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ABSTRACT

In this thesis we propose a new approach for distributed optimization based

on an emerging area of theoretical computer science – local computation algo-

rithms. The approach is fundamentally different from existing methodologies

and provides a number of benefits, such as robustness to link failure and adap-

tivity to dynamic settings. Specifically, we develop an algorithm, LOCO, that

given a convex optimization problem P with n variables and a “sparse” linear

constraint matrix with m constraints, provably finds a solution as good as

that of the best online algorithm for P using only O(log(n + m)) messages

with high probability. The approach is not iterative and communication is re-

stricted to a localized neighborhood. In addition to analytic results, we show

numerically that the performance improvements over classical approaches for

distributed optimization are significant, e.g., it uses orders of magnitude less

communication than ADMM.

We also consider the operations of a geographically distributed cloud data

market. We consider design decisions that include which data to purchase

(data purchasing) and where to place or replicate the data for delivery (data

placement). We show that a joint approach to data purchasing and data

placement within a cloud data market improves operating costs. This problem

can be viewed as a facility location problem, and is thus NP-hard. However,

we give a provably optimal algorithm for the case of a data market consisting

of a single data center, and then generalize the result from the single data

center setting in order to develop a near-optimal, polynomial-time algorithm

for a geo-distributed data market. The resulting design, Datum, decomposes

the joint purchasing and placement problem into two subproblems, one for

data purchasing and one for data placement, using a transformation of the

underlying bandwidth costs. We show, via a case study, that Datum is near-

optimal in practical settings.
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C h a p t e r 1

INTRODUCTION

We consider algorithms for distributed optimization and their applications. In

this thesis we propose two new approaches to distributed optimization and

consider an exciting application in distributed data markets.

The first algorithm, LOCO, is a fundamentally new approach to distributed

optimization. There are a wide variety of approaches for distributed opti-

mization, which fall into the categories of dual decomposition and subgradient

methods, and consensus-based schemes. We propose a new approach which

utilizes local computation algorithms, a rising field in theoretical computer

science. A local algorithm is one where a query about part of a solution to a

problem can be answered by communicating with only a small number of com-

putation units in the distributed setting. Neither iterative descent methods

nor consensus methods are local: answering a query about a part of the solu-

tion requires global communication. The advantage offered by LOCO is that

significantly less communication is required to solve the optimization problem

[60].

Secondly, we consider the management of geographically distributed data cen-

ter. For example, imagine we are operating a data service like Yelp. Clients

submit queries to Yelp on their personal devices. Then, Yelp contacts various

data providers that sell data and may have to pay a data purchasing fee. Yelp

routes data through its data centers, and delivers it to clients. We believe that

data as a service is a growing market. In the near future people might want to

buy data as a service just as computing infrastructure is bought today. Given

prices offered by data providers, we, the data center designers, need to decide

which data providers to buy data from to satisfy client queries at minimal cost.

We also decide how data should be stored and replicated throughout the geo-

distributed data center to minimize bandwidth and latency costs. We design a

data center that jointly optimizes data purchasing costs and bandwidth costs.

Today many data center designs minimize bandwidth costs. However, when

data purchasing costs are also considered, the structure of the optimization

problem changes. We model the problem as a facility location problem and
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thus it is NP hard. We propose a near-optimal, polynomial-time algorithm

and in a simulation study we show that our algorithm is near optimal [77].
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C h a p t e r 2

INTRODUCTION TO DISTRIBUTED OPTIMIZATION

The goal of this work is to introduce a new, fundamentally different approach

to distributed optimization based on an emerging area of theoretical computer

science – local computation algorithms.

Distributed optimization is an area of crucial importance to networked con-

trol. Settings where multiple, distributed, cooperative agents need to solve an

optimization problem to control a networked system are numerous and varied.

Examples include management of content distribution networks and data cen-

ters [13, 70], communication network protocol design [47, 62, 84], trajectory

optimization [39, 53], formation control of vehicles [86, 75], sensor networks

[69, 59], control of power systems [27, 72], and management of electric vehicles

and distributed storage devices [16, 35].

Distributed optimization is a field with a long history. Beginning in the 1960s

approaches emerged for solving large scale linear programs via decomposition

into pieces that could be solved in a distributed manner. For example, two

early approaches are Bender’s decomposition [9] and the Dantzig-Wolfe de-

composition [24, 23], which can both be generalized to nonlinear objectives

via the subgradient method [10, 67, 83].

Today, there is a wide variety of approaches for distributed optimization, e.g.,

primal decomposition [54, 10] and dual decomposition [28, 67, 61, 84]. See

[71] for a survey. Broadly, these approaches tend to fall into two categories.

The first category uses dual decomposition and subgradient methods [47, 61,

84]; the second involves consensus-based schemes which enable decentralized

information aggregation, which forms the basis for many first order and second

order distributed optimization algorithms [12, 66].

While the algorithms described above are distributed, they are not local. A

local algorithm is one where a query about a small part of a solution to a

problem can be answered by communicating with only a small neighborhood

around the part queried1 (see Subsection 2.2 for a more comprehensive defini-

1‘Local’ is an overloaded term in the literature. We mean local in the sense of [78].
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tion and example). Clearly, neither iterative descent methods nor consensus

methods are local: answering a query about a piece of the solution requires

global communication.

Local computation is well suited for distributed optimization. For example,

any failure in the system only has local effects: if a node in a distributed

system goes offline while an iterative distributed algorithm is executing, the

whole process is brought to a halt (or at least the system needs to be carefully

designed to be able to accommodate such failures); if the computations are all

local, the failure will only affect a small number of nodes in the neighborhood

of the failure. Similarly, lag in a single edge affects the computation of the

entire solution in the iterative setting, while most computations are not be

affected at all when the computations are local. Another advantage of local

computation is that it allows the system to be more dynamic: an arrival of

another node requires recomputing the entire solution if the algorithm is not

local, but requires only a few local messages and computations if the algorithm

is local.

Despite the benefits of local algorithms for distributed optimization, the prob-

lem of designing a local, distributed optimization algorithm is open.

2.1 Contributions of this work

This paper introduces an algorithm, LOCO, (LOcal Convex Optimization)

that is both distributed and local. It is not an iterative method and uses

far less communication to compute small parts of the solution than iterative

descent and consensus methods, e.g., ADMM and dual decomposition, while

matching the total communication if the whole solution is queried.

While the technique we propose is general, in this work, we focus on a canoni-

cal optimization problem: network utility maximization. Due to space restric-

tions, we only consider the variant of maximizing throughput, which amounts

to solving a distributed linear program. We focus on this case because it is par-

ticularly well-studied and, in addition, the objective function is linear, which

in many cases is known to produce the worst performance guarantee for online

convex optimization problems [5, 41].

In Section 4, we provide worst-case guarantees on the performance of LOCO with

respect to the relative error and the number of messages it requires. In Sec-

tion 5, we compare the performance of LOCO with ADMM, and show that
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LOCO uses orders of magnitude less communication than ADMM if only part

of the solution is required, and the same order of magnitude if the entire

solution is required. Furthermore, in terms of both the amount of communica-

tion required and the relative error, LOCO vastly outperforms its theoretical

guarantees.

The key idea behind LOCO is an extension of recent results from the emerging

field of local computation algorithms (LCA) in theoretical computer science

(e.g., [63, 76, 56]). In particular, a key insight of the field is that online

algorithms can be converted into local algorithms in graph problems with

bounded degree [63]. However, much of the focus of local algorithms has,

to this point, been on graph problems (see related literature below). The

technical contribution of this work is the extension of these ideas to convex

programs.

2.2 Related literature

This work, for the first time, brings techniques from the field of local com-

putation algorithms into the domain of networked control. The LCA model

was formally introduced by Rubinfeld et al. [78], after many algorithms fitting

within the framework had recently appeared in distinct areas, e.g., [79, 4, 46].

LCAs have received increasing attention in the years that followed as the im-

portance of local, distributed computing has grown with the increasing scale

of problems in distributed systems, the internet of things, etc.

The main idea of LCAs is to compute a piece of the solution to some algorith-

mic problem using only information that is close to that piece of the problem,

as opposed to a global solution, by exchanging information across distributed

agents. More concretely, an LCA receives a query and is expected to output

the part of the solution associated with that query. For example, an LCA for

maximal matching would receive as a query an edge, and its output would

be “yes/no”, corresponding to whether or not the edge is part of the required

matching. The two requirements are (i) the replies to all queries are consistent

with the same solution, and (ii) the reply to each query is “efficient”, for some

natural notion of efficient.

Most of the work on LCAs has focused on graph problems such as matching,

maximal independent set, and coloring (e.g., [3, 56, 76, 31]) and the efficiency

criteria were the number of probes to the graph, the running time and the
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amount of memory required. This paper extends the LCA literature by mov-

ing from graph problems to optimization problems, which have not been stud-

ied in the LCA community previously. Mansour et al. [63] showed a general

reduction from LCAs to online algorithms on graphs with bounded degree.

The key technical contribution of our the work is extending that technique to

design LCAs for convex programs. In contrast to previous work whose primary

focus was probe, time and space complexities, the efficiency criterion we use

is the number of messages required as this is usually the expensive resource in

networked control.
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C h a p t e r 3

NETWORK UTILITY MAXIMIZATION

In order to illustrate the application of local computation algorithms to dis-

tributed optimization, we focus on the classic setting of network utility maxi-

mization (NUM). The NUM framework is a general class of optimization prob-

lems that has seen wide-spread application to distributed control in domains

from the design of TCP congestion control [47, 61, 62, 84] to understanding

of protocol layering as optimization decomposition [18, 71] and power system

demand response [80, 58]. For a recent survey, see [96].

3.1 Model

The NUM framework considers a network containing a set of links L =

{1, . . . ,m} of capacity cj, for j ∈ L. A set of N = {1, . . . , n} sources shares

the network; source i ∈ N is characterized by (Li, fi, xi, x̄i): a path Li ⊆ L
in the network; a (usually) concave utility function fi : R+ → R; and the

minimum and maximum transmission rates of i.

The goal in NUM is to maximize the sources’ aggregate utility. Source i attains

a concave utility fi(xi) when it transmits at rate xi that satisfies xi ≤ xi ≤ x̄i;

the optimization of aggregate utility can be formulated as follows,

max
x

n∑
i=1

fi(xi)

subject to Ax ≤ c

x ≤ x ≤ x̄,

where A ∈ Rm×n
+ is defined as Aji =

1, j ∈ L(i)

0, otherwise
.

The NUM framework is general in that the choice of fi allows for the rep-

resentation of different goals of the network operator. For example, using

fi(xi) = xi, maximizes throughput; setting fi(xi) = log(xi) achieves propor-

tional fairness among the sources; setting fi(xi) = −1/xi minimizes potential

delay; these are common goals in communication network applications [61, 64].
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In this paper we focus on the throughput maximization case, i.e., fi(xi) = xi; in

this case NUM is an LP. Note that the classical dual decomposition approach

does not work for throughput maximization since it requires the objective

function to be strictly concave. However, ADMM can be applied.

Our complexity results hinge on the assumption that the constraint matrix A

is sparse. The sparsity of A is defined as max{α, β}, where α and β denote the

maximum number of non-zero entries in a row and column of A respectively.

Formally, we say that A is sparse if the sparsity of A is bounded by a constant.

This assumption usually holds in network control applications since α is the

maximum number of sources sharing a link, which is typically small compared

to n, and β is the maximum number of links each source uses, which is typically

small compared to m.1

3.2 Distributed Algorithms for Network Utility Maximization

Given the NUM formulation above, the algorithmic goal is to design a protocol

that efficiently finds an (approximately) optimal solution. If the network is

huge, it is often beneficial to distribute the solution, as performing the entire

computation on a single machine is too costly [14, 84].

There is a large literature across the networked control and communication

networks literatures that seeks to design such distributed optimization al-

gorithms, e.g., [18, 47, 62]. Dual decomposition algorithms are particularly

prominent for use in this setting. However, many such methods cannot be

applied to the case of throughput maximization, i.e., linear fi. One extremely

prominent algorithm that does apply in the case of throughput maximization

is Alternating Method of Multipliers (ADMM), which was introduced by [34]

and has found broad applications in e.g., denoising images [85], support vector

machine [33], and signal processing [20, 19, 81]. As a result, we use ADMM as

a benchmark for comparison in this paper. For completeness, the application

of ADMM to NUM is described in Appendix A.1.

3.3 Performance metrics

Distributed algorithms for NUM should perform well on two measures.

The first is message complexity : the number of messages that are sent across

1When α is large, many links will be congested and all sources will experience greater
delay, the routing protocol (IP) will start using different links; also, due to the small diameter
of the Internet graph [2], β is small compared to m.
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Figure 3.1: An illustration of LOCO on a toy graph with five nodes and
four edges, e1, . . . , e4. There are three sources, s1, s2, s3, with paths ending in
destinations t1, t2, t3 respectively. The graph is depicted in (a); the constraint
matrix for NUM is given in (b); the bipartite graph representation of the
matrix in (c); and the dependency graph in (d). The rank of each constraint
(edge) is written in the node representing the constraint in the dependency
graph. The shaded nodes represent the query set for source s1.

links of the network in order to compute the solution. When the algorithm

uses randomization, we want the message complexity to hold with probability

at least 1 − 1
nα

, where where n is the number of vertices in the network and

α > 0 can be an arbitrarily large constant. We denote this by 1 − 1
polyn

. We

do not bound the size of the messages, but note that in both our algorithm

and ADMM the message length will be of order O(log n).

The second is the approximation ratio, which measures the quality of the

solution provided by the algorithm. Specifically, an algorithm is said to α-

approximate a maximization problem if its solution is guaranteed to be at

least OPT
α

, where OPT is the value of the optimal solution. If the algorithm

is randomized, the approximation ratio is with respect to the expected size

of the solution. We will compare the performance of LOCO with iterative

algorithms such as ADMM, for which approximation ratio is not a standard

measure. Thus in our empirical results, comparison with the optimal solution

is made using relative error, defined in Section 5.1, which is related to, but

slightly different from the approximation ratio.
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C h a p t e r 4

LOCAL CONVEX OPTIMIZATION

In this section, we introduce a local algorithm for distributed convex opti-

mization, LOcal Convex Optimization (LOCO). In LOCO, every source in the

network computes its portion of a near optimal solution using a small number

of messages, without needing global communication or iteration. This is in

contrast to iterative descent methods, e.g. ADMM, which are global, i.e., they

spread the information necessary to find an optimal solution throughout the

whole network over a series of rounds. LOCO has provable worst-case guaran-

tees on both its approximation ratio and message complexity, and improves on

the communication overhead of iterative descent methods by orders of magni-

tude in practice when asked to compute a piece of the optimal solution.

4.1 An overview of LOCO

The key insight in the design and analysis of LOCO is that any natural1 online

optimization algorithm can be converted into a local, distributed optimization

algorithm. Note that the resulting distributed algorithm is for a static problem,

not an online one. Further, after this conversion, the distributed optimization

algorithm has the same approximation ratio as the original online optimization

algorithm. Thus, given an optimization problem for which there exist effective

online algorithms, these online algorithms can be converted into effective local,

distributed algorithms.

More formally, to reduce a static optimization problem to an online optimiza-

tion problem, we do the following. Let Y be the set of constraints of an opti-

mization problem P . Let r : Y → [0, 1] be a ranking function that assigns each

constraint yj a real number between 0 and 1, uniformly at random. We call

r(yj) yj’s rank. Suppose that there is some online algorithm ALG that receives

the constraints sequentially and must augment the variables immediately and

1Strictly speaking, we require that the online algorithm have the following characteristic:
knowing the output of the algorithm for the “neighbors” of a query q that arrived before
q is sufficient to determine the output for q. We omit this technicality from the theorem
statements as the online algorithm we use, and indeed all online algorithms for convex
optimization that we are aware of, have this property. For a more in-depth discussion, we
refer the reader to [76].
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irrevocably so as to satisfy each arriving constraint. Suppose furthermore that

for each constraint yj, we can pinpoint a small set of constraints S(yj) (which

we call yj’s query set) that arrived before it so that restricting the set of con-

straints of P to S(yj) results in ALG producing (exactly) the same solution for

the variables that are present in yj. Then simulating ALG only on S(yj) would

suffice to obtain the solution for the variables in yj. This is precisely what our

algorithm does: it generates a random order of arrival for the constraints, and

for each constraint yj, it constructs such a set S(yj) and simulates the online

algorithm on it. An arbitrary ordering could mean that these dependency sets

are very large for some constraints; to bound the size of these sets, we require

that (i) the constraint matrix of P is sparse and (ii) the order generated is

random.2

Concretely, there are two main steps in LOCO. In the first, LOCO generates

a localized neighborhood for each vertex. In the second, LOCO simulates an

online algorithm on the localized neighborhood. Importantly, the first step

is independent of the precise nature of the online algorithm, and the second

is independent of the method used to generate the localized neighborhoods.

Therefore, we can think of LOCO as a general methodology that can yield a

variety of algorithms. For example, we can use different online algorithms for

the second step of LOCO depending on whether we consider a linear NUM

problem or a strictly convex NUM problem. More specifically, the two steps

work as follows.

Step 1, Generating a localized neighborhood For clarity, we break the

first step into three sub-steps, see also Figure 3.1.

Step 1a, Representing the constraint matrix as a bipartite graph A

boolean matrix A can be represented as a bipartite graph G = (L,R,E ′) as

follows. Each row of A is represented by a vertex v` ∈ L; each column by

a vertex vr ∈ R. The edge (v`, vr) is in E ′ if and only if A`,r = 1. A more

intuitive way to interpret G is the following: L represents the variables, R

the constraints. Edges represent which variables appear in which constraints.

Note that the maximum degree of G is exactly the sparsity of A.

2Pseudo-random orders suffice, see [76].
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Step 1b, Constructing the dependency graph We construct the depen-

dency graph H = (V,E) as follows. The vertices of the dependency graph

are the vertices of R; an edge exists between two vertices in H if the corre-

sponding vertices in G share a neighbor. Intuitively, H represents the “direct

dependencies” between the constraints: changing the value of any variable im-

mediately affects all constraints in which it appears, hence these constraints

can be thought of as directly dependent. The maximum degree of H is upper

bounded by the square of the sparsity of A.

Step 1c, Constructing the query set In order to build the query set, we

generate a random ranking function on the vertices of H, r : V → [0, 1]. Given

the dependency graph H, an initial node y ∈ V and the ranking function r,

we build the query set of y, denoted S(y), using a variation of BFS, as follows.

Initialize S(y) to contain y. For every vertex v ∈ S(y), scan all of v’s neighbors,

denoted N(v). For each u ∈ N(v), if r(u) ≤ r(v), add u to S(y). Continue

iteratively until no more vertices can be added to S(y) (that is, for every vertex

v ∈ S(y) all of its neighbors that are not themselves in S(y) have lower rank

than v). If there are ties (i.e., two neighbors u, v such that r(u) = r(v)), we

tie-break by ID.3

Step 2, Simulating the online algorithm Assume that we have an online

algorithm for the problem that we would like LOCO to solve (in this paper we

use the online packing Algorithm of Buchbinder and Naor [15, chapter 14]. We

provide the pseudocode in Appendix A, for completeness). The specific setting

that the online algorithm must apply to is the following: the variables of the

convex program are known in advance, as are the univariate constraints. The

(rest of the) constraints arrive one at a time; the online algorithm is expected

to satisfy each constraint as it arrives, by increasing the value of some of the

variables. It is never allowed to decrease the value of any variable. We simulate

the online algorithm as follows:

In order to compute its own value in the solution, source i applies r to the

set of constraints in which it is contained, Y (i). For y = arg maxz∈Y (i){r(z)},
it simulates the online algorithm on S(y). That is, it executes the online

algorithm on the neighborhood constructed in Step 1 for the “last arriving”

3Any consistent tie breaking rule suffices.
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constraint that contains i. i’s value is the value of i at the end of the simula-

tion. Claim 4 below shows that i’s value is identical to its value if the online

algorithm was executed on the entire program, with the constraints arriving

in the order defined by r.

4.2 Analysis of LOCO

Our main theoretical result shows that LOCO can compute solutions to convex

optimization problems that are as good as those of the best online algorithms

for the problems using very little communication. We then specialize this

case to throughput maximization in NUM. While we focus on NUM in this

paper, the theorem (and its proof) apply to a wider family of problems as

well. Specifically, the conversion from online to local outlined below can be

used more broadly for any class of optimization problems for which effective

online algorithms exist. Thus, improvements to online optimization problems

immediately yield improved local optimization algorithms.

Theorem 1 Let P be a problem with a concave objective function and linear

inequality constraints, with n variables and m constraints, whose constraint

matrix has sparsity σ. Given an online algorithm4 for P with competitive

ratio h(n,m), there exists a local computation algorithm for P with approx-

imation ratio h(n,m) that uses 2O(σ2) log (n+m) messages with probability

1− 1/poly(n,m).

In particular, we have the following result, for NUM with a linear objective

function.

Theorem 2 Let P be a throughput maximization problem with n variables, m

constraints, and a sparse constraint matrix. LOCO computes an O(logm) –

approximation to the optimal solution of P using O(log(n+m)) messages with

probability 1− 1/ poly(n,m).

The approximation ratio in Theorem 2 comes from the online algorithm pre-

sented and analyzed in [15] (see Lemma 6). The analysis of the online al-

gorithm is for adversarial input; therefore it is natural to expect LOCO to

achieve a much better approximation ratio in practice, as LOCO randomizes

4See footnote 1.
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the order in which the constraints “arrive”. It is an open question to give bet-

ter theoretical bounds for stochastic inputs, and if such results are obtained

they would immediately improve the bounds in Theorem 2.

The core technical lemma required for the proof of Theorem 1 is the following.

Lemma 3 Let G = (V,E) be a graph whose degree is bounded by d and let

r : V → [0, 1] be a function that assigns to each vertex v ∈ V a number between

0 and 1 independently and uniformly at random. Let Tmax be the size of the

largest query set of G: Tmax = max{|Tv| : v ∈ V }. Then, for λ = 4(d+ 1),

Pr[|Tmax| > 2λ · 15λ log n] ≤ 1

n2
.

The proof of Lemma 3 uses ideas from a proof in [76], and employs a quantiza-

tion of the rank function. Its proof is deferred to Appendix B. The following

simple claim implies that the approximation ratio of LOCO is the same as

that of the online algorithm.

In addition to Lemma 3, the following claim and technical lemma are needed

to complete the proof of Theorem 2.

Claim 4 For any source i, the value of xi in the output of LOCO is identical

to its value in the output of the online algorithm.

Proof 5 Let constraint yj be the last constraint containing i that arrives in

the order defined by r; its arrival is the last time i will be updated. Therefore it

is sufficient to only consider constraints arriving before yj. Further, by design,

S(yj) is the set of constraints at whose arrival there is possibly some change

that may affect the value of i.

The following lemma is a restatement of Theorem 14.1 in [15], adapted to

throughput maximization. See Appendix A for the pseudocode of the algo-

rithm.

Lemma 6 For any B > 0, there exists is a B-competitive online algorithm to

linearly-constrained NUM with m constraints; each constraint is violated by a

factor at most 2 log(1+m)
B

.

Proof 7 (Proof of Theorem 2) Theorem 1, Claim 4 and Lemma 6, setting

B = 2 log(1 +m), imply Theorem 2.
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4.3 Contrasting LOCO and ADMM

LOCO fundamentally differs from iterative descent and consensus style ap-

proaches to distributed optimization. While iterative descent and consensus

style approaches are inherently iterative, LOCO is not. Under LOCO, a node

can compute its value in one shot, once it gets information about its query set.

Additionally, while iterative descent and consensus style approaches are global,

LOCO is local. Under LOCO, communication stays within the query set and so

the computation only needs to be updated if changes happen within the query

set. This means that LOCO is robust to churn, failures, and communication

problems outside of that set of nodes.

Another important difference is that LOCO does not compute the optimal so-

lution, while iterative descent and consensus style approaches will eventually

converge to the true optimal. The proven analytical bounds for LOCO are

based on worst-case adversarial input. We show in Section 5.2 that our em-

pirical results outperform the theoretical guarantees by a considerable margin.

This is in part because the ranking is done randomly rather than in an adver-

sarial fashion (we elaborate on this in Section 5).

Finally, note that there is an important difference in the form of the theoretical

guarantees for LOCO and iterative descent and consensus style algorithms.

LOCO has guarantees in terms of the approximation ratio, while iterative

descent and consensus style algorithms have convergence rate guarantees. For

example, ADMM has guarantees on convergence of the norms of the primal

and dual residuals [14, Chapter 3.3].
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C h a p t e r 5

CASE STUDY

Here we present the results of a simulation study demonstrating the empirical

performance of LOCO on both synthetic and real networks. The results high-

light that an orders-of-magnitude reduction in communication is possible with

LOCO as compared to ADMM, which we choose as a prominent example of

current approaches for distributed optimization. For concreteness, our exper-

iments focus our numeric results on distributed linear programming, i.e., the

case of linear NUM. This is the NUM setting where one could expect LOCO

to perform the worst, given that linear functions are typically the worst-case

examples for online convex optimization algorithms [5, 41].

5.1 Experimental setup

Problem Instances

For our first set of experiments, we generate random synthetic instances of

linear NUM. Let n = m and define the constraint matrix A ∈ R(m×n) as

follows. Set Ãj,i = 1 with probability p and Ãj,i = 0 otherwise. Let A = Ã+In

to ensure each row of A has at least one non zero entry.1 The vector c ∈ Rn is

drawn i.i.d. from Unif[0, 1]. We set the minimum and maximum transmission

rates to be xi = 0 and x̄i = 1. Finally, for the rank function used by LOCO

we use a random permutation of the vertex IDs.2

For our second set of experiments, we use the real network from the graph

of Autonomous System (AS) relationships in [87]. The graph has 8020 nodes

and 36406 edges. In order to interpret the graph in a NUM framework, we

associate each source with a path of links, ending at a destination node. To

do this, for each node i in the graph, we randomly select a destination node ti

which is at distance `i, sampled i.i.d. from Unif[`− 0.5`, `+ 0.5`]. We repeat

this for several values of `. (The distance between two nodes is the length

1Note that this matrix does not have constant sparsity; however this can only increase
the message complexity. Irregardless, it is possible to adapt the theoretical results to hold
for this data as well, using techniques from [76].

2For the purposes of our simulations, such a permutation can be efficiently sampled, and
guarantees perfect randomness. For larger n and m, it is possible to use pseudo-randomness
with almost no loss in message complexity [76].
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Figure 5.1: Illustration of the number of messages required by ADMM and
LOCO for the synthetic data set with results averaged over 50 trials. Plots (a)
and (b) vary n while fixing sparsity p = 10−4, showing the results in linear-
scale and log-scale respectively. Plots (c) and (d) fix n = 103 and vary the
sparsity p, showing the results in linear-scale and log-scale respectively.

of the shortest path between them.) Then, we designate the path L(i) to

be the set of links comprising the shortest path between the source and the

destination. The vectors c, x, and x̄ are chosen in the same manner as for the

synthetic networks.

Algorithm tuning

Our results focus on comparing LOCO and ADMM. Running ADMM requires

tuning four parameters [14]. Unless otherwise specified, we set the relative and

absolute tolerances to be εrel = 10−4 and εabs = 10−2, the penalty parameter to

be ρ = 1, and the maximum number of allowed iterations to be tmax = 10000.

This is done to provide the best performance for ADMM: the parameters are

tuned in the typical fashion to optimize ADMM [14]. Running LOCO requires

tuning only one parameter: B, which governs the worst-case guarantee for

the online algorithm used in step 2. A smaller B gives a “better guarantee”,

however some constraints may be violated. Setting B = 2 ln(1 + m) provides

the best worst-case guarantee, and is our choice in the experiments unless

stated otherwise. In fact, it is possible to tune B (akin to tuning ADMM)

to specific data, as the constraints are often still satisfied for smaller B. In

Figure 5.3 (c), we show the improvement in performance guarantee by tuning

B, while keeping the dual solution feasible.

Metrics

For our numeric results, we evaluate ADMM and LOCO with respect to the

quality of the solution provided and the number of messages sent.
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Figure 5.2: Illustration of the number of messages required by ADMM and
LOCO for the real network data with n = 8020 and various average path
lengths L(i).
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Figure 5.3: Comparison of the relative error and the number of messages
required by LOCO and ADMM. Plots (a) and (b) show the Pareto optimal
curve for ADMM with a range of relative tolerances εrel ∈ {10−4, 10−1}. Plot
(c) depicts how tuning B effects the relative error. The right most point
corresponds to B = 2 ln(1 +m).

To assess the quality of the solution we measure the relative error, which is

defined as |p
∗−pLOCO|
|p∗| , where p∗ is the optimal solution. For problem instances

of small dimension, one can run an interior point method to check the optimal

solution, but this is too tedious for large problem sizes. In the large dimension

cases we consider, we regard p∗ to be ADMM’s solution with small tolerances,

such that the maximum number of allowed iterations is never needed. Note

that the relative error is an empirical, normalized version of the approximation

ratio for a given instance.

To measure the number of messages used by each of the algorithms, we con-

sider the following. For a distributed implementation of ADMM, two sets of

n variables are updated on separate processors and reported to a central con-

troller which updates another variable (see [14, Chapter 7.1]). The number of

messages for a run of ADMM is twice the number of sources in the NUM prob-

lem, multiplied by the number of iterations required by ADMM. LOCO needs

to use communication only to construct the query set; running the online algo-

rithm does not require any communication. Therefore, the number of messages



21

is proportional to the number of edges with at least one endpoint in the query

set (this is the number of edges we need to send information over in order

to construct the query set, see e.g., [76] for more details). We note that the

number of messages depends both on the network topology and the realization

of the ranking function.

5.2 Experimental Results

We now describe our empirical comparison of the performance of LOCO with

ADMM.

Our first set of experiments investigates the communication used by ADMM

and LOCO, i.e., the number of messages required. Figure 5.1 highlights that

LOCO requires considerably fewer messages than ADMM, across both small

and large n and varying levels of sparsity. More specifically, the figure shows

that both the average and maximum amount of communication needed to

answer a query about a specific piece of the solution under LOCO (LOCO

Avg and LOCO Max respectively) are substantially lower than for ADMM.

Further, even answering every query (LOCO Tot) requires only the same order

of magnitude as ADMM. The figure includes ADMM with a tolerance εrel

of 10−4 (ADMM 1) and 10−3 (ADMM 2). Even with suboptimal tolerance,

which results in fewer iterations, ADMM still requires orders of magnitude

more communication than LOCO.

Figure 5.2 shows the same qualitative behavior in the case of the real network

data. In particular, the number of messages used is shown as a function of

the average length of paths in the AS topology. We see that LOCO greatly

outperforms ADMM for all tested average path lengths.

The improvement achieved by LOCO is possible because the size of the query

sets used by LOCO are small compared to the number of sources. When

n = 103, as in Figure 5.1, the number of nodes in the largest query set (over

all trials) was 60.

We note that the improvement in the amount of communication is achieved at

a cost: LOCO does not precisely solve the optimization, it only approximates

the solution. When B is set to its worst-case guarantee (Figure 5.1), the

relative error of LOCO ranges from 0.29 to 0.34.

It may seem somewhat unfair to compare the message complexity of LOCO

and ADMM when they have differing relative error; we tune the parameters of
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ADMM and LOCO such that the algorithms have comparable relative error,

while LOCO Tot and ADMM require about the same number of messages.

Figures 5.3 (a) and (b) illustrate the Pareto optimal frontier for ADMM: the

minimal messages needed in order to obtain a particular relative error. Unlike

ADMM, LOCO cannot trade off the number of messages used with the relative

error, thus LOCO corresponds to a single point on the figures. This point is

outside the Pareto frontier of ADMM. Figure 5.3 (c) illustrates the impact of

tuning B. Similarly to ADMM, tuning B can significantly improve the relative

error; unlike ADMM, tuning B does not affect the communication complexity.
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C h a p t e r 6

CONCLUDING REMARKS

We introduced a new, fundamentally different approach for distributed opti-

mization based on techniques from the field of local computation algorithms.

In particular, we designed a generic algorithm, LOCO, that constructs small

neighborhoods and simulates an online algorithm on them. Due to the fact

that LOCO is local, it has several advantages over existing methods for dis-

tributed optimization. In particular, it is more robust to network failures,

communication lag, and changes in the system. To illustrate the benefits of

LOCO we considered throughput maximization. The improvements of LOCO

over ADMM in terms of communication in this setting are significant.

We view this work as a first step toward the investigation of local computation

algorithms for distributed optimization. In future work, we intend to continue

to investigate the performance of LOCO in more general network optimization

problems. Further, it would be interesting to apply other techniques from the

field of local computation algorithms to develop algorithms for other settings

in which distributed computing is useful, such as power systems and machine

learning.
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C h a p t e r 7

INTRODUCTION TO DISTRIBUTED DATA MARKETS

Ten years ago computing infrastructure was a commodity – the key bottleneck

for new tech startups was the cost of acquiring and scaling computational

power as they grew. Now, computing power and memory are services that

can be cheaply subscribed to and scaled as needed via cloud providers like

Amazon EC2, Microsoft Azure, etc.

We are beginning the same transition with respect to data. Data is broadly

being gathered, bought, and sold in various marketplaces. However, it is still a

commodity, often obtained through offline negotiations between providers and

companies. Thus, acquiring data is one of the key bottlenecks for new tech

startups nowadays.

This is beginning to change with the emergence of cloud data markets, which

offer a single, logically centralized point for buying and selling data. Multiple

data markets have recently emerged in the cloud, e.g., Microsoft Azure Data-

Market [65], Factual [29], InfoChimps [44], Xignite [95], IUPHAR [88], etc.

These marketplaces enable data providers to sell and upload data and clients

to request data from multiple providers (often for a fee) through a unified

query interface. They provide a variety of services: (i) aggregation of data

from multiple sources, (ii) cleaning of data to ensure quality across sources,

(iii) ease of use, through a unified API, and (iv) low-latency delivery through

a geographically distributed content distribution network.

Given the recent emergence of data markets, there are widely differing designs

in the marketplace today, especially with respect to pricing. For example,

The Azure DataMarket [65] sets prices with a subscription model that allows

a maximum number of queries (API calls) per month and limits the size of

records that can be returned for a single query. Other data markets, e.g.,

Infochimps [44], allow payments per query or per data set. In nearly all cases,

the data provider and the data market operator each then get a share of the fees

paid by the clients, though how this share is arrived at can differ dramatically

across data markets. The task of pricing is made even more challenging when

one considers that clients may be interested in data with differing levels of
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precision/quality and privacy may be a concern.

Not surprisingly, the design of pricing (both on the client side and the data

provider side) has received significant attention in recent years, including pric-

ing of per-query access [49, 51] and pricing of private data [32, 57].

In contrast, the focus of this paper is not on the design of pricing strategies for

data markets. Instead, we focus on the engineering side of the design

of a data market, which has been ignored to this point. Supposing that

prices are given, there are important challenges that remain for the operation

of a data market. Specifically, two crucial challenges relate to data purchasing

and data placement.

Data purchasing: Given prices and contracts offered by data providers,

which providers should a data market purchase from to satisfy a set of client

queries with minimal cost?

Data placement: How should purchased data be stored and replicated through-

out a geo-distributed data market in order to minimize bandwidth and latency

costs? And which clients should be served from which replicas given the loca-

tions and data requirements of the clients?

Clearly, these two challenges are highly related: data placement decisions de-

pend on which data is purchased from where, so the bandwidth and latency

costs incurred because of data placement must be balanced against the pur-

chasing costs. Concretely, less expensive data that results in larger bandwidth

and latency costs is not desirable.

The goal of this work is to present a design for a geo-distributed data

market that jointly optimizes data purchasing and data placement

costs. The combination of data purchasing and data placement decisions

makes the task of operating a geo-distributed data market more complex than

the task of operating a geo-distributed data analytics system, which has re-

ceived considerable attention in recent years e.g., [73, 93, 92]. Geo-analytics

systems minimize the cost (in terms of latency and bandwidth) of moving the

data needed to answer client queries, replacing the traditional operation mode

where data from multiple data centers was moved to a central data center

for processing queries. However, crucially, such systems do not consider the

cost of obtaining the data (including purchasing and transferring) from data

providers.
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Thus, the design of a geo-distributed data market necessitates integrating data

purchasing decisions into a geo-distributed data analytics system. To that end,

our design builds on the model used in [92] by adding data providers that offer a

menu of data quality levels for differing fees. The data placement/replication

problem in [92] is already an integer linear program (ILP), and so it is no

surprise that the addition of data providers makes the task of jointly optimizing

data purchasing and data placement NP-hard (see Theorem 8).

Consequently, we focus on identifying structure in the problem that can allow

for a practical and near-optimal system design. To that end, we show that the

task of jointly optimizing data purchasing and data placement is equivalent

to the uncapacitated facility location problem (UFLP) [52]. However, while

constant-factor polynomial running time approximation algorithms are known

for the metric uncapacitated facility location problem (see [17, 38, 45]), our

problem is a non-metric facility location problem, and the best known polyno-

mial running time algorithms achieve a O(logC) approximation via the greedy

algorithm in [42] or the randomized rounding algorithm in [90], where C is

the number of clients. Note that without any additional information on the

costs, this approximation ratio is the smallest achievable for the non-metric

uncapacitated facility location unless NP has slightly superpolynomial time

algorithms [30]. While this is the best theoretical guarantee possible in the

worst-case, some promising heuristics have been proposed for the non-metric

case, e.g., [26, 8, 1, 48, 89, 36].

Though the task of jointly optimizing data purchasing and data placement is

computationally hard in the worst case, in practical settings there is structure

that can be exploited. In particular, we provide an algorithm with polynomial

running time that gives an exact solution in the case of a data market with a

single data center (§10.1). Then, using this structure, we generalize to the case

of a geo-distributed data cloud and provide an algorithm, named Datum (§10.2)

that is near optimal in practical settings.

Datum first optimizes data purchasing as if the data market was made up of

a single data center (given carefully designed “transformed” costs) and then,

given the data purchasing decisions, optimizes data placement/replication.

The “transformed” costs are designed to allow an architectural decomposition

of the joint problem into subproblems that manage data purchasing (external

operations of the data market) and data placement (internal operations of
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the data market). This decomposition is of crucial operational importance

because it means that internal placement and routing decisions can proceed

without factoring in data purchasing costs, mimicking operational structures

of geo-distributed analytics systems today.

We provide a case study in §11 which highlights that Datum is near-optimal

(within 1.6%) in practical settings. Further, the performance of Datum im-

proves upon approaches that neglect data purchasing decisions by > 45%.

To summarize, this paper makes the following main contributions:

1. We initiate the study of jointly optimizing data purchasing and data place-

ment decisions in geo-distributed data markets.

2. We prove that the task of jointly optimizing data purchasing and data

placement decisions is NP-hard and can be equivalently viewed as a facility

location problem.

3. We provide an exact algorithm with polynomial running time for the case

of a data market with a single data center.

4. We provide an algorithm, Datum, for jointly optimizing data purchasing and

data placement in a geo-distributed data market that is within 1.6% of op-

timal in practical settings and improves by > 45% over designs that neglect

data purchasing costs. Importantly, Datum decomposes into subproblems

that manage data purchasing and data placement decisions separately.
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C h a p t e r 8

OPPORTUNITIES AND CHALLENGES

Data is now a traded commodity. It is being bought and sold every day, but

most of these transactions still happen offline through direct negotiations for

bulk purchases. This is beginning to change with the emergence of cloud

data markets such as Microsoft Azure DataMarket in [65], Factual [29], In-

foChimps [44], Xignite [95]. As cloud data markets become more prominent,

data will become a service that can be acquired and scaled seamlessly, on

demand, similarly to computing resources available today in the cloud.

8.1 The potential of data markets

The emergence of cloud data markets has the potential to be a significant

disruptor for the tech industry, and beyond. Today, since computing resources

can be easily obtained and scaled through cloud services, data acquisition has

become the bottleneck for new tech startups.

For example, consider an emerging potential competitor for Yelp. The biggest

development challenge is not algorithmic or computational. Instead, it is ob-

taining and managing high quality data at scale. The existence of a data

market, e.g., Azure DataMarket, with detailed local information about re-

straints, attractions, etc., would eliminate this bottleneck entirely. In fact,

data markets such as Factual [29] are emerging to target exactly this need.

Another example highlighted in [50, 51] is language translation. Emerging

data markets such as the Azure DataMarket and Infochimps sell access to

data on word translation, word frequency, etc. across languages. This access

is a crucial tool for easing the transition tech startups face when moving into

different cultural markets.

A final example considers computer vision. When tech startups need to de-

velop computer vision tools in house, a significant bottleneck (in terms of time

and cost) is obtaining labeled images with which to train new algorithms.

Emerging data markets have the potential to eliminate this bottleneck too.

For example, the emerging Visipedia project [91] (while free for now) provides

an example of the potential of such a data market.



30

Thus, like in the case of cloud computing, ease of access and scaling, combined

with the cost efficiency that comes with size, implies that cloud data markets

have the potential to eliminate one of the major bottlenecks for tech startups

today – data acquisition.

8.2 Operational challenges for data markets

The task of designing a cloud data market is complex, and requires balancing

economic and engineering issues. It must carefully consider purchasing and

pricing decisions in its interactions with both data providers and clients and

minimize its operational cost, e.g., from bandwidth. We discuss both the

economic and engineering design challenges below, though this paper focuses

only on the engineering challenges.

Pricing

While there is a large body of literature on selling physical goods, the problem

of pricing digital goods, such as data, is very different. Producing physical

goods usually has a moderate fixed cost, for example, for buying the space and

production machines needed, but this cost is partly recoverable: it is possible,

if the company cannot manage to sell its product, to resell the machinery and

buildings they have been using. However, the cost of producing and acquiring

data is high and irrecoverable: if the data turns out to be worthless and nobody

wants it, then the whole procedure is wasted. Another major difference comes

from the fact that variable costs for data are low: once it has been produced,

data can be cheaply copied and replicated.

These differences lead to “versioning” as the most typical approach for selling

digital goods [7]. Versioning refers to selling different versions of the same

digital good at different prices in order to target different types of buyers. This

pricing model is common in the tech industry, e.g., companies like Dropbox sell

digital space at different prices depending on how much space customers need

and streaming websites such as Amazon often charge differently for streaming

movies at different quality levels.

In the context of data markets, versioning is also common. For example, in

Infochimps and the Azure DataMarket data consumers may pay a monthly

subscription fee that varies according to the maximum number of queries they

are allowed to run. Additionally, when charging per query, proposals have
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suggested it is desirable to charge based on the complexity of the query, e.g.,

[6, 7]. Another form of versioning that has been proposed in data markets

deals with privacy – data with more personal information should be charged

more, e.g., [57, 22].

There is a growing literature focused on the design of pricing strategies for

cloud data markets in the above, and other contexts, e.g., [6, 49, 7, 51, 7, 57,

22].

Data purchasing and data placement

While data pricing within cloud data markets has received increasing attention,

the engineering of the system itself has been ignored. The engineering of such

a geo-distributed “data cloud” is complex. In particular, the system must

jointly make both data purchasing decisions and data placement, replication

and delivery decisions, as described in the introduction.

Even considered independently, the task of optimizing data placement/replication

within a geo-distributed data analytics system is challenging. Such systems

aim to allow queries on databases that are stored across data centers, as op-

posed to traditional databased that are stored within a single data center.

Examples include Google Spanner [21], Mesa [40], JetStream [74], Geode [92],

and Iridium [73]. The aim in designing a geo-distributed data analytics sys-

tem is to distribute the computation needed to answer queries across data

centers; thus avoiding the need to transfer all the data to a single data center

to respond to queries. This distribution of computation is crucial for min-

imizing bandwidth and latency costs, but leads to considerable engineering

challenges, e.g., handling replication constraints due for fault tolerance and

regulatory constraints on data placement due to data privacy. See [92, 73] for

a longer discussion of these challenges and for examples illustrating the benefit

of distributed query computation in geo-distributed data analytics systems.

Importantly, all previous work on geo-distributed analytics systems assumes

that the system already owns the data. Thus, on top of the complexity in geo-

distributed analytics systems, a geo-distributed cloud data market must bal-

ance the cost of data purchasing with the impact on data placement/replication

costs as well as the decisions for data delivery. For example, if clients who are

interested in some data are located close to data center A, while the data

provider is located close to data center B (far from data center A), it may be
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worth it to place that data in data center A rather than data center B. In

practice, the problem is more complex since clients are usually geo-graphically

distributed rather than centralized and one client may require data from sev-

eral different data providers.

Additional complexity is created by versioning the data, i.e., the fact that

clients have differing quality requirements for the data requested. For example,

if some clients are interested in high quality data and others are interested in

low quality data, then it may be worth it to provide high quality level data

to some clients that only need low quality data (thus incurring a higher price)

because of the savings in bandwidth and replication costs that result from

being able to serve multiple clients with the same data.
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C h a p t e r 9

A GEO-DISTRIBUTED DATA CLOUD

This paper presents a design for a geo-distributed cloud data market, which

we refer to as a “data cloud.” This data cloud serves as an intermediary be-

tween data providers, which gather data and offer it for sale, and clients, which

interact with the data cloud through queries for particular subsets/qualities

of data. More concretely, the data cloud purchases data from multiple data

providers, aggregates it, cleans it, stores it (across multiple geographically dis-

tributed data centers), and delivers it (with low-latency) to clients in response

to queries, while aiming at minimizing the operational cost constituted of both

bandwidth and data purchasing costs.

Our design builds on and extends the contributions of recent papers – specif-

ically [92, 73] – that have focused on building geo-distributed data analytic

systems but assume the data is already owned by the system and focus solely

on the interaction between a data cloud and its clients. Unfortunately, as we

highlight in §10, the inclusion of data providers means that the data cloud’s

goal of cost minimization can be viewed as a non-metric uncapacitated facility

location problem, which is NP-hard.

For reference, Figure 9.1 provides an overview of the interaction between these

three parties as well as some basic notations.

9.1 Modeling Data Providers

The interaction between the data cloud and data providers is a key distinction

between the setting we consider and previous work on geo-distributed data

analytics systems such as [73, 92]. We assume that each data provider offers

distinct data to the data cloud, and that the data cloud is a price-taker, i.e.,

cannot impact the prices offered by data providers. Thus, we can summarize

the interaction of a data provider with the data cloud through an exogenous

menu of data qualities and corresponding prices.

We interpret the quality of data as a general concept that can be instantiated

in multiple ways. For categorical data, quality may represent the resolution of

the information provided, e.g., for geographical attributes the resolution may
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be {street address, zip code, city, county, state}. For numerical data, quality

could take many forms, e.g., the numerical precision, the statistical precision

(e.g., the confidence of an estimator), or the level of noise added to the data.1

Concretely, we consider a setting where there are P data providers selling

different data, p ∈ P = {1, 2, . . . , P}.2 Each data provider offers a set of

quality levels, indexed by l ∈ L = {1, 2, . . . , Lp}, where Lp is the number of

levels that data provider p offers. We use q(l, p) to denote the data quality

level l, offered by data provider p. Similarly, we use f(l, p) to denote the fee

charged by data provider p for data of quality level l. Importantly, the prices

vary across providers p since different providers have different procurement

costs for different qualities and different data.

The data purchasing contract between data providers and data cloud may have

a variety of different types. For example, a data cloud may pay data provider

based on usage, i.e., per query, or a data cloud may buy the data in bulk in

advance. In this paper, we discuss both per-query data contracting and bulk

data contracting. See §9.3 for details.

9.2 Modeling Clients

Clients interact with the data cloud through queries, which may require data

(with varying quality levels) from multiple data providers.

Concretely, we consider a setting where there are C clients, c ∈ C = {1, 2, . . . , C}.
A client c sends a query to the data center, requesting particular data from

multiple data providers.3 Denote the set of data providers required by the re-

quest from client query c by G(c). The client query also specifies a minimum

desired quality level, wc(p), for each data provider p it requests, i.e., ∀p ∈ G(c).

We assume that the client is satisfied with data at a quality level higher than

or equal to the level requested.

More general models of queries are possible, e.g., by including a DAG modeling

the structure of the query and query execution planning (see [92] for details).

For ease of exposition, we do not include such detailed structure here, but it

1A common suggestion for guaranteeing privacy is to add Laplace noise to data provided
to data markets, see e.g., [25, 57]

2We distinguish data providers based on data, i.e., one data provider sells multiple data
is treated as multiple data providers.

3We distinguish clients based on queries, i.e., one client sends multiple queries is treated
as multiple clients.
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can be added at the expense of more complicated notation.

Depending on the situation, the client may or may not be expected to pay the

data cloud for access. If the clients are internal to the company running the

data cloud, client payments are unnecessary. However, in many situations the

client is expected to pay the data cloud for access to the data. There are many

different types of payment structures that could be considered. Broadly, these

fall into two categories: (i) subscription-based (e.g., Azure DataMarket [65])

or (ii) per-query-based (e.g. Infochimps [44]).

In this paper, we do not focus on (or model) the design of payment structure

between the clients and the data cloud. Instead, we focus on the operational

task of minimizing the cost of the data cloud operation (i.e., bandwidth and

data purchasing costs). This focus is motivated by the fact that minimizing

the operation costs improves the profit of the data cloud regardless of how

clients are charged. Interested readers can find analyses of the design of client

pricing strategies in [49, 51, 57].

9.3 Modeling a Geo-Distributed Data Cloud

The role of the data cloud in this marketplace is as an aggregator and in-

termediary. We model the data cloud as a geographically distributed cloud

consisting of D data centers, d ∈ D = {1, 2, . . . , D}. Each data center aggre-

gates data from geographically separate local data providers, and data from

data providers may be (and often is) replicated across multiple data centers

within the data cloud.

Note that, even for the same data with the same quality, data transfer from

the data providers to the data cloud is not a one time event due to the need of

the data providers to update the data over time. We target the modeling and

optimization of data cloud within a fixed time horizon, given the assumption

that queries from clients are known beforehand or can be predicted accurately.

This assumption is consistent with previous work [92, 73] and reports from

other organizations [94, 55]. Online versions of the problem are also of interest,

but are not the focus of this paper.

Modeling costs

Our goal is to provide a design that minimizes the operational costs of a data

cloud. These costs include both data purchasing and bandwidth costs. In or-
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Data Providers! Clients!Data Cloud!

OperCost:  !

ExecCost: !αd,c(l, p)xd,c(l, p)

βp,d(l)yp,d(l)

PurchCost (bulk): !
! f(l, p)z(l, p)

PurchCost (per-query): !
! f(l, p)xd,c(l, p)

Figure 9.1: An overview of the interaction between data providers, the data
cloud, and clients. The dotted line encircling the data centers (DC) represents
the geo-distributed data cloud. Data providers and clients interact only with
the cloud. Data provider p sends data of quality q(l, p) to data center d,
and the corresponding operation cost is βp,d(l)yp,d(l). Similarly, data center d
sends data of quality q(l, p) to client c, and the corresponding execution cost is
αd,c(l, p)xd,c(l, p). In bulk data contracting, the corresponding purchasing cost
is f(l, p)z(l, p). In per-query data contracting, the corresponding purchasing
cost is f(l, p)xd,c(l, p).

der to describe these costs, we use the following notation, which is summarized

in Figure 9.1.4

xd,c(l, p) ∈ {0, 1}: xd,c(l, p) = 1 if and only if data of quality q(l, p), originating

from data provider p, is transferred from data center d to client c.

αd,c(l, p): cost (including bandwidth and/or latency) to transfer data of qual-

ity q(l, p), originating from data provider p, from data center d to client

c

yp,d(l) ∈ {0, 1}: yp,d(l) = 1 if and only if data of quality q(l, p) is transferred

from data provider p to data center d.

βp,d(l): cost (including bandwidth and/or latency) to transfer data of quality

q(l, p) from data provider p to data center d.

z(l, p) ∈ {0, 1}: z(l, p) = 1 if and only if data of quality q(l, p), originating

from data provider p, is transferred to the data cloud.

4Throughout, subscript indices refer to data transfer “from, to” a location, and paren-
thesized indices refer to data characteristics (e.g., quality, from which data provider).
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f(l, p): purchasing cost of data with quality q(l, p), originating from data

provider p.

Given the above notations, the costs of the data cloud can be broken into three

categories:

(i) The operation cost due to transferring data of all quality levels from

data providers to data centers is

OperCost =
P∑
p=1

Lp∑
l=1

D∑
d=1

βp,d(l)yp,d(l). (9.1)

(ii) The execution cost due to transferring data of all quality levels from

data centers to clients is

ExecCost =
C∑
c=1

∑
p∈G(c)

Lp∑
l=1

D∑
d=1

αd,c(l, p)xd,c(l, p). (9.2)

(iii) The purchasing cost (PurchCost) due to buying data from the data

provider could result from a variety of differing contract styles. In this

paper we consider two extreme options: per-query and bulk data con-

tracting. These are the most commonly adopted strategies for data

purchasing today.

In per-query data contracting, the data provider charges the data cloud

a fixed rate for each query that uses the data provided by the data

provider. So, if the same data is used for two different queries, then the

data cloud pays the data provider twice. Given a per-query fee f(l, p)

for data q(l, p), the total purchasing cost is

PurchCost(query) =
C∑
c=1

∑
p∈G(c)

Lp∑
l=1

D∑
d=1

f(l, p)xd,c(l, p). (9.3)

In bulk data contracting, the data cloud purchases the data in bulk

and then can distribute it without owing future payments to the data

provider. Given a one-time fee f(l, p) for data q(l, p), the total purchas-

ing cost is

PurchCost(bulk) =
P∑
p=1

Lp∑
l=1

f(l, p)z(l, p). (9.4)



38

To keep the presentation of the paper simple, we focus on the per-query data

contracting model throughout the body of the paper and discuss the bulk data

contracting model (which is simpler) in Appendix C.3.

Cost Optimization

Given the cost models described above, we can now represent the goal of the

data cloud via the following integer linear program (ILP), where OperCost,

ExecCost, and PurchCost are as described in equations (9.1), (9.2) and (9.3),

respectively.

min
x,y

OperCost + ExecCost + PurchCost (9.5)

subject to xd,c(l, p) ≤ yp,d(l) ∀c, p, l, d (9.5a)

Lp∑
l=1

D∑
d=1

xd,c(l, p) = 1, ∀c, p ∈ G(c) (9.5b)

Lp∑
l=1

D∑
d=1

xd,c(l, p)q(l, p) ≥ wc(p), ∀c, p ∈ G(c) (9.5c)

xd,c(l, p) ≥ 0,∀c, p, l, d (9.5d)

yp,d(l) ≥ 0, ∀p, l, d (9.5e)

xd,c(l, p), yp,d(l) ∈ {0, 1},∀c, p, l, d (9.5f)

The constraints in this formulation warrant some discussion. Constraint (9.5a)

states that any data transferred to some client must already have been trans-

ferred from its data provider to the data cloud.5 Constraint (9.5b) ensures

that each client must get the data it requested, and constraint (9.5c) ensures

that the minimum quality requirement of each client must be satisfied. The

remaining constraints state that the decision variables are binary and nonneg-

ative.

An important observation about the formulation above is that data purchas-

ing/placement decisions are decoupled across data providers, i.e., the data

purchasing/placement decision for data from one data provider does not im-

pact the data purchasing/placement decision for any other data providers.

Thus, we frequently drop the index p.

5For bulk data contracting model, one more constraint yp,d(l) ≤ z(l, p), ∀c, l, p, d is
required. This constraint states that any data placed in the data cloud must be purchased
by the data cloud.
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Note that there are a variety of practical issues that we have not incorporated

into the formulation in (9.5) in order to minimize notational complexity, but

which can be included without affecting the results described in the following.

A first example is that a minimal level of data replication is often desired

for fault tolerance and disaster recovery reasons. This can be added to (9.5)

by additionally considering constraints of the form
∑D

d=1 yp,d(l) ≥ kz(l, p),

where k denotes the minimum required number of copies. Similarly, privacy

concerns often lead to regulatory constraints on data movement. As a result,

regulatory restrictions may prohibit some data from being copied to certain

data centers, thus constraining data placement and replication. This can be

included by adding constraints of the form yp,d(l) = 0 to (9.5) where p and d

denote the corresponding data provider and data center, respectively. Finally,

in some cases it is desirable to enforce SLA constraints on the latency of

delivery to clients. Such constraints can be added by including constraints of

the form
∑

p∈G(c)

∑Lp
l=1

∑D
d=1 αd,c(l, p)xd,c(l, p) ≤ rc, where rc denotes the SLA

requirement of client c.

We refer the reader to [92, 93, 73] for more discussions of these additional

practical constraints. Each paper includes a subset of these factors in the

design of geo-distributed data analytics systems, but does not model data

purchasing decisions.
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C h a p t e r 10

OPTIMAL DATA PURCHASING & DATA PLACEMENT

Given the model of a geo-distributed data cloud described in the previous sec-

tion, the design task is now to provide an algorithm for computing the optimal

data purchasing and data placement/replication decisions, i.e., to solve data

cloud cost minimization problem in (9.5). Unfortunately, this cost minimiza-

tion problem is an ILP, which are computationally difficult in general.1

A classic NP-hard ILP is the uncapacitated facility location problem (UFLP) [52].

In the uncapacitated facility location problem, there is a set of I clients and

J potential facilities. Facility j ∈ J costs fj to open and can serve clients

i ∈ I with cost ci,j. The task is to determine the set of facilities that serves

the clients with minimal cost.

Our first result, stated below, highlights that cost minimization for a geo-

distributed data cloud can be reduced to the uncapacitated facility location

problem, and vice-versa. Thus, the task of operating a data cloud can then

be viewed as a facility location problem, where opening a facility parallels

purchasing a specific quality level from a data provider and placing it in a

particular data center in the data cloud.

Theorem 8 The cost minimization problem for a geo-distributed data cloud

given in (9.5) is NP-hard.

The proof of Theorem 8 (given in Appendix C) provides a reduction both to

and from the uncapacitated facility location problem. Importantly, the proof

of Theorem 8 serves a dual purpose: it both characterizes the hardness of

the data cloud cost minimization problem and highlights that algorithms for

the facility location problem can be applied in this context. Given the large

literature on facility location, this is important.

More specifically, the reduction leading to Theorem 8 highlights that the data

cloud optimization problem is equivalent to the non-metric uncapacitated fa-
1Note that previous work on geo-distributed data analytics where data providers and

data purchasing were not considered already leads to an ILP with limited structure. For
example, [92] suggest only heuristic algorithms with no analytic guarantees.
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cility location problem – every instance of any of the two problems can be

written as an instance of the other. While constant-factor polynomial running

time approximation algorithms are given for the metric uncapacitated facility

location problem in [17, 38, 45], in the more general non-metric case the best

known polynomial running time algorithm achieves a log(C)-approximation

via a greedy algorithm with polynomial running time, where C is the number

of clients [42]. This is the best worst-case guarantee possible (unless NP has

slightly superpolynomial time algorithms, as proven in [30]); however some

promising heuristics have been proposed for the non-metric case, e.g., [26, 8,

1, 48, 89, 36].

Nevertheless, even though our problem can, in general, be viewed as the non-

metric uncapacitated facility location, it does have a structure in real-world

situations that we can exploit to develop practical algorithms.

In particular, in this section we begin with the case of a data cloud made up

of a single data center. We show that, in this case, there is a structure that

allows us to design an algorithm with polynomial running time that gives an

exact solution (§10.1). Then, we move to the case of a data cloud made up

of geo-distributed data centers and highlight how to build on the algorithm

for the single data center case to provide an algorithm, Datum, for the general

case (§10.2). Importantly, Datum allows decomposition of the management of

data purchasing (operations outside of the data cloud) and data placement

(operations inside the data cloud). This feature of Datum is crucial in practice

because it means that the algorithm allows a data cloud to manage internal

operations without factoring in data purchasing costs, mimicking operations

today. While we do not provide analytic guarantees for Datum (as expected

given the reduction to/from the non-metric facility location problem), we show

that the heuristic performs well in practical settings using a case study in §11.

10.1 An exact solution for a single data center

We begin our analysis by focusing on the case of a single data center, which

interacts with multiple data providers and multiple clients. The key observa-

tion is that, if the execution costs associated with transferring different quality

levels of the same data are the same, i.e., ∀l, αc(l) = αc, then the execution

cost becomes a constant which is independent of the data purchasing and data
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placement decisions as shown in (10.1).

ExecCost =
C∑
c=1

L∑
l=1

αcxc(l) =
C∑
c=1

αc

(
L∑
l=1

xc(l)

)
=

C∑
c=1

αc (10.1)

The assumption that the execution costs are the same across quality levels is

natural in many cases. For example, if quality levels correspond to the level of

noise added to numerical data, then the size of the data sets will be the same.

We adopt this assumption in what follows.

This assumption allows the elimination of the execution cost term from the

objective. Additionally, we can simplify notation by removing the index d for

the data center. Thus, in per-query data contracting, the data cloud optimiza-

tion problem can be simplified to (10.2). (We discuss the case of bulk data

contracting in Appendix C.3.)

minimize
L∑
l=1

β(l)y(l) +
C∑
c=1

L∑
l=1

f(l)xc(l) (10.2)

subject to xc(l) ≤ y(l), ∀c, l
L∑

l=wc

xc(l) = 1, ∀c (10.2a)

xc(l) ≥ 0,∀c, l

y(l) ≥ 0, ∀l

xc(l), y(l) ∈ {0, 1},∀c, l

Note that constraint (10.2a) is a contraction of (9.5b) and (9.5c), and simply

means that any client c must be given exactly one quality level above wc,

the minimum required quality level.2 While this problem is still an ILP, in

this case there is a structure that can be exploited to provide a polynomial

time algorithm that can find an exact solution. In particular, we prove in

Appendix C.1 that the solution to (10.2) can be found by solving the linear

program (LP) given in (10.3).

2While the two constraints are equivalent for an ILP, they lead to different feasible sets
when considering its LP-relaxation; in particular, facility location algorithms based on LP-
relaxations such as randomized rounding algorithms need to use the contracted version of
the constraints to preserve the O(logC)-approximation ratio for non-metric facility location.
It is equivalent to the reformulation given in Appendix C and does not introduce infinite
costs that may lead to numerical errors.
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minimize
L∑
l=1

β(l)y(l) +
L∑
i=1

L∑
l=i

Sif(l)χi(l) (10.3)

subject to

χi(l) ≤ y(l), ∀i, l
L∑
l=i

χi(l) = 1, ∀i

χi(l) ≥ 0,∀i, l

y(l) ≥ 0, ∀l

In (10.3), Si is the number of clients who require a minimum quality level

of i, and χi(l) = 1 represents clients with minimum required quality level i

purchase at quality level l.

Note that this LP is not directly obtained by relaxing the integer constraints

in (10.2), but is obtained from relaxing the integer constraints in a reformu-

lation of (10.2) described in Appendix C.1. The theorem below provides a

tractable, exact algorithm for cost minimization in a data cloud made up of a

single data center. (A proof is given in Appendix C.1).

Theorem 9 There exists a binary optimal solution to the linear relaxiation

program in (10.3) which is an optimal solution of the integer program in (10.2)

and can be found in polynomial time.

In summary, the following gives a polynomial time algorithm which yields the

optimal solution of (10.2).

Step 1: Rewrite (10.2) in the form given by (C.4).

Step 2: Solve the linear relaxation of (C.4), i.e., (10.3). If it gives an inte-

gral solution, this solution is an optimal solution of (10.2), and the algorithm

finishes. Otherwise, denote the fractional solution of the previous step by

{χr(l), yr(l)} and continue to the next step.

Step 3: Find mi ∈ {i, . . . , n} such that
∑mi−1

l=i yr(l) < 1, and
∑mi

l=i y
r(l) ≥ 1.

(See Appendix C.1 for the existence of {mi}.) And express {χi(l)} as a func-

tion of {y(l)} based on (C.6). Substitute the expressions of {χi(l)} with {y(l)}
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in (10.3) to obtain an instance of (C.7). Solve the linear programming prob-

lem (C.7) and find an optimal solution that is also an extreme point of (C.7).3

This yields a binary optimal solution of (C.7). Use transformation (C.6) to get

a binary optimal solution of (10.3), which can be reformulated as an optimal

solution of (10.2) from the definition of {χi(l)}.

10.2 The design of Datum

Unlike the data cloud cost minimization problem for a single data center, the

general data cloud cost minimization is NP-hard. In this section, we build on

the exact algorithm for cost minimization in a data cloud made up of a single

data center (§10.1) to provide an algorithm, Datum, for cost minimization in

a geo-distributed data cloud.

The idea underlying Datum is to, first, optimize data purchasing decisions as if

the data market was made up of a single data center (given carefully designed

“transformed” costs), which can be done tractably as a result of Theorem 9.

Then, second, Datum optimizes data placement/replication decisions given the

data purchasing decisions.

Before presenting Datum, we need to reformulate the general cost minimiza-

tion ILP in (9.5). Recall that (9.5) is separable across providers, thus we

can consider independent optimizations for each provider, and drop the in-

dex p throughout. Second, we denote the set of all possible subsets of data

centers, e.g., {{d1}, {d2}, . . . , {d1, d2}, {d1, d3}, . . .} by V .4 Further, define

βv(l) =
∑

d∈v βd(l), and αv,c(l) = mind∈v{αd,c(l)}. Given this change, we

define yv(l) = 1 if and only if data with quality level l is placed in (and only

in) data centers d ∈ v and xv,c(l) = 1 if and only if data with quality level l

is transferred to client c from some data center d ∈ v. These reformulations

allow us to convert (9.5) to (10.4) as following.

3This step can be finished in polynomial time [11].
4Note that, in practice, the number of data centers is usually small, e.g., 10− 20 world-

wide. Further, to avoid exponential explosion of V , the subsets included in V can be limited
to only have a constant number of data centers, where the constant is determined by the
maximal number of replicas to be stored.
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minimize
L∑
l=1

V∑
v=1

βv(l)yv(l) +
C∑
c=1

L∑
l=1

V∑
v=1

αv,c(l)xv,c(l)

+
C∑
c=1

L∑
l=1

V∑
v=1

f(l)xv,c(l) (10.4)

subject to xv,c(l) ≤ yv(l), ∀c, l (10.4a)

L∑
l=wc

V∑
v=1

xv,c(l) = 1, ∀c (10.4b)

V∑
v=1

yv(l) ≤ 1, ∀l (10.4c)

V∑
v=1

xv,c(l) ≤ 1, ∀c, l (10.4d)

xv,c(l) ≥ 0,∀v, c, l (10.4e)

yv(l) ≥ 0, ∀v, l (10.4f)

xv,c(l), yv(l) ∈ {0, 1},∀v, c, l (10.4g)

Compared to (9.5), the main difference is that (10.4) has two extra con-

straints (10.4c) and (10.4d). Constraint (10.4c) ensures that data can only be

placed in at most one subset of data centers across V . And constraint (10.4d)

follows from constraint (10.4b). Using this reformulation Datum can now be

explained in two steps.

Step 1: Solve (10.5) while treating the geo-distributed data cloud as a single

data center. Specifically, define Y (l) =
∑V

v=1 yv(l) and Xc(l) =
∑V

v=1 xv,c(l).

Note that, Y (l) andXc(l) are 0−1 variables from Constaint (10.4c) and (10.4d).

Further, ignore the middle term in the objective, i.e., the ExecCost. Finally,

for each quality level l, consider a “transformed” cost β∗(l). We discuss how

to define β∗(l) below. This leaves the “single data center” problem (10.5).

Crucially, this formulation can be solved optimally in polynomial time using

the results for the case of a data cloud made up of a single data center (§10.1).
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minimize
L∑
l=1

β∗(l)Y (l) +
C∑
c=1

L∑
l=1

f(l)Xc(l) (10.5)

subject to Xc(l) ≤ Y (l), ∀c, l
L∑

l=wc

Xc(l) = 1, ∀c

Xc(l) ≥ 0,∀c, l

Y (l) ≥ 0, ∀l

Xc(l), Y (l) ∈ {0, 1}, ∀c, l

The remaining issue is to define β∗(l). Note that the reason for using trans-

formed costs β∗(l) instead of βv(l) is that βv(l) cannot be known precisely

without also optimizing the data placement. Thus, in defining β∗(l) we need

to anticipate the execution costs that result from data placement and repli-

cation given the purchase of data with quality level l. This anticipation then

allows a decomposition of data purchasing and data placement decisions. Note

that the only inaccuracy in the heuristic comes from the mismatch between

β∗(l) and min{βv(l)+
∑

c∈C∗(l) αv,c(l)} where C∗(l) is the set of customers who

buy at quality level l in an optimal solution – if these match for the minimizer

of (9.5) then the heuristic is exact. Indeed, in order to minimize the cost of

locating quality levels to data centers, and allocating clients to data centers

and quality levels, the set of data centers v where an optimal solution chooses

to put quality level l has to minimize the cost of data transfer in the set v and

allocating all clients who get data at quality level l, i.e. C∗(l), to this set of

data centers v.

Many choices are possible for the transformed costs β∗(l). A conservative

choice is β∗(l) = min
v
βv(l), which results in a solution (with Step 2) whose

OperCost + PurchCost is a lower bound to the corresponding costs in the

optimal solution of (9.5).5 However, it is natural to think that more aggressive

estimates may be valuable. To evaluate this, we have performed experiments in

the setting of the case study (see §11) using the following parametric form β∗(l)

= min
v
{βv(l)+µ1

∑
l′≤l

∑
wc=l′

αv,c(l
′)e−µ2(l−l

′)}, where µ1 and µ2 are parameters. This

5However the ExecCost cannot be bounded, thus we cannot obtain a bound for the total
cost. The proof of this is simple and is not included in the paper due to space limit.
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form generalizes the conservative choice by providing a weighting of αv,c(l
′)

based on the “distance” of the quality deviation between l′ and the target

quality level l. The idea behind this is that a client is more likely to be

served data with quality level close to the requested minimum quality level of

the client. Here we use the exponential decay term e−µ2(l−l
′) to capture the

possibility of serving the data with quality level l to a client with minimum

quality level l′ ≤ l. Interestingly, in the setting of our case study, the best

design is µ1 = µ2 = 0, i.e., the conservative estimate β∗(l) = min
v
βv(l), and so

we adopt this β∗(l) in Datum.

Step 2: At the completion of Step 1 the solution (X, Y ) to (10.5) determines

which quality levels should be purchased and which quality level should be

delivered to each client. What remains is to determine data placement and

data replication levels. To accomplish this, we substitute (X, Y ) into (10.4),

which yields (10.6).

minimize
L∑
l=1

V∑
v=1

βv(l)yv(l) +
C∑
c=1

L∑
l=1

V∑
v=1

αv,c(l)xv,c(l)

+
C∑
c=1

L∑
l=1

V∑
v=1

f(l)xv,c(l) (10.6)

subject to xv,c(l) ≤ yv(l), ∀c, l (10.6a)

L∑
l=wc

V∑
v=1

xv,c(l) = 1, ∀c (10.6b)

V∑
v=1

yv(l) = Y (l) (10.6c)

V∑
v=1

xv,c(l) = Xv(l) (10.6d)

xv,c(l) ≥ 0,∀v, c, l (10.6e)

yv(l) ≥ 0, ∀v, l (10.6f)

xv,c(l), yv(l) ∈ {0, 1},∀v, c, l (10.6g)

The key observation is that this is no longer a computationally hard ILP. In

fact, the inclusion of (X, Y ) means that it can be solved in closed form.

Let C(l) denote the set of clients that purchase data with quality level l, i.e.,
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C(l) = {c : Xc(l) = 1}. Then (10.7) gives the optimal solution of (10.6). (A

proof is given in Appendix C.2.)

yv(l) =


1, if Y (l) = 1 and

v = arg min{βv(l) +
∑

c∈C(l) αv,c(l)},

0, otherwise.

(10.7a)

xv,c(l) =

yv(l), if c ∈ C(l),

0, otherwise.
(10.7b)
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Figure 11.1: Illustration of the near-optimality of Datum as a function of the
complexity of client requests (i.e., the average number of providers data must
be procured from in order to complete a client request).

C h a p t e r 11

CASE STUDY

We now illustrate the performance of Datum using a case study of a geo-

distributed data cloud running in North America. While the setting we use is

synthetic, we attempt to faithfully model realistic geography for data centers

in the data cloud, data providers, and clients. Our focus is on quantifying

the overall cost (including data purchasing and bandwidth/latency costs) of

Datum compared to two existing designs for geo-distributed data analytics

systems and the optimal. To summarize, the highlights of our analysis are

1. Datum provides consistently lower cost (> 45% lower) than existing designs

for geo-distributed data analytics systems.

2. Datum achieves near optimal total cost (within 1.6%) of optimal.

3. Datum achieves reduction in total cost by significantly lowering purchas-

ing costs without sacrificing bandwidth/latency costs, which stay typically

within 20-25% of the minimal bandwidth/latency costs necessary for deliv-

ery of the data to clients.

11.1 Experimental setup

The following outlines the setting in which we demonstrate the empirical per-

formance of Datum.

Geo-distributed data cloud. We consider a geographically distributed data cloud
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with 10 data centers located in California, Washington, Oregon, Illinois, Geor-

gia, Virginia, Texas, Florida, North Carolina, and South Carolina. The loca-

tions of the data centers in our experiments mimic those in [37] and include

the locations of Google’s data centers in the United States.

Clients. Client locations are picked randomly among US cities, weighted pro-

portionally to city populations. Each client requests data from a subset of

data providers, chosen i.i.d. from a Uniform distribution. Unless otherwise

specified, the average number of providers per client request is P/2. The qual-

ity level requested from each chosen provider follows a Zipf distribution with

mean Lp/2 and shape parameter 30. P and Lp are defined as in §9.1 and §9.2.

We choose a Zipf distribution motivated by the fact that popularity typically

follows a heavy-tailed distribution [68]. Results are averaged over 20 random

instances. We observe that the results of the 20 instances for the same plot

are very close (within 5%), and thus do not show the confidence intervals on

the plots.

Data providers. We consider 20 data providers. We place data providers in

the second and third largest cities within a state containing a data center.

This ensures that the data providers are near by, but not right on top of, data

center and client locations.

Operation and execution costs. To set operation and execution costs, we com-

pute the geographical distances between data centers, clients and providers.

The operation and execution costs are proportional to the geographical dis-

tances, such that the costs are effectively one dollar per gigameter. This

captures both the form of bandwidth costs adopted in [93] and the form of

latency costs adopted in [73].

Data purchasing costs. The per-query purchasing costs are drawn i.i.d. from

a Pareto distribution with mean 10 and shape parameter 2 unless otherwise

specified. We choose a Pareto distribution motivated by the fact that incomes

and prices often follow heavy-tailed distributions [68]. Results were averaged

over 20 random instances. To study the sensitivity of Datum to the relative

size of purchasing and bandwidth costs, we vary the ratio of them between

(0.01, 100).

Baselines. We compare the performance of Datum to the following baselines.
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Figure 11.2: Illustration of Datum’s sensitivity to query parameters. (a) varies
the heaviness of the tail in the distribution of purchasing fees. (b) varies
the number of quality levels available. Note that Figure 11.1 sets the shape
parameter of the Pareto governing purchasing fees to 2 and includes 8 quality
levels.

• OptCost computes the optimal solution to the data cloud cost minimization

problem by solving the integer linear programming (9.5). Note that this

requires solving an NP-hard problem, and so is not feasible in practice. We

include it in order to benchmark the performance of Datum.

• OptBand computes the optimal solution to the bandwidth cost minimization

problem. It is obtained by minimizing only the operation cost and execution

cost in the objective of (9.5). Bandwidth cost minimization is commonly

considered as a primary goal for cost minimization in geo-distributed data

analytics systems [92]. Due to computational complexity, heuristics are usu-

ally applied to minimize the bandwidth cost. Here, instead of implementing

a heuristic algorithms, we optimistically use OptBand in order to lower

bound the achievable performance. Note that this also requires solving an

NP-hard problem and thus is not feasible in practice.

• NearestDC is a greedy heuristic for the total cost minimization problem

that is often applied in practice. It serves the clients exactly what they ask

for by purchasing the data and storing it at the data center closest to the

data provider.

11.2 Experimental results

Quantifying cost reductions from Datum. Figure 11.1(a) illustrates the

costs savings Datum provides. Across levels of query complexity (number of

providers involved), Datum consistently provides > 45% savings over OptBand

and > 51% savings compared to NearestDC. Further, Datum is within 1.6% of
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the optimal cost in all these cases. The improvement of Datum compared to

OptBand comes as a result of optimizing purchasing decisions at the expense

of increased bandwidth. Importantly, Figure 11.1(b) shows that the extra

bandwidth cost incurred is small, 20− 25%. Thus, joint optimization of data

purchasing and data placement decisions leads to significant reductions in total

cost without adversely impacting bandwidth costs.

The form of client queries. To understand the sensitivity of the cost

reductions provided by Datum, we next consider the impact of parameters

related to client queries. Figure 11.1 shows that the complexity of queries has

little impact on the cost reductions of Datum. Figure 11.2 studies two other

parameters: the heaviness of the tail of the per-query purchasing fee and the

number of quality levels offered.

Across all settings, Datum is within 1.6% of optimal; however both of these

parameters have a considerable impact on the cost savings Datum provides

over our baselines. In particular, the lighter the tail of the prices of different

quality levels is, the less improvement can be achieved. This is a result of

more concentration of prices across quality levels leaving less room for opti-

mization. Similarly, fewer quality levels provides less opportunity to optimize

data purchasing decisions. At the extreme, with only quality level available,

the opportunity to optimization data purchasing goes away and OptBand and

OptCost are equivalent.

Data purchasing vs. bandwidth costs. The most important determinant

of the magnitude of Datum’s cost savings is the relative importance of data

purchasing costs. In one extreme, if data is free, then the data purchasing

decisions disappear and the problem is simply to do data placement in a man-

ner that minimizes bandwidth costs. In the other extreme, if data purchasing

costs dominate then data placement is unimportant. In Figure 11.3 we only

compare total costs among OptCost, OptBand, and Datum. NearestDC is

far worse (more than 5 times worse than OptCost in some cases) and thus

is dropped from the plots. Figure 11.3(a) studies the impact of the relative

size of data purchasing and bandwidth costs. When the x-axis is 0, the data

purchasing and bandwidth costs of the data center are balanced. Positive val-

ues mean that bandwidth costs dominate and negative values mean that data

purchasing costs dominate. As expected, Datum’s cost savings are most dra-

matic in regimes where data purchasing costs dominate. Cost savings can be
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Figure 11.3: Illustration of the impact of bandwidth and purchasing fees on
Datum’s performance. NearestDC is excluded because its costs are off-scale.
(a) varies the ratio of bandwidth costs (summarized by α + β) to purchasing
costs (summarized by f). (b) varies the ratio of costs internal to the data
cloud (α) to costs external to the data cloud (β+ f). Note that in Figure 11.1
the ratios are set to log(α+β

f
) = −0.5 and log( α

β+f
) = −1.

54% in extreme settings. Data purchasing costs are expected to dominate in

the future – for some systems this is already true today. However, it is worth

noting that, in settings where bandwidth costs dominates, Datum can deviate

from the optimal cost by 10− 20% in extreme circumstances, and can be out-

performed by the MinBand benchmark. Of course, Datum is not designed for

such settings given its prioritization of the minimization of data purchasing

costs.

Internal vs. external costs. An important aspect of the design of Datum is

the decomposition of data purchasing decisions from data placement decisions.

This provides a separation between the internal and external operations (and

costs) of Datum. Given this separation, it is important to evaluate the sensi-

tivity of Datum’s design to the relative size of internal and external costs.

Given that Datum prioritizes the optimization of external costs (optimizing

them in Step 1, see §10.2), it is natural to expect that Datum performs best

when these costs dominate. This is indeed the case, as illustrated in Figure

11.3(b). Like in Figure 11.3(a), when the x-axis is 0, the internal and exter-

nal costs are balanced. Positive values indicate the internal costs dominate

and negative values indicate the external costs dominate. In settings where

external costs dominate Datum can provide 50% cost savings and be within a

few percent of the optimal. However, in cases when internal costs dominate

Datum can deviate from the optimal cost by 10 − 30% in extreme circum-

stances, and can be outperformed by the MinBand benchmark. Note that, as

data purchasing costs grow in importance, external costs will dominate, and so



54

we can expect that Datum will provide near optimal performance in practical

settings.
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C h a p t e r 12

RELATED WORK

Our work focuses on the joint design of data purchasing and data placement in

a geo-distributed cloud data market. As such, it is related both to recent work

on data pricing and to geo-distributed data analytics systems. Further, the

algorithmic problem at the core of our design is the facility location problem,

and so our work builds on that literature. We discuss related work in these

three areas in the following.

Data pricing: The design of data markets has begun to attract increasing

interest in recent years, especially in the database community, see [6] for an

overview. The current literature mainly focuses on query-based pricing mecha-

nism designs [49, 51, 57] and seldom considers the operating cost of the market

service providers (i.e., the data cloud). There is also a growing body of work

related to data pricing with differentiated qualities [32, 57, 22], often motivated

by privacy. See §8.2 for more discussion. This work relates to data pricing on

the data provider side and is orthogonal to our discussion in this paper.

Geo-distributed data analytics systems: As cloud servers are increasingly

located in geo-distributed systems, analysis and optimization of data stored in

geographically distributed data centers has received increasing attention [92,

93, 73, 43]. Bandwidth constraints [92, 93] as well as latency [73] are the two

main challenges for system design, and a number of system designs have been

proposed, e.g., see §8.2 for more discussion. Our work builds on the model

of geo-distributed data analytics systems in [73, 92], but is distinct from this

literature because none of the work on geo-distributed data analytics systems

considers the costs associated with purchasing data.

Algorithms for facility location: Our data cloud cost minimization prob-

lem can be viewed as a variant of the uncapacitated facility location problem.

Though such problems have been widely studied, most of the results, espe-

cially algorithms with constant approximation ratios, require the assumption

of metric cost parameters [17, 38, 45], which is not the case in our problem.

In contrast, for the non-metric facility location problem the best known al-

gorithm is a greedy algorithm proposed in [52]. Beyond this algorithm, a
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variety of heuristics have been proposed, however none of the heuristics are

appealing for our problem because it is desirable to separate (external) data

purchasing decisions from (internal) data placement/replication decisions as

much as possible. As a result we propose a new algorithm, Datum, which is

both near-optimal in practical settings and provides the desired decomposition.

Datum may also be valuable more broadly for facility location problems.
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C h a p t e r 13

CONCLUSION

This work sits at the intersection of two recent trends: the emergence of online

data marketplaces and the emergence of geo-distributed data analytics sys-

tems. Both have received significant attention in recent years across academia

and industry, changing the way data is bought and sold and changing how

companies like Facebook run queries across geo-distributed databases. In this

paper we study the engineering challenges that come when online data market-

places are run on top of a geo-distributed data analytics infrastructure. Such

cloud data markets have the potential to be a significant disruptor (as we high-

light in §8). However, there are many unanswered economic and engineering

questions about their design. While there has been significant prior work on

economic questions, such as how to price data, the engineering questions have

been neglected to this point.

We presented the design of a geo-distributed cloud data market: Datum. Da-

tum jointly optimizes data purchasing decisions with data placement decisions

in order to minimize the overall cost. While the overall cost minimization

problem is NP-hard (via a reduction to/from the facility location problem),

Datum provides near-optimal performance (within 1.6% of optimal) in realistic

settings via a polynomial-time algorithm that is provably optimal in the case

of a data cloud running on a single data center. Additionally, Datum provides

> 45% improvement over current design proposals for geo-distributed data

analytics systems. Datum works by decomposing the total cost minimization

problem into subproblems that allow optimization of data purchasing and data

placement separately, which provides a practical route for implementation in

real systems. Further, Datum provides a unified solution across systems using

per-query pricing or bulk pricing, systems with data replication constraints

and/or regulatory constraints on data placement, and systems with SLA con-

straints on delivery.
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A p p e n d i x A

PSEUDOCODE FOR GENERAL ONLINE FRACTIONAL
PACKING

The following pseudocode is replicated from [15]. Constraints arrive in some

order. During the jth round, the dual variable y(j) and all the primal variables

are increased. The minimum y(j) is found, such that the primal constraints

are satisfied.

Algorithm 1: General Online Fractional Packing

Input: A ∈ Rm×n, c ∈ Rn

Output: x, y
Initialize x = 0n, y = 0m for j = 1...m do

for i = 1...n do

ai(max)← maxjk=1{a(i, k)}
while

∑n
i=1 a(i, j)x(i) < 1 do

Increase y(j) continuously
for i = 1...n do

δ = exp( B
2c(i)

∑j
k=1 a(i, k)y(k))− 1

x(i) = max
{
x(i), 1

nai(max)
δ
}

Instead of increasing y(j) continuously, one can perform a binary search over

possible values of y(j). For each candidate y(j), a corresponding new value

of x is computed and the primal constraints are checked for feasibility. If

feasible, the new x is accepted, and y(j) will be increased in the next round

of the binary search. If infeasible, the new x is rejected, and the value of y(j)

will be decreased in the next round of the search.

A.1 ADMM

In our numerical results we compare LOCO to ADMM in the case of linear

NUM. For completeness, we describe the application of ADMM to that setting

here.

To apply ADMM, we first absorb the inequality constraint x ≤ x̄ into the

inequality A′′x ≤ c′ by letting A′′ =
[
A, I

]T
and c′ =

[
c, x̄
]T

, where this
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notation indicates a stack of vectors. We introduce a slack variable s ≥ 0

such that the inequality constraint becomes A′′x + s = c′. Let x′ =
[
x, s
]T
,

A′ = [A′′ I] and b =
[
1n,0n

]T
. We can now write the problem in standard

ADMM form,

min
x′,z

g(x′) + h(z)

s.t. x′ − z = 0

where g = (x − x)+ is the indicator function associated with the constraints

x ≤ x and h(z′) = −bT z where dom h = {z|A′z = c′}.

Writing down the scaled augmented Lagrangian Lρ(x
′, z, u) = g(x′) + h(z) +

uT (z− x′) + ρ
2
‖x′− z‖2, we can see that all the update steps have closed form

solution (see [14, Chapter 5.2]). The updates become:

x′k+1 = (zk+1 + uk − x)+ ∀i

zk+1 =

ρI A′T

A′ 0

−1 ρ(x′k − uk)− b

c′


uk+1 = uk + (x′k+1 − zk+1) ∀i

The solution to the NUM problem is recovered from the first n entries of x′.
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A p p e n d i x B

PROOF OF LEMMA 3

We denote the set {0, 1, . . . ,m} by [m]. Logarithms are base e. Let G = (V,E)

be a graph. For any vertex set S ⊆ V , denote by N(S) the set of vertices that

are not in S but are neighbors of some vertex in S: N(S) = {N(v) : v ∈ S}\S.

The length of a path is the number of edges it contains. For a set S ⊆ V and

a function f : V → N, we use S ∩ f−1(i) to denote the set {v ∈ S : f(v) = i}.

Let G = (V,E) be a graph, and let f : V → N be some function on the vertices.

An adaptive vertex exposure procedure A is one that does not know f a priori.

A is given a vertex v ∈ V and f(v); A iteratively adds vertices from V \ S to

S: for every vertex u that A adds to S, f(u) is revealed immediately after u

is added. Let St denote S after the addition of the tth vertex. The following

is a simple concentration bound whose proof is given for completeness.

Lemma 10 Let G = (V,E) be a graph, let Q > 0 be some constant, let

γ = 15Q, and let f : V → [Q] be a function chosen uniformly at random from

all such possible functions. Let A be an adaptive vertex exposure procedure that

is given a vertex v ∈ V . Then, for any q ∈ [Q], the probability that there is

some t, γ log n ≤ t ≤ n for which |St ∩ f−1(q)| > 2|St|
Q

is at most 1
n4 .

Proof 11 Let vj be the jth vertex added to S by A, and let Xj be the indicator

variable whose value is 1 iff f(vj) = q. For any t ≤ n, E

[
t∑

j=1

Xj

]
= t

Q
. As

Xi and Xj are independent for all i 6= j, by the Chernoff bound, for γ log n ≤
t ≤ n,

Pr

[
t∑

j=1

Xj >
2t

Q

]
≤ e

−t
3Q ≤ e−5 logn.

A union bound over all possible values of t : γ log n ≤ t ≤ n completes the

proof.

Let r : V → [0, 1] be a function chosen uniformly at random from all such

possible functions. Partition [0, 1] into Q = 4(d+1) segments of equal measure,
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I1, . . . , IQ. For every v ∈ V , set f(v) = q if r(v) ∈ Iq (f is a quantization of

r).

Consider the following method of generating two sets of vertices: T and R,

where T ⊆ R. For some vertex v, set T = R = {v}. Continue inductively:

choose some vertex w ∈ T , add all N(w) to R and compute f(u) for all

u ∈ N(w). Add the vertices u such that u ∈ N(w) and f(u) ≥ f(w) to T .

The process ends when no more vertices can be added to T . T is the query set

with respect to f , hence |T | is an upper bound on the size of the actual query

set (i.e., the query set with respect to r). However, it is difficult to reason

about the size of T directly, as the ranks of its vertices are not independent.

The ranks of the vertices in R, though, are independent, as R is generated by

an adaptive vertex exposure procedure. R is a superset of T that includes T

and its boundary, hence |R| is also an upper bound on the size of the query

set.

We now define Q+ 1 “layers” - T≤0, . . . , T≤Q: T≤q = T ∩
⋃q
i=0 f

−1(i). That is,

T≤q is the set of vertices in T whose rank is at most q. (The range of f is [Q],

hence T≤0 will be empty, but we include it to simplify the proof.)

Claim 12 Set Q = 4(d+ 1), γ = 15Q. Assume without loss of generality that

f(v) = 0. Then for all 0 ≤ i ≤ Q− 1,

Pr[|T≤i| ≤ 2iγ log n ∧ |T≤i+1| ≥ 2i+1γ log n] ≤ 1

n4
.

Proof 13 For all 0 ≤ i ≤ Q, let R≤i = T≤i ∪N(T≤i). Note that

R≤i ∩ f−1(i) = T≤i ∩ f−1(i), (B.1)

because if there had been some u ∈ N(T≤i), f(u) = i, u would have been added

to T≤i.

Note that |T≤i| ≤ 2iγ log n ∧ |T≤i+1| ≥ 2i+1γ log n implies that

|T≤i+1 ∩ f−1(i+ 1)| > |T≤i+1|
2

. (B.2)

In other words, the majority of vertices v ∈ T≤i+1 must have f(v) = i+ 1.

Given |T≤i+1| > 2i+1γ log n, it holds that |R≤i+1| > 2i+1γ log n because T≤i+1 ⊆
R≤i+1. Furthermore, R≤i+1 was constructed by an adaptive vertex exposure
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procedure and so the conditions of Lemma 10 hold for R≤i+1. From Equa-

tions (B.1) and (B.2) we get

Pr[|T≤i| ≤ 2iγ log n ∧ |T≤i+1| ≥ 2i+1γ log n]

≤ Pr

[∣∣R≤i+1 ∩ f−1(i+ 1)
∣∣ > |T≤i+1|

2

]
≤ Pr

[∣∣R≤i+1 ∩ f−1(i+ 1)
∣∣ > 2 |R≤i+1|

Q

]
≤ 1

n4
,

where the second inequality is because |R≤i+1| ≤ (d + 1)|T≤i+1|, as G’s degree

is at most d; the last inequality is due to Lemma 10.

Lemma 14 Set Q = 4(d+ 1). Let G = (V,E) be a graph with degree bounded

by d, where |V | = n. For any vertex v ∈ G, Pr
[
Tv > 2Q · 15Q log n

]
< 1

n3 .

Proof 15 To prove Lemma 14, we need to show that, for γ = 15Q,

Pr[|T≤Q| > 2Lγ log n] <
1

n3
.

We show that for 0 ≤ i ≤ Q,Pr[|T≤i| > 2iγ log n] < i
n4 , by induction. For

the base of the induction, |S0| = 1, and the claim holds. For the inductive

step, assume that Pr[|T≤i| > 2iγ log n] < i
n4 . Then, denoting by X the event

|T≤i| > 2iγ log n and by X̄ the event |T≤i| ≤ 2iγ log n,

Pr[|T≤i+1| > 2i+1γ log n]

= Pr[|T≤i+1| > 2i+1γ log n : X] Pr[X]

+ Pr[|T≤i+1| > 2i+1γ log n : X̄] Pr[X̄].

From the inductive step and Claim 12, using the union bound, the lemma

follows.

Applying a union bound over all the vertices gives the size of each query set is

O(log n) with probability at least 1−1/n2, completing the proof of Theorem 3.



71

A p p e n d i x C

PROOF OF THEOREM 8

To prove Theorem 8, we show a connection between the data cloud cost mini-

mization problem in (9.5) and the uncapacitated facility location problem. In

particular, we show both that the facility location problem can be reduced to

a data cloud optimization problem and vice versa.

First, we show that every instance of the uncapacitated facility location prob-

lem can be viewed as an instance of (9.5).

Take any instance of the uncapacitated facility location problem (UFLP). Let

I be the set of customers, J the set of locations, αij the cost of assigning

customer i to location j, and βj the cost of opening facility j. Binary variables

yj = 1 if and only if facility is open at site j, and xj,i = 1 if and only if

customer i is assigned to location j. Then the UFLP can be formulated as

following.

min
x,y

∑
j∈F

βjyj +
∑

i∈I,j∈F

αijxj,i (C.1)

subject to

xj,i ≤ yj, ∀i, j∑
j∈F

xj,i = 1, ∀c

xj,i, yj ∈ {0, 1},∀i, j

Mapping j to d and i to c yields an instance of (9.5) with |P | = |L| = 1,

f(l) = 0 and wc(l) = 0, in which case constraint (9.5c) becomes trivial.

Next, we show that every instance of (9.5) can be written as an instance of

UFLP.

We start by remarking that (9.5) (with p dropped) is equivalent to the following
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ILP.

min
x,y

D,L∑
d,l=1

βd(l)yd(l) +

D,L,C∑
d,l,c=1

(f(l) + αd,c(l))xd,c(l) (C.2)

subject to

xd,c(l) ≤ yd(l), ∀c, l, d
D∑
d=1

L∑
l=1

xd,c(l) = 1, ∀c

xd,c(l), yd(l) ∈ {0, 1}, ∀c, l, d

with αd,c(l) = M , for M big enough, whenever l < wc. Indeed, in any feasible

solution of (9.5), we necessarily have xd,c(l) = 0 whenever l < wc, as each client

purchases exactly one quality level and this quality level has to be higher than

the minimum required level wc; by setting αd,c(l) big enough, we ensure that

any optimal solution must have xd,c(l) = 0 thus must be feasible for (9.5), and

has the same cost as in (9.5). Now, take J = [D] × [L] and I = [C], and the

problem can be rewritten as

min
x,y

∑
(d,l)∈J

βd(l)yd(l) +
∑

(d,l)∈J,c∈I

(f(l) + αd,c(l))xd,c(l) (C.3)

subject to xd,c(l) ≤ yd(l), ∀(d, l) ∈ J, c ∈ I∑
(d,l)∈J

xd,c(l) = 1, ∀c ∈ I

xd,c(l), yd(l) ∈ {0, 1},∀c ∈ I, (d, l) ∈ J

which is an UFLP.

C.1 Proof of Theorem 9

Assume without loss of generality that all clients can be satisfied by the highest

quality level, i.e., wc ≤ q(L),∀c. Define Ci = {c : q(i − 1) < wc ≤ q(i)}
(q(0) = 0 by default). Given these assumptions, clients can be grouped into

L categories {C1, C2, . . . , CL} based on their minimum quality level. Note

that Ci ∩ Cj = ∅,∀i, j and ∪Li=1Ci = C. Without loss of generality, assume

Ci 6= ∅, ∀i.

As the clients in the same group Ci all face exactly the same choice of quality

levels and minimum quality requirements, there must always be an optimal so-

lution in which the data purchasing decisions of any clients within one category

are the same.
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Let us denote the number of clients in category Ci by Si. Denote the purchasing

decision of category Ci by χi, e.g., χi(l) = xc(l), ∀l, c ∈ Ci, similar to the

argument in proof of Theorem 8, we can reformulate (10.2) as follows. Note

the slight abuse of notation, as clients and their associated required quality

level are represented by the same letter, i, due to clients in category Ci having

minimum quality level i by definition.

minimize
L∑
l=1

β(l)y(l) +
L∑
i=1

L∑
l=i

Sif(l)χi(l) (C.4)

subject to χi(l) ≤ y(l), ∀i, l (C.4a)

L∑
l=i

χi(l) = 1, ∀i (C.4b)

χi(l) ≥ 0,∀i, l (C.4c)

y(l) ≥ 0, ∀l (C.4d)

χi(l), y(l) ∈ {0, 1},∀i, l (C.4e)

Consider the linear relaxation of (C.4), which drops the 0 − 1 integer con-

straint (C.4e). For any optimal solution {χri (l), yr(l)} of the linear relaxation

we have the following observations.

1. χrL(L) = 1.

Proof 16 From (C.4b), let i = L, then χrL(L) = 1. The intuition behind

this is that, since CL 6= ∅, highest quality data always has to be purchased

to provide service for clients in C(L).

2. yr(l) = maxi{χri (l)} ∈ [0, 1] and yr(L) = 1.

Proof 17 From (C.4a), the non-negativity of {β(l)}, and the optimality of

{yr(l)}, yr(l) = maxi{χri (l)}. From the non-negativity of {χri (l)}, yr(l) =

maxi{χri (l)} ≤
∑L

l=i χ
r
i (l) = 1, and yr(L) = χrL(L) = 1

3. ∀l ≥ i, if
∑L

l=i y
r(l) ≤ 1, χri (l) = yr(l); otherwise, χi(l) = max{1 −∑l−1

k=i y
r(k), 0}.

Proof 18 For some fixed i, {Sif(l)} is a positive, strictly increasing se-

quence as l increases. From constraint (C.4a) and (C.4b), χri (l) ≤ yr(l),
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and
∑L

l=i χ
r
i (l) = 1. Since {χri (l), yr(l)} is optimal, ∀l ≥ i, if

∑l
k=i y

r(k) ≤
1, χri (l) = yr(l); otherwise, χri (l) = max{1−

∑l−1
k=i y

r(k), 0}.

Next, define mi ∈ {i, . . . , n} such that
∑mi−1

l=i yr(l) < 1, and
∑mi

l=i y
r(l) ≥ 1.

Such an mi must exist since yr(l) ≥ 0 for all l and yr(L) = 1. Recall χrL(L) =

yr(L) = 1. For for any i = 1, 2, . . . , L − 1, if the values of {yr(l)} are given,

the optimal {χri (l)} satisfy the following closed form expression:

χri (l) =


yr(l), i ≤ l < mi

1−
∑mi−1

k=i yr(k), l = mi

0, mi < l ≤ n.

(C.5)

Note that, if yr are binary, then χr are binary. Suppose there exists an opti-

mal solution {χr, yr} with yr 6∈ {0, 1}L, in the following we show that there

exists a feasible binary solution {χ∗, y∗} of (C.4) such that the objective value

generated by {χ∗, y∗} is better than or equal to that of {χr, yr}.

Suppose fractional solution yr is an optimal solution of the linear relaxation

and calculate mi as in (C.5). Write χ as a function of y, ∀i, l.

χi(l) =


y(l), i ≤ l < mi

1−
∑mi−1

k=i y(k), l = mi

0, mi < l ≤ n

(C.6)

Substituting (C.6) in the objective function (C.4), the objective function be-

comes a linear combination of {y(l)} that we denote L(y).

Consider the optimization problem in which {χi(l)} is expressed as a function

of {y(l)} in the linear relaxation:

minimize L(y) (C.7)

subject to

m′i−1∑
l=i

y(l) ≤ 1, ∀i = 1, . . . , L− 1

m′i∑
l=i

y(l) ≥ 1, ∀i = 1, . . . , L− 1

y(l) ≥ 0, ∀l = 1, . . . , L

y(L) = 1

The following claims hold:
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1. (C.7) is feasible and bounded, and always has an optimal solution at an

extreme point.

Proof 19 Clearly, ∀l, y(l) ∈ [0, 1]. And starting from y(L), it is easy to

construct a feasible solution of (C.7). Thus, (C.7) is feasible and bounded,

and always has an optimal solution at an extreme point.

2. {yr(l)} is a feasible solution of (C.7).

Proof 20 Since {yr(l)} is feasible for (C.4), yr(l) ≥ 0, ∀l, and yr(L) = 1.

By definition of mi,
∑mi−1

l=i yr(l) ≤ 1,
∑mi

l=i y
r(l) ≥ 1.

3. Any extreme point {y(l)} of (C.7) is binary.

Proof 21 Since y(L) = 1, we can drop y(L), and write (C.7) in the fol-

lowing standard linear programming form:

min
y

L(y) (C.8)

s.t. Ay ≤ b

y ≥ 0

Note that all entries of A are 0,±1, and all rows of A has either consecutive

1s or consecutive −1s. Thus, from [82], A is a totally unimodular matrix

thus the extreme points of (C.8) are all integral. In particular, since all

y(l) ∈ [0, 1], the extreme points of (C.8) are all binary.

4. The {χ∗i (l)} obtained through (C.6) corresponding to an optimal binary

solution {y∗} is also binary.

Proof 22 Follows immediately from (C.6) and integrality of {y∗(l)}.

5. {χ∗i (l), y∗(l)} is a feasible solution of the linear relaxation of (C.4).

Proof 23 Follows from (C.6) and
∑L

l=i χ
∗
i (l) = 1

{χri (l), yr(l)} and any optimal extreme point {χ∗i (l), y∗(l)} see their cor-

responding objective values unchanged between (C.7) and the relaxation

of (C.4) by construction of the χi(l)’s. And any such extremal and optimal
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{χ∗i (l), y∗(l)} has a better or equal objective value compared to {χri (l), yr(l)}
in relaxed (C.4). Since {χri (l), yr(l)} is optimal for (C.7), it implies any op-

timal extreme point of relaxed (C.4) yields a binary and optimal solution

for (C.7). This provides a polynomial time algorithm to find such a binary

optimal solution, which can be summarized as in §10.2.

C.2 Proof of Step 2 in §10.2
In this section we derive the closed form solutions of (10.7) for the optimization

in (10.6). We start by discussing the form of xv,c(l). Consider the following

two cases based on the value of Y (l).

1. For any quality level l′, if Y (l′) = 0, then ∀v,
V∑
v=1

yv(l
′) = Y (l′) = 0.

From the non-negativity of yv(l
′), ∀v, yv(l′) = 0. Further, ∀v, c, xv,c(l′) = 0

from (10.6a).

2. For any quality level l′, if Y (l′) = 1, then from the definition of yv(l) and

Y (l), ∃!v′ ∈ V, such that yv′(l
′) = Y (l′) = 1. Recall that C(l′) = {c :

Xc(l
′) = 1} represents the set of clients that are assigned data with quality

level l′ by Step 1 in §10.2.

a) For client c′ ∈ C(l′), Xc′(l
′) = 1. Since v′ is the unique data center set

across V such that yv′(l
′) = 1, from (10.6a) and (10.6b), xv′,c′(l

′) =

1 and xv,c′(l) = 0, ∀v 6= v′ or l 6= l′. In other words, xv,c′(l
′) =

yv(l
′), ∀v ∈ V, c ∈ C(l′).

b) For client c /∈ C(l′), Xc(l
′) = 0. From the definition of Xc(l

′), xv,c(l
′) =

0, ∀v.

In all above cases, the optimal solution {xv,c(l), yv(l)} of (10.6) satisfies the

following:

xv,c(l) =

yv(l), if c ∈ C(l),

0, otherwise.
(C.11)

Next, we use this form for xv,c(l) to derive yv(l). After substituting (C.11)

into (10.6), most constraints become trivial due to the form of (C.11) and the

optimality of Xc(l) and Y (l). And we only need to optimize the objective

function with the constraints stating that yv(l) is binary, and
∑

v yv(l) = Y (l).
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Thus, we only need to optimize the following problem.

minimize
∑

l:Y (l)=1

V∑
v=1

βv(l)yv(l)

+
∑

l:Y (l)=1

∑
c∈C(l)

V∑
v=1

(αv,c(l) + f(l))yv(l)

subject to
V∑
v=1

yv(l) = Y (l),∀v, c, l

yv(l) ∈ {0, 1}, ∀v, c, l

The above optimization can be decoupled by l and optimized across v, yielding

the following closed form solution.

yv(l) =


1, if Y (l) = 1 and

v = argmin{βv(l) +
∑

c∈C(l) αv,c(l)},

0, otherwise.

(C.11)

C.3 Bulk Data Contracting

In bulk data contracting, the data cloud only has to pay a one-time fee f(l, p)

for data q(l, p), no matter how many times the data is replicated on the cloud

and transferred to clients. Compared to per-query contracting, the main differ-

ence lies in the purchasing fees modeling. Defining z(l, p) ∈ {0, 1} to be equal

to 1 if and only if data of quality q(l, p) from data provider p is transferred to

the data cloud, the whole optimization problem can still be formulated in a

form similar to (9.5), with the purchasing costs now given by (9.4) and with

the addition of the following constraint:

yp,d(l) ≤ z(l, p), ∀c, l, p, d (C.12)

This constraint states that any data placed in the data cloud must have been

purchased by the data cloud. As in the per-query contracting case, the data

purchasing/placement decision for data from one data provider does not im-

pact the data purchasing/placement decision for any other data providers.

Thus, we drop the index p in the following.

In general, the cost minimization problem for bulk contracting is NP-hard. To

be specific, the 1-level UFLP can reduce to the cost minimization problem for
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a geo-distributed data cloud, and the cost minimization problem can reduce to

the 2-level UFLP in the bulk case. In the 2-level UFLP, facilities are organizing

on 2 levels, J1 × J2; each customer i ∈ I has to be assigned to a valid path

p ∈ J1 × J2. A pass is valid if and only if both facilities are open along the

path. More details on the 2-level UFLP can be found in [97].

The first reduction follows directly from the first part of the proof for The-

orem 8. It can be easily proved by defining facilities in J1 to be the quality

levels, and using the same reformulation as the second part of the proof for

Theorem 8 for the facilities in J2, i.e. define facilities inJ2 to be pairs of qual-

ity levels and data centers. In the reduction, a facility j1 ∈ J1 is open if and

only if the corresponding quality level l is purchased, and a facility j2 ∈ J2 is

opened if and only if data of quality level l is placed in data center d.

While the cost minimization in bulk contracting is generally hard, it can be

solved optimally in both the single data center and the geo-distributed data

cloud settings under certain assumptions.

For the single data center case, we always have z(l) = y(l) for all quality level l -

this follows immediately from dropping the dependence of yd(l) in d, implying

that z(l) is only lower-bounded by y(l) in the constraints. Furthermore, if

the execution costs are the same across quality levels, the cost minimization

problem can be formulated as follows:

minimize
L∑
l=1

(β(l) + f(l)) y(l) (C.13)

subject to xc(l) ≤ y(l), ∀c, l
L∑

l=wc

xc(l) = 1, ∀c

xc(l) ≥ 0,∀c, l

y(l) ≥ 0, ∀l

xc(l), y(l) ∈ {0, 1},∀c, l

Since the decisions for variables {xc(l)} do not affect the objective value, (C.13)
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can be written as follows:

minimize
L∑
l=1

(β(l) + f(l)) y(l) (C.14)

subject to
L∑

l=wc

y(l) ≥ 1, ∀l, c

y(l) ∈ {0, 1},∀l

Since there are customers buying the highest quality level, the highest level

quality L is always purchased by the data cloud and y(L) = 1 in any feasible

solution. Since all customers are satisfied and all costs are non-negative, an

optimal solution for (C.14) is y(L) = z(L) = 1, xc(L) = 1 with all other

variables are set to 0. The result implies the data cloud will only purchase the

highest quality level of data and serve that data to every customers.

For a geo-distributed data cloud, the cost minimization problem is generally

hard. However, if we assume the operation cost and execution cost are inde-

pendent of l, i.e., βd(l) = βd and αd,c(l) = αd,c, it is easy to show that the

optimal solution will only purchase the highest quality data as in the single

data center case. We can then use Step 2 in §10.2 to give an optimal solution

to the data placement problem.


