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ABSTRACT

The concept of phase transitions, i.e., switching between two or more different
equilibrium states of a system, is commonly encountered in many physical, chemical
and biological phenomena. The exact mechanism of this switching is a highly
nonlinear dynamical process that is accommodated by the propagation of a localized
wave. The characteristics of the nonlinear wave such as its profile, velocity, energy,
and width of transition are governed by the type and specifics of the system that it is
propagating through which may be conservative, dissipative, or diffusive in nature.
The goal of this thesis is to develop a fundamental understanding of the dynamics of
such processes in general nonlinear systems capable of undergoing phase transitions
and the application of new theories to elucidate the kinetic and energetic properties
of transition waves in different scenarios. In conservative systems, we show that
there are three different modes of stable wave propagation that we analytically solve
for and validate computationally. In contrast, dissipative and diffusive systems
allow the stable propagation of only the strongly nonlinear kink mode whose kinetic
energy and propagation velocity are linked through a linear relation. We further
validate our results in dissipative systems experimentally by fabricating and testing
a strongly nonlinear lattice and show that transition waves are unidirectional in
nature, as predicted by theory. Finally, as an application, we devise a strategy of
using the physics of dissipative phase transitions to propagate stable mechanical
signals in highly dissipative media such as soft polymers which effectively damp
out small-amplitude linear waves.
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2.14 (a) Wave profiles for ū0 = 0.3 and t3 > t2 > t1. (b) x-t-contour
diagram of the numerical solution for a precompression of ū0 = 0.3. . 34
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C h a p t e r 1

INTRODUCTION

The goal of this thesis is to understand the physics of nonlinear wave propagation
in systems that exhibit multiple states or ‘phases’ of equilibrium. The switching
between two stable equilibria gives rise to a nonlinear wave called a transition wave
and the phenomenon is called a phase transition. This thesis explores the theory
behind these phase transitions in conservative, dissipative and diffusive systems.
Further, we investigate how the theory can be used to design and experimentally
realize nonlinear mechanical systems having structural phase transitions. We also
discuss the application of the theory to current models of microstructure evolution in
ferroelectric ceramics and suggest further steps to improve the model. This chapter
introduces the concept of phase transitions and their mechanism in various systems.

1.1 Motivation
A phase transition can be illustrated by a simple example in mechanics. Consider
a pendulum with a mass, hanging from a rigid support. Assuming the bar of the
pendulum is mass-less, the potential energy of the hanging mass as a function of
the angle of rotation is shown in Fig. 1.1. The energy has a multi-stable landscape
having an equilibrium for every 2π rotation. An infinite lattice of such pendulums
can be built by connecting them through a linear torsional springs. A schematic of
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Figure 1.1: Pendulum hung from a support with its potential energy as a function
of angular rotation.
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this lattice is shown in Fig. 1.2. The governing equation for the motion of the nth

pendulum is given by

I θ̈n − C(θn+1 − 2θn + θn−1) + mgl sin θn = 0, (1.1)

where I is the moment of inertia, C is the stiffness of the torsional springs, m is
the mass, g is the acceleration due to gravity and l is the length of the pendulum.
The rotation of one of the pendulums from one stable state to another (i.e. θ =

0 → 2π) causes a traveling wave to propagate through the system that switches
each consecutive pendulum from θ = 0 phase to the θ = 2π phase in a sequential
manner. This mechanical system was designed by Scott [130], as a simple model
of the nonlinear Klein-Gordon equation, where he analyzed the nature and stability
of the transition wave. Further numerical and experimental investigations were
performed to characterize transitions in this system [32, 38, 102]. The presence
of the multi-stable potential creates topological wavefronts or kinks that can travel
through the medium. Phase transformations due to the propagation of such a kink
or transition front are ubiquitous, occurring in varied systems. Following are a few
examples where phase transitions are commonly encountered due to the presence of
bi/multi-stable potentials in lattices or continua.

Figure 1.2: Nonlinear lattice of rotating pendulums connected by torsional springs.
The pendulums rotate out of the plane creating the transition wave.
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1.2 Lattice dynamics in mechanics
Equation (1.1) is the celebrated Frenkel-Kontorova (FK) equation that was first em-
ployed to explain dislocation motion in metals [51]. The dynamics of the kink in
the model describes the propagation of the dislocation core. In contrary to a contin-
uum, the inherent discreteness of the lattice gives rise to the Peierls-Nabarro (PN)
potential that the kink needs to overcome in order to move in the lattice [96, 112].
Such effects of discreteness of the lattice along with acoustic radiation [7], prefer-
ential velocity of propagation [114], and kink dressing or shape modification [59]
have been studied in great detail. For a review of FK lattice models, see [26, 27].
FK-type lattice models have been used to explain other mechanical processes as
well. For instance, in structural mechanics, chains of bistable linkages with gaps
of zero resistance or a "waiting link structure" have been shown to have increased
stability due to the delocalization of damage and conversion of mechanical energy
to heat through high-frequency background oscillations [31, 139]. Such periodic
chains with bistable linkages or non-monotonic stress-strain relationships have been
successfully employed as models to explain structural transitions, fracture, and dam-
age [9, 10, 69, 138, 150, 154]. The mechanical response of carbon nanotubes [20,
48] have also been explained on the basis of buckling or snapping instabilities aris-
ing from systems with multiple stable configurations described by lattice models.
Stochastics coupled with multi-stable on-site potentials in the Langevin framework
have been used to develop models for surface friction [158, 159]. Therefore, FK
lattice models have been utilized to explain mechanical processes from the small
scale like surface friction to large-scale structural mechanics.

1.3 Thermoelastic materials
A thermoelastic material changes its structural phase due to the presence of thermal
or elastic stresses in the material. An example of a thermoelastic phase transforma-
tion is between austenite and martensite. The austenite phase has a body-centered
cubic structure whereas the martensite phase has a tetragonal structure. Due to the
non-centrosymmetry of the martensitic crystal structure, the martensitic phase can
have different variants. It has been shown that the martensitic phase, due to geo-
metric compatibility, must generate a combination of variants in its microstructure,
in order to minimize its energy [11], whereas the austenite phase is homogeneous,
as seen in Fig. 1.3. The phase transformation between austenite to martensite can
be modeled as a switch between two stable points of the multi-stable Gibbs free
energy well, giving rise to a non-monotonic stress-strain curve. This problem of a
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Figure 1.3: Microstructure of the twinned martensite phase next to a homogeneous
austenite phase in a Cu-Ni-Al alloy (adapted from [34])

thermoelastic solid undergoing a phase transition in a one-dimensional setting has
been extensively studied [2, 3, 5]. A key result from these papers is the entropy
inequality for phase transformations,

f (t) ṡ(t) ≥ 0, (1.2)

where f (t) is the driving traction which is an Eshelby-like traction acting on the
surface of the discontinuity separating the two phases [41], and ṡ is the velocity of
the phase boundary. The driving traction f = 0 signifies phase equilibrium within
the solid. The kinetic relation that relates the driving traction to the motion of the
phase boundary is an essential component in uniquely determining the quasi-static
and dynamic response of the material [4]. The concept of driving traction has been
extended further to higher dimensions where it is the force acting in the direction
normal to the surface of phase discontinuity [1]. Controlling the driving traction
and thereby the phase boundary motion plays an important role in phase transition, a
process that has been put to practice inmany applications. A commonly encountered
thermoelastic solid is a shapememory alloy. Shapememory alloys “remember" their
high-temperature-phase shape as they switch from the low-temperature phase to the
high-temperature phase through a diffusionless transition. This effect has been used
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Figure 1.4: Axon in the peripheral nervous system covered with a myelin sheath
made up of Schwann cells. There are periodic gaps in the sheaths called the Nodes
of Ranvier. The electrical signal passes through due to the potential difference
between the Nodes of Ranvier (courtesy [115])

.

for many applications such as vibration damping in aircrafts [54], control of civil
structures [141] and dental braces in medicine [86].

1.4 Action potential propagation through myelinated axons
Transition waves in the form of propagation of electrical signals also occur in
biological systems. One such example is the propagation of action potentials along
the axon of a nerve cell. An axon is a transmission line that communicates between
two neurons. A diagram of an axon in the peripheral nervous system is shown
in Fig. 1.4. For efficient communication, the axon is covered by myelin sheaths
composed of glial cells called Schwann cells in the peripheral nervous system and
oligodendrocytes in the central nervous system [115]. The presence of the myelin
sheaths increases the effective resistance of the membrane from 103Ω cm2 to 105Ω
cm2 and reduces the capacitance from 10−6 µF/cm2 to 10−8 µF/cm2, causing fast
signal propagation [65]. The sheaths are separated by periodic gaps called Nodes
of Ranvier. The electrical signal jumps from one node to another in the form of a
transition wave that is given by the equation,

dVn

dt
= D(Vn+1 − 2Vn + Vn) + f (Vn), (1.3)

where Vn is the nodal potential, D is the coupling constant, and f (V ) derives from
an asymmetric bistable potential. Equation (1.3) is a reaction-diffusion equation
that shows propagation failure below a critical coupling constant due to discreteness
effects [64]. The first experiment on the propagation of action potentials along these
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nerve fibers was performed by Hodgkin and Huxley on the nerve [55]. Another
model to simulate the motion of the transition wave was proposed by Fitzhugh,
which was later realized experimentally through an electrical circuit by Nagumo et.
al. [45, 100]. For a general discussion of electrophysics of nerve fibers, see [65,
115, 131].

1.5 Josephson junctions
The Josephson junction that shows current tunneling through an electric insulator
was proposed by Brian Josephson as part of his PhD work for which he was awarded
the Nobel Prize in Physics in 1973 [62]. A schematic of a Josephson junction is
shown in Fig. 1.5.

Superconductor

Superconductor

Insulator

Figure 1.5: A Josephson junction

The Josephson junction consists of an insulator sandwiched by two superconducting
electrodes. The superconductor has pairs of bound electrons with two spins of ±1/2
called Cooper pairs which have an electromagnetic quantum phase associated with
them. For a short Josephson junction, if the phase difference between the Cooper
pair phases of the two superconductors is φ, then the equation governing the phase
difference is of that of a damped oscillatory pendulum, written as

d2φ

dt2
+

1
RC

dφ
dt
+ ω2

0 sin φ = JB, (1.4)

where R is the resistance, C is the capacitance, ω0 is a characteristic frequency
proportional to the critical current density and thickness of the insulating layer, and
JB is a constant proportional to the bias current provided by a generator [148]. If
an array of such Josephson junctions is connected together in a lattice with spacing
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a, then the governing equation is that of a damped oscillatory pendulum chain
presented in section 1.1, given by

d2φn

dt2
+ α

dφn

dt
−

1
a2 (φn+1 + φn−1 − 2φn) + sin φn − γ = 0, (1.5)

where φn is the phase difference between the nth superconducting pair [152, 153].
The phase difference transitions in the form of a discrete traveling wave propagating
through the lattice. This wave is called discrete fluxon. In long or extended
Josephson junctions, the discretewave equation is converted to a continuous equation
of the form,

∂2φ

∂t2
+ α

∂φ

∂t
− c20

∂2φ

∂x2
+ sin φ − γ = 0. (1.6)

Multiple fluxons can be created in this system that behave as independent quasi-
particles [35]. The physics of Josephson junctions has been used to create many
devices such as superconducting quantum interference devices (SQUIDs) [60, 87].

1.6 Bistable chemical reactions
Nonlinear localized transition waves in the form of solitons also occur in reaction-
diffusion equations. The oxidation of carbon monoxide on a platinum catalyst is a
prime example of such a reaction mechanism. The 2007 Nobel Prize in Chemistry
was awarded to Gerhard Ertl for discovering this surface science phenomenon. A
photoemission electron microscope image shown in Fig. 1.6 describes the presence
of solitary wavefronts during the oxidation reaction. The localized waves of oxy-
gen concentration move at a constant velocity of around 3µm/s. The merging of
two waves leads to an annihilation or they move past each other while preserving
their shape, which is a typical characteristic of solitary waves [13]. The reaction
mechanism for such a system can be explained by the equation

∂u

∂t
= D

∂2u

∂x2
+ f (u), (1.7)

where u are the chemical variables associated with concentrations, and D is a matrix
of all transport coefficients with f containing driving forces from bistable poten-
tials [13, 124, 145]. Another example of transition fronts in chemical mechanisms
is a chain of coupled bistable chemical reactors. In this system, each stirred tank re-
actor undergoes a bistable chlorite-iodide reaction and the reaction propagates from
one chemical reactor to another through mass exchange. The equation of chemical
concentration evolution is equivalent to a neural pulse propagation in axons as de-
scribed in Sec. 1.4. An experimental system was realized with 16 coupled bistable
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Figure 1.6: A photoemission electron microscope image showing the oxidation of
CO on a Pt substrate. The dark regions is where the oxygen adsorbate is concentrated
that move as localized waves with a constant velocity (adapted from [13]).

reactors arranged in a ring [22]. The system shows propagation failure below a
certain critical coupling constant very similar to the propagation failure in a nerve
fiber [73].

Therefore, phase transitions due to the propagation of strongly nonlinear transition
waves occur in many physical, chemical, and biological bistable systems as a result
of inter-well switching. This thesis explores this phenomenon to characterize this
wave propagation that occurs in these different systems.

1.7 Outline
Chapter 2 examines the intra-well dynamics and inter-well phase transitions of a
conservative mechanical lattice with on-site bistable wells, in the long-wavelength
limit. Previous research on such systems focused on the linear regime or the strongly
nonlinear switching regime. Our analysis indicates the presence of an intermediate
envelope solitary wave mode due to weakly nonlinear intra-well motion. We also
present closed-form solutions for the family of linear, weakly nonlinear and strongly
nonlinear wave modes. In the case of asymmetric potentials caused due to local pre-
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compression applied to each node of the lattice, we show that the wave propagation
is a combination of the strongly nonlinear kink shaped wave mode and the weakly
nonlinear envelope solitary wave mode. This chapter provides a direction towards
the creation of nonlinear metamaterials.

Chapter 3 analyzes inter-well phase transitions in a lattice and continuum when the
mechanism is diffusive or dissipative in nature in general bi/multi-stable lattices and
continua. Unlike the conservative case where there is a family of kink solutions, we
observe that there is at most one steady-state waveform and velocity. The average
energy of the wave is linearly related to its velocity through a universal principle.
The ratio of the average energy to velocity is independent of the bistable topology,
number of neighborhood interactions, and form of the interaction potential. We
also show that this energy scaling applies to a multi-stable switching as well. We
confirm our theory with multiple numerical examples.

Chapter 4 delineates a design of a fully nonlinear discrete dissipative system with
on-site bistable nonlinearities and interaction nonlinearities. The system allows the
propagation of strongly nonlinear transition waves. We show that, in such a system,
in spite of discreteness effects and highly nonlinear interactions, the average energy
per momentum density transported by the transition wave remains a constant and
can be determined by the energy law derived in the previous chapter. Due to the
asymmetry in the energy wells, the wave propagation is unidirectional in nature, so
that the transition occurs only from the high-energy state to the low-energy state.

Chapter 5 describes a structural application of the theory to build soft mechanical
metamaterials that counteract dissipation with structural instabilities. We present a
lattice made of a polymeric material that propagates transition waves while linear
waves are damped out by the intrinsic dissipation. The structural properties can
be readily tuned by applying pre-compression to the lattice to propagate the waves
faster or slower. The properties of the lattice can be spatially altered to give rise to
accelerating and decelerating waves. A design to realize soft mechanical logic such
as diodes, AND, and OR gates is also described. This chapter presents a blueprint
for novel metamaterial applications in the nonlinear regime of wave propagation.

Chapter 6 concludes the thesis and provides an outlook toward future research
directions. A special section is devoted to the dynamics of domain wall motion in
ferroelectric ceramics. We show how the energy transport law derived in Chapter 3
can be used to relate the velocity of the domain wall to the applied electric field
through the Eshelby driving traction acting on the domain wall. The current models
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do not provide the correct scaling of the domain wall velocity with the applied
electric field. We further outline techniques to improve the current models to
capture the correct domain wall kinetics.
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C h a p t e r 2

NONLINEAR DYNAMICS OF A CONSERVATIVE LATTICE
WITH ON-SITE BISTABLE POTENTIALS

Research presented in this chapter has been adapted from the following publication:

Neel Nadkarni, Chiara Daraio, and Dennis M. Kochmann. “Dynamics of periodic
mechanical structures containing bistable elastic elements: From elastic to solitary
wave propagation”. In: Physical Review E 90.2 (Aug. 2014), p. 023204. doi:
10.1103/PhysRevE.90.023204. url: http://link.aps.org/doi/10.
1103/PhysRevE.90.023204.

In this chapter, we analyze the problem of phase transitions and intra-well dynamics
in a conservative system that permits two stable states at each node through a bistable
on-site potential. In particular, we investigate the nonlinear dynamics of a periodic
chain of bistable elements consisting of masses connected by elastic springs whose
constrained arrangement gives rise to a large-deformation snap-through instability.
We show that the resulting negative-stiffness effect produces three different regimes
of (linear and nonlinear) wave propagation in the periodicmedium, depending on the
wave amplitude. At small amplitudes, linear elastic waves experience dispersion that
is controllable by the geometry and by the level of precompression. At moderate to
large amplitudes, solitary waves arise in the weakly and strongly nonlinear regime.
For each case, we present closed-form analytical solutions and we confirm our
theoretical findings by specific numerical examples. The precompression reveals
a class of wave propagation for a partially positive and negative potential. The
presented results highlight opportunities in the design of mechanical metamaterials
based on negative-stiffness elements, which go beyond current concepts primarily
based on linear elastic wave propagation. Our findings shed light on the rich effective
dynamics achievable by nonlinear small-scale instabilities in solids and structures.

2.1 Introduction
The periodic arrangement of small-scale building blocks results in acoustic or me-
chanical metamaterials [12] which have attracted great attention because of their
extremely rich field of applications including acoustic wave guides and filters [108,

http://dx.doi.org/10.1103/PhysRevE.90.023204
http://link.aps.org/doi/10.1103/PhysRevE.90.023204
http://link.aps.org/doi/10.1103/PhysRevE.90.023204


12

L

d/2

d/2

u

y(u)

u

-F =y¢( u)

L L

k1

k1

m

Figure 2.1: Bistable element consisting of two elastic springs and a point mass,
energy ψ(u), and force F (u).

162], acoustic lenses and diodes [17, 142], sound isolators and sensors [118, 172],
and acoustic cloaks and sonar stealth technologies [92, 94]. Design strategies com-
monly exploit the scattering of elastic waves in periodic media at characteristic
frequencies in all or specific directions [72, 125, 137] as well as resonant phenom-
ena capable of absorbing energy on lower scales by local resonators [83, 134]. In
all these examples, the careful microscale periodic architecture of multiscale en-
gineered material systems leads to an interesting or beneficial effective dynamic
behavior on the macroscale. Besides pronounced acoustic band gaps [128, 167],
this design paradigm has resulted in negative effective dynamic stiffness [42] and
mass density [84, 166], and combinations of both [37]. Here, negative stiffness
and negative mass density refer to the effective dynamic properties: An elastic sys-
tem containing only positive-stiffness elements can demonstrate negative effective
dynamic quantities near resonance.

Static negative (incremental) stiffness arises from instabilities in solids and struc-
tures when the energy landscape loses (some notion of) convexity. Bistable elements
such as the spring configuration schematically shown in Fig. 2.1 make an excellent
example: The potential energy’s nonconvexity provides the system with an unsta-
ble regime of negative energy curvature (i.e. negative incremental stiffness) whose
nonlinear force-displacement relation leads to a spontaneous snapping from one
stable equilibrium to the next energy minimum if pure tractions are applied. The
same phenomenon can be observed in pre-stressed buckled structural members [28].
Although the beneficial effects of negative-stiffness elements on the effective dy-
namic performance of acoustic or mechanical metamaterials and composites is well
known [160], previous research has focused on the linear elastic regime. How-
ever, as discussed in Sec. 1.1, bistable or multistable building blocks in periodic
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solids and structures also promise interesting nonlinear dynamic effects, including
solitary-wave propagation, which provides opportunities to focus acoustic signals in
mechanical metamaterials [50, 142]. Homogeneous solids undergoing finite elastic
deformation [111] as well as periodic media experiencing nonlinear elastic insta-
bilities [16] have been shown to exhibit acoustic band gaps that are controllable
by the amount of nonlinear pre-deformation, yet the investigated waves again op-
erate in the linear elastic regime. To date, only one example of periodic elastic
mechanical system (as illustrated in Sec. 1.1) has been reported that produces sine-
Gordon solitons by allowing a kink propagation in the form of elastically connected
rotating pendulums [32, 38, 102, 127, 130]. The weakly or strongly nonlinear re-
sponse of elastic media containing negative-stiffness elements such as the bistable
spring configuration shown in Fig. 2.1 has remained widely unexplored, in part
because such instabilities in solids and the resulting nonlinear effective dynamics
are mathematically complex and make analytical solutions a rare find.

Here we study a mechanical system capable of propagating impact pressure waves
in three different regimes, serving as a model for the creation of nonlinear acoustic
metamaterials with static negative-stiffness elements. We present closed-form ana-
lytical results for the nonlinear response of a chain of bistable elements consisting of
elastic springs and point masses. The specific configuration of the periodically re-
peated elementary unit cell displays a continuous nonmonotonic force-displacement
relation with two stable equilibria and one unstable equilibrium configuration giving
rise to temporary negative (static) stiffness. We have deliberately chosen a simple
albeit instructive mechanical system that enables us to study the rich dynamics of pe-
riodic chains of bistable elements in the full range of its linear to strongly-nonlinear
behavior. The chosen spring configuration shows the same features as prebuckled
structures (while allowing for a clean analytical investigation) and the conclusions
drawn here can qualitatively be transferred to numerous structural instabilities. In
fact, the interesting wave propagation characteristics reported here hint at the design
of novel mechanical metamaterials with controllable wave propagation in the linear
and nonlinear regimes, with applications ranging from wave guides and amplifiers
to vibration attenuators. The chosen system admits a clean identification of all
model parameters and allows for experimental implementation. We note that in our
analysis we assume conservative systems and thereby neglect energy dissipation
through internal friction or other damping mechanisms that are usually found in
mechanical systems. Of course, the presence of damping will alter the response of
the system (our numerical examples contain small amounts of damping to remove
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transient effects, whereas all analytical solutions assume energy conservation).

2.2 Bistable chain configuration
Consider the bistable structure consisting of two identical and symmetrically-
arranged linear elastic springs with stiffness k1 as shown schematically in Fig. 2.1
in its unstressed equilibrium configuration. Both springs are connected by a joint
allowing for rotation and carrying point mass m. Their free ends are attached to
joints which allow for rotation but prevent translation. Due to symmetry, a horizon-
tal force on mass m will result in a horizontal displacement u, so we may treat the
system as one-dimensional in the following. The total potential energy stored by the
structure is given by

ψ(u) = k1 [l (u) − l0]2 , (2.1)

where

l (u) =

√
(L − u)2 +

(
δ

2

)2
(2.2)

is the deformed length of each spring with geometric details δ and L introduced in
Fig 2.1. Consequently, the initial spring length is given by l0 = l (0). Energy (2.1)
is illustrated in Fig 2.1 as a function of the displacement u, which demonstrates two
stable equilibria (i.e., local energy minima) and one unstable equilibrium config-
uration (corresponding to the local energy maximum). The structure experiences
negative stiffness as it passes through this unstable regime.

To arrive at a periodic one-dimensional chain, we consider an array of N such
bistable elements connected by horizontal linear springs of stiffness k2 that act as
force transfer elements. Identical masses m are placed at each node of the chain, as
shown schematically in Fig 2.2. The total Hamiltonian of the spring system can be
written as

H (u, u,t ) =
N∑

i=1

[ m
2

u2i,t + ψi (ui)
]
+

N−1∑
i=1

k2
2

(ui+1 − ui)2, (2.3)

where ψ(ui) is the potential energy stored by the ith bistable pair of springs, u =
{u1, . . . , uN } denotes the vector of all nodal displacements depending on time t, and
a comma in indices denotes differentiation with respect to the ensuing variable(s).
Therefore, the rate of change of momentum of mass i follows from Hamilton’s
equation, i.e.

pi,t = m ui,tt = −
∂H
∂ui

. (2.4)
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Figure 2.2: Periodic chain of bistable elements.

Application of (2.3) yields

m ui, tt + k2(−ui+1 + 2ui − ui−1) − F (ui) = 0, (2.5)

where the internal force applied to mass i by the bistable spring element was
introduced as

F (u) = −ψ′(u) = −2k1(L − u)
l (u) − l0

l (u)
. (2.6)

2.3 Scaling and continuum limit
Dimensionless equations will enable us to investigate the mechanics of the system
without having to specify geometry and material parameters explicitly. In order to
reduce the problem to a self-similar type, we scale the displacements and the nodal
spacing with respect to their respective length scales. For a lattice parameter a

(initial spacing between two masses), we define

x̄ =
x
a

and ū =
u
L
, (2.7)

where x̄ and ū are the dimensionless x-coordinate and displacement, respectively.
Therefore, the force F (u) can be expressed in dimensionless form as

F̄ (ū) =
F (u)
k1L

= 2(1 − ū)
(
1 −

l̄0
l̄ (u)

)
(2.8)

with
l̄ (ū) =

√
(1 − ū)2 + d2, d =

δ

2L
, l̄0 = l̄ (0). (2.9)

This suggests that the dimensionless force of the bistable spring element only de-
pends on ratio d = δ/2L and not on actual lengths. The governing equation (2.5) can
be non-dimensionalized by using the same force scale and defining two new dimen-
sionless parameters, viz. the stiffness ratio Kr and the characteristic time scale T
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(the period associated with the eigenfrequency of mass m attached to a single spring
of stiffness k1):

Kr =
k2
k1

and T =
√

m
k1
. (2.10)

This gives
ūi,t̄ t̄ + Kr (−ūi+1 + 2ūi − ūi−1) − F̄ (ūi) = 0. (2.11)

We choose the origin such that mass i is initially located at xi = i a, and positions
are normalized by defining

x̄i =
xi

a
= i so that ∆x̄ = x̄i − x̄i−1 = 1. (2.12)

In the continuum limit (a → 0), ūi+1 and ūi−1 can be written, using a Taylor
expansion, as

ūi±1 = ūi ±
∂ūi

∂ x̄
+
1
2
∂2ūi

∂ x̄2
±
1
6
∂3ūi

∂ x̄3
+

1
24

∂4ūi

∂ x̄4
+ h.o.t. (2.13)

By substituting (2.13) into (2.11), we obtain the dimensionless continuum limit of
the equation of motion,

ū,t̄ t̄ − Kr

(
∂2ū
∂ x̄2
+

1
12

∂4ū
∂ x̄4
+ h.o.t.

)
− F̄ (ū) = 0. (2.14)

2.4 Dispersion relation and long-wavelength approximation
In order to determine the dispersion relation of the periodic chain in the continuum
limit, let us first consider the linear regime. Here, the equation of motion can be
approximated by linearizing (2.8) about ū = 0, which gives

ū,t̄ t̄ − Kr

(
∂2ū
∂ x̄2
+

1
12

∂4ū
∂ x̄4
+ h.o.t.

)
+ ω2

0ū = 0 (2.15)

where
ω2
0 =

2
1 + d2 . (2.16)

We assume a traveling wave solution of the form

ū = û ei(q̄ x̄−ω̄t̄) (2.17)

with q̄ = qa and ω̄ = ωT . Substitution of (2.17) into (2.15) yields the continuum
dispersion relation

ω̄(q̄) =
√
ω2
0 + Kr

(
q̄2 − 1

12 q̄4 + h.o.t.
)

(2.18)
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Figure 2.3: Dispersion relation comparison

In the long-wavelength limit q̄ = qa � 1 the dispersion relation can be approximated
by only retaining the leading-order quadratic term and dropping all higher-order
terms such that (2.18) becomes

ω̄(q̄) ≈ ω̄c(q̄) =
√
ω2
0 + Kr q̄2. (2.19)

The exact dispersion relation for the discrete system is obtained by substituting
the traveling wave form (2.17) into the linearized form of the discrete equation of
motion (2.11), which gives

ω̄d (q̄) =
√
ω2
0 + 2Kr

(
1 − cos q̄

)
. (2.20)

Obviously, in the long-wavelength limit q̄ � 1 (keeping only quadratic terms
in (2.20)), the two dispersion relations (2.19) and (2.20) agree. Fig. 2.3 compares
the exact discrete and the approximate continuum dispersion relations (for Kr = 10)
and demonstrates excellent agreement with deviations of less than 3 % up to q̄ =

0.86. Therefore, in the following we only consider long wavelengths, for which
the governing equation assumes wave equation character (with dimensionless wave
speed c̄20 = Kr):

ū,t̄ t̄ − c̄20 ūx̄ x̄ − F̄ (ū) = 0. (2.21)

2.5 Regimes of Wave Propagation
Owing to the nonlinearity of force F̄ (ū), we can identify three distinct regimes of
wave propagation which depend on the magnitude of the amplitude of ū, and for
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each case we seek solutions for the propagating wave by approximating the nonlinear
force in (2.21). We discriminate the following three regimes of propagating waves:

(i) for small amplitudes ū � 1 we expand the nonlinear spring force to linear
leading order as

F̄ (ū) ≈ −
2

1 + d2 ū = −ω2
0ū,

(ii) for moderate amplitudes ū < 1 we approximate the nonlinear force by a
third-order Taylor expansion, i.e.

F̄ (ū) ≈ −
2

1 + d2 ū +
3d2(

1 + d2)2 ū2 −
d2

(
d2 − 4

)
(
1 + d2)3 ū3,

(iii) for large amplitudes ū > 1 we use the exact spring force,

F̄ (ū) = 2(1 − ū)
(
1 −

l̄0
l̄ (u)

)
. (2.22)

Fig. 2.4 illustrates the three approximations of the nonlinear spring force in com-
parison with the exact force for the specific choice of d = 1. We note that the
nodal spacing a is independent of the characteristic spring length L and of ratio d,
so that in the long-wavelength limit the governing equation for all three regimes is
given by (2.21). The special case of amplitude ū = 1 is excluded because ū = 1
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Figure 2.4: Nonlinear spring force and approximations introduced for the three
regimes for d = 1.
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corresponds to an unstable equilibrium configuration of the system. The smallest
perturbation is sufficient to cause the system to snap into either energy well and thus
to transform the scenario into either the ū > 1 or the ū < 1 case.

In the following sections, we will investigate the wave propagation behavior in all
three regimes. To confirm our theoretical solutions, we will compare to numerical
results obtained for the example parameters d = 1, T = 1 and Kr = 10, from
which the three regimes are chosen as (i) |ū| ≤ 0.05, (ii) |ū| ≤ 0.3, and (iii)
|ū| ≤ 2. Convincing agreement has been verified for various combinations of these
parameters, for brevity we here present only this specific case.

Numerical solutions are obtained from a chain of 100 elementary unit cells modeled
in the time domain by an implicit finite difference scheme of Newmark-β type
with parameters chosen to minimize numerical damping (β = 0.25, γ = 0.5).
Displacement and/or velocity boundary conditions are directly imposed on the first
node of the chain, while the remaining nodes may vibrate freely. All nodes are
constrained to only move horizontally.

2.6 Small amplitude: linear solution
2.6.1 Analytical solution
The equation governing the wave propagation in this regime is given by

ū,t̄ t̄ − c̄20 ūx̄ x̄ + ω
2
0ū = 0, (2.23)

with ω2
0 from (2.16). This is the dimensionless Linear Klein-Gordon equation [35]

for the unknown displacement field ū( x̄, t̄). The theoretical solution for this problem
is of the form

ū( x̄, t̄) = A cos(q̄ x̄ − ω̄t̄) + B sin(q̄ x̄ − ω̄t̄), (2.24)

where the dimensionless wave number q̄ and the dimensionless angular frequency ω̄
are related by the dispersion relation (2.19). Therefore, this regime admits the prop-
agation of linear elastic waves at frequencies outside the stop bands characterized
by the dispersion relations.

2.6.2 Numerical results
For the numerical benchmark test, the first node of the chain of bistable elements is
excited by time-harmonic displacements (we enforce displacement and correspond-
ing velocity boundary conditions at the first node) according to

ū1(t) = û cos(ω̄t̄) and ū1,t (t) = −û ω̄ sin(ω̄t̄). (2.25)
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Figure 2.5: Small-amplitude regime: numerical results compared to the linear
Klein-Gordon solution.

As only small amplitudes are permitted in this regime, we choose û = 0.05 along
with a value of ω̄ = 2, such that the long wavelength limit holds, which becomes
apparent from the dispersion relations in Fig 2.3. Transient effects are removed by
artificial initial damping.

Fig 2.5 shows a comparison of the numerical solution with the theoretical solution
in space, at a specific instant of time. The two solutions match with minor deviations
due to numerical noise arising from the discrete solution (as the wave passes through
the long chain towards its rightmost node, a weakly nonlinear effect causes the curve
to slightly deviate from the theoretical solution). The wave speed can be inferred
from the x-t-contour diagram of the numerical solution shown in Fig 2.6. The
observed velocity of propagation agrees with the phase speed computed from the
dispersion relation (also included as a solid red line). Nonlinear effects therefore
only play a negligible role in this regime of small amplitudes, so that the linear
Klein-Gordon solution is a legitimate approximation to describe and explain the
wave propagation behavior in this regime.

2.7 Medium amplitude: weak nonlinearity
2.7.1 Analytical solution
Formoderate displacements, the dimensionless governing equation in the continuum
long-wavelength limit is approximated by

ūt̄ t̄ − c̄20 ūx̄ x̄ +
2

1+d2 ū − 3d2

(1+d2)2
ū2 + d2(d2−4)

(1+d2)3
ū3 = 0, (2.26)
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an equation of Cubic Nonlinear Klein-Gordon-type [67, 116] for the unknown
displacement field ū( x̄, t̄). The solution can be found by a perturbation multiple-
scales expansion [103]. Therefore, we use the ansatz

ū( x̄, t̄) = ε φ0( x̄, t̄) + ε2φ1( x̄, t̄) + ε3φ2( x̄, t̄) +O(ε4), (2.27)

where |ε | � 1 is a small characteristic length scale. For the current problem,
the expansion is restricted to third order, since this approximation demonstrates
sufficient accuracy for the medium amplitude regime, cf. Section 2.5. Suppose that
in addition to variables x̄ and t̄, the solution depends on multiple scales of position
and time. Then, new scaled variables can be defined by

Xi = ε
i x̄ and Ti = ε

i t̄. (2.28)

Again, we limit scales to order three. Consequently, we now seek solutions

φi ( x̄, t̄) = φi (X0, X1, X2,T0,T1,T2). (2.29)

Derivatives with respect to the primary variables become

∂

∂t̄
=

2∑
i=0

ε i Di,
∂

∂ x̄
=

2∑
i=0

ε i DXi, . (2.30)

Figure 2.6: Small-amplitude regime: x-t-contour diagram of the numerical solution;
for comparison, the solid red line represents a positive characteristic of the theoretical
solution.
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where we introduced operators

Di =
∂

∂Ti
, DXi =

∂

∂Xi
. (2.31)

Substitution of the chosen representation of the displacement field (4.9) into gov-
erning equation (2.23) and inspecting the equation at order O(ε ) leads to

L φ0 = 0 with L = D2
0 − c̄20D2

X0 + ω
2
0. (2.32)

Hence, the solution for the first-order expansion is of the form

φ0 =A(X1, X2,T1,T2)ei(q̄X0−ω̄T0) + c.c. (2.33)

Here and in the following c.c. stands for the complex conjugate (for conciseness
we do not write out both terms; the complex conjugate terms follow analogously).
Frequency ω̄ and wave number q̄ are related by the first-order dispersion relation for
small amplitudes discussed above. At order O(ε2), the governing equation reads

(D0 + εD1)2(εφ0 + ε2φ1) − c̄20 (DX0 + εDX1)2(εφ0 + ε2φ1)

+
2

1 + d2 (εφ0 + ε2φ1) −
3d2

(1 + d2)2
(εφ0 + ε2φ1)2 = 0,

which can be algebraically reduced to the simpler form

Lφ1 = −(2D0D1 − 2c20DX0DX1)φ0 +
3d2

(1 + d2)2
φ20. (2.34)

Substitution of (2.33) into (2.34) and defining σ = q̄X0 − ω̄T0 results in

Lφ1 =

(
2iω̄

∂A
∂T1
+ 2iq̄c̄02

∂A
∂X1

)
eiσ

+
3d2

(1 + d2)2
A2ei2σ +

3d2

(1 + d2)2
|A|2 + c.c. .

(2.35)

For simplicity the overbars on c20 , q and ω will be dropped henceforth. Because σ
is the eigenfrequency of the operator L, the coefficient of the resonant term cancels,
implying

ω
∂A
∂T1
+ qc20

∂A
∂X1

= 0. (2.36)

By introducing the group velocity vg = qc20/ω (which can be verified from the
dispersion relation), we know that function A must be of the form

A(X1, X2,T1,T2) = A(X1 − vgT1, X2,T2). (2.37)
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Therefore, (2.35) reduces to,

Lφ1 =
3d2

(1 + d2)2
A2ei2σ +

3d2

(1 + d2)2
|A|2 + c.c. (2.38)

The inhomogeneous solution is determined from the ansatz

φ1 =B(X1, X2,T1,T2)e2iσ + C(X1, X2,T1,T2)

+ c.c.,
(2.39)

which is substituted into (2.38). As A does not depend on X0 and T0, the non-
oscillating terms corresponding to the absolute value cancel on both sides. Hence,
only the resonant terms remain:

(−4ω2 + 4c̄02q2 + ω2
0)Be2iσ + ω2

0C

=
3d2

(1 + d2)2
A2ei2σ +

3d2

(1 + d2)2
|A|2 + c.c.

(2.40)

Solving for B and C (ignoring complex conjugates) results in

B = −
d2

2(1 + d2)
and C =

3d2

2(1 + d2)
|A|2, (2.41)

which implies that

φ1 = −
d2

2(1 + d2)
A2ei2σ +

3d2

2(1 + d2)
|A|2 + c.c. (2.42)

Similarly at order O(ε3), we have

(D0 + εD1 + ε
2D2)2(εφ0 + ε2φ1 + ε3φ2)

− c20 (DX0 + εDX1 + ε
2D1 + ε

3φ2)2(εφ0 + ε2φ1 + ε3φ2)

+ ω2
0(εφ0 + ε2φ1 + ε3φ2) + d2(d2−4)

(1+d2)3 (εφ0 + ε2φ1 + ε3φ2)2

− 6d2

(1+d2)2 (εφ0 + ε2φ1 + ε3φ2)3 = 0,

(2.43)

which, after canceling appropriate terms, reduces to

Lφ2 = −
d2

1 + d2

(
2A

∂A
∂T1

(−iω) − c202A
∂A
∂X1

(iq)
)

ei2σ

− *
,
2
∂A
∂T2

(−iω) − 2c20
∂A
∂X2

(iq) +
∂2A
∂T2

1
− c20

∂2A
∂X2

1

+
-

eiσ

+
12d2

(1 + d2)2
|A|2Aeiσ −

4d2(d2 − 1)
(1 + d2)3

A3ei3σ .

(2.44)
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Due to (2.36), the coefficient of the ei2σ-term vanishes. To ensure finite ampli-
tudes, the resonant term proportional to eiσ must not contribute to the solution.
Consequently, the only remaining term gives

Lφ2 = −
4d2(d2 − 1)

(1 + d2)3
A3ei3σ . (2.45)

with solution

φ2 = −
d2(d2 − 1)
4(1 + d2)2

A3ei3σ . (2.46)

Since the coefficient of the resonant term in (2.44) must vanish, we also have

2
∂A
∂T2

(−iω) − 2c20
∂A
∂X2

(iq) +
∂2A
∂T2

1
− c20

∂2A
∂X2

1

−
12d2

(1 + d2)2
|A|2A = 0.

(2.47)

Let us introduce the following new variables:

ξ1 = X1 − vgT1 and η1 = T1,

ξ2 = X2 − vgT2 and η2 = T2.
(2.48)

Substitution into (2.47) and simplification finally yields (with overbars for the final
solution)

i
∂A
∂η2
+

c̄20 − v̄2g

2ω̄
∂2A
∂ξ21
+

6d2

ω̄(1 + d2)2
|A|2A = 0. (2.49)

(2.49) is a Nonlinear Schrödinger (NLS) equation for the unknown function A.
Therefore, A scales with ε2 in time and with ε in space. In general, a NLS equation
of the form

i
∂A
∂η2
+ P

∂2A
∂ξ21
+Q |A|2A = 0. (2.50)

with coefficients P,Q ∈ R has two types of solutions [35, 168]:

PQ > 0 ⇒ envelope solitons

PQ < 0 ⇒ dark solitons.
(2.51)

In the current case, one can verify that

PQ = *
,

c̄20 − v̄2g

2ω̄
+
-

(
6d2

ω̄(1 + d2)2

)
=

3c20ω
2
0d2

ω̄4(1 + d2)2
> 0. (2.52)

for all admissible values of ω̄. Therefore, the solution of the displacement field
in this regime can be characterized as an envelope soliton [169] which is caused
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by a Benjamin-Feir modulational instability [15, 168] of the wave as it propagates
through the system for PQ > 0. A similar kind of modulational instability was
observed in sine-Gordon and φ4 problems [120]. The NLS equation can be solved
exactly for function A [122], giving

A = Vm sech *
,

√
Q
2P

ε Vm ( x̄ − vg t̄)+
-
exp

[
i(εVm)2

Q
2

t̄
]
, (2.53)

where Vm is the characteristic amplitude of the wave and

Q
2P
=

6d2ω̄2

c̄20ω
2
0(1 + d2)2

and
Q
2
=

3d2

ω̄(1 + d2)2
. (2.54)

Therefore, at order O(ε ) the displacement field can be expressed as

ū( x̄, t̄) = ε A( x̄, t̄) exp(i σ) + c.c. (2.55)

2.7.2 Numerical results
Weuse the same numerical setup as before to simulate thewave propagation behavior
in this regime but we expand the number of nodes to 200 (to ensure sufficient level
of detail to compare with the continuous solution). In order to see the formation
of an envelope soliton due to modulational instability, a sinusoidal plane wave is
imposed by the boundary conditions at the first node, viz. by enforcing

ū1(t̄) =



û cos(ω̄t̄), for 0 ≤ t̄ ≤ τ̄,

0, else
(2.56)

and

ū1,t̄ (t̄) =



−û ω̄ sin(ω̄t̄), for 0 ≤ t̄ ≤ τ̄,

0, else
(2.57)

Instead of fixing the displacement at the first node for t̄ < [0, τ̄], one can leave the
first node traction-free without significantly affecting the solution. The boundary
node at the other end of the chain is kept traction-free for all times.

Fig. 2.7 illustrates numerical results for the specific choices of û = 0.3, ω̄ = 3
and τ̄ = 10. Results clearly confirm the propagation of a soliton, yet they show a
variation of the envelope soliton as it moves through the lattice. The envelope of
the waveform is seen to oscillate at a different frequency than the applied frequency
at the first node. In order to verify the nature of the waveform, we show the Fourier
spectrum in Fig. 2.8. In avoidance of spectral leakage due to the limitations of
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Figure 2.7: Snapshots of the propagating wave (traveling from left to right) at
different instances of time show the evolution of the envelope soliton. The sech-
type envelope begins to form due to self-modulation, as the wave passes through the
lattice.

a discrete Fourier transform, Hann, Blackman and Hamming windows are used
to determine the spectral content of the signal. The resulting peak frequency
corresponds to the spatial wave number of the applied frequency. However, side
lobes form which can be explained by the modulational instability [168] caused
by the weakly-nonlinear effects discussed above. Hence, wave propagation in this
regime can indeed be explained by the Non-Linear Schrödinger and the Cubic
Non-Linear Klein-Gordon equations, and numerical results confirm the theoretical
prediction of an envelope soliton. The envelope appears to vary as it moves along
the chain; yet, the waveform preserves it localized nature, leaving behind small-
amplitude high-frequency oscillations.

2.8 Large amplitude: strong nonlinearity
2.8.1 Analytical solution
For the case of large amplitudes, we use the exact nonlinear form of the potential
energy. Therefore, the governing equation in the continuum limit is

ūt̄ t̄ − c̄20ūx̄ x̄ − F̄ (ū) = 0. (2.58)

For convenience, the over-bars are omitted in the following. We seek a traveling
wave solution of the form u(x, t) = u(x − vt) = u(z), where v is the propagation
velocity and z = x − vt a reduced variable. Substitution into (2.58) gives

(v2 − c20) uzz − F (u) = 0. (2.59)
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Figure 2.8: Discrete Fourier transform of the spatial variation of the waveform at a
chosen instant of time.

Multiplication by du
dz and integration leads to

v2 − c20
2

( du
dz

)2
+ ψ(u) = C1, (2.60)

where C1 is a constant of integration. The value of C1 can be computed from the
initial conditions

lim
z→∞

u(z) = 0, lim
z→∞

du(z)
dz
= 0 (2.61)

which translate into
C1 = 0. (2.62)

Therefore, after some rearrangement (2.60) becomes√
c20 − v2

2

∫
du√
ψ(u)

= z − z0, (2.63)

where z0 is another constant of integration. Performing the integration results in

2
√
1 + d2

ln
[
a(u) +

a(u)
b(u)

√
1 + d2

]

+ ln
(
1 − a(u)
1 + a(u)

1 − b(u)
1 + b(u)

)
=

√
2

c2o − v2
(z − z0)

(2.64)

with the abbreviations

a(u) = u − 1, b(u) =

√
1 + d2(u − 1)√
(u − 1)2 + d2

. (2.65)
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Figure 2.9: Comparison of theoretical large-amplitude solution and numerically-
determined wave profile (for parameters d = 1, z0 = −93.2 and v = 2.812).

In summary, the solution in the large-amplitude case is indeed a propagating wave
of type u(x, t) = u(x − vt). From (2.64) we conclude that c0 > v which implies
that the wave speed is subsonic. Although (2.64) cannot be inverted to solve for
u(z) explicitly, the relation shows that u(z) → 0 as z → ∞ and that u(z) → 2
as z → −∞. In addition, the function can be plotted parametrically for u ∈ (0, 2),
which is shown in Fig. 2.9. Obviously, the wave front is localized and of kink soliton
type, which can be physically explained by the snap-through effect of each spring
from one stable configuration to the other. The shape of the kink depends on the
velocity of propagation with higher velocity kinks having steeper slopes.

2.8.2 Numerical results
We use the same numerical setup as before to simulate a chain of 100 bistable
spring elements. We apply to the first node an initial velocity sufficiently high to
make the first mass snap to its other stable branch. The other end of the chain is
kept free at all times, i.e. zero tractions are enforced on that boundary. A compar-
ison of the numerically-determined wave profile and the theoretical exact solution
propagating with the same velocity is shown in Fig. 2.9. The perturbations in the
numerical solution with respect to the theoretical solution are caused due discrete-
ness effects [114]. To allow for a direct comparison, the velocity of propagation in
the numerical example is found by linearly fitting the position of the leading edge in
the x-t-contour plot in Fig. 2.10. The linear fit is shown in Fig. 2.11, which shows
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Figure 2.10: x-t-contour diagram of the numerical solution for the large-amplitude
regime. The red straight line is the best fit line till t = 250 corresponding to the
leading edge characteristic.

that the velocity is not constant but variations with time are marginal so that we may
assume the wave is traveling at almost constant speed. Inserting the propagation
velocity into the theoretical solution shows an excellent match with the numerical
wave profile, which confirms the accuracy of the aforementioned analytical solution
for the large-amplitude regime. The propagating wave is of anti-soliton nature with
a topological charge of −1.

2.8.3 Energy of the kink soliton
Bistable elements have been shown to produce twinkling which results in energy
dissipation, see e.g. ref. [44] and references therein. Here, we disregard just oscil-
lations and focus on the propagating kink soliton whose energy can be determined
by integrating the Hamiltonian spatial density over the complete lattice at any given
time. The Hamiltonian density per unit spacing in the continuum limit is given by

h(x, t) = 1
2u2t +

1
2c20u2x + ψ(u). (2.66)

In the large-amplitude case as derived in Sec. 2.8.1, we have u(x, t) = u(x − v t) =
u(z). Substitution into (2.66) gives

h(z) = *
,

v2 + c20
2

+
-

u2z + ψ(u). (2.67)
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Figure 2.11: The characteristic curve corresponding to the leading edge of the wave
is shown in comparison with the best-fit solution at t = 250. The slope of the line
determines the initial speed of the propagating wave. This speed is used to compute
the exact solution in the kink soliton propagation. The kink slows down toward the
end due to the energy radiated by the oscillatory tail.

Replacing the value of ψ(u) by using (2.60), we arrive at

h(z) = *
,

v2 + c20
2

+
-

u2z + *
,

c20 − v2

2
+
-

u2z = c20u2z (2.68)

Therefore, the total energy is computed by integrating h(z) over the complete lattice,
which results in

E =
∫ ∞

−∞

h(z) dz

=
c20

√
2
√

c20 − v2


d2 ln *

,

√
1 + d2 + 1
√
1 + d2 − 1

+
-
− 2

√
1 + d2


.

(2.69)

Consequently, (3.16) implies that the energy increases with the propagation speed
of the soliton. In combination with results from Sec. 2.8.1, we thus conclude that
faster moving solitons have a steeper slope and have higher energy.

2.9 Effect of precompression
For the linear, weakly- and strongly-nonlinear regimes, we have shown how the
wave characteristics (including the dispersion relations, wave speeds, and wave
profiles) can be fine-tuned by changing the geometric parameter d. In addition,
the nonlinearity of the bistable spring elements admits tailoring of the dynamic
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response of the chain by applying initial pre-loads. Specifically, assume identical
constant forces F0 are applied to all masses in their direction of motion (e.g. by
arranging the chain of springs vertically and letting the point masses pre-deform
the bistable spring elements under the action of gravity, while the connecting linear
springs remain unstretched in equilibrium). Consequently, all masses exhibit an
initial equilibrium displacement u0 that satisfies

F0 = −ψ
′(u0). (2.70)

Wave solutions are obtained by approximating the nonlinear force-displacement
relation about this new initial equilibrium configuration. Let u denote the displace-
ment from the new equilibrium state so that the total force on a bistable spring
element becomes

F (u) = −ψ′(u0 + u). (2.71)

By using the dimensionless definitions of Section 2.3, we arrive at the equations of
motion in the presence of pre-loads, viz.

ūi,t̄ t̄ + Kr (−ūi+1 + 2ūi − ūi−1) − F̄ (ū) + F̄0 = 0 (2.72)

or, after substitution of (2.70) and (2.71),

ūi,t̄ t̄ + Kr (−ūi+1 + 2ūi − ūi−1) + ψ̄′(ū0 + ūi) − ψ̄′(ū0) = 0. (2.73)

For small amplitudes (ū � 1) we take

ψ̄′(ū0 + ūi) ' ψ̄′(ū0) + ψ̄′′(ū0) ūi, (2.74)

which again leads to a linearized Klein-Gordon equation, viz.

ūi,t̄ t̄ + Kr (−ūi+1 + 2ūi − ūi−1) + ψ̄′′(ū0) ūi = 0. (2.75)

Therefore, the same solution derived above applies when defining

ω2
0 = ψ̄

′′(ū0) = 2

1 −

d2
√
1 + d2

(d2 + (ū0 − 1)2)3/2


, (2.76)

which naturally reduces to (2.16)when choosing ū0 = 0. Therefore, pre-deformation
u0 can be utilized to manipulate the dispersion relation (2.19). We note that the
amount of pre-compression is limited before snapping occurs. Specifically, (2.76)
only yields real-valued wave speeds if

u0 ≤ 1 − d
√(

1 + d−2
)1/3

. (2.77)
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Next, let us consider moderate amplitudes. The applicability of this regime now
depends on the pre-defromation. ψ′(ū+ ū0)−ψ′(ū0) = 0 generally has two solutions
{ū∗, ū∗∗}with ū∗ < ū∗∗. In the following, we assumemoderate amplitudes that satisfy
ū∗ + ū0 < ū∗∗ to prevent snapping. A third-order Taylor expansion of the nonlinear
spring force turns (2.73) into

ūi,t̄ t̄ + Kr (−ūi+1 + 2ūi − ūi−1) + ψ̄′′(ū0) ūi

+
1
2
ψ̄′′′(ū0) ū2i +

1
6
ψ̄′′′′(ū0) ū3i = 0.

(2.78)

A multiple-scales expansion approach again leads to a Nonlinear Schrödinger equa-
tion, which in turn gives rise to a wave profile of envelope soliton type as derived
in Section 2.7, the details of which are omitted here due to the close analogy to the
previous analysis.

Finally in case of large amplitudes we use the exact forcing function which gives
rise to the governing equation in the continuum limit of the following form:

ūt̄ t̄ − c̄20ux̄ x̄ + ψ
′(ū + ū0) − ψ′(ū0) = 0. (2.79)

The application of a pre-load F0 results in a change of the total potential energy
landscape due to the work performed by F0. In particular, the two energy wells
are no longer symmetric but exhibit different energy levels (depending upon the
direction and magnitude of F0). Fig. 2.12 shows the total potential energy

E(u) = ψ(u + u0) − ψ′(u0)u (2.80)

for positive and negative pre-deformation u0.

When the force F0 points away from the direction of snapping, it leads to an unstable
kink which disintegrates into ripples about the initial equilibrium point and does
not show interesting wave propagation phenomena (yet, it allows for the absorption
of impact energy). However, when the pre-load is in the direction of snapping, the
energy landscape becomes negative near its second well. To date, all models of the
Frenkel-Kontorova type have dealt with potentials that are either fully positive or
negative in the transition region. In contrast, the mechanical system studied here
produces a potential which is partially positive and partially negative in the transition
region. Even for a small amount of pre-compression (cf. Fig. 2.13) the stability of
the kink increases and the effect of discreteness (i.e. phonon radiation) to lower the
wave speed is reduced [114]. The x-t contour plot for the wave propagation shown
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Figure 2.12: Energy landscape E(u) with positive and negative pre-deformation as
well as without pre-loads.

in Fig. 2.13 confirms that the kink characteristic is now linear and hence the kink
has stabilized as compared to the case without precompression, cf. Fig. 2.10.

Increasing the pre-compression creates a combination of a kink and trailing oscil-
lations which are localized as the wave moves through the chain. After attaining a

Figure 2.13: x-t-contour diagram of the numerical solution for a precompression
ū0 = 0.03. The kink characteristic is relatively straighter than the characteristic
without precompression.
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Figure 2.14: (a)Wave profiles for ū0 = 0.3 and t3 > t2 > t1. (b) x-t-contour diagram
of the numerical solution for a precompression of ū0 = 0.3.

certain width of localization, the oscillations acquire a steady shape and propagate
with the kink velocity. Fig. 2.14 illustrates a typical wave profile and an x-t contour
diagram for the case of pre-compression (both have been obtained numerically).
The oscillations forming in the wake of the kink are bounded by an envelope as in
the case of the envelope soliton forming under medium amplitudes, see Section 2.7.
This can be explained by the reduction in potential energy as each spring transi-
tions from one energy well to the other. As shown in Fig. 2.12, a pre-load into
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Figure 2.15: Variation of the kink propagation velocity with pre-compression for an
initial (normalized) velocity of the first node of v0 = 4. The dotted line shows the
characteristic sound speed c̄0 of the medium for comparison.

the direction of snapping results in the snapped potential well having lower energy.
Consequently, after snapping every mass has residual kinetic energy. This energy,
however, is insufficient for a spring to snap back since part of the energy is carried
away by the kink soliton. Hence, the masses oscillate in the snapped well with a
medium amplitude giving rise to localization by modulational instability as seen
in the envelope soliton case in Section 2.7. For these reasons, the pre-deformation
results in a combination of the two modes of kink and envelope soliton propagation
with an envelope soliton-like wave created behind the kink. As may be expected, the
velocity of the propagating wave front increases with increasing pre-compression for
a constant input of energy as shown in Fig. 2.15. There is a sharp rise in the velocity
of propagation for small pre-compressions followed by a fairly linear increase for
large pre-compressions, ultimately becoming supersonic.

2.10 Conclusions
We have shown that mechanical chains of bistable nonlinear-elastic elements offer a
rich dynamic response with distinct regimes of wave propagation depending on the
excitation amplitude. For small amplitudes, the chain propagates elastic waves in the
linear regime characterized by wave dispersion. For moderate amplitudes, owing
to modulational instability an envelope soliton forms and propagates. For large
amplitudes, the strongly nonlinear chain shows topological kink solitary waves. In
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all three regimes, we have derived analytical solutions of the displacement field in the
continuum limit and we have demonstrated excellent agreement with the numerical
solution obtained from a discrete chain of bistable elements. Wave propagation
characteristics can be controlled by fine-tuning the geometric details of the bistable
elements. Moreover, precompression brings the bistable elements closer to their
snapping instability and hence can be used to control the wave propagation. We
discussed the influence of precompression in all three amplitude regimes.

Our results highlight opportunities to design periodic mechanical structures and
metamaterials containing bistable (negative-stiffness) elements that give rise to ben-
eficial dynamic performance. This closes a gap between previous research on
composite systems with (static) negative-stiffness phases and the nonlinear dynam-
ics of structures undergoing large elastic deformation. Here, the negative-stiffness
effect (i.e. the unstable branch of the force-displacement curve) is utilized to cre-
ate and propagate solitary wave packages, which presents a novel way to achieve
controllable metamaterial performance through negative-stiffness elements, while
previous research in negative-stiffness materials mainly focused on their elastic and
viscoelastic effective properties well within the realm of linearized kinematics. We
deliberately chose a simple (possibly the simplest) elastic system to show the sought
effects while allowing for closed-form analytical solutions, a rare find in nonlinear
dynamics. The same qualitative response can be expected from various structural
systems that allow for practical implementation. For example, the bistable spring
elements can be replaced by buckled columns or membranes, and the elastic springs
connecting the bistable elements by compliant fillers. Experimental construction of
lattices of such elements has been shown in Chapter 5.
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C h a p t e r 3

NONLINEAR DYNAMICS OF DISSIPATIVE AND DIFFUSIVE
PHASE TRANSITIONS

Research presented in this chapter has been adapted from the following publication:

Neel Nadkarni, Chiara Daraio, Rohan Abeyaratne, and DennisM. Kochmann. “Uni-
versal energy transport law for dissipative and diffusive phase transitions”. In: Physi-
cal ReviewB 93.10 (Mar. 2016), p. 104109. doi: 10.1103/PhysRevB.93.104109.
url: http://link.aps.org/doi/10.1103/PhysRevB.93.104109.

In the previous chapter, the lattice of bistable elements was conservative in nature. In
this chapter, we analyze the nonlinear mechanics of phase transitions in lattices that
are governed by dissipative or diffusive dynamics. We present a scaling law for the
kinetic energy and speed of transition waves in such media. By considering uniform
discrete lattices and continuous solids, we show that, for arbitrary highly-nonlinear
many-body interactions and multi-stable on-site potentials, the kinetic energy per
density transported by a planar transition wave front always exhibits linear scaling
with wave speed and the ratio of energy difference to interface mobility between the
two phases. We confirm that the resulting linear superposition applies to highly-
nonlinear examples from particle to continuum mechanics.

3.1 Introduction
Based on the nature of the phase transition process, systems are characterized as non-
or weakly-dissipative, dissipative, or diffusive. Non- or weakly-dissipative models
have been used to explain phenomena such as dislocation motion [51], ferromag-
netic domain wall motion [19], proton mobility in hydrogen-bonded chains [63],
rotation of DNA bases [113], chains of rotating pendulums [130], or lattices of
bistable buckled, elastic structures [99]. The dynamics of such a non-dissipative
lattice was described in Chapter 2. In contrast, diffusive or dissipative kinet-
ics play an essential role in explaining the physics of, e.g., ferroelectric domain
switching [53], magnetic flux propagation in Josephson junctions with tunneling
losses [143], pulse propagation in cardiophysiology [65] and neurophysiology [131],
sliding friction [158], chemical surface adsorption [124], under-damped commen-

http://dx.doi.org/10.1103/PhysRevB.93.104109
http://link.aps.org/doi/10.1103/PhysRevB.93.104109
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surate phase transitions [24], defect conductivity in super-ionic conductors [140],
or dynamics of CNT foams [48, 146], few of which were outlined in Chapter 1.
Although numerous theoretical studies have been devoted to characterizing the mo-
tion of phase boundaries particularly in 1D periodic physical, chemical or biological
systems, see e.g. [3, 9, 25, 27, 31, 33, 121, 150] and references therein, the lessons
learned almost exclusively apply to special cases only, owing to the variety of non-
linear interaction potentials and non-convex on-site potentials. Here, we present
a surprisingly simple universal energy law that applies to diffusive and dissipative
systems and uniquely links the speed and profile of transition waves to the energetics
and kinetics of the periodic system.

All of the above examples of diffusive and dissipative systems, including continuous
and discrete systems, essentially reduce to the same type of governing equation that
describes the nonlinearwavemotion. For the discrete case, thismay be interpreted as
the equations of motion of a periodic 1D array of N elements whose displacements
un(t) at time t satisfy (for n = 1, . . . , N)

m un,tt + α un,t + φ
′(un)

−

Nb∑
j=1

[
V ′j

(
un+ j − un

ja

)
− V ′j

(
un − un− j

ja

)]
= 0,

(3.1)

where m is the mass of each element, V denotes a nonlinear interaction potential
(assuming long-range pairwise interactions), Nb represents the number of neighbor
interactions, φ is the (multi-stable, i.e., non-convex) on-site potential and a intro-
duces the equilibrium spacing between masses with primes and variables in indices
denoting partial derivatives.

The analogous continuous governing equation, as we will show, is obtained by
taking the continuum limit of (3.1) as a → 0. Replacing discrete variables un by the
continuous field u(x, t) such that un(t) = u(na, t) leads to the continuous governing
equation

ρu,tt + γ u,t + ψ′(u) −
Nb∑
j=1

j u,xxV ′′j (u,x) = 0, (3.2)

with mass density ρ and rescaled damping parameter γ and non-convex potential ψ.
The aforementioned physical, chemical, or biological systems reduce to either (3.1)
or (3.2).

As in most of the examples, we consider velocity-proportional damping charac-
terized by the dissipation parameter α > 0 for the discrete case or γ > 0 for the
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continuum. For a non- or weakly-dissipative system, the damping term is neg-
ligible compared to the inertial term (|mun,tt | � |αun,t | or |ρu,tt | � |γu,t |). The
energy transport in such systems is described well by its Hamiltonian which remains
approximately constant as the wave propagates. However, energy transport in dis-
sipative (|mun,tt | ∼ |αun,t | or |ρu,tt | ∼ |γu,t |) or diffusive lattices (|mun,tt | � |αun,t |

or |ρu,tt | � |γu,t |) is not well understood at present. Therefore, in this chapter, we
focus on the dynamics of diffusive and dissipative systems and derive an explicit
energy transport law for such systems. We show that the law holds for both discrete
and continuous systems.

3.2 Theoretical analysis
Transition waves, i.e., the motion of phase boundaries in multi-stable lattices, is
commonly characterized by a steady-state wave form that propagates through the
medium with kinetic energy concentrated in the moving wave front. That is, away
from the moving phase boundary, the system attains an equilibrium in one of the
stable energy wells of φ. Let us begin by studying the propagation of transition
waves in discrete lattice systems with governing equations of the form (3.1). Next,
we will derive the continuum limit (3.2) from (3.1) and show that the kinetic energy
transport in both types of systems is governed by the same energy scaling law.

3.2.1 Energy transport in discrete lattices
We begin by assuming a traveling wave solution of the form un(t) = u(na − vt) =
u(ξ) so that (3.1) becomes

mv2u,ξξ − vαu,ξ + φ′(u)

−

Nb∑
j=1

[
V ′j

( u(ξ+ ja)−u(ξ)
ja

)
− V ′j

( u(ξ)−u(ξ− ja)
ja

)]
= 0.

(3.3)

Multiplying by u,ξ and integrating over the real axis gives∫ ∞

−∞

[
mv2u,ξξ − vαu,ξ + φ′(u)

]
u,ξ dξ

=

Nb∑
j=1

∫ ∞

−∞

[
V ′j

( u(ξ+ ja)−u(ξ)
ja

)
− V ′j

( u(ξ)−u(ξ− ja)
ja

)]
u,ξ dξ.

(3.4)

Let us first examine an individual integral on the right-hand side. Define η = ξ − ja

and redefine the integral with respect to η in the second term, thereby transforming
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the right-hand side terms into

Fj =

∫ ∞

−∞

[
V ′j

( u(ξ+ ja)−u(ξ)
ja

)
− V ′j

( u(ξ)−u(ξ− ja)
ja

)]
u,ξ dξ

=

∫ ∞

−∞

V ′j
( u(ξ+ ja)−u(ξ)

ja

)
u,ξ (ξ) dξ

−

∫ ∞

−∞

V ′j
( u(η+ ja)−u(η)

ja

)
u,ξ (η + ja) dη.

(3.5)

By changing the dummy variable η back to ξ, and defining z = u(ξ+ ja)−u(ξ)
ja with

dz = u,ξ (ξ+ ja)−u,ξ (ξ)
ja dξ, (3.5) reduces to

Fj = − ja
∫ z(ξ→∞)

z(ξ→−∞)
V ′j (z) dz. (3.6)

Now, since the system is dissipative or dispersive, we assume that the wave profile
reaches a steady state and, in particular, as t → ∞ (or ξ → −∞) we have u(ξ + ja)−
u(ξ) → 0 and z(ξ) → 0. Analogously, since the system is initially at rest, we know
u(ξ + ja) − u(ξ) → 0 and z(ξ) → 0 as t → −∞ (or ξ → ∞). Thus, the system is in
equilibrium and unstretched far from the wave front, in the sense that both particle
velocity and relative displacement vanish in the remote fields, ahead of and behind
the kink. Therefore, we must have Fj = 0. By a similar argument, the integral of
the inertial term on the left-hand side of (3.4) goes to zero. If the transition wave
switches the state variable from the initial value ui = limξ→∞ u(ξ) to the final value
u f = limξ→−∞ u(ξ), then the on-site potential contribution becomes∫ ∞

−∞

φ′(u)u,ξ dξ = φ(ui) − φ(u f ) = ∆φ, (3.7)

Therefore, (3.4) becomes

v

∫ ∞

−∞

u2,ξ dξ =
∆φ

α
=
∆ψ

γ
. (3.8)

where we introduced ψ = φ/a and γ = α/a as the on-site potential per length and
linear damping per length, respectively. As we will show in the continuous case
below, γ, ψ = O(1) as a → 0. For large wave widths w � a, the total transported
kinetic energy per mass density ρ = m/a of the discrete lattice is given by

Ed =
∑

i

1
2

u2i,t a = v2
∑

i

1
2

u2i,ξ a ≈
v2

2

∫ ∞

−∞

u2,ξ dξ . (3.9)

Combining (3.8) and (3.9) gives a simple result for the transported energy as

Ed

v
'
∆ψ

2γ
. (3.10)
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Therefore, for a diffusive or dissipative lattice the ratio of the transported kinetic
energy per density to the wave speed depends only and linearly upon the ratio of the
change in the on-site potential energy to the dissipation parameter.

3.2.2 Energy transport in continuous systems
Let us first derive the continuum limit (3.2) of the discrete equation (3.1). We
consider a lattice made up of N nodes with constant spacing a. Therefore, the
macroscopic total length is L = (N − 1)a. In the continuum limit, we let N → ∞

while keeping the macroscopic length L fixed. Therefore a → 0 and, as N � 1,
L ' Na. In the continuum limit of a → 0, we first introduce Taylor expansions for
un+ j for each interaction potential term, which gives

V ′j

(
un+ j − un

ja

)
= V ′j (u,x) +

ja
2

u,xxV ′′j (u,x) +O(a2).

Insertion into (3.1) and division by a results in

ρv2u,ξξ −
Nb∑
j=1

j V ′′j (u,ξ )u,ξξ +O(a) − v
α

a
u,ξ +

1
a
φ′(u) = 0,

where ρ = m/a is the mass density. When transitioning from a discrete lattice
to a continuum, certain macroscopic quantities should remain finite or of O(1) for
physical reasons (otherwise, the continuum limit is physically nonsensical). As L

is kept fixed and independent of a, we have L = O(1). This results in the following
scalings:

(i) The total (macroscopic) mass M must remain finite and constant:

M = mN ∼ O(1) ⇒ ρ = m/a = M/L ∼ O(1). (3.11)

Hence, the mass density remains finite and constant.

(ii) The macroscopic energy density of the on-site potential well must remain
finite:

N∑
i=1

φ(ui) = 1
a

∫ L

0
φ(u) dx ∼ O(1) ⇒ φ(u)/a ∼ O(1), (3.12)

which directly leads to the conclusion that the forcing function should vary
such that ψ′(u) = φ′(u)/a ∼ O(1).
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(iii) The macroscopic dissipation potential must remain finite:

N∑
i=1

1
2
αu2i,t =

α

a

∫ L

0

1
2

u2,t dx ∼ O(1) ⇒ α/a ∼ O(1). (3.13)

Hence, we define γ = α/a ∼ O(1) which must remain finite in the continuum
limit.

Overall, we thus obtain the continuum balance equation (3.2):

ρu,tt −
Nb∑
j=1

j V ′′j (u,x)u,xx + γu,t + ψ′(u) = 0. (3.14)

Now, assuming a traveling wave solution of the form u(x, t) = u(x − vt) = u(ξ) and
substituting in (3.14), we obtain

ρv2u,ξξ −
Nb∑
j=1

j V ′′j (u,ξ )u,ξξ − vγu,ξ + ψ′(u) = 0. (3.15)

Multiplying by u,ξ and integrating over the real axis gives∫ ∞

−∞

*.
,
ρv2 −

Nb∑
j=1

jV ′′j (u,ξ )+/
-

u,ξu,ξξ dξ

+

∫ ∞

−∞

ψ′(u)u,ξ dξ = vγ

∫ ∞

−∞

u2,ξ dξ.

(3.16)

Without loss of generality, we assume that v > 0 (the wave travels in the positive
direction) and the system is diffusive or dissipative. Like in the discrete case, we
assume that the wave profile reaches a steady state, and the particle velocity and
strain vanish in the remote fields, ahead of and behind the kink, leading, again, to
the conclusion that u,ξ → 0 as ξ → ±∞. Consequently, we see that

∫ ∞

−∞

*.
,
ρv2 −

Nb∑
j=1

jV ′′j (u,ξ )+/
-

u,ξ
du,ξ
dξ

dξ = 0. (3.17)

If the transitionwave switches the state variable from the initial valueui = limξ→∞ u(ξ)
to the final valueu f = limξ→−∞ u(ξ), then the on-site potential contribution becomes∫ ∞

−∞

ψ′(u)u,ξ dξ = ψ(ui) − ψ(u f ) = ∆ψ (3.18)
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and (3.16) reduces to the simple relation

∆ψ = vγ

∫ ∞

−∞

u2,ξ dξ, (3.19)

which can be linked to the total kinetic energy per density ρ transported by the
transition wave, viz.

E =
∫ ∞

−∞

1
2

u2,t dx =
1
2
v2

∫ ∞

−∞

u2,ξ dξ. (3.20)

By combining (3.19) and (3.20), we arrive at the universal scaling law

E
v
=
∆ψ

2γ
, (3.21)

which agrees with (3.10) for large wave widths (Ed ≈ E).

3.2.3 Results
As shown above, the energy transport in diffusive or dissipative continua in discrete
lattices and continuous media obey the same scaling law, viz. that the ratio of the
transported kinetic energy per density to the wave speed is linearly proportional to
the ratio of the change in the on-site potential energy to the dissipation parameter.
We note that even in the limit ρ → 0 the kinetic energy per unit density, E (or Ed

in the discrete case), remains a finite quantity, so the law (3.21) applies, as long as
the system response remains a traveling kink. Quantity E (or Ed) can be obtained
experimentally from the particle velocities (or two snapshots from subsequent time
steps).

Some of the remarkable features of this scaling law are:

(i) The inter-particle forcing does not affect the ratio, i.e., the above law holds for
any nonlinear interaction potential V .

(ii) The law is independent of the number of interacting neighbors, Nb.

(iii) It is independent of the topology of the on-site potential φ but depends only on
the difference ∆ψ between the initial and final energy of a bi-stable transition.

(iv) For E > 0, we must have ∆ψ > 0; i.e., stable mobile transition waves can only
occur when switching from higher to lower potential energy.

(v) The scaling law is linear despite the governing equations being highly nonlin-
ear. This suggests that in the case of multi-well transitions, the transported



44

energy must follow from linear superposition of the individual two-well tran-
sitions.

The law can also be interpreted as follows. The ratio of kinetic energy per unit
density to the velocity is also the ratio of energy to momentum density. Therefore,
the transition wave can be thought of as a localized quasi-particle with its energy
scaling to its momentum density according to (3.21). Finally, note that we assumed
linear damping and the existence of a traveling wave solution. Both assumptions
may have to be relaxed depending on the specific features of the system of interest
(see the discussion in subsequent sections).

3.3 Numerical simulations
For numerical purposes, dimensionless forms are obtained by normalization using
the characteristic length (φ0/k0)1/2, time α/k0, and force (φ0k0)1/2, where we
defined φ0 = ∆φ/2 and the initial stiffness of particle interactions, k0 = φ′′(0)/2.
By dividing (3.1) by the characteristic force and normalizing all variables, we arrive
at

m̄ ūn,t̄ t̄ + ᾱ ūn,t̄ + φ̄
′(ūn)

−

Nb∑
j=1

[
V̄ ′j

(
ūn+ j − ūn

j ā

)
− V̄ ′j

(
ūn − ūn− j

j ā

)]
= 0,

(3.22)

where the overbars represent normalized quantities and m̄ = mk0/α2, ᾱ = 1. The
choice of the normalization parameters implies that ∆φ̄ = ∆φ/φ0 = 2 and thus
∆ψ̄/γ̄ = 2. Therefore, the energy law reduces to

Ē/v̄ = 1. (3.23)

For convenience, we omit the overbars in the subsequent numerical examples.

To verify the theoretical predictions, simulations were performed on a periodic
chain of 600 particles which are governed by a variety of interaction potentials
V and multi-stable on-site potentials ψ. The lattice is initially unstretched and
at rest and loaded by displacing the leftmost particle until it transitions from one
stable potential well into another. The right-most particle is held fixed. The lattice
response is computed by Newmark-β implicit time integration. After assuming a
steady state, the velocity and energy of the wave remain constant over time, as shown
in the example of Fig. 3.1.
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Figure 3.1: Example of a moving transition wave: (a) bistable topology of the
on-site potential ψ with minima at u = 0 and u = 2; (b) resulting transition wave
profile (displacement vs. position); (c) evolution of the kinetic energy per density
vs. time (the kinetic energy stabilizes at a constant value once the kink assumes a
steady waveform); (d) contour plot of the wave propagation in x-t-form. The phase
boundary moves at a constant velocity once it assumes a steady kink waveform.

In particular, we simulated diffusive and dissipative chains of particles exposed to
the same fourth-order polynomial bistable on-site potential of Fig. 3.1a with the
following interaction potentials motivated by the introductory examples:

(i) Linear elastic springs as in the classical Frenkel-Kontorova model of disloca-
tion motion [51]: V ′(u) = F0u/a (with F0 = 100 and a = 1),

(ii) Coulombic interactions between charged particles [25]: V ′(u) = F0(u/a + 1)−2

(with F0 = 0.0015625 and a = 8),
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(iii) Dipole-dipole interactions in a chain of magnets: V ′(u) = F0(u/a + 1)−4 with
(F0 = 0.016 and a = 5),

(iv) Nonlinear Toda interactions describing, amongothers, charge densitywaves [56]:
V ′(u) = F0(1 − e−βu/a) (with F0 = 100, a = 6 and β = 6),

(v) Hyperelastic rubber connectors (1D incompressibleNeo-Hookean solid [107]):
V ′(u) = F0

(
1 + u

a − (u/a + 1)−2
)
(with F0 = 1 and a = 6), and

(vi) Lennard-Jones (LJ) atomic interactions with varying cut-off radius: V ′(u) =
F0

[
(1 + u/a)−7 − (1 + u/a)−13

]
(with F0 = 137.17 and a = 3).

Due to the short-range nature of LJ, we also computed results for long-range linear-
spring interactions with up to Nb = 4 neighbors. The summary of results in Fig. 3.2
confirms that the scaling law is indeed independent of the interaction potential and
of the number of neighboring interactions.

Surprisingly, the scaling law is independent of the topology of the non-convex
potential ψ. For verification, simulations were carried out on lattices with the three
bistable interaction potentials shown in Fig. 3.3; all are fourth-order polynomials
with the same value of ∆ψ = 2. In analogy to Fig. 3.2, Fig. 3.3b shows the linear
relation between the computed kinetic energy of the traveling wave and the wave
speed for all three bistable potentials, which confirms the energy transport law.

Since the energy law is linear, superposition can be expected in case of multi-well
transitions despite the highly-nonlinear scenario. This suggests that a multi-well
transition can be broken down into individual bi-stable transitions and analyzed
separately to determine the total energy transported. To test this hypothesis, numer-
ical experiments were performed for transitions occurring in a triple-well energy
landscape as shown in Fig. 3.4. Results for three different interaction potentials
are summarized in Table 3.1 and show excellent agreement with deviations of less
than 1%, thus confirming that superposition applies indeed. However, as seen from
Fig. 3.4b, in the special case ∆ψ1 < 0 and ∆ψ1 + ∆ψ2 > 0, the second transition
drags the first along, causing both transitions to move at the same speed. Therefore,
for multiple transitions, to preserve single-valuedness of the solution, we conclude
that vk ≥ vk+1, where vk is the velocity of the k th transition.
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Figure 3.2: Plots of the kinetic energy E of the traveling wave vs. kink propagation
speed v for (a) various examples of interaction potentials and (b) varying numbers of
interacting neighbors. All examples use the bistable energy of Fig. 3.1a with m = 1
for dissipative and m = 0.0001 for weakly inertial or diffusive cases, and a = 1. All
results lie almost perfectly on the predicted lines with slopes E/v = ∆ψ/2γ = 1.

3.4 Discreteness effects
Discreteness effects become important in discrete systems when the width w of
the transition wave is on the order of the lattice spacing (i.e., w ∼ a). The con-
tinuum limit (3.14) of the discrete lattice model holds if the wave profile remains
smooth. Smoothness is observed if dissipative effects dominate over inertial effects
of the lattice (α2 � mk0). However, in case of small dissipation and significant
inertia (mk0 � α2), the displacement profile displays rapid oscillations (twinkling
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Figure 3.3: (a) Three different topologies of the on-site potential ψ with different
equilibrium distances but with the same energy jump ∆ψ; (b) resulting energy per
density E vs. wave speed v for the different topologies and interaction potentials (all
other parameters as in Fig. 3.2). Again, all computed values fall onto the predicted
line with slope E/v = ∆ψ/2γ = 1.
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Figure 3.4: (a) The three possible topologies of a triple-well potential that generate
propagating kinks: (I) ∆ψ1,∆ψ2 > 0, (II) ∆ψ1 > 0, ∆ψ2 < 0, and (III) ∆ψ1 < 0 ,
∆ψ1+∆ψ2 > 0. (b) Resulting waveforms for the three cases: (I) two transition waves
travel with different velocities, (II) only one partial transition wave propagates (the
other is stationary as ∆ψ2 < 0), and (III) one complete transition wave propagates
with a constant velocity (the second transition drags the first along).

modes) [9] in the wake of the traveling kink and the kinetic energy of the wave
oscillates with a period T = a/v. An example of a weakly-dissipative discrete
system is shown in Fig. 3.5. Here, the higher-order terms cannot be neglected when
taking the continuum limit and hence the approximation in (3.9) fails to hold. In
such cases, the energy law still applies if the energy E is replaced by its time average

〈E〉 =
1
T

∫ t0+T

t0
E dt′ = v

∫ t0+T

t0

N∑
i=1

1
2

u2i,t ′ dt′, (3.24)
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Interaction ∆ψ1 ∆ψ2 v1 v2
∆ψ1v1+∆ψ2v2

2γ E

Linear

0 2 4.5051 4.5051 4.5051 4.5029
0.5 1.5 5.6130 5.6130 5.6130 5.6146
1 1 7.2538 5.6741 6.4640 6.4114
1.5 0.5 8.1123 3.1141 6.8628 6.8637
2 0 8.5710 0.0307 8.5710 8.5760

Hyperelastic

0 2 1.4241 1.4240 1.4241 1.4231
0.5 1.5 1.7733 1.7732 1.7732 1.7697
1 1 2.2778 1.7762 2.0270 2.0089
1.5 0.5 2.5308 0.9760 2.2421 2.1424
2 0 2.6660 0.0132 2.6660 2.6670

Coulombic

0 2 0.9434 0.9434 0.9434 0.9429
0.5 1.5 1.1476 1.1476 1.1476 1.1480
1 1 1.4635 1.1492 1.3064 1.2964
1.5 0.5 1.6398 0.6307 1.3875 1.3877
2 0 1.7454 0.0000 1.7454 1.7464

Table 3.1: Numerical results for the sixth-order tri-stable potential energy with
energy differences∆ψ1 (first) and∆ψ2 (secondwell). Wave speeds vi (identified from
contour plots by a linear regression fit) and total kinetic energies E are compared to
the superposed theoretical predictions of the linear energy law (recall that travelling
waves require ∆ψi > 0).

where, [t0, t0+T ) represents one time period. The difference between the maximum
energy level and the average energy is a measure of the kinetic energy barrier
which is equivalent to the Peierls-Nabarro (PN) barrier that is created due to the
discreteness of a lattice [96, 112]. As seen from Fig. 3.5, the energy oscillates about
an average value as the wave travels through the lattice, and this average indeed
equals the energy computed from the transport law (3.21).

3.5 Generalizations
3.5.1 Nonlinear damping
In case of nonlinear velocity-dependent on-site damping, the governing equa-
tion (3.1) changes into

m un,tt + F (un,t ) + φ′(un)

−

Nb∑
j=1

[
V ′j

(
un+ j − un

ja

)
− V ′j

(
un − un− j

ja

)]
= 0,

(3.25)
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Figure 3.5: (a) Displacement profile and (b) kinetic energy when discreteness
effects dominate and the wave profile is not smooth (m = 1000 with a hyperelastic
interaction potential).

where F (un,t ) is a generalized drag force. Following a similar procedure as that of
Sec. 3.2.1 shows that

v ∆ψ = −
1
a

∫ ∞

−∞

F (−vu,ξ )vu,ξ dξ '
N∑

n=1
F (un,t )un,t . (3.26)

The right-hand side represents the total power dissipated by the nonlinear damping
and reduces to 2γE in case of linear damping, i.e., for F (u,t ) = αu,t . As the second



52

law forces the dissipation to constantly drain energy from the system,

N∑
n=1

F (un,t )un,t ≥ 0 ⇒ v ∆ψ ≥ 0. (3.27)

The above result is analogous to the entropy condition in phase boundary propa-
gation [3], where ∆ψ is the driving force on the phase front. Therefore, the above
analysis may be interpreted as a derivation of the entropy condition for phase bound-
ary propagation, in a general case. In the common case of linear damping, the power
dissipated is proportional to the kinetic energy transported by the phase boundary.
It is interesting to note that for linear on-site damping the dissipation removes only
the contribution of the potential energy while preserving the kinetic energy.

3.5.2 Higher dimensions
Even though formulated in 1D, the above concepts also apply to general plane waves
in higher dimensions. Consider, e.g., the time evolution the polarization vector p,
a diffusive phase-field variable, in ferroelectric ceramics. The potential energy
density is commonly written as W = ψ(p) + κ

2 |∇p |
2 with non-convex ψ(p) and the

nonlocal term representing energy stored in ferroelectric domain walls. One often
derives the kinetics of domain switching from the gradient flow assumption [144,
170] with a drag coefficient γ, i.e.

γ ṗ = −
δW
δp
= −

∂ψ

∂ p
+ κ ∇2p. (3.28)

Ferroelectric switching is accommodated by the motion of planar domain walls
which can be expressed as a plane wave p(x, t) = p(x · k − vt) = p(ξ), so
that (3.28) becomes

− κ |k |2pi,ξξ − v γ pi,ξ + ψ,i = 0, (3.29)

using indicial notation. Thus we recover the general form of governing equa-
tion (3.2). Multiplying by pi,ξ and integrating over time with pi,ξ = 0 as ξ → ±∞
yields

v γ

∫ ∞

−∞

pi,ξ pi,ξ dξ = ∆ψ, (3.30)

which leads to a restatement of the energy scaling law (3.21). Here, we observe
that the speed of domain walls is related linearly to drag coefficient γ, the energy
difference between the domains, and the shape of the domain wall (expressed by
the above integral). This derivation also holds true if domain switching in a fully-
electromechanically-coupled fashion is considered (with polarization p, electric
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field e, and mechanical strain ε all represented as moving transition waves). A
detailed derivation is shown in Chapter 6 as to how this theory can be used to
calculate the velocity of domain walls. In summary, even though derived for 1D
systems, the applicability of the energy scaling law is more general and applies to
plane waves in both discrete and continuous systems.

3.6 Conclusions
We have derived an energy scaling law that applies to general nonlinear dissipative
and diffusive lattices as well as to continuous systems, for arbitrary interaction
potentials and non-convex on-site potentials. We have shown that dissipation or
diffusion helps in stabilizing the waveform and get rid of small amplitude linear
waves that can be seen in the conservative case depicted in Chapter 2. As a
unique feature, linear superposition applies for multiple transitions even though the
governing equations are highly nonlinear. Besides its surprising simplicity, the
energy law is valuable to extract the speed, mobility, or transported energy of a
transition wave from experimental data when only a subset of the latter is known.
In the next chapter, we show an experimental system that shows an experimental
demonstration of a discrete bistable lattice capable of showing a phase transition.
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C h a p t e r 4

UNIDIRECTIONAL TRANSITION WAVES IN DISCRETE
BISTABLE LATTICES WITH NONLINEAR COUPLING

Research presented in this chapter has been adapted from the following publication:

Neel Nadkarni, Andres F. Arrieta, Christopher Chong, Dennis M. Kochmann, and
Chiara Daraio. “Unidirectional TransitionWaves in Bistable Lattices”. In: Physical
Review Letters 116.24 (June 2016), p. 244501. doi: 10.1103/PhysRevLett.116.
244501. url: http://link.aps.org/doi/10.1103/PhysRevLett.116.
244501.

We present a model system for strongly nonlinear transition waves generated in a
periodic lattice of bistable members connected bymagnetic links to study the kind of
discrete dissipative phase transitions discussed in Chapter 3. The asymmetry of the
on-site energy wells created by the bistable members produces a mechanical diode
that supports only unidirectional transition wave propagation with constant wave
velocity. We theoretically justify the cause of the unidirectionality of the transition
wave and confirm these predictions by experiments and simulations. We further
identify how the wave velocity and profile are uniquely linked to the double-well
energy landscape, using the energy transport law as derived in Chapter 3.

4.1 Introduction
Unidirectional wave-guiding is a rare phenomenon of interest for mechanical diodes,
rectifiers or switches that propagate stress waves in designated directions but not in
reverse. For acoustic waves, this has been achieved through carefully engineered pe-
riodic lattices and topological metamaterials that exploit time-reversal asymmetry
or transmission asymmetry, see e.g. [21, 70, 77, 81, 117, 126, 174]. Such sys-
tems, providing one-way acoustic insulation, are typically studied in the linearized
regime and the associated elastic pressure waves display small amplitudes (and
quickly decay in realistic structures with internal damping). In weakly-nonlinear
lattices, directional wave-guiding has been achieved using cubic Kerr nonlinearities
in non-homogeneous systems [129, 173]. However, strongly-nonlinear directional
wave guides for the transmission of finite amplitude pulses or the mitigation of

http://dx.doi.org/10.1103/PhysRevLett.116.244501
http://dx.doi.org/10.1103/PhysRevLett.116.244501
http://link.aps.org/doi/10.1103/PhysRevLett.116.244501
http://link.aps.org/doi/10.1103/PhysRevLett.116.244501
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impact shock waves have remained largely unexplored, partly due to their mathe-
matical complexity and limited experimental realizations. Only one macroscopic
experiment that has verified stable nonlinear transitionwaves in a chain of elastically-
coupled rotational pendulums [130] as described in Chapter 1.1; and that systemwas
bidirectional. Unfortunately, the lack of accessible experimental systems has left
many previous theoretical studies unchallenged and, as a consequence, has rendered
mechanical diodes in the nonlinear regime a rare find. In this chapter, we present
an instructive homogeneous mechanical model that displays tunable unidirectional
guiding of strongly-nonlinear transition waves and admits theoretical insight that
agrees well with experimental findings.

We identify stable unidirectional transition wave propagation theoretically and ex-
perimentally in a 1D periodic lattice or “meta-structure” of bistable mechanical
elements connected by nonlinear links. The double-well on-site potential is realized
by pre-stressed composite shells which snap elastically from one stable equilibrium
to another while undergoing large, nonlinear deformation. Magnetic inter-element
connections generate nonlinear repulsive forces between bistable lattice members.
As we demonstrate theoretically and verify numerically, the asymmetric potential
energy wells make the wave propagation unidirectional: the transition from high to
low energy produces a stable transitionwave, whereas the reverse transition from low
to high energy disintegrates incoming pressure waves, thereby acting as a diode for
large-amplitude waves. This is in line with our theoretical observations in Chapter 3.
This unidirectionality has potential for wave mitigation, impact energy absorption
applications, or mechanical switches and filters. The described experimental setup
serves as a model system that can enable the investigation of the rich nonlinear
dynamics of periodic arrays with, in principle, arbitrary multi-stable on-site energy
topologies.

4.2 Experimental system
The experimental setup consists of an array of bistable composite shells with an inter-
element magnetic forcing. Individual bistable elements are made from carbon fiber
reinforced plastic prepregs, laminated with a precise spatially distributed arrange-
ment of laminae in the 0° and 90° directions. The combination of microstructure
and cooldown after curing at elevated temperature induces a particular deformation
field producing composite laminates exhibiting a tailorable strain potential topol-
ogy, while admitting clamping of two opposite edges [6]. The dimensions for the
elements used in the experiments are given in Table 4.1. Table 4.2 provides the
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Figure 4.1: Tailored distribution of used bistable composite laminates.

material properties of the used c-m-p (CM-Preg T-C-120/625 CP002 35) prepreg
system. The dimensions of the regions making up the fiber distribution of these
laminates can provide a broad range of different potential wells and snapping forces.
The strain energy stored in the bistable laminate as a function of the out-of-plane

displacement can be further tailored by varying the clamping distance, as well as
the fiber distribution [71]. The topology of the resulting potential is designed to
be inherently asymmetric with one of the wells having a lower energy than the
other. To model the bistable element, the force-displacement curve is obtained with
quasi-static displacement controlled tests which is fit with splines, see Fig. 4.2a.
The magnitude of the snapping force is much higher at one transition point than the
other. Furthermore, desired levels of force-displacement asymmetry and transition
values can be designed by modifying the fiber distribution of the bistable members
as required to control the characteristics of the propagating transition waves. The
lattice used for experimentation consists of 20 bistable elements which are sup-
ported using clamps mounted on an aluminum rail. The rails are fixed to an optical

L b h L1 L2 L3 L4 L5 L6 L7
[mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm]

220 64 0.25 31 15 5.0 120 5.0 15 31

Table 4.1: Geometric properties of the sections composing the spatially varying
fiber for the bistable elements. Refer to for the schematic representation in Fig. 4.1
of the given parameters.
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Figure 4.2: (a) Force displacement curve of the bistable element for clamping dis-
tance of 21.5 cm. The critical snapping points (maximum force) and equilibrium
points are identified and fitted with splines while maintaining continuity in stiff-
ness. (b) Magnetic force vs displacement plot for an NSNS-SNSN configuration.
Numerical fit: F = Adp with A = 4.95e-05 N/mp and p = -3.274.
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Material Fibre vol. E11 E22 G12 ν12 ρ α11 α22

[%] [GPa] [GPa] [GPa] [-] [ kgm3 ] K−1

CFRP 60 161 10 4.4 0.3 1570 -1.8E-8 2.25E-5

Table 4.2: Material properties for a typical ply of CFRP c-m-p (CM-Preg T-C-
120/625 CP002 35) prepreg used to manufacture the bistable elementsly. Nominal
prepreg thickness 0.125 mm.

table. Each bistable element is fitted on either face with two NdFeB ring magnets
of the R-19-09-06 N type (mass of 10 g, inner diameter 9.5 mm, outer diameter
19.1 mm and thickness of 6.4 mm), supplied by Supermagnete. Similar to [95], the
force-displacement curve of the magnets, shown in Fig. 4.2b, is fitted using a best-fit
relation of the form: F = Adp, where F is the force and d is the displacement.
The magnets are fixed to the bistable laminates and are arranged in a NSNS-SNSN
configuration to exert repelling forces between the elements. They are laser aligned
so that all lie along a straight line. A stereoscopic digital image correlation system
from Correlated Solutions, with two Photron Ux100 cameras with a rate of 4000
fps, is used to acquire the displacements of four consecutive representative bistable
elements. The initial displacement is triggered using a precision screw which pro-
vides a repeatable perturbation to the first lattice element. The lattice used for
experimentation is shown in Fig. 4.3.

4.3 Stable wave propagation
We study the transition from the high energy well to the lower energy well. All
the bistable elements in the system are placed in the high energy well and the
first element is forced to snap to the lower energy state. The rail distance R is
defined as the distance between the clamps at the two ends of the bistable element
and the lattice distance L is the distance between two elements in the chain. We
present results for three representative cases of stable wave propagation in Fig. 4.4
for various choices of R and L. Each experiment was repeated three times to
obtain statistical variations. In general, the results obtained were highly repeatable.
The deformation of the bistable element is 3D in nature; however, the out-of-plane
displacement is significantly higher than the in-plane deformation, thereby causing
thewave propagation to be quasi-1D, as can be observed in the snap-shot sequence of
the propagating wave shown in Fig. 4.5. Experiments are compared with numerical
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(a)

(b)

Figure 4.3: (a) The experimental lattice is shown along with the trigger magnet
mounted on a precision screw. The displacements of elements 8 to 11 that are
marked using a speckle pattern are tracked using a digital image correlation soft-
ware (DIC). (b) A schematic of the experimental measurement technique is shown.
The two cameras are synchronized and capture the 3D deformation field of the
tracked specimens. The out-of-plane deformation is obtained using the Vic-3D DIC
software.
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Figure 4.4: Transition wave propagation for three different combinations of lattice
distance (L) and rail distance (R). The displacement time series is shown for the 8th
- 11th element (blue diamonds, magenta squares, red 5 point stars and black 6 point
starts respectively) for (a) L = 8 cm, R = 22.5 cm (b) L = 6 cm, R = 22 cm and (c)
L = 8 cm, R = 21.5 cm. The negative values of the displacements indicate that the
elements are deforming away from the camera. The direct numerical simulations of
the discrete particle model Eq. (4.1) (dashed lines) are in good agreement with the
experimental results (solid lines). The inset of each panel is the numerical solution
of the exact transition wave. On reaching the boundary, the waves do not reflect
back into the bulk and hence the transition is unidirectional.



61

simulations of the following 1D model of the discrete lattice:

mun,tt+A(un+1 − un + L)p − A(un − un−1 + L)p

+ αun,t + φ
′(un) = 0,

(4.1)

where un is the displacement of the nth particle from its static equilibrium, A and
p < −1 are parameters of the inter-element forcing function, m is themass of the four
magnets that compose each connecting element, L is the lattice distance, α > 0 is
the dissipation constant and φ(u) is a bistable potential. The parameters A, p and the
bistable potential φ(u) are determined through the fitting procedure described above.
Indices following a comma denote differentiation. The simulations are performed
using a Newmark-β time integration scheme [106]. We expect the dissipation
parameter to depend on the snapping trajectory of an individual bistable element,
which is linked only to the rail distance. Therefore we assume α to be independent of
the lattice distance and to only depend on the rail distance. For each rail distance R,
the dissipation parameter α is calculated bymatching the numerically obtained wave
velocity with experiments for a fixed value of the lattice distance L. The snapping
equilibrium distances for the used elements is slightly different (∼ ±10%) owing
to variability induced during the composite manufacturing process. Nevertheless,
this variation does not affect the underlying physical behavior under examination.
Comparing Figs. 4.4a and 4.4b, we see that the strain of the wave transition profile
is broader for larger lattice spacings (Fig. 4.4a) and more spatially localized for
small lattice spacings (Fig. 4.4b). The variation of wave localization (i.e. width of
strain profile) and velocity as functions of lattice distance for different rail distances
are shown in Fig. 4.6. The experimental result for R = 21.5 cm and L = 6 cm
is an outlier in Fig. 4.6a. This is due to the fact that L (6 cm) is smaller than
the snapping distance (∼ 6.2 cm). This causes multiple intermediate snaps during
the transition of the bistable element and the quasi-1D approximation fails to hold,
thereby causing the experimental data to significantly deviate from the numerical
results. The control parameters L and R allow for designing the level of wave
localization as shown in Fig. 4.6b. Interestingly, in the proposed system, transition

Figure 4.5: Snap-shot sequence showing the transition wave as it propagates through
the experimental lattice. Images were acquired at 4000 fps.
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Figure 4.6: (a) Wave velocity as a function of lattice distance for different rail
distances. The dissipation parameter has been optimized such that the wave velocity
matches for lattice distance 8 cm for rail distances 21.5 cm and 22 cm, and lattice
distance 7 cm for rail distance 22.5 cm. (b) Full width at half maximum (FWHM) of
the strain profile of the transition wave as a function of lattice distance for different
rail distances.

waves can be localized almost on a single element allowing for tightly packed and
remarkably stable energy transmission. Hence, the waves can be localized to a single
particle, similar to the case of repelling magnet chains [95]. This compares with a
minimum of approximately 2.2 particles for pressure waves in granular chains [104,
105].

4.4 Numerical simulations for exact traveling waves
An interesting observation is that despite varying the initial guess, our algorithm
converges to the same profile and wave velocity v, implying that for a fixed set
of system parameters, there is a unique wave velocity of the transition wave. For
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example, stronger initial impacts do not lead to faster waves, which is in contrast
to the case of the granular chain [104]. Indeed, it appears the combination of an
asymmetric bistable potential and the presence of damping leads to unique wave
velocities, making this system more akin to reaction-diffusion type equations [163]
rather than Hamiltonian lattices such as those of the the Klein-Gordon type [57,
175] (e.g. the Frenkel-Kontorova equation [51]) and Fermi-Pasta-Ulam type [52,
57] (e.g. the granular chain [104]). To probe this point even further, we restrict
our attention to traveling wave solutions of the form of Eq. (4.1), namely those of
the form un(t) = u(Ln − vt) = u(ξ), where u(ξ), ξ ∈ R satisfies the advance-delay
differential equation

v2muξξ − vαuξ + βφ′(u) + A(u(ξ + L) − u(ξ) + L)p

−A(u(ξ) − u(ξ − L) + L)p = 0.
(4.2)

Transition waves of Eq. (4.1) correspond to orbits of Eq. (4.2) that connect the
equilibrium u = ui and u = u f where ui and u f are the positions of the potential
wells of βφ. Such special orbits of advance-delay equations, like Eq. (4.2), can be
approximated numerically up to a prescribed tolerance [164]. In particular, one can
make the discretization u j := u( j∆ξ) where j ∈ Z which, upon a choice of finite
difference approximation of the derivatives, results in an algebraic equation that can
be solved via Newton iterations:

v2m
u j+1 − 2u j + u j−1

∆ξ2
− vα

u j+1 − u j−1

2∆ξ
+ βφ′(u j )

+A(u j+q − u j + L)p − A(u j − u j−q + L)p = 0,
(4.3)

where ∆ξ is chosen such that q = L/∆ξ is an integer. We impose no-flux boundary
conditions and let the wave velocity v be a variable of the system (rather than a
fixed parameter). We find that, despite varying the initial guess for solving Eq. (4.2)
numerically, our algorithm converges to the same profile and wave velocity v,
implying that for a fixed set of system parameters, there is a unique wave velocity
of the transition wave. The traveling wave formulation (4.2) is also natural for
bifurcation and sensitivity studies. For example, the variation of the wave velocity
with respect to the interaction potential coefficient p, and level of asymmetry are
presented in the following section.

4.5 Robustness analysis
4.5.1 Sensitivity of wave velocity with respect to interaction coefficient
Fig. 4.7 shows the variation of the wave velocity for various coefficients of the
interaction potential p. It can be seen that the velocity becomes zero beyond a
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certain critical value of the parameter p. From a physical point of view, this
is reasonable. The strength of inter-element forcing decreases with decreasing
nonlinearity parameter p. When the initial element is snapped over, the small
force due to magnetic coupling not sufficient for the subsequent element to snap
over the on-site potential energy barrier, thereby causing the wave to stagnate.
This is analogous to the propagation failure observed in discrete reaction-diffusion
lattices [40]. The value of p = −3.274 in the experiments lies well above the critical
range for each of the parameter values shown in Fig. 4.7. For a fixed lattice distance,
the potential barrier decreases as the rail distance increases. Therefore, it is not
surprising that the critical value of the nonlinearity p at which the wave stoppage
occurs decreases as the rail distance increases, see Fig. 4.7a. For a constant rail
distance, as the lattice distance increases, the interaction force between magnets in
the undeformed state decreases (since the distance between the magnets that couple
the elements is increasing). Hence, the nonlinearity p at which the wave stops
propagating increases as the lattice distance increases, see Fig. 4.7b.

4.5.2 Sensitivity of wave velocity with respect to asymmetry of the on-site
bistable potential

To obtain a theoretical approximation of the onsite potential ψ(u) for the snapping
elements, the experimentally measured values of the distance and corresponding
force were fit by a polynomial spline (see Fig. 4.2). To investigate the role of
the asymmetry numerically we introduce an asymmetry parameter ε where ε = 0
corresponds to the asymmetry of the experimentally measured on-site potential, and
ε = 1 corresponds to a symmetric potential (see Fig. 4.8a and text below for details).
As an example, we consider a rail distance of R = 22.5 cm and a lattice spacing of
L = 8 cm. We performed a parametric continuation of roots of (4.1) with respect to
the asymmetry parameter ε . The corresponding value of the wave speed v is plotted
against the asymmetry parameter ε in Fig. 4.8b. Note the wave speed decreases as
the asymmetry weakens.

4.5.3 Determination of the asymmetry parameter ε
Let the experimentally measured local minimum be (u1, F1), the local maximum
be (u2, F2), and the largest root be (u3, 0), where the first entry of each of these
coordinate pairs is the displacement and the second entry is the force (see redmarkers
of Fig. 4.8a). To explore how the degree of asymmetry affects wave propagation,
we modified the values of x3 and (x2, y2) gradually until a symmetric function



65

interaction potential coefficient (p)
-6 -5 -4 -3 -2 -1

sp
ee

d 
in

 m
/s

0

2

4

6

8

10
R = 21.5cm, L = 6cm
R = 22cm, L = 6cm
R = 22.5cm, L = 6cm

(a)

interaction potential coefficient (p)
-6 -5 -4 -3 -2 -1

sp
ee

d 
in

 m
/s

0

1

2

3

4

5

6

7

8

9

R = 22.5cm, L = 6cm
R = 22.5cm, L = 7cm
R = 22.5cm, L = 8cm

(b)

Figure 4.7: (a) Variation of wave velocity with interaction coefficient p for different
rail distances while keeping the lattice distance constant. (b) Variation of wave
velocity with interaction coefficient p for different lattice distances while keeping
the rail distance constant.
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Figure 4.8: (a) Fitted onsite force for the case of R = 22.5 cm and L = 8 cm
(dashed red line) and experimentally measured values (redmarkers). The symmetric
counterpart of this function is also shown (blue solid line), which was obtained by
modifying the local minimum and largest root along the lines r1 and r2 respectively.
The fraction of the distance moved along these lines is the asymmetry parameter ε .
(b) Plot of the wave speed as the asymmetry parameter ε is varied.
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was obtained (see blue curve of Fig. 4.8a). The symmetric function of interest
corresponds to the spline passing through the points (0, 0), (u1, F1), (3u1,−F1) and
(4u1, 0) (the spline was determined with the same procedure used to obtain the solid
line of Fig. 4.2a). Let r1 =

√
(u2 − 3u1)2 + (F2 + F1)2 be the distance between

the experimentally measured local minimum (u2, F2) and the value (3u1,−F1). Let
r2 =

√
(u3 − 4u1)2 be the distance between the experimentally measured point

(u3, 0) and the value 4u1. We then introduce an asymmetry parameter ε where ε = 0
corresponds to the asymmetry of the experimentally measured onsite-potential and
ε = 1 corresponds to a symmetric potential. In particular we modify the values
(u2, F2) and u3 such that the distances r1 and r2 change like r1 → r1 − εr1 and
r2 → r2 − εr2 for various values of ε ∈ [0, 1].

4.6 Wave disintegration
It can be shown that for a discrete system of this kind, stable wave propagation can
occur if [98]

ψ(ui) − ψ(u f ) = vγ

∫ ∞

−∞

u2ξ dξ ≥ 0⇒ ψ(ui) ≥ ψ(u f ). (4.4)

Eq. (4.4) shows that the final state cannot have a higher energy than the initial state
for stable wave propagation. This is because, in the case of high-to-low energy
transition, the release of stored potential energy counters the effect of dissipation.
This is not possible for a low-to-high energy transition. Therefore, in the case of
an asymmetric bistable potential, a transition is allowed from the higher energy
state to a lower energy state, as seen in the previous experiments; however in the
opposite case, the wave does not propagate. The problem can also be approached
through the entropy relation for phase boundary propagation [3]. Identifying that
∆ψ = ψ(u(ξ → ∞)) − ψ(u(ξ → −∞)) is the driving force on the transition
wave, (4.4) can be rewritten as the entropy inequality,

v∆ψ ≥ 0, (4.5)

similar to the case of a martensitic phase transformation written in Chapter 1.
Hence, the entropy inequality implicitly gives rise to the condition for unidirectional
stable wave propagation in the discrete lattice. We observe this phenomenon in
experiments. When all the elements are placed in the low energywell and a transition
is forced, the elements snap back to their original low energy state. Therefore, the
lattice works as a nonlinear unidirectional waveguide for transition waves.
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4.7 Theoretical estimates of wave characteristics
Advance-delay differential equations such as Eq. (4.2) are notoriously difficult to
analyze. One can obtain a system that is analytically tractable by considering a
Taylor series approximation. In the case of Eq. (4.1), this results in the fourth order
ordinary differential equation (ignoring higher order terms),

− 1
24L2ρc20[(p − 2)(p − 1)u3ξξ (uξ + 1)p−3

+ 4(p − 1)uξξuξξξ (uξ + 1)p−2 + 2uξξξξ (uξ + 1)p−1]

ρv2uξξ − ρc20 uξξ (1 + uξ )p−1 − vγuξ + ψ′(u) = 0,

(4.6)

with ξ = nL − vt, ρ = m/L, ρc20 = −ALpp, γ = α/L, βφ′(un)/L = ψ′(un) and the
subscript ξ implies differentiation. The governing equation (4.6) provides bounds
for maximum particle velocity. When the particle velocity ut = −vuξ attains a
maximum, the acceleration utt = v2uξξ = 0 is zero. Substituting this in (4.6) gives

| 112a2c20u∗ξξξξ (−A/v + 1)p−1 | = | − γA + ψ′(u∗) |, (4.7)

where the asterisk indicates evaluation where uξ is at a maximum. In the continuum
limit (L → 0), the term on the left hand side in (4.7) is negligible. Therefore,

A ' ψ′(u∗)/γ ≤ Fm/γ (4.8)

where Fm is the maximum force or the snapping force of the bistable element and
u∗ is the displacement at maximum uξ , thus providing an upper bound estimate of
the maximum particle velocity. The width of the strain profile of the transition wave
can be estimated by assuming an ansatz of the form

uξ (ξ) =
A
v
sech2

1.76 ξ
w

(4.9)

where w is the full width at half-maximum (FHWM). Substituting (4.9) in (4.4) and
evaluating the integral yields

w = 1.32
v∆ψ

A2γ
≥ 1.32

γv∆ψ

F2
m

, (4.10)

thus providing a lower bound on the width of the wave (or the amount of localization
that can be achieved). Finally, the kinetic energy transported by the wave oscillates
about a mean value, as seen in Fig. 4.9. It can be shown using (4.4), that the average
kinetic energy transported (〈E〉) can be computed as

〈E〉 =
∆ψ

2γ
ρv (4.11)

(with ρ = m/L) which scales linearly with the velocity of wave propagation [98]
and the oscillation frequency is f = v/L.
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Figure 4.9: Energy profile of a simulation for R=21.5 cm and L=8 cm. The energy
drops to zero when the wave reaches the end of the lattice.

4.8 Conclusions
We have introduced a model lattice system comprised of tailored bistable elements
connected by magnets sustaining strongly nonlinear unidirectional propagation of
transition pressure waves. A reduced 1D discrete analytical model is developed
which allows for wave tailoring, by designing the strain potential topology of the
bistable members, the direction of propagation, velocity and profile of the transition
waves. The designed on-site potential exhibited by the bistable members enables
the realization of mechanical diodes and wave guides with far-reaching applications,
from energy absorption and harvesting, to impact mitigation and imaging. In addi-
tion, our model system allows for accessible experimental investigation of hitherto
difficult to access transition wave phenomena in solids.
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C h a p t e r 5

STABLE MECHANICAL SIGNAL PROPAGATION THROUGH
DISSIPATIVE MEDIA: AN APPLICATION IN STRUCTURAL

DYNAMICS

Research presented in this chapter has been adapted from the following publication:

Jordan R. Raney, Neel Nadkarni, Chiara Daraio, Dennis M. Kochmann, Jennifer A.
Lewis, and Katia Bertoldi. “Stable propagation of mechanical signals in soft media
using stored elastic energy”. en. In: Proceedings of the National Academy of
Sciences 113.35 (Aug. 2016), pp. 9722–9727. issn: 0027-8424, 1091-6490. doi:
10.1073/pnas.1604838113. url: http://www.pnas.org/content/113/
35/9722.

Soft structures with rationally designed architectures capable of large, nonlinear
deformation present opportunities for unprecedented, highly-tunable devices and
machines. However, the highly-dissipative nature of soft materials intrinsically
limits or prevents certain functions, such as the propagation of mechanical signals.
In Chapter 3, we showed that the dissipation stabilizes the nonlinear transition
wave instead of hampering its propagation. In this chapter, we use this feature to
design structures from soft materials that have high inherent damping to propagate
mechanical signals over large distances where linear waves are damped out. In
particular, we present an architected soft system comprised of elastomeric bistable
beam elements connected by elastomeric linear springs. The dissipative nature of
the polymer readily damps linear waves, preventing propagation of any mechanical
signal beyond a short distance, as expected. However, the unique architecture of
the system enables propagation of stable, nonlinear solitary transition waves with
constant, controllable velocity and pulse geometry over arbitrary distances. Since the
high damping of the material removes all other linear, small amplitude excitations,
the desired pulse propagates with high fidelity and controllability. This phenomenon
can be used to control signals, as demonstrated by the design of soft mechanical
diodes and logic gates. The experiments were performed by our collaborator Jordan
R. Raney in the laboratories of Prof. Katia Bertoldi and Prof. Jennifer A. Lewis at
Harvard University, while the numerical simulations were performed by the author

http://dx.doi.org/10.1073/pnas.1604838113
http://www.pnas.org/content/113/35/9722
http://www.pnas.org/content/113/35/9722
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of this thesis.

5.1 Introduction
Soft, highly deformable materials have enabled the design of new classes of tunable
and responsive systems and devices, including bioinspired soft robots [135, 165],
self-regulating microfluidics [39], adaptive optics [29], reusable energy-absorbing
systems [123, 133], structures with highly programmable responses [46], and new
morphological computing paradigms [101]. However, their highly deformable and
dissipative nature also poses unique challenges. While it has been demonstrated
that the nonlinear response of soft structures can be exploited to design machines
capable of performing surprisingly sophisticated functions on actuation [109, 135,
165], their high intrinsic dissipation has prevented the design of completely soft
machines. Sensing and control functionalities, which require transmission of a signal
over a distance, still typically rely on the integration of stiff electronic components
within the soft material [88, 149], introducing interfaces that are often a source of
mechanical failure.

The design of soft control and sensing systems (and, consequently, completely soft
machines) requires the ability to propagate a stable signal without distortion through
soft media. There are two limiting factors intrinsic to materials that work against
this: dispersion (signal distortion due to frequency-dependent phase velocity) and
dissipation (loss of energy over time as the wave propagates through the medium).
Dispersion can be controlled or eliminated through nonlinear effects produced via
the control of structure in the medium [104]. For example, periodic systems based
onHertzian contact [21, 105, 142], tensegrity structures [50], rigid bars and linkages
[30], and bistable elastic elements [97] can behave as non-dispersive media, with
the nonlinearity of their local mechanical response canceling out the tendency for
the signal to disperse at sufficiently large amplitudes. However, dissipation is still an
overarching problem. Structures designed to propagate elastic waves are typically
built from stiffmaterials with low intrinsic dissipation (e.g., metals) and excited with
small amplitude excitation (to avoid plastic energy loss). This approach minimizes,
but does not eliminate, dissipation. In soft, highly dissipative media, the problem is
further exacerbated and there is no robust strategy currently available to propagate
signals in these systems.

Here, we report an architected medium made of a highly dissipative, soft material
that overcomes both dispersive and dissipative effects and enables the propagation of
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a mechanical signal over arbitrary distances without distortion. A stable mechanical
signal can be transmitted over long distances through a dissipative medium only if
additional energy is continuously supplied during its propagation. To achieve such
behavior, we use bistable elastomeric beams that are capable of storing elastic energy
in the form of deformation and then, stimulated by the wavefront, releasing it during
the propagation of the wave, without the need of any external stimulus. Importantly,
dissipation allows stable wave propagation by balancing the elastic energy release.
The damping intrinsic to the soft materials removes all signals except the desired
transition wave, which therefore propagates with high fidelity, predictability, and
controllability. The proposed architecture is capable of propagating stable waves
with constant velocity over arbitrary distances, overcoming both dissipative and
dispersive effects, despite the soft, dissipative material of which it is composed.
Together, these effects enable the design of a new class of functional devices, such
as soft mechanical logic elements. The ability to 3D print soft mechanical logic
enables a new degree of customizability and tunability relative to previous examples
of mechanical logic [21, 36, 76, 81].

5.2 System architecture and fabrication
The fundamental building block of our system is a bistable element (formed by
two tilted beams) connected to a horizontal element with linear response, all made
of elastomeric material (Fig. 5.1A). The tilted beams have aspect ratio L/t = 18
(with L = 7 mm), while their inclination angle is determined by their end-to-
end distance d. The horizontal coupling elements are designed to have a linear
mechanical response (Fig. 5.1B), with their morphology selected to achieve a range
of effective stiffnesses (an important parameter for determining the dynamic behavior
of the system). Systems comprising up to 100 building blocks arranged to form
a one dimensional chain (see Fig. 5.1A) are fabricated with high fidelity using
direct ink writing, an extrusion-based 3D printing method [75]. A viscoelastic
polydimethylsiloxane (PDMS) ink was used for 3D printing. This consisted of a
shear-thinning PDMS material, Dow Corning SE-1700 (85 wt.%), with a lower
viscosity PDMS additive, Dow Corning Sylgard 184 (15 wt.%). The viscoelastic
yield properties are tailored (see supporting information of Ref. [133] for rheological
characterization) to ensure that the uncured ink both flows readily during printing,
yet maintains its shape until it is permanently cross-linked in a subsequent curing
step (100◦C for 30 min). This material was extruded through a tapered nozzle
(200 µm inner diameter tapered nozzle from Nordson EFD) during programmed



73

Figure 5.1: (A) The system consists of a 1D series of bistable elements connected by
soft coupling elements (scale bar represents 5 mm); (B) the coupling elements are
designed to exhibit a linear mechanical response, while (C-D), the bistable elements
possess two stable states (scale bars represent 5 mm); the bistability originates
from lateral constraint (d) on a beam pair that is displaced (x) perpendicularly to
the constraint; the mechanical response is fully determined by the aspect ratio (L
divided by the thickness of the beam) and d; the two stable configurations of the
bistable element correspond to the displacements x = xs1 = 0 and x = xs0; (E)
in certain cases a stable nonlinear transition wave propagates through the system
(with each bistable element undergoing a displacement from x = xs0 to x = xs1);
the instability (Ŝi) propagates with constant velocity and geometry, enabled by both
(i) the balance of nonlinear and dispersive effects and (ii) the balance of dissipation
and energy release; here, we show snapshots of the evolving state of the chain, with
t1 = 0.128 s, t2 = 0.194 s, and t3 = 0.252 s relative to the start of the experiment,
in this case with d = 18.6 mm.
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translation of the nozzle over a fixed substrate (PTFE-coated aluminum). Ink
extrusion was controlled via fixed pressure (Nordson EFD Ultimus V pressure box),
with the nozzle precisely positioned using a custom 3D positioning stage (Aerotech).
After printing and curing of the PDMS ink, two regions parallel with and adjacent
to the functional region of wave propagation are infilled with epoxy (Momentive
Epon 828) to prevent undesired structural bending that would make measuring the
response of the system difficult. The lateral distance between these rigid supports, d,
is defined by acrylic braces of precise dimensions, that were made using an Epilog
Laser Mini cutting system. The acrylic braces also serve to elevate the soft structure
(via the epoxy supports) without contacting it, to eliminate any interactions between
the wave pulse and the table surface. A cylindrical copper rod (3.175 mm diameter)
was cut to pieces of 5.17 mm length (giving a mass of approximately 0.47 g), which
were press fit into the printed structure to enable optical tracking of periodic points
along the structure. The top surfaces of these copper cylinders were painted with
flat white paint to produce excellent light contrast for visualization of the transition
wave propagation.

We characterize the static response of both the bistable elements and the connect-
ing horizontal elements. A commercial quasistatic test system, Instron 5566, in
displacement control at a displacement rate of 2 mm/min was used for measuring
the force-displacement response. The force-displacement curve shown in Fig. 5.1B
shows the linear response of the horizontal elements. In particular, for the element
shown in Fig. 5.1A, with a zig-zag morphology of length 10 mm, width 5 mm,
and thickness 5.4 mm, we measure a stiffness k = dF/dx = 80 N/m. Note that
the value of k can be significantly altered (from 30 N/m to 2100 N/m) by choos-
ing different connector geometries or different extrusion rates during printing as
seen in Fig. 5.2. In contrast with the linear response of the connecting elements,
the bistable elements, each comprised of two tilted beams, are characterized by a
highly nonlinear response with a regime of negative incremental stiffness (see the
region with negative slope in Fig. 5.1C). The associated instability leads to a rapid
shape change that has been studied in the context of both natural [47] and synthetic
systems [14, 43, 110, 147]. The associated potential energy, V (x) (defined such
that ∂V/∂x = −F, and calculated by first fitting a fifth degree polynomial to the
measured force-displacement data and then integrating), is characterized by two
local minima at x = xs1 = 0 and x = xs0 (see Fig. 5.1C), corresponding to the
two stable states shown in Fig. 5.1D. Importantly, the stable configuration at xs0 is
characterized by an energy state higher than that of the undeformed one (at xs1 = 0).
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Figure 5.2: Using different geometries for the linear coupling elements leads to very
different effective spring stiffnesses, which greatly affects the width and velocity
of the propagating pulse. The stiffnesses were measured using an Instron 5566 in
displacement control with a rate of 2 mm/min. The measured stiffnesses of the
linear elements shown here were measured to vary from 30 N/m to 2100 N/m.

Therefore, similar to a phase transition, the transition between the two stable states
involves a net change in stored potential energy, which, depending on the direction
of the transition, either absorbs energy [133] or releases stored potential energy.
Here we demonstrate that the release of energy associated with this transition can
be exploited to overcome dissipation and to propagate a mechanical signal over
arbitrary distances, enabling the design of a new class of soft and highly tunable
devices, such as the mechanical logic elements demonstrated later.

5.3 Experimental results
5.3.1 Small amplitude excitation
To characterize the dynamic response of the system, we first consider small-
amplitude excitations with white noise up to 5 kHz generated by an electrodynamic
shaker (model K2025E013, Modal Shop) directly connected to one end of the sam-
ple. We monitor the propagation of the mechanical signal using two miniature
accelerometers (352C22, PCB Piezotronics) attached to both ends of the chain (see
Fig. 5.3A). Spectra were obtained for three different chain lengths (6, 15, and 50
bistable units in length) and was determined to be independent of d. The rigid epoxy
supports were held apart at fixed distances by acrylic braces. These ensure that the
morphology of the soft structure remains in a controlled configuration during the
dynamic tests. The acrylic braces were in turn glued to steel laboratory stands on an
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optical table, to minimize undesired vibrations. As expected for a soft, dissipative
material, the transmittance spectra (defined as the ratio between the measured out-
put and input accelerations, Aout(ω)/Ain(ω) ) clearly indicate that small-amplitude
excitations are rapidly dissipated due to the strong damping intrinsic to the material
(see Fig. 5.3B). In fact, at frequencies above 550 Hz, all energy is essentially dissi-
pated before traveling through only 6 bistable units (independently of the direction
of transmission or the state of the bistable elements). For longer distances (50-100
repeating units) even lower frequencies (100 Hz or less) show a drop of at least 20 dB
through the structure, meaning that no more than about 1% of the input acceleration
is measured at the output for these low frequencies. These results confirm that the
material from which the medium is architected is intrinsically highly dissipative and
does not enable propagation of small-amplitude elastic waves over long distances.

5.3.2 Response under large amplitude excitations
While the architected medium does not enable propagation of small-amplitude
elastic waves over long distances due to the intrinsic damping of the polymer,
moderate- and large-amplitude excitation can lead to a very different response.
If the bistable elements are initially set to their lower-energy (undeformed) stable
configuration (x = xs1 = 0 in Fig. 5.1C, corresponding to the top image in Fig. 5.1D),
displacing an element even to large amplitudes does not lead to a transition wave due
to the energetically unfavorable (energy-absorbing) transition of each element [97,
98]. Therefore, since small-amplitude linear modes also disintegrate because of
dissipation (Fig. S2), there exist no stable modes of energy transport when the
elements are in the low energy state. However, if the bistable elements are initially
set to their higher-energy (deformed) stable configuration (x = xs0 in Fig. 5.1C,
corresponding to the bottom image in Fig. 5.1D), a sufficiently large displacement
applied to any of the bistable elements can cause the displaced element to transition
states, producing a nonlinear transition wave that propagates indefinitely outward
from the point of initiation with constant speed and shape. This is due to both (i) an
equilibrium between dispersive and nonlinear effects of the periodic structure [99]
and (ii) a release of energy that equals the effects of dissipation as, stimulated by the
wavefront, each of the bistable elements along the chain transitions from its higher
to lower stable energy state (i.e., from x = xs0 to x = xs1 = 0).

To characterize the propagation of such nonlinear waves experimentally, we used
a high-speed camera and tracked the location of each bistable element along the
chain as a function of time. Measurements of the transition waves were made
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Figure 5.3: (A) The shaker (left) was attached to an accelerometer that was directly glued
to the samples; the accelerator used to measure the output was glued to the other end of the
sample; the acrylic braces (red) were used to hold the soft architecture at well-definedwidths,
and were glued to the laboratory stands to prevent unwantedmovement; (B) small amplitude,
linear excitation from either end of the chain is rapidly dissipated due to the damping intrinsic
to the polymer, as is particularly evident with increasing frequency, shown here for samples
with 6, 15, and 50 bistable units.

using a Phantom v7.1 camera. Two halogen floodlights were positioned to provide
sufficient lighting for the high-speed camera to record the experiments solely with
light reflected from the sample. Since at the wavefront, the bistable elements
transition from one stable configuration to the other, we monitor the displacement
of each unit relative to its two stable configurations (xs0 and xs1). For the i-th unit,
we therefore introduce two normalized distances,

x̂s1
i =

���
xi − xs1

xs0 − xs1

���, x̂s0
i =

���
xs0 − xi

xs0 − xs1

���, (5.1)

xi being the position of the i-th bistable element along the chain. In Fig. 5.1E
we visualize the propagation of the nonlinear wave by showing for each unit its
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normalized distance from the nearest stable configuration,

Ŝi = min
(
x̂s1

i , x̂s0
i

)
, (5.2)

at different times. If Ŝi = 0, the i-th element is in either of its two stable config-
urations, while Ŝi > 0 indicates that the unit is passing through the energy barrier
separating them. The experimental data of Fig. 5.1E clearly show that, at the wave-
front, a few bistable units (in this case about 4) are undergoing a change from
one stable state to the other at any given time, and that the transition sequentially
propagates through the elements along the chain. Importantly, we also find that
this transition wave propagates with a constant shape, clearly indicating that both
dispersive and dissipative effects are overcome in the structure.

The speed of the nonlinear wave can be obtained by monitoring the evolution of the
normalized distance x̂s0 for each bistable unit during the entire experiment, as in
Fig. 5.4A. Since in this contour map the blue and red colors indicate bistable units
in the high-energy and low-energy stable configurations, respectively, the sequential
change of each of the elements along the chain from one stable state to the other is
evident. Furthermore, the constant slope of the boundary between the pre- (blue)
and post- (red) transition regions reveals a constant propagation velocity (in this
case 3.4 ± 0.1 m/s). For systems with low wave speeds (usually k = 80 N/m and
v on the order of a few meters per second), a 500 Hz recording rate was used. For
higher-speed systems (usually k = 2100 N/m and v between 10-20 m/s) a higher
recording rate of 1000 Hz was used. Note also that the pulse width for any time
can be extracted from the map by taking a horizontal slice (i.e., a fixed time) of the
plot in Fig. 5.4A and measuring the number of bistable elements in the midst of
transitioning between solid blue and solid red (approximately 4 elements in width).

Another unique aspect of this system is that the propagation velocity and pulse
shape are the same (within the margin of error) whether the wave is initiated in
compression or tension, as revealed by comparison of the contour plots reported in
Fig. 5.4A (for compression) and Fig. 5.4B (for tension). In both cases, the transition
wave propagates with a constant velocity (3.4 m/s) and pulse width (∼ 4 elements).
The propagation of rarefaction pulses is a rare find and thus a noteworthy feature
of this system. While compressive nonlinear solitary waves have been observed in
nonlinear periodic systems as in, e.g., Hertzian contact-based chains [49, 66, 104]
as well as in macroscopic nonlinear chains using magnetic connectors [95, 98],
rarefaction pulses have not been found in those – among other reasons due to the
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Figure 5.4: The transitionwave can be initiated anywhere along the chain, with compressive
and rarefaction pulses proceeding in opposite directions from the point of initiation (here
d = 18.6 mm). (A-B) the normalized displacements of the individual bistable elements (x̂i
for each of the i elements in the chain) during the propagation of the wave, as recorded with
a high speed camera at 500 Hz; these panels show the propagation of the transition with a
constant velocity and pulse width, after a brief initiation period during which steady-state
is established; (C-D) Optical images of the experiments during wave propagation (obtained
from a high-speed camera), corresponding to the data in panels A-B; (E-F) Simulations
corresponding to the experiments shown in panels A-B, showing excellent quantitative
agreement; for the compression initiated pulse, the initiating displacement of the wave takes
place on the left of the chain and is in the same direction as the pulse propagation; for the
tension initiated pulse, the initiating displacement takes place on the right of the chain, and
the local tensile displacement is in the opposite direction of the wave propagation.
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lack of stiffness in tension. Finally, we note that the transition wave can also be
initiated at any intermediate location along the chain, in which case a compressive
pulse travels in one direction and a rarefaction pulse travels in the other direction,
both propagating outward from the point of initiation.

5.4 Numerical results
We characterize the transition wave propagation using a 1D mechanical model, in
which the position xi (t) of the middle of the i-th bistable element is governed by

m
d2xi

dt2
− k[xi+1 − 2xi + xi−1] + γ

dxi

dt
+

dV
dxi
= 0, (5.3)

whereV is the quasi-1D on-site potential of each bistable element, γ is a linear damp-
ing parameter and k the connector spring stiffness. The linear damping model is a
leading-order approximation to the complex dissipative nature of elastomers. The
bistable potentialV is numerically computed by nonlinear finite-element quasi-static
simulations. A single bistable beam element consists of two inclined beams with a
mass placed at the center. As themass is rigid compared to the compliant beams, it is
assumed that the force on the mass by the bistable structure is produced solely by the
deformation of the beams. Due to the symmetry of the structure, the quasi-static de-
formation of only one tilted beam is modeled with appropriate boundary conditions.
The beam is modeled using slender corotational beam finite elements [74] whose
one-dimensional stretching and bending deformation are governed by a nonlinear
Neo-Hookean material model with an initial slope of E = 1.8 MPa. Results of an
example simulation are shown in Fig. 5.5A). The undeformed beam is first subjected
to an initial vertical pre-compression v0 according to the d value. The boundary node
‘B’ is then displaced horizontally from one stable point to another in displacement
control and the resulting force required is recorded. The force-displacement function
obtained in this way is fit with a seventh-order polynomial. The force-displacement
polynomial is validated by comparison with the experimentally-measured force-
displacement curve for d = 17.5 mm, as shown in Fig. 5.5B; note that the computed
forces are multiplied by 2 to account for the force of one bistable element containing
two tilted beams. This simulation was repeated for different d values to compute
V (x, d). We validate the numerically-obtained force–displacement curves by com-
parison to the experimental data shown in Fig. 5.1C. To simulate the response of
the system under large-amplitude excitations, initially all nodes are placed in the
high-energy configuration. The first node is then excited by displacing it from the
high-energy stable point to the low-energy one, and the system response in time is
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Figure 5.5: (A) An example of the beam deformation simulation is shown. All simula-
tions were performed on only one half of the bistable element (i.e., on one tilted beam).
Different configurations of the beam are shown as it is displaced from one stable configu-
ration to another. The force at node ’B’ is measured (and doubled to account for bistable
element consisting of two tilted beams). (B) The numerical, experimental and best-fit force-
displacement curves are shown for d = 17.5 mm. The graphics indicate that experimental
and numerical results are in good agreement.

solved using a Newmark-β scheme. The only unknown model parameter, γ, was
determined by fitting experimental wave speed data for a combination of values
(k, d) = (80 N/m,17.5 mm) (see Fig. 5.6 for the comparison of experimental and
simulation results by which the dissipation parameter was determined). With all
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Figure 5.6: (A-B) Experimental and simulation results, respectively, corresponding to
(k, d) = (80 N/m,17.5 mm), as used to determine the dissipation parameter in the model.

model parameters thereby determined, we examined systems with different combi-
nations of geometric parameters with k ranging from 50 N/m-2500 N/m, d ranging
from 14.5 mm to 19.0 mm with d = 19.0 mm corresponding to the undeformed
state. As an example, Fig. 5.4E and Fig. 5.4F show simulated compression-initiated
and tension-initiated pulses, respectively, which show excellent agreement with the
experimental data discussed earlier (Fig. 5.4A-B).

5.5 Control of wave propagation
Results reported so far were obtained by testing a system characterized by connecting
elements with stiffness k = 80 N/m and bistable beams with aspect ratio L/t = 18
and constant end-to-end distance d. However, both the width of the pulse and its
propagation velocity can be greatly changed by manipulating either the nonlinear
response of the bistable elements or the stiffness k of the linear coupling elements.
While changes in k require fabrication of new units with different morphology
(see Fig. 5.2), we can take advantage of the high-deformability of soft materials to
tune the nonlinear response of the bistable beams by applying small lateral loads
to change the beam end-to-end distance d. Critically, the wave characteristics are
observed to depend only on such geometric parameters, and are independent of the
initial conditions, consistent with the theory developed in Chapter 3.

We use our simulations to systematically investigate the effects of the parameters d

and k on the behavior of the propagating wave. The results reported in Fig. 5.7A
for four representative values of d show two key features. First, d has a large effect
on the energy barrier separating the two stable configurations, which is reflected
also in changes in the peak forces during transition. Second, d strongly affects the
displacement necessary to obtain snap-through (from the high-energy state back to
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Figure 5.7: (A) The on-site potential as a function of x and d, as determined via quasi-static
1D displacement-controlled simulations of an individual bistable element; (B-C) Simulated
values of pulse velocity and pulse width, respectively, as a function of end-to-end distance
d and connector stiffness k; (D) The measured energy landscape (panel A) of the individual
bistable elements is combined with the simulated pulse widths (panel C) to compute an
approximate energy barrier Etot for the entire propagating pulse (a function of both d and
k).

the low-energy state) and thereby to initiate the transition during wave propagation.
Using the numerical values for the on-site potential V (x), simulations were subse-
quently performed to predict the wave characteristics for different connector element
stiffnesses, k, and end-to-end distances, d. The wave speed (which is computed by
tracking the point of maximum particle velocity), increases monotonically with in-
creasing k (see Fig. 5.7B). However, the effect of d on the wave velocity is more
complicated. The wave velocity is highly sensitive to changes in d when d is small,
but much less sensitive when d is large. The associated width of the transition wave
was also noted, defined as the number of nodes that simultaneously have displace-
ments between 10% and 90% of the transition displacement. The results reported
in (Fig. 5.7C) indicate that the pulse width increases with increasing k, showing the
same trend as the velocity. For a constant connector stiffness value k, d does not
have an effect on the width for lower stiffnesses but shows a similar variation as the
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velocity for higher stiffnesses.

It is interesting to note that the trends for velocity (Fig. 5.7B) and width (Fig. 5.7C)
contours show a correlation with the energy barrier for different d values as shown
in Fig. 5.7A. For a constant inter-connecting element stiffness, the d values corre-
sponding to high-energy barriers show lower velocity and width. This is because,
when the energy barrier is high, each element needs to absorb more energy to
overcome the barrier, thereby causing a slower transition rate and therefore a lower
wave speed and vice-versa. Consequently, the energy barrier is the most important
criterion in determining the transition speed and width of the displacement profile.

Because the N bistable elements that constitute a particular pulse are not simul-
taneously in morphologies that place them in the peak of their individual energy
barriers, the total pulse energy barrier, Etot, is calculated as

Etot =

N∑
j=1

V (x j ) − V (xs0), (5.4)

where V and N are determined from the simulation results (Figs. 5.7A and C, re-
spectively) and the x j values are approximated by distributing them equally between
xs1 and xs0 (i.e., x j = j xs0−xs1

N+1 ). Fig. 5.7D shows this total potential energy barrier
(Etot), associated with the transition events of the individual bistable elements from
their higher energy state (x = xs0) to their lower energy state (x = xs1). As expected,
as the number of elements in the pulse (N) and the energy barrier for the individual
elements increase, so does the total energy barrier required to initiate the pulse along
a given portion of the chain, since the total energy barrier is the sum of the transient
barriers of the individual elements currently undergoing transition.

While the results reported in Fig. 5.7 were obtained numerically, we also experi-
mentally characterized the propagation of large amplitude waves in systems charac-
terized by different values of k and d. First, to validate the numerical predictions for
the on-site potential, we performed quasi-static 1D displacement-controlled exper-
iments for different d values on an individual bistable element. The experimental
results reported in Fig. 5.8 show a convincing agreement with the numerical results
(Fig. 5.7A). Next, we experimentally investigated the effect of d and k on both wave
velocity and pulse width. To explore the effect of d on the wave behavior, we tested
the propagation of a transition wave through a system in which different values of
d were assigned for the different experiments (Fig. 5.9). This can be done without
fabricating a new sample for each experiment, since different values of d can be
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Figure 5.8: Experimental data obtained by directly measuring the force-displacement
behavior of a single bistable element for different lateral constraints, d; the potential energy
is calculated from this, showing a large effect of d on the energy barrier of the bistable
elements.

achieved by applying a defined lateral displacement (d = 17.5 mm and 18.6 mm in
Fig. 5.9). Comparison between the experimental results show an evident change in
slope of the interface between the pre- and post-transitioned states (blue and red,
respectively), indicating a variation in pulse velocity (the slope of the interface is
inversely proportional to the speed). In particular, we observe a change in the wave

Figure 5.9: (A) Experiments show that when d is small (17.5 mm here) the energy barrier
between the two stable states is larger and the wave propagation is slower; (B) when d
is larger (18.6 mm here) the smaller energy barrier allows a larger propagation speed, as
evidenced by the changed slope.
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speed from about 1.9m/s to 3.4m/s for d = 17.5mm and d = 18.6mm, respectively,
in a system for which k = 80 N/m. This trend is in agreement with simulations.
In contrast, it is apparent that the pulse width is not significantly affected by d, as
the number of bistable elements in the midst of transitioning between solid blue and
solid red remains approximately constant as a function of time.

Figs. 5.11A and B show data for an experiment conducted on a system with stiff
and soft connecting elements (2100 N/m and k=80 N/m, respectively – see insets in
Fig. 5.11C). First, by comparing the slope of the boundaries in Figs. 5.11A and B,
it is evident that the stiffness of the connecting elements affects the pulse velocity.
In fact, we find velocities of approximately 18 m/s and 3.4 m/s for k = 2100 N/m
and k = 80 N/m, respectively. Moreover, k strongly affects the pulse width (i.e.,
the number of bistable elements that at any given time are simultaneously in the
process of transitioning between stable states). This is evident in Fig. 5.11C, where
we compare experimental snapshots of Ŝi for the two systems and observe widths of
approximately 25 and 4 elements for k = 2100 N/m and k = 80 N/m, respectively.
Therefore, the stiffness of the linear connecting elements also greatly affects the
pulse propagation confirming the results of our simulations.

Figure 5.10: Because the system is deformable, different values of d can be used along
the length of the system, resulting in spatially-varying energy barriers to propagation; this
can be used to vary the velocity along the length of the chain, as it is here for a gradient
structure (d is about d1 = 14.5 mm at the left end and about d2 = 19.0 mm at the right end,
corresponding to measured speeds of 0.8 and 5.2 m/s, respectively).
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Figure 5.11: (A) When k is high (2100 N/m here) experiments show that both the pulse
width and the pulse velocity (as determined by the slope) are much higher, even with the
same value of d (18.6 mm), than (B) when k is low (80 N/m here); (C) this same comparison
can be made by taking experimental snapshots of the two different systems (k=80 N/m and
k=2100 N/m, corresponding to the differences in morphology of these elements, as pictured
in the insets).
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5.6 Tunable functional devices
Having demonstrated that the energy barrier for a transition wave to propagate can
be controlled by tuning d and k, we now demonstrate how functional devices can be
designed by carefully arranging the linear and nonlinear elements along the chain.
To this end, it is critical to note that the pulse propagates independent of its initial
conditions, so that it can be manipulated through entirely local geometric changes.
This can be understood as a result of the high damping of the system, in which
only the specific signal compatible with the local geometric parameters is able to
propagate.

For example, an accelerator can be designed by applying different values of d

spatially along the length of the system to achieve a controlled variation in velocity.
Interestingly, this can be done without fabricating a specifically graded system,
since the deformable architecture allows different values of d to be applied along
the length of the system. The experimental results reported in Fig. 5.10 for a chain
where d is approximately 14.5 mm at one end and about 19 mm at the other show
an evident change in slope of the interface between the pre- and post-transitioned
states (blue and red, respectively), indicating a variation in pulse velocity (the slope
of the interface is inversely proportional to the speed). In particular, we observe a
change in the wave speed by more than a factor of 6 from the left end of the chain to
the right (0.8 to 5.2 m/s). The velocity can be seen to be continually varying along
the length of the chain, but at each location it matches the expected velocities from
Fig. 5.7B.

Further, a mechanical diode can be designed as a heterogeneous chain with soft
linear horizontal connecting elements (corresponding to a low-energy barrier) in
one region and stiff ones (corresponding to a high-energy barrier) in another region.
As an example, in Fig. 5.12 we show results for such a system set to d = 17.5 mm
comprised of 25 bistable elements with soft connecting elements (k = 80 N/m)
and 25 bistable elements with stiff connecting elements (k = 2100 N/m). As
shown in Fig. 5.7D, propagating pulses in these two distinct portions of the system
are associated with very different energy barriers. When a pulse is initiated in
the soft region (k = 80 N/m), where it possesses a small width (approximately 4
units) and a resulting low energy barrier (Etot=0.2-0.3 mJ), it is unable to continue
propagating when it reaches the stiff region (k = 2100 N/m), where a wide pulse
(approximately 20 units) and high energy barrier are encountered (Etot =1 mJ).
As a result, the pulse freezes indefinitely at the soft-stiff boundary, with the wave
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Figure 5.12: (A) A functional soft mechanical diode can be realized by creating a hetero-
geneous chain comprised of a region with soft connectors and a small energy barrier (left)
and a region with stiff connectors and a large energy barrier (right); a pulse initiated in the
soft region (from the left) cannot pass into the stiff region due to the large energy barrier,
causing the pulse to freeze indefinitely at the interface (panel A, windows iv − vi and panel
A); in contrast (panel A, windows vii-ix and panel (C) when the pulse is initiated in the stiff
region the propagation continues into the soft region and through the whole chain without
interruption.
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energy that has not already been dissipated being stored in the elastic deformation
of the local structure (Fig. 5.12A-center, Fig. 5.12B). In contrast, a pulse initiated
in the stiff region readily propagates through the soft region as well (Fig. 5.12A-
bottom, Fig. 5.12C), although a kink in wave velocity is observed at the transition
between stiff and soft (a result of the change in k - Fig. 5.12C). The fact that the
wave velocity rapidly changes at the boundary is an interesting manifestation of the
system’s insensitivity to initial conditions. Also, note that the large-amplitude wave
is essentially insensitive to any fabrication-induced imperfections in the system.

The final equilibrium wave profile of the system depends on the internal equilibrium
between the energy generated by the transition and the energy dissipated by the
material damping and is therefore not dependent on the initial conditions. The
latter only affect the transient time needed for the pulse to achieve its equilibrium
configuration. Indeed, integration of Eq. (5.3) under the assumption of a smooth,
stable propagating wave form shows that the total kinetic energy per mass, E,
transported by the pulse and its velocity v are related by E/v = ∆V/(2γ), where
∆V denotes the potential energy difference between the two stable points, consistent
with the results of Chapter 3. The initial conditions (as well as the connector stiffness
k) do not affect this scaling law.

Using similar principles, more complicated functional devices can be designed, such
as mechanical logic gates (Fig. 5.13). One can define the high-energy state of the
bistable element (x = xs0 in Fig. 5.1D) as logical state 0 and the low energy state
(x = xs1 in Fig. 5.1D) as logical state 1, and then design systems that predictably
control pulse propagation in accordance with the energy barrier relationships in
Fig. 5.7D. For example, the bifurcated chain in Fig. 5.13 was designed with a
fixed value of k everywhere (80 N/m), corresponding to the left of Fig. 5.7D, with
the two input chains set to d = 17.5 mm. When the end-to-end distance of the
tilted beams in the vertical output chain, dout, is small (e.g., dout = 16.7 mm) the
energy barrier is sufficiently high that both input chains must have been activated
by propagating transition waves in order to continue propagation through the output
(Fig. 5.13B), behaving as a soft mechanical logical AND gate. However, the very
same system becomes a logical OR gate when dout is increased sufficiently (e.g., to
dout = 18.6 mm), as in Fig. 5.13C. In this case, since the energy barrier of the output
chain is smaller (less than 0.1 mJ), if either of the input chains has propagated the
transition wave, the wave will propagate through the output chain. Similar behavior
can be obtained by other combinations of beam geometries and linear connectors,
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Figure 5.13: (A) A bifurcated chain demonstrating tunable logic in a soft mechanical
system; the distance dout determines the logical behavior, producing either an AND or an
OR gate from the same system; (B) when dout is small (in this case 16.7 mm) the energy
barrier is higher, and both input chainsmust be transitioned in order for the wave to propagate
through the output, comprising the function of a logical AND gate; (C) by increasing dout
(to 18.6 mm in this case), the energy barrier to continue propagation in the output chain
decreases in a predictable manner, producing logical OR behavior in which a transition wave
in either input chain has sufficient energy to initiate propagation in the output chain.

using Fig. 5.7D as a guide.

5.7 Conclusions
We have designed, printed, and demonstrated a system that enables the propagation
of a signal without distortion through soft, dissipative media over arbitrary dis-
tances. The soft medium damps out linear waves, leaving only the desired transition
wave. The precisely architected system makes use of beam-based units exhibiting
asymmetric bistabilities to achieve the propagation of nonlinear transition waves in
which the dissipation inherent to the polymer is overcome by the local release of
elastically-stored energy during the transition of the individual bistable units from a
high-energy to a low-energy configuration. The medium thereby undergoes a phase
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transition as the wave pulse propagates through it. Interestingly, the wave pulse
itself locally stimulates the release of the stored elastic energy as it propagates.
While we have used beam pairs as a simple way to produce the (1D) asymmetric
bistable potential that we use to store elastic energy along the path of the wave,
other higher-dimensional arrangements of beams [133] and shells [14] would also
exhibit asymmetric bistability, and could therefore also be explored as alternative
architectures for the phenomenon studied here.

Due to the intrinsically unidirectional transition from the high- to the low-energy
state that each individual bistable unit undergoes during propagation, an external
source of energy must be provided to reset the bistable elements to their higher
energy state if additional propagation events are desired (which, for example, could
be provided pneumatically or via chemical reactions, as has been demonstrated in
other soft autonomous systems [157]). The high quality of the printed elastomer
ensures that the system can be reused in this manner indefinitely, with a consistent
response from cycle to cycle.

The soft system has the advantage of facile tunability (e.g., changing d) and control
over wave speed, pulse width, and pulse energy, with pulse propagation independent
of the initial conditions. Additionally, the linear coupling springs between the
bistable units exert a large effect on pulse width and energy. A simple mechanical
model was shown to accurately capture the wave characteristics and guide the design
of functional soft logic devices, such as diodes, OR gates, and AND gates. This form
of logic could be harnessed to introduce some level of feedback and control in truly
soft autonomous systems (i.e., without the use of rigid electronics that introduce
materials mismatches that can lead to failure). It is also unique in that the system
undergoes relatively large-amplitude shape changes during its function, so that the
process and output can be easily visualized. As discussed in previous work [133],
the mechanical response of the beams is scale-independent, and the elastic nature
of the mechanism ensures a mechanical response that is independent of rate and
loading history. Our findings can therefore be adapted to other scales and contexts.
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C h a p t e r 6

CONCLUSIONS AND FUTURE DIRECTIONS

6.1 Summary
In this thesis, we studied nonlinear dynamical transitions between different states
of equilibrium in deterministic systems. The switching behavior occurs in the form
of a localized nonlinear transition wave, the properties of which, depended on the
type of system under consideration. We systematically investigated the theory for
conservative, dissipative, and diffusive systems and analyzed properties such as
wave profile, velocity and energy transported in these lattices and experimentally
verified the dissipative case experimentally in a strongly nonlinear lattice. Further,
we used this theory to design novel structures in soft material systems capable of
transmitting nonlinear transition waves.

In Chapter 2, we studied the mechanics of an array of bistable elements connected
through linear springs. We showed that there are three different modes of wave
propagation in this system. In the linearized regime, linear elastic waves propagate
where the wave number and frequency are linked through the dispersion relation.
There is a low-frequency bandgap due to the presence of the bistable elements. In
the weakly nonlinear regime of wave propagation, the bistable forcing function can
be approximated by a cubic polynomial and the governing equation can be reduced
to a nonlinear Schrödinger equation through a perturbation analysis. This equation
has an envelope solitary wave solution. Finally, in the large amplitude strongly
nonlinear regime of wave propagation, we find a family of kink soliton solutions
that can propagate through the system. The kinks have a constant Hamiltonian that
is proportional to the inverse of

√
c20 − v2, where c0 is characteristic sound speed,

and v is the velocity of the system. We derived closed form solutions for all three
regimes of wave propagation.

In Chapter 3, dissipative and diffusive phase transitions in discrete systems and
continua were studied. In these systems, we found that the small-amplitude modes
that are seen in the conservative case are damped out and only the large-amplitude
kink transition wave solution is stable. Unlike family of solutions seen in the
conservative bistable lattice, the transition wave, in this case, has a stationary form
and travels with a constant velocity that is independent of the initial conditions. The
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kinetic energy is an invariant and linearly scales with the velocity of the wave for any
general nonlinear interaction potential and on-site bistable topology. We showed
that, as the kinetic energy scaling is linear, superposition holds for multi-stable phase
transitions. For a general nonlinear damping, the energy scaling is converted to a
dissipation inequality or a statement of the second law of thermodynamics. When
discreteness effects become prominent, the kinetic energy oscillates about a mean
and the mean is linearly related to the velocity through the energy law.

InChapter 4, we constructed a strongly nonlinearmechanical systemwith interaction
nonlinearities and on-site asymmetric bistable topologies, that allows transitions
from a high-energy phase to a low-energy phase. We showed that the transition
waves in this system are unidirectional and can propagate only from the high-energy
phase to the low-energy phase. We further showed that, due to discreteness effects,
the energy of the traveling wave oscillates about a mean value. The mean value
is given by the kinetic energy transport law from Chapter 4 and the frequency of
oscillations is related to the velocity of wave propagation and the lattice parameter.
We also perform a sensitivity analysis with respect to the bistable potential and
interaction coefficient. We found that, below a critical interaction coefficient, the
transition wave does not propagate, which is similar to propagation failure seen in
reaction-diffusion bistable systems.

In Chapter 5, we used this theory to design new structures (made of highly dissipative
materials such as polymers) capable of undergoing phase transitions to transmit
stable mechanical signals. As these materials are dissipative in nature, linear signals
are damped out quickly, which poses a challenge for signal propagation. We tackled
this problem by designing a lattice similar to the one proposed in Chapter 2. The
nonlinearity of instabilities was utilized to counter the effect of dissipation and
dispersion to propagate stable transition waves. We found that the properties of
this waveform can be controlled by changing the pre-compression within the lattice.
Further, we built functional logic devices from these structures to replicate diodes,
AND, and OR gates.

6.2 Future work
6.2.1 A note on ferroelecrtrics
Ferroelectric materials are a class of piezoelectric materials that show a spontaneous
polarization in their equilibrium configuration below a certain temperature called
the Curie temperature. The micro-structure of a ferroelectric material typically
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consists of regions of different crystal orientations called grains. Each grain is
composed of a mixture of different variants of polarization configurations. A region
having a homogeneous state of polarization is called a domain and the boundary
separating two domains is called a domain wall. Upon the application of an external
electric field, the domain walls start moving such that the net polarization aligns
itself with the electric field. An electric field can thus be used to switch the state
of polarization within the material. This switching phenomenon has been used for
applications such as memory devices [132]. Further, the strain field and polarization
are coupled and hence the field can also be used for deforming the material, making
ferroelectrics excellent candidates for actuation mechanisms. Modeling the elec-
tromechanical coupling and the domain switching process across the various scales
is key to understanding the mechanics of these materials. In the past, these materials
have been modeled using phase-field techniques with polarization being the order
parameter using a Ginzburg-Landau-Devonshire potential. Numerical simulations
have been performed for single crystal and polycrystalline BaTiO3, PbTiO3, and
PbZr1−xTixO3 (PZT) based on this approach [78–80, 144, 170, 171]. The dynam-
ics of ferroelectric domain wall motion (that leads to switching) is modeled using
a gradient flow technique in which the driving force is chosen to be proportional
to the polarization evolution. This section focuses on how the energy transport
law, derived in Chapter 3, can be used to compute the domain wall velocity in the
Ginzburg-Landau-Devonshire model for a ferroelectric ceramic. We further show
that the scaling between the velocity and electric field in the theoretical model is
different from that as seen in experiments, and further delineate a technique to model
the kinetics accurately.

We describe a ferroelectric body Ω by displacement field u(x, t), electric potential
φ(x, t), and the polarization field p(x, t), where x ∈ Ω and t ∈ R denote position and
time, respectively. The kinematic relations introduce the infinitesimal strain tensor
ε = 1

2 (∇u +∇uT) and the electric field e = −∇φ. Tractions t0 and displacement u0

boundary conditions are applied on subsets of the body, ∂Ωt and ∂Ωu, respectively.
Similarly, q0 and φ0 are charges and voltages applied to subsets of the surface, ∂Ωq

and ∂Ωφ, respectively. The body force is b and the volume free charge density
within the material is ω. The Helmholtz energy density of the body is

Ψ(p,∇p, ε, d) =ψLandau(p) + ψgrad(∇p) + ψES(p, ε) +
1
2
κ0 |d − p |2 (6.1)

where p is the polarization, ε is the infinitesimal strain tensor, d is the electric
displacement vector, and κ0 is the permittivity of free space. The Landau energy
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has minima corresponding to the spontaneous polarizations within the material, the
gradient term captures the domain wall energy density and ψES accounts for the
electromechanical coupling energy density. The constitutive relation d = κ0e + p

relates the electric field and displacement via permittivity κ0. The electric enthalpy
density of the body is given by the Legendre transform of the Helmholtz energy
density,

W (p,∇p, ε, e) = sup
d
Ψ(p,∇p, ε, d) − e · d. (6.2)

The total energy of the body is therefore given by

Π =

∫
Ω

[
ψLandau(p) + ψgrad(∇p) + ψES(p, ε) dV − e · p −

κ0
2
e · e

]
dV

−

∫
∂Ωt

t0 · u dS +
∫
∂Ωq

q0φ dS −
∫
Ω

b · u dV +
∫
Ω

ωφ dV .
(6.3)

We assume that the external body and surfacemicroforces that arise due to variations
in p and ∇p [144] are zero. The governing equations in static equilibrium can be
obtained by minimizing the variational derivative of the free energy functional.
Computing the first variation gives

δΠ =

∫
Ω

(
yiδpi + σi jδεi j + τi jδpi, j + diδφ,i

)
dV

−

∫
∂Ωt

t0iδui dS +
∫
∂Ωq

q0δφ dS −
∫
Ω

biδui dV +
∫
Ω

ωδφ dV .
(6.4)

where we introduce the thermodynamic work conjugates yi = ∂W/∂pi, τi j =

∂W/∂pi, j and stresses σi j = ∂W/∂εi j . Here and in the following, we used conven-
tional index notation with the Einstein summation convention. By integrating by
parts, we obtain

δΠ =

∫
Ω

(
yi − τi j, j

)
δpi −

(
σi j, j + bi

)
δui −

(
di,i − ω

)
δφ dV

+

∫
∂Ωt

(
σi jn j − t0i

)
δui dS +

∫
∂Ωq

(
dini + q0

)
δφ dS +

∫
∂Ω
τi jn jδpi dS.

(6.5)

As the energy is minimized, the first variation is equated to zero, which must hold
for any subbody. Hence, we get the governing equations

divσ + b = 0 in Ω and σn = t0 on ∂Ωt, (6.6a)

div τ − y = 0 in Ω and τn = 0 on ∂Ω, (6.6b)

div d = ω in Ω and d · n + q0 = 0 on ∂Ωq, (6.6c)
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along with essential boundary conditions u = u0 on ∂Ωu, and φ = φ0 on ∂Ωφ. The
equations represent mechanical equilibrium, electromechanical phase equilibrium
and Gauss’ law, respectively. Under non-equilibrium conditions, as in the case of
dynamics, the right hand side of mechanical equilibrium equation is replaced by ρü
where ρ is the density of the body, and the phase equilibrium equation is replaced by
a dissipative thermodynamic driving force f (p, ṗ,∇p, e) that can be derived from
a dissipation potential φ∗ such that,

f (p, ṗ,∇p, e) =
∂φ∗

∂ ṗ
and

δW
δp
+
∂φ∗

∂ ṗ
= 0. (6.7)

We assume that the dissipation potential is differentiable everywhere. The Gauss’
law remains unchanged in the dynamic case. The Clausius-Duhem entropy inequal-
ity in terms of the electric enthalpy states that

Ẇ − σ · ε̇ + d · ė ≤ 0, (6.8)

thereby providing the constraint,

f (p, ṗ,∇p, e) · ṗ ≥ 0. (6.9)

The simplest kinetic law for the polarization field, compatible with these equations
and commonly used in phase field models for ferroelectrics [144, 170], is based on
gradient flow, i.e., f (p, ṗ,∇p, e) = µ ṗ with µ > 0, giving rise to the Allen-Cahn-
type evolution law µṗi = τi j, j − yi with inverse isotropic mobility µ.

We consider PZT as the model material for the analysis. The phase diagram of PZT
is shown in Fig. 6.1 Above a PbTiO3 composition of 50%, PZT can exist in one of
two phases, a high-temperature cubic phase and a low-temperature tetragonal phase.
The line separating the two phases is the Curie temperature line. A schematic of the
two structural phases of PZT is shown in Fig. 6.2. Below the Curie temperature, the
micro-structure of PZT consists of a mixture of six tetragonal variants as depicted
in Fig. 6.3. This mixture can be modeled using a phase field Ginzburg-Landau
energy density functional with the polarization as the mesoscale order parameter.
The Ginzburg-Landau function has a minima corresponding to the polarization of
each of these six variants. The total internal energy functional can be computed
using first principles ab-initio DFT calculations. For our study, we use the energy
functional by Völker et al. [155]. The Landau energy is given by a sixth-order
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Figure 6.1: Phase diagram of PZT. (The figure has been adapted from [23])

polynomial of the form

ψLandau(p) =α1(p21 + p22 + p23) + α11(p41 + p42 + p43) + α12(p21p22 + p21p23 + p22p23)

+ α111(p61 + p62 + p63) + α123(p21p22p23)

+ α112(p41(p22 + p23) + p42(p23 + p21) + p43(p22 + p21)).

(6.10)

This energy has minimas at the six spontaneous polarization states of the crystal.

(a) T<Tc (b) T>Tc

Figure 6.2: (a) Cubic structure of PZT below the Curie temperature. (b) Tetragonal
structure of PZT above the Curie temperature. (adapted from [161])
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The gradient term is given by

ψgrad(∇p) =
1
2

G11(p21,1 + p22,2 + p23,3) + G12(p1,1p2,2 + p1,1p3,3 + p3,3p2,2)

+
1
2

G44((p1,2 + p2,1)2 + (p1,3 + p3,1)2 + (p2,3 + p3,2)2),
(6.11)

while the elastic energy and polarization coupling term have the following combined
form,

ψES(p, ε) =
1
2

C11(ε211 + ε
2
22 + ε

2
33) + C12(ε11ε22 + ε11ε33 + ε11ε22)

+ 2C44(ε212 + ε
2
13 + ε

2
32) + q11(ε11p21 + ε22p22 + ε33p23)

+ q12(ε11(p22 + p23) + ε22(p21 + p23) + ε33(p21 + p22))

+ q44(p1p2ε12 + p2p3ε23 + p2p3ε23)

+ β1(p41 + p42 + p43) + β2(p21p22 + p21p23 + p22p23).

(6.12)

with

q11 = −C11Q11 − 2C12Q12,

q12 = −C12(Q11 +Q12) − C11Q12,

q44 = −4C44Q44.

(6.13)

We use conventional index notationwith comma indices denoting partial derivatives.
The values of all constants in the energy densities are tabulated in Table 6.1. For
our simulations, we normalize our results using the spontaneous polarization p0 =

0.58C/m2, the energy barrier between the wells Ψmax = 1.8325 × 108 J/m3, the
length and time scales, L = 10−11m and T = 10−10 s respectively.

Figure 6.3: Four of the six Variants of PZT. The other two variants have polarizations
into the plane and out of the plane (adapted from [161]).
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Constant Unit Value
α1 JmC−2 -8.499 × 108
α11 Jm5C−4 1.950 × 108
α12 Jm5C−4 -9.750 × 108
α111 Jm9C−6 2.117 × 109
α112 Jm9C−6 1.687 × 1010
α123 Jm9C−6 4.823 × 109
G11 Jm3C−2 2.9 × 10−11
G12 Jm3C−2 6.95 × 10−11
G44 Jm3C−2 6.95 × 10−11
C11 Jm−3 351 × 109
C12 Jm−3 115 × 109
C44 Jm−3 91 × 109
Q11 m4C−2 3.579 × 10−2
Q12 m4C−2 -5.335 × 10−3
Q44 m4C−2 1.923 × 10−2

Table 6.1: Constants used in the energy density computation.

In order to understand the kinetics of domain walls in ferroelectrics, we consider a
hypothetical situation that mimics the experiments performed on single-crystals [90,
91], as shown in Fig. 6.4. The 180◦ domain wall separates two anti-parallel polar-
izations p− and p+ in an infinite single crystal. An electric field is applied to the
two ends of the crystal through a voltage drop between two electrodes separated
by a distance le, causing the domain wall to move with a speed v. The tractions
are zero on each material boundary and the surface charges are zero on the vertical
boundaries at x1 → ±∞. The body forces and volume charges are assumed to be
zero and inertial effects are ignored.

Electrode

Electrode

p-y p+y𝛥𝜙
v

x

y

Figure 6.4: Schematic view of a 180◦ domain wall in a single-crystal ferroelectric
ceramic capacitor with applied electric field e parallel to the domain wall that is
moving with a velocity v.
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In a spatially uniform region away from the domain wall, we may assume that

p(x) = p, ε (x) = ε and y(e, p, ε) = 0. (6.14)

The domain wall propagation can be thought of as a transition wave where the
switching occurs from one set of polarization and strain state to another set,

x → ±∞ : p → p±, ε → ε± (6.15)

The strains and polarizations are independent of the y-coordinate and therefore,
from (6.14), we conclude that e is also independent of y. As there is no potential
applied in the x-direction, the Gauss’ law reduces to

ey,y = 0 ⇒ ey =
∆φ

le
. (6.16)

Similarly, the equations of mechanical equilibrium can be simplified as

σxx,x = 0 ⇒ σxx = C1 = 0,

σyx,x = 0 ⇒ σyx = C2 = 0.
(6.17)

The constants are zero because of the zero-traction boundary conditions on all
surfaces. σyy is also zero due to the boundary condition on the top and bottom. The
spontaneous electrostrictive strains can be computed using (6.17) to give,

εxx = Q12p2y,

εyy = Q11p2y,

εxy = 0.

(6.18)

Finally, using the phase equilibrium equation and assuming a traveling wave solution
with ξ = x − vt, we obtain

− vµ px,ξ = τxx,x + τxy,y − yx ⇒ yx = 0,

− vµ py,ξ = τyx,x + τyy,y − yy ⇒ −vµ py,ξ = τyx,ξ − yy .
(6.19)

Multiplying the second equation by py,x and integrating over the real axis gives

v

∫ ∞

−∞

µp2y,ξdξ = −
∫ ∞

−∞

τyx,ξpy,ξdξ +
∫ ∞

−∞

yypy,ξdξ

= [[−τyx py,ξ]] +
∫ ∞

−∞

τyx py,ξξdξ +
∫ ∞

−∞

yypy,ξdξ,
(6.20)

where [[(·)]] denotes a jump across the interface of the quantity (·). As the polar-
ization states are uniform at ±∞, [[−τyx py,ξ]] = 0. Now, let us consider W,ξ :

W,ξ = yi pi,ξ + σi jεi j,ξ + τi j pi, jξ − diei,ξ = yypy,ξ + τyx py,ξξ . (6.21)
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Substituting this result in (6.20), we obtain

v =
[[W ]]∫ ∞

−∞
µp2

y,ξ dξ
. (6.22)

The term on the right-hand side determines the Eshelby traction acting on the
domain wall. (6.22) is the energy transport equation for a ferroelectric ceramic. The
polarization profile can be approximated by a hyperbolic tangent profile that goes
from a p+(ey) state to a p−(ey) state. p±(ey) are the polarizations corresponding to
the stable minimizers of W . Fig. 6.5a shows the variation of p±(ey) with the applied
electric field. We define the coercive field ec as the field for which the energy
W becomes convex and has only one energy well or, in other words, p+ and p−

coincide. We will restrict our attention to fields e < ec. Fig. 6.5b shows a stationary
polarization profile, for no applied electric field, that can be approximated as,

py (ξ) ≈
p+ + p−

2
+

p+ − p−

2
tanh

ξ

h
, (6.23)

where h is a measure of the width of the domainwall. Substituting this form in (6.22)
with the approximate profile of the traveling wave gives,

v ≈
3h[[W (p(ey), 0, ε(ey), ey)]]

µ[p+(ey) − p−(ey)]2
(6.24)

We assume that h is a constant and independent of ey. The width h is computed for
a static (e = 0) simulation shown in Fig. 6.5b. Therefore, (6.24) provides an explicit
approximate form for the velocity as a function of the electric field. A comparison
between theory and experiments is shown in Fig. 6.6. The theory matches very well
with the numerical simulations for small electric fields. There is a small discrepancy
between the theory and numerics for electric fields close to the coercive field of PZT.
This is because, at larger electric fields (e ≈ ec), the width of the domain wall is no
longer equal to the width of a stationary domain wall, and hence the velocity is not
accurately determined by the theory. In this manner, the energy law can be utilized
to relate the domain wall velocity to the electric field.

In all previous continuum modeling studies, including the present, a deterministic
Ginzburg-Landau formulation has been used to predict the domain wall motion
in ferroelectric ceramics. However, this formulation does not lead to the correct
scaling of the domain wall velocity with the applied electric field. According to
experiments in single crystals of BaTiO3 and PbZr0.2Ti0.8O3, for small electric fields,
the velocity of a 180◦ domain wall v is seen to have an Arrhenius-type relationship
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Figure 6.5: (a) Plot of equilibrium polarizations p+ and p− as functions of the applied
electric field. The inset shows the energy W for a given electric field ey with p− and
p+ as its local minimizers. p± coincide for e ≥ ec. (b) Comparison between the
simulated profile of the polarization for a stationary domain wall and the hyperbolic
tangent approximation. As can be seen, the arc-tangent profile accurately represents
the variation of polarization across the domain wall.
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Figure 6.6: A comparison between theory and numerical simulations of the variation
of velocity of the domain wall with applied potential difference.

with the applied electric field e,

v ∝ exp−
ea

e
(6.25)

where ea is a thermal activation electric field [91, 151]. This relationship was
first discovered by W. J. Merz and hence the relationship is known as Merz’s
law [91]. First principles molecular dynamics calculations have also confirmed the
nature of this creep-dominated evolution process [82, 136]. As we show, using
the energy scaling law, the relationship between the velocity and the electric field
in the Ginzburg-Landau-Devonshire formulation seen in Fig. 6.6 is not consistent
with the expected Arrhenius form. This gap between theory and experiments needs
to be bridged. The switching is a statistically governed process caused by thermal
activation, with nucleation occurring at defect sites. Hence, these statistical effects
need to be included to capture the accurate kinetics of domain wall motion. A
possible technique to model these thermal effects is by adding a Langevin force
to the polarization evolution equation and measuring the average switching time.
Defect sites can be modeled through a reduced Landau-Devonshire energy barrier
at random sites within the numerical domain. According to the Kolmogorov-
Avrami-Ishibashi model [8, 58, 68], the probability of switching is determined by a
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characteristic time τ given by

τ−1 ∝ e−∆W/kBT, (6.26)

where kB is the Boltzmann constant, T is the temperature, and ∆W is the energy
barrier encountered during switching. As the probability of switching is determined
by the energy barrier, nucleation would therefore be preferred at these defect sites,
in agreement with experiments. Further work, along these lines, will be reported in
the future.

6.2.2 Future directions in theory of bistable lattices and continua
In a conservative lattice of bistable elements, when the on-site potential is asymmet-
ric, a kink transition wave propagates with a constant velocity. However, as energy is
generated at every subsequent transition of a bistable element in the lattice, it leads
to background oscillations that grow with time. We believe that the oscillations
have a structure similar to a dispersive shock wave [61, 85]. Characterizing these
oscillations is a natural extension to the current work presented in this thesis.

For dissipative and diffusive systems, it is known that, if a transition wave solution
exists, it obeys the energy transport law. However, whether a solution always
exists or if there are certain conditions under which a solution exists is still not
known. Therefore, proving the existence of such solutions is an important step
in characterizing these solutions. A linearized state space analysis around the
equilibrium points may suggest specific criteria for transition wave propagation.

6.2.3 Future directions in experiments in bistable lattices
In the chain of bistable elements withmagnetic interactions, introduced in Chapter 4,
all the elements were identically manufactured. It would be interesting to analyze
the effect of defects in this system, e.g., when one of the elements is replaced
by a different element, or the lattice spacing between two elements in the middle
is changed, or if one of the elements is placed in reverse. Another interesting
experiment would be to investigate a traveling wave through a superlattice with two
different types of bistable elements.

The diodes and logic gates introduced in Chapter 5 promise novel applications. One
potential application can be actuation in soft robotic systems such as octobots, where
the bit of information propagated can be used to provide a certain instruction to the
robot.
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A drawback of the current system is that it allows for the propagation of a transition
wave only once. If these elements can be set back to their original state through
piezo-actuation, then they can be used multiple times for propagating waves.

These systems also show similarity to axon propagation in a myelinated nerve
fiber [18]. Hence, they can be used as model systems to study neural circuits.
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