simulations are used to determine the effective stiffness of a non-slender octet lattice.
Note how the octet lattice is generally considered a stretching-dominated lattice and
therefore has a scaling c2 = 1 as drawn in a yellow band in Fig. 1.9. However,
depending on the slenderness of the lattice, the calculated effective stiffness does
not necessarily exhibit the typical scaling law given by (1.6) with unique scaling
parameters.

For completeness the characterization based on nodes and lattice member con-
nectivity appropriate for lattices with members λ > 10 is briefly summarized. As
suggested byDeshpande, Ashby, et al. (2001), one can identify stretching-dominated
lattices by examining Maxwell’s rule,

b − 3 j + 6 = s − m , (1.8)

where b is the number of struts, j the number of idealized frictionless nodes, s

the number of states of self-stress, and m the number of mechanisms. To achieve
stretching-dominated lattices, where effective stiffness scales linearly with relative
density, one seeks designs where b−3 j+6 ≥ 0 as a necessary condition. In this case
the structure can contain a mixture of states of self-stresses and mechanisms. For
an exact count of s and m, i.e. if the lattice is stretching-dominated, one can employ
e.g. the matrix analysis method developed by Pellegrino and Calladine (1986). As
illustrations, example unit cells are shown in Fig. 1.10 indicating whether or not the
geometry, as predicted by Maxwell’s rule, is stretching-dominated.



10

Figure 1.9: The effect of the thickness-to-length and diameter-to-length ratios on
the effective Young’s modulus of an hallow octet unit cell with periodic boundary
conditions. Comparison is made to experiments (hollow red symbols) from (Meza,
Zelhofer, et al., 2015). The yellow band shows a linear scaling with relative density.
Numerical simulations (green and blue) show effective stiffness (i.e. scaling) is
highly sensitive to geometric ratios. Image courtesy of Carlos Portela (Caltech).

Figure 1.10: Three dimensional polyhedra labeled indicating if the unit cell by itself
is predicted to be stretching-dominated. Figure taken from (Deshpande, Ashby,
et al., 2001) with permission from copyright holder, Elsevier.
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In pursuit of the best-scaling unit cell design many lattice architectures have been
examined. One of the most commonly used designs is that of the octet unit cell
by Deshpande, Fleck, and Ashby (2001). Hutchinson and Fleck (2006) explored
two-dimensional trusses with use of the matrix method developed by Pellegrino and
Calladine (1986). In recent years, Professors Julia R. Greer of Caltech and Nicholas
X. Fang of MIT have created and tested lattice designs on the nanoscale (Zheng
et al., 2014; Meza, Das, et al., 2014; Montemayor et al., 2014). Given the nanoscale
precision of these manufacturing methods it was possible to explore geometries
with multiple length scales configured as hierarchical lattice structures. This opens
entirely new opportunities for the design of massively complex lattice architecture,
which - in turn - requires advanced theoretical and computational techniques to
predict their properties. Chapter 3 details the use of the finite element method to
calculate the effective stiffness of these hierarchical lattices with comparisons to
experimental realizations.

1.2.2 Wave propagation
Aside from the effective static properties of a lattice material one can also consider
its dynamic or inelastic properties. As mentioned previously, all materials exhibit
some level/amount of damping measured e.g. as the loss coefficient. The greater
the loss coefficient, the greater the amount of damping provided by the material.
From work performed by (Ashby, 2005) one can conclude that materials with
high loss coefficients include generally low-modulus elastomers and polymer foams
with low melting points. Materials with higher modulus and much higher melting
points usually have significantly lower loss coefficients by orders of magnitude.
To design a material with relatively high modulus, high melting temperature, and
effective loss coefficient one can turn to lattice materials. An unexpected, but unique
and interesting consequence of the ordered lattice architecture is the phenomenon
of frequency-dependent wave propagation. Where normal materials inherently
dampen excitation due to microstructural mechanisms or molecular structure, lattice
materials can do so using geometry alone, even in linear elastic lattices without
internal material damping.

In general, engineered solids designed for optimal wave propgation are oftentimes
referred to as phononic metamaterials. In a review on wave propagation in meta-
materials, Hussein et al. (2014) outlined the origins, current work, and future
directions of the field generally containing phonic crystals, composites, and lattices
metamaterials. Among the various dynamic phenomena encountered in phononic
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metamaterials, researchers have been interested in directional wave propagation
commonly determined using dispersion relations.

A simple and canonical example of frequency-dependentwave propagation, depicted
in Fig. 1.11, is outlined below. Consider a diatomic chain of masses and springs of
equal stiffness in a perfectly elastic system. In the following, a short derivation of
the dispersion relation is presented. First, we considered the force balance on the
nth pair of mass particles m1 and m2 given as

m1 Üun,1 = ks(un,2 − un,1) − ks(un,1 − un−1,2) (1.9)

and
m2 Üun,2 = ks(un+1,1 − un,2) − ks(un,2 − un,1) , (1.10)

where un,i is the displacement of the ith (first or second) mass in the nth pair of
particles, and ks is the stiffness of the spring between the particles. If we assume
the displacements of the masses have the form of a traveling wave, viz.

un,1 = A1ei(kna−ωt) (1.11)

un,2 = A2ei(kna−ωt) (1.12)

where a is the spacing between each pair of particles, k is the wave vector, ω the
frequency of excitation, and t is time, we can rewrite Eqns. (1.9) and (1.10) as

A1(ω2m1 − 2ks) + A2ks(1 + e−ika) = 0 (1.13)

A1ks(1 + eika) + A2(ω2m2 − 2ks) = 0 . (1.14)

For a non-trivial solution (i.e. constants A1, A2 , 0), we must have,

det

(
ω2m1 − 2ks ks(1 + e−ika)
ks(1 + eika) (ω2m2 − 2ks)

)
= 0 . (1.15)

Solving Eq. (1.15) for ω, we arrive at the dispersion relation mathematically
described as

ω2 =
ks

m1m2

(
m1 + m2 ±

√
m2

1 + m2
2 + 2m1m2 cos ka

)
(1.16)

and illustrated in Fig. 1.11. If the two masses are not equal, a frequency band
referred to as a band gap is predicted by the dispersion relation analysis given
mathematically are given by the two solutions in (1.16). In terms of the mass-spring
system dynamics, a band gap means that, if the system is excited at any frequency
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within the band gap, the motion will be effectively damped out by local resonance
(i.e. the wave motion cannot propagate infinitely). In the cases, of the masses being
equal, Eqn. (1.16) simplifies to

ω2 =
ks

2m

(
2m ±

√
2m2(1 + cos ka)

)
, (1.17)

which implies that no band gap exists, as one can clearly see in Fig. 1.11 .
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Figure 1.11: Canonical dispersion relation example of a monatomic and diatomic
mass-spring chain consisting of springs with stiffness ks = 10 N/m. When the two
masses, m1 = m2 = 1 kg, are equal (left image), a continuous frequency band exists
propagating waves. When the two masses are unequal, m1 = 2 kg and m2 = 1 kg,
(right image), a band gap exists such that the frequencies within the band gapwill not
propagate through the system. To illustrate the symmetry of the dispersion relation
the negative and positive wavelengths are colored in black and red, respectively.

In considering a system of increasing geometric complexity, one turns to approx-
imate methods such as the finite element method. With significant flexibility and
ease one can calculate the dispersion relation e.g. two-dimensional lattices made of
Euler-Bernoulli beams such as the hexagonal lattice shown in Fig. 1.12 studied by
Phani et al. (2006). Between the normalized frequencies of ω = 4 and ω = 6, there
exists a band gap. As discussed in Phani et al. (2006) the width of the band gap is
influenced by the slenderness λ of the lattices members. In careful examination of
Fig. 1.12 only considers the edge of the unique wave-vector space, IBZ, , as being
sufficient to extract information about the existence of band gaps. As Chapter 4
illustrates, using the IBZ to determine if an omnidirectional band gap exists fulfills
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a necessary condition but is not sufficient to prove that band gap does not exist. This
idea was already expressed in work by Spadoni et al. (2009) where chiral lattices
were investigated. As an illustration of the work done by Spadoni et al. (2009) the
edge and corresponding full dispersion surfaces are shown in Fig. 1.13. Clearly a
full band gap exists given the full dispersion relation which one cannot deduce from
the edge.

(a) Hexagonal unit cell with lattice vectors e1, e2 and reciprocal lattice
vectors e∗1, e

∗
2.

(b) Dispersion relation along parameterized irreducible Brillouin
zone edge path O-A-B-O

Figure 1.12: Parameterized dispersion relation along the irreducible Brillouin zone
edge in k-space for a regular two-dimensional hexagonal lattice made of beams of
slenderness λ = 50. Figure is taken from (Phani et al., 2006) with permission from
the copyright holder, AIP Publishing LLC.

In the pursuit of maximizing the band gaps of two-dimensional lattices made of
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Figure 1.13: Chiral lattices can be characterized by the strut-length-to-circle-radius
ratio L/R in the range 0 to 1. Dispersion relations are shown for L/R = 0.90 and
L/R = 0.60 in parameterized form, (a) and (b), along with the full representation,
(c) and (d). Images are taken from (Spadoni et al., 2009) with permission from the
copyright holder, Elsevier.
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Figure 1.14: P. Wang et al. (2015) investigated the effect of average nodal connec-
tivity, z̄, of a two-dimensional lattice on the width of a complete band gap, ∆ω,
relative to the first flexural frequency of a fixed-fixed beam (i.e. ωwelded). Taken
from (P. Wang et al., 2015) with permission from the publisher, American Physical
Society

beams, P.Wang et al. (2015) investigated the influence of average nodal connectivity
z̄ of a lattice as shown in Fig. 1.14. The average nodal connectivity was varied from
z̄ = 3 to z̄ = 6 corresponding to hexagonal and triangular lattices, respectively.
Wang et al. found a positive correlation between band gap width and average
number of members connecting at a node, otherwise known as the coordination
number.

Aside from frequency-dependent wave propagation, lattice materials also exhibit
directional wave propagation. An illustration of this property is given by the
example presented in (Casadei and Rimoli, 2013) who varied the volume fraction
of solid material of a two-dimensional lattice and excited the center of the lattice
to study the spreading of the propagating wave. As one can see illustrated in
Fig. 1.16, the lower the volume-fraction of solid material in the lattice, the stronger
the potential wave directionality becomes.
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Figure 1.15: From left to right, an array of two dimensional diamond lattices of
solid volume fraction 0.33, 0.66, and 0.99. Each lattice is excited at the center with
a point forces in the low-frequency spectrum applied in the positive and negative
horizontal and vertical directions. Color shows wave amplitude excitation (on a
normalized scale) illustrating the influence of volume fraction on directional energy
flow. Taken from (Casadei and Rimoli, 2013) with permission from the copyright
holder, Elsevier.
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In summary, lattices materials are capable of frequency-dependent, directional wave
propagation as shown in the wave propagation of a rectangular lattice made from
Euler-Bernoulli beams presented in Fig. 1.16. At a lower excitation frequency of 51.6
Hzwaves travel in all directions, whereas, when excited at a higher frequency of 76.4
Hz, waves only travel in a 90 degree regions centered at 0 and 180 degrees. So far,
studies of directional wave propagation in lattices have been primarily observational,
meaning the existence of directional band gaps has been observed and can be
predicted by recourse to the dispersion relations (which is only a necessary condition
to confirm that no band gaps exist). However, there is not efficient theoretical-
computational strategy to sufficiently prove the (non-)existence of directional wave
motion in arbitrary lattices. Chapter 4 revisits fundamental two-dimensional lattice
shapes and, by improving on existing methodology, provides a strategy to rigorously
predict directionality and use this new approach to demonstrate the influence of
lattice geometry on directional wave propagation.
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(a) Omnidirectional wave propagation due to low-frequency excitation at 51.6 Hz

(b) Directional wave propgation due to high-frequency excitation at 76.4 Hz

Figure 1.16: Explicit-dynamics finite element simulation of out-of-plane wave prop-
agation in a two-dimensional, rectangular lattice of circular cross-section beamswith
slenderness λ = 10, length L = 1, and stretch ratio γ = 1.5 (as defined in Ch. 4)
is subjected to single-frequency, mechanical excitation. Color coding shows the
magnitude of out-of-plane displacement.
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1.3 Thesis outline and contributions
In the following chapters improved computational tools to describe and predict the
effective performance of elastic lattices, including stiffness and wave motion. Chap-
ter 2 reviews the fundamentals of the finite element method to lay the foundation for
subsequent layers. Chapter 3 focuses on the effective stiffness of three-dimensional
hierarchical nano lattices. Two simulation methodologies involving differing levels
of geometric accuracy are utilized tominimize computational expenses. Simulations
predict that structural hierarchy can achieve the ideal stretching-dominated scaling
in nano-lattices while spanning decades of relative density and effective stiffness.
Chapter 4 focuses on directional wave energy propagation (i.e. beaming) in two-
dimensional lattices. This work improves on existing methods to predict directional
wave propagation and provides analysis of fundamental lattice designs. Beaming
predictions are then compared to explicit-dynamic simulation results, highlighting
directional amplitude and frequency response for validation of the newmethodology.
Finally, Chapter 5 concludes this thesis and summarized potential future work.
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C h a p t e r 2

FINITE ELEMENT DERIVATION

2.1 Introduction
This body of work is restricted to linearized kinematics and as such the derivation of
finite elements will be performed accordingly. First, the quasistatic case is derived
from the governing equations and the first variation of the total potential energy.
Second, the dynamic case is considered and derived using the action principle. Note,
this formulation is adopted from (Kochmann, 2014)

2.2 Quasistatics
The governing equations of solid mechanics for linearized kinematics within the
quasistatic framework are

σi j, j + ρbi = 0 in Ω , (2.1)

ui = u∗i on ∂ΩD , (2.2)

σi jn j = t∗i on ∂ΩN , (2.3)

where σi j are the components of the Cauchy stress tensor, ρ the mass density, bi the
body force, ui the displacements, ni the outward surface normal, Ω the body, ∂ΩD

surface region of prescribed displacements u∗i , and ∂ΩN surface region of prescribed
tractions t∗.

The total potential energy of the body is defined as

I[u] =
∫
Ω

W(ε) dV −
∫
Ω

ρb · u dV −
∫
∂ΩN

t∗ · u dS , (2.4)

whereW(ε) is the strain energy density. Using the first variation of the total potential
energy,

δI[u] = lim
ε→0

I[u + εδu] − I[u]
ε

, (2.5)

we arrive at

δI[u] =
∫
Ω

∂W
∂εi j

sym(δui, j) dV −
∫
Ω

ρbiδui dV −
∫
∂ΩN

t∗i δui dS (2.6)

subject to ∀ δui ∈ U0 whereU0 is a function space satisfying that δu = 0 on ∂ΩD.
The first variation must vanish for the total potential energy to be minimized. First,
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the definition of the stress tensor,

σi j =
∂W
∂εi j

, (2.7)

we can rewrite Eq. (2.6) as

δI[u] =
∫
Ω

σi jδui, j dV −
∫
Ω

ρbiδui dV −
∫
∂ΩN

t∗i δui dS. (2.8)

Second, one uses the following expression and substitutes the last term of(
σi jδui

)
, j = σi j, jδui + σi jδui, j (2.9)

into Eq. (2.8) along with the divergence theorem applied to our problem as∫
Ω

(
σi jδui

)
, j dV =

∫
∂Ω
σi jn j dS (2.10)

to find an equivalent form of Eqn.(2.8), which results in the condition of equilibrium
as

δI[u] =
∫
∂ΩN

(
t∗i − σi jn j

)
δui dS −

∫
Ω

(
σi j, j + ρbi

)
δui dV = 0

for δu ∈ U0.

(2.11)

If one again examine the governing equations, Eqns. (2.1) – (2.3), we find that
for Eq. (2.11) to hold for all admissible variations is equivalent to satisfying the
original governing equations. Now let us use the first variation, Eq. (2.6) with the
substitution δu = v to define the weak form

G(u, v) = A(u, v) − L(v) = 0 ∀v ∈ U0 (2.12)

where
A(u, v) =

∫
Ω

σi j (sym(∇u)) vi, j dV , (2.13)

L(v) =
∫
Ω

ρbivi dV +
∫
∂ΩN

t∗i vi dS. (2.14)

This can then be turned into the discrete weak from

A(uh, vh) − L(vh) = 0 for all adm. vh , (2.15)

using the Bubnov-Galerkin approximation

uh(x) =
n∑

a=1
uaNa(x) and vh(x) =

n∑
a=1

vaNa(x) , (2.16)
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where ua and va are displacements at the ath node of a finite element mesh and
Na(x) is the shape function of node a. Substituting the discritized displacements
from Eqn. (2.16) into Eqn. (2.12), we arrive at

n∑
a=1

va
i

[∫
Ω

σi j(sym(∇uh))Na
, j dV −

∫
Ω

ρbiNa dV −
∫
∂ΩN

t∗i Na dS
]
= 0. (2.17)

This equation mesh vanish for all admissible va, which implies that the bracketed
term must be zero. Rewriting Eq. (2.17) in a matrix format, we have

F int(Uh) − Fext = 0 (2.18)

where

F int(Uh) =
∫
Ω

σi j(sym(∇uh))Na
, j dV , (2.19)

Fext =

∫
Ω

ρbiNa dV −
∫
∂ΩN

t∗i Na dS , (2.20)

Uh =

©«
u1

u2

...

un

ª®®®®®¬
. (2.21)

In the special case of linear elasticity the stress is related to the displacements as

σi j = Ci j kluk,l , (2.22)

leading to the linear elastic weak form

G(u, v) = B(u, v) − L(v) = 0 for all adm. v (2.23)

where

B(u, v) =
∫
Ω

vi, jCi j kluk,l dV (2.24)

L(v) =
∫
Ω

ρbivi dV +
∫
∂ΩN

t∗i vi dS , (2.25)

Now the internal forces can be described in terms of the shape functions N and
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material tensor Ci j kl and the nodal displacemenets ub as

Fa
int,i =

∫
Ω

Ci j kluh
k,l N

a
, j dV (2.26)

=

n∑
b=1

∫
Ω

Ci j klub
k Nb

,l Na
, j dV (2.27)

=

n∑
b=1

ub
k

∫
Ω

Ci j kl Nb
,l Na

, j dV (2.28)

=

n∑
b=1

ub
k Kab

ik with Kab
ik =

∫
Ω

Ci j kl Nb
,l Na

, j dV . (2.29)

Finally, we can restate the internal force vector as

F int = KUh , (2.30)

where K is the global stiffness matrix and F int denotes the global force vector.
Substituting this result into Eq. (2.18), we arrive at the linear set of equations

KUh = Fext. (2.31)

2.3 Dynamics
The governing equations of solid mechanics for linearized within the dynamic
framework are

σi j, j + ρbi = ρai in Ω , (2.32)

ui(x, t) = u∗i (x, t) on ∂ΩD , (2.33)

σi jn j(x, t) = t∗(x, t) on ∂ΩN . (2.34)

Note that in comparison to the quasistatic governing equations (2.1) – (2.3) the
acceleration term ai is present in the linear momentum balance and displacements
ui and all other field variables may be a function of time.

Necessary in this derivation is the use of the action principle which states the
solution u(x, t) holds A stationary with u(x, t1) = u1(x) and u(x, t2) = u1(x)where
the action A is defined as

A[u] =
∫ t2

t1
L[u] dt with L[u] = T[u] − I[u] , (2.35)

where the total potential energy I is defined in Eqn. (2.4) and the total kinetic energy
T is defined as

T[u] =
∫
Ω

ρ

2
| Ûu |2 dV . (2.36)
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Therefore, we obtain

A[u] =
∫ t2

t1

[∫
Ω

( ρ
2
| Ûu |2 −W(ε)

)
dV +

∫
Ω

ρb · u dV +
∫
∂ΩN

t∗ · u dS
]

dt .

(2.37)
Again, we wish to set the first variation of A[u] equal to zero. Starting with the
definition of the first variation

δA[u] = lim
ε→0

A[u + εδu] − A[u] (2.38)

we arrive at

δA[u] =
∫ t2

t1

[∫
Ω

(
ρ Ûuiδ Ûui − σi jδui, j

)
dV +∫

Ω

ρbiδui dV +
∫
∂ΩN

t∗i δui dS
]

dt . (2.39)

Similarly to the quasistatic case, we use the last term of the expanded derivative in
time

d
dt
( Ûuiδui) = Üuiδui + Ûuiδ Ûui . (2.40)

Examining the first term of Eqn. (2.40) and inserting into Eqn. (2.39), one notes∫ t2

t1

d
dt
( Ûuiδui) dt = 0 (2.41)

given the variation δu vanishes at times t1 and t2. Therefore, along with the
governing equations (2.32) – (2.34), Eqn. (2.39) yields the action principle

δA[u] = 0 for all adm. δu . (2.42)

The linearized-kinematics weak form of the dynamic problem thus becomes

G(u, v) =
∫ t2

t1

[∫
Ω

(
ρ Ûui Ûvi − σi jvi, j

)
+∫

Ω

ρbivi dV +
∫
∂ΩN

t∗i δvi dS
]

dt = 0 for all adm. v . (2.43)

Again using a discretization in space, we write the displacements as

uh(x, t) =
n∑

a=1
ua(t)Na(x) and vh(x, t) =

n∑
a=1

va(t)Na(x) , (2.44)

and the velocities are defined as

Ûuh(x, t) =
n∑

a=1
Ûua(t)Na(x) and Ûvh(x, t) =

n∑
a=1

Ûva(t)Na(x) , (2.45)
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and accelerations as

Üuh(x, t) =
n∑

a=1
Üua(t)Na(x) and Üvh(x, t) =

n∑
a=1

Üva(t)Na(x) . (2.46)

Now we obtain the discretized weak form of the dynamic problem via Eqn. (2.43)
by inserting the Galerkin approximation and multiplying by -1 we have

G(uh, vh) =
∫ t2

t1

n∑
a=1

n∑
b=1

[
Üua
i v

b
i

∫
Ω

ρNaNb dV + vb
i

∫
Ω

σi j Nb
, jdV

−vb
i

∫
Ω

ρbiNbdV − vb
i

∫
∂ΩN

t∗i Nb dS
]

dt = 0. (2.47)

For this to hold for all admissible va, we can again factor out those coefficients and
reduce this long and complicated expression into a set of linear equations in matrix
form as

M Üuh + F int(uh) − Fext(t) = 0 (2.48)

where

Mab
i j = δi j

∫
Ω

ρNaNb dV , (2.49)

Fb
int,i =

∫
Ω

σi j Nb
, jdV , (2.50)

Fext,i =

∫
Ω

ρbiNbdV +
∫
∂ΩN

t∗i Nb dS . (2.51)

In this case we have derived the consistent mass matrix M . An alternative type of
mass matrix, named the lumped mass matrix, is obtained by lumping the mass of
each element to its nodes such that M has only diagonal entries. It is also common
to include velocity-proportional damping matrix C such that

M Üuh + C Ûuh + F int(uh) − Fext(t) = 0 , (2.52)

where
C = αM + βK , (2.53)

where α and β are real damping parameters greater than or equal to zero.

2.4 Summary
Finite elements can be derived in a multitude of ways. In the above work, the vari-
ational approach was used to derive both the quasistatic and dynamic weak forms.
The Bubnov-Galerkin approximation allows one to create discrete weak forms by in-
troducing shape functions, ultimately leading to the finite element matrix equations.
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With respect to the remainder of this document, the quasistatic formulation is the
foundation for Chapters 3 and 4, while the dynamic formulation is used exclusively
in Chapter 4.
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C h a p t e r 3

EFFECTIVE STIFFNESS OF HIERARCHICAL LATTICES

Essentially, all models are wrong, but some are useful.
– George E. P. Box

The content of this chapter is an expansion of the work presented in:

Lucas R.Meza, Alex J. Zelhofer, et al. (2015). “Resilient 3D hierarchical architected
metamaterials.” In: Proceedings of the National Academy of Sciences of the United
States of America 112.37, pp. 11502–7. issn: 1091-6490. doi: 10.1073/pnas.
1509120112. url: http://www.pnas.org/content/112/37/11502.
abstract

3.1 Introduction
Nature has created mass-efficient and robust structural materials (Mandelbrot, 1982;
Fratzl and Weinkamer, 2007; Brakus, 1995; Lakes, 1993; Ortiz and Boyce, 2008)
such as bone (Currey, 2014), wood (Gibson, 2012), and glass sponges (e.g. eu-
plectella) (Aizenberg et al., 2005). Each of these materials have their own unique
microstructure containing multiple length scales via hierarchical design. Mankind
has emulated the idea of structural hierarchy in buildings such as the Eiffel tower
(Lakes, 1993) and the Garabit viaduct (Sundaram and Ananthasuresh, 2009) and
continues to do so in the field of metamaterials. Given the recent advances in addi-
tive manufacturing, micro- and nano-lattice metamaterials have become an intense
topic of focus (Deshpande, Fleck, and Ashby, 2001; Queheillalt and Wadley, 2005;
Wadley, 2006; Schaedler, Jacobsen, et al., 2011; Meza and Greer, 2014; Rys et al.,
2014). In this chapter, the effect of structural hierarchy on the effective stiffness
of a new class of nano-architected metamaterials, viz. hierarchical nanolattices, is
explored.

http://dx.doi.org/10.1073/pnas.1509120112
http://dx.doi.org/10.1073/pnas.1509120112
http://www.pnas.org/content/112/37/11502.abstract
http://www.pnas.org/content/112/37/11502.abstract
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(a) Overall structure of the Eiffel Tower.
Image courtesy of P. Nicou.

(b) Interior view of a tower leg showing
trusses made of trusses. Image courtesy
of B. Michau.

Figure 3.1: The Eiffel Tower is an example of a structure with more than four levels
of hierarchy. Images are taken from (Eiffel Tower Gallery 2017)

Figure 3.2: The Garabit Viaduct is another example of a structure with several levels
of hierarchy. Image courtesy of Graeme Churchard taken from (Garabit Viaduct
2009)
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3.2 Hierarchical lattices
Hierarchical lattices have been studied as honeycombs (Oftadeh et al., 2014; Ajdari et
al., 2012; Fan et al., 2008), cores of sandwich panels (Wadley et al., 2003; Kooistra
et al., 2007), truss structures (Li and Fang, 2014), and space frames (Rayneau-
Kirkhope, Mao, Farr, and Segal, 2012). An example of the hierarchical lattice used
in cores of sandwich panels is shown in Fig. 3.3. Kooistra et al. (2007) found that
designs with relative densities less than 5% and equal masses second-order lattice
have significantly higher compressive and shear strengths than first-order lattices.

Figure 3.3: The effect of hierarchical truss core studied by Kooistra et al. (2007).

From a theoretical perspective, hierarchical structures have been approximated using
solid (Farr, 2007b; Farr and Mao, 2010; Rayneau-Kirkhope, Mao, Farr, and Segal,
2012; Rayneau-Kirkhope, Mao, and Farr, 2013) and hollow beams (Farr, 2007a;
Rayneau-Kirkhope, Mao, and Farr, 2012) and Euler buckling criteria to predict
optimal designs. Fig. 3.4 shows first-, second-, and third-order lattice designmeeting
the same load requirements using deceasing amounts of material with increasing
order.

Conversely, experimental realizations allow one to realize all possible deformation
modes within a limited geometric parameter space such as sandwich panel cores
(Kooistra et al., 2007) or three-dimensional lattices (Meza, Zelhofer, et al., 2015).
To explore geometries inaccessible by theory and at a faster rate than experimentally
realizable, computational modeling via FEM (Olson, 1997; Ajdari et al., 2012) is
used.
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Figure 3.4: Hierarchical lattices studied by Rayneau-Kirkhope, Mao, and Farr
(2012) showing (a) first-order, (b) second-order, and (c) third-order lattices able to
sustain the same axial load. Relative density decreases with increasing hierarchical
order. Reprinted with permission from copyright holder, Elsevier.

3.3 Modeling hierarchical lattices
The number of structural hierarchical levels in a lattice material is referred to as
the order of the lattice as illustrated in Fig. 3.5 A. For example, a first-order lattice
consists of monolithic beams. A second-order lattice’s "beams" consist of first-
order unit cells which in turn contain monolithic beams. With each additional
level of hierarchy, the number of monolithic beams, and associated total degrees
of freedom, increases by approximately two orders of magnitude. In addition,
the number of computational operations of solving a linear system scales with the
cube of the degrees of freedom (Anderson et al., 1999). Therefore, the number
of operations necessary for computing the effective stiffness of a third-order unit
cell is approximately 1012 times greater than the primitive unit cell. To keep the
computational cost within an acceptable limit, one achieves a minimal number of
degrees of freedom via either simple bar elements with minimal degrees of freedom
or using higher-fidelity elements with model reduction techniques, both of which
are presented here.
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Figure 3.5: Hierarchical lattices produced using two-photon lithography. (A) Lat-
tices are described by their order indicating the number of length scales present in
an nth order lattice containing (n − 1)th order sub-components. (B–E) Renderings
(white background) and SEM images (grey background) show computer generations
and experimental realizations, respectfully, of second-order lattices (scale bars of
20µm). (F) Image of a second-order ocatehdron of octehedra lattice. (G) Detailed
view of a second-order ocatehdron of otahedra lattice depicting the first-order lattice
sub-components (scale bar: 50µm). (H) Image of a third-order octahedron of octa-
hedra of octahedra (scale bar: 25 µm). Image taken from (Meza, Zelhofer, et al.,
2015)

3.3.1 Finite element approach
Two small-strain, linear elastic, finite element approaches were used to calculate the
effective stiffness of structural lattices. The first approach uses the relatively sim-
ple and computationally inexpensive truss approximation. This approach assumes
lattice stiffness comes primarily from lattice member axial stiffness and ignores the
effects of lattice member junctions. The second approach is the high-fidelity method
developed to more accurately predict lattice stiffness by accounting for the stiffness
of the nodes in addition to the axial and bending stiffness of the lattice members by
fully resolving the 3D geometry. This method is especially effective when analyzing
hollow lattices where member junctions can play a critical role in lattice stiffness.
To illustrate the need for the high-fidelity method, Figs. 3.6 and 3.7 show stress
distributions in a solid and hollow node, respectively, under uniaxial compression.
In the case of the solid lattice, the lattice members perpendicular to the stressed
member are relatively unstressed. Therefore the stiffness of the lattice is indepen-
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dent of junction geometry. However, in the case of a hollow node, a relatively high
level of stress is present in perpendicular lattice members, indicating the stiffness of
the lattice will be dependent on lattice geometry as discussed in Chapter 1.

In order to compensate for the increased degrees of freedom generated by fully
resolving the geometry, a model reduction technique based on static condensation
is employed. To predict the effective stiffness, both FEM-based methods use a
hierarchical lattice half-cell constrained such that the bottom of the half-unit cell is
fixed and the top is displaced vertically as shown in Fig. 3.8.

This configuration was chosen as it was the easiest geometry to manufacture without
having to print multiple unit cells. Within the finite element simulations, materials
are assumed to be linear elastic with constants found in Tbl. 3.1. The polymer
modulus was determined by creating polymer pillars in the experimental setup and
conducting compression tests. In the absence of appropriate test equipment the
modulus value of alumina was taken from (Tripp et al., 2006).

Table 3.1: Material properties used in finite element calculations

Material Young’s modulus (GPa) Poisson’s ratio
Polymer 2.10 0.49
Alumina 165 0.30

(a) Isoview (b) Cross-section

Figure 3.6: Representative solid, three-dimensional node made of linear elastic
material under uniaxial compression in the z-direction. Stress is near uniform
through the stressed member with little interaction from attached members.
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(a) Isoview (b) Cross-section

Figure 3.7: Representative hollow, three-dimensional node made of linear elastic
material under uniaxial compression in the z direction. Stress is highly nonuniform
through the stress member due to the interactions with the attached members.

Figure 3.8: Example boundary conditions applied to simulated half cells. The
bottom nodes of the structure, highlighted in red, are held fixed (i.e. u1 = u2 =
u3 = 0) and the top, also highlighted in red, has a prescribed vertical displacement
δ (i.e. u3 = δ) with free movement of u1 and u2.

3.3.2 Truss approximation
Many analytical approaches assume lattices consist of bar or beam members (Farr
and Mao, 2010; Rayneau-Kirkhope, Mao, and Farr, 2012; Rayneau-Kirkhope,
Mao, Farr, and Segal, 2012; Rayneau-Kirkhope, Mao, and Farr, 2013) for analysis
simplicity. The quasistatic and failure mechanisms of these idealizations are widely
known and accepted. From a computational perspective, one can also choose from
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Table 3.2: Three-dimensional elements considered for truss approximation

Element Bar Beam
axial stiffness x x
bending stiffness x
torsional stiffness x
rotational compatability at nodes x
degrees of freedom per element 6 12

bar or beam elements as the simplest representation of a lattice member in three-
dimensional space. Choosing between the two types of elements requires some
background on what assumptions each element makes and how they are formulated.
A brief overview is presented in Tbl. 3.2. Bar elements consist of two nodes, only
providing axial stiffness along the member. Nodes are allowed to rotate freely,
therefore assuming lattice member bending stiffness is negligible compared to axial
stiffness. Finally, the bar element is the computationally cheapest finite element
containing only six degrees of freedom per element in three dimensions. The next
level in modeling fidelity is the beam element. This element accounts for axial
stiffness, bending stiffness, and torsional stiffness at twice the computational cost of
the bar element, having 12 degrees of freedom per element in 3D. While the beam
element has a higher fidelity, the purpose of this study is to find the best-scaling
finite element methodology to accurately predict hierarchical lattice stiffness.

One should also be aware of a chief assumption made when using bar elements.
When modeling lattices using bar elements, one is ignoring the exact geometry
of junctions between lattice members by connecting bar elements at the center of
junctions as seen in Fig. 3.9. By design, bar elements only support axial loads and
cannot exert a moment at the connection points.

Figure 3.9: Given a particular lattice geometry, the truss method represents each
lattice member by a single bar element.
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(a) (b) (c)

Figure 3.10: Truss approximations of (a) 8-member first-order, (b) 680-member
second-order, (c) 65,000-member third-order half-cell lattices where each lattice
member is individually colored.

In modeling single-constituent solid and hollow lattices, a single bar element is used
per lattice member. However, when modeling a composite lattice of single-material
core and additional material coating, a superposition of two finite element meshes
was used. Fig. 3.10 shows an example of first-, second-, and third-order bar element
lattices.

3.3.3 High-fidelity method
By contrast to the truss method ignoring member junction geometry and member
bending stiffness, the high-fidelity method fully resolves the lattice geometry. This
method makes use of 8-node continuum brick and 4-node continuum shell elements
to model the different lattices. Due to the mesh density of the first-order lattice
members the degrees of freedom per member are on the order of 100, 1000, and
1000 for hollow, composite, and solid-polymer members. To better understand
the compounding problem of modeling hierarchical lattices, the number of floating
point operations (flops) required to solve an ith-order lattice is shown in Fig. 3.11.
Noting the figure is in log scale, one sees that without any type of model-reduction
technique the size of the problem to be solved grows by several decades. Hence,
to model any lattice in an efficient manner, the so-call static condensation model-
reduction technique is utilized, starting from the smallest length scale to the largest
scale.

The static condensation method (Guyan, 1965; Wilson, 1974; Qu, 2013), otherwise
known as Guyan condensation, allows one to significantly reduce the computational
costs of a finite element problem. This is achieved by eliminating degrees of
freedom not being acted upon by external forces, essential boundary conditions,
or coupled to other assemblies. This technique is useful when analyzing large,
complex interacting parts, especially if the parts are repeated in the assembly such
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(a) Hollow lattices made of octahedron unit cells on each length scale
with 10 unit cells per hierarchical member.
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(b) Solid lattices made of octahedron unit cells on each length scale with
10 unit cells per hierarchical member.

Figure 3.11: The number of floating point operations (flops) estimated to solve a
high-fidelity, hollow or solid, octahedron, first-, second-, or third-order hierarchical
lattice. Comparison is between solving a system with and without incremental
condensation at each level of hierarchy.
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as in the analysis of vehicles, buildings, or periodic media. The method can be
used to efficiently model any lattice with minimal loss in accuracy. When static
condensation is applied to parts or assemblies, the result is commonly referred to
as a super-element. In the specific case of metamaterial lattices, a finite set of
nodes and beams can be individually condensed into super-elements and connected
together to form the lattice geometry. Furthermore these super-elements, referred to
as super-nodes and super-beams can be assembled, connected, and condensed again
to create larger condensed assemblies. The following details how static condensation
is realized.

Consider a general linear finite element problem of the form

Ku = f ext , (3.1)

where K is the stiffness matrix, u ∈ R(m+s) is the assembled, global displacement
vector, and f ext is the external force vector. One can rearrange the order of linear
equations represented in Eq. (3.1) to group together nodes to be condensed out
(us ∈ Rs) and nodes to keep (um ∈ Rm) using the permutation matrix A (with
ATA = I ) so that we have

AKATAu = A f , (3.2)

where

Au =

[
um

us

]
, AKAT =

[
Kmm Kms

K sm K ss

]
, A f =

[
f m

f s

]
. (3.3)

Expressing Eq. (3.2) using terms from Eq. (3.3), we obtain the rearranged form as[
Kmm Kms

K sm K ss

] [
um

us

]
=

[
f m

f s

]
. (3.4)

From the second line ofmatrix equations of Eq. (3.4) one can solve for the condensed
nodes as

us = K−1
ss ( f s − K smum) (3.5)

and then substitute into the first line of Eq. (3.4) to obtain

Kmmum + Kms

(
K−1

ss ( f s − K smum)
)
= f m. (3.6)

Once rearranged, this becomes the condensed problem

K̃mmum = f̃ m , (3.7)
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where u ∈ Rm and the condensed stiffness matrices are defined as

K̃mm = Kmm − KmsK
−1
ss K sm, (3.8)

f̃ m = f m − KmsK
−1
ss f s . (3.9)

When applying condensation to lattices, one looks for unique geometry in lattice
members and member junctions as shown in Fig. 3.12 for a second-order lattice.
Each one of these unique members and nodes is fully resolved, meshed, and con-
densed as shown in Fig. 3.13. Additional degrees of freedom are added to condensed
super-elements, creating assembly connection points where nodes on the connected
faces are kinematically tied to the mating surface. Each of these unique condensed
super-elements (Fig.3.14) can then be assembled into a first-order lattice (as seen
in Fig. 3.15) and condensed again. In order to minimize the total computational
time when modeling an nth-order hierarchical lattice, one condenses all lower-order
lattice subcomponents and solves for the displacements of the assembled subcom-
ponents.

Figure 3.12: Second-order, octahedron of octahedra (N=10) half-cell colored by
unique beam and nodal geometry.
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Figure 3.13: Work flow process of creating a hollow super-beam . The geometry
(blue) is formed, the full mesh (light green) is generated, and finally connecting
nodes (dark green) are added to the ends of the beam allowing for connections
between the super-beam and a super-node.

(a) Beam super-element (b) Nodal super-element

Figure 3.14: Representative constituent super-elements of a first-order lattice. Light
green mesh represents condensed nodes while the dark green circles represent
master nodes used to connect beam and nodal super-elements. Master nodes are
kinematically coupled to all nodes on the face of the respective cross-section as to
create an infinitely stiff plate between the master and condensed degrees of freedom.

Identify unique geometry Condense into super-elements

Figure 3.15: High-fidelity model work flow showing super-elements connected at
single points capable of translations and rotations in all directions (shown in 2D).
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3.3.4 Experimental validation
The experimental realization of hierarchical lattices via two-photon lithography,
atomic layer deposition, and their testing by nano-indenter compression tests was
performed by Lucas Meza in Prof. Julia R. Greer’s group at Caltech. Example
compression tests are shown in Fig. 3.18. Each sample was compressed to fifty
percent of its original height and the associated compression force was recorded.
Effective structural linear elastic moduli were extracted from the linear portion of
the force displacement curve. Further details of the experimental fabrication and
testing can be found in (Meza, Zelhofer, et al., 2015)

(a) Second-order hierarchical octahedron half-cell made with N = 10
first-order octet unit cells.

(b) Second-order hierarchical octahedron half-cell made with N = 10
first-order octahedron unit cells.
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(c) Second-order hierarchical octahedron half-cell made with N = 20
first-order octahedron unit cells.

Figure 3.16: Displacement controlled compression tests of second-order, hollow
alumina half-cells with 20 nm wall thickness. Left images show the experimental
setup and right images the measured force vs. displacement. Dashed red lines
indicate the fitted linear stiffness.

3.4 Results
Comparisons are made between the computationally predicted and experimen-
tally measured effective stiffness of second-order half-cell solid polymer, polymer-
ceramic composite, and hollow alumina lattices as geometrically described in Ap-
pendix Tbl. A.1. Two derived quantities of stiffness are used to compare the finite
element predicted and experimentally measured values: effective structural stiffness
and effectivematerial stiffness. Effective structural stiffness comes from considering
the tested unit cell of a structure and is defined as the reaction force to displacing
the top of the half-cell divided by the applied displacement, is shown qualitatively
in Fig. 3.17 and quantitatively in Fig. 3.18. Whereas effective material stiffness
views the nanolattices as a metamaterial and divides the reaction force by the ef-
fective footprint of the half-cell and the displacement by the original height, so that
stiffness results from the thus obtained ratio of effective stress and strain.

In general, relative to the truss method the high-fidelity method predicts a higher
effective stiffness for solid cross sections (solid polymer and composite) and a lower
effective stiffness for hollow (alumina) nodes. This effect can be attributed to the
high-fidelity method accounting for lattice junction geometry, where solid junctions
add stiffness and hollow nodes introduce compliance. With respect to experimental
results the high-fidelity method overpredicts the composite and hollow lattices by
30.2% and 68.5 %, respectively. This large inaccuracy is attributed to geometric
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imperfections induced in the manufacturing process such as curved beams, lattice
member junction misalignment, or, as seen in several samples, sinusoidal waviness
of the first-order beams. In a brief computational study the effect of a 50 nm-
amplitude, 1 micron-wavelength sinusoidal shape reduced axial stiffness of first-
order members by 5%, 32%, and 70% for solid polymer, composite, and hollow
lattices, respectively. A more general study of truss waviness is presented in the
next section.

As seen from all three material system simulations and experiments shown in
Fig. 3.19, hierarchical lattices can span three orders of magnitude in relative den-
sity and four orders of magnitude in effective stiffness. Additionally, second-order
lattices are shown to achieve near-ideal linear scaling with relative density for the
given geometric configurations.

Figure 3.17: Second-order octahedron of octahedra half-cell lattice colored by
displacement. The displayed deformed state of this linear perturbation analysis is
magnified by a factor of 1000.
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(a) Polymer lattices

(b) Alumina coated polymer lattices
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(c) Hollow alumina lattices

Figure 3.18: Comparison of structural stiffness values of second-order hierarchical
lattice, half-cell truss and refined models against experiments, where stiffness is
defined as the force necessary to deform the structure by a unit displacement.
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Figure 3.19: Comparison of the effective material stiffness of first-, second-, and
third-order lattices. First-order data comes from (Meza, Das, et al., 2014).
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3.4.1 Geometric imperfections
As with any manufacturing process, and additive manufacturing is no exception,
the parts produced are susceptible to imperfections. Shown below in Figs. 3.20a
and 3.20b are two possible types of geometric imperfections from two different
manufacturing processes. The first, shown in Fig. 3.20a and referred to as stepping,
is due to individual layers being printed with low resolution compared to the size
of the lattice member being printed. The second imperfection, shown in Fig. 3.20b,
present in two-photon lithography is due to external vibration of the Nanoscribe.
Both of these geometric imperfections could be mitigated by considering a larger
lattice structure such that layers and vibration amplitudes are sufficiently small
compared to the lattice members. However, if this is not an option, one must
consider how such imperfections will affect the printed lattice.

Picking one of the two types of geometric imperfection, the following is a finite
element study focusing specifically on how the waviness of a lattice member affects
the axial stiffness of the member. Fig. 3.22 shows the parameterization of a single-
wavelength, solid beam with length L, diameter D, and waviness described by a
sinusoidal shape of the beam’s neutral axis with amplitude a, subjected to periodic
boundary conditions on faces A and B. The effect of two ratios, length to diameter
L/D and waviness amplitude to diameter a/D, are studied and shown in Fig. 3.22.

(a) Stepping defect present in micro lattices. Reprinted from
(Rayneau-Kirkhope, Mao, Farr, and Segal, 2012) with permission
from copyright holder, Elsevier.
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(b) Lattice member waviness and stepping present in nano lattices.
Image courtesy of Lucas Meza from Prof. Julia R. Greer’s group at
Caltech.

Figure 3.20: Two possible geometric imperfections in additively manufactured
lattices: stepping and waviness.

a

L

D

A B

Figure 3.21: Parameterization of a single-wavelength wavy beam characterized by
a sinusoidal shape of the beam’s neutral axis with amplitude a.

The axial stiffness of the wavy beam is normalized by the stiffness of the equivalent-
length-and-diameter straight beam, providing the fraction of stiffness retained. The
amplitude-to-diameter ratio is shown to have a significantly larger effect on stiffness
reduction than the length to diameter ratio. If we take dimensions from the example
shown in Fig. 3.20b, the length of the beam is 6.37 µm, its diameter is 540 nm,
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Figure 3.22: Study of the effect of waviness on the axial stiffness of a lattice member.
The axial stiffness of a solid, circular cross-section wavy beam Kw normalized by
the stiffness of an equivalent diameter straight beam Ks. Different ratios of length
to diameter and waviness amplitude to diameter are explored.

and the waviness amplitude is estimated to be 40 nm, therefore L/D ≈ 12 and
a/D ≈ 0.075. Upon re-examination of Fig. 3.22 it becomes apparent that this
decreases the stiffness by at most 5%. However, if the lattice member of the same
length, diameter, and waviness amplitude is a polymer coated by a stiffer ceramic
or a hollow ceramic shell one could observe stiffness decreases on the order of 30%
and 70%, respectively (Meza, Zelhofer, et al., 2015).

3.5 Summary
Hierarchical structures, both natural and man-made, have been shown to improve
mass utilization in terms of stiffness and strength. Building structures such as the
Eiffel tower and Garabit Viaduct make use of multiple length scales to achieve mass-
efficient structures on the meter scale. This same idea is applied on smaller scales
to nanoscale lattice materials. Theoretical predictions have shown increasing levels
of hierarchy can reduce material use while supporting the same load. In an effort
to explore the effect of hierarchy, a computational methodology has been developed
and applied to nanoscale hierarchical materials.
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Modeling hierarchical lattices requires thousands to millions of truss members
while simultaneously accounting for all deformation modes. To this end, two
strategies were developed to model lattice materials: the truss method and high-
fidelity method. The truss method used the simplest and least computationally
expensive of elements supporting only axial loads, the bar element. These elements
connect exactly at member junctions and are unable to account for the added stiffness
or compliance of the node. In comparison, the more geometrically accurate and
predictive high-fidelity method uses higher-order elements coupled with the model-
reduction technique static condensation. This reduction technique is necessary to
reduce the number of computational floating point operations to a manageable level,
sometimes as much as by 1010 operations.

Finite element simulations show hierarchical lattices are capable of near-ideal
stretching-dominated scaling at relative densities as low as 10−4 for the geomet-
ric parameters tested. Geometric imperfections in the form of waviness are shown
to have a potentially large impact on the effective stiffness of a lattice material de-
pending on the amplitude of the waviness and length-to-diameter ratio of the lattice
member.
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C h a p t e r 4

BEAMING IN STRUCTURAL LATTICES

If you want to find the secrets of the universe, think in terms of energy,
frequency and vibration.
—- Nikola Tesla

The contents of this chapter is an expansion of work presented in:

Alex J. Zelhofer and Dennis M. Kochmann (2017). “On acoustic wave beaming
in two-dimensional structural lattices”. In: International Journal of Solids and
Structures 115, pp. 248–269

4.1 Introduction
The analysis of wave motion in periodic systems can be traced back to Rayleigh’s
studies of string vibration (1887) and Brillouin’s analysis on lattice vibrations (Bril-
louin, 1953). Subsequently, analyses expanded to periodic mechanical structures
(Abrahamson, 1973; Mead, 1973), composite materials (Sun et al., 1968; Nemat-
Nasser, 1972; Z. Liu et al., 2002; Sigmund and Jensen, 2003; Mace and Manconi,
2008), phononic crystals (Economou and M. M. Sigalas, 1992; M. Sigalas and
Economou, 1993; Kushwaha and Halevi, 1994; Vasseur et al., 1994; Kushwaha,
1996) and acoustic metamaterials (Z. Liu, 2000), with applications ranging from
aircraft structures (Manconi andMace, 2009) and turbines (Ewins, 1973; Griffin and
Hoosac, 1984; Ottarsson et al., 1997) to cellular materials (Deshpande and Fleck,
2000; Akil Hazizan and Cantwell, 2002; Fleck and Deshpande, 2004) or even at
scales of buildings and bridges (Talbot and Hunt, 2003; Boa et al., 2012; Brun
et al., 2013). As one can see specific arrangement of periodic building blocks in
discrete geometries gives rise to the controllable dispersion of linear waves and the
associated frequency- and direction-dependent wave attenuation and wave guiding.

Numerous methods study linear wave motion in periodic structures, starting with
Hamiltonian systems such as spring-mass configurations (Brillouin, 1953) and one-
dimensional beams (Cremer and Leilich, 1953). Further techniques developed
afterwards include the receptance methods (Mead, 1970; Mead, 1975), direct solu-
tion of the differential equations of motion (Mead, 1971b), transfer matrix methods
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(Lin andMcDaniel, 1969; Faulkner and Hong, 1985), energy methods (Mead, 1973;
Mead and Mallik, 1976; Mead and Parthan, 1979; Abdel-Rahman and Petyt, 1980),
and space-harmonic analysis (Mead, 1971a). One of the first applications of fi-
nite element (FE) analysis was by Orris and Petyt, 1974 studying wave motion in
one-dimensional beams and rib-skin structures.

From the diverse field of linear wave dispersion, focus is placed on wave beam-
ing (i.e., directional energy flow) in unconstrained structural lattices as acoustic
metamaterials generated using periodic tessellation of a single representative unit
cell (RUC) composed of linear elastic beams. Lattice materials have attracted at-
tention in recent years, owing to the enhanced additive manufacturing capabilities
and ability to control effective, macroscopic metamaterial properties by microscale
architecture. Examples include trusses with high stiffness and strength (Meza, Zel-
hofer, et al., 2015), improved energy absorption (Shan et al., 2015; Meza, Das,
et al., 2014) or even mechanically superior cellular solids (Torquato et al., 1998;
Gibson and Ashby, 1988; Christensen, 2000; Evans et al., 2001; Wadley et al., 2003;
Wadley, 2006; Hutchinson and Fleck, 2006; Fleck, Deshpande, and Ashby, 2010).
Structural lattices also admit elastic stress wave control and continue to be of topical
interest for wave guiding, see, e.g. Zimmerman (2003) and Hussein et al. (2014).

When mechanically excited, structural lattices exhibit frequency dispersion due
to frequency-dependent phase and group velocities. The interference of waves
promotes frequency-dependent wave attenuation, referred to as stop-bands. Full
stop-bands (i.e., direction-independent wave attenuation) have been prominently
achieved through concepts of local resonance, see, e.g. (Martinsson and Movchan,
2002; Yu, Y. Liu, G. Wang, Cai, et al., 2006; Yu, Y. Liu, G. Wang, Zhao, et al.,
2006; Y. Liu et al., 2007; L. Liu and Hussein, 2012; Krödel et al., 2013; P. Wang
et al., 2015), while partial (i.e., directional) stop-bands and wave beaming have most
commonly been created by specific structural architecture (Ruzzene, Scarpa, and
Soranna, 2003).

Beaming of out-of-plane wave motion in two-dimensional (2D) structures was prob-
ably first studied byLangley, 1994 for a periodic plate assembly, followed by analyses
of 2D rectangular grids of beams under harmonic forcing (Langley, 1996; Langley,
1997a) and impulse loading (Langley, 1997b). Since then, wave guiding has been
investigated in various 2D and 3D lattices. In 2D, beaming can be associated with
in-plane or out-of-plane wave propagation, or both. Prominent in-plane studies have
focused on auxetic and non-auxetic hexagonal lattices (Gonella and Ruzzene, 2008b;
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Gonella and Ruzzene, 2008c), kagome lattices (Niu and B. Wang, 2016), chiral lat-
tices (Spadoni et al., 2009), and the topological transition from truss-like unit cells to
continuum (meta)materials (Casadei andRimoli, 2013). Out-of-plane investigations
studied plates with truss-like cores (Kohrs and Petersson, 2009), honeycomb-filled
composites (Ruzzene, Mazzarella, et al., 2002), auxetic and non-auxetic hexago-
nal lattices (Ruzzene, Scarpa, and Soranna, 2003), chiral honeycombs (Tee et al.,
2010), and cross-braced rectangular lattices (Jeong and Ruzzene, 2004; Jeong and
Ruzzene, 2005). Owing to the considerably lower associated stiffness, out-of-plane
motion occurs generally at lower frequencies, comes with larger amplitudes for a
given excitation, and is easier to excite. Besides, most technological applications of
2D structural lattices (such as for impact protection (Qiao et al., 2008) or acoustic
insulation (Z. Liu, 2000)) emphasize out-of-plane deformation modes.

Here, focus is placed on out-of-plane wave motion in 2D periodic lattices with the
goal of predicting architecture- and frequency-dependent beaming. This is com-
monly accomplished by either direct numerical simulations (integrating the equa-
tions of motion over time) or by indirect methods predicting the complete effective
dynamic response. The former is straight-forward but, prohibitively computation-
ally expensive, which is why it is commonly used for verifying beaming predictions
rather than predicting the complex lattice response. The latter is challenging because
the response of an infinite structure must be approximated, e.g. by the plane wave
expansion method, finite difference methods, or the multiple scattering method, see,
e.g. (Hussein et al., 2014) for an overview, or by the finite element (FE) method by
assuming Bloch-type plane waves and computing the dispersion relations (Orris and
Petyt, 1974; Aberg, 1997; Phani et al., 2006). Although popular in the community,
dispersion relations reveal only limited information when it comes to directional
energy transport, especially when a specific path in the irreducible Brillouin zone is
investigated, as was shown by Jeong and Ruzzene (2004). Therefore, prior studies
resorted to phase constant surfaces (Langley, 1994) and specifically predicted wave
motion based on the lowest surface(s), see, e.g. (Ruzzene, Scarpa, and Soranna,
2003; Ruzzene and Scarpa, 2005; Wen et al., 2008; Gonella and Ruzzene, 2008a).
In the following a new visualization technique is established to highlight directional
wave attenuation across surfaces and frequency ranges providing the accurate pre-
diction of directional stop-bands and wave beaming. The methodology is applied
to 2D periodic lattices of three different fundamental unit cells, and comparison are
made between beaming predictions based on dispersion relations to direct dynamic
calculations. In both cases, the finite element method is used along with linear
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elastic Euler-Bernoulli beam theory to describe the response of truss lattices.

The remainder of this chapter is structured as follows, Section 4.2 briefly summarizes
the underlying theory of linear wave motion, followed by a description of the
numerical implementation used and the specific lattice geometries investigated here
in Sections 4.3 and 4.4, respectively. Results are presented in Section 4.5, and
Section 4.7 summarizes the findings.

4.2 Theory of linear wave motion
A brief review of the theory of wave dispersion in periodic media is provided. The
methodology presented here was first developed for harmonic lattices (Brillouin,
1953) and has been applied successfully to general periodic media. For a given
RUC we seek the dispersion relation and determine beaming in infinite lattices
via the gradient of each dispersion relation surface also known as phase constant
surface.

4.2.1 Wave propagation in periodic media
Due to the separable, linear form of linear momentum balance, wave propagation
in a linear elastic lattice Ω ⊂ Rd is based on a time-harmonic displacement field of
the form

um(r, t) = Um(r) exp (−iωt) , (4.1)

where Um : Ω → Cd+1 is a generally complex-valued amplitude field in d + 1
dimensions, ω ∈ R is the wave frequency, t denotes time and r position (note that
the actual solution is the real part of (4.1), which is implied in the following). By
exploiting the spatial periodicity of a lattice, described by a set of d Bravais basis
vectors {e1, . . . , ed} (which are not necessarily orthogonal), we employ Bloch’s
theorem (Brillouin, 1953) which uniquely links the motion of any point in the lattice
to the motion in a representative unit cell (RUC) by

Um(r) = Um
(
rRUC(r)

)
exp

[
ik ·

(
r − rRUC(r)

) ]
= Um

(
rRUC(r)

)
exp

[
ik ·

d∑
α=1

nαeα

]
(4.2)

with wave vector k = kRe + ik Im ∈ Cd , where kRe ∈ Rd and k Im ∈ Rd represent,
respectively, the attenuation and phase constants. Each position r is linked to a
unique point rRUC(r) in the RUC by the notion of periodicity,

r − rRUC =
d∑
α=1

nαeα (4.3)
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with integers {n1, . . . , nd}.

When considering linear elastic lattices, we assume no material-inherent losses so
that the attenuation constant vanishes. That is, waves travel without decay, implying
k = ik Im. Hence, the displacement field at any point in the lattice is described by
the RUC via

um(r, t) = Um
(
rRUC(r)

)
exp

[
i

(
k Im ·

d∑
α=1

nαeα − ωt

)]
. (4.4)

as illustrated in Fig. 4.1.
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Figure 4.1: Linking wave motion in the entire lattice to the RUC

To predict wave motion, the above displacement field is inserted into the dynamic
linear momentum balance equation,

divσ = ρ Üu, (4.5)

with infinitesimal stress tensorσ and acceleration Üu (dots denoting time derivatives);
note that time-invariant body forces do not affect wave motion. Now, one solves for
the dispersion relation between wave vector k and frequency ω. As described in
Section 4.3, one solves forω = ω(k) numerically by prescribing wave vectors k and
solving for the associated frequencies ω. By inspection of Eq. (4.2), one restricts
the set of wave vectors to be investigated to within the first Brillouin zone (FBZ).
That is, one chooses k such that

k Im · (n1e1 + n2e2) ∈ (−π, π) (4.6)
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In reciprocal lattice space (with reciprocal lattice vectors {e∗1, . . . , e
∗
d}), this corre-

sponds to the Wigner-Seitz unit cell obtained as the convex domain delimited by
Voronoi tessellation in the reciprocal lattice; see Fig. 4.5 for three example RUCs
and associated FBZs to be discussed later.

Specifically, in 2D the FBZ is defined in reciprocal space by the set of wave vectors
k Im bounded by

ζ (α, β)k Im ≤ π where ζ (n1, n2) =
2(n1e

∗
1 + n2e

∗
2)

| |(n1e
∗
1 + n2e

∗
2)| |2

(4.7)

where the wave vectors are calculated as

e∗1 =
−Re2
e1 · Re2

, e∗2 =
Re1

e2 · Re1
, R =

[
0 −1
1 0

]
(4.8)

and (α, β) denotes all permutations {α, β} ∈ {−1, 0, 1}.

From the dispersion relations, one obtains the phase velocity (which indicates how
fast the wave travels in a direction k):

vp(k) =
(
ω(k)
kIm1

,
ω(k)
kIm2

)T

. (4.9)

Physically, this represents the velocity of the peak or trough of a single-frequency
signal. By contrast, the group velocity

vg(k) =
(
∂ω(k)
∂kIm1

,
∂ω(k)
∂kIm2

)T

(4.10)

indicates the direction and speed of the wave packet (i.e., this is the speed and
direction of the propagating mechanical information). The direction of the group
velocity equals the direction of energy flow (Langley, 1994), so that one associates
wave beaming primarily with the group velocity. Admittedly this definition is not
necessarily unique and experimental realizations often use alternative (measurable)
metrics such as, e.g. maximum displacement or velocity amplitudes (Langley,
1997a; Jeong andRuzzene, 2005). It is shown that bothmetrics produce qualitatively
equivalent results by comparing beaming predictions (obtained from directional
group velocity analysis to time-resolved wave propagation obtained via transient
numerical calculations. For convenience a normalized group velocity is defined as

v̄g =
| |vg | |

c
, with c =

√
E
ρ

(4.11)



56

the bar sound speed of the base material having Young’s modulus E and mass
density ρ.

By exploiting the symmetry of the FBZ, one further reduces the set of wave vectors
to be analyzed to the irreducible Brillouin zone (IBZ). To recover the full lattice
response, results are mapped from the IBZ to the FBZ by exploiting in particular
that

vg =


vg − 2(vg · m)m for reflectional symmetry,

−vg for two-fold rotational symmetry,
(4.12)

where m is a unit normal to any line of symmetry.

Based on the above definitions, a distinction is made for a given excitation frequency
between

• pass-bands (a group velocity exists in all directions; i.e., waves propagate in
all directions)

• directional stop-bands (a group velocity exists in only some directions; i.e.,
waves only propagate in certain directions)

• complete stop-bands (no group velocity exists for the chosen frequency in any
direction; i.e., waves do not propagate in any direction).

4.3 Numerical implementation
4.3.1 Eigenvalue Problem
Lattice mechanics are described via linear elastic beam theory for infinitesimal dis-
placements and rotations in an FE-discretized setting1. Although planar lattices are
studies, wave motion involves 3D deformation and obeys the discretized governing
equation

M ÜU + KU = F (4.13)

with global consistent mass matrix M and stiffness matrix K , and global displace-
ment and external force vectors U and F, respectively. Assuming time-harmonic
displacements

U(t) = Û exp(iωt) (4.14)
1For exclusively this chapter, Abaqus simulations use B32 elements with quadratic interpolation.

Meshes are shown in 4.5.1
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and forces
F(t) = F̂ exp(iωt), (4.15)

one arrives at
(K − ω2M)Û = F̂ (4.16)

For application in software or libraries with only real valued matrices and methods,
the complex-valued problem is separated into real and imaginary parts following
Aberg (1997), i.e.,

(K − ω2M)ÛRe
= F̂

Re
, (K − ω2M)Û Im

= F̂
Im
. (4.17)

To separate displacements of internal nodes U i, master boundary nodes Um, and
slave boundary nodes Us, we introduce a permutation matrix A (with ATA = I )
and boundary condition matrix Q such that

AU =


U i

Um

Us

 and



URe
i

URe
m

URe
s

U Im
i

U Im
m

U Im
s


= Q(k)


URe

i
URe

m

U Im
i

U Im
m


. (4.18)

Q depends on wave vector k and relates the displacements of master and slave
boundary nodes according to the Bloch wave assumption (4.2) and illustrated in
Fig. 4.2.

Analogously, we obtain the vector of internal and external forces by application of
QT, so that we overall arrive at

QT(k)
([
K 0
0 K

]
− ω2

[
M 0
0 M

]) [
AT 0
0 AT

]
Q(k)


Û

Re
i

Û
Re
m

Û
Im
i

Û
Im
m


=


F̂

Re
i

F̂
Re
m

F̂
Im
i

F̂
Im
m


. (4.19)

For wave propagation starting from the undeformed ground state the right-hand side
vanishes therefore providing the form

QT(k)
([
K 0
0 K

]
− ω2

[
M 0
0 M

]) [
AT 0
0 AT

]
Q(k)


Û

Re
i

Û
Re
m

Û
Im
i

Û
Im
m


= 0 (4.20)
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Figure 4.2: Master and slave boundary conditions on RUC

that the real and imaginary systems of equations are coupled through Q, which is
enforced numerically by introducing kinematic constraints between the two eigen-
value problems to be solved simultaneously for the finite set of frequencies ω(k Im)
(one per degree of freedom in the discrete representation of the IBZ). Depending
on the eigenvalue extraction method, all or a subset can be calculated. Here, the
lowest few eigenfrequencies will be of relevance, for reference Abaqus’ multi-level
substructuring (AMS) eigensolver (due to increased performance compared to the
Lanczos method) was used to identify the frequencies of interest.

For ease of comparison, all examples will report the normalized frequency and wave
vector, respectively,

f̄ =
ωL
2πc

, k̄ = Lk Im, (4.21)

where L is a characteristic length of the unit cell, c the wave speed.

4.3.2 Mode identification
During vibrational wavemotion, lattice members in 2D lattices undergo longitudinal
and flexural motion both within and out of the plane spanned by the lattice, leading
to the manifestation of in-plane and out-of-plane wave modes.

To differentiate between those macroscopic vibrational modes in the dispersion rela-
tions, one categorizes mode shapes as in-plane vs. out-of-plane as follows. Starting
with an eigenvector Û (defined up to a constant), we apply mass normalization, i.e.,

Φ = Û/Û · MÛ (4.22)
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and further introduce projection matrices P1, P2 and P3 such that

φi = PiΦ (4.23)

contains only the displacement components in the xi-coordinate direction. The
coordinate system is chosen such that the lattice lies in the (x1, x2)-plane, while
x3 is perpendicular to the lattice plane. Based on the above, we define mass-
weighted directional contributions pi related to the associated kinetic energy via (no
summation convention implied)

pi = φi · Mφi . (4.24)

To differentiate between in-plane and out-of-plane modes, we calculate a scalar
in-plane ratio

β =

√
p2

1 + p2
2√

p2
1 + p2

2 + p2
3

, ⇒ β ≈


1 for in-plane modes,

0 for out-of-plane modes.
(4.25)

and 0 ≤ β ≤ 1.

4.3.3 Explicit Dynamic Analysis
Directional wave beaming has been predicted or verified in the literature by two
types of simulations: modal techniques (Langley, 1997a; Ruzzene, Mazzarella, et
al., 2002; Ruzzene, Scarpa, and Soranna, 2003) and direct time integration (Casadei
and Rimoli, 2013). In order to validate predictions in subsequent sections – while
avoiding further approximations or assumptions introduced by modal analysis and
necessary boundary conditions – example studies by direct numerical simulations
using explicit central-difference time integration (for efficiency, lumped mass ma-
trices are used for transient calculations) are provided. Analysis was performed
without material damping nor FE truncation frequency damping, so that only traces
of numerical damping from the finite difference scheme may be expected. To ex-
cite wave motion, displacements instead of forces are imposed to reduce numerical
artifacts, see 4.6. Time-harmonic out-of-plane displacements are imposed at the
center-most node of the simulated lattice according to

u3(t) = û sin(2π f t) (4.26)

with frequency f and (arbitrary) amplitude û. Explicit time stepping uses sufficiently
small time steps for stability and is terminated before the wave arrives at any lattice
boundary.
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Figure 4.3: Three example lattices studied in the following with characteristic beam
length L and (a) stretch ratio γ, (b) shear angle θ, and (c) honeycomb vs. re-entrant
control angle θ.

4.4 Example lattices architectures
The phenomena associated with wave beaming by the help of three example lattice
architectures defined by the rectangular, sheared, and hexagonal RUCs depicted in
Fig. 4.3 is demonstrated and explained. Each lattice type was chosen to study the
impact of fundamental geometric features on wave propagation. First, rectangular
lattices highlight the effect of unit cell aspect ratio γ, furthering the understanding
of the vibration of beam grillages (Heckl, 1964; Langley, 1996; Langley, 1997a;
Langley, 1997b). Second, the effect of asymmetry in a sheared square lattice
(parametrized by the shear angle θ while fixing all beam lengths) is studied. Third,
focus is placed on the transition from regular hexagonal to re-entrant unit cells
(characterized by the internal angle θ). This scenario was extensively studied
before (Ruzzene, Mazzarella, et al., 2002; Phani et al., 2006; Gonella and Ruzzene,
2008b; Gonella and Ruzzene, 2008a). While varying the aforementioned geometric
parameters, we maintain a constant cross-section of all beams in the lattice.

For consistency, all lattice members have a constant, circular cross-section described
by the slenderness ratio λ = L/D where D is the diameter of the circular cross-
section (λ = 10 in numerical examples).

The three lattice architectures are described by the RUCs of Fig. 4.4 with lattice
vectors ei detailed in Table 4.1 along with the reciprocal lattice vectors. We reduce
the wave vector domain to the IBZ by observing the geometric symmetries (two-
fold reflectional symmetry for rectangular and hexagonal lattices, and a rotational
symmetry for the sheared lattice), which results in the IBZs of Fig. 4.5.
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(b) Sheared unit cell with shear angle θ = 60◦.

-1 0 1

x1/L

-1.5

-1

-0.5

0

0.5

1

1.5

x
2
/
L

(c) Hexagonal unit cell with interior angle θ =
120◦.

Figure 4.4: Example RUCs including master (rm) and slave (r s) nodes of the
boundary (all lengths normalized by L).
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Table 4.1: Lattice architectures studied in the following along with physical and
reciprocal lattice base vectors with (x1, x2) denoting the Cartesian unit vectors in
the lattice plane.

RUC Physical lattice Reciprocal lattice Configurations analyzed
Rectangular e1 = Lx1 e∗1 =

1
Lγ x2 γ ∈ {1.00, 1.25, 1.50,

e2 = γLx2 e∗2 =
1
L x1 1.75, 2.00}

Sheared e1 = Lx1 e∗1 =
1

2L sin θ x2 θ ∈ {30◦, 45◦, 60◦, 90◦}
e2 = 2L sin θx2 e∗2 =

1
L x1

Hexagonal e1 = 2L(1 − cos θ)x1 e∗1 =
1

2L sin θ x2 θ ∈ {60◦, 70◦, 80◦, 90◦,
e2 = 2L sin θx2 e∗2 =

1
2L(1−cos θ) x1 100◦, 110◦, 120◦}
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(a) Rectangular unit cell with aspect ratio γ = 1.5.

(b) Sheared unit cell with shear angle θ = 60◦.

(c) Hexagonal unit cell with interior angle θ = 120◦.

Figure 4.5: Wave vector parametrization showing FBZ and IBZ in reciprocal space
(the RUC is centered at the origin). Black dots indicate centers of neighboring unit
cells, gray and red regions jointly make up the FBZ, red regions indicate the IBZs.
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4.4.1 Mode identification and group velocity determination
To determine vibrational energy flow for a given lattice, one first identifies in-plane
and out-of-plane vibrational modes by the three directional contributions pi, as
shown in Fig. 4.6a for a rectangular lattice (γ = 1.5). Color-coding the lowest
few dispersion surfaces by the in-plane ratio β of Eq. (4.25) reveals in-plane and
out-of-plane modes as shown in Fig. 4.6b. For clarity, the first three in-plane and
out-of-plane surfaces are shown in Figs. 4.6c through 4.6h. In the following only
the first two out-of-plane dispersion surfaces, shown in Fig. 4.6i, will be focused on.
For confirmation of in-plane and out-of-plane modes, Fig. 4.7 illustrates the lowest
four mode shapes for k = (π, 0)T along with their respective β-values.

In order to predict directional wave propagation for a given lattice architecture,
one analyzes the group velocity (as a metric of vibrational energy flow) associated
with all directions and excitation frequencies of interest. The group velocity is
defined by the gradient of the dispersion surfaces, and this causes a methodological
dilemma. Ideally, one would determine whether or not for a particular direction
group velocities exist over a range of frequencies. However, practical limitations
force as to compute the dispersion relations directly and extract the group velocities
from the latter (thus, one is unable to control the group velocity direction, it is
merely an outcome of dispersion surface calculations). Moreover, proving the
(non)existence of a finite group velocity in a particular direction requires computing
the group velocity at each and every point on the dispersion surfaces of interest.
However, the dispersion relation is computed numerically by sampling in k-space.
Thus, the computation of the gradient not only introduces numerical errors but
is also limited by the sampling resolution (high resolutions of points in k-space
implying high computational costs).

A traditional way to evaluate the direction of the gradient is the use of iso-frequency
contour plots of the dispersion surfaces (Langley, 1997a), see, e.g. Figs. 4.8a and
4.8b which represent the lowest two surfaces of a hexagonal lattice with θ = 120◦.
The group velocity direction is hence perpendicular to the iso-frequency contours,
and its magnitude is related to the proximity of two consecutive lines. Even though
they are easily obtained, such plots do not precisely reveal group velocity direction
and magnitude.

Fitting continuous functions to the iso-frequency contours (Ruzzene, Scarpa, and
Soranna, 2003) in Figs. 4.8a and 4.8b allows one to analytically calculate the group
velocity direction by differentiation, which results in Figs. 4.9a and 4.9b. Note that
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these plots are no longer in k-space but show the group velocity direction (from
0− 90◦ in the IBZ) as a function of frequency. This clearly elucidates the directions
of unattenuated wave propagation. However, results in Fig. 4.9 crucially depend
on the discrete choice of iso-frequency contours. Furthermore, one can observe an
obvious overlap in frequency bands between the first and second surfaces. Hence,
except at very low frequencies, it is not suitable to only consider individual surfaces
(Langley, 1997a). Instead, this work will consider all out-of-plane surfaces existing
in a frequency band of interest.
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Figure 4.6: Dispersion surfaces and mode identification for the rectangular lattice
(shown for γ = 1.5, all lengths normalized by L).

Fig. 4.10 introduces our improvedmethodology to analyze directional group velocity
distributions. For these (and all other) examples, the dispersion relation is calculated
on an equally-spaced reciprocal grid of 25 × 25 points within the IBZ in k-space.
Subsequently, dispersion surfaces are interpolated via cubic splines (rather than
interpolating iso-frequency lines) whose differentiation results in the group velocity
now available continuously at every point in k-space. This results in continuous
maps of the group velocity magnitude as shown in Fig. 4.10 for the lowest two
out-of-plane surfaces. Directional or complete stop-bands, if any, appear in these
plots as white space.

Fig. 4.11a shows the superposition of the lowest two out-of-plane surfaces of
Fig. 4.10, thus providing a complete picture of the group velocity in the frequency
range f̄ = 0 − 1.20 · 10−2. By exploiting the aforementioned symmetries, one can
reconstruct the full 360◦ group velocity distribution shown in Fig. 4.11b. Results
confirm the six-fold symmetry that may be expected for the hexagonal lattice. Al-
though no significant stop-bands appear, wave beaming appears most pronounced
for frequencies near f̄ = 1 − 1.2 · 10−2. Notice that beaming would have been
entirely missed (or even misinterpreted) if only the lowest out-of-plane had been
considered. Also, beaming in this frequency range could not have been predicted
merely by means of band gaps in the dispersion relations.
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Figure 4.7: Mode shapes for the four lowest frequencies in order of increasing
frequency at k = (π, 0)T for the rectangular lattice (shown are the real parts of the
eigenvectors for γ = 1.5).
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Figure 4.8: Out-of-plane dispersion surfaces of the IBZ of a hexagonal lattice (with
θ = 120◦) showing contour lines of constant frequency.

4.5 Results: controlling wave motion by lattice architecture
In the following, the validity of the above procedures to identify beaming and
elucidate opportunities for directional propagation of out-of-plane wave motion in
2D lattices is demonstrated. To this end, the following strategy to examples of
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Figure 4.9: Frequency-dependent group velocity directions in the IBZ calculated
via differentiating splines fitted to the iso-frequency contour lines of the lowest two
out-of-plane dispersion surfaces of Fig. 4.8.

(a) First dispersion surface (b) Second dispersion surface

Figure 4.10: Group velocity magnitude and direction in the IBZ of a hexagonal
lattice (θ = 120◦). Dotted black lines indicate the minimum frequency of the next
higher surface.

rectangular, sheared, and hexagonal lattices is applied:

• Mode identification: this work identifies in-plane vs. out-of-plane vibrational
modes in the dispersion relation by using the definitions of Section 4.3.2.

• Group velocity analysis: the new group velocity visualization tools of Sec-
tion 4.4.1 are applied to predict directionality as a function of the RUC geom-
etry. All group velocity plots use the compact IBZ representation; full angular
information can be obtained by symmetry. For reference, plots also include
the natural frequencies of individual constituent beams with pinned-pinned
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(a) Compact representation

(b) Full representation

Figure 4.11: Group velocity magnitude and direction from the lowest two out-of-
plane dispersion surfaces superimposed for a hexagonal lattice (θ = 120◦). Dotted
black lines indicate the minimum frequency of the third (not considered) surface.
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and fixed-fixed boundary conditions, respectively:

fpp =
π2

2πl2

√
EI
ρA
, f f f =

22.4
2πl2

√
EI
ρA

. (4.27)

Note that this work include the lowest frequency of the next higher (not
considered) dispersion surface as a dotted line in all plots to ensure that no
higher surface can influence the results in the shown frequency ranges.

• Transient simulations: theoretical group velocity predictions are validated by
comparison to transient simulation results, providing insight into the limita-
tions of information extracted from dispersion relations.

4.5.1 Finite element meshes
Fig. 4.12 illustrates the discrete FE meshes (shown are the FE nodes) used to
compute the dispersion relations for rectangular meshes with different aspect ratios.
Similarly, Figs. 4.13 and 4.14 show the meshes used for sheared and hexagonal
meshes, respectively. The total number of elements per length L for each mesh is
approximately 30, 30, and 15 in rectangular, sheared, and hexagonal geometries,
respectively.
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Figure 4.12: FE discretizations of rectangular RUCs having different aspect ratios
γ.
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Figure 4.13: FE discretizations of sheared RUCs having different shear angels θ.
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Figure 4.14: FE discretizations of hexagonal RUCs having different interior angels
θ.
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4.6 Impact of force vs. displacement excitation
Previously conducted transient analyses of wave motion have primarily used an
externally applied force as opposed to a displacement boundary condition for lattice
excitation. Fig. (4.15) shows the temporal and frequency responses at the two
measurement points in the rectangular lattice (γ = 1.5) for the two different boundary
conditions. As a primary difference between the two types of excitation, we observe
that harmonic force excitation produces substantial low-frequency noise and a longer
transient time period as compared to harmonic displacement excitation. This is an
important observation and explains why displacements have been enforced here.
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Figure 4.15: Comparison of the transient dynamic lattice response to externally
applied harmonic forces and displacements.

4.6.1 Rectangular lattice
Thisworkfirst revisits the fundamental case of the rectangular lattice, which serves as
an ideal example demonstrating partial stop-bands. Group velocity distributions are
shown in Fig. 4.16, illustrating the effect of different RUC aspect ratios γ visualized
in Fig. 4.16f. The first two out-of-plane dispersion surfaces are considered, and they
clearly illustrate the effect of geometry on directional band gaps and beaming.

Stop-bands have been associated with local resonance. Thus, as expected from
the resonance frequencies of individual beams, the lowest-frequency directional
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Figure 4.16: Group velocity direction and magnitude of out-of-plane motion in
rectangular lattices of different aspect ratios γ, showing the two lowest out-of-plane
frequency surfaces with a black dashed line showing the lowest frequency of the
third surface. Solid and open triangles denote resonance frequencies of constituent
pinned-pinned and fixed-fixed beams, respectively. When applicable, resonance
frequencies of beams aligned with the x1- and x2-directions are shown as fxi:pp or
fxi: f f .

stop-band for γ > 1 indeed appears centered around the x2-direction, followed
by a higher-frequency band centered around the x1-direction. As suggested by
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P. Wang et al., 2015 due the low coordination number of the rectangular lattice,
the observed directional stop-bands could be due to local resonance and, if so,
the stop-band should begin at the resonant frequency of a pinned-pinned beam.
However, our direct comparison in Fig. 4.16f shows that resonance frequencies do not
match consistentlywith directional stop-band frequencies in each direction, therefore
suggesting directional stop-bands in the rectangular lattice are not necessarily linked
to local resonance.

Increasing the aspect ratio from γ = 1.25, both the lower- and higher-frequency
directional stop-bands shift to lower frequencies peaking in absolute bandwidth at
γ = 1.5 within the parameter range tested. Furthermore, the angular widths of the
lower and higher directional stop-bands decrease from 90◦ ± 45◦ and 0◦ ± 75◦ to
90◦ ± 30◦ and 0◦ ± 60◦, respectively.

λ f̄fixed-fixed (×10−2) f̄pin-pin (×10−2)
1.00 8.90 3.93
1.25 5.70 2.51
1.50 3.95 1.75
1.75 2.91 1.28
2.00 2.22 0.98

Table 4.2: Normalized eigenfrequencies f̄ = f L
c of an individual pin-pin or fixed-

fixed beam of increasing slenderness λ = l/D and circular cross section.

4.6.2 Sheared lattice
As a variation of the rectangular lattice with reduced symmetry, this work proceeds
to explore the effect of shearing a square lattice while keeping all member lengths
constant. Group velocity distributions for four different shear angles are shown in
Fig. 4.17 with RUC geometries depicted in Fig. 4.17e. Focusing on the frequency
range f̄ = 0 – 4.00 · 10−2, one can observe the development of a stop-band at
approximately f̄ = 4.00 · 10−2, close to the natural frequency of an individual
pinned-pinned beam. For the shown shear range, the frequency range of the primary
stop-band is largest (and the angular width smallest) for θ = 45◦. Within the two
frequency ranges f̄l ∈ (0, 2·10−2) and f̄h ∈ (2·10−2, 4·10−2), highest group velocities
are detected in the directions corresponding to angles θ and θ/2, respectively.
Specifically, in the lower range, frequencies f̄l beam along the direction of the angled
beams, while in the higher band frequencies f̄h beam at half that angle. In general,
for all tested configurations with θ < 90◦, the group velocity is approximately an
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order of magnitude higher in the θ and θ/2 directions relative to all other directions.

4.6.3 Hexagonal lattice
Hexagonal lattices are popular wave guides due to their interesting geometry-
dependent dispersion relations, see, e.g. Ruzzene, Scarpa, and Soranna, 2003
which focused on only the first dispersion surface. In contrast to prior studies, this
work includes higher surfaces (up to 12), account for overlap between surfaces as
previously deemed necessary, and vary the interior angle from 120◦ (regular hexag-
onal lattice) to 60◦ degrees (regular triangular lattice) while keeping the lengths of
all beams constant. Group velocity distributions are shown in Fig. 4.18 for the seven
RUC configurations sketched in Fig. 4.18h.

Through Figs. 4.18a and 4.18g, this work confirms a prior analogous observation
for in-plane modes (see, e.g. P. Wang et al. (2015)) that regular hexagonal lattices
have no stop-bands while regular triangular lattices have a full stop-band that is
approximately ∆ f̄ = 2.40 · 10−2 wide. The transition between these two regular
geometries opens several x1-centered stop-bands having large angular extensions.
Once the lattice is of re-entrant configuration (i.e., θ < 90) one can observe the
growth of a full stop-band at approximately f̄ = 3.00 · 10−2. For the two extreme
configurations of θ = 120◦ (hexagonal lattice) and θ = 60◦ (triangular lattice), one
confirms the correlation observed by P.Wang et al., 2015, viz. that stop-band features
in lattices with low or high coordination numbers (here, hexagonal or triangular
lattices, respectively) display features marked by the pinned-pinned and fixed-fixed
resonance frequencies, respectively, of individual lattice members. Figs. 4.18a and
4.18g indeed show that those natural frequencies line up with near-zero (θ = 120◦)
or non-existent group velocities (θ = 60◦)).
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of the lattice.

Figure 4.17: Group velocity direction and magnitude of out-of-plane motion in a
sheared lattice of different shear levels (internal angles θ), showing the n lowest out-
of-plane frequency surfaces with a black dashed line showing the lowest frequency
of the n + 1 surface. Closed and open triangles denote resonance frequencies of
individual pinned-pinned and fixed-fixed constituent beams respectively.
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(h) RUC geometries shown as illustrative
primary cell of the lattice.

Figure 4.18: Group velocity direction and magnitude of out-of-plane motion of a
periodic hexagonal lattice of different internal angles θ, showing the n lowest out-
of-plane frequency surfaces with a black dashed line showing the lowest frequency
of the n + 1 surface. Black and white triangles denote resonance frequencies of
constituent sized pin-pin and fixed-fixed beams respectively.
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4.6.4 Validation by transient simulations
To validate the abovemethodology to predict directional stop-bands and wave beam-
ing, this work compares dispersion relation derived results to transient dynamic
simulations of vibrations in rectangular lattices of finite size. This scenario is cho-
sen deliberately to avoid artifacts of periodic boundary conditions or plane-wave
assumptions. Each lattice center is excited harmonically at a chosen frequency in the
out-of-plane direction by applying a time-harmonic essential boundary condition of
the form of Eq. (4.26).

Consider the rectangular lattice with γ = 1.5 whose group velocity distribution was
shown in Fig. (4.16c). Keeping in mind the reflectional symmetries of the lattice,
one observe a directional stop-band centered at f̄ = 1.5 · 10−2 covering the range
of 90 ± 30◦ and a larger directional stop-band at f̄ = 3.5 · 10−2 covering 0 ± 65◦.
Next, a few specific excitation frequencies are chosen to illustrate the directional
variation of the group velocity and explore the dynamic behavior when the lattice
is excited within directional stop-bands. For each frequency, compares are made
between an explicit dynamic simulation as detailed in Section 4.3.3 with magnitude
and direction of group velocities generated from the dispersion surfaces.

For cleaner interpretation of transient simulation results, one performs temporal
Fourier analysis at selected lattice points in the x1- and x2-directions, labeled x(mx1)

and x(mx2), respectively; see Fig. 4.20. FFT analysis was performed for times
t > 3/ fe, allowing displacements to reach an approximately stead-state. Note that
some numerical frequency dispersion of the input signal is expected as the lattice is
initially at rest.

4.6.5 Explicit Dynamics
In general, there are two types of time-update methods, implicit and explicit, to
solve the discrete equations of dynamic motion

M Üu + C Ûu + Ku = f , (4.28)

where M is the mass matrix, C the damping matrix, K the stiffness matrix, and
u, Ûu, Üu are the displacement, velocity, and acceleration vectors, respectively. There
are countless variations of these methods aiming to increase computational perfor-
mance and improve the stability of the solution for a given time step size. The
details and differences of each method are beyond the scope of this work, but the
time-stepping method used in this analysis will be discussed in brief.
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Figure 4.19: First two out-of-plane dispersion surfaces for a rectangular lattice
(γ = 1.5). The dashed black line represents the minimum frequency of the third
surface.

Figure 4.20: Excitation location (blue) and measurement locations (red and black)
in a rectangular lattice (γ = 1.5) made of 81 × 55 RUCs in the x1 × x2-directions.

An explicit update rule is used as it scales well with increasing problem sizes.
The explicit updated rule uses the central difference method to approximate the
accelerations as

Üu = 1
∆t2

(
ut−∆t − 2u + ut+∆

)
(4.29)

and velocity as
Ûu = 1

2∆t

(
ut+∆t − ut−∆t

)
, (4.30)
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knowing our approximation error scales with (∆t)2 and enforcing the need for a
relatively small time step for each update. Substituting both of these approximations
into Eq. (4.29) and solving for the displacements at t + ∆t, one obtains(

1
∆t2 M +

1
2∆t

C

)
ut+∆t = f −

(
K − 2
∆t2 M

)
ut −

(
1
∆t2 M −

1
2∆t

C

)
ut−∆t (4.31)

This method is used primarily with a lumped mass matrix (diagonal entries only).
When neglecting the velocity-dependent damping term, (4.31) no longer requires the
solution of a linear system but simply involves division by the diagonal components
of M for significantly increased method execution speed.

4.6.5.1 Pass-band at f̄ = 10−2

For the excitation frequency f̄ = 10−2 one finds convincing agreement between
explicit dynamic simulation results (Fig. 4.21a) and predicted group velocity direc-
tions (Fig. 4.21b). The group velocity is nearly uniform in all directions, matching
the near-uniform wave front of the dynamic simulation. FFT analysis confirms that
the measurement points primarily experience the excitation frequency with slight
frequency dispersion.

4.6.5.2 Directional stop-band in the x2-Direction at f̄ = 1.50 · 10−2

Exciting the rectangular lattice at f̄ = 1.5 · 10−2, one again finds convincing agree-
ment between dynamic simulations (Fig. 4.22a) and dispersion relation-generated
group velocities (Fig. 4.22b). Waves with higher amplitudes travel primarily in
the x1-direction with the expected angular variance. Two group velocities exist for
several directions, where the larger magnitude of either of the two velocities dictates
the shape of the wave front seen in transient dynamic simulations. The time history
response at x(mx2) (Fig. 4.22c) reveals an amplitude 1/3rd that at x(mx1) consistent
with the expected wave attenuation. According to the FFT analysis (Fig. 4.22d), this
reduction is achieved with minimal frequency dispersion.

4.6.5.3 Directional Stop-Band in x1-Direction at f̄ = 2.25 · 10−2

As shown in Fig. 4.23a, and predicted by the dispersion analysis (see Fig. 4.23b),
increasing the excitation frequency to f̄ = 2.25 · 10−2 leads to wave beaming
in the x1-direction. At this frequency two dispersion surfaces exist, making the
superposition of out-of-plane modes indistinguishable in Fig. 4.23a. Time history
(Fig. 4.23c) and frequency analysis plots (Fig. 4.23d) demonstrate that in both x1-
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Figure 4.21: Rectangular lattice response for an excitation frequency f̄ = 10−2

(γ = 1.5, L = 1).

and x2-directions there is a relatively long time to reach an effective steady state
response as compared to all other tested frequencies. However, one notes that despite
the increased frequency dispersion the excitation frequency coefficient in the FFT
spectrum is clearly most dominant.

4.6.5.4 Pass-Band at f̄ = 2.75 · 10−2

At an excitation frequency of f̄ = 2.75 · 10−2 one finds group velocity in all
directions. Our dynamic simulations agree with dispersion surface generated group
velocities in terms of directional beaming, but the frequencies within the wave front
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Figure 4.22: Rectangular lattice response for an excitation frequency f̄ = 1.5 · 10−2

(γ = 1.5, L = 1).

are not predicted in the x1-direction. Time history and FFT analysis reveal the
excitation frequency is highly suppressed with frequency dispersion throughout the
neighboring band.

4.6.5.5 Directional stop-band in the x1-direction at f̄ = 3.46 · 10−2

In the excitation frequency of f̄ = 3.46×10−2, one finds highly directional beaming
withwide stop-bands in the±x1-directions confirmed by dynamic simulations. Time
history analysis reveals a relatively short transient period; in the x2-direction FFT
analysis shows dominance nearest to the input frequency with broad-band dispersion
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Figure 4.23: Rectangular lattice response to excitation frequency f̄e = 2.26 (γ =
1.5, L = 1)

in the x1-direction.

4.6.5.6 Pass-band at f̄ = 3.97 · 10−2

The highest excitation frequency examined, f̄ = 3.97 · 10−2, demonstrates the limi-
tations of predicting the lattice response from dispersion relations. According to the
dispersion relation, we expect a full pass-band whereas dynamic simulations show
the relative magnitude of out-of-plane displacements having preferential directions.
Dispersion relations are not incorrect, but do not reveal how much energy is propa-
gated in each direction and the possible interactions of resonance believed to exist in
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Figure 4.24: Rectangular lattice response to an excitation frequency fe = 2.75 ·10−2

(γ = 1.5, L = 1).

the dynamic simulation. Time histories show amplitudes in the x2-direction about
700% higher than in the x1-direction, for which FFT analysis confirms that those
appear at the excitation frequency.
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Figure 4.25: Rectangular lattice response to an excitation frequency f̄ = 3.46 · 10−2

(γ = 1.5, L = 1).
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Figure 4.26: Rectangular lattice response to an excitation frequency f̄ = 3.97 · 10−2

(γ = 1.5, L = 1).
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4.6.6 Discussion
Thiswork has revealed newopportunities for detecting and optimizingwave beaming
through lattice architecture and has shown that:

• Predicting directional wave guiding requires the consideration of more than
only the lowest dispersion surface.

• Isolating and interpolating dispersion surfaces corresponding to out-of-plane
vibrations yields continuous approximate maps of group velocity magnitude
vs. direction and frequency.

• Group velocity analysis is well suited to predict beaming, confirmed by com-
parison to transient simulations. In addition to (full and partial) stop-bands,
the new group velocity maps can also indicate directions of low energy prop-
agation even if no band gaps exist, as discussed below.

• Unlike dispersion relations, the shown group velocity maps show wave char-
acteristics at every point in the IBZ rather than along a characteristic path.

• Variations in simple 2D lattice architectures can be used to control full and
partial band gaps.

• In general, partial and full stop-bands are not well predicted by the natural
frequencies of individual constituent beams with pinned-pinned or fixed-fixed
boundary conditions.

The presented techniques improve upon existing strategies to identify wave beaming
in structural lattices. Specifically, the newly-introduced continuous group velocity
maps highlight band gaps across wide ranges of frequencies and propagation direc-
tion in an illustrative manner. One should note that results depend on the chosen
approximation made by interpolating dispersion surfaces so that, e.g. narrow-
frequency stop-bands may be missed if spline-interpolated surfaces overlap (while
the actual surfaces do not). However, this level of resolution can be controlled
exactly through (a) the choice of interpolation and (b) the number of discrete points
in k-space based on which the dispersion surfaces are calculated. Besides, the same
problem arises in a much more pronounced manner in the more traditional group ve-
locity calculations based on iso-frequency contour plots (see, e.g. Ruzzene, Scarpa,
and Soranna, 2003). It is important to point out that we evaluate the dispersion rela-
tion at (approximately) every point in the IBZ rather than along a characteristic path



93

(e.g. Casadei and Rimoli, 2013 ), which may miss stop-bands within the IBZ and,
especially, cannot make definite statements about beaming within the IBZ. Unlike
stop-bands, beaming – as observed in experiments – requires a considerably higher
group velocity in specific directions at a given frequency. Therefore, identifying
stop-bands only (i.e., regions in which no group velocity exists) may fail to predict
beaming accurately.

Consider, e.g. the hexagonal lattice whose group velocity map was shown in
Fig. 4.11b and showed strong directionality at f̄ = 1.00 · 10−2, even though no
stop-band appears. Fig. 4.27 shows the corresponding dynamic simulation results
and iso-frequency group velocity plot, confirming the predictions of Fig. 4.11b.

In contrast to related prior investigations (Casadei and Rimoli, 2013; Gonella and
Ruzzene, 2008a; Gonella and Ruzzene, 2008b), this analysis did not make use
of phase velocities in this investigation, among others, because we find that phase
velocities are hard to compute unambiguously (they involve division by the complex-
valued wave vector components which, for higher-order dispersion surfaces, may
become questionable due to periodic translational invariance).

The presented methods can be extended to 3D lattices with increased complexity
(and without the separation into in- and out-of-plane modes). Also, the chosen
application to beam lattices can be generalized: FE discretizations using plate/shell
elements to represent continuous 2D periodic media (such as composites, woven
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directionality.
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networks, or 2D materials) can be used to generate group velocity maps in an
analogous fashion.

Ongoing work applies the methods presented here to hollow-tube lattices, which are
becoming more prevalent in low-density metamaterials (Meza, Das, et al., 2014;
Montemayor et al., 2014; Zheng et al., 2014) but pose new challenges due to the
existence of complex torsional and breathingmodes affecting the dispersion relations
of the now shell-like structures.

4.7 Conclusions
This work presented a method to produce continuous, approximate frequency-
dependent group velocity maps for the identification of full and partial stop-bands as
well as of wave beaming in periodic 2D structural lattices. By isolating out-of-plane
modes, interpolating dispersion surfaces and computing their gradients analytically,
the applicability of the proposed group velocity maps for three types of lattices hav-
ing rectangular, sheared-square, and hexagonal unit cells has been demonstrated.
By varying the lattice architecture while preserving their topology (e.g. changing
the aspect ratio or shear angle in rectangular and sheared lattices, respectively), the
importance of geometry on wave propagation (each lattice type showing different
sensitivity to geometric changes) has been highlighted. Predicted directional wave
propagation for selected lattices is confirmed by transient dynamic simulation.
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C h a p t e r 5

SUMMARY

Scientists study the world as it is; engineers create the world that has
never been. - Theodore Von Kármán

5.1 Conclusions
Society is constantly demanding new and improved technology, such as cell phones
or transportation, and engineers and scientist have a choice. One can either design
something better or make it of a better material. The latter of two is more impactful
as it is not geometrically specific to a single problem. Specifically, density greatly
affects performance. Additive manufacturing allows one to explore extremely light-
weight materials in the form of cellular materials consisting of a solid phase and
fluid phase. Often this fluid is a gas and cellular materials take shape in stochastic
micro-geometry as foams or in highly organized ways as lattices. A range of
different cellular materials have been developed as engineering materials, but of
the set, lattice materials hold promise as being exceptionally efficient as one has
direct control over the microstructure. In pursuit of improved materials this thesis
has selected low-density, high-stiffness, and high effective-damping as key factors
to focus on and has shown how lattice materials can enter into this property space.

Chapter 3 focused on how to use hierarchical structure in lattices to achieve high
stiffness for a given relative density. Multiple length scales were introduced cre-
ating first-, second-, and third-order hierarchical lattice materials. Finite element
simulations predict, and experimental results verify, using structural hierarchy en-
ables lattice materials to reach relative densities as low as 10−4 while maintaining
near-ideal stretching-dominated stiffness scaling within the geometric parameters
tested. A computational methodology based on finite-element substructuring was
employed to gain the efficiency required to simulate complex hierarchical lattices
containing large numbers of individual truss members (impractical and inefficient
using full-resolution finite element methods).

In the pursuit of effective wave attenuation, Chapter 4 examined the unique property
of directional damping, or energy beaming, in lattice materials. A new method
based on dispersion relations clearly showed that unit cell design highly influences
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directional stop-band frequency width and directionality. This method is a signif-
icant improvement over previous methods by combining frequency, group velocity
directionality, and group velocity magnitude into single figure. Explicit dynamic
simulations validated this new method accurately predicts group velocity direction-
ality for different frequencies.

5.2 Future directions
As this thesis shows, hierarchical structural lattices can reach very low relative
densities while maintaining stretching-dominated behavior for a given geometric
parameter set. However, the effect of different unit cell designs at different member
slenderness is unclear. Fruitful investigations may come from:

• applying the equilibrium matrix and rank-finding method described in (Pel-
legrino and Calladine, 1986) to sort a host of slender-member, fundamental
unit cell designs into stretching-dominated or bending-dominated

• vary the slenderness of each fundamental unit cell design and find scaling
relations for stiffness and strength

• evaluate the stiffness scaling of hierarchical structures across several orders
and the determine when and how each level plays a role in the effective
properties

• as presented in this thesis, lattice materials can have significantly decreased
properties due to geometric imperfections, such as waviness. Is there a
fundamental lattice member, i.e. beam, one could design in terms of cross-
section and length, such that geometric imperfections have the little affect on
stiffness or strength?

• exploring the inelastic deformation of hierarchical lattices. Model-order re-
duction techniques, similar to the Guyan method present in this thesis, are
needed to capture the non-linear deformation to obtain a tractable computa-
tional analysis.

• taking advantage of the multiple length scales of hierarchical lattices and
instituting size effects, such as those observed for metallic grain size, on
the smallest lattice length scale. This could lead to small scale size effects
increasing performance on the largest scale.
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With regards to dynamic properties there are many unanswered questions about
how waves travel through lattices, in particular through hollow lattices such as those
fabricated experimentally. In comparison with solid lattices, hollow lattices have
low frequency deformationmodes including torsion and breathing. These additional
modes all combined-mode shapes within the dispersion relationmaking it difficult to
identify a single mode for a given dispersion surface. Future research opportunities
could include:

• explore the relations between geometric parameters of length, diameter, and
thickness and how a hollow lattice junction transmits waves in a periodic
system

• design the hollow lattice to suppress certain deformation modes via stiffening
ribs similar to aircraft structures, creating stop bands in the dispersion relation

• make comparisons between finite-element-predicted dispersion responses and
experimentally realized micro- or nanoscale samples.
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A p p e n d i x A

HIERARCHICAL LATTICE CONFIGURATIONS

Tbl. A.1 shows all the second-order numerically realized unit cells.
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Table A.1: Second-order, half cell unit cells experimentally and computationally realized

Composition Geometry 1st order Num. 1st-order Voxel Voxel Wall thickness (nm) Relative density
unit cell size (µm) unit cells , N major axis (µm) minor axis (µm)

Solid Polymer Octahedron-of-Octahedra 8 10 0.7525 0.317 n/a 0.0103113
8 15 0.7525 0.317 n/a 0.00449315
8 20 0.7525 0.317 n/a 0.00249912
12 10 0.7525 0.317 n/a 0.00479697
12 15 0.7525 0.317 n/a 0.00208892
12 20 0.7525 0.317 n/a 0.00116154

Octahedron-of-Octets 8 10 0.7525 0.317 n/a 0.0210253
8 15 0.7525 0.317 n/a 0.00946245
8 20 0.7525 0.317 n/a 0.00533641
12 10 0.7525 0.317 n/a 0.00981578
12 15 0.7525 0.317 n/a 0.00441424
12 20 0.7525 0.317 n/a 0.00248865

Composite Octahedron-of-Octahedra 8 10 0.7725 0.337 20 0.0112059
8 15 0.7725 0.337 20 0.00488344
8 20 0.7725 0.337 20 0.00271631
12 10 0.7725 0.337 20 0.00522722
12 15 0.7725 0.337 20 0.00227641
12 20 0.7725 0.337 20 0.00126582

Octahedron-of-Octets 8 10 0.7725 0.337 20 0.022841
8 15 0.7725 0.337 20 0.0102987
8 20 0.7725 0.337 20 0.00582584
12 10 0.7725 0.337 20 0.0106938
12 15 0.7725 0.337 20 0.00480942
12 20 0.7725 0.337 20 0.00272999

Hollow Al2O3 Octahedron-of-Octahedra 8 10 0.7725 0.337 20 0.0008946
8 15 0.7725 0.337 20 0.00039029
8 20 0.7725 0.337 20 0.00021719
12 10 0.7725 0.337 20 0.00043025
12 15 0.7725 0.337 20 0.00018749
12 20 0.7725 0.337 20 0.00010428

Octahedron-of-Octets 8 10 0.7725 0.337 20 0.0018157
8 15 0.7725 0.337 20 0.00083625
8 20 0.7725 0.337 20 0.00048943
12 10 0.7725 0.337 20 0.00087802
12 15 0.7725 0.337 20 0.00039518
12 20 0.7725 0.337 20 0.00024134
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