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Abstract 

Obesity is a complex disease that results from the interaction between lifestyle (dietary 

patterns and sedentary habits) and genetic factors. The recognition of a genetic basis for 

human obesity have driven to identify putative causal genes to understand the pathways 

that control body mass and fat deposition in humans as well as to provide personalized 

treatments and prevention strategies to fight against obesity. More than 120 candidate 

genes have been associated with obesity-related traits. GWAS (genome-wide 

association study) have so far identified over 20 novel loci convincingly associated with 

adiposity. This review is specifically focused on the study of the effects of MC4R, 

PPARγ and FTO gene variants and their interactions with dietary intake, physical 

activity or drug administration on body weight control. The advances in this field are 

expected to open new ways in genome-customized diets for obesity prevention and 

therapy following personalized approaches. 
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INTRODUCTION 

Obesity is a worldwide epidemic that predisposes to a high risk of premature mortality 

[1]. The increased incidence of obesity, particularly in Western societies, is considered 

to be the result of a change in lifestyle (i.e. less physical activity) and inadequate eating 

habits (i.e. high quantity and high energy-yielding foods [2], which leads to an increase 

in adipose tissue mass and fuel metabolism disturbances. However, there is evidence 

that within a population the variance in BMI (body mass index) is substantially 

genetically determined [3].  

The recognition of an important genetic influence on human obesity have lead to search 

causal genes in order to understand not only the pathways and networks that control 

body mass and composition in humans but also to provide insights that will contribute 

to improved treatment and prevention strategies [4]. 

Defining obesity 

Obesity is a complex disease, which results from an imbalance between energy intake 

and expenditure, producing an excessive fat depot accumulation [5]. Human adiposity 

resolves complex interactions among genetic, developmental, behavioural, and 

environmental influences [6]. 

Genetic factors are currently estimated to account for 40–70% of the variance in human 

adiposity [3]. Two complementary experimental designs have been applied to: the 

candidate gene approach and the genome-wide association study (GWAS) strategy. 

Candidate genes are selected to be screened for variants associated with obesity based 

on the putative role of these gene products on the physiology and molecular 

mechanisms involved in energy homeostasis [7-8].  
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IDENTIFYING RELEVANT GENE VARIANTS IN OBESITY 

Indeed, human obesity has a strong genetic component and many gene regions that may 

influence an individual's predisposition to gain weight are apparently not yet known. 

However, the study of extreme human obesity caused by single gene defects has 

troughed light on the long-term regulation of body weight [9]. Monogenic obesity 

disorders have confirmed that the hypothalamic leptin–melanocortin system is critical 

for energy balance in humans, because disruption of these pathways causes the most 

severe obesity phenotypes [2]. Approximately 20 different genes have been implicated 

in monogenic causes of obesity; however, they account for less than 5% of all severe 

obesity cases. This outcome suggests that the genetic basis for human obesity is likely 

to be very heterogeneous, with low contributions from numerous genes acting by 

various, yet mainly undiscovered, molecular mechanisms. Thus, in most cases, obesity 

has a polygenic background, having each causative gene variation a small relevance, but 

a considerable importance in the development of a personalized treatment [10].  

The characterization of potential pathways involved in the pathophysiology of the 

common forms of obesity by means of the identification of genes and mutations is far 

from being a reality in the majority of the cases.  Although, a few hundred of 

monogenic forms of obesity, caused by single-gene mutations, have been reported, the 

true number is assumed to be much larger. So far, eleven genes have been implicated in 

these single-gene cases [11]: CRHR1 (corticotrophin-releasing hormone receptor 1), 

CRHR2, MCHR1 (melanin-concentrating hormone 1), LEP (leptin), LEPR (leptin 

receptor), MC3R (melanocortin 3 receptor), MC4R (melanocortin 4 receptor), NTRK2 

(BDNF high-affinity receptor), POMC (proopiomelanocortin), PCSK1 (Prohormone 

convertase subtilisin/kexin type 1), and SIM1 (Single-minded 1). 
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However, most obesity cases are attributed to the interaction of multiple factors 

including polymorphisms on several genes. There are a number of studies that have 

analyzed multiple specific gene variants implicated in different biological processes. 

That is the case of mutations in genes encoding factors involved in the food intake 

regulation, such as NPY (neuropeptide Y) or ghrelin; implicated in energy expenditure, 

as ADRB2 (beta-adrenoreceptor) and 3 or UCP2 (uncoupling protein) and 3, in addition 

to genes controlling adipogenesis such adiponectin or FABP (fatty acid binding protein) 

[12].  

In the last years, an association between a low grade inflammation and the development 

of obesity has been described [13]. Thus, the activity of some cytokines secreted by the 

adipose tissue seems to be associated with pathways implicated in body weight 

regulation [14]. In this sense, variants on genes encoding these cytokines are being 

widely studied such as interleukin 6 (IL-6) gene polymorphisms [15-16]. 

The number of genes implicated in obesity is huge and increases very rapidly. In this 

review, we report findings and outcomes concerning the study of three well documented 

genes (MC4R, PPARγ and FTO) involved in body weight and energy homeostasis. The 

selection criteria were: the most important causative gene of monogenic obesity 

(MC4R), one of the most investigated gene in candidate gene studies and nutrigenetic 

studies (PPARγ), and the best example of a loci discovered by GWAS methodology and 

firmly associated with BMI (FTO). 

 Moreover, findings on the interactions of different gene variants and dietary 

components or drugs on the treatment of obesity are reviewed. 

Candidate gene association studies 

Candidate gene selection for the study of obesity is based on the knowledge of the 

biological and/or pathophysiological implication of the gene on this disease [17]. 
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Several genes have been analyzed on large populations or case control studies because 

of their implication on energy balance on animal models or extreme monogenic cases.  

The advances in the field have been very important in recent years reflected by the fact 

that the last update of the Human Obesity Gene Map (2006), reported 127 candidate 

genes for which at least one study described a positive association with obesity-related 

traits [18]. However, these genes appeared to have small effects in many cases but the 

variant allele is quite common in the population [11]. Moreover, for many of the 

potential candidate genes, replication in other studies has been often inconsistent, 

remaining the association not clear. The main problem of the low rate of replication of 

candidate gene approach seems to be the small sample size of the studies and 

environment influences [19]. In order to overcome this problem, in recent years, there 

have been an increasing number of large population studies and also meta-analysis 

studies of the available data (Table 1) [17].  

MC4R 

Obesity-related genes participating in neurohormonal pathways frequently have 

reciprocal effects on energy intake and expenditure, although their primary effect 

appears to be on the regulation of appetite and satiety [9]. In this sense, the 

melanocortin 4 receptor (MC4R) is a strong obesity candidate gene. This receptor is a 

332-amino acid protein encoded by a single exon on chromosome 18q22 [20-21] and is 

widely expressed in the brain. The endogenous ligand for MC4R is the α-melanocyte 

stimulating hormone (a-MSH). MC4R mutations have been associated with inherited 

severe obesity in humans [22-23]. Tao et al. (2003), proposed a five-type classification 

of MC4R mutations: truncated nonfunctional receptors, intracellularly trapped mutants, 

binding defective mutants, signalling defective mutants, and those with unknown 

defects [21]. More than 100 variants in human MC4R have been reported up to date 

 6



[24]. About 50% of these variants have a partial or complete impairment or loss of 

function in vitro [25]. Although defects in MC4R seems to constitute the most common 

form of monogenic obesity, prevalence rates ranging from 0.5% to 5.8%, [26-27], 

different penetrance or expressivity of the mutations and potential environment 

interactions configure a variety of obesity phenotypes [24].  The features concerning 

MC4R deficiency are characterized by several disorders such as hyperphagia, 

hyperinsulinemia or increased fat mass [2].  

The importance of the MC4R mutations in the development of obesity has been 

confirmed by researches regarding large populations (meta-analysis) and in the high 

number of emerged loci in GWAS studies [28-30].  

PPARγ 

Peroxisome proliferator-activated receptor γ (PPARγ) encodes a transcription factor 

(PPAR γ2) that controls the expression of genes involved in adipocyte differentiation, 

lipid storage, and insulin sensitization [31]. This gene is one of the most studied as 

potentially linked to the development of obesity, and especially related to the 

interactions with lifestyle factors [6, 32-36]. 

To date one common variant (Pro12Ala) and 16 rare missense and nonsense mutations 

in the coding region of the PPARγ gene have been identified and functionally analysed 

[37] The Pro12Ala polymorphism of the PPARγ2 protein is the most frequently found 

genetic variant of PPARγ, whose frequency has been reported to vary from 2% to 25% 

depending on ethnicity (table 2). 

The effects of the 12Ala allele have been studied in functional analysis revealing that 

the receptor expressing this allele displays reduced DNA (deoxyribonucleic acid)-

binding affinity and impaired transcriptional activity in target genes [38]. Therefore, the 

12Ala carriers would be expected to be protected against excessive adiposity due to the 
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reduced functionality of the receptor. However, there are studies in human subjects 

showing that the 12Ala allele was associated with increased adiposity [39-41]. These 

contradictory in vitro and in vivo results might be explained by a potential enhancing 

effect of the anti-lipolytic action of insulin, which leads to reduced release of free fatty 

acids [38]. Moreover, conflicting results in human studies could lead to think that 

Pro12Ala may be interacting with some factors. Indeed, giving these differential effects, 

mechanistic studies are needed.  

A summary of the positive, nule and negative associations of the polymorphism with 

obesity found in Caucasian populations is reported (table 2).  

Genes identified by GWAS 

Genome-wide association studies had made a reality the challenge to analyze DNA 

sequence variants of large populations in a single experiment. The first study using this 

technology was published in 2005 [42], and the first analysing a complex disease, type 

2 diabetes, in 2007 [43]. The genome-wide association approach looks into the entire 

genome, without any previous consideration. The aim is to identify genetic loci, not a 

priori considered as an implicated region, associated with a disease phenotype. This 

approach may help to clarify the knowledge of the underlying patophysiology. 

Thus, the advantages and benefits of performing a GWAS are clear: the entire genome 

of thousand samples can be analyzed in a single assay. Despite the strength of the 

approach it has some limitations that need to be explained. First of all it has to be 

considered the possibility of false positives due to multiple testing. Moreover, in the 

case of complex disease as obesity, the heterogeneity of the trait gets more difficult the 

finding of specific SNPs.  Another limitation is that GWAS consider only common 

SNPs, thus the contribution of many rare SNPs to the trait may remain ignored [44-45].  
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Anyway, GWAS have revolutionized the field of genetic epidemiology and has already 

resulted in an unprecedented chain of discoveries with >300 replicated associations for 

>70 common diseases and traits [17]. This approach have so far identified over 20 novel 

loci , including genes as FTO or the region near MC4R, robustly associated with obesity 

traits, revealing that GWAS is the most productive approach compared to the other 

gene-discovery methods previously used for common traits [46]. 

FTO 

Approaches based on GWAS have identified common genetic variants that are robustly 

associated with higher BMI in adults. To date, FTO (fat mass and obesity associated) 

gene polymorphisms appears to have the most important effects on obesity 

susceptibility [46]. A GWAS initially performed for type 2 diabetes screening identified 

a common variant in FTO (rs9939609), which conferred increased risk for diabetes 

secondary to its associations with greater body mass index (BMI) in the adult [47]. 

Simultaneously, another GWAS in relation to BMI confirmed the association between 

FTO gene variants and this adiposity index [48]. 

The FTO gene is composed of nine exons that span more than 400 kb on chromosome 

16. Several SNPs were initially identified by Frayling et al.[47], Dina et al. [49] and 

Scuteri et al.[48]. They are located in the first intron of the gene, a region where the 

sequence is strongly maintained across species. It is known that FTO encodes a 2-

oxoglutarate-dependent nucleic acid demethylase, and that it is located in the nucleus 

[50]. The biological action of FTO in humans remains to be fully established [51], 

although there is increasing evidence for associations between FTO genotype and 

differences in eating behaviour, satiety and dietary intake, but not in energy 

expenditure, at least in children [52-53]. The most studied variant in FTO gene is the 
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rs9939609 T/A that has been associated with higher body weight and [52-53] higher 

risk of obesity in different studies and populations [47-48, 54-56].  

This polymorphism is currently being widely studied in children cohorts due to its 

potential implication in the development of obesity at this early stage [57]. Thus, a 

summary of the association between rs9939609 and obesity as found in children studies 

is shown (table 3).  

 

The identification of implicated loci in BMI variation has lead to the study of new 

genetic areas. However the analysis of the genetic predisposition of individuals for 

obesity taking into account these loci has revealed that they explain a low percentage of 

variance in BMI. In this sense, the combination of the additive risk of two common 

variants in FTO and near MC4R genes widely associated with BMI, account for less 

than 2% of the variance in adult BMI in a 77000 subjects population [8, 29, 47]. When 

the effect of other discovered loci as are considered, this percentage does not improve 

[30], suggesting that although FTO and MC4R are highly associated with BMI they can 

not explain per se the development of obesity.  

 

Prevention and treatment based on genotyping 

Current obesity investigations based on genotyping are directed to prescribe a 

personalized treatment. Indeed, obesity is infrequently originated by one gene 

(monogenic obesity), and usually depends on various factors such as several gene 

variations and their interactions with lifestyle factors. Thus, the prevention and 

treatment of obesity must be independently considered in each case considering the 

individual’s potential response to lifestyle modification or drug treatment depending on 

the genotype. 
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Nutrigenetics 

Nutrigenetics is a growing science that studies the response of individuals to a dietary 

component or components depending on the genotype [58-59]. There are some studies 

analyzing the interaction between dietary components or dietary patterns and genetic 

variants on adiposity. Most of these studies are conducted within crossectional designs. 

However, the best approach to analyze the effects of a mutation on obesity parameters 

appears to be on the frame of a nutritional intervention [60-61].  

Probably, the most studied gene in relation to the interactions with dietary components 

on adiposity features is the PPARγ, and specifically the Pro12Ala gene variant (table 4). 

The majority of the studies have been directed to the interaction between fat intake and 

Pro12Ala due to the fact that free fatty acids are natural agonists of the PPARγ 

transcription factor [62]. Nevertheless, the relationship between the variant and 

carbohydrate intake or alcohol consumption have been also analyzed in different studies 

[33, 35, 63].  

Related to the total fat intake, in the Quebec Family Study population (2003), an 

interaction between the Ala12 variant and total fat intake associated with higher BMI 

and waist circumference was found [64]. Memisoglu et al. (2003), found a significant 

interaction between total fat intake and BMI. The highest quintile of total dietary fat 

was associated with increased risk of obesity among Pro12Pro subjects [34]  

Related to unsaturated fatty acids, Luan et al. (2001) found that Ala12 carriers showed 

an inverse association between the dietary polyunsaturated to saturated fatty acids ratio 

(P:S) with BMI [32]. In this sense, Franks et al. (2004) reported that carriers of the 

Ala12 allele, who had high dietary P:S and were physically active, had lower fasting 

insulin levels [65]. Moreover, in a case-control study, Ala12 carriers with increasing 

intake of arachidonic acid presented a higher risk of obesity [35]. Furthermore, 
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Memisoglu et al. (2003), found that intake of monounsaturated fatty acids (MUFA) was 

inversely associated with BMI in Ala12 allele-carriers but not in Pro/Pro homozygotes, 

in a larger population [34]. Aditionally, Soriguer et al. (2006) found that the low 

consumption of MUFA in obese Ala carriers was associated with higher HOMA values 

in a healthy Spanish population [66].   

Apart from fat intake, Marti et al. (2002) reported an increased obesity risk for Ala12 

carriers when consuming more than 49% of total energy from carbohydrates [33]. 

Furthermore, other studies have analyzed the association of the polymorphism and 

alcohol intake. Results obtained by the European Project on Genes in Hypertension 

showed that elevated alcohol consumption in Ala12 carriers was associated with higher 

serum HDL cholesterol levels [63]. 

Recently, a substudy of the PREDIMED intervention trial, found that a Mediterranean 

dietary pattern rich in virgin olive oil or nuts was able to reverse the negative effect that 

the12 Ala allele had in waist circumference. Thus, 12Ala carriers that consumed a 

Mediterranean-style diet during 2 years had similar waist circumference enlargement 

compared to Pro12Pro subjects. In contrast, 12 Ala carriers that followed a conventional 

low fat diet had a significantly higher waist circumference compared to non mutated 

subjects [67].  

Moreover, also in a recent trial with Pro12Ala mutant knock in mice, it was 

demonstrated that the effects of PPARγ Pro12Ala variant on metabolic control is diet-

dependent, especially when comparing dietary fat content [68]. 

Currently, the most studied gene in relation to the interactions with lifestyle factors is 

the FTO gene, and especially the rs9939609 variant. Related to dietary interactions, 

Sonestedt et al (2009) found in a crossectional study that there was a significant 

interaction between fat intake and FTO genotype and also between carbohydrate intake 
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and FTO genotype on BMI [69]. There are also some nutritional intervention studies 

analyzing interactions with this gene variant [55, 70]. However, most of the 

interventional studies are directed to a complete lifestyle intervention including physical 

activity and dietary changes especially in children [54, 71-72]. 

Physical activity-genotype interactions 

The diagnosis of interactions between physical activity level and gene variants tries to 

find a personalized therapy for subjects genetically predisposed to develop obesity. 

Given the fact that the FTO gene appears might participate in controlling energy 

expenditure, variations on this gene are receiving attention in the study of gene 

variation-lifestyle interactions on body weight. Therefore, the outcomes obtained up to 

now related to the interactions between FTO gene variants and physical activity on 

children and adult populations are reviewed (table 5). 

In this context, concerning the rs9939609 Hakanen et al., did not find any significant 

association between leisure time physical activity in an adolescent cohort of the STRIP 

study [54]. In contrast, Ruiz et al, found that the rs9939609 was associated with higher 

BMI, body fat and waist circumference but this effects were attenuated in adolescents 

who met the daily recommended physical activity [73]. 

In adults, Andreasen et al. (2008), found that physical inactive Danish subjects carrying 

the A risk allele had higher BMI compared to wild type subjects (TT), suggesting that 

low physical activity may accentuate the effect of FTO rs9939609 on body fat 

accumulation [74]. However, three adult studies in other European populations [70, 75-

76], found no evidence of interaction between physical activity and this FTO gene 

variant on body weight (Table 5). 

Other FTO gene variants have been investigated in relation to their interactions with 

physical activity on BMI. Thus, Mitchell et al. (2009), found that the A allele of 
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rs8050136 gene variant was associated with higher BMI at baseline, but after following 

the physical activity recommendations of the intervention program, AA subjects were 

found to have a higher weight loss in comparison to CC subjects [77]. In the EPIC-

Norfolk cohort, Vimaleswaran et al (2009), found that T risk allele of rs1121980 was 

associated with BMI and waist circumference, but physical activity level was able to 

attenuate this effect [78]. Moreover, Rampersaud et al (2008), found that two FTO gene 

variants, rs1477196 and rs1861868, were associated with BMI and obesity only in those 

subjects with a low level of physical activity [79] (Table 5). 

Drug-genotype interactions  

The increasing epidemic of obesity is leading to look for new strategies on the 

prevention and treatment of this disease. The first approach is to configure lifestyle 

patterns (including dietary and physical activity changes), however, long-term lifestyle 

modification suffer from lack of individual’s compliance. Moreover, subjects with a 

potent genetic susceptibility need even more than a radical lifestyle change [80]. In this 

context, pharmacotherapy appears to be a suitable approach to treat obesity. Three 

common drug therapies have been applied in the treatment of obesity: orlistat, a lipase 

inhibitor, rimonabant, a selective cannabinoid-1 receptor antagonist, and sibutramine, a 

central appetite suppressant. However, only the first one can be now prescribed to fight 

against obesity in Europe. There are several genes that can be considered good targets 

for this therapy, but it remains important to take into account gene variants that may 

modify the effect of the potential therapy. Indeed, pharmacogenetics is the study of how 

genetically determined variations affect an individual's response to drugs. It is well 

known that adverse side effects and therapeutic failure of drugs may both have a strong 

genetic component [81]. 
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Sibutramine, a noradrenergic and serotonergic reuptake inhibitor, has been administered 

for the long term treatment of obesity [82]. Sibutramine induces satiety, prevents 

decline in metabolic rate associated with hypocaloric diets and causes weight loss 

especially when combined with behavioral therapy. Furthermore, there are large 

differences in weight loss among individuals treated with sibutramine. Thus, there were 

studies analyzing the potential interactions between this drug and gene variants that may 

affect weight loss. Grudell et al. (2008) found that sibutramine interacted with specific 

markers of candidate genes controlling serotonergic and adrenergic mechanisms (α2A-

receptor, 5-HTTLPR (serotonin-transporter-linked promoter region) and GNβ3 (G-

protein β subunit polypeptide 3). Treatment with sibutramine resulted in significantly 

greater reduction of weight and body fat for specific α2A CC and GNβ3 TC/TT 

genotype variants [83]. Furthermore, Vazquez Roque et al. (2007), also found that 

response to sibutramine was mediated by the SLC6A4 (solute carrier family 6 member 

2) genotype [84]. Anyway, as stated before, the prescription of this reuptake inhibitor 

has been forbidden, in Europe, since January 2010. 

Although sibutramine was used as a possible treatment for obesity, there are other 

studies looking for new therapies and, of course, studying the potential interactions with 

gene variants. In an interventional study with lifestyle modifications and capsinoid 

administration, Snitker et al. 2009, found that the 585Ile allele of TRPV1 (transient 

receptor potential cation channel) gene and -866A allele of UCP (uncoupling protein) 

gene are associated with a higher abdominal fat reduction [85]. On the other hand, 

Spraggs et al. (2005), evaluated the efficacy of GW320659 ((2S,3S,5R)-2-(3,5-

difluorophenyl)-3,5-dimethylmorpholin-2-ol), a highly selective neuronal 

norepinephrine and dopamine re-uptake inhibitor, in the treatment of obesity. They 

found that polymorphisms in SLC6A2  and GRIN1 (glutamate receptor, ionotropic, N-
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methyl D-aspartate 1) were associated with increased weight loss when treated with 

GW320659 [86]. 

All these results suggest that the study of potential interactions between specific 

polymorphisms and drugs could be used to maximize effective obesity 

pharmacotherapy by identifying patients that may be predisposed to a particularly 

treatment weight loss response. 

Conclusions and future of individualized treatments of obesity  

Obesity is actually a multifactorial disease and, consequently, involves a complex 

prevention and/or treatment strategies, which means that there is no universal treatment 

that would be beneficial for every obese patient. All the published studies to date are 

giving light to the fact of needing a personalized treatment for each obese subject. 

As the genetic contribution to the variance in human adiposity is estimated to account 

40-70%, it is clear that the prescription of future individualized treatments may need the 

knowledge of the subject genotype. For this purpose it is important to know now those 

genes and gene variations that are really important to take into account within a 

customized therapy. Furthermore, it would be essential to assess if there are interactions 

with the individual genotype and potentially modifiable lifestyle factors, especially 

dietary components and physical activity, and/or with potential drug treatments. 

Moreover, intervention studies have to be carried out on a large number of individuals 

to find robust results because of the small implication of each single SNP on body 

weight control. 

Moreover, to design an individualized nutrition other factors may have to be considered 

as epigenetics or nutrigenomics. Epigenetics has been defined as the study of heritable 

changes in gene expression that occur in the absence of a change in the DNA sequence 

itself. Increasing evidence indicates that early metabolic programming contributes to 
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increasing obesity prevalence in children and adults. Metabolic imprinting is involved 

in the establishment of set points for physiological and metabolical responses in 

adulthood. Recent studies suggest that changes in the dietary pattern may modify the 

imprinting.  

Considering the results of nutrigenetic, nutrigenomic and epigenetic studies, a 

personalized intervention for the patient may be defined in the future. At present, it 

seems an optimistic view, but i.e. there are trials seeking to design DNA microchips that 

may be used to identify the more relevant mutations in the development of obesity and 

treatment outcomes. 

It seems evident, that individuals genetically predisposed to obesity are going to benefit 

more from a specific treatment than subjects less susceptible that are benefited from 

standard treatments. Indeed, the high and increasing prevalence of obesity reveals that 

traditional treatments do not lead to a successful result in many cases. 

At present, the best therapy appears to be a combination of modification in dietary 

habits and physical activity level and, in severe obesity cases, the application of drug 

treatment according to subject genotype. But in the future, it is expected that genotype 

based interventions will be more relevant on the customized obesity therapy.
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