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ABSTRACT

This thesis is a contribution to the theory of measurable actions of discrete groups
on standard probability spaces. The focus is on nonamenable acting groups. It is
organized into two parts. The first part deals with a notion called weak equivalence,
which describes a sense in which such actions can approximate each other. The
second part deals with the concept of entropy for measure preserving actions of
sofic groups.
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C h a p t e r 0

INTRODUCTION

We introduce the various topics in the thesis in the order they appear.

0.1 Part I: Weak containment of measure preserving group actions
Fix a standard probability space (X, µ). We will denote by Aut(X, µ) the group of
all measure preserving transformations of (X, µ). In [45], P.R. Halmos defined two
topologies on this group, called the weak topology and the uniform topology. The
uniform topology strictly refines the weak topology. With these topologies the space
Aut(X, µ) provides a framework to develop a global theory of Z-systems, allowing
one to formulate questions about approximation, genericity, and classification. Sim-
ilarly, one can consider the space A(G, X, µ) of measure preserving actions of an
arbitrary countable discrete group G. This space carries two topologies correspond-
ing to the two topologies on Aut(X, µ), and thus opens the door to analyzing global
aspects of G-systems. It turns out that there is a rich interplay between properties
of G and the structure of A(G, X, µ). This is the subject of the book [53].

An important tool in analyzing Z-systems is the Rokhlin Lemma, which asserts
that for any Z-system (X, µ,T) and any ε > 0 there exists n ∈ N and a measurable
set A ⊆ X such that the shifted sets A,T A,T2 A, . . . ,Tn A are pairwise disjoint and
µ(A∪T A∪· · ·∪Tn A) > 1−ε . More abstractly, this asserts that anymeasure preserv-
ing transformation can be approximated by periodic transformations arbitrary well
in the uniform topology on Aut(X, µ). Since it is easy to see that any two periodic
transformations with the same period are conjugate, it follows that the conjugacy
class of any aperiodic transformation is dense in the set of aperiodic transformations
with respect to the uniform topology.

For any G, the group Aut(X, µ) acts on A(G, X, µ) by conjugation: forT ∈ Aut(X, µ)
let (T · a)(g) = Ta(g)T−1, where a(g) is the transformation corresponding to g ∈ G

under the action a ∈ A(G, X, µ). We refer to the orbits of this action as conjugacy
classes. Analogs of the Rokhlin Lemma were developed for actions of amenable
groups by Ornstein and Weiss in [67] and in [36] M. Foreman and Weiss used them
to show that when G is amenable the conjugacy class of every free action is dense in
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the set of free actions with respect to the uniform topology on A(G, X, µ). Moreover,
by the results of [55] this condition characterizes amenability.

In [53] Kechris defined a notion of ‘weak containment’ for measure preserving
G-systems: an action a is said to be weakly contained in an action b if a lies in
the weak closure of the conjugacy class of b. We denote this by a � b. If a � b
and b � a we say that a is weakly equivalent to b. Then the Rokhlin Lemma
can be interpreted as saying that all free actions of an amenable group are weakly
equivalent.

Chapter 1: Invariant random subgroups and action versus representation
maximality
Associated to a measure-preserving action a ∈ A(G, X, µ), one has the Koopman
representation κa of G on L2(X, µ). It is more natural to consider the restriction
κa

0 of this representation to the orthogonal complement of the constant functions.
There is a notion of weak containment for unitary representations analagous to
weak containment of actions (see Appendix F of [8] for the definition). It is obvious
that weak containment of actions implies weak containment of the corresponding
Koopman representations, and it is not too hard to construct examples where the
converse fails. However, these easy counterexamples come fromnon-ergodic actions
and it remained an open problem to find ergodic examples. In this chapter, we prove
the following theorem, showing in a strong way that weak containment of free
ergodic actions is different from weak containment of the corresponding Koopman
representations in the case of F∞, the free group on infinitely many generators.

Theorem 0.1.1 (Burton-Kechris, [24]). There exists a free ergodic action a of
F∞ which is not maximal in the order of weak containment of actions such that
the corresponding Koopman representation κa

0 is maximal in the order of weak
containment of representations.

The proof of Theorem 0.1.1 is probabilistic, relying on the construction of a partic-
ular invariant random subgroup of F∞. If G is a discrete group, an invariant random
subgroup (IRS) of G is a conjugation-invariant probability measure on the space of
subgroups of G. The notion of an IRS was introduced by Abért, Y. Glasner and
B. Virág in [4] as a stochastic generalization of normal subgroups. The IRS we
build to prove Theorem 0.1.1 is supported on the subgroups H of G such that the
corresponding generalized Bernoulli shift action of G on [0, 1]G/H is maximal in the
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order of weak containment (for both actions and representations).

This chapter is joint work with with Alexander Kechris.

Chapter 2: Topology and convexity in the space of actions modulo weak equiv-
alence
In this chapter, we analyse the structure of the quotient of the space of actions by
the relation of weak equivalence. In [3] M. Abért and G. Elek introduced a compact
Polish topology on the set of weak equivalence classes of G-systems. We will
denote this space by A∼(G, X, µ). Freeness is an invariant of weak equivalence,
and we denote the subspace of free weak equivalences classes by FR∼(G, X, µ).
Thus FR∼(G, X, µ) represents the extent to which the Rokhlin Lemma fails for
G, and studying its structure provides an approach to understanding measure pre-
serving actions of nonamenable groups. In [74], R.D. Tucker-Drob introduced a
slightly modified notion called ‘stable weak containment’ which avoids certain mi-
nor technical pathologies of weak containment. We denote the space of stable weak
equivalence classes by As

∼(G, X, µ) and the subspace of free stable weak equivalence
classes by FRs

∼(G, X, µ).

A∼(Γ, X, µ) carries a natural operation of convex combination. We introduce a
variant of an abstract construction of Fritz which encapsulates the convex combi-
nation operation on A∼(Γ, X, µ). This formalism allows us to define the geometric
notion of an extreme point. We also discuss a topology on A∼(Γ, X, µ) due to Abert
and Elek in which it is Polish and compact, and show that this topology is equivalent
others defined in the literature. We show that the convex structure of A∼(Γ, X, µ) is
compatible with the topology, and as a consequence deduce that A∼(Γ, X, µ) is path
connected. Using ideas of Tucker-Drob we are able to give a complete description
of the topological and convex structure of A∼(Γ, X, µ) for amenable Γ by identifying
it with the simplex of invariant random subgroups. In particular we conclude that
A∼(Γ, X, µ) can be represented as a compact convex subset of a Banach space if and
only if Γ is amenable. In the case of general Γ we prove a Krein-Milman type the-
orem asserting that finite convex combinations of the extreme points of A∼(Γ, X, µ)
are dense in this space. We also consider the space A∼s (Γ, X, µ) of stable weak
equivalence classes and show that it can always be represented as a compact convex
subset of a Banach space. In the case of a free group FN , we show that if one
restricts to the compact convex set FR∼s (FN, X, µ) ⊆ A∼s (FN, X, µ) consisting of the
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stable weak equivalence classes of free actions, then the extreme points are dense in
FR∼s (FN, X, µ).

Chapter 3: A topological semigroup structure on the space of actions modulo
weak equivalence.
In this chapter, we introduce a topology on the space of actions modulo weak
equivalence finer than the one previously studied in the literature. We show that the
product of actions is a continuous operation with respect to this topology, so that
the space of actions modulo weak equivalence becomes a topological semigroup.

Chapter 4: Weak equivalence of stationary actions and the entropy realization
problem
In this chapter, we introduce the notion of weak containment for stationary actions
of a countable group and define a natural topology on the space of weak equivalence
classes. We prove that Furstenberg entropy is an invariant of weak equivalence, and
moreover that it descends to a continuous function on the space of weak equivalence
classes.

This chapter is joint work with Martino Lupini and Omer Tamuz.

0.2 Part II: sofic entropy
In this part, we study entropy theory for actions of nonamenable groups. Given
a standard probability space (K, κ), the Bernoulli shift of G over the base space
(K, κ) is the action of G on (KG, κG) given by shifting indices. If K is countable
we may refer to it as the ‘alphabet’. One of the first major problems in ergodic
theory was to determine whether the Bernoulli shift of Z over a two-point space
with uniform measure is isomorphic to the Bernoulli shift of Z over a three-point
space with uniform measure. This problem was answered in the negative by A.N.
Kolmogorov in [64] through the introduction of an isomorphism invariant for Z-
systems with a finite generating partition. Known as entropy, the invariant was
extended to arbitrary Z-systems by Y.G. Sinaı̆ in [73]. The entropy of the shift of
Z over two points is log 2, while the entropy of the shift of Z over three points is
log 3. As such these systems are not isomorphic. In the subsequent decades the
entropy theory of Z-systems developed into a vast panoply of mathematics, with
the outstanding achievement being D.S. Ornstein’s proof in [66] that two Bernoulli
shifts of Z are isomorphic if and only if their base spaces have the same Shannon
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entropy. For an account of the entropy theory ofZ-systems, see [33] or Part 2 of [42].

The core of entropy theory was extended from Z-systems to actions of amenable
groups by Ornstein and B. Weiss in [67]. However, their approach is based on
taking limits over Følner sequences, and so until recently it was not at all clear how
to define entropy for more actions of general groups. In his groundbreaking papers
[14] and [22], L. Bowen introduced a notion of entropy for G-systems when G is
a free group, and then a family of entropy notions for G-systems when G is a sofic
group and theG-system admits a finite generating partition. He used these invariants
to prove that Bernoulli shifts of sofic groups over finite alphabets are classified by
the Shannon entropy of their base. The class of sofic groups includes all amenable
groups and all residually finite groups. It is a major open problem to determine
whether every group is sofic. Informally, a group G is sofic if it admits sequence
of approximate actions on finite sets which are, asymptotically, good replicas of the
translation action of G on itself. Such a sequence is called a ‘sofic approximation’.
A precise statement appears as Definition 1 in [14]. The book [26] and the survey
[68] provide more abstract perspectives.

Bowen’s sofic entropy is constructed relative to a choice of a sofic approxima-
tion and while it is known that the entropy of a system can depend on this choice,
the extent and nature of this dependence is poorly understood. However, in [17]
Bowen showed that when G is amenable, sofic entropy relative to any approximation
always agrees with classical Komogorov-Sinaı̆ entropy. Sofic entropy was defined
for arbitrary G-systems by D. Kerr in [58]. In [61] Kerr and H. Li defined topo-
logical entropy for actions of sofic groups by homeomorphisms of compact metric
spaces and proved a variational principle relating it to measure-theoretic entropy.
The theory of sofic entropy has proved very fruitful, with papers on the subject
including [6], [7], [15], [16], [17], [18], [20], [27], [39], [48], [47], [49], [50], [51],
[59], [60], [62], [63] and [78]. The article [77] provides a survey of the area.

Chapter 5: Naive entropy
In this chapter, we study an invariant of dynamical systems called naive entropy,
which is defined for bothmeasurable and topological actions of any countable group.
We focus on nonamenable groups, in which case the invariant is two-valued, with
every system having naive entropy either zero or infinity. Bowen has conjectured
that when the acting group is sofic, zero naive entropy implies sofic entropy at most
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zero for both types of systems. We prove the topological version of this conjecture
by showing that for every action of a sofic group by homeomorphisms of a compact
metric space, zero naive entropy implies sofic entropy at most zero. This result and
the simple definition of naive entropy allow us to show that the generic action of
a free group on the Cantor set has sofic entropy at most zero. We observe that a
distal Γ-system has zero naive entropy in both senses, if Γ has an element of infinite
order. We also show that the naive entropy of a topological system is greater than or
equal to the naive measure entropy of the same system with respect to any invariant
measure.

Chapter 6: Uniform mixing and completely positive sofic entropy
Let G be a countable discrete sofic group. In this chapter, we define a concept of
uniform mixing for measure-preserving G-actions and show that it implies com-
pletely positive sofic entropy. When G contains an element of infinite order, we use
this to produce an uncountable family of pairwise nonisomorphic G-actions with
completely positive sofic entropy. None of our examples is a factor of a Bernoulli
shift.

This chapter is joint work with Tim Austin.
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C h a p t e r 1

INVARIANT RANDOM SUBGROUPS AND ACTION VERSUS
REPRESENTATION MAXIMALITY

Peter Burton and Alexander S. Kechris 1

1.1 Introduction
Let G be a countably infinite group and (X, µ) a standard non-atomic probabil-
ity space. We denote by A(G, X, µ) the space of measure preserving actions
of G on (X, µ) with the weak topology. If a, b ∈ A(G, X, µ), we say that a is
weakly contained in b, in symbols a � b, if a is in the closure of the set of iso-
morphic copies of b (i.e., it is in the closure of the orbit of b under the action of the
automorphism group of (X, µ) on A(G, X, µ); see [53]). We say that a ∈ A(G, X, µ)
is action-maximal if for all b ∈ A(G, X, µ) we have b � a. Such a exist by a result
of Glasner-Thouvenot-Weiss, Hjorth; see [53, Theorem 10.7]).

Now letH be a separable, infinite-dimensionalHilbert space and denote byRep(G,H)
the space of unitary representations of G on H with the weak topology (see [53,
Appendix H]). For π, ρ ∈ Rep(G,H) we denote by π � ρ the usual relation of
weak containment of representations (see [8], [53, Appendix H]). We say that
π ∈ Rep(G,H) is representation-maximal if for all ρ ∈ Rep(G,H) we have ρ � π.
It is easy to check that such π exist.

For any action a ∈ A(G, X, µ), let κa be the associated representation on L2(X, µ),
called the Koopman representation, and by κa

0 its restriction to the orthogonal of
the constant functions (see [53, page 66]). Then we have

a � b =⇒ κa
0 � κ

b
0

but the converse fails; see [53, pages 66 and 68] and also [28, page 155] for examples.
However in all these examples the actions a, b were not both ergodic and this led to
the following question.

1Research partially supported by NSF Grant DMS-1464475
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Problem 1.1.1. If a, b ∈ A(G, X, µ) are free, ergodic, does κa
0 � κ

b
0 imply a � b?

We provide a negative answer below. The proof is based on a result about invariant
randomsubgroups ofG = F∞, the free group on a countably infinite set of generators,
which might be of independent interest.

If I is a countable set and α is an action of a countable group G on I, we will
write sα for the corresponding generalized shift action on 2Iwith the usual product
measure, given by (sα(g) · f )(i) = f (α(g)−1 · i). If I = G/H, for some H ≤ G,
we will write τG/H for the left-translation action of G on G/H and sG/H instead of
sτG/H . If H is trivial, we write sG instead of sG/H .

We also let λα be the representation on `2(I) given by (λα(g) · f )(i) = f (α(g)−1 · i).
Note that λτG/H is the usual quasi-regular representation of G on `2(G/H), which
we will denote by λG/H .

We call a subgroup H ≤ G with [G : H] = ∞ action-maximal if sG/H is action-
maximal and representation-maximal if λG/H is representation-maximal. It was
shown in [54] that there are H which are action-maximal and also H which are
representation-maximal, for any non-abelian free group G.

An invariant random subgroup (IRS) of G is a probability Borel measure on
Sub(G), the compact space of subgroups of G, which is invariant under the (contin-
uous) action of G on Sub(G) by conjugation. Denote byMG ⊆ Sub(G) the set of
all H ≤ G that are both action-maximal and representation-maximal. We show the
following:

Theorem 1.1.1. Let G = F∞. Then there exists an IRS of G which is supported by
MG.

Using this and the result of Dudko-Grigorchuk [34, Proposition 8], we then prove
the following:

Theorem 1.1.2. Let G = F∞. Then there exists a free, ergodic a ∈ A(G, X, µ) such
that a is not action-maximal but κa

0 is representation-maximal.

Let a be as in Theorem 1.1.2. Since G = F∞ does not have property (T), the free,
ergodic actions b ∈ A(G, X, µ) are dense in A(G, X, µ) (see [53, Theorems 12.2 and
10.8]), so there is a free, ergodic b ∈ A(G, X, µ) such that b � a. On the other hand
κb

0 � κ
a
0 , and thus we have a negative answer to Problem 1.1.1.
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We employ below the following notation:

If α is an action ofG on I and S ⊆ G, wewrite α(S) = {α(g) : g ∈ S} ⊆ Sym(I). For
G = F∞, we let g0, g1, . . . be free generators of G and let Gn = 〈g0, g1, . . . , gn〉 ≤ G.

If x is a real number, we write bxc for the largest integer less than or equal to x.
If x, y are real numbers and ε > 0, we write x ≈ε y to mean |x − y | < ε . Finally,
N = {0, 1, 2, . . . } and N+ = {1, 2, 3, . . . }

For the rest of the paper,G = F∞.

1.2 Proof of Theorem 1.1.1
The structure of the proof is as follows. In Subsection 1.2 we state three lemmas.
Temporarily assuming these lemmas, in Subsection 1.2 we give the main argument
establishing Theorem 1.1.1. Then in Subsection 1.2 we prove the lemmas from
Subsection 1.2.

Recall that for a ∈ A(G, X, µ), we have a � b if and only if a lies in the closure
of the isomorphic copies of b. In particular, b is action-maximal if and only if the
isomorphic copies of b are dense in A(G, X, µ). We will use these equivalences
without comment several times in the sequel.

Statements of lemmas
The first lemma provides a general method for constructing invariant random sub-
groups.

Lemma 1.2.1. Let α be an action of G on a countably infinite set I. Suppose there is
an increasing sequence of non-empty finite subsets (Fn)∞n=0 of I such that

⋃∞
n=0 Fn = I

and Fn is α(Gn)-invariant. Let θn be the probability measure on Sub(G) given by
the pushfoward of the uniform measure on Fn under the map v 7→ stabα(v) (where
stabα(v) is the stabilizer of v in α). Let θ be any weak-star limit point of the θn.
Then θ is an invariant random subgroup of G.

In order to state the second lemma, we need the following definition.

Definition 1.2.1. Let α be an action of G on a finite set V and let n be such that
all α(gk), k > n, act trivially. Let β be an action of G on a countably infinite set
I. Let Q ⊆ I be a finite set. We will say that α (relative to n) appears in β within
Q if there is a β(Gn)-invariant set W ⊆ Q and a bijection φ : V → W such that
φ(α(g) · v) = β(g) · φ(v) for all v ∈ V and g ∈ Gn. We will say that α appears in β
if it appears within some finite subset of I.



11

Note that if α appears in β as above, then sα�Gn is a factor of sβ�Gn .

Lemma 1.2.2. There exists a sequence of finite sets (Vn)∞n=1, with |Vn | → ∞, and
actions (αn)∞n=1 of G, where αn acts transitively on Vn so that all gk, k > n, act
trivially in αn, such that if β is a transitive action of G on a countably infinite set
and αn (relative to n) appears in β for each n, then sβ is action-maximal and λβ is
representation-maximal.

Fix a sequence of finite sets Vn and actions αn of G on Vn, n ≥ 1, as in Lemma
1.2.2. Given f : N→ N+, m > 0, write Cm( f ) =

∑m−1
n=0 (|Vf (n) | + 1).We will need a

function f with the following properties.

Lemma 1.2.3. There exists a function f : N→ N+ such that:

(i) for every n ≥ 1 there exists positive integer K = Kn such that for all j there is
l with

⌊
j
K

⌋
=

⌊ l
K

⌋
and f (l) = n,

(ii) for every ε > 0, there exists t > 0, such that for all m > 0 we have

1
Cm( f )

t∑
n=1
(|Vn | + 1) ·

��{ j ∈ {0, . . . ,m − 1} : f ( j) = n
}�� > 1 − ε .

Main argument
Let, for n ≥ 1, αn and Vn be as in Lemma 1.2.2 and let f be as in Lemma 1.2.3.
Choose a pairwise disjoint sequence of finite setsWn, n ≥ 0, such that |Wn | = |Vf (n) |.
Define an action of α of G on

⋃∞
n=0 Wn by identifying Wn with Vf (n) and letting G

act on Wn according to α f (n). Let {un}∞n=0 be an enumeration of a countably infinite
set disjoint from the Wn. We now modify α to obtain a new action β of G on
I =

(⋃∞
n=0 Wn

)
∪ {un}∞n=0. We will have that β(gk) agrees with α(gk) on Wn when

k ∈ {0, . . . , f (n)}.

For each n, choose a point wn ∈ Wn and let β(g f (n)+1) transpose wn with un. Let
(ln)∞n=0 be a strictly increasing sequence of indices such that max(n, f (0), . . . , f (n +
1)) + 1 < ln. Let β(gln) transpose wn and wn+1.

Fix n ≥ 1. We now define how β(gn) acts on {u j}∞j=0. For k ∈ N, consider the
discrete interval

Dn,k = {k · n, . . . , (k + 1) · n − 1}.
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We would like to have β(gn) make a cycle out {u j, j ∈ Dn,k} for each k. Unfortu-
nately, we cannot achieve that exactly since there may by some j ∈ Dn,k for which
f ( j)+ 1 = n, and in this case we will have already used gn to link W j with u j . Thus
for each k, we will let β(gn) make a cycle out of the set

{u j : j ∈ Dn,k and f ( j) + 1 , n},

making no modification to the action of β(gn) on those u j for which f ( j) + 1 = n.
We will call these cycles the top cycles of β(gn). We have the following picture of
β, where n = f (3) + 1 = 6 and we consider the interval D6,0.

W0

g f (0)+1

gl0

u0

W1

g f (1)+1

gl1

u1

W2

g f (2)+1

gl2

u2

g6

W3

g6

gl3

u3

W4

g f (4)+1

gl4

u4

W5

g f (5)+1

u5

Finally β is defined trivially for all other points. Clearly β acts transitively. Write
for m > 0,

(⋃m−1
k=0 Wk

)
∪ {u0, . . . , um−1} = Tm and for m ≥ 0, Tm! = Fm. Thus Fm

is invariant under β(Gm). For each m, define a measure θm on Sub(G) be letting
θm be the pushforward of the uniform measure on Fm under the map v 7→ stabβ(v).
Let θ be a weak-star limit point of θm. By Lemma 1.2.1, θ is an invariant random
subgroup of G.

We claim that θ is supported on MG. Let (Qk)∞k=0 be an increasing sequence of
finite subsets of G with

⋃∞
k=0 Qk = G. For H ≤ G, let Qk/H = {gH : g ∈ Qk}.

Write, for n ≥ 1, k ∈ N,

An,k =
{
H ≤ G : αn appears in τG/H within Qk/H

}
.
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By definition, if H ∈ ⋃∞
k=0 An,k , then αn appears in τG/H . Therefore by Lemma

1.2.2, we have
∞⋂

n=1

∞⋃
k=0

An,k ⊆ MG .

Thus it suffices to show that for each n ≥ 1 we have supk<∞ θ(An,k) = 1. Fix n and
ε > 0. Since the set An,k is clopen for each k, it is enough to show the following:

Claim 1.2.1. There is some k ∈ N, such that for all m > 0, we have θm(An,k) > 1−ε .

Let t be large enough that Lemma 1.2.3(ii) holds for our chosen ε . We now define
five finite subsets of G.

• Let S1 ⊆ G consist of {1G} together with every word in the generators
g0, . . . , gt with length at most max1≤ j≤t |Vj |. If f ( j) ≤ t, this choice will allow
us to pass between points in W j using an element of S1.

• Let S2 = {1G, g0, . . . , gt+1}. If f ( j) ≤ t, this choice will allow us to pass to u j

from some point in W j using an element of S2.

• Let S3 consist of all words in the generators gK, g2K, g3K of length at most 3K ,
where K = Kn is the number provided by Lemma 1.2.3(i) for our fixed n. We
will explain this choice later.

• Let S4 = {gn+1}. If f (l) = n, we will use gn+1 to pass from ul to some point
in Wl .

• Let S5 consists of all words in the generators g1, . . . , gn of length at most |Vn |.
If f (l) = n, this choice will allow us to pass between any two points of Wl

using an element of S5.

Let k be large enough thatQk contains S5 ·S4 ·S3 ·S2 ·S1. We assert that the following
implies Claim 1.2.1.

Claim 1.2.2. If v ∈ W j ∪ {u j} and f ( j) ≤ t, then αn appears in τG/stabβ(v) within
Qk/stabβ(v).
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Indeed, suppose Claim 1.2.2 holds and let m > 0. Note that Cm!( f ) defined as in
Lemma 1.2.3 is exactly |Tm! |. Thus we have

θm(An,k) =
1
|Tm! |

·
��{v ∈ Tm! : stabβ(v) ∈ An,k

}�� (1.1)

≥ 1
|Tm! |

·
��{v ∈ Tm! : v ∈ W j ∪ {u j} and f ( j) ≤ t

}�� (1.2)

=
1
|Tm! |

t∑
n=1
(|Vn | + 1) ·

��{ j ∈ {0, . . . ,m! − 1} : f ( j) = n
}�� (1.3)

> 1 − ε, (1.4)

where

• (1.1) follows from the definition of θm,

• (1.2) follows from (1.1) by Claim 1.2.2,

• (1.3) follows from (1.2) since |W j | = |Vf ( j) |,

• (1.4) follows from (1.3) by Lemma 1.2.1(ii).

Thus it remains to establish Claim 1.2.2.

Fix j with f ( j) ≤ t. By our choice of K , there is some l such that b j/Kc = bl/Kc and
f (l) = n. Fix v ∈ W j ∪ {u j}. Write H = stabβ(v) and let P = {gH : β(g) · v ∈ Wl}.
Since β(Gn) acts on Wl according to αn, it follows that αn appears in τG/H within P.
Therefore it is enough to show that P ⊆ Qk/H, or equivalently Wl ⊆ β(Qk) · v. The
idea is that we have chosen k large enough that we can reach any point in Wl from
v using the β action of a word from Qk .

By our choice of S1, if v ∈ W j there is an element γ ∈ S1 such that β(γ) · v = w j

where w j is the point in W j connected to u j . The connection between w j and u j is
made by β(g f ( j)+1). We have g f ( j)+1 ∈ S2 since f ( j) ≤ t. Thus u j = β(γ) · v, where
γ ∈ S2 · S1.

Note that our assumption on l guarantees that l lies between the same pair of
multiples of K as j does. We would like to say that this allows us to pass from u j

to ul using β(gK)i for some i ∈ [−K,K]. However, there is the minor issue of the
points ud which are skipped the top cycles of β(gK). We can easily overcome this
obstacle by noting that for any d, at most one of β(gK), β(g2K), and β(g3K) skips



15

over ud , and therefore there is a word γ′ in gK, g2K, g3K of length at most 3K such
that β(γ′) · u j = ul . We have γ′ ∈ S3.

Since f (l) = n, we see that ul is connected to Wl by β(g f (l)+1) = β(gn+1). Therefore
β(gn+1γ

′γ) · v ∈ Wl . Since Wl ⊆ β(S5) · β(gn+1γ
′γ) · v, we have that Wl ⊆ β(Qk) · v

and we are done.

Proofs of lemmas
Proof of Lemma 1.2.1. Let h1, . . . , hl, k1, . . . , kl ′, g ∈ G and let ε > 0. Let m be
large enough that h1, . . . , hl, k1, . . . , kl ′, g are words in the generators {g0, . . . , gm}.
Write

C = {H ≤ G : h1, . . . , hl ∈ H and k1, . . . , kl ′ < H}.

Note that C is a clopen set and therefore there is some n ≥ m such that

θ(C) ≈ε θn(C) and θ(gCg−1) ≈ε θn(gCg−1). (1.5)

Noting that Fn is α(〈g, h1, . . . , hl, k1, . . . , kl ′〉) invariant we have

θn(gCg−1) = 1
|Fn |
·
��{v ∈ Fn : α(gh jg

−1) · v = v for all j ∈ {1, . . . , l}

and α(gk jg
−1) · v , v for all j ∈ {1, . . . , l′}

}��
=

1
|Fn |
·
��{v ∈ Fn : α(h j)α(g−1) · v = α(g−1) · v for all j ∈ {1, . . . , l}

and α(k j)α(g−1) · v , α(g−1) · v for all j ∈ {1, . . . , l′}
}��

=
1
|Fn |
·
��{w ∈ Fn : α(h j) · w = w for all j ∈ {1, . . . , l}

and α(k j) · w , w for all j ∈ {1, . . . , l′}
}��

= θn(C).

Then from (1.5) we have θ(C) ≈2ε θ(gCg−1). �

Proof of Lemma 1.2.2. It is clearly enough to find such Vn, αn such that for any β as
in that lemma, sβ is action-maximal and another sequence, also denoted below by
Vn, αn, such that for any β as in that lemma, λβ is representation-maximal. Then by
interlacing these two sequences, we have a sequence that achieves both goals.

Case 1: We first find the sequence for which the appropriate sβ is action-maximal.
By [54, Theorem 5.1], there is a countably infinite set J and a transitive action α of
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G on J such that sα is action-maximal. Identify (X, µ) with 2J carrying the usual
product measure. For a finite set T ⊆ J and ρ ∈ 2T , write

Nρ =
{

x ∈ 2J : x(v) = ρ(v) for all v ∈ T
}
.

For n ≥ 1, ε > 0 and a finite set T ⊆ J, let Un,ε,T be the set of all c ∈ A(G, X, µ)
such that

µ
(
sα(gk) · Nρ ∩ Nσ

)
≈ε µ

(
c(gk) · Nρ ∩ Nσ

)
, ∀σ, ρ ∈ 2T, k ∈ {0, . . . , n − 1}.

Observe that the collection of all Un,ε,T is a neighborhood basis at sα ∈ A(G, X, µ).
Let (Tn)∞n=1 be an increasing sequence of finite subsets of J with

⋃∞
n=1 Tn = J. Write

Un = Un,2−n−|Tn |,Tn . Then the sets Un form a neighborhood basis at sα. Note that for
each n ≥ 1 and each k ∈ {0, . . . , n−1}, we can extendα(gk) �

(
Tn ∪

⋃n−1
j=0 α(g j) · Tn

)
to a permutation of J which is trivial on the complement of a finite set containing
Tn ∪

⋃n−1
j=0 α(g j) ·Tn. Hence for each n ≥ 1, we can find an action α̂n of G on J with

the following properties:

(I) α̂n(gk) · v = α(gk) · v, if k ∈ {0, . . . , n − 1} and v ∈ Tn.

(II) α̂n(gk) acts trivially if k > n.

(III) There is a α̂n-invariant finite set Vn ⊆ J such that α̂n � (J \ Vn) is trivial and
α̂n � Vn is transitive.

By (I) we see that sα̂n(gk) · Nρ = sα(gk) · Nρ for all ρ ∈ 2Tn and k ∈ {0, . . . , n − 1}.
Therefore sα̂n ∈ Un. Write αn = α̂n � Vn. By (II) all gk, k > n, act trivially in αn.
Observe that (III) implies that sα̂n � sαn × ι, where ι is the trivial action of G on a
nonatomic standard probability space. Thus for each n ≥ 1 there is an isomorphic
copy of sαn × ι in Un.

Suppose β is a transitive action of G on a countably infinite set such that αn appears
in β for each n ≥ 1. Note that sβ is ergodic (see, e.g., [55, 2.1]). Then sαn�Gn is a
factor of sβ�Gn and hence sαn�Gn × (ι � Gn) is a factor of sβ�Gn × (ι � Gn). Using
the fact that the definition of Un depends only on Gn, this implies that for each
n ≥ 1 there is an isomorphic copy of sβ × ι in Un. Therefore there is a sequence
of isomorphic copies of sβ × ι in A(G, X, µ) which converges to sα. Since the
isomorphic copies of sα are dense in A(G, X, µ), this implies that the isomorphic
copies of sβ × ι are dense in A(G, X, µ).
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By [74, Theorem 3.11], we see that any ergodic action d of G is weakly contained in
almost every ergodic component of sβ × ι. In particular, any ergodic action d of G

is weakly contained in sβ and therefore the isomorphic copies of sβ are dense in the
ergodic actions. Since G does not have Property (T), [53, Theorem 12.2] implies
that the isomorphic copies of sβ are dense in A(G, X, µ).

Case 2: Wenext find a sequenceVn, αn, forwhich the appropriateλβ is representation-
maximal. We start with a transitive action α of G on a countably infinite set J such
that λα is representation-maximal (see [54, Theorem 5.5]. Then proceed as in the
proof of Case 1 to find Vn, αn such that for some isomorphic copy σn of λαn ⊕∞1G,
(σn) converges to λα, where 1G is the trivial one-dimensional representation of G

and ∞1G the direct sum of countably many copies of 1G, i.e., the trivial represen-
tation on a separable, infinite-dimensional Hilbert space. Let now β be as above.
Then the isomorphic copies of λβ ⊕ ∞1G converge to λα. By a result of Hjorth,
see [53, H.7], the irreducible representations are dense in Rep(G,H). Every irre-
ducible representation π is � λα and thus �Z λα �Z λβ ⊕ ∞1G, where �Z is weak
containment in the sense of Zimmer. Recall that σ �Z ρ iff σ is in the closure
of the isomorphic copies of ρ. Also σ �Z ρ =⇒ σ � ρ and for σ irreducible,
σ �Z ρ ⇐⇒ σ � ρ (see [8, page 397] and [53, page 209]). Then by [1, Proposi-
tion 3.5] π is a subrepresentation of an ultrapower of λβ ⊕ ∞1G, which is of course
of the form λ∗β ⊕η∗, where λ∗ is an ultrapower of λβ and η∗ a trivial representation of
G on a Hilbert space H∗. Let H1 be the space on which this subrepresentation acts,
which is a G-invariant subspace of the direct sum of the space of λ∗β and H∗. Then if
v ∈ H∗ and v1 is its projection on H1, v1 is G-invariant, so as π is irreducible, v1 = 0,
i.e., H∗ ⊥ H1. Thus H1 is contained in the space of λ∗β, i.e., π is a subrepresentation
of λ∗β, so π �Z λβ. Thus the isomorphic copies of λβ are dense in Rep(G,H), i.e.,
λβ is representation-maximal. �

Proof of Lemma 1.2.3. Note that letting for n ≥ 1, An = f −1({n}) the statement
of the lemma is equivalent to the existence of a partition N =

⊔
n≥1 An with the

following properties:

(i) For each n ≥ 1 there is positive integer Kn such that An intersects each interval
In
i = [iKn, (i + 1)Kn), i = 0, 1, 2, . . . .

(ii) Let g : N+ → N+ be defined by g(n) = |Vn | + 1, where Vn is as in Lemma 1.2.2.
Then we have that for each ε > 0, there is t > 0, such that for all m > 0:
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n>t(|An ∩ m| · g(n))∑

n(|An ∩ m| · g(n)) < ε,

where we identify here m with {0, 1, . . . ,m − 1}.

To construct An,Kn, first chose a2 < a3 < . . . to be large enough so that an is
divisible by 3 and

∞∑
n=2

1
a2 · · · an

<
1
3
and

an

3
>

g(n)2n

g(n − 1) .

We let A′1 = {2i : i ∈ N} and also put K1 = 2,Kn = 2a2 · · · an for n ≥ 2. We will
then inductively define pairwise disjoint A2, A3, . . . , which are also disjoint from
A′1, to satisfy (ii) above and so that for n ≥ 2, An has exactly one member in each
interval In

i as above, and finally we put A1 = N \
⋃∞

n=2 An.

So assume that A′1, A2, . . . , An−1 have been constructed (this is just A′1, if n = 2). To
find An, so that (i) above is satisfied, it is enough to have for each i,

Kn >
3
2

��(A′1 ∪ A2 ∪ · · · An−1) ∩ In
i

�� .
But ��(A′1 ∪ A2 ∪ · · · An−1) ∩ In

i

�� = a2 · · · an + a3 · · · an + · · · + an−1an + an,

so this follows from
∑∞

n=2
1

a2···an <
1
3 . Also for i = 0, we can choose the element of

An in [0,Kn) to be ≥ Kn

3 .

Wefinally check that (ii) is satisfied. Fix ε > 0 and choose t > 1 so that
∑∞

n>t 2−n < ε .
Consider now any m > 0 and n > t.

Case 1. m ≥ Kn. Then for some s > 1, we have that m ∈ In
s−1 and |An ∩ m| ≤ s,

while ∑
n

|An ∩ m| · g(n) ≥ |An−1 ∩ m| · g(n − 1) ≥ (s − 1)an · g(n − 1)

so
|An ∩ m| · g(n)∑
n |An ∩ m| · g(n) ≤

s · g(n)
(s − 1) · g(n − 1) ·

1
an

< 2−n.

Case 2. m < Kn. Then either m ≤ Kn

3 and |An∩m| = 0 or m > Kn

3 and |An∩m| ≤ 1,
in which case also

|An−1 ∩ m| ≥ an

3
.
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So for any m < Kn,

|An ∩ m| · g(n)∑
n |An ∩ m| · g(n) ≤

g(n)
(an3 )g(n − 1)

< 2−n.

Thus for any n > t, we have

|An ∩ m| · g(n)∑
n |An ∩ m| · g(n) < 2−n

and so ∑
n>t(|An ∩ m| · g(n))∑

n(|An ∩ m| · g(n)) < ε

�

1.3 Proof of Theorem 1.1.2
We note that if λG/H is representation-maximal, then H is not amenable. This is
because 1G � λG/H implies τG/H is amenable (see [55, Theorem 1.1]).

We will use the notion of a random Bernoulli shift over an invariant random sub-
group; we refer the reader to [74, Section 5.3] and [4, Proposition 45] for details.
Let θ be the invariant random subgroup constructed in Theorem 1.1.1 and let sθ be
the θ-random Bernoulli shift. Note that for almost every ergodic component b of sθ ,
almost all stabilizers of b lie inMG and hence the type of b is supported onMG.
Fix such an action b. Let (Y, ν) be the underlying space of b.

For y ∈ Y write Hy = stabb(y). By [34, Proposition 8] we have λG/Hy
� κb

0 for
ν-almost every y ∈ Y . Since the type of b is supported onMG, for ν-almost every y

we have that λG/Hy
is representation-maximal and so κb

0 is representation-maximal.
Let a = b × sG. Then a is free and ergodic and κa

0 is representation-maximal.
Suppose, toward a contradiction, that a were action-maximal.

Let S ⊆ G2 be the collection of all pairs (g, h) such that 〈g, h〉 is nonamenable.
Since λG/Hy

is representation-maximal for ν-almost every y ∈ Y , and so Hy is not
amenable, we see that S ∩ H2

y is nonempty for ν-almost every y. Let φ : N→ S be
an enumeration of S. For y ∈ Y let φy = min{n : φ(n) ∈ H2

y }. Then there is some
k ∈ N such that ν({y : φy = k}) > 0. Write A = {y : φy = k} and let N be the
subgroup of G generated by the coordinates of φ(k). Note that for y ∈ A, we have
N ⊆ Hy, and so b � N is trivial on A. By [53, Page 74], since a is action-maximal
for G, we have that a � N is action-maximal for N . Observe that

a � N = (b � N) × (sG � N) � (b � N) × (sN )N � (b � N) × sN .
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So writing c = (b � N) × sN , we have that c is action-maximal for N .

By [74, Theorem 3.11], this implies that any ergodic action d of N is weakly
contained in almost every ergodic component of c. Note that if y ∈ A, then
ι{y} × sN � sN is an ergodic component of c, where by ι{y} we mean the trivial
action of N on the one-point space {y}. Therefore d � sN . Since N does not have
property (T), the ergodic actions of N are dense in A(N, X, µ) (see [53, 12.2]), so
the isomorphic copies of sN are dense in A(N, X, µ). But by [53, Proposition 13.2]
this contradicts the fact that N is nonamenable.

Remark 1.3.1. For G = F∞, let a be as in Theorem 1.1.2. Then for any irreducible
π we have π � κa

0 , so π �Z κa
0 . Thus, as the irreducible representations are dense,

π �Z κa
0 , for all π. Thus there is a free ergodic action b such that κb

0 �Z κa
0 but

b � a, which is a somewhat stronger negative answer to Problem 1.1.1.

Remark 1.3.2. It is possible that one could use the techniques developed in this
paper to show that Theorem 1.1.2 also holds for the free groups with finitely many
generators n > 1 but we have not verified that.
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C h a p t e r 2

TOPOLOGY AND CONVEXITY IN THE SPACE OF ACTIONS
MODULO WEAK EQUIVALENCE

Peter Burton1

2.1 Introduction
By a probability space we mean a standard Borel space Y with a Borel probability
measure ν. If ν is nonatomic, we say the pair (Y, ν) is a standard probability space.
If ν is nonatomic then Y must be uncountable and thus by Theorem 17.41 in [56]
every standard probability space is isomorphic to the unit interval with Lebesgue
measure. Let Γ be a countable discrete group. By a measure-preserving action of
Γ on (Y, ν) we mean a Borel action a : Γ × Y → Y which preserves the measure
ν. We write Γ ya (Y, ν). In accordance with the standard conventions of ergodic
theory, we identify two actions which agree almost everywhere. Thus a measure-
preserving action of Γ on (Y, ν) is equivalently a homomorphism from Γ into the
group Aut(Y, ν) of measure-preserving automorphisms of (Y, ν), where again two
such automorphisms are identified if they agree almost everywhere.

We fix a standard probability space (X, µ) throughout the remainder of the paper.
As in [53] we can define the Polish space A(Γ, X, µ) of measure-preserving actions
of Γ. Kechris defines the following relation of weak containment among measure-
preserving actions of Γ, by analogy with the standard notion of weak containment
for representations.

Definition 2.1.1. [53] If Γ ya (X, µ) and Γ yb (Y, ν) are measure-preserving
actions of Γ on probability spaces, we say a is weakly contained in b and write
a ≺ b if for any finite sequence A1, . . . , An of measurable subsets of X , finite F ⊆ Γ
and ε > 0 there exist measurable subsets B1, . . . , Bn ofY such that for all γ ∈ F and
all i, j ≤ n we have

|µ(γa Ai ∩ A j) − ν(γbBi ∩ B j)| < ε.
1Research partially supported by NSF grant DMS-0968710
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We say a is weakly equivalent to b and write a ∼ b if a ≺ b and b ≺ a.

We may assume in this definition that A1, . . . , An form a partition of X . Note that
we do not require (X, µ) and (Y, ν) to be standard, that is to say we include the case
where they might be countable. The relation of weak containment is Gδ, so the
quotient A∼(Γ, X, µ) of A(Γ, X, µ) by weak equivalence is well-behaved.

We also consider a generalization of weak containment, due to Tucker-Drob. For
probability spaces (Yi, νi), 1 ≤ i ≤ m and positive real numbers αi, 1 ≤ i ≤ m

with
∑m

i=1 αi = 1 we let
⊔m

i=1 αiYi be the probability space formed by endowing
the disjoint union of the Yi with the measure

∑m
i=1 αiνi given by

(∑m
i=1 αiνi

)
(A) =∑m

i=1 αiνi(A∩Yi). If Γyai (Yi, νi) are measure-preserving actions, then
∑m

i=1 αiai is
the action on

⊔m
i=1 αiYi given by letting Γ act like ai on Yi.

Definition 2.1.2. [74] If Γ ya (X, µ) and Γ yb (Y, ν) are measure-preserving
actions, we say a is stably weakly contained in b if for all A1, . . . , Ak ∈ MALGµ,
all finite F ⊆ Γ and all ε > 0 there exist α1, . . . , αm such that

∑m
i=1 α1 = 1 and sets

B1, . . . , Bk ⊆
⊔m

i=1 αiYi such that�����µ(γa Ai ∩ A j) −
m∑

i=1
αiν

(
γ

∑m
i=1 αibBi ∩ B j

)����� < ε.

We write a ≺s b if a is stably weakly contained in b and a ∼s b for a ≺s b and
b ≺s a.

When we wish to distinguish between an action and its equivalence class, we write
[a] for the weak equivalence class of a and [a]s for the stable weak equivalence class.
The quotient of A(Γ, X, µ) by the relation of stable weak containment is denoted
A∼s (Γ, X, µ). The goal of this paper is to analyze the topological and geometric
structure of A∼(Γ, X, µ) and A∼s (Γ, X, µ) .

More specifically, unlike A(Γ, X, µ), the spaces A∼(Γ, X, µ) and A∼s (Γ, X, µ) carry a
well-defined operation of convex combination. This is inherited from the operation
of endowing the disjoint union of two probability spaces with a convex combination
of their respective measures. In Section 2 we introduce a variation of a construction
of Fritz [37] which abstracts the idea of convex combinations. Fritz’s objects are
referred to as ‘convex spaces’; we weaken the definition in order to encompass the
convex structure on A∼(Γ, X, µ), obtaining the notion of ‘weak convex space’. We
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show that this relates naturally to other ideas of convexity, define a notion of convex
function, and generalize the important geometric notions of ‘convex hull’, ‘extreme
point’, and ‘face’ from the classical situation of vector spaces to this abstract frame-
work. We also define ‘topological weak convex spaces’ as weak convex structures
which are appropriately compatible with an underlying topology.

In Section 3 we consider methods of topologizing A∼(Γ, X, µ). The first topol-
ogy defined on this space was in [1], and a second formulation was given in [74].
These are equivalent, Polish, compact and finer than the quotient of the weak topol-
ogy on A(Γ, X, µ). We discuss a third topology, implicit in [1] and pointed out to us
by Kechris. This is shown to be equivalent to the previous two. We also consider a
natural topology on A∼s (Γ, X, µ).

In Section 4 we describe how to endow A∼(Γ, X, µ)with the structure of a weak con-
vex space and show that it is in fact a topological weak convex space. Furthermore,
we show that the metric giving A∼(Γ, X, µ) its Polish topology is compatible with
the convex structure in the sense that the distance function to any compact convex
set is a convex function.

In Section 5 we analyze the structure of A∼(Γ, X, µ) for amenable Γ. The main
tool is the following idea. Let Sub(Γ) be the space of subgroups of Γ, regarded as
a subspace of {0, 1}Γ with the product topology. Sub(Γ) is then a compact metric
space on which Γ acts by conjugation.

Definition 2.1.3. An invariant random subgroup of Γ is a conjugation-invariant
Borel probability measure on Sub(Γ).

Invariant random subgroups have been studied in numerous recent papers, including
[4], [11], [13] and [35]. If Γ ya (X, µ) is a measure-preserving action, then the
pushforward measure (staba)∗µ is an invariant random subgroup of Γ called the type
of a. We extend ideas of Tucker-Drob from [74] to show the following.

Theorem 2.1.1. If Γ is amenable, then A∼(Γ, X, µ) is isomorphic to IRS(Γ) as
a topological convex space. In particular, if Γ is amenable then A∼(Γ, X, µ) is
isomorphic to a compact convex subset of a Banach space.

In Section 6 we consider the structure of A∼(Γ, X, µ) for general Γ. If Γ is non-
amenable, the existence of strongly ergodic actions of Γ implies that the convex
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structure on this space has the pathology that the convex combination of a point x

with itself might be different from x. This is why we need to consider weak convex
spaces instead of just convex spaces. The main result of this section is the following
Krein-Milman type theorem.

Theorem 2.1.2. A∼(Γ, X, µ) is equal to the closed convex hull of its extreme points.
In other words, finite convex combinations of the extreme points of A∼(Γ, X, µ) are
dense in A∼(Γ, X, µ).

Given this result, it seems interesting to describe the extreme points of A∼(Γ, X, µ).
In the amenable case, the identification with IRS(Γ) provides a complete such
description, since the extreme points of IRS(Γ) are known to be the ergodicmeasures
and consequently the extreme points of A∼(Γ, X, µ) for amenable Γ are exactly those
actions with ergodic type. In the nonamenable case this description does not suffice.
It is clear that any strongly ergodic action is an extreme point. We are able to show
the following.

Theorem 2.1.3. Suppose [a] ∈ A∼(Γ, X, µ) is an extreme point. Let a =
∫

Z azdη(z)
be the ergodic decomposition of a. Then there is a measure-preserving action b of
Γ such that for η-almost all z ∈ Z we have [az] = [b].

Let FR∼(Γ, X, µ) denote the subspace of A∼(Γ, X, µ) consisting of the weak equiva-
lence classes of free actions. We prove:

Theorem 2.1.4. Let FN be a free group of finite or countably infinite rank. Then the
weak equivalence classes containing a free ergodic action are dense inFR∼(FN, X, µ).

In Section 7 we use a characterization of convex subsets of Banach spaces from [25]
to show the following.

Theorem 2.1.5. For any Γ, the space A∼s (Γ, X, µ) is isomorphic to a compact
convex subset of a Banach space.

We characterize the extreme points of A∼s (Γ, X, µ) as precisely those stable weak
equivalence classes which contain an ergodic action. This result was obtained by
Tucker-Drob and Bowen independently of the author. Tucker-Drob and Bowen have
also shown that A∼s (Γ, X, µ) is a simplex, and the set FR∼s (Γ, X, µ) of stable weak
equivalence classes of free actions is a subsimplex. Recall that a Poulsen simplex
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is a simplex such that the extreme points are dense. Thus from Theorem 2.1.4 we
have:

Corollary 2.1.1. Let FN be a free group of finite or countably infinite rank. Then
FR∼s (FN, X, µ) is a Poulsen simplex.
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2.2 Weak convex spaces
We first describe the formalism realized by A∼(Γ, X, µ).

Convex spaces and weak convex spaces.
Convex spaces were introduced in [37] and further developed in [25] as an abstract
setting to study the notion of convex combination.

Definition 2.2.1. [37] A convex space is a set X together with a familyV of binary
operations cct for each t ∈ [0, 1] such that for all x, y, z ∈ X and all s, t ∈ [0, 1]

(1) cc0(x, y) = x,

(2) cct(x, x) = x,

(3) cct(x, y) = cc1−t(y, x),

(4) cct(ccs(x, y), z) = ccst

(
x, cc t(1−s)

1−st
(y, z)

)
.

Wewill usually write t x+V (1− t)y for cct(x, y), omitting the subscriptV when the
convex structure being considered is clear. Note that (4) allows us to unambiguously
define

∑n
i=1 λi xi for (xi)ni=1 ⊆ X and (λi)ni=1 ⊆ [0, 1] such that

∑n
i=1 λi = 1. We will

need to weaken the definition of a convex space to cover the situation where a convex
combination of a point x with itself could be different from x.

Definition 2.2.2. An weak convex space is a set X with a family cct of binary
operations for t ∈ [0, 1], satisfying (1), (3), and (4) of Definition 2.2.1.
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Definition 2.2.3. A topological (weak) convex space is a topological space X

carrying a (weak) convex structure such that the ternary operation cc : [0, 1]×X2 →
X given by cc(t, x, y) = cct(x, y) is continuous.

Extreme points and faces
We can define extreme points in a weak convex space in exactly the same way as in
a vector space.

Definition 2.2.4. If A is a convex set in a weak convex space, we say x ∈ A is an
extreme point if x = ty+ (1− t)z for 0 < t < 1 and some y, z ∈ A implies y = z = x.
Write ex(A) for the set of extreme points of A. If A is a compact convex subset of
a topological weak convex space, we say a face of A is a nonempty closed subset
F ⊆ A such that if x, y ∈ A, 0 < t < 1 and t x + (1 − t)y ∈ F then x, y ∈ F.

2.3 Topology on the space of weak equivalence classes
Let Γ be a countable group and A∼(Γ, X, µ) be its space of actions modulo weak
equivalence. We consider a metric on A∼(Γ, X, µ) which is implicit in [1].

Fix an enumeration (γi)∞i=0 of Γ. If A = {A1, . . . , Ak} is a partition of X into
k pieces, a ∈ A(Γ, X, µ) and n ∈ N, let MAn,k(a) ∈ [0, 1]

n×k×k be the point
whose p, q, r coordinate is µ(γa

p Aq ∩ Ar), where p ≤ n and q, r ≤ k. Let
Cn,k(a) = {MAn,k(a) : A is a partition of X into k pieces.} Then we can define a
pseudometric d on A(Γ, X, µ) by the formula

d(a, b) =
∞∑

n,k=1

1
2n+k dH(Cn,k(a),Cn,k(b)),

where dH is the Hausdorff distance in the hyperspace of compact subsets of
[0, 1]n×k×k . It is easy to see that a ∼ b if and only if d(a, b) = 0, so d descends to a
metric on A∼(Γ, X, µ), which we also denote by d. Let τ1 be the topology induced
by d. We note that this definition extends to actions on countable spaces. We will
write A∗∼(Γ) for the space of all actions of Γ on probability spaces.

We now describe a different construction of the topology on A∼(Γ, X, µ) due to
Tucker-Drob [74] in order to show it agrees with the one we have just introduced.
(Tucker-Drob shows in [74] that his formulation agrees with the one from [1]).

Let S be a compact Polish space, and consider SΓ, which is also a compact Pol-
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ish space. Γ acts on SΓ by the shift action s given by (γs f )(δ) = f (γ−1δ). Let
Ms(SΓ) be the compact Polish space of shift-invariant probability measures on SΓ

and let KS = K(Ms(SΓ)) be the hyperspace of compact subsets of Ms(SΓ) equipped
with the Hausdorff topology. Then KS is again compact and Polish. Now con-
sider an S-valued random variable φ ∈ L(X, µ, S) on X , that is to say a measurable
map φ : X → S. For each measure-preserving action a ∈ A(Γ, X, µ) we get a map
Φ
φ,a
S : X → SΓ by lettingΦφ,aS (x)(γ) = φ((γ

−1)a x) and consequently a shift-invariant
measure (Φφ,aS )∗µ on SΓ. Then define a subset E(a, S) of Ms(SΓ) by

E(a, S) = {(Φφ,aS )∗µ : φ : X → S is measurable}.

Let ΦS : A(Γ, X, µ) → KS be given by ΦS(a) = E(a, S). When S = K is the Cantor
set, we omit the subscript S on the notations just introduced. By Proposition 3.5
in [74], we have a ∼ b if and only if Φ(a) = Φ(b) so we can consider the initial
topology on A∼(Γ, X, µ) induced by Φ. Call this τ2. We now work towards showing
τ1 agrees with τ2. There will be a series of preliminary steps. This entire argument
can be regarded as a ‘perturbed’ version of Proposition 3.5 in [74].

We first fix a compatible metric on Ms(KΓ). Let AK be the collection of clopen
subsets of KΓ of the form π−1

F

(∏
γ∈F Aγ

)
where Aγ ⊆ K an element of some fixed

countable clopen basis for K , F ⊆ Γ is finite and π : KΓ → KF is the projection
onto the F-coordinates. Since the elements of AK generate the Borel σ-algebra of
KΓ, for (νn)∞n=1 ⊆ Ms(KΓ) we have νn → ν in Ms(KΓ) if and only if νn(A) → ν(A)
for every A ∈ AK . So, enumerating the elements of AK as (AK

i )∞i=1, δK given by

δK(ν, ρ) =
∞∑

i=1

1
2i |ν(A

K
i ) − ρ(AK

i )|

is a compatible metric on Ms(KΓ).

Lemma 2.3.1. For any ε > 0 there exists k ∈ N such that every a and every
φ ∈ L(X, µ,K) there is ψ ∈ L(X, µ,K) with δK((Φφ,a)∗µ, (Φψ,a)∗µ) < ε such that
the range of ψ has size ≤ k. Note that k depends only on ε , not on a or φ.

Proof. Fix ε . Choose N large enough that
∑∞

i=N
1
2i < ε . For each i ≤ N , write

Ai = π−1
Fi

(∏
γ∈Fi

Ai
γ

)
for Ai

γ ⊆ K clopen and Fi ⊆ Γ finite. We have for all
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a ∈ A(Γ, X, µ) and φ, ψ ∈ L(X, µ,K),

|Φφ,a(Ai) − Φψ,a(Ai)| =

������Φφ,a
(
π−1

Fi

(∏
γ∈Fi

Ai
γ

))
− Φψ,a

(
π−1

Fi

(∏
γ∈Fi

Ai
γ

))������
= |µ({x : Φφ,a(x)(γ) ∈ Ai

γ for all γ ∈ Fi})
− µ({x : Φψ,a(x)(γ) ∈ Ai

γ for all γ ∈ Fi})|
= |µ({x : φ((γ−1)a x) ∈ Ai

γ for all γ ∈ Fi})
− µ({x : ψ((γ−1)a x) ∈ Ai

γ for all γ ∈ Fi})|

=

������µ
(⋂
γ∈Fi

γaφ−1(Ai
γ)

)
−

(⋂
γ∈Fi

γaψ−1(Ai
γ)

)������ . (2.1)

Now, fix φ ∈ L(X, µ,K). Let (B j)kj=1 be the finite partition of K given by the atoms
of the Boolean algebra generated by (Ai

γ)i≤N,γ∈Fi . Note that k depends only on ε .
For each j ≤ k, let y j be any point in B j . Define a map ψ : X → K by letting
ψ(x) = y j for the unique j such that x ∈ φ−1(B j). Then ψ−1(B j) = φ−1(B j) for each
j, and hence φ−1(Ai

γ) = ψ−1(Ai
γ) for each i ≤ N and γ ∈ Fi. Therefore the value of

the expression (1) is 0 and δK((Φφ,a)∗µ, (Φψ,a)∗µ) < ε. �

Lemma 2.3.2. If E(an, L) → E(a, L) in K(Ms(LΓ)) for every finite set L then
E(an,K) → E(a,K) in K(Ms(KΓ)).

Proof. Fix ε > 0 in order to show that eventually dK
(
E(an,K), E(a,K)

)
< ε , where

dK is the Hausdorff distance in K(Ms(KΓ)) constructed from δK . For k ∈ N and
b ∈ A(Γ, X, µ) let

Ek(b,K) = {(Φφ,a)∗µ : φ : X → K is measurable and the range of φ has size ≤ k}.

By Lemma 2.3.1 we can choose k ∈ N such that E(b,K) ⊆ B ε
4
(Ek(b,K)) for every

b ∈ A(Γ, X, µ) where Br(A) = {ν ∈ Ms(KΓ) : δK(ν, ρ) < r for some ρ ∈ A}. Notice
that Ek(b,K) =

⋃
L⊆K,
|L |=k

E(b, L). Fix a set L of size k and choose N large enough such

that if n ≥ N then dKL

(
E(an, L), E(a, L)

)
< ε

4 where dKL is the Hausdorff distance
in K(Ms(LΓ)). Since the construction is independent of the set chosen to realize L,
we have in fact dKL

(
E(an, L), E(a, L)

)
< ε

4 for every finite set L of size k. For a
fixed finite L ⊆ K let EL(b,K) = {(Φb,φ)∗µ : φ : X → K measurable, φ(X) ⊆ L}.
Then for any b, c ∈ A(Γ, X, µ) we have

dK
(
EL(b,K), EL(c,K)

)
= dKL

(
E(b, L), E(c, L)

)
,
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so that when n ≥ N ,

dK
(
Ek(an,K), Ek(a,K)

)
= dK

©­­­«
⋃
L⊆K
|L |=k

E(an, L),
⋃
L⊆K
|L |=k

E(a, L)
ª®®®¬

≤ sup
L⊆K
|L |=k

dKL

(
E(an, L), E(a, L)

)
<
ε

4
.

Therefore when n ≥ N ,

dK
(
E(an,K), E(a,K)

)
≤ dK

(
E(an,K), Ek(an,K)

)
+ dK

(
Ek(an,K), Ek(a,K)

)
+ dK

(
Ek(a,K), E(a,K)

)
<

3ε
4
.

�

Lemma 2.3.3. Let L be a finite set of size k. Then for each finite set (Ap)qp=1 of basic
clopen sets Ap ⊆ LΓ and ε > 0 there is δ > 0 such that if d(a, b) < δ then for all φ ∈
L(X, µ, L) there exists ψ ∈ L(X, µ, L) such that |(Φa,φ

L )∗µ(Ap) − (Φb,ψ
L )∗µ(Ap)| < ε

for all p ≤ q.

Proof. Write Ap =
⋂
γ∈Fp

π−1
γ ( p(γ)) for some Fp ⊆ Γ finite,  : Fp → k and fix

ε > 0. Choose a finite F ⊆ Γ with (Fp)2 ⊆ F for all p ≤ q. We may assume the
identity e ∈ F. Suppose d(a, b) < δ

2 |F |+k |F |
; we will specify a value for δ later. Now

fix φ : X → k and let Bi = φ
−1(i). Given η : F → k, let Bη =

⋂
γ∈F γ

aBη(γ). We
can then find a partition {Dη}η∈kF such that

|µ(γaBη1 ∩ Bη2) − µ(γbDη1 ∩ Dη2)| < δ

for all η1, η2 ∈ kF and γ ∈ F. Define ψ : X → k, by ψ(y) = l if y ∈ Dη for
some η with η(e) = l. Furthermore, for each l ≤ k let Dl =

⊔{Dη : η ∈ kF and
η(e) = l} = ψ−1(l). For each J ⊆ F and σ ∈ k J let Dσ =

⊔{Dη : η ∈ kF and
σ v η}, where σ v η means η extends σ and let D̃σ =

⋂
γ∈J γ

bDσ(γ). Furthermore
if γ ∈ Γ, J ⊆ Γ and σ ∈ k J let γ · σ ∈ kγJ be given by (γ · σ)(δ) = σ(γ−1δ). For
σ ∈ KFp and γ ∈ Fp we have

|µ(γbDσ ∩ Dγ·σ) − µ(γaBσ ∩ Bγ·σ)|
≤

∑
(η∈kF :σvη)

∑
(η′∈kF :γ·σvη′)

|µ(γbDη ∩ Dη′) − µ(γaBη ∩ Bη′)|

≤ δ(k |F |)2.
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In particular, setting γ = e we see |µ(Bσ) − µ(Dσ)| < δk2|F | for every σ : Fp → k.
Since γaBσ = Bγ·σ = γaBσ ∩ Bγ·σ we have

|µ(Dσ) − µ(γbDσ ∩ Dγ·σ)| ≤ |µ(Dσ) − µ(γaBσ)|
+ |µ(γaBσ ∩ Bγ·σ) − µ(γbDσ ∩ Dγ·σ)|

= |µ(Dσ) − µ(Bσ)|
+ |µ(γaBσ ∩ Bγ·σ) − µ(γbDσ ∩ Dγ·σ)|

< 2δk2|F |

and also

|µ(Dγ·σ) − µ(γbDσ ∩ Dγ·σ)| ≤ |µ(Dγ·σ) − µ(Bγ·σ)|
+ |µ(γaBσ ∩ Bγ·σ) − µ(γbDσ ∩ Dγ·σ)|

< 2δk2|F | .

Therefore

µ((γbDσ)4(Dγ·σ)) = µ(γbDσ) + µ(Dγ·σ) − 2µ(γbDσ ∩ Dγ·σ)
≤ |µ(Dγ·σ) − µ(γbDσ ∩ Dγ·σ)| + |µ(Dγ·σ) − µ(γbDσ ∩ Dγ·σ)|
< 4δk2|F | . (2.2)

Since (Dη)η∈kF is a partition of X and (Fp)2 ⊆ F, we have

D p =
⊔
η∈kF

pvη

Dη =
⋂
γ∈Fp

⊔
σ∈kγFp

σ(γ)= p(γ)

Dσ =
⋂
γ∈Fp

⊔
σ∈kFp

σ(e)= p(γ)

Dγ·σ .

Now, by (2),

µ

©­­­­«
©­­­«
⋂
γ∈Fp

⊔
σ∈kFp

σ(e)= (γ)

Dγ·σ

ª®®®¬4
©­­­«
⋂
γ∈Fp

⊔
σ∈kFp

σ(e)= p(γ)

γbDσ

ª®®®®¬
ª®®®®¬
< (|Fp |k |Fp |)(4δk2|F |). (2.3)

Note that ⋂
γ∈Fp

⊔
σ∈kFp

σ(e)= p(γ)

γbDσ =
⋂
γ∈Fp

γbD p(γ) = D̃ p,

so (3) reads
|µ(D p ) − µ(D̃ p )| < (|Fp |k |Fp |)(4δk2|F |).
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Moreover,

(Φb,ψ
L )∗µ(Ap) = µ({x : Φb,ψ

L (x) ∈ Ap})
= µ({x : Φb,ψ

L (x)(γ) = p(γ) for all γ ∈ Fp})
= µ({x : ψ((γ−1)bx) = p(γ) for all γ ∈ Fp})
= µ({x : x ∈ γbψ−1( p(γ)) for all γ ∈ Fp})

= µ
©­«
⋂
γ∈Fp

γbD p(γ)
ª®¬

= µ(D̃ p ).

Similarly, (Φa,φ
L )∗µ(Ap) = µ(B p ). So we finally have

|(Φb,ψ
L )∗µ(Ap) − (Φa,φ

L )∗µ(Ap)| = |µ(D̃ p ) − µ(B p )|
≤ |µ(D̃ p ) − µ(D p )| + |µ(D p ) − µ(B p )|
< (|Fp |k |Fp |)(4δk2|F |) + 2δk2|F | .

Since k is fixed in advance, |Fp | ≤ |F | and F depends only on (Ap)qp=1, it is clear
that δ can be chosen so (|Fp |k |Fp |)(4δk2|F |) + 2δk2|F | < ε for all p ≤ q. �

We can now prove the main result of this section.

Theorem 2.3.1. τ1 = τ2.

Proof. Suppose that an → a in τ1. We need to prove Φ(an) → Φ(a) inK(Ms(KΓ)).
By Lemma 2.3.2 it suffices to fix a finite set L and show E(an, L) → E(a, L) in
K(Ms(LΓ)). Let k = |L |. Write En = E(an, L) and E = E(a, L). As before, if we let
AL = (AL

i )∞i=1 be the collection of clopen subsets of LΓ of the form
⋂
γ∈F π

−1
γ ( jγ)

for a finite F ⊆ Γ and jγ ≤ k, then

δL(ν, ρ) =
∞∑

i=1

1
2i |ν(A

L
i ) − ρ(AL

i )|

is a compatible metric on Ms(LΓ). Fix ε > 0 in order to show that eventually
dL(En, E) < ε , where dL is the Hausdorff distance in K(Ms(LΓ)) constructed from
δL . Choose N sufficiently large that

∑∞
i=N

1
2i <

ε
2 . By Lemma 2.3.3 there is δ > 0

such that if d(a, b) < δ then for each i ≤ N and all φ ∈ L(X, µ, L) there exists
ψ ∈ L(X, µ, L) such that |(Φa,φ

L )∗µ(A
L
i ) − (Φ

b,ψ
L )∗µ(A

L
i )| <

ε
2 . Thus if M is large
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enough that d(an, a) < δ for n ≥ M , we have dL(En, E) < ε .

Now suppose Φ(an) → Φ(a) in K(Ms(KΓ)). Fix r, q and ε > 0 in order to show
that eventually dH(Cr,q(an),Cr,q(a)) < ε . Choose q distinct points (xp)qp=1 ∈ K and
let (Dp)qp=1 be a family of disjoint clopen subsets of K with xp ∈ Dp. Now let M

be large enough that all sets of the form π−1
γs (Dp) ∩ π−1

e (Dt) for s ≤ r and p, t ≤ q

appear as some AK
i for i ≤ M in our previously chosen clopen basis AK . Then

choose N large enough that when n ≥ N , dK(Φ(an),Φ(a)) < ε
2M . Then for each

φ ∈ L(X, µ,K) we have ψ ∈ L(X, µ,K) such that δK((Φan,φ)∗µ, (Φa,ψ)∗µ) < ε
2M . So

in particular, if n ≥ N then for each φ ∈ L(X, µ,K) there exists ψ ∈ L(X, µ,K) such
that

|(Φan,φ)∗µ(π−1
γs (Dp) ∩ π−1

e (Dt)) − (Φa,ψ)∗µ(π−1
γs (Dp) ∩ π−1

e (Dt))| < ε

for all p, t ≤ q and s ≤ r .

Now suppose n ≥ N and let (Bp)qp=1 be a partition of X . Define φ : X → K

by taking φ(x) = xp for the unique p ≤ q with x ∈ Bp so by the previous paragraph
we have a corresponding ψ. Observe that for all γ ∈ Γ we have

µ(γanBp ∩ Bt) = µ(γanφ−1(Dp) ∩ φ−1(Dt))
= µ({x : φ((γan)−1x) ∈ Dp and φ(x) ∈ Dt})
= µ({x : Φφ,an(x)(γ) ∈ Dp and Φφ,an(x)(e) ∈ Dt})
= µ({x : Φφ,an(x) ∈ π−1

γ (Dp) and Φφ,an(x) ∈ π−1
e (Dt)})

= µ({x : Φφ,an(x) ∈ π−1
γ (Dp) ∩ π−1

1 (Dt)})
= (Φφ,an)∗µ(π−1

γ (Dp) ∩ π−1
1 (Dt)).

Similarly letting Hp = ψ
−1(Dp) we have

µ(γaHp ∩ Ht) = (Φψ,an)∗µ(π−1
γ (Dp) ∩ π−1

1 (Dt)).

Thus for all p, t ≤ q and s ≤ r ,

|µ(γan
s Bp ∩ Bt) − µ(γa

s Hp ∩ Ht)|
= |(Φφ,an)∗µ(π−1

γ+s(Dp) ∩ π−1
e (Dt)) − (Φψ,an)∗µ(π−1

γs (Dp) ∩ π−1
e (Dt))|

< ε.

We have shown that when n ≥ N , Cr .q(an) ⊆ Bε (Cr,q(a)). The argument that
eventually Cr,q(a) ⊆ Bε (Cr,q(an)) is identical. �
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Topology on the space of stable weak equivalence classes
Let A∼s (Γ, X, µ) be the space of stable weak equivalence classes and let ι be the
trivial action of Γ on an standard probability space. By Lemma 3.7 in [74], we
have a ≺s b if and only if a ≺ ι × b. Moreover, Theorem 1.1 in [74] says that
E(a × ι,K) = cch(E(a,K)), where Ms(KΓ) carries its natural topological convex
structure as a compact convex subset of a Banach space. Letting Ψ : A(Γ, X, µ) →
K(Ms(KΓ)) be the map a 7→ cch(E(a,K)) we have Ψ(a) = Ψ(b) if and only if
a ∼s b. Tucker-Drob gives A∼s (Γ, X, µ) the initial topology induced by Ψ, in which
it is a compact Polish space. Thus we have an → a in the topology of A∼s (Γ, X, µ) if
and only if an× ι→ a× ι in the topology of A∼(Γ, X, µ). Therefore we can introduce
a metric ds on A∼s (Γ, X, µ) by setting ds(a, b) = d(a × ι, b × ι).

2.4 The space of weak equivalence classes as a weak convex space
We now describe how to give A∼(Γ, X, µ) the structure of a weak convex space.
Given t ∈ [0, 1] and a, b ∈ A∼(Γ, X, µ) we let c ∈ A (Γ, X1 t X2, tµ1 + (1 − t)µ2) be
the disjoint sum of representative actions a and b on the disjoint union of two copies
X1 and X2 of X with the first copy carrying a copy of themeasure µweighted by t and
the second copy carrying a copy of µweighted by (1−t). To get an action inA(Γ, X, µ)
we need to choose an isomorphism of (X, µ) with (X1 t X2, tµ1 + (1 − t)µ2), but
the weak equivalence class of c does not depend on this or on the representatives
we chose. So we have a well-defined binary operation A∼(Γ, X, µ)2 → A∼(Γ, X, µ).
Call this cct . It is clear that (1), (3) and (4) of Definition 2.2.1 are satisfied, so
A∼(Γ, X, µ) is a weak convex space. Moreover, we have the following.

Proposition 2.4.1. A∼(Γ, X, µ) is a topological weak convex space.

Proof. We must show that cc is continuous. Suppose that t j → t in [0, 1] and
a j → a and b j → b in the topology of A∼(Γ,Y, µ). Write c j = t ja j + (1 − t j)b j and
c = ta + (1 − t)b. Fixing l,m ∈ N write C(d) for Cl,m(d). We need to prove that for
every ε > 0 there is J so that if j > J then we have dH(C(c j),C(c)) < ε , where dH

is the Hausdorff distance in [0, 1]l×m2 .

First we must show that for sufficiently large j, for every partition B1, . . . , Bl of
Y there is a partition D1, . . . ,Dl of Y depending on j such that for all s, t ≤ l and
p ≤ m,

|µ(γcj
p Ds ∩ Dt) − µ(γc

pBs ∩ Bt)| < ε.
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Choose J1 so that if j > J1 then |t j − t | < ε
6 . Choose J2 > J1 so if j > J2 then

dH(Caj,Ca) < ε
6 and dH(Cbj,Cb) < ε

6 . Fix j > J2. Writing θ for the isomorphism
from (Y1 tY2, tµ+ (1− t)µ) to (Y, µ) and θ j for the isomorphism from (Y1 tY2, t j µ+

(1− t j)µ) to (Y, µ) we have a partition (Bs,i)ls=1 of Yi given by Bs,i = θ
−1(Bs) ∩Yi. So

we can find a partition (Ds,i)ls=1 of Yi such that for all p ≤ m and all s, t ≤ l we have

|µ(γaj
p Ds,1 ∩ Dt,1) − µ(γa

p Bs,1 ∩ Bt,1)| <
ε

6
and

|µ(γbj
p Ds,2 ∩ Dt,2) − µ(γb

pBs,2 ∩ Bt,2)| <
ε

6
.

Now, let Ds = θ j(Ds,1 t Ds,2). Note that since each θ j(Yi) is c j invariant,

µ(γcj
p Ds ∩ Dt) = µ(γ

cj
p θ j(Ds,1) ∩ θ j(Dt,1)) + µ(γ

cj
p θ j(Ds,2) ∩ θ j(Dt,2))

= µ(θ j(γ
aj
p Ds,1 ∩ Dt,1)) + µ(θ j(γ

bj
p Ds,2 ∩ Dt,2))

= t j µ(γ
aj
p Ds,1 ∩ Dt,1) + (1 − t j)µ(γ

bj
p Ds,2 ∩ Dt,2).

Similarly since θ(Yi) is c-invariant we have

µ(γc
pBs ∩ Bt) = µ(γc

pθ(Bs,1) ∩ θ(Bt,1)) + µ(γc
pθ(Bs,2) ∩ θ(Bt,2))

= µ(θ(γa
p Bs,1 ∩ Bt,1)) + µ(θ(γb

pBs,2 ∩ Bt,2))
= tµ(γa

p ∩ Bs,1 ∩ Bt,1) + (1 − t)µ(γb
p ∩ Bs,2 ∩ Bt,2).

Note that if |x1 − x2 | < δ and |y1 − y2 | < δ then |x1y1 − x2y2 | < 3δ. So our
assumptions guarantee that we have

|t j µ(γ
aj
p Ds,1 ∩ Dt,1) − tµ(γa

p ∩ Bs,1 ∩ Bt,1)| <
ε

2
and

|(1 − t j)µ(γ
bj
p Ds,2 ∩ Dt,2) − (1 − t)µ(γb

p ∩ Bs,2 ∩ Bt,2)| <
ε

2
,

and hence
|µ(γcj

p Ds ∩ Dt) − µ(γc
pBs ∩ Bt)| < ε

as claimed.

Now we must show that for sufficiently large j, every partition B1, . . . , Bl of Y

there is a partition D1, . . . ,Dl of Y depending on j such that for all s, t ≤ l and
p ≤ m we have

|µ(γc
pDs ∩ Dt) − µ(γ

cj
p Bs ∩ Bt)| < ε.

The argument is similar to the previous step, so we omit it. �
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Corollary 2.4.1. A∼(Γ,Y, µ) is path connected.

Corollary 2.4.2. A∼(Γ,Y, µ) is uncountable.

We now record a lemma which will be useful later, guaranteeing that the metric on
A∼(Γ, X, µ) behaves nicely with respect to the convex structure.

Lemma2.4.1. For any convex setK ⊆ A∼(Γ, X, µ) the function d(·,K) = infb∈K d(·, b)
is convex.

Proof. Let x, y ∈ A∼(Γ, X, µ) and consider t x + (1− t)y. Fix n, k and write C(a) for
Cn,k(a). It suffices to show that

inf
b∈K

dH(C(t x + (1− t)y),C(b)) ≤ t( inf
b∈K

dH(C(x),C(b))+ (1− t)( inf
b∈K

dH(C(y),C(b))),

where dH is the Hausdorff distance in the space [0, 1]n×k2 . Fix ε > 0. It suffices to
find a ∈ K with

dH(C(t x+(1−t)y),C(a)) ≤ t( inf
b∈K

dH(C(x),C(b))+ε)+(1−t)( inf
b∈K

dH(C(y),C(b))+ε).
(2.4)

Choose c ∈ K with dH(C(x),C(c)) < infb∈K dH(C(x),C(b)) + ε and choose d ∈ K

with dH(C(x),C(d)) < infb∈K dH(C(y),C(b)) + ε . Note that since K is convex,
tc + (1 − t)d ∈ K . We claim

dH(C(t x + (1 − t)y),C(tc + (1 − t)d)) ≤ tdH(C(x),C(c)) + (1 − t)dH(C(y),C(d)),

which implies (4). Let δ > 0, it then suffices to show

dH(C(t x+(1−t)y),C(tc+(1−t)d)) ≤ t(dH(C(x),C(c))+δ)+(1−t)(dH(C(y),C(d))+δ).
(2.5)

Let X1 and X2 be two copies of X and ν be the measure on X1 t X2 given by
t(µ � X1)+ (1− t)(µ � X2). Let P = (Pi)ki=1 be a partition of X1tX2. This induces a
partition P1 = (P1

i )ki=1 of X1 given by P1
i = Pi ∩ X1 and similarly we have a partition

P2 = (P2
i )ki=1 of X2. We can find a partition Q1 = (Q1

i )ki=1 of X1 such that for m ≤ n

and i, j ≤ k we have



36

|µ(γx
mP1

i ∩ P1
j ) − µ(γc

mQ1
i ∩Q1

j )| < dH(C(x),C(c)) + δ

and similarly we can find a partition Q2 = (Q2
i )ki=1 of X2 such that for m ≤ n and

i, j ≤ k we have

|µ(γymP2
i ∩ P2

j ) − µ(γd
mQ2

i ∩Q2
j )| < dH(C(y),C(d)) + δ.

Let Q = (Qi)ki=1 be the partition of X1 t X2 given by Qi = Q1
i t Q2

i . Write
t(dH(C(x),C(c)) + δ) + (1 − t)(dH(C(y),C(d)) + δ) = r . Then for all m ≤ n and
i, j ≤ k we have

|ν(γt x+(1−t)y
m Pi ∩ Pj) − ν(γtc+(1−t)d

m Qi ∩Q j)|
≤ |tµ(γx

mP1
i ∩ P1

j ) − tµ(γc
mQ1

i ∩Q1
j )|

+ |(1 − t)µ(γymP2
i ∩ P2

j ) − (1 − t)µ(γd
mQ2

i ∩Q2
j )|

≤ r .

We have shown that C(t x + (1 − t)y) ⊆ Br(C(tc + (1 − t)d)). The argument that
C(tc+ (1− t)d) ⊆ Br(C(t x + (1− t)y)) is identical, so we omit it. Thus we conclude
dH(C(t x + (1 − t)y),C(tc + (1 − t)d)) ≤ r and (5) holds. �

We note that A∼(Γ, X, µ) in fact has additional structure in that it admits convex
combinations of infinitely many elements. We first consider the case of a countable
convex combination. If λi ∈ [0, 1] are such that

∑∞
i=1 λi = 1 and ai ∈ A∼(Γ, X, µ)

then we can naturally define an action
∑∞

i=1 λiai on the disjoint sum
⊔∞

i=1 Xi with
the i copy of X weighted by λi. It remains to check that this is independent of the
choice of representatives ai.

Proposition 2.4.2. If ai ≺ bi for all i, then
∑∞

i=1 λiai ≺
∑∞

i=1 λibi.

Proof. Let A1, . . . , Ak ⊆
⊔∞

m=1 Xm, ε > 0 and F ⊆ Γ finite be given. Choose N

such that
∑∞

m=N λm < ε
2 . For each m < N , consider the partition Am

1 , . . . , Am
k of Xm

given by Am
i = Ai ∩ Xm. We can find for each m < N a partition Bm

1 , . . . , B
m
k such

that for all γ ∈ F and i, j ≤ k we have

|µ(γai Am
i ∩ Am

j ) − µ(γ
bi Bm

i ∩ Bm
j )| <

ε

2
.
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Let Bi =
⊔∞

m=1 Bm
i . Then�����µ (

γ
∑∞

m=1 λmam Ai ∩ A j

)
− µ

(
γ

∑∞
m=1 λmbmBi ∩ B j

)�����
≤ |

N∑
m=1

λmµ(γam Am
i ∩ Am

j ) −
N∑

m=1
λmµ(γbmBm

i ∩ Bm
j )|

+ |
∞∑

m=M

λmµ(γam Am
i ∩ Am

j ) −
∞∑

m=M

λmµ(γbmBm
i ∩ Bm

j )|

≤
N∑

m=1
λm |µ(γai Am

i ∩ Am
j ) − µ(γ

bi Bm
i ∩ Bm

j )| +
ε

2

≤ ε

2

(
N∑

m=1
λm

)
+
ε

2
≤ ε .

�

It is in fact possible to define integrals of weak equivalence classes of actions over a
probability measure. Let (Z, η) be a probability space and suppose that for each z we
have a probability space (Yz, νz) and a measure-preserving action Γyaz (Yz, νz) such
that the map z 7→ [az] from (Z, η) to A∗∼(Γ) is measurable, where [az] is the weak
equivalence class of az. Note that we do not require (Xz, νz) or (Z, η) to be standard.
Let Y =

⊔
z∈Z Yz and put a measure ν on Y by taking ν(A) =

∫
Z νz(A ∩ YZ )dη(z).

Y will be a standard probability space isomorphic to (X, µ) if (Z, η) is standard or
η-almost all (Yz, νz) are standard. Let Γ ya (Y, ν) be given by letting Γ act like az

on Yz. We write a =
∫

Z azdη(z). We then have a map φ : Y → Z given by letting
φ(y) be the unique z such that y ∈ Yz. This is clearly a factor map from a to ιZ,η and
ν =

∫
Z νzdη(z) is the disintegration of ν over η via φ. Thus Theorem 3.12 in [74]

guarantees that if bz are actions of Γ on (Yz, νz) with bz ∼ az then if b =
∫

Z bzdη(z)
we have a ∼ b. Therefore this construction gives a well-defined weak equivalence
class of actions of γ. If we restrict (Yz, νz) to be standard, then we in fact have a
mapping from the space M(A∼(Γ, X, µ)) of probability measures on A∼(Γ, X, µ) to
A∼(Γ, X, µ).

Lemma 2.4.2. For any n, k, and (Z, η) and measurable assignment z 7→ az, we have
Cn,k

(∫
Z azdη(z)

)
⊆ cch

(⋃
z∈Z Cn,k(az)

)
.

Proof. Fix n, k and let a =
∫

Z azdη(z). Let (Xz, µz) by the underlying measure space
of az. Let L be a countable dense subset of MALG

(⊔
z∈Z Xz,

∫
Z µzdη(z)

)
, so that
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Lk is dense in the space of k-partitions of
⊔

z∈Z Xz. Then {MA(a)}A∈Ln is dense in
Cn,k

(∫
Z azdη(z)

)
, so it suffices to show that each MA(a) ∈ cch

(⋃
z∈Z C(az)

)
. For

each A, the function fA : Z → Rn×k×k given by z 7→ MAz (az) is a Borel function,
whereAz is the partition of Xz given by (A∩Xz)A∈A . Thus MA(a) =

∫
Z fA(a)dη(z).

We may assume that Z carries a Polish topology such that fA is continuous for all
A ∈ Ln. Choose a sequence of measures (νi)∞i=1 such that νi has finite support and
νi → η in the topology of M(Z), the space of all Borel probability measures on Z .
If we write νi =

∑ j(i)
j=1 α jδz j then∫
Z

fA(z)dνi(z) =
j(i)∑
j=1

α j fA(z j) ∈ ch

(⋃
z∈A

C(az)
)
.

Since νi → η, we have ∫
Z

fA(z)dνi(z) →
∫

Z
fA(z)dη(z)

which proves the lemma. �

2.5 The structure of the space of weak equivalence classes for amenable acting
groups

When Γ is amenable, the structure of A∼(Γ, X, µ) can be completely described using
the notion of an invariant random subgroup. We begin with the following, the
following extends Theorem 1.8 in [74]. Recall that if Γ ya (X, µ) is a measure-
preserving action, we have a map staba : X → Sub(Γ) given by x 7→ staba(x). The
type of a is the invariant random subgroup of Γ given by (staba)∗µ.

Proposition 2.5.1. If Γ is amenable and a, b ∈ A(Γ, X, µ) then type(a) = type(b) if
and only if a ∼ b.

Proof. By [1] type is an invariant of weak equivalence so suppose type(a) = type(b).

Let Xa
∞ = {x ∈ X : [Γ : staba(x) = ∞]} and Xb

∞ = {x ∈ X : [Γ : stabb(x)] = ∞}.
Notice that Xa

∞ is a-invariant and Xb
∞ is b-invariant and since type(a) = type(b),

µ(Xa
∞) = µ(Xb

∞). Suppose that µ(Xa
∞) > 0 and let a∞ = a � Xa

∞ with normalized
measure µ�Xa

∞
µ(Xa

∞) and define b∞ similarly. Then type(a∞) = type(b∞) and these are
concentrated on the infinite index subgroups of Γ, therefore a∞ ∼ b∞ by Theorem
1.8 (2) in [74]. Thus to prove the proposition it suffices to show the following. Note
that for this we do not require Γ to be amenable.
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Lemma 2.5.1. Suppose a, b ∈ A(Γ, X, µ) are actions such that type(a) = type(b)
and these are concentrated on the finite-index subgroups of Γ. Then a ∼ b.

Proof. Wemay assume that θ = type(a) = type(b) is concentrated on the subgroups
of index n for some fixed n. Consider an a-orbit C. For each linear ordering <i

C

of C, we get a homomorphism ψi
C : Γ → Sym(n), where Sym(n) is the symmetric

group on n letters. Place a Borel linear order @ on Sym(n)Γ. Let then <a
C=<

i0
C be

the linear order such that ψi0
C is @-least among all the ψi

C . Write φa
C for ψi0

C . Use
this same construction to choose homomophisms φb

D for each b-orbit D. Write φa
x

for φa
[x]Ea

and similarly φb
x for φb

[x]Eb
.

For a homomorphism φ : Γ → Sym(n) let jφ be the corresponding action of Γ
on {1, . . . , n}. Say φ is transitive if jφ is transitive. Each transitive homomor-
phism φ : Γ → Sym(n) determines a conjugacy class Hφ of index n subgroups
of Γ as the stabilizers of jφ. For each a-orbit [x]Ea the stabilizers of the action
of Γ on [x]Ea also determine a conjugacy class Ha

x of index n subgroups of Γ.
Let c be the action of Sym(n) on Sym(n)Γ by ( f · φ)(γ)(k) = f φ(γ) f −1(k). Then
[φa

x]Ec =
{
ψi
[x]Ea

:<i
[x]Ea

is a linear ordering of [x]Ea

}
. Let L be the set of all tran-

sitive homomorphisms φ : Γ → Sym(n) such that φ is @-least in [φ]Ec . It is clear
that for φ ∈ L, φa

x = φ if and only if Ha
x = Hφ. Similarly φb

x = φ if and only if
Hb

x = Hφ. Thus for any A ⊆ L, we have

µ({x : φa
x ∈ A}) = µ({x : Ha

x = Hφ for some φ ∈ A})
= µ({x : staba(x) is conjugate to an element of

Hφ for some φ ∈ A})
= θ({H ∈ Sub(Γ) : H is conjugate to an element of

Hφ for some φ ∈ A})
= µ({x : stabb(x) is conjugate to an element of

Hφ for some φ ∈ A})
= µ({x : φb

x ∈ A}).

Now, fix a finite set F ⊆ Γ and a partition A1, . . . , Am of X . For each map
ω : F → Sym(n) let Xa

ω = {x ∈ X : φa
x � F = ω} and similarly Xb

ω = {x ∈ X :
φb

x � F = ω}. Then (Xa
ω)ω∈Sym(n)F and (Xb

ω)ω∈Sym(n)F are finite decompositions of
X with µ(Xa

ω) = µ(Xb
ω). For k ≤ n let

Xa
ω,k =

{
x ∈ Xa

ω : x is in the k-position with respect to <a
[x]Ea

}
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and define Xb
ω,k similarly. We claim that for each k there is a measure-preserving

bijection Sa
ω,k of Xa

ω,k with Xa
ω,1. Let @1 be a wellordering of Γ. For each γ ∈ Γ let

Xa
ω,k,γ =

{
x ∈ Xa

ω,k : the @1 - least δ ∈ Γ with δa x ∈ Xa
ω,1 is equal to γ

}
.

Put then Sa
ω,k � Xa

ω,k,γ = γa. In particular, this shows that µ(Xa
ω,k) =

µ(Xa
ω)

n . We

can perform the same construction for b and we see that µ(Xb
ω,k) =

µ(Xb
ω)

n . So
µ(Xa

ω,1) = µ(Xb
ω,1) and hence there is a measure-preserving bijection Tω,1 of each

Xa
ω,1 with Xb

ω,1. Define a measure-preserving bijection Tω of Xa
ω with Xb

ω by let-
ting Tω(x) = (Sb

ω,k)
−1TSa

ω,k(x) for x ∈ Xa
ω,k . Let then T =

⋃
ω∈Sym(n)F Tω so

T ∈ Aut(X, µ).

We claim that for all γ ∈ F and all x ∈ X , we have T(γa x) = γbT(x). Indeed,
suppose x ∈ Xa

ω,k so that x is in the k-position with respect to <a
[x]Ea

. Then γa x is in
the φa

x(γ)(k) = ω(k) position with respect to <a
[x]Ea

so T(γa
x ) is in the ω(k) position

of the Eb-class D such that Tω,1Sa
ω,k(x) ∈ D, where D has the canonical order <b

D.
On the other hand, T(x) = Tω(x) is in the k-position of D with respect to <b

D. Hence
γbT(x) is in the φb

T(x)(γ)(k) = ω(k) position of D and we have the claim. Now, for
i ≤ m putting Bi = T(Ai) we have for any γ in F and i, j ≤ m,

µ(γbBi ∩ B j) = µ(γbT(Ai) ∩ T(A j))
= µ(T(γa Ai) ∩ T(A j)
= µ(T(γa Ai ∩ A j))
= µ(γa Ai ∩ A j)

and therefore a ∼ b. �

�

In [74], Tucker-Drob shows that for amenable Γ, the space A∼s (Γ, X, µ) of stable
weak equivalence classes is homeomorphic to the space IRS(Γ) of invariant random
subgroups of Γ. Indeed, type(a) = type(b) if and only if a ∼s b and the map
A∼s (Γ, X, µ) → IRS(Γ) given by a 7→ type(a) is a homeomorphism. So we have the
following.

Corollary 2.5.1. For amenable Γ, a ∼s b if and only if a ∼ b.
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Moreover, let x ∈ X , t ∈ [0, 1] and a, b ∈ A(Γ, X, µ) and consider the action
ta + (1 − t)b on tX1 t (1 − t)X2. We have stabta+(1−t)b = staba(x) if x ∈ X1 and
stabb(x) if x ∈ X2. Thus for any H ≤ Γ, {x : stabta+(1−t)b(x) = H} = {x ∈ X1 :
staba(x) = H} t {x ∈ X2 : stabb(x) = H} so for any A ⊆ Sub(Γ) we have

(tµ1 + (1 − t)µ2)({x : stabta+(1−t)b(x) ∈ A})
= (tµ1 + (1 − t)µ2)({x ∈ X1 : staba(x) ∈ A}
t {x ∈ X2 : stabb(x) ∈ A})
= tµ({x : staba(x) ∈ H}) + (1 − t)µ({x : stabb(x) ∈ A}).

Therefore type(ta + (1 − t)b) = t(type(a)) + (1 − t)(type(b)) and Theorem 2.1.1 fol-
lows. Note in particular that if Γ is amenable then ta+ (1− t)a ∼ a, so for amenable
groups A∼(Γ, X, µ) is actually a convex space, not just a weak convex space.

It is known (see for example [35]) that IRS(Γ) is a simplex in C(Sub(Γ))∗, the dual
of the Banach space C(Sub(Γ)) of continuous functions on Sub(Γ). So by the clas-
sical Krein-Milman theorem we have that for amenable Γ, cch(ex(A∼(Γ, X, µ))) =
A∼(Γ, X, µ). We will prove an analogous result for general Γ using other means.
Moreover, ex(IRS(Γ)) is precisely the ergodic measures in IRS(Γ) so when Γ is
amenable, ex(A∼(Γ, X, µ)) is the set of actions with ergodic type.

2.6 The structure of the space of weak equivalence classes for general acting
groups

Recall from [53] that E0 is the equivalence relation given by eventual equality on
2N and if E is an equivalence relation on X and F is an equivalence relation on Y

then a Borel homomorphism from E to F is a Borel map f : X → Y such that
x1E x2 implies f (x1)F f (x2). A equivalence relation E on a measure space is said
to be strongly ergodic (or E0-ergodic) if for any homomorphism from E to E0, the
preimage of some E0-class is conull. By Proposition 5.6 in [29] if a is strongly
ergodic then every b with b ∼ a is ergodic. In particular, 1

2a + 1
2a is not ergodic, so

1
2a + 1

2a is not weakly equivalent to a when a is strongly ergodic. By Theorem 1.2
in [55], the Bernoulli shift Γ y ([0, 1]Γ, λΓ) with λ Lebesgue measure on [0, 1] is
strongly ergodic when Γ is nonamenable. Thus when Γ is nonamenable, A∼(Γ, X, µ)
is not a convex space, only a weak convex space. We now prove Theorem 2.1.2

Proof. (of Theorem 2.1.2)Write A = A∼(Γ, X, µ). Let B = cch(ex(A)) and suppose
toward a contradiction that there exists x ∈ A \ B. Since B is compact, d(x, B) > 0.
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Let α = supy∈A d(y, B) and let C = {y ∈ A : d(y, B) = α}. Then C is nonempty,
disjoint from B and C is a face of A.

Let F be the family of faces of C, ordered by reverse inclusion. Suppose {Fi}i∈I

is a linearly ordered subset of F and consider
⋂

i∈I Fi. If x, y ∈ C and 0 < t < 1
are such that t x + (1 − t)y ∈ ⋂

i∈I Fi, then x, y ∈ Fi for each i since each Fi is a
face. Hence

⋂
i∈I Fi is a face. It is nonempty by compactness. So Zorn’s Lemma

guarantees there exist minimal elements of F. Let F be such a minimal element.

Choose y ∈ F and suppose toward a contradiction that there exists y′ ∈ F

with y′ < cch({y}). Then cch({y}) is a compact convex set, so letting G ={
z ∈ F : d(z, cch({y})) = supw∈F d(w, cch({y}))

}
, G is a nonempty face of F dis-

joint from cch({y}), contradiction the minimality of F. So for all y ∈ F we have
F ⊆ cch({y}). Fix such a y. Note that cch({y}) = ch({y}). We claim that
y is an extreme point of C. Assuming this, since C is a face of A we have that y
is an extreme point of A and we have a contradiction to the hypothesis thatC∩B = ∅.

Suppose first that there do not exist a, b ∈ C and 0 < t < 1 such that y = ta+(1− t)b.
Then y is an extreme point of C be definition. So let a, b ∈ C and 0 < t < 1 be such
that y = ta+ (1− t)b. We must show that y ∼ a ∼ b. Since F is a face of C, we have
a, b ∈ F. Thus we can write a =

∑n
i=1 siy and b =

∑k
i=1 riy for si, ri ∈ [0, 1]. By

Proposition 2.4.2 and associativity we have y ∼
(∑n

i=1 tsiy +
∑k

i=1(1 − t)riy
)
. Since

0 < t < 1, iterating this argument we find that for any δ > 0, there is m ∈ N and
(λi)mi=1 ⊆ [0, 1] such that λi ≤ δ for all i and y ∼ ∑m

i=1 λiy.

We claim that this implies y ∼ κy+ (1− κ)y for all κ ∈ [0, 1]. Note that κy+ (1− κ)y
is isomorphic to ικ,1−κ× y, where ικ,1−κ is the trivial action of Γ on ({0, 1},mκ)where
mκ({0}) = κ and mκ({1}) = 1 − κ. Hence y is a factor of κy + (1 − κ)y and it thus
suffices to show κy + (1 − κ)y ≺ y.

Let X1, X2 be two copies of X , let n, k ∈ N, ε > 0 and a partition P = (Pi)ki=1
of X1 t X2 be given. As before, we get a partition P1 = (P1

i )ki=1 with P1
i = Pi ∩ X1

of X1 and similarly a partition P2 = (P2
i )ki=1 with P2

i = Pi ∩ X2 of X2. Now, choose
δ < ε

2 . Then we can find m and (λp)mp=1 such that y ∼
∑m

p=1 λpy and for some l ≤ m

we have κ − ε
2 ≤

∑l
p=1 λp ≤ κ. Let now X′p be a copy of X for each p ≤ m, and for

q ∈ {0, 1} let Pq
i,p be the corresponding copy of Pq

i sitting in X′p. Let Q = (Qi)ki=1 be
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the partition of
⊔m

p=1 X′p given by Qi =
(⊔l

p=1 P1
i,p

)
t

(⊔m
p=l+1 P2

i,p

)
. Then for s ≤ n

and i, j ≤ k we have

�����(κµ + (1 − κ)µ)(γκy+(1−κ)ys Pi ∩ Pj) −
©­«

m∑
p=1

λpµ
ª®¬
(
γ

∑m
p=1 λp y

s Qi ∩Q j

) �����
≤

������κµ(γys P1
i ∩ P1

j ) −
©­«

l∑
p=1

λpµ(γys P1
i,p ∩ P1

j,p)
ª®¬
������

+

������(1 − κ)µ(γys P2
i ∩ P2

j ) −
©­«

m∑
p=l+1

λpµ(γys P2
i,p ∩ P2

j,p)
ª®¬
������

=

������κµ(γys P1
i ∩ P1

j ) −
©­«

l∑
p=1

λp
ª®¬ µ(γys P1

i ∩ P1
j )

������
+

������(1 − κ)µ(γys P2
i ∩ P2

j ) −
©­«

m∑
p=l+1

λ
ª®¬ µ(γys P2

i ∩ P2
j )

������
=

������©­«κ −
l∑

p=1
λp

ª®¬ µ(γys P1
i ∩ P1

j )

������
+

������©­«(1 − κ) −
m∑

p=l+1
λp

ª®¬ µ(γys P2
i ∩ P2

j )

������
≤

������©­«κ −
l∑

p=1
λp

ª®¬
������ +

������©­«(1 − κ) −
m∑

p=l+1
λp

ª®¬
������

≤ ε

2
+
ε

2
= ε .

Since y ∼ ∑m
p=1 λpy, κy + (1 − κ)y ≺ y and we are done. �

We note that a metrizable topological vector space V is locally convex if and only
if its topology is induced by a countable family of seminorms

(
| · |Vn

)∞
n=1. Then

p(v,w) = ∑∞
n=1

1
2n |v −w |Vn is a compatible metric on V , which is easily seen to obey

Lemma 2.4.1. Thus the technique used to prove Theorem 2.1.2 works to prove the
metrizable case of the classical Krein-Milman theorem using only the convex and
metric structure ofV , not the vector space structure in the form of linear functionals.

Before proving Theorem 2.1.3, we briefly discuss the ergodic decomposition in the
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context of weak equivalence classes. Suppose a ∈ A(Γ, X, µ) and a =
∫

Z azdη(z) is
the ergodic decomposition of a, that is to say we have a factor map π : (X, µ) →
(Z, η) such that if µ =

∫
Z µzdη(z) is the disintegration of µ over (Z, η) via π then

µz(π−1(z)) = 1 and Γ ya (π−1(z), µz) is isomorphic to az. Furthermore, the
assignment z 7→ µz from (Z, η) → Ma(X) is Borel, where Ma(X) is the space of
a-invariant probablity measures on X (we may assume here that X is a Polish space).
Recall that A∗∼(Γ) is the space of weak equivalence classes of all measure-preserving
actions of Γ, including those actions on finite space. A∗∼(Γ) is topologized using the
exact same metric as we use to topologize A∼(Γ, X, µ). We would like to conclude
that the assignment z 7→ [az] is measurable from (Z, η) to A∗∼(Γ), where [az] is the
weak equivalence class of az. This is a consequence of the following lemma.

Lemma 2.6.1. Let Γ ya Y be a Borel action of Γ on a Polish space Y . Then the
map Θ from Ma(Y ) to A∗∼(Γ) given by ν 7→ [aν] is Borel, where [aν] is the weak
equivalence class of the measure preserving action aν = Γya (Y, ν).

Proof. Fix a measure ν ∈ Ma(Y ) and consider Θ−1(U), where

U = {[a] ∈ A∗∼(Γ) : dH(Cn,k(aν),Cn,k(a)) < ε for all n, k ≤ N}

for some N ∈ N and ε > 0, so U is a basic open neighborhood of Θ(ν) = aν. Since

U =
∞⋃

m=1

N⋂
n,k=1

{
[b] ∈ A∗∼(Γ) : dH(Cn,k(aν),Cn,k(b)) ≤ ε −

1
m

}
,

it suffices to show Θ−1(V) is Borel for a set V of the form

V = {[b] ∈ A∗∼(Γ) : dH(Cn,k(aν),Cn,k(b)) ≤ r}.

Fixing n and k we write C(b) for Cn,k(b). Now, let K and L be compact subsets of a
compact Polish space W with metric p, let DK be dense in K and DL be dense in L.
We have

dH(K, L) ≤ r ⇐⇒ max
x∈K

inf
y∈L

p(x, y) ≤ r and max
y∈L

inf
x∈K

p(y, x) ≤ r

⇐⇒ (∀x ∈ K)(∀δ > 0)(∃y ∈ L)(p(x, y) < r + δ)
∧ (∀y ∈ L)(∀δ > 0)(∃x ∈ K)(p(y, x) < r + δ)
⇐⇒ (∀x ∈ DK)(∀δ > 0)(∃y ∈ DL)(p(x, y) < r + δ)
∧ (∀y ∈ DL)(∀δ > 0)(∃y ∈ DL)(p(y, x) < r + δ).
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If L is a countable algebra generating the Borel σ-algebra B(Y ) ofY , then L is dense
in MALG(Y, ρ) for any Borel probability measure ρ on Y . Regarding a partition
of Y into k pieces as an element of B(Y )N and considering Lk , we see that there
exists a fixed countable family (Am)∞m=1 of partitions of Y such that for any Borel
probability measure ρ on Y , (Am)∞m=1 is dense in the set of k-partitions of X with
topology inherited from MALG(Y, ρ). We may further assume that each element of
each Am is clopen. This implies that the set (MAm(aρ))∞m=1 is dense in C(aρ) for
any Borel probability measure ρ. Therefore we have

V =

( ∞⋂
m=1

∞⋂
l=1

∞⋃
i=1

{
b ∈ A∗∼(Γ) :

��MAm(aν) − MAi (b)
�� < r +

1
l

})
∩

( ∞⋂
m=1

∞⋂
l=1

∞⋃
i=1

{
b ∈ A∗∼(Γ) :

��MAi (aν) − MAm(b)
�� < r +

1
l

})
.

Now, |MAi (aν) − MAm(aρ)| < s if and only if |ν(γa A j
i ∩ At

i) − ρ(γ
a Ai

m ∩ At
m)| < s

for all A j
i , At

i ∈ Ai and Ai
m, At

m ∈ Am. Since for any pair J1, J2 ⊆ Y the set
{ρ : |ν(J1) − ν(J2)| < s} is Borel, we see

Θ
−1

({
b ∈ A∗∼(Γ) :

��MAi (aν) − MAm(b)
�� < r +

1
l

})
is Borel and consequently Θ−1(V) is Borel. �

We now prove Theorem 2.1.3

Proof. (of Theorem 2.1.3) Let Θ : Z → A∗∼(Γ) be the map sending each point in z

to the weak equivalence class [az], so Θ is measurable by Lemma 2.6.1. Suppose
towards a contradiction that the theorem fails. Then for every set Z′ ⊆ Z with
η(Z′) = 1, there is more than one weak equivalence class in the set {[az] : z ∈ Z′}.
Equivalently, the measure Θ∗η on A∗∼(Γ) is not supported on a single point. We can
thus split A∗∼(Γ) into two disjoint sets Y1,Y2 such that 0 < Θ∗η(Y1),Θ∗η(Y2) < 1.
Letting Ai = Θ

−1(Yi), we get disjoint measurable sets A1, A2 ⊆ Z such that
0 < η(A1), η(A2) < 1 and for all z ∈ A1 and all w ∈ A2 we have that z / w.

Recall that for a measure-preserving action b of Γ and n, k ∈ N the set Cn,k(a) ⊆
[0, 1]n×k×k was defined in Section 2.3.

Lemma 2.6.2. For any action b of Γ on a probability space (Y, ν), we have
cch(Cn,k(b)) ⊆ Cn,k(ι × b).
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Proof. Write Cn,k(b) = C(b). Suppose x ∈ cch(C(b)). Then we can find points
(xi)∞i=1 such that limi→∞ xi = x and each xi has the form xi =

∑ j(i)
j=1 α

j
i x j

i for
(x j

i )
j(i)
j=1 ⊆ C(b) and (α j

i )
j(i)
j=1 ⊆ [0, 1] with

∑ j(i)
j=1 α

i
j = 1 for each i. Without loss

of generality we may assume that each x j
i has the form MA

j
i (b) for a partition

A j
i = (A

j
i,l)

k
l=1 ofY into k pieces. Fixing i consider the action

∑ j(i)
j=1 α

j
i b on the space(⊔ j(i)

j=1 Yj,
∑ j(i)

j=1 α
j
i ν j

)
, where each (Yj, ν j) is a copy of (Y, ν). Let B = (Bl)kl=1 be

the partition of
⊔ j(i)

j=1 Yj given by letting Bl =
⊔ j(i)

j=1 A j
i,l , where A j

i,l sits inside the j

copy of Y . For any p ≤ n and l,m ≤ k and x ∈ [0, 1]n×k×k let (x)p,l,m be the p, l,m

coordinate of x. We then have

©­«MB ©­«
j(i)∑
j=1

α
j
i bª®¬ª®¬p,l,m

=
©­«

j(i)∑
j=1

α
j
i ν j

ª®¬
(
γ

∑j(i)
j=1 α

j
i b

p Bl ∩ Bm

)
=

j(i)∑
j=1

(
α

j
i ν j(γb

p A j
i,l ∩ A j

i,m)
)

=

j(i)∑
j=1

α
j
i

(
MA

j
i (b)

)
p,l,m

.

Therefore

MB ©­«
j(i)∑
j=1

α
j
i bª®¬ =

j(i)∑
j=1

α
j
i

(
MA

j
i (b)

)
= xi .

We have shown that xi ∈ C
(∑ j(i)

j=1 α
j
i b

)
. Since

∑ j(i)
j=1 α

j
i b is a factor of b× ι, we have

xi ∈ C(b × ι). Since limi→∞ xi = x and C(b × ι) is closed, the lemma follows. �

It is clear that for any two measure-preserving actions b, c we have b ≺ c if and only
if Cn,k(b) ⊆ Cn,k(c) for all n, k. We claim that there are disjoint subsets A3, A4 ⊆ Z

of positive measure such that for some pair n0, k0, every z ∈ A3 and every w ∈ A4 we
have Cn0,k0(az) * cch(Cn0,k0(aw)). For z ∈ A3 let Rz = {w ∈ A2 : az ⊀ aw}. Since
az is ergodic, az ≺ aw × ι implies az ≺ aw. Therefore Rz = {w ∈ A2 : az ⊀ aw × ι}.

Assume first that there is a set D3 ⊆ A1 with η(D3) > 0 such that for each z ∈ D3 we
have η(Rz) > 0. Write K̂ for cch(K). By Lemma 2.6.2 we canwrite Rz =

⋃∞
n,k=1 Rn,k

z

where Rn,k
z =

{
w ∈ A2 : Cn,k(az) * �Cn,k(aw)

}
. Thus for each z there is a lexicograph-

ically least pair (nz, kz) such that η(Rnz,kz
z ) > 0. Therefore there is a pair n0, k0 and
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a set D4 ⊆ D3 such that η(D4) > 0 and for all z ∈ D4 we have η(Rn0,k0
z ) > 0. Fixing

n0 and k0 we write C(b) for Cn0,k0(b). Let (w j)∞j=1 ⊆ A2 be a sequence of points such

that the family
(�C(awj )

)∞
j=1

is dense in the space
{�C(aw) : w ∈ A2

}
with respect to

the Hausdorff metric dH on the space on compact subsets of [0, 1]n0×k0×k0 . Let then
Fj,l =

{
w ∈ A2 : dH

(�C(aw), �C(awj )
)
< 1

l

}
.

Fix z ∈ D4 and choose w ∈ Rn0,k0
z . By hypothesis there is ε > 0 such that

C(az) * Bε
(�C(aw)) , where Bε (K) denotes the ball of radius ε around K . Then if we

choose j so that dH

(�C(awj ), �C(w)) < ε
2 and l so that 1

l <
ε
2 wehavew ∈ Fj,l ⊆ Rn0,k0

z .

Hence there is a subset J ⊆ N2 such that Rn0,k0
z =

⋃
( j,l)∈J Fj,l . So for each z we can

choose a lexicographically least pair ( jz, lz) such that η(Fjz,lz ) > 0 and Fjz,lz ⊆ Rn0,k0
z .

There is then a pair ( j0, l0) and a set E3 ⊆ D3 with η(E3) > 0 such that η(Fj0,l0) > 0
and for all z ∈ E3 and all w ∈ Fj0,l0 we have C(az) * �C(aw). So take A3 = E3 and
A4 = Fj0,l0 . Thus we are left with the case η(Rz) = 0 for almost all z ∈ A1. Then
for almost all w ∈ A2 and almost all z ∈ A1 we must have aw ⊀ az, so a symmetric
argument gives the claim.

Given a (real) topological vector space V , we say a hyperplane in V is a set of
the form H`,α = {v ∈ V : `(v) = α} for some continuous linear functional ` and
α ∈ R. Given disjoint compact subsets W1,W2 ⊆ V we say that H`,α separates W1

from W2 if W1 ⊆ {v ∈ V : `(v) < α} and W2 ⊆ {v ∈ V : `(v) > α}.

Lemma 2.6.3. Let S ⊆ Rn be compact. Then there is a countable family (Hi)∞i=1 of
hyperplanes such that for any x ∈ S and any compact convex W ⊆ S there is i so Hi

separates {x} from W .

Proof. Let (` j)∞j=1 be a countable set of linear functionals which is dense in the sup
norm on S. Enumerate Q as (qm)∞m=1 and let Hj,m = {s ∈ S : ` j(s) = qm}. Given
x and W , by Hahn-Banach find a linear functional ` and α ∈ R so that H = H`,α

separates x fromW . Let r = min
(
infh∈H | |x − h| |, infh∈H,

w∈W
| |h − w | |

)
so r > 0. Then

choose m so |qm − α | < r
2 and j so sups∈S |`(s) − ` j(s)| < r

2 . Then Hj,m separates x

from W . �

Now take S = [0, 1]n0×k0×k0 and fix a family (Hi)∞i=1 of hyperplanes as in the lemma.
Since �C(aw) is compact convex for each w ∈ A4 and for all z ∈ A3 we have
C(az) * �C(aw), for each pair (z,w) ∈ A3 × A4 there is an index i(z,w) and a point
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xz,w ∈ C(az) such that Hi(z,w) separates xz,w from �C(aw). Fix z ∈ A3. Taking (w j)∞j=1

as before, for ( j, l) ∈ N2 let G j,l =
{
w ∈ A4 : dH

(�C(aw), �C(awj )
)
< 1

l

}
. Choosing

w ∈ A4, let ε = dH

(�C(w),Hi(z,w)
)
so ε > 0. Finding jz,w so dH

(�C(w j), �C(w)) < ε
2

and lz,w so 1
l < ε

2 we have w ∈ G jz,w,lz,w and Hi(z,w) separates xz,w from Ĉ(u) for
all u ∈ G jz,w,lz,w . Then we have A4 =

⋃
( jz,w,lz,w):

w∈A4

G jz,w,lz,w so we can find w0 so

that η
(
G jz,w0,lz,w0

)
> 0. Let then Gz = G jz,w0,lz,w0

, xz = xz,w0 and i(z) = i(z,w0) so
that Hi(z) separates xz from Ĉ(u) for all u ∈ Gz. Since the Gz were chosen from a
countable family, we can find a set A5 ⊆ A3 of positive measure such that Gz = G

is the same for all z ∈ A5. We can then find an index i and a set A6 ⊆ A5 of positive
measure such that for all z ∈ K , Hi = H separates xz from Ĉ(u) for all u ∈ G. H

splits [0, 1]n×k×k into two closed convex sets H+ and H−, where H+ contains the xz

and H− contains the C(u).

For S ⊆ Z with η(S) > 0 let ηS =
η�S
η(S) be normalized measure on S. By Lemma 2.4.2

we have C
(∫

G audηG(u)
)
⊆ cch (⋃u∈G C(u)) ⊆ H−. Write A6 =

⋃∞
p=1 Ap

6, where

Ap
6 =

{
z ∈ A6 : dH(xz,H) ≥ 1

p

}
and find p so η(Ap

6) > 0. Letting K = Ap
6, for all

z ∈ K , xz is an element of the closed convex set Hp
+ = {y ∈ H+ : dH(y,H) ≥ 1

p } and
Hp
+ is disjoint from H−. We have

∫
K xzdηK(z) ∈ C

(∫
K azdηK(z)

)
and

∫
K xzdηK(z) ∈

Hp
+. Since C

(∫
G audηG(u)

)
⊆ H− we see that C

(∫
K azdηK(z)

)
* C

(∫
G audηG(u)

)
and it follows that

∫
K azdηK(z) /

∫
G audηG(u). Let L1 = K, L2 = G then there is

i ∈ {1, 2} with
∫

Li
azdηLi (z) / a. Since 0 < η(Li) < 1, we can write

a = η(Li)
(∫

Li

azdηLi (z)
)
+ η(Z \ Li)

(∫
Z\Li

azdηZ\Li
(z)

)
,

which contradicts our assumption that a is an extreme point. �

We now prove Theorem 2.1.4. Recall that the uniform topology on Aut(X, µ) is
given by the metric du(T, S) = µ({x : T x , Sx}). If P = {P1, . . . , Pp} is a partition
of a space on which FN acts by an action a, J ⊆ FN is finite and τ : J → p let
Pa
τ =

⋂
γ∈J γ

aPτ(γ).

Proof. (of Theorem 2.1.4) Let a be a free action of FN . By replacing a with a × ι
if necessary, we may assume that for each n, k the set Cn,k(a) is closed and convex.
Fix integers n0 and k0 and ε > 0. It is enough to find a free ergodic action b of
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FN such that for all n ≤ n0 and k ≤ k0 we have dH(Cn,k(a),Cn,k(b)) < ε . Let
{γ1, . . . , γn0} = F0 be the finite subset of FN under consideration. Let s = sFN be
the Bernoulli shift of FN acting on

(
2FN , ν

)
where ν is the product measure. For any

action c of FN on (X, µ) and γ ∈ FN we have

{(x, y) ∈ X × 2FN : γc×s(x, y) , γa×x(x, y)} = {x ∈ X : γc x , γa x} × Y

and hence

(µ × ν)({(x, y) ∈ X × 2FN : γc×s(x, y) , γa×x(x, y)}) = µ({x ∈ X : γc x , γa x}).

Assume du(γa, γc) < ε
16 for all γ ∈ F0. Then for any measurable partition A =

A1, . . . , Ak of X × 2FN , all γ ∈ F0 and all i, j ≤ k we have

|(µ × ν)(γa×s Ai ∩ A j) − (µ × ν)(γc×s Ai ∩ A j)| <
ε

16

for all γ ∈ F0. In the notation of Section 2.3, ρ
(
MAn,k(a × s), MAn,k(c × s)

)
< ε

16 where
ρ is the supremummetric on [0, 1]n×k×k . Choose a finite collectionL of measurable
subsets of X × 2FN such that for every measurable partition A of X × 2FN there is
a partition B ⊆ L such that ρ

(
MAn,k(a × s), MBn,k(a × s)

)
< ε

16 . Then for every such

A there exists B ⊆ L such that ρ
(
MAn,k(c × s), MBn,k(c × s)

)
< 3ε

16 .

For γ ∈ FN let πγ : 2FN → 2 be projection onto the γ coordinate. For i ∈ {0, 1} let
Si = π

−1
e ({i}) and put S = {S1, S2}. Choose now a finite partition R = {R1, . . . , Rr}

of X and a finite subset F ⊆ FN containing F0 such that for every A ∈ L there are
sets Rj with 1 ≤ j ≤ r and a family of functions (τj)tj=1 with τj : F → 2 such that

µ
©­«©­«

t⊔
j=1

Rj × Ss
τj

ª®¬4Aª®¬ < ε

16
.

Write P = R×S. We can identify a function θ : F → r ×2 with a pair (σ, τ)where
σ : F → r and τ : F → 2 so

Pc×s
θ =

⋂
γ∈F

γbPc×s
θ(γ) =

(⋂
γ∈F

γcRσ(γ)

)
×

(⋂
γ∈F

γsSτ(γ)

)
= Rc

σ × Ss
τ .

Note that for any j ≤ r , Rj × Ss
τ is a finite disjoint union of sets of the form Rc

σ × Ss
τ,

hence any A ∈ L is within ε
16 of finite disjoint union of sets of the form Pc×s

θ for
θ : F → r × 2.
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Let δ = ε
4(2r)2 |F | . Fix an ergodic action c of FN such that du (γa, γc) < δ2

32|F |2(2r) |F |2
for

all γ ∈ F. (For example use the fact that the ergodic automorphisms are uniformly
dense in Aut(X, µ) to move one of the generators γ of FN so it acts ergodically but
is still sufficiently close to γa). Then clearly dH(Cn,k(a),Cn,k(c)) < ε

2 for all n ≤ n0

and k ≤ k0. Let b = c × s. Since c is ergodic and s is free and mixing, b is free
and ergodic. Thus it is sufficient to show dH(Cn,k(c),Cn,k(b)) < ε

2 for all n ≤ n0,
k ≤ k0. Since c ≺ b, it is sufficient to show that for every partition A of X × 2FN

there is a partition C of X such that ρ
(
MAn,k(b), MCn,k(c)

)
< ε

2 . By our previous
reasoning, for each partition A = (A1, . . . , Ak) of X × 2FN there is a partition B
whose pieces are disjoint unions of sets of the form Pb

θ for θ : F → r × 2 such that
ρ
(
MAn,k(b), MBn,k(b)

)
< ε

4 .

Claim 2.6.1. There is a partition Q of X indexed by r × 2 such that for every
θ : J → r × 2 with J ⊆ F0F we have |(µ × ν)(Pb

θ ) − µ(Q
c
θ)| < δ.

Suppose the claim holds. Regard FN as acting on
⋃

J⊆FN {θ : J → 2 × r} by
shift, γ · θ(γ′) = θ(γ−1γ′). Thus the domain dom(γ · θ) = γdom(θ). Then for any
θ, κ : F → 2 × r and γ ∈ F0 we have

γbPb
θ ∩ Pb

κ =


Pb
γ·θ∪κ if γ · θ and κ are compatible,

∅ if not.

and similarly

γcQc
θ ∩Qc

κ =


Qc
γ·θ∪κ if γ · θ and κ are compatible,

∅ if not.

Therefore the claim gives |(µ × ν)(γbPb
θ ∩ Pb

κ ) − µ(γcQc
θ ∩ Qc

κ)| < δ for all θ, κ :
F → r × 2. So if B = {B1, . . . , Bk} is a partition such that Bi =

⊔t
s=1 Pb

θi(s) for
functions θi(s) : F → r × 2 and we let Ci =

⊔t
s=1 Qc

θi(s), then we have

|(µ × ν)(γbBi ∩ B j) − µ(γcCi ∩ Cj)| =
�����(µ × ν)

(
t⊔

s,s′=1
γbPb

θi(s) ∩ Pb
θ j (s′)

)
− µ

(
t⊔

s,s′=1
γcQc

θi(s) ∩Qc
θ j (s′)

)�����
≤ t2δ ≤ (2r)2|F |δ < ε

4
,
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since t ≤ (2r)|F |. Taking C = (Ci)ki=1 we get ρ
(
MBn,k(b), MCn,k(c)

)
< ε

4 , which implies
the theorem.

It remains to show Claim 2.6.1. This part of the argument follows the proof of
Theorem 1 in [2] and the extensions of these ideas developed in [74]. Let G = F0F.
Assume without loss of generality that G is closed under taking inverses. Note that
it suffices to prove the claim for θ defined on all of G. In order to find Q we will find
a partition T = {T1,T2} and set Qi, j = Ri ∩ Tj for 1 ≤ i ≤ r , 1 ≤ j ≤ 2. Thus we
are looking for T = {T1,T2} such that for all (τ, σ) with σ : G → r and τ : G → 2
we have

|(µ × ν)(Rc
σ × Ss

τ) − µ(Rc
σ ∩ T c

τ )| < δ.

Note that ν(Ss
τ) = 2−|G | for any such τ so we are looking for T such that���2−|G |µ(Rc

σ) − µ(Rc
σ ∩ T c

τ )
��� < δ.

The idea is that a random T should have this property.

Without loss of generality we may assume X is a compact metric space with a
compatible metric p. For η > 0 let

Dη = {x ∈ X : for all γ, γ′ ∈ G, γ1 , γ2 implies p(γc
1 x, γc

2 x) > η}

and
Eη = {(x, x′) ∈ D2

η : for all γ1, γ2 ∈ G, p(γc
1 x, γc

2 x′) > η}.

Lemma 2.6.4. There is η > 0 such that µ(Dη) > 1 − δ2

16(2r) |F |2
and µ2(X2 \ Eη) <

δ2

16(2r)2 |F | .

Proof. Clearly if η1 < η2 then Dη2 ⊆ Dη1 . We have X \⋃η>0 Dη = {x ∈ X : for
some γ1 , γ2 ∈ G, γc

1 x = γc
2 x}. Now since a is free, if γc

1 x = γc
2 x then we must

have γc
i x , γa

i x for some i ∈ {1, 2}. Each γ ∈ G is a product f1 f2 for f1 ∈ F0 and
f2 ∈ F, thus for any γ ∈ G we have

du (γc, γa) < du( f a
1 , f c

1 ) + du( f a
2 , f c

2 ) <
δ2

16|F |2(2r)|F |2

since fi ∈ F. Therefore

µ({x : for some γ ∈ G, γc x , γa x}) < |G | δ2

16|F |2(2r)|F |2
<

δ2

16(2r)2|F |
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and hence µ
(
X \⋃η>0 Dη

)
< δ2

16(2r) |F |2
. So we can find η = η0 such that Dη0

satisfies the lemma. Now for any η > 0,

D2
η0 \

⋃
η>0

Eη = {(x, x′) ∈ D2
η0 : for all η > 0

there exist γ1, γ2 ∈ G such that p(γ1x, γ2x′) < η}
= {(x, x′) ∈ D2

η0 : there exist γ1, γ2 ∈ G such that γ1x = γ2x′}.

For a fixed x, {(x, x′) ∈ D2
η0 : there exist γ1, γ2 ∈ G such that γ1x = γ2x′} is finite

so µ
(
D2
η0 \

⋃
η>0 Eη

)
has measure 0 by Fubini and hence we have the lemma for

Eη. �

Let Y = {Y1, . . . ,Ym} be a partition of X into pieces with diameter < η
4 . For x ∈ X

let Y (x) be the unique l ≤ m such that x ∈ Yi. Let κ be the uniform (= product)
probability measure on 2m and for each ω ∈ 2m define a partition Z(ω) = {Zω

1 , Zω
2 }

by letting x ∈ Zω
i if and only if ω(Y (x)) = i. Thus we have a random variable

Z : (2m, κ) → MALG(X, µ)2 given by ω 7→ Z(ω). Fix now τ : G → 2 and an
arbitrary subset A ⊆ X . We compute the expected value of µ(Z(ω)τ ∩ A). Let χB

be the characteristic function of B.

E[µ(Zτ ∩ A)] =
∫

2m
µ(Z(ω)τ ∩ A)dκ(ω)

=

∫
2m

∫
X
χZ(ω)τ∩A(x)dµ(x)dκm(ω)

=

∫
A

∫
2m
χZ(ω)τ (x)dκ(ω)dµ(x)

=

∫
Dη∩A

∫
2m
χZ(ω)τ (x)dκ(ω)dµ(x) +

∫
A\Dη

∫
2m
χZ(ω)τ (x)dκ(ω)dµ(x).

(2.6)

Now if x ∈ Dη then for all γ1 , γ2 ∈ G we have p(γc
1 x, γc

2 x) ≥ η so that Y (γc
1 x) ,

Y (γc
2 x) and hence the events ω(Y (γc

1 x)) = i and ω(Y (γc
2 x)) = j are independent.

We have x ∈ γcZ(ω)τ(γ) if and only if ω(Y ((γ−1)c x)) = τ(γ), so if x ∈ Dη and
γ1 , γ2 ∈ G the events x ∈ γcZ(ω)τ(γ1) and x ∈ γcZ(ω)τ(γ2) are independent. So
for x ∈ Dη,
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∫
2m
χZ(ω)τ (x)dκ(ω) = κ({ω : x ∈ γcZ(ω)τ(γ) for all γ ∈ G})

=
∏
γ∈G

κ
({
ω : ω(Y ((γ−1)c x)) = τ(γ)

})
= 2−|G | . (2.7)

Since µ(X \ Dη) < δ2

16(2r) |F |2
, we have 2−|G |

(
µ(A) − δ2

16(2r) |F |2
)
≤ (6) ≤ 2−|G |µ(A) +

δ2

16(2r) |F |2
and thus

��E[µ(Zτ ∩ A)] − µ(A)2−|G |
�� < δ2

16(2r) |F |2
. We now compute the

second moment of µ(Zτ ∩ A), in order to estimate its variance.

E
[
µ(Zτ ∩ A)2

]
=

∫
2m
µ(Zτ(ω) ∩ A)2dκ(ω)

=

∫
2m

(∫
A
χZτ(ω)(x)dµ(x)

)2
dκ(ω)

=

∫
2m

∫
A2
χZτ(ω)(x1)χZτ(ω)(x2)dµ2(x1, x2)dκ(ω)

=

∫
A2

∫
2m
χZτ(ω)(x1)χZτ(ω)(x2)dκ(ω)dµ2(x1, x2)

=

∫
A2∩Eη

∫
2m
χZτ(ω)(x1)χZτ(ω)(x2)dκ(ω)dµ2(x1, x2)

+

∫
A2\Eη

∫
2m
χZτ(ω)(x1)χZτ(ω)(x2)dκ(ω)dµ2(x1, x2).

(2.8)

Now if (x1, x2) ∈ Eη then for any pair γ1, γ2 ∈ G we have p(γc
1 x1, γ

c
2 x2) > η so that

Y (γc
1 x1) , Y (γc

2 x2) and thus for a fixed pair (x1, x2) the events ω(Y (γ−1)c x1) = τ(γ)
for all γ ∈ G and ω(Y (γ−1)c x2) = τ(γ) for all γ ∈ G are independent. Hence for a
fixed (x1, x2) ∈ Eη we have

∫
2m
χZτ(ω)(x1)χZτ(ω)(x2)dκ(ω)

= κ({ω : x1 ∈ γcZ(ω)τ(γ) and x2 ∈ γcZ(ω)τ(γ) for all γ ∈ G})
= κ({ω : ω(Y ((γ−1)c x1) = τ(γ) and ω(Y ((γ−1)c)x2) = τ(γ) for all γ ∈ G})

= κ
({
ω : ω(Y ((γ−1)c x1)) = τ(γ) for all γ ∈ G

})
· κ

({
ω : ω(Y ((γ−1)c x2)) = τ(γ) for all γ ∈ G

})
= 2−2|G |
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by (7) and the fact that Eη ⊆ D2
η. Since µ2(A \ Eη) < δ2

16(2r) |F |2
we see(

µ(A)2 − δ2

16(2r)|F |2
)

2−2|G | ≤ (8) ≤ 2−2|G |µ(A)2 + δ2

16(2r)|F |2

and hence
��E[µ(Zτ ∩ A)2] − µ(A)22−2|G | �� < δ2

16(2r) |F |2
. Therefore

Var(µ(Zτ ∩ A)) = E[µ(Zτ ∩ A)2] − E[µ(Zτ ∩ A)]2

≤
���E[µ(Zτ ∩ A)2] − µ(A)22−2|G |

��� + µ(A)22−2|G |

−
(
−

���E[µ(Zτ ∩ A)] − µ(A)2−|G |
��� + µ(A)2−|G |)2

≤ δ2

16(2r)|F |2
+ µ(A)22−2|G | −

(
− δ2

16(2r)|F |2
+ µ(A)2−|G |

)2

=
δ2

16(2r)|F |2
− δ4

(16(2r)|F |2)2
+ 2µ(A)2−|G | δ2

16(2r)|F |2
≤ δ2

8(2r)|F |2
.

Therefore Chebyshev’s inequality for µ(Zτ ∩ A) gives

κ

({
ω : |µ(Zτ(ω) ∩ A) − E[µ(Zτ ∩ A)]| ≥ δ

2

})
≤ Var(µ(Zτ ∩ A))(

δ
2
)2

≤ 1
2(2r)|F |2

.

Now since
��E[µ(Zτ ∩ A)] − µ(A)2−|G |

�� < δ
2 we have

κ
({
ω :

���µ(Zτ(ω) ∩ A) − µ(A)2−|G |
��� ≥ δ}) ≤ 1

2(2r)|F |2
.

Since this is true for each τ ∈ 2G we have

κ
({
ω :

���µ(Zτ(ω) ∩ A) − µ(A)2−|G |
��� | ≥ δ for some τ : G→ 2

})
≤ 1

2r |F |2
.

Finally, letting A range over the sets Rσ for σ ∈ rG we get

κ
({
ω :

���µ(Zτ(ω) ∩ Rc
σ) − µ(Rc

σ)2−|G |
��� ≥ δ for some τ : G→ 2 and σ : G→ r

})
≤ 1

2
.
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Then any member of the nonempty complement of{
ω :

���µ(Zτ(ω) ∩ Rc
σ) − µ(Rc

σ)2−|G |
��� ≥ δ for some τ : G→ 2 and σ : G→ r

}
works as T. This completes the proof of Theorem 2.1.4.

�

We note that the proof of Theorem 2.1.4 goes through for any group Γ such that an
arbitrary free action can be approximated in the uniform topology by ergodic actions
- for example any group of the form Z ∗ H. Such an approximation is impossible if
Γ has property (T), and in this case the extreme points of FR∼s (Γ, X, µ) are closed.
Therefore the following question is natural.

Question 2.6.1. Let Γ be a group without property (T). Can every free action of Γ
be approximated in the uniform topology of A(Γ, X, µ) by ergodic actions?

2.7 The space of stable weak equivalence classes
A∼s (Γ, X, µ) can be given the structure of a weak convex space in exactly the same
way as A∼(Γ, X, µ). Moreover, it is clear that for any a ∈ A(Γ, X, µ) and t ∈ [0, 1]
we have a ∼s ta + (1 − t)a, so A∼s (Γ, X, µ) is in fact a convex space. Recall that
the metric ds on A∼s (Γ, X, µ) is defined by ds(a, b) = d(a × ι, b × ι) where d is the
metric on A∼(Γ, X, µ).

Proposition 2.7.1. For any a, b, c ∈ A(Γ, X, µ) and t ∈ [0, 1], we have ds(ta + (1 −
t)c, tb + (1 − t)c) ≤ tds(a, b).

It is clear that (ta + (1 − t)c) × ι ∼ t(a × ι) + (1 − t)(c × ι), so it suffices to show the
following.

Proposition 2.7.2. For any a, b, c ∈ A(Γ, X, µ) and t ∈ [0, 1] we have d(ta + (1 −
t)c, tb + (1 − t)c) ≤ td(a, b).

Proof. Fix n, k and write C(a) = Cn,k(a) in order to show that dH(C(ta + (1 −
t)c),C(tb + (1 − t)c)) ≤ tdH(C(a),C(b)). Fix ε > 0. Let P = (Pi)ni=1 be a partition
of X1t X2 where X1 and X2 are disjoint copies of X . Let Pl

i = Pi ∩ Xl for l ∈ {1, 2}.
Find a partition Q = (Qi)ni=1 such that for i, j ≤ n and p ≤ k we have

|µ(γa
pP1

i ∩ P1
j ) − µ(γb

pQi ∩Q j)| < dH(C(a),C(b)) + ε .
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Then if we take Q′i = Qi t P2
i for all i, j ≤ n,

|(tµ + (1 − t)µ)(γta+(1−t)c
p Pi ∩ Pj) − (tµ + (1 − t)µ)(γtb+(1−t)c

p Q′i ∩Q′j)|
= |tµ(γa

pP1
i ∩ P1

j ) + (1 − t)µ(γc
pP2

i ∩ P2
j )

− tµ(γb
pQi ∩Q j) − (1 − t)µ(γc

pP2
i ∩ P2

j )|
= |tµ(γa

pP1
i ∩ P1

j ) + tµ(γb
pQi ∩Q j)| ≤ t(dH(C(a),C(b)) + ε).

�

Theorem 2.1.5 now follows from Proposition 2.7.1 and Corollary 12 in [25]. Tucker-
Drob and Bowen have obtained the next result independently of the author.

Proposition 2.7.3. The extreme points of A∼s (Γ, X, µ) are precisely those stable
weak equivalence classes which contain an ergodic action.

Proof. Suppose that a is ergodic and we have a ∼s tb + (1 − t)c for t ∈ (0, 1).
Therefore a ≺ ι × (tb + (1 − t)c) ∼ t(b × ι) + (1 − t)(c × ι). Since a is ergodic,
Theorem 3.11 in [74] implies that a ≺ b and a ≺ c. Suppose toward a contradiction
that b ⊀s c, so that for some n, k we have Cn,k(b) * cch(Cn,k(c)). Fixing n, k

write C(d) for Cn,k(d). Let α = supx∈C(b) p(x, cch(C(c))) where p is the metric on
[0, 1]n×k×k . Choose x0 ∈ C(b) so that p(x0, cch(C(c))) = α. Choose y0 ∈ cch(C(c))
so that p(x0, y0) = α. Consider the point t x0 + (1 − t)y0 ∈ cch(C(tb + (1 − t)c)). It
is easy to see that

p(t x + (1 − t)z, ty + (1 − t)z) ≤ tp(y, z)

for any x, y, z so we have

p(t x0 + (1 − t)y0, x0) = p(t x0 + (1 − t)y0, t x0 + (1 − t)x0)
≤ (1 − t)p(x0, y0) < α

since 0 < t. Since α = infy∈cch(C(c)) p(x0, y) we see that t x0 + (1 − t)y0 < cch(C(c))
and hence cch(C(tb + (1 − t)c) * cch(C(c)). Since for any two actions d, e we
have d ≺s e if and only if cch(Cn,k(d)) ⊆ cch(Cn,k(e)) for all n, k this implies that
tb+(1−t)c ⊀s c. But tb+(1−t)c ≺s a ≺ c by hypothesis, so we have a contradiction
and we conclude b ≺s c. A symmetric argument shows c ≺s b, so b ∼s c. Since
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A∼s (Γ, X, µ) obeys (2) of Definition 2.2.1, we get that a ∼s b ∼s c. Therefore if
a stable weak equivalence class contains an ergodic action, it is an extreme point
of A∼s (Γ, X, µ). On the other hand, an argument identical to the proof of Theorem
2.1.3 shows that if the stable weak equivalence class of an action a is an extreme
point of A∼s (Γ, X, µ) then if we write a =

∫
Z azdη(z) then there is an ergodic action

b such that az ∼s b for all z ∈ Z . Thus a ∼s b × ι ∼s b and we see that a is stably
weakly equivalent to an ergodic action. �
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C h a p t e r 3

A TOPOLOGICAL SEMIGROUP STRUCTURE ON THE SPACE
OF ACTIONS MODULO WEAK EQUIVALENCE.

Peter Burton

3.1 Introduction.
Let Γ be a countable group and let (X, µ) be a standard probability space. All
partitions considered in this chapter will be assumed to be measurable. If a is a
measure-preserving action of Γ on (X, µ) and γ ∈ Γ we write γa for the element
of Aut(X, µ) corresponding to γ under a. Let A(Γ, X, µ) be the space of measure-
preserving actions of Γ on (X, µ). We have the following basic definition, due to
Kechris.

Definition 3.1.1. For actions a, b ∈ A(Γ, X, µ) we say that a is weakly contained
in b if for every partition (Ai)ni=1 of (X, µ), finite set F ⊆ Γ and ε > 0 there is a
partition (Bi)ni=1 of (X, µ) such that���µ (

γa Ai ∩ A j
)
− µ

(
γbBi ∩ B j

)��� < ε

for all i, j ≤ n and all γ ∈ F. We write a ≺ b to mean that a is weakly contained in
b. We say a is weakly equivalent to b and write a ∼ b if we have both a ≺ b and
b ≺ a. ∼ is an equivalence relation and we write [a] for the weak equivalence class
of a.

For more information on the space of actions and the relation of weak equivalence,
we refer the reader to [53]. Let A∼(Γ, X, µ) = A(Γ, X, µ)/∼ be the set of weak
equivalence classes of actions. Freeness is invariant under weak equivalence, so the
set FR∼(Γ, X, µ) ofweak equivalence classes of free actions is a subset ofA∼(Γ, X, µ).

Given [a], [b] ∈ A∼(Γ, X, µ) with representatives a and b consider the action a × b

on
(
X2, µ2) . We can choose an isomorphism of

(
X2, µ2) with (X, µ) and thereby

regard a × b as an action on (X, µ). The weak equivalence class of the resulting
action on (X, µ) does not depend on our choice of isomorphism, nor on the choice of
representatives. So we have a well-defined binary operation × on A∼(Γ, X, µ). This
is clearly associative and commutative. In Section 3.2 we introduce a new topology
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on A∼(Γ, X, µ) which is finer than the one studied in [1], [23] and [74]. We call this
the fine topology. The goal of this note is to prove the following result.

Theorem 3.1.1. × is continuous with respect to the fine topology, so that in this
topology (A∼(Γ, X, µ),×) is a commutative topological semigroup.

In [74], Tucker-Drob shows that for any free action a we have a × sΓ ∼ a, where sΓ
is the Bernoulli shift on

(
[0, 1]Γ, λΓ

)
with λ being Lebesgue measure. Thus if we

restrict attention to the free actions there is additional algebraic structure.

Corollary 3.1.1. With the fine topology, (FR∼(Γ, X, µ),×) is a commutative topo-
logical monoid.

Acknowledgements.
Wewould like to thank Alexander Kechris for introducing us to this topic and posing
the question of whether the product is continuous.

3.2 Definition of the fine topology.
Fix an enumeration Γ = (γs)∞s=1 of Γ. Given a ∈ A(Γ, X, µ), t, k ∈ N and a partition
A = (Ai)ki=1 of X into k pieces let MAt,k(a) be the point in [0, 1]

t×k×k whose s, l,m

coordinate is µ
(
γa

s Al ∩ Am
)
. Endow [0, 1]t×k×k with the metric given by the sum of

the distances between coordinates and let dH be the corresponding Hausdorff metric
on the space of compact subsets of [0, 1]t×k×k . Let Ct,k(a) be the closure of the set{

MAt,k(a) : A is a partition of X into k pieces
}
.

We have a ∼ b if and only if Ct,k(a) = Ct,k(b) for all t, k. Define a metric d f on
A∼(Γ, X, µ) by

d f ([a], [b]) =
∞∑

t=1

1
2t

(
sup

k
dH

(
Ct,k(a),Ct,k(b)

) )
.

This is clearly finer than the topology on A∼(Γ, X, µ) discussed in the references.

Definition 3.2.1. The topology induced by d f is called the the fine topology.

We have [an] → [a] in the fine topology if and only if for every finite set F ⊆ Γ and
ε > 0 there is N so that when n ≥ N , for every k ∈ N and every partition (Al)kl=1 of
(X, µ) there is a partition (Bl)kl=1 so that

k∑
l,m=1
|µ (γan Al ∩ Am) − µ (γaBl ∩ Bm)| < ε
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for all γ ∈ F and l,m ≤ k.

3.3 Proof of the theorem.
We begin by showing a simple arithmetic lemma.

Lemma 3.3.1. Suppose I and J are finite sets and (ai)i∈I, (bi)i∈I, (c j) j∈J, (d j) j∈J are
sequences of elements of [0, 1] with ∑

i∈I ai = 1,
∑

j∈J d j = 1,
∑

i∈I |ai − bi | < δ and∑
j∈J |c j − d j | < δ. Then

∑
(i, j)∈I×J |aic j − bid j | < 2δ.

Proof. Fix i. We have∑
j∈J

|aic j − bid j | ≤
∑
j∈J

(|aic j − aid j | + |d jai + d j bi |)

=
∑
j∈J

(ai |c j − d j | + d j |ai − bi |)

≤ δai + |ai − bi |.

Therefore ∑
(i, j)∈I×J

|aic j − bid j | ≤
∑
i∈I

(aiδ + |ai − bi |) ≤ 2δ.

�

We now give the main argument.

Proof of Theorem 3.1.1. Suppose [an] → [a] and [bn] → [b] in the fine topology.
Fix ε > 0 and t ∈ N. Let N be large enough so that when n ≥ N we have

max
(
sup

k
dH

(
Ct,k (an) ,Ct,k(a)

)
, sup

k
dH

(
Ct,k (bn) ,Ct,k(b)

) )
<
ε

4
. (3.1)

Fix n ≥ N . Let k ∈ N be arbitrary and consider a partitionA = (Al)kl=1 of X2 into k

pieces. Find partitions
(
D1

i

) p
i=1 and

(
D2

i

)q
i=1 of X such that for each l ≤ k there are

pairwise disjoint sets Il ⊆ p × q such that if we write Dl =
⋃
(i, j)∈Il D1

i × D2
j then

µ2 (Dl4Al) <
ε

4k2 . (3.2)

Write (γs)ts=1 = F. By (3.1) we can find a partition
(
E1

i

) p
i=1 of X such that for all

γ ∈ F we have
p∑

i, j=1

���µ (
γaD1

i ∩ D1
j

)
− µ

(
γanE1

i ∩ E1
j

)��� < ε

4
(3.3)
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and a partition
(
E2

i

)q
i=1 of X such that for all γ ∈ F we have

q∑
i, j=1

���µ (
γbD2

i ∩ D2
j

)
− µ

(
γbnE2

i ∩ E2
j

)��� < ε

4
. (3.4)

Define a partition B = (Bl)kl=1 of X2 by setting Bl =
⋃
(i, j)∈Il E1

i × E2
j . For γ ∈ F

we now have
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k∑
l,m=1

��µ2(γa×bDl ∩ Dm) − µ2(γan×bnBl ∩ Bm)
��

=

k∑
l,m=1

�����µ2 ©­«γa×b ©­«
⋃
(i1, j1)∈Il

D1
i1 × D2

j1
ª®¬ ∩ ©­«

⋃
(i2, j2)∈Im

D1
i2 × D2

j2
ª®¬ª®¬

− µ2 ©­«γan×bn ©­«
⋃
(i1, j1)∈Il

E1
i1 × E2

j1
ª®¬ ∩ ©­«

⋃
(i2, j2)∈Im

E1
i2 × E2

j2
ª®¬ª®¬

�����
=

k∑
l,m=1

�����µ2 ©­«©­«
⋃
(i1, j1)∈Il

γaD1
i1 × γ

bD2
j1
ª®¬ ∩ ©­«

⋃
(i2, j2)∈Im

D1
i2 × D2

j2
ª®¬ª®¬

− µ2 ©­«©­«
⋃
(i1, j1)∈Il

γanE1
i1 × γ

bnE2
j1
ª®¬ ∩ ©­«

⋃
(i2, j2)∈Im

E1
i2 × E2

j2
ª®¬ª®¬

�����
=

k∑
l,m=1

�����µ2
©­­­«

⋃
(i1, j1,i2, j2)
∈Il×Im

(
γaD1

i1 × γ
bD2

j1

)
∩

(
D1

i2 × D2
j2

)ª®®®¬
− µ2

©­­­«
⋃

(i1, j1,i2, j2)
∈Il×Im

(
γanE1

i1 × E2
j1

)
∩

(
γbnE1

i2 × E2
j2

)ª®®®¬
�����

=

k∑
l,m=1

�����µ2
©­­­«

⋃
(i1, j1,i2, j2)
∈Il×Im

(
γaD1

i1 ∩ D1
i2

)
×

(
γbD2

j1 ∩ D2
j2

)ª®®®¬
− µ2

©­­­«
⋃

(i1, j1,i2, j2)
∈Il×Im

(
γanE1

i1 ∩ E1
i2

)
×

(
γbnE2

j1 ∩ E2
j2

)ª®®®¬
�����

≤
k∑

l,m=1

∑
(i1, j1,i2, j2)
∈Il×Im

���µ (
γaD1

i1 ∩ D1
i2

)
µ

(
γbD2

j1 ∩ D2
j2

)
− µ

(
γanE1

i1 ∩ E1
i2

)
µ

(
γbnE2

j1 ∩ E2
j2

)���
≤

∑
(i1, j1,i2, j2)
∈p×q×p×q

���µ (
γaD1

i1 ∩ D1
i2

)
µ

(
γbD2

j1 ∩ D2
j2

)
− µ

(
γanE1

i1 ∩ E1
i2

)
µ

(
γbnE2

j1 ∩ E2
j2

)���
=

∑
(i1,i2, j1, j2)
∈p2×q2

���µ (
γaD1

i1 ∩ D1
i2

)
µ

(
γbD2

j1 ∩ D2
j2

)
− µ

(
γanE1

i1 ∩ E1
i2

)
µ

(
γbnE2

j1 ∩ E2
j2

)��� .
(3.5)
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Now (3.3) and (3.4) let us apply Lemma 3.3.1 with I = p2, J = q2 and δ = ε
4 to

conclude that (3.5) ≤ ε
2 . Note that for any three subsets S1, S2, S3 of a probability

space (Y, ν) we have

|ν(S1 ∩ S3) − ν(S2 ∩ S3)| = |ν(S1 ∩ S2 ∩ S3)
+ ν((S1 \ S2) ∩ S3) − ν(S1 ∩ S2 ∩ S3) − ν((S2 \ S1) ∩ S3)|
≤ ν(S14S2),

and hence for any l,m ≤ k and any action c ∈ A
(
Γ, X2, µ2) we have��µ2(γc Al ∩ Am) − µ2(γcDl ∩ Dm)

��
≤

��µ2(γc Al ∩ Am) − µ2(γcDl ∩ Am)
�� + ��µ2 (γcDl ∩ Am) − µ2 (γcDl ∩ Dm)

��
≤ µ2 (γc Al4γcDl) + µ2(Am4Dm) ≤

ε

2k2 ,

where the last inequality follows from (3.2). Hence for all γ ∈ F,

k∑
l,m=1

��µ2(γa×bAl ∩ Am) − µ2(γan×bnBl ∩ Bm)
��

≤
k∑

l,m=1
(
��µ2(γa Al ∩ Am) − µ2(γaDl ∩ Dm)

��
+

��µ2(γa×bDl ∩ Dm) − µ2(γan×bnBl ∩ Bm)
��)

≤
k∑

l,m=1

( ε

2k2 +
��µ2(γa×bDl ∩ Dm) − µ2(γan×bnBl ∩ Bm)

��)
≤ ε

2
+ (3.5) ≤ ε .

Therefore MAt,k(a × b) is within ε of MBt,k(an × bn) and we have shown that for all k,
Ct,k(a × b) is contained in the ball of radius ε around Ct,k(an × bn). A symmetric
argument shows that if n ≥ N then for all k, Ct,k(an × bn) is contained in the ball of
radius ε around Ct,k(a × b) and thus the theorem is proved. �
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C h a p t e r 4

WEAK EQUIVALENCE OF STATIONARY ACTIONS AND THE
ENTROPY REALIZATION PROBLEM

Peter Burton, Martino Lupini and Omer Tamuz

4.1 Introduction
LetG be a countable discrete group and letm be a probabilitymeasure onG. Let also
(X, µ) be a standard probability space. A measurable action of G on (X, µ) is said
to be m-stationary if the corresponding convolution of m with µ is equal to µ. More
explicitly, this means

∑
g∈G m(g) · µ(gA) = µ(A) for all measurable subsets A of X .

Stationary actions are automatically nonsingular, and form a natural intermediate
class between measure-preserving actions and general nonsingular actions. We will
write Stat(G,m, X, µ) for the set of m-stationary actions of G on (X, µ). Given an
action a ∈ Stat(G,m, X, µ) we will write ga for the nonsingular transformation of
(X, µ) corresponding to g.

In [53], Kechris defined a notion of weak containment for measure-preserving
actions of countable groups analogous to the standard notion of weak containment
for unitary representations. The same definition can be given for stationary actions.

Definition 4.1.1. Let a, b ∈ Stat(G,m, X, µ). We say that a is weakly contained in
b, in symbols a � b, if the following condition holds. For every ε > 0, every finite
F ⊆ G and every finite collection A1, . . . , An of measurable subsets of X , there are
measurable subsets B1, . . . , Bn of X such that

|µ(ga Ai ∩ A j) − µ(gbBi ∩ B j)| < ε

for all g ∈ F and all i, j ∈ {1, . . . , n}. We say that a is weakly equivalent to b, in
symbols a ∼ b, if a � b and b � a.

Thus a is weakly contained in b if the statistics of a on finite partitions can be sim-
ulated arbitrary well in the action b. Weak equivalence is a much coarser relation
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than isomorphism; for example in [36] it is shown that all free measure-preserving
actions of an amenable group are weakly equivalent. It is also better behaved from
the perspective of descriptive set theory: there is in general no standard Borel struc-
ture on the set of isomorphism classes of m-stationary actions, whereas in Section
4.3 we will define a natural Polish topology on the set of weak equivalence classes
of m-stationary actions for any pair (G,m).

In [38], Furstenberg introduced an invariant hm(X, µ, a) which quantifies how far an
m-stationary action a is from being measure-preserving. Later termed Furstenberg
entropy, this is defined by

hm(X, µ, a) = −
∑
g∈G

m(g) ·
∫

X
log

dgaµ

dµ
(x)dµ(x).

By Jensen’s inequality, we have that hm(X, µ, a) is nonnegative, and it is zero if and
only if a is measure-preserving. The following problem has been studied in articles
such as [19], [21], [31], [46], [52] and [65].

Problem 4.1.1 (Furstenberg entropy realization problem). For a fixed pair (G,m),
describe the possible values of Furstenberg entropy on ergodic ν-stationary systems.

The goal of this paper is to establish the following theorem, which shows that the
above problem can be regarded as a problem about the structure of the space of
weak equivalence classes.

Theorem 4.1.1. Furstenberg entropy is an invariant of weak equivalence and de-
scends to a continuous function on the space of weak equivalence classes.

4.2 A characterization of weak containment
In this section we verify that one obtains an equivalent notion if one alters the
definition of weak containment to allow shifts on both sides of the intersections.

Proposition 4.2.1. Let a, b ∈ Stat(G,m, X, µ). Then the following are equivalent.

(i) a is weakly contained b.

(ii) For any finite subset F of G, ε > 0, and measurable subsets A1, . . . , An of X ,
there exist measurable subsets B1, . . . , Bn of X such that��µ(ga Ai ∩ ha A j) − µ(gbBi ∩ hbB j)

�� < ε (4.1)



66

for all g, h ∈ F and i, j ∈ {1, . . . , n}.

Proof. Taking h = 1G it is clear that (ii) implies (i). We now show (i) implies
(ii). Suppose that F = {g0, . . . , gm} is a finite subset of G, n is a natural number,
and A0, . . . , An are measurable subsets of X . Without loss of generality, we can
assume that n = m, g0 = 1G and A0 = X . Fix ε > 0 and choose 0 < δ < ε/7. Set
Ai, j = ga

j Ai for i, j ∈ {1, . . . , n}. In particular we have Ai,0 = Ai and Ai, j = ga
j Ai,0

for i, j ∈ {1, . . . , n}. By assumption there exist measurable subsets Bi, j of X such
that

|µ(Ai, j ∩ ga
m Al,k) − µ(Bi, j ∩ gb

mBl,k)| < δ

for all i, j, k, l,m ∈ {1, . . . , n}. Since A0,0 = X and g0 = 1G, we have that µ(B0,0) >
1 − δ. It follows that

|µ(ga
m Al,k) − µ(gb

mBl,k)| < 2δ

for m, l, k ∈ {1, . . . , n}. Therefore

µ(B j,m4gb
mB j,0) = µ(B j,m) + µ(gb

mB j,0) − 2µ(B j,m ∩ gb
mB j,0)

≤ 6δ + µ(A j,m) + µ(ga
m A j,0) − 2µ(A j,m ∩ ga

m A j,0)
= 6δ + µ(A j,m4ga

m A j,0) = 6δ.

In conclusion

|µ(ga
k Ai∩ga

m A j)−µ(gb
k Bi,0∩gb

mB j,0)| ≤ |µ(ga
k Ai,0∩A j,m)−µ(gb

k Bi,0∩B j,m)|+6δ ≤ 7δ < ε.

for every i, j, k,m ∈ {1, . . . , n}. Thus we can take Bi = Bi,0 to obtain (4.1). �

4.3 The space of weak equivalence classes
For a ∈ Stat(G,m, X, µ) we will write ã for the weak equivalence class of a.
Let (gk)∞k=1 be an enumeration of G. For a natural number m and an ordered
finite partition A = {A1, . . . , An} of X , we will write Mm,A(a) for the point in
[0, 1]m×n×n whose (k, i, j)-coordinate is µ(ga

k Ai ∩ A j). Let then Cm,n(a) be the
closure in [0, 1]m×n×n of the set{

Mm,A : A is a partition of X into n pieces.
}
.

Clearly we have a � b if and only if Cm,n(a) ⊆ Cm,n(b) for all natural numbers m, n.
Let

δ(a, b) =
∞∑

m,n=1

1
2m+n · dH

(
Cm,n(a),Cm,n(b)

)
,
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where dH is the Hausdorff distance on the space of compact subsets of [0, 1]m×n×n.
Then for any a, b, c, d ∈ Stat(G,m, X, µ) with a ∼ c and b ∼ d we have δ(a, b) =
δ(c, d). Thus the quantity δ̃(ã, b̃) = δ(a, b) is a well-defined metric on the space of
weak equivalence classes. The corresponding topology is easily seen to be Polish.
We denote this space by S̃tat(G,m, X, µ). As in the measure-preserving case, an
ultraproduct construction shows that S̃tat(G,m, X, µ) is compact.

In addition to its topology, S̃tat(G,m, X, µ) carries a convex structure. Given
a, b ∈ Stat(G,m, X, µ), and t ∈ (0, 1) one can realize a as an action on [0, t) and
realize b as an action on [t, 1]. One then defines ta+ (1− t)b to be the action on [0, 1]
which agrees with a on [0, t) and b on [t, 1]. It is easy to see that this procedure gives
a well-defined operation on S̃tat(G,m, X, µ). As in the measure-preserving case
discussed in [23], the convex structure is better behaved if one instead considers the
relation �s of stable weak containment. This is defined by letting a �s b if and only
if a � b× ι, where ι is the trivial action of G on a standard probability space. Write
S̃tats(G,m, X, µ) for the space of stable weak equivalence classes. δ̃ gives a Polish
topology on S̃tats(G,m, X, µ) and since hm(X, µ, a× ι) = hm(X, µ, a), Theorem 4.1.1
continues to hold if we replace weak equivalence by stable weak equivalence. The
arguments from [23] carry over to show that S̃tats(G,m, X, µ) is isomorphic to a com-
pact convex subset of a Banach space, and that its extreme points are exactly those
stable weak equivalence classes containing an ergodic action. Moreover, the map
a 7→ hm(X, µ, a) respects the convex combination operation. Thus understanding
the convex structure of S̃tats(G,m, X, µ) could give new understanding of Problem
4.1.1.

4.4 Proof of Theorem 4.1.1
For each n, let an ∈ Stat(G,m, X, µ); let also a ∈ Stat(G,m, X, µ). Assume that ãn

converges to ã in S̃tat(G,m, X, µ). Fixing g ∈ G, it is enough to show the following:
for any c ≥ 0 we have

lim
n→∞

µ

({
x ∈ X :

dganµ

dµ
(x) > c

})
= µ

({
x ∈ X :

dgaµ

dµ
(x) > c

})
.

Let M be a positive constant such that dgbµ
dµ ≤ M for any m-stationary action

a. Let ωn =
dgaµ
dµ and ωn =

dgan µ
dµ . Write C = {x ∈ X : ω(x) > c}, and

Cn = {x ∈ X : ωn (x) > c}. We will prove that µ (C) ≤ lim infn µ (Cn). The
proof that µ (C) ≥ lim supn µ (Cn) is analogous. Suppose by contradiction µ (C) >
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lim infn µ (Cn). Thus, after passing to a subsequence, we can assume that there is
δ > 0 such that µ (Cn) ≤ µ (C) − δ for every n ∈ N. Identify X with [0, 1], so that
we have a Borel linear order on X . Define the Borel linear order v on X by letting
t v s iff ω (t) < ω (s) or ω (t) = ω (s) and t < s. Similarly define vn in terms
of ωn. Note that if D is a terminal segment of v then we have µ(gaD) ≥ µ(gaE)
for any E with µ(E) = µ(D). For n ∈ N write Dn for the terminal segment of v
such that µ(Dn) = µn(Cn) and write En for the terminal segment of vn such that
µ(C) = µn(En). Let also Fn be the terminal segment of v such that µ(Fn) = µ(Cn)+δ
and let Kn be the terminal segment of vn such that µn(Kn) = µ(Cn) + δ. Clearly
Dn ⊆ Fn ⊆ C and Cn ⊆ Kn ⊆ En. We have

µ(Fn \ Dn) = µ(Fn) − µ(Dn) = δ = µn(Kn) − µn(Cn) = µn(Kn \ Cn) (4.2)

and similarly
µ(C \ Fn) = µn(En \ Kn). (4.3)

Note that since ω(x) > c ≥ ωn(y) if x ∈ C but y ∈ X \ Cn, (4.3) implies

µ (ga(C \ Fn)) ≥ µn (gan(En \ Kn)) . (4.4)

Let H be the terminal segment of v such that µ(H) = µ(C) − δ so that by (4.2) we
have δ = µ(C \ H) = µ(Fn \ Dn). Since Fn \ Dn ⊆ C and C \ H has the lowest
Radon-Nikodym derivative of any subset of C with measure δ this implies

µ (ga(C \ H)) ≤ µ (ga(Fn \ Dn)) . (4.5)

For n ∈ n from (4.2), (4.4) and (4.5) we have

µ (ga(C \ Dn)) − µ (gan(En \ Cn))
= µ (ga(C \ Fn)) + µ (ga(Fn \ Dn)) − µ (gan(En \ Kn)) − µ (gan(Kn \ Cn))
≥ µ (ga(Fn \ Dn)) − µ (gan(Kn \ Cn)) ≥ µ (ga(Fn \ Dn)) − c · µ (Kn \ Cn)
= µ (ga(Fn \ Dn)) − cδ ≥ µ (ga(C \ H)) − cδ. (4.6)

For x ∈ C we have ω(x) > c so the last quantity is strictly positive. Choose

0 < ε <
1

2(4 + M) · (µ (g
a(C \ H)) − cδ) . (4.7)

Since ãn → ã, for everyBorel partition A1, . . . , Ak of X there is a partition B1, . . . , Bk

of X such that |µ(Ai) − µ(Bi)| < ε and
��µ(ga Ai ∩ A j) − µ(ganBi ∩ B j)

�� < ε for all
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i, j ∈ {1, . . . , k}. Fixing n, write C′ = Cn, D = Dn, E = En and v′=vn. Note that
from (4.6) and (4.7) we have

2(4 + M)ε < µ (ga(C \ D)) − µ (gan(E \ C′)) . (4.8)

Let A1 = X \ C and A2 = C. Find B1, B2 ⊆ X such that |µ(Ai) − µ(Bi)| < ε and��µ(ga Ai ∩ A j) − µ(ganBi ∩ B j)
�� < ε

for each i, j ∈ {1, 2}. Note that

µ (X \ (B1 ∪ B2)) ≤ 2ε.

We have

µ(ga A1) = µ(ga A1 ∩ A1) + µ(ga A1 ∩ A2)
≥ µ(ganB1 ∩ B1) + µ(ganB1 ∩ B2) − 2ε

≥ µ(ganB1 ∩ B1) + µ(ganB1 ∩ B2) + µ (ganB1 \ (B1 ∪ B2)) − 4ε

≥ µ(ganB1) − 4ε. (4.9)

Note that
µ(B1) ≥ µ(A1) − ε = µ(X \ C) − ε.

Write L for the initial segment of v′ such that µ(L) = µ(X \ C) − ε. Note that
µ(X \ E) = µ(X \ C) and so µ (X \ (E ∪ L)) = ε. We have

µ (gan(X \ E)) = µ(gan L) + µ (gan (X \ (E ∪ L)))

and therefore
µ(gan L) ≥ µ (gan(X \ E)) − Mε. (4.10)

Since µ(B1) ≥ µ(L) and µ(gan L) ≤ µ(gan J) for any J ⊆ X with µ(J) ≥ µ(L) from
(4.10) we see

µ(ganB1) ≥ µ (gan(X \ E)) − Mε.

From (4.9) we have

µ (ga(X \ C)) ≥ µ (gan(X \ E)) − (4 + M)ε. (4.11)

Now write A1 = C′ and A2 = X \ C′. Find B1, B2 ⊆ X such that��µ(Ai ∩ A j) − µ(Bi ∩ B j)
�� < ε
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and ��µ(gan Ai ∩ A j) − µ(gaBi ∩ B j)
�� < ε

for each i, j ∈ {1, 2}. Arguing as before we have µ(gan A1) ≤ µ(gaB1) + 4ε and
µ(gaB1) ≤ µ(gaD) + Mε so that

µ(ganC′) ≤ µ(gaD) + (4 + M)ε. (4.12)

From (4.11) and (4.12) we have

µ (ga(X \ C) ∪ D)) ≥ µ (gan ((X \ E) ∪ C′)) − 2(4 + M)ε. (4.13)

Note that
D t (C \ D) t (X \ C) = X

and
C′ t (E \ C′) t (X \ E) = X .

Thus from (4.8) and (4.13) we have

1 = µ (ga (D ∪ (X \ C))) + µ (ga(C \ D))
≥ µ (gan (C′ ∪ (X \ E))) − 2(4 + M)ε + µ (ga(C \ D))
> µ (gan (C′ ∪ (X \ E))) + µ (gan(E \ C′)) = 1,

which is the desired contradiction. This concludes the proof of Theorem 4.1.1.
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C h a p t e r 5

NAIVE ENTROPY OF DYNAMICAL SYSTEMS

Peter Burton

5.1 Introduction.
A fundamental aspect of the theory of dynamical systems is the invariant known
as entropy. Defined for both measurable and topological systems, this is a nonneg-
ative real number which quantifies how random the given dynamics are. Entropy
was introduced for measurable Z-systems by Kolmogorov in [64] and Sinai in [73]
and for topological Z-systems by Adler, Konheim and McAndrew in [5]. In [67],
Ornstein and Weiss extended much of entropy theory from Z-systems to Γ-systems
for amenable groups Γ. More recently, there has been significant progress in cre-
ating ideas of entropy for systems where the acting group is nonamenable. The
most significant aspect of this new work is Bowen’s theory of sofic entropy, initially
developed by him for measurable systems in the papers [14], [15], [18] and [12],
and further developed for both types of systems by Kerr and Li in [61], [63] and
[62] and by Kerr in [58] and [59]. Another thread is the concept of Rokhlin entropy,
developed for measurable systems by Seward in [70], [71] and [72]. In this paper
we begin to study a third notion of entropy for general systems, called naive entropy.
This idea was suggested by Bowen in [12] as the most direct way of generalizing
the definition for Z-systems. While he considered only the measurable context, a
similar definition can be made for topological systems.

Following an observation of Bowen, we show that if Γ is a nonamenable count-
able group then any topological or measurable Γ-system has naive entropy either
0 or ∞. Thus for nonamenable groups naive entropy is best understood as a di-
chotomy rather than an invariant. A natural question is to what extent the dichotomy
between zero and infinite naive entropy corresponds to the dichotomy between zero
and positive sofic entropy. Bowen has conjectured in [12] that zero naive entropy
implies sofic entropy at most zero. In Section 5.4 we prove the following topological
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version of this conjecture. Here htp
nv is the naive topological entropy and htp

Σ
is the

sofic entropy with respect to a sofic approximation Σ.

Theorem 5.1.1. Let Γ be a sofic group, let Γ y X be a topological Γ-system and
let Σ be a sofic approximation to Γ. If htp

nv(Γy X) = 0 then htp
Σ
(Γy X) ≤ 0.

One advantage of naive entropy is that in many cases it is easy to see that a system
has zero naive entropy. For example in Section 5.2 we observe that if Γ has an
element of infinite order, then any distal Γ-system has zero naive entropy in both
senses. This gives a partial answer to a question of Bowen. Furthermore, in Section
5.2 we are able show that if Γ is a free group, then the generic Γ-system with
phase space the Cantor set has zero naive topological entropy. More precisely, if
X is a compact metric space and Γ a countable group, let Atop(Γ, X) denote the
Polish space of topological Γ-systems with phase space X . We say a sequence
(Γyan X)∞n=1 ⊆ Atop(Γ, X) of Γ-systems converges to a system Γ ya X if for
every γ ∈ Γ the sequence of homeomorphisms corresponding to γ in an converges
uniformly to the homeomorphism corresponding to γ in a.

Theorem 5.1.2. Let 2N denote the Cantor set and let F be any countable free group.
The set of topological F-systems with zero naive entropy is comeager in Atop

(
F, 2N

)
.

Combining Theorems 5.1.1 and 5.1.2 we have the following corollary.

Corollary 5.1.1. If F is a countable free group, then the set of F-systems with sofic
entropy at most 0 is comeager in Atop

(
F, 2N

)
.

Another natural question to ask is whether there is a relation between naive measure
entropy and naive topological entropy. In Section 5.2 we show half of such a
variational principle. Let hnv denote the naive measure entropy.

Theorem 5.1.3. If Γy X is a topological Γ-system and µ is an invariant measure
for Γy X then

hnv(Γy (X, µ)) ≤ htp
nv(Γy X).

Notational preliminaries.
Throughout the paper Γ will denote a countable discrete group. A measurable
Γ-system Γya (X, µ) consists of a standard probability space (X, µ) and measure-
preserving action on Γ on (X, µ), equivalently a homomorphism a : Γ→ Aut(X, µ),
where Aut(X, µ) is the group of measure-preserving bijections from (X, µ) to itself.
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We use Kechris’s convention from [53] and write γa instead of a(γ) for γ ∈ Γ.
We identify two measure-preserving bijections if they agree almost everywhere,
and thus identify two Γ-systems Γ ya (X, µ) and Γ yb (X, µ) if γa = γb almost
everywhere for each γ ∈ Γ.

A topological Γ-system Γ ya X consists of a compact metrizable space X and
a homomorphism a : Γ → Homeo(X), where Homeo(X) is the group of homeo-
morphisms of X . As in the measurable case, we write γa instead of a(γ). If Γ = Z
we use the standard notation and write a(1) = T , denoting the system by (X,T) or
(X, µ,T).

For n ∈ N, we let [n] denote the set {1, . . . , n}.
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Additional note.
After communicating our results to Brandon Seward, he informed us that the mea-
surable case of Bowen’s naive entropy conjecture has been proved independently by
a number of researchers including Miklos Abert, Tim Austin, Seward himself, and
Benjamin Weiss. This together with our Theorem 5.1.3, the variational principle
for sofic entropy and the fact that a topological system with no invariant measure
has sofic entropy −∞ give an alternate, indirect proof of our Theorem 5.1.1. Our
work was done independently of the (as yet unpublished) work of these authors on
the measurable case.

5.2 Naive entropy.
Naive measure entropy.
In this section we introduce the naive measure entropy of a dynamical system. Fix a
measurable Γ-system Γya (X, µ). All partitions considered will be assumed to be
measurable. If α = (A1, . . . , An) is a finite partition of (X, µ) the Shannon entropy
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Hµ(α) of α is defined by

Hµ(α) = −
n∑

i=1
µ(Ai) log(µ(Ai)).

If α and β are partitions of (X, µ), the join α ∨ β is the partition consisting of all
intersections A ∩ B where A ∈ α and B ∈ β. We make a similar definition for the
join

∨n
i=1 αi of a finite family (αi)ni=1 of partitions. If α is partition and γ ∈ Γ we

let γaα be the partition {γa A : A ∈ α}. For a finite set F ⊆ Γ let αF denote the
partition

∨
γ∈F γ

aα. If (X, µ,T) is a Z-system and F = [0, n] we write αn
0 for αF .

Recall the classical definition of entropy for Z-systems.

Definition 5.2.1. Let (X, µ,T) be a measurable Z-system. The dynamical entropy
hµ(α) of a finite partition α is defined by

hµ(α) = inf
n∈N

1
n

Hµ

(
αn

0
)
.

The measure entropy h(X, µ,T) of the system is defined by

h(X, µ,T) = sup{hµ(α) : α is a finite partition of X .}

See Chapter 14 of [42] for more information on the entropy of Z-systems. In [12],
L. Bowen has introduced the following analog of Definition 5.2.1.

Definition 5.2.2. Let Γy (X, µ) be a measurable Γ-system. The dynamical entropy
hµ(α) of a finite partition α is defined by

hµ(α) = inf
F

1
|F |Hµ

(
αF

)
,

where the infimum is over all nonempty finite subsets F of Γ. The naive measure
entropy hnv (Γy (X, µ)) of the system is defined by

hnv (Γy (X, µ)) = sup{hµ(α) : α is a finite partition of X}.

In the case of Z, Definition 5.2.2 agrees with Definition 5.2.1. The next fact was
proven by Bowen in [12].

Theorem 5.2.1. If Γ is nonamenable then for any measurable Γ-system Γy (X, µ)
we have hnv(Γy (X, µ)) ∈ {0,∞}.
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Proof. Suppose there is a finite partition α with hµ(α) = c > 0. Choose r ∈ R.
Since Γ is nonamenable, there is a finite set W ⊆ Γ such that

inf
F

|WF |
|F | ≥

r
c
,

where the infimum is over all nonempty finite subsets of Γ. Then we have

hµ
(
αW

)
= inf

F

1
|F |Hµ

(
αWF

)
= inf

F

|WF |
|F |

(
1
|WF |Hµ

(
αWF

))
≥ inf

F

|WF |
|F | hµ(α)

≥ r .

�

Naive topological entropy.
In this section we introduce the naive topological entropy of a dynamical system.
Fix a topological Γ-system Γ ya X . If U is an open cover of a compact metric
space X , let N(U) denote the minimal cardinality of a subcover ofU. IfU andV
are open covers of X , the joinU∨V is the open cover consisting of all intersections
U ∩V where U ∈ U and V ∈ V. We make a similar definition for the join

∨n
i=1Ui

of a finite family (Ui)ni=1 of open covers. If U is an open cover and γ ∈ Γ we let
γaU be the open cover {γaU : U ∈ U}. For a finite set F ⊆ Γ, writeUF to refer to∨
γ∈F γ

aU. If (X,T) is a Z-system and F = [0, n] we write Un
0 for UF . Again we

recall the definition of entropy for Z-systems.

Definition 5.2.3. Let (X,T) be a topological Z-system. The entropy htp(U) of a
finite open coverU is defined by

htp(U) = inf
n∈N

1
n

log
(
N

(
Un

0
) )
,

and the topological entropy htp(X,T) of the system is defined by

htp(Z y X) = sup{htp(U) : U is a finite open cover of X}.

Following Definition 5.2.2 we make the following definition.

Definition 5.2.4. Let Γ y X be a topological Γ-system. Given a finite open cover
U of X we define the entropy htp

nv(U) ofU by

htp
nv(U) = inf

F

1
|F | log

(
N

(
UF

))
,
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where the infimum is over all nonempty finite subsets of Γ. We define the naive
topological entropy htp

nv(Γy X) of Γy X by

htp
nv(Γy X) = sup{htp

nv(U) : U is a finite open cover of X}.

A similar concept has been studied in [9], [10] and [40] and is discussed the text
[33]. If Γ has a finite generating set S, these authors define the entropy of an open
coverU by the formula

lim sup
n→∞

1
n

log
(
N

(
USn

))
and the entropy of the system by taking the supremum over finite open covers.
Clearly a system with zero entropy in this sense has htp

nv equal to zero. Hence we
work with htp

nv in order to get the strongest form of Theorem 5.1.1. An identical
argument to the proof of Theorem 5.2.1 shows that if Γ is nonamenable then any
topological Γ-system has naive topological entropy either 0 or∞.

We record the following observation, which is immediate from the definition.

Proposition 5.2.1. If htp
nv (Γya X) > 0 then for every γ ∈ Γ with infinite order we

have htp(X, γa) > 0, where we regard (X, γa) as a Z-system.

Equivalent definitions of naive topological entropy.
We now introduce two standard reformulations of the definition of naive topological
entropy, due originally in the case of Z to R. Bowen. For a metric space (X, d) and
ε > 0 say a set S ⊆ X is ε-separated if for each distinct pair x1, x2 ∈ S we have
d(x1, x2) ≥ ε . Say that S is ε-spanning if for every x ∈ X there is x0 ∈ S with
d(x, x0) ≤ ε . Define Sep(X, ε, d) to be the maximal cardinality of an ε-separated
subset of X , and Span(X, ε, d) to be the minimal cardinality of an ε-spanning subset
of X . It is clear that

Span(X, ε, d) ≤ Sep(X, ε, d) ≤ Span
(
X,
ε

2
, d

)
. (5.1)

Now, fix a Γ-system Γya X and a compatible metric d on X . For a nonempty finite
subset F ⊆ Γ define a metric dF on X by letting dF(x1, x2) = maxγ∈F d (γa x1, γ

a x2).
The proof of the following is an immediate generalization of the corresponding
statement for Z-systems, which can be found as Proposition 14.11 in [42].

Proposition 5.2.2. Letting F range over the nonempty finite subsets of Γ we have

htp
nv (Γya X) = sup

ε>0
inf
F

1
|F | log(Sep(X, ε, dF)) = sup

ε>0
inf
F

1
|F | log(Span(X, ε, dF)).
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Proof. Fix ε > 0 and F ⊆ Γ finite. Write F−1 for {γ−1 : γ ∈ F}. LetU be an open
cover of X with Lebesgue number ε . Let S ⊆ X be an ε-spanning set of minimal
cardinality with respect to dF−1 . For every x ∈ X there is s ∈ S with d (γa x, γas) ≤ ε
for all γ ∈ F−1. Write Bε (s) for the ball of radius ε around s with respect to d. We
have γa x ∈ Bε (γas) or equivalently x ∈

(
γ−1)a Bε (γas) for all γ ∈ F−1. Therefore

x ∈ ⋂
γ∈F−1

(
γ−1)a Bε (γas) and so

⋃
s∈S

⋂
γ∈F−1

(
γ−1)a Bε (γas) is an open cover of

X . Now, for every s ∈ S and γ ∈ F−1 we have that Bε (γas) is contained in some
element of U and hence

⋂
γ∈F−1

(
γ−1)a Bε (γas) is contained in an element of UF .

It follows that
N

(
UF

)
≤ |S | = Span (X, ε, dF−1) . (5.2)

If V is an open cover of X , let diam(V) denote the supremum of the diameters
of elements of V. Let V be an open cover of X with diam(V) ≤ ε . Let R be
an ε-separated set of maximal cardinality with respect to dF . An element of VF

contains at most one point of R, and hence

Sep (X, ε, dF) ≤ N
(
VF

)
. (5.3)

By (5.1), (5.2) and (5.3) ifU has Lebesgue number ε and diam(V) ≤ ε we have for
all finite F ⊆ Γ:

htp
nv(U) = inf

F

1
|F | log

(
N

(
UF

))
≤ inf

F

1
|F | log (Span (X, ε, dF))

≤ inf
F

1
|F | log (Sep (X, ε, dF))

≤ inf
F

1
|F | log

(
N

(
VF

))
= htp

nv(V)
≤ htp

nv (Γya X) . (5.4)

Assume htp
nv (Γya X) < ∞. Given κ > 0find an open coverU so that htp

nv (Γya X)−
κ ≤ htp

nv(U). Then if ε is less than the Lebesgue number ofU, (5.4) implies that

htp
nv (Γya X) − κ ≤ inf

F

1
|F | log (Span (X, ε, dF))

≤ inf
F

1
|F | log (Sep (X, ε, dF))

≤ htp
nv (Γya X) .
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Assume htp
nv (Γya X) = ∞. Given r ∈ R find an open coverU so that r ≤ htp

nv(U).
Then if ε is less than the Lebesgue number ofU, we have again by (5.4) that

r ≤ inf
F

1
|F | log (Span (X, ε, dF)) ≤ inf

F

1
|F | log (Sep (X, ε, dF)) .

�

In particular we see from Proposition 5.2.2 that the quantities

sup
ε>0

inf
F

1
|F | log(Sep(X, ε, dF))

and
sup
ε>0

inf
F

1
|F | log(Span(X, ε, dF))

are independent of the choice of compatible metric d.

Proof of Theorem 5.1.3.
Recall that if α = (A1, . . . , Ak) and β = (B1, . . . , Bm) are finite partitions of (X, µ),
the conditional Shannon entropy H(α |β) of α given β is defined by

H(α |β) = −
k∑

i=1

m∑
j=1

µ(Ai ∩ B j) log
(
µ(Ai ∩ B j)
µ(B j)

)
.

We will use the following well-known facts about Shannon entropy, which appear
in [42] as Propositions 14.16, 14.18.2 and 14.18.4 respectively.

Proposition 5.2.3. (1) H(α1∨α2) = H(α1)+H(α2 |α1), in particular H(α1∨α2) ≥
H(α1),

(2) If β2 refines β1 then H(α |β2) ≤ H(α |β1),

(3) H(α1 ∨ α2 |β) ≤ H(α1 |β) + H(α2 |β).

The following argument is a straightforward generalization of the corresponding
proof for Z-systems given as Part I of Theorem 17.1 in [42].

Proof of Theorem 5.1.3. Let µ be an invariant measure for the topological Γ-system
Γ ya X . Let α = (Ai)ki=1 be a measurable partition of (X, µ). Choose closed sets
Bi ⊆ Ai such that µ(Ai4Bi) is small enough so H(α |β) ≤ 1, where β is the partition
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(Bi)k+1
i=1 and Bk+1 = X − ⋃k

i=1 Bi. Then for any finite set F ⊆ Γ by (2) and (3) of
Proposition 5.2.3 we have

Hµ

(
αF

��βF
)
≤

∑
γ∈F

Hµ

(
γaα

��βF
)

≤
∑
γ∈F

Hµ(γaα |γaβ)

= |F | · Hµ(α |β)
≤ |F |.

Hence by (1) of Proposition 5.2.3 we have

Hµ

(
αF

)
≤ Hµ

(
αF ∨ βF

)
= Hµ

(
βF

)
+ Hµ

(
αF

��βF
)

≤ Hµ

(
βF

)
+ |F |

and consequently

hµ(α) = inf
F

1
|F |Hµ

(
αF

)
≤ inf

F

1
|F |

(
Hµ

(
βF

)
+ |F |

)
= hµ(β) + 1. (5.5)

Now let Ui = Bi ∪ Bk+1. Then X −Ui =
⋃

1≤ j≤k,
j,i

B j so Ui is open andU = (Ui)ki=1

is an open cover of X . Note that the only elements of β meeting Ui are Bi and Bk+1.
LetV(F) be an open subcover ofUF with minimal cardinality. We claim that each
element of V(F) meets at most 2|F | elements of βF . Indeed suppose φ : F → [k]
is a function such that

⋂
γ∈F γ

aUφ(γ) ∈ V(F) and let x ∈ ⋂
γ∈F γ

aUφ(γ). Then if
ψ : F → [k + 1] is any function so that x ∈ ⋂

γ∈F γ
aBψ(γ) ∈ βF we must have

Bψ(γ) ∩Uφ(γ) , ∅ and hence ψ(γ) ∈ {φ(γ), k + 1} for all γ ∈ F. Therefore��βF
�� ≤ 2|F | |V(F)| .

It follows that

Hµ

(
βF

)
≤ log

(��βF
��)

≤ log
(
2|F | · |V(F)|

)
≤ |F | log 2 + log (|V(F)|)

= |F | log 2 + log
(
N

(
UF

))
(5.6)
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and hence by (5.5) and (5.6) we have

hµ(α) ≤ hµ(β) + 1

=

(
inf
F

1
|F |Hµ

(
βF

))
+ 1

≤
(
inf
F

1
|F |

(
|F | log 2 + log

(
N

(
UF

))))
+ 1

= htp
nv(U) + 1 + log 2.

Therefore
hnv (Γy (X, µ)) ≤ htp

nv (Γy X) + 1 + log 2.

Now observe that the measure µn on Xn is invariant for the nth Cartesian power of
the system Γy X . Therefore the same argument shows

hnv (Γy (Xn, µn)) ≤ htop
nv (Γy Xn) + 1 + log 2. (5.7)

Immediate generalizations of the proofs of Theorems 14.14 and 14.31 in [42] show
that both forms of naive entropy are additive under direct products. Thus (5.7)
implies

n · hnv (Γy (X, µ)) ≤ n · htop
nv (Γy X) + 1 + log 2

for all n ≥ 1 and therefore we must have

hnv (Γy (X, µ)) ≤ htop
nv (Γy X) .

�

Examples.
Example 5.2.1. Let (Y, ν) be a standard probability space. Assume ν is not sup-
ported on a single point. Consider the Bernoulli shift Γ y (X, µ) where X = YΓ

and µ = νΓ. Let α = (A1, A2) be a partition of (Y, ν) with positive entropy and
α̂ =

(
Â1, Â2

)
be the partition of (X, µ) given by

Âi = {ω ∈ X : ω (eΓ) ∈ Ai} ,

where eΓ is the identity of Γ. Then as in the case of a Z-system distinct shifts of α̂
are independent and so we have Hµ

(
α̂F )
= |F | · Hµ (α̂). Thus

hµ (α̂) = Hµ (α̂) = Hν(α) > 0.
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By Theorem 5.2.1 we see that if Γ is nonamenable then hnv (Γy (X, µ)) = ∞. Thus
Theorem 5.1.3 implies that the corresponding topological system Γy X has infinite
naive entropy.

Example 5.2.2. Let Γya X be a topological system and d a compatible metric on
X . Recall that Γ ya X is said to be distal if for every pair x1, x2 of distinct points
in X we have infγ∈Γ d (γa x1, γ

a x2) > 0. In particular, an isometric system such as
a circle rotation is distal.

Now, suppose that Γya X is distal and Γ has an element γ of infinite order. Then
(X, γa) is a distal Z-system. Theorem 18.19 in [42] implies that distal Z-systems
have zero entropy. Thus Proposition 5.2.1 guarantees that htp

nv(Γ ya X) = 0. By
Theorem 5.1.3, hnv(Γ ya (X, µ)) = 0 for any invariant measure µ. It is likely that
a distal Γ-system has zero naive topological entropy for an arbitrary Γ, but we were
unable to prove this despite significant effort.

Proof of Theorem 5.1.2
We first show three preliminary lemmas.

Lemma 5.2.1. Let U be a finite open cover of a compact metrizable space X . Fix
a finite set F ⊆ Γ and k ∈ N. Then

Z(U, F, k) =
{
(Γya X) ∈ Atop(Γ, X) : N

(∨
γ∈F

γaU
)
≤ k

}
is open.

Proof. WriteU = (Ui)ni=1. Let (Γy
a X) ∈ Z(U, F, k) and letV be a subcover of∨

γ∈F γ
aU with cardinality ≤ k. Let d be a compatible metric on X and let du be

the metric
du( f , g) = sup

x∈X
d( f (x), g(x)).

Note that to obtain the uniform topology on Homeo(X) we must use the metric

d′u( f , g) = du( f , g) + dn( f −1, g−1).

However the topology induced by du on Atop(Γ, X) is the same as the one induced
by d′u so we will continue to work with the former.
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Let ε be a Lebesgue number forV with respect to d. Let (φ j)kj=1 be a sequence of
functions from F to [n] so that

V =
(⋂
γ∈F

γaUφ j (γ)

) k

j=1

.

Let δ > 0 be small enough that for all γ ∈ F and x1, x2 ∈ X , d(x1, x2) < δ implies
d(γa x1, γ

a x2) < ε . Then for any x ∈ X ,
(
γ−1)a Bε (x) contains Bδ

( (
γ−1)a x

)
.

Suppose du

( (
γ−1)a

,
(
γ−1)b

)
< δ for all γ ∈ F. We claim(⋂

γ∈F

γbUφ j (γ)

) k

j=1

is a cover of X . Let x ∈ X . Then there is j ≤ k so that Bε (x) ⊆
⋂
γ∈F γ

aUφ j (γ),
equivalently

(
γ−1)a Bε (x) ⊆ Uφ j (γ) for all γ ∈ F. Since d

( (
γ−1)a x,

(
γ−1)b x

)
< δ,

we see that
(
γ−1)b x ∈ Uφ j (γ). Therefore x ∈ γbUφ j (γ) for all γ ∈ F. �

Lemma 5.2.2. For any system Γy X , if (Un)∞n=1 is a sequence of finite open covers
such that limn→∞ diam(Un) = 0, then limn→∞ htp(Un) = htp

nv(Γy X).

Proof. It is clear that if U refines V then htp(V) ≤ htp(U). Thus if V is an
arbitrary open cover of X , by choosing n so that diam(Un) is less than the Lebegsue
number ofV we have htp(V) ≤ htp(Un). �

Lemma 5.2.3. For any countable group Γ and compact metrizable space X , the set
of systems with zero naive topological entropy is Gδ in Atop(Γ, X).

Proof. IfU is an open cover of X , F ⊆ Γ is finite and ε > 0 set

Z̃(U, F, ε) =
{
(Γya X) ∈ Atop(Γ, X) :

1
|F | log

(
N

(∨
γ∈F

γaU
))

< ε

}
.

Note that in the notation of Lemma 5.2.1, we have

Z̃(U, F, ε) = Z (U, F, bexp(ε |F |)c) ,

and hence Z̃(U, F, ε) is open. If (Un)∞n=1 is a sequence of finite open covers with
limn→∞ diam(Un) = 0 then by Lemma 5.2.2, the set of systems with zero naive
topological entropy is equal to the Gδ set

∞⋂
n=1

∞⋂
k=1

⋃
F

Z̃
(
Un,

1
k
, F

)
,

where the union is over all nonempty finite subsets of Γ. �
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Proof of Theorem 5.1.2. By Lemma 5.2.3, it suffices to show the set of systems
with zero entropy is dense in Atop

(
Γ, 2N

)
. By Corollary 2.5 in [41], the set of

homeomorphisms with zero entropy is uniformly dense in Homeo
(
2N

)
. Therefore

the set of systems in Atop
(
Γ, 2N

)
for which the first generator of Γ acts with zero

entropy is dense. The theorem follows from this fact and Proposition 5.2.1. �

5.3 Sofic groups and sofic entropy.
Sofic groups.
Sofic groups were introduced by Gromov in [44] and Weiss in [75]. Let Sym(n)
denote the symmetric group on n letters. Let un denote the uniform probability
measure on [n] so that un(A) = |A|n . In keeping with our convention for dynamical
systems, if σ is a function from Γ to Sym(n) we write γσm for σ(γ)(m).

Definition 5.3.1. Let Γ be a countable discrete group. Let Σ = (σi)∞i=1 be a sequence
of functions σi : Γ→ Sym(ni) such that ni → ∞. Note that the σi are not assumed
to be homomorphisms. We say Σ is a sofic approximation to Γ if for every pair
γ1, γ2 ∈ Γ we have

lim
i→∞

uni ({m ∈ [ni] : (γ1γ2)σim = γσi1 γ
σi
2 m}) = 1,

and for every pair γ1 , γ2 we have

lim
i→∞

uni ({m ∈ [ni] : γσi1 m , γσi2 m}) = 1.

We say Γ is sofic if there exists a sofic approximation to Γ.

Thus the first condition guarantees that the σi are asymptotically homomorphisms,
and the second condition guarantees that the corresponding approximate actions on
[ni] are asymptotically free. The standard examples of sofic groups are residually
finite groups and amenable groups. It is unknown whether every countable group
is sofic.

Topological sofic entropy.
In [57] and [62], Kerr and Li developed a topological counterpart to Bowen’s theory
of sofic entropy, based initially on operator-algebraic considerations. We will use
the ‘spatial’ formulation of these ideas. Fix a group Γ and a topological Γ-system
Γya X . Fix a compatible metric d for X . Define the metrics d2 and d∞ on the set
of maps from [n] to X by

d2(φ, ψ) =
(
1
n

n∑
m=1

d (φ(m), ψ(m))2
) 1

2
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and
d∞(φ, ψ) = max

m∈[n]
d(φ(m), ψ(m)).

Definition 5.3.2. Let F ⊆ Γ be finite, δ > 0 and σ : Γ → Sym(n). Define
Map(σ, F, δ) to be the collection of functions φ : [n] → X such that d2(φ ◦ γσ, γa ◦
φ) ≤ δ for all γ ∈ F.

Definition 5.3.3. Let Σ = (σi)∞i=1 be a sofic approximation to Γ with σi ∈ Sym(ni)Γ.
Define the topological sofic entropy htp

Σ
(Γ ya X) of Γ ya X with respect to Σ as

follows. Letting F range over the nonempty finite subsets of Γ and δ, ε > 0 define

htp
Σ
(δ, F, ε) = lim sup

i→∞

1
ni

log(Sep(Map(σi, F, δ), ε, d∞)),

htp
Σ
(F, ε) = inf

δ>0
htp
Σ
(δ, F, ε),

htp
Σ
(ε) = inf

F
htp
Σ
(F, ε),

htp
Σ
(Γya X) = sup

ε>0
htp
Σ
(ε).

5.4 Proof of Theorem 5.1.1
This argument builds on the framework used to prove Lemma 5.1 in [62].

Choosing parameters
In this subsection we set the values of some initial parameters for our construction.
Let Σ = (σn)∞n=1 be a sofic approximation to Γ, where σn : Γ → Sym(n). The case
where σn is a function from Γ to [kn] for some kn , n can be handled with trivial
modifications. Choose κ with 0 < κ < 1. It suffices to show that htp

Σ
(Γya X) ≤ κ.

Choose ε > 0, so that it suffices to show that htp
Σ
(ε) ≤ κ. Let

η =
κ

4 log
(
Sep

(
X, ε4, d

) ) (5.8)

and choose k ∈ N such that
1
k
≤ η

2
. (5.9)

By our assumption that htp
nv(Γ ya X) = 0, we can choose a finite set F ⊆ Γ such

that
1
|F | log

(
Sep

(
X,
ε

4
, dF

))
≤ κ

4k
. (5.10)

Lemma 5.4.1. Let F′ ⊆ F be such that |F′| ≥ |F |k . Then

Sep
(
X,
ε

4
, dF ′

)
≤ exp

(
κ |F′|

4

)
.
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Proof of Lemma 5.4.1. Since

Sep
(
X,
ε

4
, dF ′

)
≤ Sep

(
X,
ε

4
, dF

)
,

we have
1
|F′| log

(
Sep

(
X,
ε

4
, dF ′

))
≤ 1
|F′| log

(
Sep

(
X,
ε

4
, dF

))
≤ k

(
1
|F | log

(
Sep

(
X,
ε

4
, dF

)))
≤ κ

4
,

where the last inequality follows from (5.10). �

Write s = |F |. Let δ > 0 be small enough that

δ ≤
( ε
8

)2
, (5.11)

δ ≤ η

4s3 (5.12)

(so in particular sδ < 1) and finally

−(sδ log(sδ) + (1 − sδ) log(1 − sδ)) ≤ κ

4
. (5.13)

For a finite S ⊆ Γ let

Q(S)n = {m ∈ [n] : (γ1γ2)σnm = γσn

1 γσn

2 m for all γ1, γ2 ∈ S}
∩ {m ∈ [n] : γσn

1 m , γσn

2 m for all γ1 , γ2 ∈ S}

Write F̂ for the symmetrization of F. Since Σ is a sofic approximation, we can find
N so that if n ≥ N then ��Q(F̂)n�� ≥ (

1 − η

4s2

)
n. (5.14)

Choosing a separated subset
In this subsection we find a large ε-separated subset V of Map(σ, F, δ) such that
every element of V is approximately equivariant on a fixed large subset of [n]. Fix
n ≥ N and write σ = σn. Let D be an ε-separated subset of Map(σ, F, δ) with
respect to d∞ of maximal cardinality. For every φ ∈ Map(σ, F, δ) by definition we
have d2(φ ◦ γσ, γa ◦ φ) ≤ δ for all γ ∈ F. Explicitly,(

1
n

n∑
m=1

d
(
φ(γσm), γaφ(m)

)2
) 1

2

≤ δ.
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Hence for each fixed γ ∈ F at least (1 − δ)n elements m of [n] have

d (φ (γσm) , γaφ(m)) ≤
√
δ.

Hence the set Θφ of all m ∈ [n] such that

d (φ (γσm) , γaφ(m)) ≤
√
δ

for all γ ∈ F has size at least (1 − sδ)n.

By a standard estimate from information theory (see for example Lemma 16.19
in [30]) the number of subsets of [n] of size at most sδn is at most

exp
(
−n(sδ log(sδ) + (1 − sδ) log(1 − sδ))

)
and by (5.13) this is bounded above by exp

(
κn
4
)
. Hence there at at most exp

(
κn
4
)

possible choices for the sets {Θφ : φ ∈ D} and thus there are at least exp
(
− κn

4
)
|D |

elements of D for which Θφ is the same. So we can find V ⊆ D and Θ ⊆ [n] such
that

|D | ≤ exp
( κn

4

)
|V | (5.15)

and for all φ ∈ V we have Θφ = Θ. Note that since |Θ| ≥ (1 − sδ)n, (5.12) implies
that

|[n] − Θ| ≤ ηn
4s2 . (5.16)

Furthermore, by (5.11) and the definition of Θ, for all φ ∈ V and all m ∈ Θ we have

d (φ (γσm) , γaφ(m)) ≤ ε

8
. (5.17)

Disjoint subsets of the sofic graph
Endow [n] with the structure of the graph Gσ corresponding to σ, where m1 is con-
nected to m2 if and only if there is γ ∈ F such that (γ)σm1 = m2 or

(
γ−1)σ m1 = m2.

In this section we find amaximal collection of disjoint subsets ofGσ which resemble
a nontrivial part of F.

By (5.14) and (5.16),
|Gσ − (Q(F̂)n ∩ Θ)| ≤

ηn
2s2 .

Let J be the collection of points c in Gσ such that the ball of radius 1 around c in
Gσ is contained in Q(F̂)n ∩ Θ, and let I be the collection of points c in J such that
the ball of radius 1 around c is contained in J. Then

|Gσ − J | ≤ s · |Gσ − (Q(F̂)n ∩ Θ)| ≤
ηn
2s
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and
|Gσ − I | ≤ s · |Gσ − J | ≤ ηn

2
. (5.18)

If c ∈ J then the mapping from F to Gσ given by γ 7→ γσc is injective. We now
begin an inductive procedure. Choose c1 ∈ J and take F1 = F. Suppose we have
chosen c1, . . . , c j ∈ J and F1, . . . , Fj ⊆ F such that the sets

(
Fσ

i ci
) j
i=1 are pairwise

disjoint and |F |k ≤ |Fi | for all i ∈ {1, . . . , j}. Write Fσ
i ci = Bi

Assume we cannot extend this process further, so that there do not exist c j+1 and
Fj+1 satisfying the two conditions. WriteW =

⋃ j
i=1 Bi. Our assumption implies that

for every c ∈ J, at least
(
1 − 1

k

)
|F | of the points in Fσc lie in W . Suppose toward

a contradiction that |J |k < |I −W |. For each point b in I, there are exactly |F | points
c ∈ J such that b ∈ Fσc, in symbols |{c ∈ J : b ∈ Fσc}| = |F |. Indeed b ∈ Fσc

if and only if b = γσc for some c ∈ F. Since b, c ∈ Q(F)n, this is equivalent to(
γ−1)σ b = c. Since b ∈ Q(F−1)n, the map γ−1 7→

(
γ−1)σ b is injective. Therefore

|{c ∈ J : b ∈ Fσc}| = |{c ∈ J : c ∈
(
F−1

)σ
b}|

= |F−1 |
= |F |.

So we have ∑
b∈I−W

|{c ∈ J : b ∈ Fσc}| = |F | · |I −W | > |F | · |J |
k

.

We can write ∑
b∈I−W

|{c ∈ J : b ∈ Fσc}| =
∑

b∈I−W

∑
c∈J

1Fσc(b),

where 1Y is the characteristic function of Y . So we have∑
c∈J

∑
b∈I−W

1Fσc(b) >
|F | · |J |

k
.

Since there are |J | terms in the outer sum, there must be some c0 ∈ J with∑
b∈I−W

1Fσc0(b) >
|F |
k
,
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or equivalently |(I −W) ∩ Fσc0 | > |F |
k . Thus |W ∩ Fσc0 | <

(
1 − 1

k

)
|F |, which

contradicts our assumption. It follows that for a maximal pair of sequences (ci) ji=1
and (Fi) ji=1 satisfying the relevant conditions, we have

|I −W | ≤ |J |
k
. (5.19)

Fix such a maximal pair (ci) ji=1 and (Fi) ji=1. Note that by our choice of k in (5.9) we
have

|J |
k
≤ n

k
≤ ηn

2
. (5.20)

Therefore if we put P = Gσ −W then by (5.18), (5.19) and (5.20) we have

|P | ≤ |Gσ − I | + |I −W |

≤ ηn
2
+
ηn
2
= ηn. (5.21)

Controlling sofic entropy by naive entropy
In this subsection we use the data previously constructed to bound the size of an
appropriately separated subset of Map(σ, F, δ) in terms of the separation numbers
used to compute naive entropy. For B ⊆ [n], let d∞B be the pseudometric on the
collection of maps from [n] to X given by d∞B (φ, ψ) = maxm∈B d(φ(m), ψ(m)). Let
i ≤ j and take an ε

2 -spanning set Vi of V of minimal cardinality with respect to the
pseudometric d∞Bi

. We claim

|Vi | ≤ exp
(
κ |Fi |

4

)
.

To see this, let U be a maximal ε2 -separated subset of V with respect to d∞Bi
. Then U

is also ε
2 -spanning with respect to d∞Bi

and hence |Vi | ≤ |U |. For any two elements φ
and ψ of V we have ci ∈ J ⊆ Θ = Θψ = Θφ. Since Fi ⊆ F it follows from (5.17)
that d (γaφ(ci), φ (γσci)) ≤ ε

8 for all γ ∈ Fi, and similarly for ψ. So for all γ ∈ Fi

we have

d (γaφ(ci), γaψ(ci)) ≥ d (φ (γσci) , ψ (γσci))
− d (γaφ(ci), φ (γσci)) − d (γaψ(ci), ψ (γσci))

≥ d (φ (γσci) , ψ (γσci)) −
ε

4
. (5.22)

Now, since U is ε
2 -separated with respect to d∞Bi

, for any φ, ψ ∈ U we have

d∞Bi
(φ, ψ) = max

b∈Bi

d(φ(b), ψ(b)) = max
γ∈Fi

d (φ (γσci) , ψ (γσci)) ≥
ε

2
. (5.23)
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By (5.22) and (5.23),

dFi (φ(ci), ψ(ci)) = max
γ∈Fi

d (γaφ(ci), γaψ(ci))

≥ max
γ∈Fi

(
d (φ (γσci) , ψ (γσci)) −

ε

4

)
=

(
max
γ∈Fi

d (φ (γσci) , ψ (γσci))
)
− ε

4

≥ ε

2
− ε

4
=
ε

4
.

It follows that {φ(ci) : φ ∈ U} is an ε
4 -separated subset of X with respect to dFi of

size |U | and hence by Lemma 5.4.1 we have

|U | ≤ Sep
(
X,
ε

4
, dFi

)
≤ exp

(
κ |Fi |

4

)
,

and consequently

|Vi | ≤ exp
(
κ |Fi |

4

)
. (5.24)

Now, take an ε
2 -spanning subset VP of V of minimal cardinality with respect to d∞P .

Since a maximal ε2 -separated subset is also
ε
2 -spanning, we have

|VP | ≤ Sep
(
V,
ε

2
, d∞P

)
. (5.25)

For a compact pseudometric space (Z, ρ) and r > 0 write Cov(Z, r, ρ) for the
minimal cardinality of a family of ρ-balls of radius r which covers Z . It is easy to
see that for any r we have

Cov(Z, r, ρ) ≤ Sep(Z, r, ρ) ≤ Cov
(
Z,

r
2
, ρ

)
.

Now, let {B1, . . . , B j} be a cover of X by balls of radius ε
4 . We can construct a cover

of X [n] by considering the collection of all sets of the form
∏n

p=1 Yp where Yp is
equal to some Bi if p ∈ P and equal to X if p < P. Each of these sets is a d∞P -ball of
radius ε

4 and so we see that

Sep
(
V,
ε

2
, d∞P

)
≤ Cov

(
V,
ε

4
, d∞P

)
≤ Cov

(
X [n],

ε

4
, d∞P

)
≤ Cov

(
X,
ε

4
, d

) |P |
≤ Sep

(
X,
ε

4
, d

) |P |
. (5.26)

(5.21), (5.25), and (5.26) imply

|VP | ≤ Sep
(
X,
ε

4
, d

)ηn
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and hence
|VP | ≤ exp

( κn
4

)
(5.27)

by our choice of η in (5.8).

Conclusion
Let Z be the set of all maps φ : [n] → X such that φ � P = ψ � P for some ψ ∈ VP

and for each i ≤ j we have φ � Bi = ψi � Bi for some ψi ∈ Vi. Note that since we
chose the sets Bi = Fσ

i ci to be pairwise disjoint, and the maps γ 7→ γσci for γ ∈ Fi

are bijective, we have
∑ j

i=1 |Fi | ≤ n. Thus by (5.24) and (5.27) we have

|Z | ≤ |VP |
( j∏

i=1
|Vi |

)
≤ exp

( κn
4

) ( j∏
i=1

exp
(
κ |Fi |

4

))
= exp

(
κn
4
+
κ

4

( j∑
i=1
|Fi |

))
≤ exp

( κn
2

)
. (5.28)

Note that if φ ∈ V , then by the hypothesis that Vi is ε
2 -spanning for V with respect

to the metric d∞Bi
we have that maxb∈Bi d(φ(b), ψi(b)) ≤ ε

2 for some element ψi of
Vi, and similarly for P and VP. Hence every element of V is within d∞ distance ε

2
of some element of Z . Define a map f : V → Z by letting f (φ) be any element
of Z within d∞ distance ε

2 of φ. Since V is a subset of D and we assumed that D

was ε-separated with respect to d∞, it follows that f is injective. Therefore we have
|V | ≤ |Z |. Then it follows from (5.15) and (5.28) that if n ≥ N then

Sep(Map(F, δ, σn), ε, d∞) = |D |

≤ exp
( κn

2

)
|V |

≤ exp
( κn

2

)
|Z |

≤ exp
( κn

2

)
exp

( κn
2

)
= exp (κn) .

This concludes the proof of Theorem 5.1.1.
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C h a p t e r 6

UNIFORM MIXING AND COMPLETELY POSITIVE SOFIC
ENTROPY

Tim Austin and Peter Burton

6.1 Introduction
Let G be a countable discrete sofic group, (X, µ) a standard probability space and
T : G y X a measurable G-action preserving µ. In [14], Lewis Bowen defined
the sofic entropy of (X, µ,T) relative to a sofic approximation under the hypothesis
that the action admits a finite generating partition. The definition was extended to
general (X, µ,T) by Kerr and Li in [61] and Kerr gave a more elementary approach in
[58]. In [17] Bowen showed that when G is amenable, sofic entropy relative to any
sofic approximation agrees with the standard Kolmogorov-Sinai entropy. Despite
some notable successes such as the proof in [14] that Bernoulli shifts with distinct
base-entropies are nonisomorphic, many aspects of the theory of sofic entropy are
still relatively undeveloped.

Rather than work with abstract measure-preserving G-actions, we will use the
formalism of G-processes. If G is a countable group and A is a standard Borel
space, we will endow AG with the right-shift action given by (g · a)(h) = a(hg)
for g, h ∈ G and a ∈ AG. A G-process over A is a Borel probability measure µ
on AG which is invariant under this action. Any measure-preserving action of G

on a standard probability space is measure-theoretically isomorphic to a G-process
over some standard Borel space A. We will assume the state space A is finite,
which corresponds to the case of measure-preserving actions which admit a finite
generating partition. Note that by results of Seward from [71] and [72], the last
condition is equivalent to an action admitting a countable generating partition with
finite Shannon entropy.

In [7], the first author introduced a modified invariant called model-measure sofic
entropy which is a lower bound for Bowen’s sofic entropy. Let Σ = (σn : G →
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Sym(Vn)) be a sofic approximation to G. Model-measure sofic entropy is con-
structed in terms of sequences (µn)∞n=1 where µn is a probability measure on AVn .
If these measures replicate the process (AG, µ) in an appropriate sense then we say
that (µn)∞n=1 locally and empirically converges to µ. We refer the reader to [7] for
the precise definitions. We have substituted the phrase ‘local and empirical con-
vergence’ for the phrase ‘quenched convergence’ which appeared in [7]. This has
been done to avoid confusion with an alternative use of the word ‘quenched’ in the
physics literature. A process is said to have completely positive model-measure
sofic entropy if every nontrivial factor has positive model-measure sofic entropy.
The goal of this paper is the to prove the following theorem, which generalizes the
main theorem of [32].

Theorem 6.1.1. Let G be a countable sofic group containing an element of infinite
order. Then there exists an uncountable family of pairwise nonisomorphic G-
processes each of which has completely positive model-measure sofic entropy (and
hence completely positive sofic entropy) with respect to any sofic approximation to
G. None of these processes is a factor of a Bernoulli shift.

In order to prove Theorem 6.1.1 we introduce a concept of uniform mixing for
sequences of model-measures. This uniformmodel-mixing will be defined formally
in Section 6.3. It implies completely positive model-measure sofic entropy.

Theorem 6.1.2. Let G be a countable sofic group and let (AG, µ) be a G-process
with finite state space A. Suppose that for some sofic approximation Σ toG, there is a
uniformly model-mixing sequence (µn)∞n=1 which locally and empirically converges
to µ over Σ. Then (AG, µ) has completely positive lower model-measure sofic entropy
with respect to Σ.

As in [32], the examples we exhibit to establish Theorem 6.1.1 are produced via a
coinduction method for lifting H-processes to G-processes when H ≤ G. If (AH, ν)
is an H-process then we can construct a corresponding G-process (AG, µ) as follows.
Let T be a transversal for the right cosets of H in G. Identify G as a set with H × T

and thereby identify AG with (AH)T . Set µ = νT . We call (AG, µ) the coinduced
process and denote it by CIndG

H(ν). (See page 72 of [53] for more details on this
construction.) When H � Z this procedure preserves uniform mixing.

Theorem 6.1.3. Let G be a countable sofic group and let (AZ, ν) be a uniformly
mixing Z-process with finite state space A. Let H ≤ G be a subgroup isomorphic
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to Z and identify AZ with AH . Then for any sofic approximation Σ to G, there
is a uniformly model-mixing sequence of measures which locally and empirically
converges to CIndG

H(ν) over Σ.

We remark that it is easy to see that if (AG, µ) is a Bernoulli shift (that is to say,
µ is a product measure), then there is a uniformly model-mixing sequence which
locally and empirically converges to µ. Indeed, if µ = ηG for a measure η on A then
the measures ηVn on AVn are uniformly model-mixing and locally and empirically
converge to µ. Thus Theorem 6.1.2 shows that Bernoulli shifts with finite state
space have completely positive sofic entropy, giving another proof of this case of
the main theorem from [59]. We believe that completely positive sofic entropy for
general Bernoulli shifts can be deduced along the same lines, requiring only a few
additional estimates, but do not pursue the details here.
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6.2 Preliminaries
Notation
The notation we use closely follows that in [7]; we refer the reader to that refer-
ence for further discussion. Let A be a finite set. For any pair of sets W ⊆ S

we let πW : AS → AW be projection onto the W-coordinates (thus our notation
leaves the larger set S implicit). Let G be a countable group and let (AG, µ) be a
G-process. For F ⊆ G wewill write µF = πF∗µ ∈ Prob(AF) for the F-marginal of µ.

Let B be another finite set and let φ : AG → B be a measurable function. If
F ⊆ G we will say that φ is F-local if it factors through πF . We will say φ is local if
it is F-local for some finite F. Let φG : AG → BG be given by φG(a)(g) = φ(g · a)
and note that φG is equivariant between the right-shift on AG and the right-shift on
BG.

Let V be a finite set and let σ be a map from G to Sym(V). For g ∈ G and
v ∈ V we write σg · v instead of σ(g)(v). For F ⊆ G and S ⊆ V we define

σF(S) = {σg · s : g ∈ F, s ∈ S}.
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For v ∈ V we write σF(v) for σF({v}). We write Πσ
v,F for the map from AV to AF

given by Πσ
v,F(a)(g) = a(σg · v) for a ∈ AV and g ∈ F. We write Πσv for Πσ

v,G.
With φ : AG → B as before, we write φσ for the map from AV to BV given by
φσ(a)(v) = φ

(
Πσv (a)

)
.

If D is a finite set and η is a probability measure on D then H(η) denotes the
Shannon entropy of η, and for ε > 0 we define

covε (η) = min
{
|F | : F ⊆ D is such that η(F) > 1 − ε

}
.

If φ : D → E is a map to another finite set then we may write Hµ(φ) in place of
H(φ∗µ). For p ∈ [0, 1] we let H(p) = −p log p − (1 − p) log(1 − p).

We use the o(·) and . asymptotic notations with respect to the limit n → ∞.
Given two functions f and g on N, the notation f . g means that there is a positive
constant C such that f (n) ≤ Cg(n) for all n.

An information theoretic estimate

Lemma 6.2.1. Let A be a finite set and let (Vn)∞n=1 be a sequence of finite sets such
that |Vn | increases to infinity. Let µn be a probability measure on AVn . We have

lim inf
n→∞

H(µn)
|Vn |

≤ sup
ε>0

lim inf
n→∞

1
|Vn |

log covε (µn).

Proof. Let µ be a probability measure on a finite set F and let E ⊆ F. By
conditioning on the partition {E, F \E} and then recalling that entropy is maximized
by uniform distributions we obtain

H(µ) = µ(E) · H(µ(· | E)) + µ(F \ E) · H(µ(· | F \ E)) + H(µ(E))
≤ µ(E) · log(|E |) + (1 − µ(E)) · log(|F \ E |) + H(µ(E)). (6.1)

Now let µn and Vn be as in the statement of the lemma. Let ε > 0 and let Sn ⊆ AVn

be a sequence of sets with µn(Sn) > 1 − ε and |Sn | = covε (µn). By applying (6.1)
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with F = AVn and E = Sn we have

lim inf
n→∞

H(µn)
|Vn |

≤ lim inf
n→∞

1
|Vn |

(
µ(Sn) · log(|Sn |)

+ (1 − µ(Sn)) · log(|AVn \ Sn |) + H(µ(Sn))
)

≤ lim inf
n→∞

1
|Vn |

(
log(|Sn |) + ε · log(|AVn |) + H(ε)

)
≤

(
lim inf

n→∞
1
|Vn |

log covε
(
µn)

)
+ ε · log(|A|).

Now let ε tend to zero to obtain the lemma. �

6.3 Metrics on sofic approximations and uniform model-mixing
Let us fix a proper right-invariant metric ρ on G: for instance, if G is finitely
generated then ρ can be a word metric, and more generally we may let w : G →
[0,∞) be any proper weight function and define ρ to be the resulting weighted word
metric. Again let V be a finite set and let σ be a map from G to Sym(V). Let Hσ be
the graph on V with an edge from v to w if and only if σg · v = w or σg · w = v for
some g ∈ G. Define a weight function W on the edges of Hσ by setting

W(v,w) = min
{
ρ(g, 1G) : σg · v = w or σg · w = v

}
.

If v and w are in the same connected component of Hσ let ρσ be the W-weighted
graph distance between v and w, that is

ρσ(v,w) = min
{k−1∑

i=0
W(pi, pi+1) :(v = p0, p1, . . . , pk−1, pk = w)

is an Hσ-path from v to w

}
.

Having defined ρσ on the connected components of Hσ, choose some number M

much larger than the ρσ-distance between any two points in the same connected
component. Set ρσ(v,w) = M for any pair v,w of vertices in distinct connected
components of Hσ. Note that if (σn : G → Sym(Vn)) is a sofic approximation to G

then for any fixed r < ∞ once n is large enough the map g 7→ σ
g
n · v restricts to an

isometry from Bρ(1G, r) to Bρσn (v, r) for most v ∈ Vn.

In the sequel the sofic approximation will be fixed, and we will abbreviate ρσn

to ρn. We can now state the main definition of this paper.
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Definition 6.3.1. Let (Vn)∞n=1 be a sequence of finite sets with |Vn | → ∞ and for
each n let σn be a map from G to Sym(Vn). Let A be a finite set. For each n ∈ N
let µn be a probability measure on AVn . We say the sequence (µn)∞n=1 is uniformly
model-mixing if the following holds. For every finite F ⊆ G and every ε > 0 there
is some r < ∞ and a sequence of subsets Wn ⊆ Vn such that

|Wn | = (1 − o(1))|Vn |

and if S ⊆ Wn is r-separated according the metric ρn then

H
(
πσF

n (S)∗µn

)
≥ |S | · (H(µF) − ε).

This definition is motivated by Weiss’ notion of uniform mixing from the special
case when G is amenable: see [76] and also Section 4 of [32]. Let us quickly
recall that notion in the setting of a G-process (AG, µ). First, if K ⊆ G is finite
and S ⊆ G is another subset, then S is K-spread if any distinct elements s1, s2 ∈ S

satisfy s1s−1
2 < K . The process (AG, µ) is uniformly mixing if, for any finite-valued

measurable function φ : AG → B and any ε > 0, there exists a finite subset K ⊆ G

with the following property: if S ⊆ G is another finite subset which is K-spread,
then

H
(
(φG
∗ µ)S

)
≥ |S | · (Hµ(φ) − ε).

Beware that we have reversed the order of multiplying s1 and s−1
2 in the definition of

‘K-spread’ compared with [32]. This is because we work in terms of observables
such as φ rather than finite partitions of AG, and shifting an observable by the action
of g ∈ G corresponds to shifting the partition that it generates by g−1.

The principal result of [69] is that completely positive entropy implies uniform
mixing. The reverse implication also holds: see [43] or Theorem 4.2 in [32]. Thus,
uniform mixing is an equivalent characterization of completely positive entropy.

The definition of uniform mixing may be rephrased in terms of our proper met-
ric ρ on G as follows. The process (AG, µ) is uniformly mixing if and only if, for
any finite-valued measurable function φ : AG → B and any ε > 0, there exists an
r < ∞ with the following property: if S ⊆ G is r-separated according to ρ, then

H
(
(φG
∗ µ)S

)
≥ |S | · (Hµ(φ) − ε).

This is equivalent to the previous definition because a subset S ⊆ G is r-separated
according to ρ if and only if it is Bρ(1G, r)-spread. The balls Bρ(1G, r) are finite,
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because ρ is proper, and any other finite subset K ⊆ G is contained in Bρ(1G, r) for
all sufficiently large r .

This is the point of view on uniform mixing which motivates Definition 6.3.1.
We use the right-invariant metric ρ rather than the general definition of ‘K-spread’
sets because it is more convenient later.

Definition 6.3.1 is directly compatible with uniform mixing in the following sense.
If G is amenable and (Fn)∞n=1 is a Følner sequence for G, then the sets Fn may be
regarded as a sofic approximation to G: an element g ∈ G acts on Fn by translation
wherever this stays inside Fn and arbitrarily at points which are too close to the
boundary of Fn. If (AG, µ) is an ergodic G-process, then it follows easily that the
sequence of marginals µFn locally and empirically converge to µ over this Følner-set
sofic approximation. If (AG, µ) is uniformly mixing, then this sequence of marginals
is clearly uniformly model-mixing in the sense of Definition 6.3.1.

On the other hand, suppose that (AG, µ) admits a sofic approximation and a locally
and empirically convergent sequence of measures over that sofic approximation
which is uniformly model-mixing. Then our Theorem 6.1.2 shows that (AG, µ) has
completely positive sofic entropy. If G is amenable then sofic entropy always agrees
with Kolmogorov-Sinai entropy [17], and this implies that (AG, µ) has completely
positive entropy and hence is uniformly mixing, by the result of [69].

Thus if G is amenable then completely positive entropy and uniform mixing are
both equivalent to the existence of a sofic approximation and a locally and empir-
ically convergent sequence of measures over it which is uniformly model-mixing.
If these conditions hold, then we expect that one can actually find a locally and
empirically convergent and uniformly model-mixing sequence of measures over any
sofic approximation to G. This should follow using a similar kind of decomposition
of the sofic approximants into Følner sets as in Bowen’s proof in [17]. However, we
have not explored this argument in detail.

Definition 6.3.1 applies to a shift-system with a finite state space. It can be trans-
ferred to an abstract measure-preserving G-action on (X, µ) by fixing a choice of
finite measurable partition of X . However, in order to study actions which do not
admit a finite generating partition, it might be worth looking for an extension of
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Definition 6.3.1 to G-processes with arbitrary compact metric state spaces, similarly
to the setting in [7]. We also do not pursue this generalization here.

6.4 Proof of Theorem 6.1.2
We will use basic facts about the Shannon entropy of observables (i.e. random
variables with finite range), for which we refer the reader to Chapter 2 of [30]. Let
Σ = (σn : G → Sym(Vn)), (AG, µ) and (µn)∞n=1 be as in the statement of Theorem
6.1.2. The following is the ‘finitary’ model-measure analog of Lemma 5.1 in [32].

Lemma 6.4.1. Let F ⊆ G be finite. Let B be a finite set and let φ : AG → B be an
F-local observable. Let Sn ⊆ Vn be a sequence of sets such that |Sn | & |Vn |. Then
we have

H(µF) −
1
|Sn |

H(πσF
n (Sn)∗µn) ≥ Hµ(φ) −

1
|Sn |

H
(
πSn∗φ

σn
∗ µn

)
− o(1).

Proof of Lemma 6.4.1. Let θ : AF → B be a map with θ ◦ πF = φ. Fix n ∈ N
and S ⊆ Vn. Let α = πσF

n (S) : AVn → Aσ
F
n (S) and let β = πS ◦ φσn : AVn → BS.

For s ∈ S let αs = Π
σn

s,F : AVn → AF and let βs = θ ◦ Πσn

s,F : AVn → B. Then we
have α = (αs)s∈S and β = (βs)s∈S. Enumerate S = (sk)mk=1 and write αsk = αk . All
entropies in the following display are computed with respect to µn. We have

H(α) = H(α1, . . . , αm)

= H(α1) +
m−1∑
k=1

H(αk+1 |α1, . . . , αk)

= H(α1, β1) +
m−1∑
k=1

H(αk+1, βk+1 |α1, . . . , αk)

= H(β1) + H(α1 |β1) +
m−1∑
k=1

H(βk+1 |α1, . . . , αk) +
m−1∑
k=1

H(αk+1 |βk+1, α1, . . . , αk)

≤ H(β1) +
m−1∑
k=1

H(βk+1 |β1, . . . , βk) +
m∑

k=1
H(αk |βk)

= H(β) +
m∑

k=1
H(αk |βk).
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Let ι be the identity map on AF . Then

|S | · H(µF) − H(πσF
n (S)∗µn) = |S | · HµF (ι) − Hµn(α)

≥ |S | · HµF (θ) + |S | · HµF (ι|θ)
− Hµn(β) −

∑
s∈S

Hµn(αs |βs)

= |S | · Hµ(φ) − H
(
πS∗φ

σn
∗ µn

)
+ |S | · HµF (ι|θ) −

∑
s∈S

Hµn(αs |βs). (6.2)

Now allowing n to vary, let Sn ⊆ Vn be a sequence of sets such that |Sn | & |Vn |.
Write νn = πσF

n (Sn)∗µn. Let s ∈ Sn be such that the obvious map from F to σF
n (s) is

injective. Then the function a 7→ Πσn

s,F(a) provides an identification of Aσ
F
n (s) with

AF . This identification sends αs to ι and βs to θ. When n is large the σF
n (s)marginal

of µn will resemble µF for most s ∈ Sn. Since αs and βs are πσF
n (s) measurable

this implies that HµF (ι|θ) ≈ Hνn(αs |βs) for most s. More precisely, we can find a
sequence of sets Cn ⊆ Sn with

|Cn | = (1 − o(1))|Sn |

such that
max
s∈Cn

��HµF (ι|θ) − Hνn(αs |βs)
�� = o(1).

Thus�����|Sn | · HµF (ι|θ) −
∑
s∈Sn

Hνn(αs |βs)
����� ≤ ∑

s∈Cn

��HµF (ι|θ) − Hνn(αs |βs)
��

+
∑

s∈Sn\Cn

��HµF (ι|θ) − Hνn(αs |βs)
��

= o(|Sn |).

The lemma then follows from (6.2) and the above. �

Recall that for a measure space (X, µ) and two observables α and β on X the Rokhlin
distance between α and β is defined by

dRok
µ (α, β) = Hµ(α |β) + Hµ(β |α).

This is a pseudometric on the space of observables on X . An easy computation
shows that if α1, . . . , αn and β1, . . . , βn are two families of observables on X then

dRok
µ ((α1, . . . , αn), (β1, . . . , βn)) ≤

n∑
k=1

dRok
µ (αk, βk).
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Lemma 6.4.2. Let φ, ψ : AG → B be two local observables. Let Sn ⊆ Vn be a
sequence of sets with |Sn | & |Vn |. Then we have

1
|Sn |

��H(πSn∗φ
σn
∗ µn) − H(πSn∗ψ

σn
∗ µn)

�� ≤ dRok
µ (φ, ψ) + o(1).

Proof. Let αn = πSn ◦ φσn : AVn → BSn and let βn = πSn ◦ ψσn : AVn → BSn . Let F

be a finite subset of G such that both φ and ψ are F-local. Let θ : AF → B be a map
such that θ◦πF = φ and let κ : AF → B be a map such that κ◦πF = ψ. For s ∈ Sn let
αn,s = θ◦Πσn

s,F : AVn → B so that αn = (αn,s)s∈Sn . Also let βn,s = κ◦Πσn

s,F : AVn → B.
Then we have

1
|Sn |

��H(πSn∗φ
σn
∗ µn) − H(πSn∗ψ

σn
∗ µn)

�� = 1
|Sn |

��Hµn(αn) − Hµn(βn)
��

≤ 1
|Sn |
· dRok

µn (αn, βn)

=
1
|Sn |
· dRok

µn

(
(αn,s)s∈Sn, (βn,s)s∈Sn

)
≤ 1
|Sn |

∑
s∈Sn

dRok
µn (αn,s, βn,s). (6.3)

If the map g 7→ σ
g
n · s is injective on F, we can identify Aσ

F
n (s) with AF and thereby

identify αn,s with θ and βn,s with κ. Note that

dRok
µF (θ, κ) = dRok

µ (φ, ψ).

It follows that for any ε > 0 we can find a weak star neighborhood O of µ such that
if s ∈ Sn is such that (Πσn

s )∗µn ∈ O then���dRok
µn (αn,s, βn,s) − dRok

µ (φ, ψ)
��� < ε.

Thus, since µn locally and empirically converges to µ, there are sets Cn ⊆ Sn with
|Cn | = (1 − o(1))|Sn | such that

max
s∈Cn

���dRok
µn (αn,s, βn,s) − dRok

µ (φ, ψ)
��� = o(1). (6.4)

The lemma now follows from (6.3) and (6.4). �

Corollary 6.4.1. Let
(
φm : AG → B

)∞
m=1 be a sequence of local observables and

let φ : AG → B be a local observable. Let Sn ⊆ Vn be a sequence of sets with
|Sn | & |Vn |. Then if (mn)∞n=1 increases to infinity at a slow enough rate we have

1
|Sn |

��H(πSn∗φ
σn
∗ µn) − H(πSn∗φ

σn
mn∗µn)

�� ≤ dRok
µ (φ, φmn) + o(1).
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Proof of Theorem 6.1.2. Let B be a finite set and let ψ : AG → B be an observable
with Hµ(ψ) > 0. Let (φm)∞m=1 be an AL approximating sequence for ψ rel µ (see
Definition 4.4 in [7]). Then the sequence φm converges to ψ in dRok

µ . In particular,
φm is a Cauchy sequence and so we can find M ∈ N so that for all m ≥ M we have

dRok
µ (φm, φM) ≤

Hµ(ψ)
8

. (6.5)

We will also assume M is large enough that

Hµ(φM) ≥
Hµ(ψ)

2
. (6.6)

Let F be a finite subset of G such that φM is F-local. Then Definition 6.3.1 provides
an r < ∞ and a sequence of subsets Wn ⊆ Vn such that |Wn | = (1 − o(1))|Vn | and if
S ⊆ Wn is r-separated then

H(µF) −
1
|S |H(πσF

n (S)∗µn) ≤
Hµ(φM)

2
. (6.7)

Let K = |Bρ(1G, r)|. Since σn is a sofic approximation there are sets W′n ⊆ Vn with
|W′n | = (1 − o(1))|Vn | such that if w ∈ W′n then the ρn ball of radius r around w has
cardinality at most K . WriteYn = Wn∩W′n and note that we have |Yn | = (1−o(1))|Vn |.
For each n let Sn be an r-separated subset of Yn with maximal cardinality. Then
Yn ⊆

⋃
s∈Sn Bρn(s, r) so that

|Sn | ≥
|Yn |
K
= (1 − o(1)) |Vn |

K
. (6.8)

By Lemma 6.4.1 and (6.7) we have

Hµ(φM) −
1
|Sn |

H
(
πSn∗φ

σn

M∗µn
)
− o(1) ≤

Hµ(φM)
2

so that from (6.6) we have
Hµ(ψ)

4
− o(1) ≤ 1

|Sn |
H

(
πSn∗φ

σn

M∗µn
)
. (6.9)

By Proposition 5.15 in [7] if (mn)∞n=1 increases to infinity at a slow enough rate then
(φσn

mn
)∗µn will locally and empirically converge to ψG

∗ µ. Since A is finite, by the
same argument as for Proposition 8.1 in [7] we have

hq
Σ

(
ψG
∗ µ

)
≥ sup

ε>0
lim inf

n→∞
1
|Vn |

log covε
(
(φσn

mn
)∗µn

)
≥ lim inf

n→∞
1
|Vn |

H
(
(φσn

mn
)∗µn

)
, (6.10)
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where the second inequality follows fromLemma 6.2.1. We also assume that (mn)∞n=1
increases slowly enough for Corollary 6.4.1 to hold. By (6.5) we have���� 1

|Sn |
H

(
πSn∗φ

σn

M∗µn
)
− 1
|Sn |

H
(
πSn∗(φ

σn
mn
)∗µn

) ���� ≤ Hµ(ψ)
8
+ o(1).

Combining this with (6.9) we see that

1
|Sn |

H
(
πSn∗(φ

σn
mn
)∗µn

)
≥

Hµ(ψ)
8
− o(1).

By the above and (6.8) we have that for all sufficiently large n,

H
(
(φσn

mn
)∗µn

)
≥

Hµ(ψ)
8K + 1

|Vn |. (6.11)

Theorem 6.1.2 now follows from (6.10) and (6.11). �

6.5 Proof of Theorem 6.1.3
Let (AZ, ν) be a uniformly mixing Z-process, and for each positive integer l let νl

be the marginal of ν on Al . Let Σ = (σn : G → Sym(Vn)) be an arbitrary sofic
approximation to G. Let h ∈ G have infinite order and write H = 〈h〉 � Z. We
construct a measure µn on AVn for each n ∈ N. We will later show that the sequence
(µn)∞n=1 is uniformlymodel-mixing and locally and empirically converges to µ overΣ.

We first construct a measure µl
n on AVn for each pair (n, l) with l much smaller

than n. For a given n, the single permutation σh
n partitions Vn into a disjoint union

of cycles. Since h has infinite order and Σ is a sofic approximation, once n is large
most points will be in very long cycles. In particular we assume that most points
are in cycles with length much larger than l. Partition the cycles into disjoint paths
so that as many of the paths have length l as possible, and let P l

n = (Pl
n,1, . . . , P

l
n,kn
)

be the collection of all length-l paths that result (so P l
n is not a partition of the

whole of Vn, but covers most of it). Fix any element a0 ∈ AVn and define a random
element a ∈ AVn by choosing each restriction a �Pl

n,i
independently with the distri-

bution of νl and extending to the rest ofVn according to a0. Let µl
n be the law of this a.

Now let (ln)∞n=1 increase to infinity at a slow enough rate that the following two
conditions are satisfied:

(a) The number of points of Vn that lie in some member of the family P ln
n is

(1 − o(1))|Vn |.
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(b) Whenever g, g′ ∈ G lie in distinct right cosets of H, so that g−1hpg′ , 1G for
all p ∈ Z, we have

|{v ∈ Vn : (σg
n )−1(σh

n )pσ
g′
n · v = v for some p ∈ {−ln, . . . , ln}}| = o(|Vn |)

Set µn = µln
n . We separate the proof that (µn)∞n=1 has the required properties into

two lemmas.

Lemma 6.5.1. (µn)∞n=1 locally and empirically converges to µ over Σ.

Proof of Lemma 6.5.1. Since (AG, µ) is ergodic, by Corollary 5.6 in [7] it suffices to
show that µn locally weak star converges to µ. For a set I ⊆ Zwrite hI = {hi : i ∈ I}.
Fix a finite set F ⊆ G. By enlarging F if necessary we can assume there is an interval
I ⊆ Z such that F =

⋃m
k=1 hI tk for t1, . . . , tm in some transversal for the right cosets

of H in G. For each g ∈ F let jg be a fixed element of A. Let B ⊆ AG be defined by

B =
{
a ∈ AG : a(g) = jg for all g ∈ F

}
and let ε > 0. Then sets such as

O =
{
η ∈ Prob(AG) : η(B) ≈ε µ(B)

}
form a subbasis of neighborhoods around µ. It therefore suffices to show that when
n is large we have (Πσn

v )∗µn ∈ O with high probability in the choice of v ∈ Vn.

For k ∈ {1, . . . ,m} let

Bk =
{

x ∈ AZ : x(i) = jhitk for all i ∈ I
}
.

Note that µ is defined in such a way that µ(B) =∏k
i=1 ν(Bk). Now, let Wn be the set

of all points v ∈ Vn such that the following conditions hold.

(i) The map g 7→ σ
g
n · v is injective on F.

(ii) σhitk
n · v = (σh

n )iσ
tk
n · v for all i ∈ I and k ∈ {1, . . . ,m}.

(iii) For all pairs g, g′ ∈ F, σg
n · v is in the same path as σg′

n · v if and only if g and
g′ lie in the same right coset of H. In particular, each of the images σg

n · v for
g ∈ F is contained in some member of P ln

n .
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We claim that |Wn | = (1−o(1))|Vn |. Clearly Conditions (i) and (ii) are satisfied with
high probability in v, and so is the last part of Condition (iii), by Condition (a) in
the choice of (ln)∞n=1.

Fix g, g′ ∈ F and suppose that g and g′ are in the same coset of H, so that we
have g = hitk and g′ = hi′tk for some k ∈ {1, . . . ,m} and i, i′ ∈ I. If v satisfies
Condition (ii) then we have

(σh
n )i
′−iσ

g
n · v = (σh

n )i
′−i(σh

n )iσ
tk
n · v = (σh

n )i
′
σtk

n · v = σg′
n · v

so that σg
n · v and σg′

n · v will lie in the same path assuming that σtk
n · v is not one of

the first or last |I | elements of its path. Note that for any v ∈ Vn we have��{w : σtk
n · w = v for some k ∈ {1, . . . ,m}

}�� ≤ m.

It follows that the number of points v ∈ Vn such that σtk
n · v is one of the first or last

|I | elements of a path is at most 2mpn |I | + o(|Vn |) where pn is the total number of
paths in Vn. By Condition (a) in the choice of (ln)∞n=1, most of Vn is covered by paths
whose lengths increase to infinity. Since also pn = o(Vn), it follows that σg

n · v lies
in the same path as σg′

n · v with high probability in v.

On the other hand, suppose that g and g′ are in distinct cosets of H. Assume
that σg

n · v and σg′
n · v are in the same path. Then there is p ∈ {−ln, . . . , ln} with

σ
g
n · v = (σh

n )pσ
g′
n · v, and hence (σg

n )−1(σh
n )pσ

g′
n · v = v. By Condition (b) in the

choice of (ln)∞n=1 there are only o(|Vn |) vertices v for which this holds. Thus we have
established the claim.

Now let v ∈ Wn. We have

(Πσn
v )∗µn(B) = µn

({
a ∈ AVn : a(σg

n · v) = jg for all g ∈ F
})
.

For each k ∈ {1, . . . ,m} the set {(σh
n )iσ

tk
n · v : i ∈ I} is contained in a single path.

Since the marginal of µn on each path is νln the probability that

a
(
(σh

n )iσ
tk
n · v

)
= jhitk

for all i ∈ I is equal to νln(Bk) = ν(Bk). On the other hand, the marginals of µn on
distinct paths are independent, so the probability that a(σg

n · v) = jg for all g ∈ F is
actually equal to

∏k
i=1 ν(Bk). �
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If (AZ, ν) is weakly mixing, then so is the co-induced G-action. In particular, this
certainly holds if (AZ, ν) is uniformly mixing. Therefore we may immediately pro-
mote Lemma 6.5.1 to the fact that (µn)∞n=1 locally and doubly empirically converges
to µ over Σ, by Lemma 5.15 of [7]. In fact, we suspect that local and double
empirical convergence holds here whenever (AZ, ν) is ergodic.

Lemma 6.5.2. (µn)∞n=1 is uniformly model-mixing.

Proof of Lemma 6.5.2. Let F ⊆ G be finite and let ε > 0. Again decompose
F =

⋃m
k=1 hI tk for some interval I ⊆ Z and elements tk ∈ T . Note that the

restriction of the metric ρ to H is a proper right invariant metric on H � Z, even
though it might be different from the usual metric on Z. Thus since ν is uniformly
mixing we can find some r0 < ∞ such that if (I j)qj=1 is a family of intervals in Z
which are each of length |I | and are pairwise at distance at least r0 then writing
K =

⋃q
j=1 I j we have

H(νK) ≥ q ·
(
H(νI) −

ε

m

)
. (6.12)

Let r < ∞ be large enough that for all g, g′ ∈ G if ρ(g, g′) ≥ r then ρ( f g, f ′g′) ≥ r0

for all f , f ′ ∈ F. Such a choice of r is possible since by right-invariance of ρwe have
ρ( f g, g) = ρ( f , 1G) and ρ( f ′g′, g′) = ρ( f ′, 1G). LetWn be as in the proof of Lemma
6.5.1 and recall that |Wn | = (1−o(1))|Vn |. Let S ⊆ Wn be r-separated according to ρn.

Fix a path P ∈ P ln
n and let SP be the set of points v ∈ S such that σtk(v)

n · v ∈ P

for some k(v) ∈ {1, . . . ,m}. Since S ⊆ Wn, Condition (iii) from the previous proof
implies that

σF
n (S) ∩ P =

⋃
v∈SP

{(σh
n )iσ

tk(v)
n · v : i ∈ I}.

Each of the sets in the latter union is an interval of length |I | in P and by our choice
of r these are pairwise at distance r0 in ρn restricted to P. Since the marginal of µn

on P is equal to νnl , (6.12) implies that

H(π(σF
n (S)∩P)∗µn) ≥ |SP | ·

(
H(νI) −

ε

m

)
.

Since the marginals of µn on distinct paths are independent, this implies that

H(πσF
n (S)∗µn) ≥

©­«
∑

P∈Pln
n

|SP |
ª®¬ ·

(
H(νI) −

ε

m

)
. (6.13)
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By Condition (iii) in the definition of Wn, each v ∈ S appears in SP for exactly m

paths P. Therefore ∑
P∈Pln

n

|SP | = m · |S |. (6.14)

Now H(µF) = m · H(νI) so from (6.13) and (6.14) we have

H(πσF
n (S)∗µn) ≥ |S | · (H(µF) − ε)

as required. �

Proof of Theorem 6.1.3. Theorem 6.1.3 now follows from Theorem 6.1.2 and Lem-
mas 6.5.1 and 6.5.2. �

6.6 Proof of Theorem 6.1.1

Proof of Theorem 6.1.1. This part of the argument is essentially the same as the
corresponding part of [32]. Consider the family of uniformly mixing Z-processes
{(4Z, νω) : ω ∈ 2N} constructed in Section 6 of [32]. Fix an isomorphic copy H of
Z in G and let µω = CIndG

H(νω). By Theorems 6.1.2 and 6.1.3 the process (4G, µω)
has completely positive model-measure sofic entropy. Note that the restriction of
the G-action to H is a permuted power of the original Z-process in the sense of
Definition 6.5 from [32]. Thus by Proposition 6.6 in that reference, the processes
{(4G, µω) : ω ∈ 2N} are pairwise nonisomorphic.

Suppose toward a contradiction that for some ω, (4G, µω) is a factor of a Bernoulli
shift (ZG, ηG) over some standard probability space (Z, η). Let ψ : ZG → 4G be an
equivariant measurable map with ψ∗ηG = µω. Note that the restricted right-shift ac-
tion H y (ZG, ηG) is still isomorphic to a Bernoulli shift and ψ is still a factor map
from this process to the restricted action H y (4G, µω). Thus the latter Z-process
is isomorphic to a Bernoulli shift and so is its factor (4Z, νω). This contradicts
Corollary 6.4 in [32]. �
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