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ABSTRACT 

Nanoelectromechanical systems (NEMS) have advanced the technologies in a wide 

spectrum of fields, including nonlinear dynamics, sensors for force detection, mass 

spectrometry, inertial imaging, calorimetry, and charge sensing. Due to their low power 

consumption, fast response time, large dynamic range, high quality factor, and low mass, 

NEMS have achieved unprecedented measurement sensitivity. For optimized system 

functionalization and design, precise characterization of material properties at the nanoscale 

is essential. In this thesis, we will discuss three applications of NEMS: mechanical switches, 

using anharmonic nonlinearity to measure device and material properties, and mass 

spectrometry and inertial imaging. 

The first application of NEMS we discuss is NEMS switches, switches with physical 

moving parts. Conventional electronics, based largely on silicon transistors, is reaching a 

physical limit in both size and power consumption. Mechanical switches provide a promising 

solution to surpass this limit by forcing a jump between the on and off states. Graphene, 

which is a single sheet of carbon atoms arranged in a hexagonal structure, has high 

mechanical strength and strong planar bonding, making it an ideal candidate for 

nanoelectromechanical switches. In addition, graphene is conductive, which decreases 

resistive heating at the contact area, therefore reducing bonding issues and subsequently 

reducing degradation. We demonstrate using exfoliated graphene to fabricate suspended 

graphene NEMS switches with successful switching.  

The second application of NEMS we discuss in this thesis is the use of mechanical 

nonlinearity to measure device and material properties. While the nonlinear dynamics of 

NEMS have been used previously to investigate the longitudinal speed of sound of materials 
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at nano- and micro-scales, we correct a previously attempted method that employs the 

anharmonicity of NEMS arising from deflection-dependent stress to interrogate the transport 

of RF acoustic phonons at nanometer scales. In contrast to existing approaches, this 

decouples intrinsic material properties, such as longitudinal speed of sound, from properties 

associated with linear dynamics, such as tension, of the structure. We demonstrate this 

approach through measurements of the longitudinal speed of sound in several NEMS devices 

composed of single crystal silicon along different crystal orientations. Good agreement with 

literature values is reported. 

The third application of NEMS we discuss is mass spectrometry and inertial imaging. 

Currently, only doubly-clamped beams and cantilevers have been experimentally 

demonstrated for mass spectrometry. We extend the one-dimension model for mass 

spectrometry to a novel method for inertial imaging. We further extend the theory of mass 

spectrometry and inertial imaging to two dimensions by using a plate geometry. We show 

that the mode shape is critical in performing NEMS mass spectrometry and inertial imaging, 

and that the mode shapes in plates deviate from the ideal scenario with isotropic stress. We 

experiment with various non-ideal conditions to match non-ideal mode shape observed. 
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1 

C h a p t e r  1  

INTRODUCTION AND OVERVIEW 

 

This thesis focuses on three different applications of microelectromechanical 

systems (MEMS) and nanoelectromechanical systems (NEMS): mechanical 

switches, the use of anharmonic nonlinearity to measure in-situ device and material 

properties, and mass spectrometry. We will show how MEMS and NEMS are used 

as a new paradigm in these applications. In the first portion, we will discuss the 

challenges of scaling down the size of modern transistors and how the MEMS and 

NEMS switches we fabricated and measured resolve some of these challenges. In the 

second portion, we describe how to take advantage of mechanical anharmonic 

nonlinearity to determine device and material properties like tension and speed of 

sound in the material. In the last portion, we will describe how NEMS can improve 

mass spectrometry (MS), a technique to quantify and identify the amount of analyte 

in a solution, and inertial imaging, a technique to recover the high mass moments of 

the analyte. We will discuss the need for knowing the NEMS device mode shape in 

order to perform mass spectrometry and show that experimental mode shapes deviate 

from the ideal mode shapes and the sources that can cause these non-idealities.  
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1.1 Overview 

In this chapter, we describe the history and the applications of MEMS and 

NEMS and provide the background and motivation for using NEMS switches as a 

new paradigm for scaling down transistors in size. Finally, we describe mass 

spectrometry and its many applications. 

In Chapter 2, we discuss the operating principles of MEMS and NEMS 

switches and survey NEMS switches made of different materials and their state of 

the art capabilities. We then give an overview of graphene and how it is a suitable 

candidate for mechanical switches and discuss the fabrication process of these 

devices. Lastly, we demonstrate the performance of these graphene switches and 

preliminary data on the optimization of graphene switch performances. 

In Chapter 3, we discuss a novel method of measuring the in-situ stress and 

speed of sound in a NEMS device by accessing the mechanical anharmonic 

nonlinearity via large displacement. We correct a previously attempted method of 

using anharmonic nonlinearity which does not take into consideration the effect of 

stress on the mode shape. Lastly, we demonstrate the measured value using this new 

methodology and show that the measured values match well with the bulk values 

from literature. 

In Chapter 4, we begin our discussion of our last NEMS application of focus, 

mass spectrometry. We begin with providing an overview of NEMS mass 
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spectrometry (NEMS-MS). We demonstrate the shortcomings of one dimensional 

mass sensing and the need for actuating additional normal modes. In the process, we 

show the importance of knowing the mode shape of the NEMS device for mass 

spectrometry of analytes lacking symmetry. We also demonstrate that the measured 

mode shape deviates from the expected ideal mode shape from simulation and 

propose various non-ideal conditions which could account for the non-idealities.  

1.2 Nanoelectromechanical Systems (NEMS) 

Nanoelectromechanical systems (NEMS) [1] have advanced science and 

technology in a wide spectrum of fields, including nonlinear dynamics [2], sensors 

for force detection [3], mass spectrometry [4-6], inertial imaging [7], calorimetry [8], 

and charge sensing [9]. Due to their low power consumption, fast response time, large 

dynamic range, high quality factor, and low mass, NEMS can provide unprecedented 

measurement sensitivity. For optimized system functionalization and design, precise 

characterization of material properties at the nanoscale is essential. 

Today, MEMS are ubiquitous in our daily lives. MEMS accelerometers are 

installed in cars to detect impacts so that air bags deploy to protect us. MEMS 

accelerometers are also installed on laptops so that if the laptop falls, the computer 

can detect the fall and turn off the hard drive in time to prevent damage upon impact. 

MEMS gyros are installed in most smart phones so that the orientation of the phone 

is detected to allow the display to be in the correct orientation. MEMS are also used 

as radio frequency switches which can be used in circuits as phase shifters, tunable 
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filters, and matching networks. Lastly, MEMS are used as oscillators and frequency 

sources because they have high resonant frequencies and good frequency stabilities, 

making them ideal clocks. 

Compared to MEMS, NEMS are smaller so they are even lighter in weight, 

have smaller footprints when used for circuits, and it is easier to access their nonlinear 

behavior. These properties make NEMS sensors highly sensitive and interesting 

candidate systems for studying fundamental physics from quantum mechanics to 

nonlinear dynamics as we will discuss in Chapter 3. 

1.3 Transistors and Switches 

In this section, we provide a background of micro- and nano-mechanical 

switches and transistors. We will discuss some of the challenges as the size of 

transistors is downscaled. Lastly we will discuss using NEMS switches as a new 

paradigm to overcome some of the challenges of scaling down the size of transistors. 

Transistors are used in every computer and most electronics today. As of 

2009, about 1019 transistors have been shipped [10]. This translates to, on average, 

more than one billion transistors per person. Historically though, prior to the wide 

use of transistors, mechanical switches and logic gates were studied and, in fact, 

realized long before transistors and electronic logic gates [11]. And it was not until 

the past 50 years that transistors have replaced relays, mechanical logic, and vacuum 

tubes. 
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A metal-oxide-semiconductor (MOS) transistor has three major parts on or 

as part of the substrate: source, drain, and gate. For the transistor to be turned on, 

carriers (either electrons or holes) must flow from source to drain, forming a current. 

The gate is what determines the amount of carriers and current that flows through the 

transistor, varying the amount of current passing through based on the voltage applied 

to the gate. (Figure 1-1) 

 

Figure 1-1 Diagram of a transistor. The drain and source (blue) have 

dopants of the opposite polarity compared to the substrate (gray). A 

small voltage is applied across the source and drain, but the amount 

of current that is able to flow from drain to source depends on the 

voltage applied to the gate. 

Modern MOS technology has been following Moore’s Law for device scaling 

for half a century for achieving density, speed, and power improvements. As the size 

of transistors decrease over time, the minimum feature size, or node, became one of 

the metrics for the scaling of devices. Figure 1-2 shows the scaling of devices over 

the past half century and the projection in the next few years. 
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Figure 1-2 Plot of semiconductor manufacturing process 

technology nodes. The black dots are the years in which the nodes, 

or the gate length of transistors, was first manufactured. The 

magenta dots are projections of future nodes. 

In the scaling of transistors, the distance between the various parts of the 

device as well as the voltage applied decrease. This causes leakage current in various 

parts of the transistor to increase. One of the major sources of leakage current is the 

subthreshold leakage, a non-zero current from source to drain even when the 

transistor is turned off. As the threshold voltage, the minimum voltage needed to turn 

on the transistor, decreases, the subthreshold leakage increases [12]. 

A new paradigm of using mechanical switches has been proposed as a 

solution to the subthreshold leakage issue. Since mechanical switches have to make 

physical contact for the current to flow, no current should be able to flow when the 
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switch is in the off state. This greatly reduces the off-state transistor power 

consumption and improves the on-state to off-state current ratio. Since the first 

MEMS switch was realized in 1979 [13], the advancements in MEMS and NEMS 

technology have made the realization of NEMS switches an interesting option that is 

worthy of consideration, among a member of post-complimentary MOS emerging 

logic devices, supplementing conventional transistors in various niche applications.  

1.4 Mass Spectrometry  

In the third section of this thesis, we will discuss NEMS-MS. In general, mass 

spectrometry is an analytical method in which the analyte is identified and quantified 

by using the mass-to-charge ratio of the analyte. Chapter 4 will provide some 

background into traditional mass spectrometry methods and provide details about 

NEMS-MS and NEMS inertial imaging (NEMS-II) in both one and two dimensions. 

Mass spectrometry is used in a wide spectrum of fields: geology [14-16], 

environmental science [17-19], forensics analysis [20-22], and proteomics [23-25], 

the study of proteins in biological systems. In geology, mass spectrometry is used for 

carbon dating and measuring petroleum composition. In environmental science, mass 

spectrometry is used for testing water quality and food contamination. In clinical 

testing, mass spectrometry is often used to perform forensics analyses like confirming 

drug abuse and it is also used to detect disease biomarkers in newborns. In 

proteomics, mass spectrometry is used for determining protein structures, their 

functions, their folding patterns, and their interactions. Mass spectrometry can also 
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identify a protein from the mass of its peptide fragments and provide a method for 

monitoring enzyme reactions, chemical modifications, and even protein 

modifications.  
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C h a p t e r  2  

NEMS SWITCHES 

 

In this chapter, we will discuss the operating principles of NEMS contact-

mode switches, survey NEMS switches made of different materials, and examine 

their capabilities. We then give an overview of the properties of graphene and what 

makes it a great candidate for NEMS switches. We discuss the fabrication process 

for our prototype graphene NEMS switches and demonstrate their performance. 

Lastly, we describe our investigation on optimizing the graphene transfer process 

which can be used to enhance graphene NEMS switches. 

2.1 Motivation  

As described in Section 1.3 Transistors and Switches, the demand for 

continuous miniaturization of computing and memory technology has made power 

consumption a critical aspect of device engineering. In particular, even when the 

device is in the off state, there is leakage current between the drain and the source [1-

3]. This leakage current scales up as the device is made smaller while maintaining 

the same voltage. While high-𝜅 material has drastically reduced the tunneling current 

from the gate [4], the drain-source leakage current in the off state is still an issue. As 

devices continue to scale down, the on-current to off-current ratio, 𝐼𝑜𝑛/𝐼𝑜𝑓𝑓, 

decreases exponentially. In a typical diffusion-dominated metal-oxide-
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semiconductor field-effective transistor (MOSFET) at room temperature, the 

fundamental minimum of 60 𝑚𝑉 of change in gate voltage, 𝑉𝐺𝑆, is needed per decade 

of increase of drain-source current, 𝐼𝐷𝑆. Because of these issues, new paradigms 

offering promise for minimizing the leakage current are being explored so that further 

miniaturization of computer logic elements can continue. 

2.2 Operating Principle of NEMS Contact-Mode Switches 

NEMS switches offer an attractive solution to the leakage current issue 

caused by scaling down. Instead of a three-terminal device like a transistor, NEMS 

switches may have either two or three terminals. In a three-terminal device (Figure 

2-1a), there is a separate source, drain, and gate, but for a simple two-terminal device 

(Figure 2-1b), the gate and the drain are one and the same. In the device off state, the 

source and drain terminals are physically and electrically separated by an air gap. 

These two terminals are often composed of one stationary part (e.g., the substrate or 

a side gate) and one moving part (e.g., a cantilever or a doubly-clamped beam). 

To actuate the switch, a voltage potential is applied across its terminals. The 

minimum voltage needed to pull the moving part toward the stationary part is the 

pull-in voltage, 𝑉𝑃𝐼. When the two parts touch, an ohmic contact is formed so that 

current flows from one terminal to the other, and the device is in the on state. Once 

the switch is closed, stiction due to van der Waals, Casimir forces, and other 

interfacial interactions can provide an additional force to keep the switch closed [5]. 

Because of stiction, the applied voltage has to be lowered by a non-zero amount to 
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the pull-out voltage, 𝑉𝑃𝑂 < 𝑉𝑃𝐼, before the stiffness of the device (e.g., related to 

the flexural rigidity in a doubly-clamped beam or cantilever) causes the moving part 

to move back to its original position, returning the device to its off state. By taking 

advantage of this mechanical motion of the NEMS switch to completely disconnect 

source from drain with an air or vacuum gap, 𝐼𝑜𝑛/𝐼𝑜𝑓𝑓 is improved dramatically, as 

we will demonstrate later in this chapter. 

In order to benchmark the performance of NEMS switches according those 

of transistors, the following four parameters are useful metrics: 𝐼𝑜𝑛/𝐼𝑜𝑓𝑓, switch-on 

(pull-in) voltage, switching time, and the number of cycles before failure. We will 

describe each of these below. 

As discussed in the previous section, the thermodynamic limit for 𝐼𝑜𝑛/𝐼𝑜𝑓𝑓 

in a MOSFET transistor is at least 60 𝑚𝑉 of change in the 𝑉𝐺𝑆 for each decade of 

change of the current 𝐼𝐷𝑆. Compared to MOSFET, NEMS switches have a clear 

advantage because the switch is always in one state until the voltage surpasses a 

threshold voltage, at which point, the switch is in the other state. The sudden, abrupt 

change from no contact to an ohmic contact between the two parts of the switch over 

an ideally zero change in voltage gives NEMS switches an ideal voltage swing in 𝑉𝐺𝑆 

for each decade of change in drain current. This threshold voltage is called the switch-

on voltage, and often is taken as the pull-in voltage at which the source is pulled to 

the drain (for three-terminal devices) or the source is pulled to contact the gate/drain 

(for two-terminal devices). 
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Figure 2-1 Schematic of a three-terminal and two-terminal NEMS 

switch. (a) In the three-terminal NEMS switch, a potential 

difference between the gate (green) and the source (blue) pulls the 

thinner part of the source toward the gate. Because the right side of 

the source is not fixed, it will be pull toward the drain (orange). 

When the source makes physical contact with the drain, current 

flows through and the switch is in the on state. (b) In the two-

terminal NEMS switch, a potential difference between the gate 

(green) and the source (blue) again pulls the thinner part of the 

source toward the gate. When the source makes physical contact 

with the gate, current flows through and the switch is in the on state. 

The switch-on voltage is the minimum DC gate voltage needed so that the 

two parts of the drain and source electrodes of switch come in physical contact. This 

is analogous to the threshold voltage, 𝑉𝑇, for a transistor. The switch-on voltage is an 

important metric for switches because it determines the overall power needed to 

operate the device. In general, the lower the voltage needed to actuate the switch, the 

lower the power consumption [6, 7]. In a two-terminal electrostatic switch, the 

electrostatic pull-in voltage is the switch-on voltage. The pull-in voltage is 
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determined by two forces: the capacitive force due to the applied potential and the 

restoring force due to rigidity. To simplify this calculation, the switch is modeled as 

a parallel plate capacitor with a vacuum air gap separation of 𝑔0 when no potential is 

present. The minimum voltage needed for the two parts of the switch to contact, the 

pull-in voltage, is given by [8] 

 𝑉𝑃𝐼 = √
8

27

𝑘𝑔0
𝜖𝐴
, Eq. 2-1 

where 𝑘 is the spring constant of the device, 𝜖 is the permittivity of free space or air, 

and 𝐴 is the effective area of the capacitor. For a doubly-clamped beam with 

negligible tension, 𝑘 ∝ ℎ𝐸/𝐿5𝑤, where ℎ is the thickness of the beam, 𝐸 is the 

Young’s modulus of the material, 𝐿 is the length of the beam, and 𝑤 is the width of 

the beam, Eq. 2-1 is rewritten as  

 𝑉𝑃𝐼 = √
ℎ𝐸𝑔0
𝜖𝐿4

, Eq. 2-2 

In addition to the power consumption of the NEMS switch, the speed at which 

these switches are able to be turned on, or an equivalent measure, the inverse of the 

switching speed, the switching time, is also critical. This is analogous to the speed of 

a transistor with the fastest transistor realized to date operating at 765 𝐺𝐻𝑧 at room 

temperature [9]. For a NEMS switch driven by capacitive actuation, if the applied 

voltage, 𝑉𝑆, is at least 2𝑉𝑃𝐼, the switching time is given by [10]: 
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 𝑡𝑠 =
𝑉𝑃𝐼
𝑉𝑆𝜔0

√
27

2
 , Eq. 2-3 

where 𝜔0 = √𝑘𝑒𝑓𝑓/𝑚𝑒𝑓𝑓 is the resonant frequency of the device. Here 𝑘𝑒𝑓𝑓 is the 

effective spring constant and 𝑚𝑒𝑓𝑓 is the device effective mass. While the pull-in 

voltage is the minimum voltage needed to actuate the switch, higher voltages are 

often used to reduce the switching time as shown in Eq. 2-3. Similarly, a higher 

resonant device frequency corresponds to a lower switching time. Plugging Eq. 2-1 

into Eq. 2-3 and assuming the switch is made of a doubly-clamped beam (e.g., 

𝑚𝑒𝑓𝑓 = 0.396 𝜌𝐴ℎ where 𝜌 is the mass density and ℎ is the beam thickness), the 

switching time is represented as: 

 𝑡𝑠 =
0.793

𝑉𝑆
 √
𝑔0𝜌ℎ 

𝜖
. Eq. 2-4 

Lastly, the life-time of a switch is measured as the number of cycles the 

device is able to withstand before failure. In the next section, we will survey current 

state of the art NEMS switches. 

2.3 State of the Art NEMS Switches Capabilities 

The ideal NEMS switch would have an infinite or very high on-current to 

off-current ratio, low pull-in voltage, fast switching speed (short switching time), and 

high number of switching cycles before device failure. Unique properties of various 

materials are often exploited to optimize one of these metrics of NEMS switches. In 
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this section, we describe NEMS switches with some of the current state of the art 

pull-in voltage and switching times. Because NEMS switches can be switched from 

off-state to on-state by going from slightly below to slightly above the pull-in voltage, 

the minimum voltage swing to turn on a NEMS switch is always going to outperform 

the 60 𝑚𝑉/𝑑𝑒𝑐 swing/slope of transistors, and thus will not be discussed in this 

section. 

In order to achieve a low pull-in voltage, piezoelectric actuation provides an 

interesting mechanism for use due to promise for low voltage operation. Instead of 

using electrostatic actuation by applying a voltage across both the moving part and 

the stationary part of the switch, the voltage is applied across a piezoelectric element. 

The applied voltage causes the material to expand or contract, and using asymmetric 

expansion and contraction, a piezoelectric doubly-clamped beam or cantilever 

deflects until it comes into contact with an electrode, thus closing the circuit. Using 

aluminum nitride (AlN), Piazza et al. have made doubly-clamped beams and 

cantilever NEMS switches with 520 mV as the minimum actuation voltage [11-13]. 

While the actuation voltage is small, the device has a large footprint of ~60𝜇𝑚2, 

which is comparable to many piezoelectric NEMS switches demonstrated to date. 

Compared to transistors, most MEMS switches demonstrated to date have 

tended to be slower, with switching times typically on the order of microseconds 

[14]. By contrast, Feng et al. has made in-plane NEMS switches using silicon on 

insulator (SOI) cantilevers with resonant frequencies between 1 − 10 𝑀𝐻𝑧 or 
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switching speeds between 10 − 100 𝑛𝑠 [15-17]. One of the notable features of 

these Feng cantilever switches is the very small air gap between various parts of the 

switch: 50 − 100 𝑛𝑚 between the cantilever and the gate and 20 − 40 𝑛𝑚 between 

the source and drain. The small vacuum or air gap, as seen in Eq. 2-4, allows for 

faster switching times. 

In addition to using AlN and SOI as materials for NEMS switches, several 

other materials are used because of their unique properties, e.g., silicon carbide (SiC) 

[18], single- and multi-wall carbon nanotube (CNT) [19, 20], and graphene [21]. 

Silicon carbide’s advantage is its robustness to harsh conditions like high 

temperatures. Carbon-based material like CNT and graphene have been of interest 

given their light weight and stiffness. The attributes endow CNT and graphene based 

switches with faster switching times and lower pull-in voltages. 

When considering only the pull-in voltage and the switching time, Eq. 2-2 

and Eq. 2-4 are used to determine material properties ideal for fast switches with low 

power consumption. In order to minimize the pull-in voltage for a doubly-clamped 

beam NEMS switch with an air gap, the spring constant and air gap distance should 

be minimized while the area should be maximized. In order to minimize the 

switching time of this switch for a given applied voltage, a material with low mass 

density and architectures emphasizing thin movable elements are preferable. 

In the next section, we will discuss graphene which has properties that may 

make it an ideal material for NEMS switches. 
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2.4 Mechanical and Electrical Properties of Graphene 

Graphene, which is a single layer of carbon atoms arranged in a hexagonal 

structure, has many interesting properties that make it an attractive candidate for 

nanoelectromechanical switches. For example, as a single atomic layer, graphene can 

be defect-free [22]. Another advantage of graphene is that its mechanical strength is 

200 times that of steel; this offers interesting prospects for building robust moving 

parts for a nanoelectromechanical switches. While graphene has a very high Young’s 

modulus of 1 𝑇𝑃𝑎 [23], the thinness of the material still allows for a low pull-in 

voltage (Eq. 2-2). Table 2-1 compares the Young’s moduli of some common 

materials for making MEMS/NEMS switches [23-29]. 

Material Young’s Modulus (𝑮𝑷𝒂) 

Carbyne 32700 

Graphene 1050 

Single Wall Carbon Nanotube 1000 

Silicon Carbide 350 –  450 

Molybdenum 330 

Silicon 130 –  188 

 

Table 2-1 Comparison of the Young’s modulus of NEMS switch 

materials. 

In addition, graphene has a low longitudinal sheet resistance; 𝜌𝑥𝑥 =

1125 Ω/square; this can translate into high on-state conductance [30]. In the 
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following sections, we will discuss the graphene and other NEMS switches that 

we have fabricated and tested. 

2.5 Graphene NEMS Switch Fabrication Process 

In our first generation of graphene NEMS switches, graphene from highly 

ordered pyrolytic graphite (HOPG) was exfoliated onto a silicon wafer with a 

285 𝑛𝑚 thermally grown silicon dioxide layer. HOPG is defined as “artificially 

grown graphite with an almost perfect alignment perpendicular to the carbon planes” 

[31]. It has many layers of graphene stacked on top of one another. The 285 𝑛𝑚 thick 

silicon dioxide was used because it is optimal for having the greatest contrast for 

observing graphene under an optical microscope [32]. 

Graphene was exfoliated using the Scotch® tape method. A small flake of 

HOPG was placed on a piece of Scotch® tape and the tape was folded on itself so 

that both sides of the HOPG were covered by different parts of the tape. After the 

tape was firmly pressed, the tape was peeled apart so that there is HOPG on both 

sides of the tape, reducing the number of layers of graphite at each location. This 

folding process was repeated many times until the HOPG on the tape was translucent. 

The tape was then pressed on the 285 𝑛𝑚 silicon dioxide substrate to transfer some 

of the HOPG to the substrate. The substrate was then inspected under the optical 

microscope to identify single-layer graphene to a few-layer graphene. 
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Figure 2-2 Raman spectrogram of the G and G' band for various 

thicknesses of graphene. The upper right is an optical image of the 

graphene sample of different thicknesses. The thickness is verified 

using AFM. Region 1 is single layer. Region 2 and 3 are bilayers. 

Region 4 has 4 layers. Region 5 and 6 have 7 to 8 layers. 
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In order to verify that the graphene is single-layer, Raman spectroscopy 

was performed with a 514 𝑛𝑚 laser. Based on the full width at half max (FWHM) 

and the relative amplitude of the various peaks on the Raman spectrograph, the 

number of layers of graphene was determined. Figure 2-2 shows the Raman 

spectrograms of various thicknesses of graphene, subsequently confirmed by atomic 

force microscopy (AFM). In verifying the number of layers of graphene, there are 

two key features: the 𝐺 peak around 1580 𝑐𝑚−1 and the 𝐺′ peak around 2700 𝑐𝑚−1 

[33]. For one or two layers of graphene, the 𝐺′ peak has a higher amplitude than the 

𝐺 peak. In particular, for a single-layer graphene, the intensity of the 𝐺′ peak is about 

twice that of the 𝐺 peak. In addition to the relative peak intensities, the FWHM of 

the 𝐺′ peak goes from ~30 𝑐𝑚−1 for a single graphene layer to ~50 𝑐𝑚−1. 

Once the graphene sample had been verified to be single-layer or bi-layer, 

alignment markers were patterned onto the chip using electron beam lithography. A 

bilayer of Poly-methyl methacrylate (PMMA) is used as the e-beam resist. 

495PMMA A4 is spun at 4000 𝑅𝑃𝑀 for 1 minute and baked for 5 minutes, followed 

by the same procedure with 950PMMA A2. After developing the resist and finding 

the location of the graphene with respect to the alignment markers, the electrodes 

were designed and patterned using e-beam lithography again. After developing the 

resist, 5 𝑛𝑚 chromium (Cr)/300 𝑛𝑚 gold (Au) was evaporated using a thermal 

evaporator and was lifted off in an acetone bath overnight. Lastly, the device was 

submerged in 10:1 buffered oxide etch for 3 minutes to release the device, submerged 
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in de-ionized water, followed with filtered isopropyl alcohol (IPA), and then dried 

via critical point drying. (Figure 2-3) 

 

Figure 2-3 Fabrication process of graphene doubly-clamped 

switches. (a) Device fabrication is done on a silicon substrate with 

285 𝑛𝑚 silicon dioxide. (b) Graphene is exfoliated onto the 

substrate using the Scotch® tape method. The thickness of the 

graphene sample is then measured using Raman spectroscopy. (c) 

A PMMA bilayer is spun on the substrate, covering the graphene. 

(d) Alignment markers are patterned using electron beam 

lithography. (e) After locating the graphene with respect to the 

alignment markers, electrodes are designed and patterned using 

electron beam lithography. (f) 150 𝑛𝑚 of gold is thermally 

evaporated onto the sample. (g) The sample is submerged in 

buffered oxide etch for 3 minutes. (h) The buffered oxide etch is 

then replaced with water, then isopropyl alcohol, and the sample is 

dried in the critical point dryer. 
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2.6 Graphene NEMS Switch Experimental Setup 

In order to measure the performance of these graphene NEMS switches, they 

were placed in the chamber of a Lakeshore PTXX probe station. All measurements 

were performed at room temperature and at a pressure of 10−6 𝑡𝑜𝑟𝑟. Resistance of 

each device was measured using an SR 830 lock-in amplifier with radio frequency 

(RF) of 38.25 𝑘𝐻𝑧. 

 

Figure 2-4 Experimental setup for graphene device resistance 

measurement. A resistance of 100 𝑘Ω and 𝑉𝐴𝐶 at 38.25 𝑘𝐻𝑧 was 

used while the device is in a vacuum < 10−6 𝑡𝑜𝑟𝑟. 

The device resonance was also measured using a frequency modulation 

scheme [34]. An RF voltage at frequency 𝑓 + Δ𝑓 was applied to the drain of the 

device while a DC and an RF voltage at 𝑓 was applied to the substrate. The two RF 
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signals were mixed using an external commercial mixer (Mini-circuit ZFM-2+) 

and used as the reference for the SR 830 lock-in amplifier to detect the signal from 

the source of the device. (Figure 2-5) 

 

Figure 2-5 Frequency modulation mix down technique for 

measuring resonant frequency of the graphene device. An RF signal 

of frequency 𝑓 + Δ𝑓 was applied to the source of the device while 

a DC signal with an RF signal at frequency 𝑓 was applied to the 

gate of the device. A commercial mixer was used to mix down the 

sources and the mixed down frequency at Δ𝑓 was used as the 

reference for the SR 830 lock-in amplifier. The signal from the 

drain was fed into the SR 830 for measurement. 

After characterizing the devices, an HP 4145B semiconductor analyzer was 

used to measure the switching performance of the devices. The source of the device 

was grounded while the gate was swept using the HP 4145B source/measure unit 
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(SMU) starting from 0 𝑉. The gate voltage upper sweep range was increased 

typically from 1 𝑉, 2 𝑉, 5𝑉, 10 𝑉, then 20 𝑉 to ensure the voltage applied was not 

too high such that it damages the device. 

2.7 Graphene NEMS Switch Measurement 

We evaluated the performance of seven devices of various dimensions using 

the techniques discussed in the above sections. This section summarizes the results 

of this study along with a tale of the devices’ measured characteristics. 

Device resonant frequency was measured as a function of DC voltage applied 

to the gate. Figure 2-6 shows a typical result. The device used for this measurement 

was 3.4 𝜇𝑚 long and 2.0 𝜇𝑚 wide. As the potential across the device and the 

substrate increases, electrostatic force also increases, causing the frequency to rise. 

The lowest frequency does not correspond to a gate voltage of 0 𝑉 because residual 

charges on the graphene from the fabrication process require a nonzero gate voltage 

to balance their effect. The discontinuities at 17 𝑀𝐻𝑧 most likely result from the 

resonance of the gold ledge used for clamping the graphene. This resonant frequency 

does not tune with the gate voltage, which is consistent with the expected behavior. 
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Figure 2-6 Resonant frequency plot as a function of gate voltage. 

The frequency increases as a function of gate tuning because the 

potential applied across the device and the substrate induces 

additional tension in the device, increasing the resonant frequency. 

The discontinuities at 17 𝑀𝐻𝑧 most likely come from the 

resonance of the gold ledge used for clamping the graphene. 

Figure 2-7 and Figure 2-8 show the measured voltage and current responses 

of two graphene NEMS switches. In our first bilayer graphene device of length 

~2.8 𝜇𝑚 and width ~1 𝜇𝑚 (Figure 2-7), we see the typical behavior with 𝑉𝑃𝐼 = 4 𝑉 

and 𝑉𝑃𝑂 = 2 𝑉. 𝐼𝑜𝑛/𝐼𝑜𝑓𝑓 > 100 and it took less than 10 𝑚𝑉of voltage change to 

increase the current by a decade (compared to the 60 𝑚𝑉 minimum for a decade in 

current for a transistor). 
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Figure 2-7 Scanning electron micrograph and performance of a 

graphene sample. (a) Scanning electron micrograph image of a 

suspended, doubly-clamped graphene ribbon/membrane structure 

that can enable a two-terminal vertical electrostatic switch (via 

coupling to the conductive Si substrate) and/or an out-of-plane 

graphene membrane resonator. (b) Top-view SEM image of the 

device showing the measured in-plane dimensions. (c) Two-

terminal NEMS switching test data showing an abrupt switching at 

𝑉𝑜𝑛~4V, with a very small swing, a high on/off ratio, and a ~2V 

hysteresis. (d) Same data as shown in panel (c) but with measured 

current in logarithmic scale.  

In our second device, (Figure 2-8) the single layer graphene is shorter with 

length 900 𝑛𝑚, but it is not as well clamped. We show the response of the device 

over multiple pull-in and pull-out cycles. In this device, the pull-in voltage increased 

over time, most likely due to the poor clamping and deformation of the device from 

each pull-in cycle. After 18 cycles of pull-in and pull-out, the device finally failed. 
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Figure 2-8 Multiple pull-in and pull-out cycles on a 900 𝑛𝑚 length 

graphene NEMS switch. The pull-in voltage increased over time 

until failure after 18 cycles. 

A total of seven devices, similar to those presented above, were successfully 

fabricated and measured. A summary of their performances is listed below in Table 

2-2 with the devices mentioned above being device 1 and 2 in the table. All devices 
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were between one and four graphene layers thick. The swing per decade or the 

change in voltage needed for a decade of change in current, 𝑆, for all devices is less 

than 10 𝑚𝑉/𝑑𝑒𝑐𝑎𝑑𝑒. While the HP 4145B has a minimum voltage step size limit of 

1 𝑚𝑉, most of our measurements were performed with a voltage step size of 20 𝑚𝑉 

to 50 𝑚𝑉. In addition, we limited the on-state current compliance to between 1 𝜇𝐴 

and 100 𝑚𝐴 depending on the response of the device. The current limit minimizes 

excessive heating to the device which may alter the device performance. By 

performing the measurement with smaller voltage step sizes, a more precise swing 

per decade can be measured. In addition, while the switching time was not measured 

directly, we are able to deduce the switching time to be < 100 𝑛𝑠 from the measured 

resonant frequencies of the devices using Eq. 2-3. 
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Table 2-2 Summary of the graphene doubly-clamped devices and 

their switching performances. All devices were between 1 and 4 

layers of graphene. The swing/slope are all below 10 𝑚𝑉/𝑑𝑒𝑐 and 

these values are limited by the step size and the current limit set 

during the measurement. Similarly, 𝐼𝑜𝑛/𝐼𝑜𝑓𝑓 are limited by the 

maximum current set by the measurement and thus these values are 

expected to be orders of magnitude higher than reported. 

A set of devices worth noting are devices 4 through 6 which is composed of 

three pieces of graphene sharing the same electrodes. The novelty of having graphene 

pieces of various sizes sharing an electrode is that they each have a slightly different 

pull-in voltage. By actuating only the graphene device with the smallest pull-in 
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voltage each time, even after this particular piece of graphene fails after multiple 

pull-in and pull-out cycles, the remaining graphene pieces can continue to make 

electrical connections by applying a higher voltage. This is a possibility in improving 

the longevity of the devices. 

 

Figure 2-9 Scanning electron micrograph of graphene switching 

devices 4 through 6. This set of devices is composed of three pieces 

of graphene with slightly difference dimensions. Due to the 

different dimensions, each piece of graphene has a slightly different 

pull-in voltage. This allows the switch to continue to work even 

after one of the pieces of graphene fails due to testing over time. 

In this section, we showed the results of our graphene NEMS switches. 

Compared to traditional transistors, our switches had a much smaller swing voltage, 



 

 

35 

< 10 𝑚𝑉/𝑑𝑒𝑐. We also demonstrated that our devices have a switching time 

typically < 100 𝑛𝑠. While these prototype devices are still not as fast as the state of 

the art transistor and cannot last 107 cycles like many current transistors, through 

engineering and optimization of the design and fabrication process, the performances 

of graphene NEMS switches will improve. The current method using the Scotch® 

tape method and HOPG requires each device geometry and location to change based 

on the graphene piece available. This prevents large scale engineering and testing of 

graphene device geometry and other parameters. In the next section, we will 

experiment with graphene grown on a copper foil to achieve large graphene areal 

coverage. 

2.8 Optimization of Graphene for NEMS Switches 

Our preliminary results from tests of graphene NEMS switches proved 

promising, so we conducted further experiments to optimize various aspects of their 

design and fabrication. This section discusses some of those follow-on investigations 

using chemical vapor deposition (CVD) graphene grown on copper foil instead of 

exfoliated graphene. While exfoliating graphene is simple to perform, the process is 

unreliable in depositing single layer graphene, size of samples are small, and the 

process is time consuming. Exfoliated graphene is unscalable for technological 

applications. CVD graphene, on the other hand, is a promising candidate for 

producing consistent single layer to arbitrary shapes and sizes.  
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We begin with our typical CVD graphene transfer process. For all of our 

experiments in this section, commercial CVD graphene grown on copper foil from 

Graphene Supermarket was used. Both sides of the copper foil have CVD graphene 

because of the growth method. For each sample, we started with a small piece, 

~1 𝑐𝑚 × 1 𝑐𝑚, of CVD graphene on copper and applied a drop of 950PMMA C8 

to cover one side of the CVD graphene. The PMMA/CVD graphene was then placed 

in a beaker of 1𝑀 iron (III) chloride (FeCl3) for 30 minutes. The PMMA/CVD 

graphene flows due to the surface tension of water and the hydrophobic nature of 

PMMA. The FeCl3 etched the copper causing graphene on the bottom side of the 

copper foil to sink to the bottom of the beaker. After 30 minutes, the 

PMMA/graphene sample then underwent successive de-ionized water baths to rinse 

away metal particles left from the etch. The sample was then collected on a clean, 

285 𝑛𝑚 silicon dioxide on silicon substrate with alignment markers pre-patterned. 

The sample was then dried in the air for 4 hours. Another drop of 950PMMA C8 was 

placed on the graphene to reflow the preexisting PMMA to release any tension built 

up during the transfer process. The sample was then heated to 60℃ for 30 minutes. 

Finally, the PMMA was removed in an acetone bath. 
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Figure 2-10 CVD graphene transfer procedure. (a) We began with 

commercially purchased CVD graphene. (b) 950PMMA C8 was 

applied to the CVD graphene. (c) The PMMA/graphene was etched 

in a 1𝑀 FeCl3 solution. (d) With the copper etched, the bottom 

graphene layer sinks to the bottom of the beaker. (e) The FeCl3 was 

then replaced with de-ionized water three times to remove leftover 

metal and etchant. (f) The PMMA/graphene was lifted from the 

water with a silicon/silicon-dioxide chip with pre-patterned 

alignment markers. (g) Another drop of PMMA was applied to the 

graphene to reflow the PMMA. Then the sample is heated for 30 

minutes. (h) The PMMA was removed in an acetone bath.  
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The CVD transfer process resulted in continuous graphene for the most 

part but there are periodic tears in the graphene and residual PMMA in the resulting 

graphene. Every device fabricated using this transferred graphene still has to be 

designed individually depending on the location and size of the continuous graphene. 

We experimented with the following steps to minimize the number and size of the 

tears and the amount of residual PMMA: 1) the amount of PMMA applied in the first 

step, 2) functionalization of the silicon dioxide surface of the substrate, and 3) the 

duration of leaving the sample in acetone to remove the PMMA. 

Figure 2-11 shows the results from using various amounts of PMMA to hold 

onto the top graphene layer while etching the copper foil. When a drop of PMMA 

was put on a piece ~1 𝑐𝑚 × 1 𝑐𝑚 of CVD graphene, large areas of graphene, 

~10 𝜇𝑚 × 10 𝜇𝑚 or larger, rolled up. When excess PMMA was removed prior to 

the transfer process with a piece of Texwipe®, the transferred graphene is practically 

holes-free with the exception of a few small tears on the order of ~2 𝜇𝑚 × 2 𝜇𝑚. 

When these samples were placed in the etchant, the sample with the excess PMMA 

tends to curl upward like a bowl, most likely due to the surface tension, while the 

sample without the excess PMMA remains flat to the surface of the water. The extra 

stress from the excess PMMA is likely the cause of the holes in the graphene. 

 In order to be more precise than simply wiping the excess PMMA off, a 

spinner was used to spin the excess PMMA off at 500 𝑅𝑃𝑀 and at 4000 𝑅𝑃𝑀. In 

both of these cases, many micro-tears on the order of ~1 𝜇𝑚 to ~5 𝜇𝑚 were evenly 
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distributed across the entire sheet of graphene. In the case where the spin speed is 

higher, the micro-tears were bigger. The results here were representative of the three 

repeated trials we performed. 

 

Figure 2-11 The effect of PMMA quantity on quality of transferred 

graphene. (a) A full drop of 950PMMA C8 is applied to a piece of 

CVD graphene 1 𝑐𝑚 × 1 𝑐𝑚 and resulted in large holes. (b) Excess 

PMMA was removed with a Texwipe® and the transferred 

graphene is relatively holes free. (c) Excess PMMA was removed 

by spinning at 500 𝑅𝑃𝑀 and transferred graphene has mirco-tears 

distributed throughout. (d) Excess PMMA was removed by 

spinning at 4000 𝑅𝑃𝑀 and larger micro-tears resulted throughout.  
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Figure 2-12 shows the effects of the substrate preparation on the quality of 

transferred graphene. During the transfer process, after the copper foil was etched 

away from the CVD graphene and triple rinsed with de-ionized water, a substrate 

was used to lift the graphene out of the water. The substrate used is a silicon chip 

with a layer of 285 𝑛𝑚 silicon dioxide and 100 𝑛𝑚 gold alignment markers pre-

patterned. Through trial and error, we discovered that by dipping the substrate into 

diluted solution of 1 part 10:1 buffered oxide etch (BOE) to 50 parts de-ionized water 

for 1 or 2 seconds prevents long tears in the transferred graphene. We note that the 

transfer of graphene must be performed soon after the diluted BOE treatment. 

Attempts at dipping all the substrate in the buffered oxide etch a few days in advance 

of transferring the graphene onto them did not prevent the long tears. We hypothesize 

that this is due to new hydrogen bonds being formed from the quick diluted BOE dip, 

which allowed the graphene to adhere better to the substrate for subsequent steps of 

the transfer process. 
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Figure 2-12 The effects of substrate preparation on the quality of 

transferred graphene. (a) CVD graphene transferred to a typical 

Si/SiO2 chip. (b) CVD graphene transferred to the same chip that 

has been treated with 1 part 10:1 buffered oxide etch to 50 parts de-

ionized water. There is a dramatic reduction in the number of long 

tears. 
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Figure 2-13 shows the effects of the duration of PMMA removal in acetone 

on the quality of transferred graphene. When the sample is left in the acetone for 2 

hours and 4 hours, there is no significant amount of holes present. However, when 

the sample has been submerged in the acetone for 8 hours and 20 hours, tears of 

100 𝜇𝑚 and bigger start forming. The longer the sample stays in the acetone, the 

bigger the holes become. We hypothesize that in a short period of time, the acetone 

removes the PMMA but over longer periods of time, the acetone removes the 

graphene as well since graphene is also organic. 

 

Figure 2-13 Evolution of hole size as the graphene remains in 

acetone for various duration. When the sample was submerged for 

2 and 4 hrs, no noticeable holes were formed. When the sample was 

submerged for 8 hrs and longer, holes formed and grew with time. 
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Through the transfer optimization by minimizing the size and number of 

tears and holes, we were able use a standardized electrode pattern instead of 

individually designing the electrodes for each device. The yield also improved from 

~1 − 2% yield to ~30 − 40% yield. Most importantly the quality of the graphene 

devices through visual inspection has also improved as shown in Figure 2-14. 

 

Figure 2-14 Quality of graphene before and after transfer 

optimization. (a, b) Scanning electron micrographs of suspended 

graphene devices with CVD graphene prior to the transfer process 

optimization. (c, d) Scanning electron micrographs of suspended 

graphene devices after the transfer process optimization. 
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2.9 NEMS Switches of Other Materials 

In addition to demonstrating and optimizing graphene switches, we had also 

prototyped NEMS switches using aluminum nitride (AlN). As stated in Section 2.3 

State of the Art NEMS Switches Capabilities, AlN is an interesting material because 

of its piezoelectric property. The expansion or contraction of AlN due to a small 

potential difference causes the NEMS to deflect. In this section, we describe our AlN 

cantilever switches fabrication process and performances as well as a prototype AlN 

doubly-clamped beam switch. 

Our AlN cantilever switch fabrication process builds on a piezoelectric stack 

composed of bulk silicon as the substrate and on top of that 2 𝜇𝑚 of silicon dioxide, 

20 𝑛𝑚 of AlN, 100 𝑛𝑚 of molybdenum (Mo), 50 𝑛𝑚 of AlN, 𝑎𝑛𝑑 40 𝑛𝑚 of Mo 

on top (Figure 2-15a). Using electron beam lithography, a 200 𝜇𝑚 × 400 𝜇𝑚 area 

was patterned for the evaporation of an 80 𝑛𝑚 layer of strontium fluoride (SrF2). 

This SrF2 layer serves as an etching mask for the following steps and defines the area 

where the cantilever will ultimately be located (Figure 2-15a). Using electron 

cyclotron resonance plasma etching (ECR), the top Mo layer not covered by the SrF2 

was removed (Figure 2-15c). Potassium hydroxide (KOH) was then used to etch the 

top AlN layer that is newly exposed (Figure 2-15d). The SrF2 is then removed (Figure 

2-15e) and electron beam lithography was used again to define the electrode locations 

where 5 𝑛𝑚 Cr/70 𝑛𝑚 Au/80 𝑛𝑚 SrF2 was thermally evaporated (Figure 2-15f). 

This is followed by another electron beam lithography step to define the profile of 
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the device which is to be covered by an additional layer of 80 𝑛𝑚 SrF2 (Figure 

2-15g). Using the Oxford etchers, areas not covered by the SrF2 were then etched. In 

particular, an area is now electronically isolated from the device (Figure 2-15h, i). 

Through another electron beam lithography step, we patterned an area partially 

covering the cantilevers and electron beam evaporated SiO2 as a sacrificial layer 

(Figure 2-15j). The SiO2 sacrificial layer serves as a mechanical support and an 

electrical isolator for the next step. In this final electron beam lithography step, an 

area was patterned so that 5 𝑛𝑚 Cr/70 𝑛𝑚 Au is evaporated (Figure 2-15k). This 

Cr/Au layer serves as the contact for the cantilever switch. Lastly, 10:1 buffered oxide 

etch was used to remove all of the SiO2 (Figure 2-15l) and the device went through 

critical point drying. 
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Figure 2-15 AlN NEMS switch fabrication procedure. (a-h) Cross 

section profile of the fabrication process. (i-l) 3D view of the final 

steps of the fabrication process. (a) We started with a piezoelectric 

stack of 40 𝑛𝑚 top Mo, 50 𝑛𝑚 AlN, 100 𝑛𝑚 Mo, 20 𝑛𝑚 bottom 

AlN, on top of a silicon wafer with 2 𝜇𝑚 SiO2. (b) An area of 

200 𝜇𝑚 × 400 𝜇𝑚 was patterned for the thermal evaporation of 

80 𝑛𝑚 of SrF2. (c) ECR etched away the top Mo layer not covered 

by SrF2. (d) KOH etched away the newly exposed AlN. (e) SrF2 

was removed. (f) Area for electrodes are patterned and 5 𝑛𝑚 

Cr/70 𝑛𝑚 Au/80 𝑛𝑚 SrF2 was thermally evaporated. (g) 

Additional area was patterned and SrF2 was thermally evaporated. 

(h, i) The areas unprotected by SrF2 were dry etched away. (j) An 

area covering part of the cantilever and the electrode was patterned 

for the electron beam evaporation of a sacrificial SiO2 layer. (k) A 

similar area was patterned for the thermal evaporation of 5 𝑛𝑚 

Cr/70 𝑛𝑚 Au. (l) The device was released by etching the SiO2 away 

using 10:1 BOE then dried with a critical point dryer. 
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The AlN cantilever switches were tested using a setup similar to the 

graphene switches. Figure 2-16 shows a representative switching result from one of 

the AlN cantilevers that was 4 𝜇𝑚 long and 800 𝑛𝑚 wide. The major difference is 

with the actuation of the switch. With the AlN piezoelectric cantilever switches, 

instead of the voltage applied across the gate and the source as in the case with the 

graphene switches, the voltage is applied across the top and bottom layers of Mo. 

Since the two Mo layers sandwich the AlN layer, the potential difference on the top 

and bottom of the AlN layer causes the AlN cantilever to deflect until the cantilever 

makes contact with the gold overhang. Once there is physical contact between the 

cantilever and the gold, current flows through, thus turning on the switch. 

The switching behavior of the AlN cantilever switches was similar to the 

graphene switches. The AlN switch shows high on-current to off-current ratio of 

> 103. The limiting factor was due to the maximum current we set. AlN cantilever 

switches also exhibit a low turn-on voltage of 1.9 𝑉. However, there are no sharp 

jumps in the current as observed in the graphene switches because the AlN cantilever 

switches are actuated piezoelectrically. 
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Figure 2-16 Scanning electron micrograph and performance of AlN 

cantilever switches. (a-c) Scanning electron micrograph of AlN 

cantilever switches. (a) Three cantilevers sharing electrical 

connections. (b) A close up view of one of the cantilevers. The gold 

overhang used as a contact is almost touching the AlN cantilever. 

(c) Top view of the AlN cantilever showing that the cantilever 

extends under the gold overhang. (d) Typical switching behavior of 

the AlN cantilever switch. Electrical contact was made at ~1.9 𝑉. 

We also experimented with other AlN switch designs. Preliminary fabrication 

tests were performed to realize doubly-clamped AlN beams with a suspended gold 

bridge for contact. Figure 2-17 shows the result from the fabrication of a set of AlN 

doubly-clamped beams of various length for various actuation voltages. 

Unfortunately the suspended gold bridge for contact broke during fabrication. 
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Figure 2-17 Scanning electron micrography of AlN 

doubly-clamped ladder switches. Eleven doubly-clamped beams 

sharing the same electrodes were fabricated. Because each of these 

beams have a different length, they all have a different actuation 

voltage. This image also shows the suspended gold contact bridge 

which is broken. 

While the AlN switches have low actuation voltages, they lacked the small 

voltage swing of the graphene switches. Each of these materials has their unique 

properties which make them good candidates for NEMS switches. For the new 

generation of NEMS switches, we propose combining AlN and graphene for the 

fabrication to take advantages of their unique properties. 

2.10 Summary 

In summary, we explored NEMS switches as a possible paradigm to 

circumventing off-state leakage in transistor devices. We fabricated graphene 

doubly-clamped beam switches by exfoliated HOPG graphene and demonstrated that 
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these devices have a fast switching time of < 100 𝑛𝑠 and low swing voltages of 

< 10 𝑚𝑉/𝑑𝑒𝑐𝑎𝑑𝑒. While these devices usually fail after only 10 − 20 cycles, we 

expect that with optimal engineering their performances could be greatly improved. 

CVD graphene grown on copper foil is used to replace HOPG graphene to allow for 

large scale engineering and testing. Experiments with various CVD graphene transfer 

steps has shown great improvement in the quality and the yield of graphene devices. 

Lastly, we prototyped AlN cantilever switches and demonstrated a modest pull-in 

voltage of 1.9 𝑉. Further exploration and experimentation ongoing with these 

devices may enable the engineering of a new generation of NEMS switches that take 

advantage of the unique properties of these novel materials. 
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C h a p t e r  3  

SPEED OF SOUND MEASUREMENT VIA ANHARMONIC 

NONLINEARITY IN NEMS 

 

In this chapter we provide an overview of mechanical motion in NEMS 

resonators including the theory of anharmonic nonlinearity, and then describe 

experimental work that employs this nonlinearity to determine the speed of sound in 

NEMS. We begin by modeling a NEMS resonator as a simple harmonic oscillator 

(SHO) and determining the resonator’s key properties, including mode shape and 

resonant frequency. We then discuss additional effects on the mechanical response 

using calculations employing secular perturbation theory. We conclude this chapter 

with an alternative method for solving the system using an action argument, and show 

that the square of the resonant frequency is a natural way of describing the system. 

3.1 Motivation 

A fundamental mechanical property of all NEMS and nanoscale devices is 

their longitudinal speed of sound 𝜈𝑘 = 𝐸𝑘/𝜌 for a one-dimensional material. Here, 

𝐸𝑘 is Young’s modulus along (vector) crystallographic orientation 𝒌, and 𝜌 is the 

mass density of the material. In bulk material at macroscopic scales, longitudinal 

speeds of sound are often determined by time-of-flight (TOF) measurement of 

ultrasonic pulses [1] or stress-strain characterization [2]. For anisotropic single-

crystal materials, the speed of sound along various crystallographic directions can 
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also be derived from the dispersion relations that can be obtained, for example, by 

X-ray scattering experiments [3]. Nevertheless, many conventional techniques apply 

only to bulk structures and cannot reveal properties within a NEMS device. For 

NEMS devices, the most common measurement method of the speed of sound is by 

probing localized vibrations (standing wave) across the nanostructure [4-6]. 

While in-situ measurements are necessary for local characterization of the 

NEMS devices, such measurements [7] generally convolve intrinsic material 

properties (e.g., bulk longitudinal speed of sound) [8], structural properties (e.g., 

intrinsic stress, clamping conditions, and defects), and external factors (e.g., induced 

stress). Previous experiments have only considered extreme cases of tension, which 

is often not applicable for most devices [7]. Furthermore, intrinsic stress and 

externally induced stress are typically not known a priori and can be hard to measure 

within nanoscale devices. As a result, researchers often employ bulk values or 

estimates of common material properties when analyzing data or performing 

simulations of the devices. 

Previous approaches to sound speed measurement in doubly-clamped beams 

employ multiple modes to calculate the total stress and longitudinal speed of sound 

[9]. However, the tension of the beam is generally not known a priori and this can 

result in inaccurate mode shapes and, therefore, final results. In the extreme case of 

high tension, the longitudinal speed of sound has a less significant effect on the 

dynamics of the beam. Therefore, the uncertainty in the longitudinal speed of sound 
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is higher. In this chapter, we extend the characterization of local modes to the 

regime of nonlinear mechanical response, we are able to experimentally decouple the 

effects of stress and the longitudinal speed of sound of the beam and locally 

determine both of these material properties. This can be performed using just a single 

mode. We anticipate that these results will stimulate further improvement in material 

characterization, and likewise, accurate modeling and optimal engineering of NEMS. 

3.2 Beam Theory 

We begin our analysis with the Euler-Bernoulli equation to model the 

dynamics of an elastic beam. We draw on the analysis of Lifshitz and Cross [10], 

which we modify for our purposes. The deflection, 𝑋(𝑧, 𝑡), of an elastic beam normal 

to its axis is governed by the Euler-Bernoulli equation [11]:  

 𝐸𝐼
𝜕4𝑋

𝜕𝑧4
− 𝑇

𝜕2𝑋

𝜕𝑧2
+ 𝜌𝑆

𝜕2𝑋

𝜕𝑡2
= 0, Eq. 3-1 

where 𝑧 is the Cartesian coordinate along the beam axis, 𝑡 is the time, 𝜌 is the beam’s 

mass density, 𝑆 is its cross sectional area, 𝐸 its Young’s modulus, 𝐼 its areal moment 

of inertia, and 𝑇 the tension along the beam axis. We consider the case of a doubly-

clamped beam, which generally exhibits nonlinear response for deflections, 𝑋, that 

are comparable to or greater than the beam thickness. This nonlinearity is due to 

tension induced along the beam axis [9]. 
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The beam deflection function of mode 𝑛 is expressed as 𝑋𝑛(𝑧, 𝑡) =

𝜙𝑛(𝑧)𝑥𝑛(𝑡), where 𝜙𝑛(𝑧) is the spatial dependence of the 𝑛th linear eigenmode and 

𝑥𝑛(𝑡) is its time dependence; 𝜙𝑛(𝑧) is normalized by the maximum value nearest to 

the beam center. Substituting this expression into Eq. 3-1 and utilizing the 

orthogonality properties of 𝜙𝑛(𝑧) produces the required equation of motion for 

𝑥𝑛(𝑡): 

 𝑥̈𝑛 + 𝜔𝑛
2 𝑥𝑛 (1 + 𝛼𝑛 [

𝑥𝑛
ℎ
]
2

) = 0; Eq. 3-2 

here in the limit of zero residual tension along the beam axis, the nonlinear 

coefficient, 𝛼𝑛, is defined 

 𝛼𝑛 ≡
𝑆ℎ2

2𝐼

(∫ (Φ𝑛
′ )2𝑑𝑧

1

0
)
2

∫ Φ𝑛
′′2𝑑𝑧

1

0

, Eq. 3-3 

Here, the normalized coordinate 𝑧 in Eq. 3-3 is scaled by the beam length 𝐿. 

Eq. 3-3 is recognizable as the Duffing equation, from which it follows that nonlinear 

response is exhibited only for deflections on the order of the beam thickness, as 

mentioned above. The dimensionless nonlinearity parameter, 𝛼𝑛, contains the factor 

𝑆ℎ2/(2𝐼) which equals 6 for a doubly-clamped beam with a rectangular cross 

section, in the limit of zero tension along the beam axis [10]. Here, we account for 

arbitrary residual beam tension and separate its contribution to the dynamics from 

that of the Young’s modulus. In this situation, the eigenmodes 𝜙𝑛 in the presence of 

arbitrary (constant) tension, 𝑇0, must be used in Eq. 3-3 to determine 𝛼𝑛. These 
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modes satisfy 𝜙𝑛
(iv)

− 𝛽𝜙𝑛
′′ − Ω̅𝑛

2𝜙𝑛 = 0, where 𝛽 = 𝑇0𝐿
2/(𝐸𝐼) and the 

normalized linear resonant frequency Ω̅𝑛 = 𝜔̅𝑛(𝛽)√𝜌𝑆𝐿4/(𝐸𝐼). Here, 𝜔̅𝑛 is the 

dimensional linear frequency that depends on both the Young’s modulus and the 

residual tension. 

3.3 Doubly-clamped Beam Mode Shape 

Since the mode shape directly affects the resonant frequency and the 

nonlinear coefficient, in this section, we will discuss the effects of stress on the mode 

shape. By assuming the temporal response to the Euler-Bernoulli equation to be 

sinusoidal, we can rewrite Eq. 3-1 to include only the spatial derivatives. This allows 

us to solve for the mode shape and the maximum displacement of the beam. In the 

limit where the tension is negligible and the bending moment is predominant (e.g., 

𝑇0𝐿
2 ≫ 𝐸𝐼), the solution to the fourth-order differential equation has the form: 

 𝑝(cos 𝑐𝑥 − cosh 𝑐𝑥) − 𝑞(sin 𝑐𝑥 − sinh 𝑐𝑥). Eq. 3-4 

For a doubly-clamped beam, the boundary conditions are such that the displacement 

and the slope at the clamping points vanish (e.g., Φn(0) = Φn(𝐿) = Φn
′(0) =

Φn
′(𝐿) = 0). By substituting the general form of the solution and the boundary 

conditions for a doubly-clamped beam back into Eq. 3-1, we see that the mode shape, 

Φn, is given by: 
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(sin 𝑘𝑛 − sinh 𝑘𝑛) (cos
𝑘𝑛𝑥

𝐿
− cosh

𝑘𝑛𝑥

𝐿
) − (cos 𝑘𝑛 −

cosh 𝑘𝑛) (sin
𝑘𝑛𝑥

𝑎
− sinh

𝑘𝑛𝑥

𝐿
), 

Eq. 3-5 

where 𝑘𝑛 are the solutions to  

 cos(𝑘𝑛𝐿) cosh(𝑘𝑛𝐿) = 1. Eq. 3-6 

The solution to Eq. 3-6 is not unique and each solution corresponds to a different 

resonant mode. Table 3-1 below gives the first six solutions for 𝑘𝑛. 

Mode, n 𝒌𝒏 

1 4.73004 

2 7.8532 

3 10.9956 

4 14.1372 

5 17.2788 

6 20.4204 

 

Table 3-1 A table of the first six values of 𝑘 which satisfy the 

boundary conditions for a doubly-clamped beam: solutions to 

cos(𝑘𝑛𝐿) cosh(𝑘𝑛𝐿) = 1. 

The resulting mode shapes are shown below in Figure 3-1. 
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Figure 3-1 The lowest three mode shapes (blue: first mode, orange: 

second mode, green: third mode) of a doubly-clamped beam where 

the tension is negligible. The slope at the clamping points vanishes 

(e.g., Φ′(0) = Φ′(1) = 0). The mode shapes have been normalized 

so that the maximum for each mode is unity. 

In the opposite limit, where the tension is predominant and the bending 

moment of the beam is negligible (e.g., 𝑇0𝐿
2 ≪ 𝐸𝐼), the fourth-order differential 

equation reduces to a second-order differential equation and the solution has the form 

𝑎(cos 𝑏𝑥) − 𝑐(sin 𝑏𝑥). In this case the mode shape resembles that of a string. The 

resulting mode shapes are shown below in Figure 3-2. 
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Figure 3-2 The lowest three mode shapes (blue: first mode, orange: 

second mode, green: third mode) of a doubly-clamped beam where 

the bending moment is negligible. The inflection at the clamping 

points vanishes (e.g., Φ′′(0) = Φ′′(1) = 0). The mode shapes have 

been normalized so that the maximum for each mode is unity. 

While the general mode shapes for the two limiting cases look similar, the 

exact mode shapes are important, especially in the application of mass spectrometry 

and inertial imaging – as we will discuss in Chapter 4. These two limiting cases are 

plotted on the same graph for comparison for each of the first two modes in Figure 

3-3. 
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Figure 3-3 Comparison of the effect of tension on the mode shape 

for the lowest two doubly-clamped beam modes. The blue curve is 

where the bending moment is dominating and the orange curve is 

where the tension is dominating. The top plot is the first resonant 

mode and the bottom plot is the second resonant mode. 

For the second and third modes, the location of maximum displacement 

depends on the tension. These differences, even if small, prove critical for NEMS-

based mass spectrometry and inertial imaging. 
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3.4 Novel Representation of Resonant Frequency 

We continue our analysis of beam theory by showing a novel representation 

of the resonant frequency. The nonlinear resonant frequency of the 𝑛th mode, 𝜔𝑛, is 

related to that of the linear frequency, 𝜔̅𝑛, by 

 𝜔𝑛
2(𝛽) = 𝜔̅𝑛

2(𝛽) +
3𝛼𝑛(𝛽)𝜔̅𝑛

2(𝛽)

4ℎ2
𝐴𝑛
2 , Eq. 3-7 

where 𝐴𝑛 is the amplitude of 𝑥𝑛 under the (leading order) harmonic approximation, 

which depends on the tension parameter, 𝛽. We do not employ the usual formula 

reported by Lifshitz and Cross [10] that relates these frequencies directly, but instead 

employ the square of the frequency because the effects of bending rigidity and 

tension thereby become approximately decoupled.  

Use of Eq. 3-7 enables determination of both the Young’s modulus and the 

residual tension in the beam. Measuring the beam’s resonant frequency as a function 

of amplitude in the nonlinear regime and plotting the square of this frequency as a 

function of the amplitude squared gives the linear relation: 𝜔𝑛
2 = 𝑎 + 𝑏𝐴𝑛

2 . 

Accordingly, by measuring the vertical intercept, 𝑎, and slope of this line, 𝑏, the 

residual tension parameter, 𝛽, is determined as the solution to  

 𝛼𝑛(𝛽) =
4𝑏ℎ2

3𝑎
. Eq. 3-8 

This allows direct evaluation of the longitudinal speed of sound via 
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 𝑣𝑙 = (
𝐸

𝜌
)
1/2

= (
16𝑏𝐿4

𝛼𝑛(𝛽)𝛺̅𝑛2(𝛽)
)

1/2

. Eq. 3-9 

Importantly, the product 𝛼𝑛(𝛽)𝛺̅𝑛
2(𝛽) – required in Eq. 3-9 – is a very weak 

function of 𝛽 and decreases only slightly (~25%) as 𝛽 is increased from zero to 

infinity; see Figure 3-4. The measurement therefore approximately decouples the 

influence of residual tension and bending rigidity, i.e., determination of longitudinal 

speed of sound is robust to uncertainty in the beam thickness and the tension, as 

specified by Eq. 3-8. This provides a tremendous advantage over other approaches 

that require accurate knowledge of the residual tension to determine the longitudinal 

speed of sound, e.g., by using the linear resonant frequencies of two modes [9]. 
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Figure 3-4 Plot of the dimensionless functions 𝛼𝑛Ω𝑛
2  and 𝛼𝑛

−1 as a 

function of the dimensionless tension parameter 𝛽. (a) Plot of the 

dimensionless function 𝛼𝑛(𝛽)𝛺𝑛
2(𝛽) which relates the speed of 

sound to the dimensionless tension parameter, 𝛽. (b) Plot of 

dimensionless function 𝛼𝑛
−1(𝛽) which allows us to determine 𝛽 

using Eq. 3-7. The function 𝛼𝑛
−1(𝛽) can be approximated as 

7.8478 × 10−1 + 𝛽 (1.80563 × 10−2). 
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3.5 Experimental Determination of Resonant Frequency 

Earlier, as part of the discussion of the solution to the Euler-Bernoulli 

equation in section 3.2, we mentioned that the characteristic value of the solution is 

the resonant frequency, 𝜔0. In this section, we will discuss response of the resonator 

at the resonant frequency and, in particular, how to experimentally measure the 

resonant frequency with requisite care. 

Up until now, we have neglected the exact temporal dependence of the 

solution and have instead assumed that the response is sinusoidal in time. In many 

experiments, the system is driven by a sinusoidal source. As the driving force 

frequency approaches the resonant frequency of the system, the response increases. 

This response is described by a Lorentzian function. The amplitude and the phase of 

the Lorentzian function are given by: 

 |𝑥(𝜔)| =
𝐹0
𝑚

1

√(𝜔0
2 − 𝜔2)2 + 𝛾2𝜔2

, Eq. 3-10 

 tan𝜙(𝜔) = −
𝛾𝜔

𝜔0
2 − 𝜔2

. Eq. 3-11 

Here 𝐹0 is the force on the resonator, 𝑚 is the mass of the resonator, 𝜔 is the 

frequency of the driving force, and 𝛾 is the damping coefficient.  

Often the resonant frequency is defined by the phase response of the 

resonator. At very low frequencies (𝜔 ≪ 𝜔0), the resonator response is in phase with 
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the drive. At very high frequencies (𝜔 ≫ 𝜔0), the response of the resonator is out 

of phase with the drive by a factor of –𝜋. At the resonant frequency (𝜔 = 𝜔0), the 

resonator response is exactly 
𝜋

2
 out of phase with the drive.  

 

Figure 3-5 Phase of the resonator response to a sinusoidal driving 

force as a function of normalized frequency, 𝜔/𝜔0. Different 

curves correspond to different values of 𝛾: blue: 𝛾/𝜔0 = 1, orange: 

𝛾/𝜔0 =  0.5, green: 𝛾/𝜔0 = 0.1. As 𝛾/𝜔0 decreases, the slope of 

the phase as resonance gets steeper. 

Perhaps more commonly, the resonant frequency is approximately defined as the 

frequency where the magnitude of the Lorentzian response is maximal. However, 

more careful examination shows that this definition is not strictly correct except in 

the limit where 
𝛾

𝜔0
≫ 1. In our experiment described here, 

𝛾

𝜔0
 is on the order of 100 

to 1000, so this latter approximation is sufficient. Accordingly, we use the 

frequency corresponding to the maximum amplitude as the resonant frequency. 
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Figure 3-6 Phase of the resonator response to a sinusoidal driving 

force as a function of normalized frequency 𝜔/𝜔0. Different curves 

correspond to different values of 𝛾: blue: 𝛾/𝜔0 = 1, orange: 

𝛾/𝜔0 =  0.5, green: 𝛾/𝜔0 = 0.1. As 𝛾/𝜔0 decreases the slope of 

the phase at resonance gets steeper.  

3.6 Novel Doubly-clamped Beam Fabrication Procedure to Avoid Undercut 

We demonstrate use of the anharmonic (Duffing) nonlinearity in doubly-

clamped NEMS beams to determine the speed of sound in-situ. In this section, we 

describe the fabrication process employed to produce ideal silicon doubly-clamped 

beams for these investigations. As we describe, it proves essential to clamp the beam 

ends ideally, with no undercuts. We will begin with a discussion of how traditional 

methods of fabrication typically result in doubly-clamped beams with undercuts that 

introduce uncertainty into the effective device length. In this situation our analysis 

can fail. We will then show an optimized method of fabrication that avoid such issues 

and results in more ideal structures. 

0.0 0.5 1.0 1.5 2.0 2.5 3.0 0

2

4

6

8

10

m x0

F0 2



 

 

72 

 

Figure 3-7 Comparison of the traditional and new method of 

fabricating doubly-clamped beams. In both diagrams the lighter 

green layer is the top silicon device layer, the purple is the silicon 

dioxide insulating layer, and the darker green layer is the substrate. 

In the traditional method, the length of the beam is not well defined. 

It is somewhere between where the beam is defined on the silicon 

device layer and where the silicon dioxide stops supporting the 

device layer. In the bottom diagram, the device length is well 

defined as where it is supported by the oxide layer. 

Traditional methods for fabricating doubly-clamped silicon beams are a 

simple two-step process, yet they result in an undercut (Fig. 3.7). In the first 
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generation of devices we fabricated, we employed this common approach. We 

started with a silicon on insulator wafer with 285 𝑛𝑚 silicon device layer that is 

separated from the silicon substrate by a 400 𝑛𝑚 silicon dioxide (sacrificial) layer. 

Using with electron-beam lithography with a PMMA bilayer as the resist, we defined 

the beam profile by patterning two rectangular areas on either side of the beam. After 

developing the resist, we dry etch the wafer to remove silicon in these two rectangular 

areas. After removing the resist, the wafer is placed in a buffered oxide etch solution 

(1:10 hydrofluoric acid), which etches the sacrificial layer beneath the beam to 

suspend the device. The suspended device is then placed in an Automegasamdri®-

915B critical point dryer to remove liquid without encountering liquid surfacing 

tension, which can often result in collapsing the device. 

To avoid an undercut at the clamps, these aforementioned fabrication steps 

are reversed. The insulating layer is first etched to suspend the device layer. The steps 

are as follows (Fig. 3.9): a hole of diameter 100 𝑛𝑚 is first etched through the top 

silicon layer using a reactive ion etch so that the SiO2 layer becomes exposed. 

Hydrofluoric acid (HF) was then used to isotopically etch the SiO2 to create a 

suspended (approximately) circular membrane. This is followed by critical point 

drying to prevent the membrane from collapsing due to surface tension. Finally, the 

beams are then defined using a reactive ion etch of the entire structural layer above 

the cavity formed in the first step except for regions that define two parallel beams 

located approximately 5 𝜇𝑚 away from the original hole. 
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Figure 3-8 Scanning electron microscopy images of silicon 

doubly-clamped beams as fabricated using traditional methods. 

(Top) Overview of the entire doubly-clamped beam. (Bottom) A 

zoomed in view of the clamping area. The undercut in the silicon 

dioxide layer is very noticeable. 
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Figure 3-9 Novel process for fabricating doubly-clamped beams 

with no uncercuts. The left column is a top view of the fabrication 

process while the right column is the cross section view along the 

dotted line in the upper left figure for each corresponding step. In 

step 1, a small hole of ~100 𝑛𝑚 is etched through the top silicon 

layer using dry etch. In step 2, 49% hydroflouric acid is used to 

remove the silicon dioxide under the silicon. Because hydrofluoric 

etch is isotropic, the resulting etched area is approximately circular. 

The dotted circle on the left shows approximately where the etch 

stops. In step 3, the beam profile is defined using another dry etch 

step, resulting in two suspended doubly-clamped beams. 
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The dimensions of the suspended circular membrane ultimately define the 

length of the beams. While the beam length at the clamping points varies slightly 

across its width because of the approximately circular geometry of the original 

undercut etch, this uncertainty in length is very small compared to the overhang is 

that present in beams fabricated by the original method. Using this new approach, 

single-crystal silicon beams of length 𝐿 = 25 𝜇𝑚, width 𝑤 = 1𝜇𝑚, and thickness 

𝑡 =  285 𝑛𝑚 were fabricated in the (100) plane. Each beam was fabricated such that 

the longitudinal direction of the beam was oriented with a predetermined angle with 

respect to the <110> crystallographic direction. 
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Figure 3-10 Scanning electron micrographs of doubly-clamped 

silicon beams of dimensions [𝑙, 𝑤, 𝑡] =

24.6 𝜇𝑚, 1.07 𝜇𝑚, 285 𝑛𝑚. (a) Top down view of the 

doubly-clamped silicon beams. The beams run from the bottom left 

to the upper right. The area within the circle has the entire thickness 

of the SiO2 removed via a hydrofluoric acid wet etch. The beam 

within this area is suspended. The scale bar in (a) is 5𝜇𝑚. (b) A 

zoomed in view of the clamped edge of the silicon beam. Undercut 

in the SiO2 is not present due to the new fabrication procedure 

where the length of the beam is defined by suspending the silicon 

as a plate prior to defining the silicon beam. (c) A tilted view (75°) 

of the doubly-clamped silicon beam. 

  

(a) 

(b) (c) 
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3.7 Experimental Setup for Measuring Anharmonic Nonlinearity  

In this section, we describe the method of actuating and detecting the doubly-

clamped beams fabricated using the procedure described in the previous section. 

Device actuation was achieved with a ceramic piezoelectric element (piezoshaker) 

that was affixed to the sample; it was driven by applying an AC voltage to metallic 

electrodes deposited on the piezoshaker surfaces. NEMS device motion was detected 

using optical interferometry [12] with a helium-neon (HeNe) laser (633 nm) at room 

temperature in a vacuum chamber with pressure < 10−5 Torr. As the doubly-

clamped beam vibrates, the path length difference between the light reflected from 

the device and the light reflected from the substrate creates observable interference. 

This time-dependent optical interference was then transduced into an electrical signal 

via a photoreceiver (New Focus model 1801) and detected using a network analyzer 

(Agilent model 33250). 

To relate the detected electrical signal into NEMS beam displacement, the 

known magnitude of thermomechanical fluctuations was employed. The transduced 

optical signal from thermomechanical fluctuations, in absence of piezoshaker drive, 

was detected using a spectrum analyzer (Agilent model PXA 9030A). We followed 

the formulation of Hiebert et al. [12], which relates the displacement (power) spectral 

density to the voltage (power) spectral density to deduce the transduction 

responsivity, which relates NEMS displacement to photodetector output voltage. 



 

 

79 

 

Figure 3-11 Acutation and detection scheme for the nonlinear beam 

measurement. The suspended device is mounted on a ceramic 

piezoelectric shaker. An AC voltage is applied to the shaker, 

providing a driving force for the device. The optical detection is 

performed using a 633 𝑛𝑚 HeNe laser. The laser is aligned and 

reflects off of the doubly-clamped beam. The reflected photons are 

then sent to the photodetector using the beam splitter. 

3.8 Measurement of Anharmonic Nonlinearity in NEMS Doubly-Clamped 

Beams 

To probe the device’s response in the nonlinear regime of mechanical 

response, each device was actuated with increasing strength from the linear regime 

until displacement ~25% beyond the onset of mechanical nonlinearity was achieved 

[13] (see Figure 3-12). Throughout, the optical interferometry measurements were 

performed in the near-linear regime. However, the interferometric response is 

intrinsically sinusoidal, so small residual deviations from linearity in the detected 

amplitude were carefully corrected [12]. For each drive strength, the mechanical 
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response was measured in the frequency domain. As previously mentioned, 

although the frequency corresponding to the maximum displacement amplitude is 

not precisely the nonlinear resonant frequency, in systems where the quality factor, 

𝑄, is large (e.g., 𝑄 ≫ 1), the two frequencies are approximately the same. The 

frequency corresponding to the largest displacement amplitude was then recorded for 

each drive strength. The longitudinal speed of sound could then be deduced from the 

extracted displacement amplitudes and the resonant frequencies in the nonlinear 

regime using the method outlined above. (Figure 3-13) Formally, the regime of 

nonlinear response is delineated as the regime beyond the 1 𝑑𝐵 compression point, 

where the signal is more than 1 𝑑𝐵 lower than the expected signal from a purely 

linear response [14, 15]. 

The nonlinear resonant frequency measurement was corrected for any 

frequency drifts by measuring the linear mechanical response immediately prior to 

each nonlinear resonant frequency measurement. Due to frequency drifts, the linear 

resonant frequency changes over time, which is included in our measured frequency 

shift due to nonlinear effects. By subtracting out the drift in the linear resonant 

frequency, any measured frequency shift from the nonlinear measurement is purely 

due to the effects of the additional stress from large displacement.  
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Figure 3-12 Mechanical response of the doubly-clamped silicon 

beam in the frequency domain as the actuation level increases from 

low (purple) to high (yellow). The black dot denotes the point 

formally defined as delineating the onset of the nonlinear regime 

(see text). At low actuation, the resonant response is simply a 

Lorentzian. As the actuation increases, the resonant frequency 

shifts upward due to nonlinear term in the equation of motion and 

the resonant frequency increases until the displacement reaches the 

critical amplitude, where the solution to the differential equation 

governing the system is multivalued. The dotted line is the fitted 

backbone curve of the resonant frequencies at the various actuation 

forces.  

 



 

 

82 

 

Figure 3-13 Plot of the frequency detuning as expressed by the 

square of the nonlinear response versus the oscillation amplitude. 

The linear least squared fit of Eq. 3-7 is denoted by the red line. The 

error bars are smaller than the size of the square used to represent 

each data point. 

Silicon is an anisotropic crystal, hence the longitudinal speed of sound 

depends upon crystallographic orientation. Accordingly, the sound velocity within a 

single-crystal NEMS beam will depend upon its orientation with respect to the 

crystallographic axes. For a beam fabricated from (100) silicon wafer, we write the 

effective sound speed as 𝑣𝑙,𝑘̂, where 

 
1

𝑣𝑙,𝑘̂
2 =

1

𝑣𝑙,〈100〉
2 − 3(

1

𝑣𝑙,〈100〉
2 −

1

𝑣𝑙,〈111〉
2 ) sin2 2𝜃. Eq. 3-12 
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Here, the subscript 𝑣𝑙,𝑘̂ refers to the longitudinal speed of sound along the beams 

respective to crystallographic orientation; 𝑘̂ is the direction in the (100) plane, and 

𝜃 is the angle between 𝑘̂ and the 〈110〉 direction. Within the (100) plane, the silicon 

bulk longitudinal speed of sound varies from 8516 m/s in the 〈110〉 direction to 

7477 m/s in the 〈100〉 direction [1, 16-18]. To demonstrate the validity of the 

measurement paradigm presented in this paper, small changes in silicon’s 

longitudinal speed of sound caused by the anisotropic nature of the silicon crystal 

were measured.  

Figure 3-14 presents the key results of the proposed measurement 

technique, where the longitudinal sound speed as a function of crystal orientation 

is shown. Specifically, the longitudinal speed of sound was measured on 10 

separate devices fabricated in the (100) plane. The devices were oriented along 

angles spaced apart by increments of 15°. Measurement for each of these 

orientations was performed on most of the devices twice. Fitting the measured data 

to Eq. 3-12, the longitudinal speeds of sound were determined to be 𝑣𝑙〈100〉 =

6721 ± 82 m/s and 𝑣𝑙〈111〉 = 9148 ± 225 m/s. These results, measured directly 

from the nanodevices (that is, “in-situ”), compare favorably with values of 

𝑣𝑙〈100〉 = 7477 m/s and 𝑣𝑙〈111〉 = 8973 m/s established in the literature for bulk 

silicon (Table 3-2). The data fit well to the theoretical curve of angular dependence 

and the measured speeds of sound agree with bulk literature values between 2% 

and 10%. 
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Figure 3-14 Experimental longitudinal speeds of sound as a 

function of crystal orientation within the silicon (100) plane. The 

x-axis shows the angle from the 〈110〉 direction within the (100) 

plane such that 0° corresponds to the 〈110〉 direction and 45° 

corresponds to the 〈100〉 direction. From the least squared fit (red), 

the speeds of sound for two independent crystal orientations are 

extracted; the two values are given in the inset table. From these 

two values, we can calculate the speed of sound for any crystal 

orientation. 
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 Measured Bulk 

𝒗𝒍,𝟏𝟎𝟎 6721 ± 82
𝑚

𝑠
 7477

𝑚

𝑠
 

𝒗𝒍,𝟏𝟏𝟏 9147 ± 225
𝑚

𝑠
 8973

𝑚

𝑠
 

 

Table 3-2 A comparison of the measured speeds of sound along the 

〈100〉 and 〈111〉 directions to the expected bulk material values. 

The measured values are in good agreement with the bulk literature 

values to within 2% to 10%. 

3.9 Summary 

In this work we present a new methodology for extracting the longitudinal 

speed of sound and stress in a nanoelectromechanical beam in-situ, using the 

dynamics of doubly-clamped NEMS beams operating in the nonlinear regime. We 

have tested this new paradigm on identical silicon doubly-clamped beams fabricated 

along different crystal orientations, and have completely characterized the 

longitudinal speeds of sound in all orientations. The experimental values of the 

longitudinal speeds of sound were 6721 ± 82 m/s in the <100> direction and 

9147 ± 225 m/s for the <111> direction, in close agreement with literature bulk 

values. While our demonstrations have solely employed doubly-clamped beams, the 

conceptual framework of this nonlinear analysis applies to all mechanical systems, 

e.g., cantilevers and membranes. We anticipate that this new methodology will 

facilitate nanodevice characterization and engineering.  
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C h a p t e r  4  

EFFECT OF MODE SHAPES IN TWO-DIMENSIONAL MASS 

SPECTROMETRY AND INERTIAL IMAGING 

 

In Chapter 1, we provided an overview of the many applications for mass 

spectrometry in geology [1-3], environmental science [4-6], forensics analysis [7-9], 

and proteomics [10-12]. In this chapter, we review the traditional methods of mass 

spectrometry and describe a new paradigm for performing mass spectrometry using 

NEMS that has been developed over the past decade at Caltech [13, 14]. We review 

the operating principles of NEMS mass spectrometry (NEMS-MS) and NEMS 

inertial imaging (NEMS-II) and their advantages over traditional mass spectrometry. 

We then describe the measurement setup used in this work, the devices employed, 

preliminary data, and current challenges encountered with the experiment that reflect 

on experimental complexities to be surmounted in the optimization of this method. 

In the last part of this chapter, we focus specifically on the mode shape of the NEMS 

and the critical role it plays in mass spectrometry and inertial imaging. We elucidate 

the deviation between the ideal mode shapes and the experimentally measured ones 

that arise with existing NEMS devices. We hypothesize the causes of these deviations 

and test possible sources of their origin. Lastly, we explore the effects of the mode 

shape deviation on the result of mass spectrometry and inertial imaging. 
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4.1 Overview and Motivation 

In this section, we discuss some of the more common methods of mass 

spectrometry including time-of-flight measurement, magnetic sector mass analyzer, 

and a quadrupole [15], and the advantages and disadvantages of each. 

One of the conceptually simplest methods for mass spectrometry is a time-

of-flight measurement (Figure 4-1). The analyte is injected into a vacuum chamber 

from the fluid phase and ionized, typically using electrospray ionization [16, 17]. It 

then travels through a discrete acceleration region which results in different particles 

having different final velocities depending on the field and the charge-to-mass ratios 

of the various analytes. The separate species then travel at different velocities in the 

drift tube and arrive at the detector at different times [18, 19]. Given the duration of 

the particle in the tube and the length of the tube, the mass-to-charge ratio can be 

deduced.   
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Figure 4-1 Time-of-flight measurement to perform mass 

spectrometry. The particles are charged and start on the left of the 

figure where they are accelerated through an electric field created 

by a DC voltage. The particle travels to the right and the duration 

of the particle in the tube is used to calculate the mass-to-charge 

ratio. Figure adapted from Glish, G.L. and R.W. Vachet, The basics 

of mass spectrometry in the twenty-first century. Nat Rev Drug 

Discov, 2003. 2(2): p. 140-150. [15]. 

The magnetic sector mass analyzer provides another method of performing 

mass spectrometry (Figure 4-2). In this case the sample is also typically introduced 

by electrospray ionization and accelerated. In this case, the particle is accelerated in 

an electric field and a magnetic field is applied perpendicular to both the plane of 

analyte motion and the direction of the electric field. The Lorentz force, induced by 

analyte motion in the applied magnetic field, deflects the analyte according to its 

mass-to-charge ratio. The trajectories of the different analytes have different radii, 

depending upon the Lorentz force they experience. With a detector at a fixed position 

(Fig. 4.2), the magnetic field is swept to permit detection of species with different 

mass-to-charge ratios. 
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Figure 4-2 Magnetic sector mass analyzer. The particles are 

charged and start at the top of the figure where they are accelerated 

through an electric field created by a DC voltage. Due to the applied 

magnetic field, particles with different masses travel at a different 

velocity and thus have a different turn radius. By varying the 

strength of the magnetic field, samples of different mass-to-charge 

ratios are detected. Figure adapted from Glish, G.L. and R.W. 

Vachet, The basics of mass spectrometry in the twenty-first century. 

Nat Rev Drug Discov, 2003. 2(2): p. 140-150. [15]. 

Typically, both the time-of-flight and the magnetic sector mass analyzers are 

large instruments, with dimensions usually between 0.5 𝑚 and 2 𝑚. This permits 

sufficient trajectory lengths to permit separation of species with sufficiently high 

resolution. To reduce the size of mass spectrometers, quadrupole spectrometry has 

been developed (Figure 4-3). A quadrupole consists of four parallel cylindrical metal 

electrodes. Each opposing electrode pair is connected electrically, and a radio 

frequency voltage with a DC offset is applied between each pair of rods; the rods 

being driven in antiphase. Ions travel down the quadrupole between the rods. Only 
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ions of a certain mass-to-charge ratio reach the detector for a given ratio of 

voltages; other ions have unstable trajectories and collide with the rods or are ejected 

from the interstitial space between them. 

 

Figure 4-3 Diagram of quadrupole used in traditional mass 

spectrometry. The quadrupole is a set of four metal rods in parallel. 

In this figure, the fourth and the closest rod is not drawn so the ions 

are more easily seen. Opposing rods are connected electrically and 

the two pairs of rods have an RF and DC voltage offset. By tuning 

the frequency and amplitude of the voltage on the rods, only 

charged particles of a certain mass-to-charge ratio arrive at the 

detector. Charged particles of other mass-to-charge ratios collide 

with the rod or spin out of orbit and thus are eliminated. Figure 

adapted from Glish, G.L. and R.W. Vachet, The basics of mass 

spectrometry in the twenty-first century. Nat Rev Drug Discov, 

2003. 2(2): p. 140-150. [15]. 

These three mass spectrometry methods can provide excellent mass 

resolution; the best provide the ability to measure down to a small fraction of the 
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proton mass (1.007 𝑎𝑚𝑢 ~ 1.007 𝐷𝑎). However, these methods typically lack 

sufficient dynamic range to measure large samples, exceeding several hundred kDa. 

Examples of species in this range are large protein complexes (membrane proteins, 

antibody isoforms, organelles, and viruses), which can range from . 05 − 100′𝑠 of 

MDa. Existing forms of mass spectrometry also require charging (ionizing) the 

sample; for non-covalently bonded complexes this can compromise the integrity of 

the analytes and potentially induce their fragmentation. 

NEMS-MS offers unique opportunities to overcome these limitations. 

NEMS-MS offers the ability of single molecule detection, and the analytes need not 

be ionized for analysis and detection. While there exists single ion detectors, the 

convolution of measuring the mass-to-charge ratio instead of a direct mass 

measurement makes it challenging to know accurately the mass of the single 

molecule for very large species that are in heterogeneous mixtures. NEMS-MS offers 

a large dynamic range (perhaps ~7 orders of magnitude or more), offering the ability 

to measure very large, as well as small, molecules. Current implementations of 

NEMS-MS permit measurement of molecules ranging in mass from 104 𝐷𝑎 to 

109 𝐷𝑎. In the next section, we discuss the operating principal of how NEMS are 

employed for mass spectrometry. 

4.2 Operating Principal of NEMS-MS and NEMS-II 

In this section, we discuss how NEMS is used for mass spectrometry and 

inertial imaging. We begin our discussion with what is sometimes termed 
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“one-dimensional” (1D) NEMS mass sensing and mass spectrometry. We then 

generalize the theory of mass spectrometry to inertial imaging, the measurement of 

higher mass moments of an analyte. Lastly, we apply the theory of inertial imaging 

to 2D systems. 

We begin by considering the case of mass sensing in one dimension. We treat 

a NEMS resonator – either a cantilever or a doubly-clamped beam – as a simple 

damped harmonic oscillator as described in Chapter 3. The resonant frequency of 

such a system, in the limit of low damping (high-Q), is given by: 

 𝜔0 = √
𝑘𝑒𝑓𝑓

𝑚𝑒𝑓𝑓
, Eq. 4-1 

where 𝑘𝑒𝑓𝑓 is the effective spring constant and 𝑚𝑒𝑓𝑓 is the effective mass for the 

mode under consideration. The effective spring constant takes into consideration the 

various mass-independent factors that we discussed in Chapter 3 (i.e. bending 

moment, compressive and tensile stress, effects of large deflections). The effective 

mass of the NEMS device is the scaling factor for determining the kinetic energy of 

the resonator when vibrating purely in the specific mode considered. 

For the application of NEMS mass sensing, mass spectrometry, and inertial 

imaging, it is a good assumption that 𝑘𝑒𝑓𝑓 is constant since, for the most part, 

Young’s modulus, stress, and oscillation amplitude of the device do not change 

during the experiment if the analyte is small compared to the dimensions of the 
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NEMS sensor. Following the analysis of Lifshitz and Cross [20], we determine 

𝑚𝑒𝑓𝑓 by rewriting the equation of motion for a doubly-clamped beam resonator as: 

 
(𝜌𝑆∫Φ𝑛

2𝑑𝑧)
⏟        

𝑚𝑒𝑓𝑓

𝑑2𝑥

𝑑𝑡2⏟
𝑥̈

+ (𝐸𝐼 ∫Φ𝑛
′′2𝑑𝑧)

⏟        
𝑘𝑒𝑓𝑓

𝑥 = 0, 
Eq. 4-2 

where 𝜌𝑆 ∫𝜙𝑛
2𝑑𝑧 is the effective mass, 𝑚𝑒𝑓𝑓, and 𝐸𝐼 ∫𝜙𝑛

′′2𝑑𝑧 is the effective spring 

constant, 𝑘𝑒𝑓𝑓. Φ𝑛 is the 𝑛𝑡ℎ mode shape of the beam normalized such that the 

maximum amplitude of the beam is 1. One method of understanding the use of 

effective mass instead of the geometric mass, 𝑚𝑔𝑒𝑜 = 𝜌𝑆 ∫𝑑𝑧 = 𝜌𝑉, is that we are 

treating the entire resonator vibrating in a specific pure mode as a point mass with a 

single displacement and a single velocity. In such a situation, not every part of the 

resonator contributes equally to the kinetic energy of the system. For example, the 

infinitesimal element at and near the nodes of a given mode provides a vanishing 

small contribution to the kinetic energy. This is consistent with the equation for 𝑚𝑒𝑓𝑓, 

which is proportional to the square of the mode shape of the particular element along 

the length of the beam. 

We now determine the effect of an increased effective mass due to the 

addition of an analyte on the resonant frequency. By Taylor expanding Eq. 4-1 to 

first order, assuming that 𝑘𝑒𝑓𝑓 is constant, and that the change in 𝑚𝑒𝑓𝑓 is small due 

to the analyte, we find 
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Δ𝜔

𝜔0
= −

1

2

Δ𝑚𝑒𝑓𝑓

𝑚𝑒𝑓𝑓
. Eq. 4-3 

By tracking the resonant frequency of the NEMS resonator, we can then determine 

that the fractional decrease in the resonant frequency is half the fractional increase in 

the mass of the device due to analyte accretion. If one monitors the resonant 

frequency in real time, mass accretion (adsorption events) are observed as sudden, 

discrete downshifts in resonant frequency. This simple equation above is the 

governing equation for NEMS mass sensing – at least in the limit of small analytes – 

and provides a conceptual foundation for NEMS-based mass spectrometry. 

The above simple equation alone, however, is not sufficient for performing 

mass spectrometry, where we want to know the actual mass of the analyte. We use a 

doubly-clamped beam driven to its fundamental mode to illustrate this. A particle 

adsorbing at the center of the beam will have a significantly larger effect on the 

resonant frequency as compared to an identical particle that adsorbs near the 

clamping points or modal nodes of the resonator (Figure 4-4). 
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Figure 4-4 A doubly-clamped beam resonator driven to its 

fundamental mode. In this case particles adsorbing at the device 

center (modal antinode in this case) shift resonant frequency more 

than those adsorbing near the clamping points (or nodes in the case 

of higher mode resonances.) The color of the beam shows the 

relative amplitude of the beam with warmer colors (red) showing a 

larger displacement and cooler colors (blue) showing smaller 

displacement. A particle that lands near a red portion of the beam 

has a larger effect on the resonant frequency compared to a particle 

that lands near the blue portion of the beam. 

Using the analogous formulation for the effective mass of the particle, we 

deduce that 
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 Δ𝑚𝑒𝑓𝑓 = ∫𝜇𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒(𝑧) Φ𝑛
2𝑑𝑧 Eq. 4-4 

 
Δ𝜔

𝜔0
= −

1

2𝑚𝑒𝑓𝑓
∫𝜇𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒(𝑧) Φ𝑛

2𝑑𝑧, Eq. 4-5 

where 𝜇𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒(𝑧) is linear mass density of the particle along the longitudinal 

direction of the beam. Since we are treating the particle as a point mass in this simple 

formalism, we can simplify Eq. 4-4 and Eq. 4-5 as 

 Δ𝑚𝑒𝑓𝑓 = 𝑚𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒  Φ𝑛
2(𝑧𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒) Eq. 4-6 

 
Δ𝜔

𝜔0
= −

1

2

𝑚𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 

𝑚𝑒𝑓𝑓
Φ𝑛
2(𝑧𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒), Eq. 4-7 

where 𝜙𝑛(𝑧𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒) is the normalized displacement of the 𝑛𝑡ℎ mode at the location, 

𝑧𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒, along the beam at which the particle has adsorbed. The new governing 

equation has two unknowns, the mass of the particle and the location where the 

particle adsorbed. Since we cannot solve two unknowns with one equation, tracking 

only one resonant mode is insufficient to perform mass spectrometry in one 

dimension. 

The first solution employed to surmount this challenge was to deposit 

analytes uniformly across the entirety of the NEMS device, and then deconvolve the 

response using the known position dependence (arising from mode shape) [21]. The 

major disadvantage of this method, however, is that it cannot be performed in real 
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time for individual particle adsorption events. In addition, this method of 

extracting the mass of the analyte involves fitting the data through a multidimensional 

minimization process that becomes very complex for multicomponent analyte 

mixtures. 

Subsequently, a simpler solution to this challenge was developed that permits 

real time measurement of individual analytes. This approach involves tracking 

multiple normal modes of the NEMS resonator in real time [14]. By tracking the 

sudden fractional frequency change that occurs simultaneously in two normal modes 

for each adsorption event, we can solve the system of two equations comprised of 

Eq. 4-5 for each of the two normal modes, and deduce the precise location and mass 

of the analyte. This is the operating principal of 1D NEMS-MS. 

Building upon 1D NEMS-MS by simultaneously tracking two normal modes, 

exact determination of the total mass and analyte absorption in real time can be 

deduced to first order [14, 22]. A natural question to ask is whether there is benefit 

to employing more than two normal modes. By Taylor expanding the mode shape 

squared about the mean position of the analyte, 𝑧̅, we obtain: 

 

Φ𝑛
2(𝑧)|𝑧=𝑧̅ = Φ𝑛

2(𝑧̅) +
𝜕Φ𝑛

2

𝜕𝑧
|
𝑧=𝑧̅

(𝑧 − 𝑧̅)

+ 
𝜕2Φ𝑛

2

𝜕𝑧2
|
𝑧=𝑧̅

(𝑧 − 𝑧̅)2

2!
+ ⋯.  

Eq. 4-8 
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Substituting Eq. 4-8 into Eq. 4-5 and the definition of the mass of the particle, we 

find 

 

Δ𝜔𝑛
𝜔𝑛

= −
1

2𝑚𝑒𝑓𝑓
{Φ𝑛

2(𝑧̅)∫ 𝜇𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒(𝑧) 𝑑𝑧

+
𝜕Φ𝑛

2

𝜕𝑧
|
𝑧=𝑧̅

∫𝜇𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒(𝑧)(𝑧 − 𝑧̅)𝑑𝑧

+ 
𝜕2Φ𝑛

2

𝜕𝑧2
|
𝑧=𝑧̅

∫𝜇𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒(𝑧)
(𝑧 − 𝑧̅)2

2
𝑑𝑧 + ⋯} 

Eq. 4-9 

 
Δ𝜔𝑛
𝜔𝑛

= −
𝑚

2𝑚𝑒𝑓𝑓
{Φ𝑛

2(𝑧̅) +∑
1

𝑝!

∞

𝑝=2

𝜕𝑝Φ𝑛
2

𝜕𝑧𝑝
|
𝑧=𝑧̅

〈𝑧𝑝〉}, Eq. 4-10 

where 〈𝑧𝑝〉 is the 𝑝𝑡ℎmass moment of the analyte. Following Eq. 4-10, by measuring 

the frequency shift for a multiplicity of normal modes provides the capability for 

measuring higher spatial moments of the analyte’s mass density (in 1D); this is 

termed “inertial imaging” [13]. In the simplest case for 𝑝 =  2, this set of equations 

reduces to 

 

{
 
 

 
 
Δ𝜔1
𝜔1

= −
𝑚

2𝑚𝑒𝑓𝑓
Φ1
2(𝑧̅)

Δ𝜔2
𝜔2

= −
𝑚

2𝑚𝑒𝑓𝑓
Φ2
2(𝑧̅)

. Eq. 4-11 
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Hence, using the change in the resonant frequencies in two normal modes permits 

the determination of the mass and location of the analyte. For 𝑝 = 3, the set of 

equations becomes 

 

{
 
 
 

 
 
 
Δ𝜔1
𝜔1

= −
𝑚

2𝑚𝑒𝑓𝑓
{𝜙1

2(𝑧̅) +
𝜕Φ1

2

𝜕𝑧
|
𝑧=𝑧̅

〈𝑧〉}

Δ𝜔2
𝜔2

= −
𝑚

2𝑚𝑒𝑓𝑓
{𝜙2

2(𝑧̅) +
𝜕Φ2

2

𝜕𝑧
|
𝑧=𝑧̅

〈𝑧〉}

Δ𝜔3
𝜔3

= −
𝑚

2𝑚𝑒𝑓𝑓
{𝜙3

2(𝑧̅) +
𝜕Φ3

2

𝜕𝑧
|
𝑧=𝑧̅

〈𝑧〉}

, Eq. 4-12 

where 𝑧 is the variance of the analyte, which represents its average length along the 

length of the beam. For each additional normal mode measured, successively higher 

mass moments (skewness, kurtosis, etc.) can be determined. 

It is clearly interesting to inertially image the profile of each adsorbed analyte. 

To accomplish this a device with 2D modeshapes is required. To analyze this case, 

we extend the theory of 1D inertial imaging to 2D. Continuing in a spatial basis with 

Cartesian coordinates, Eq. 4-10 for 2D inertial imaging becomes: 

 

Δ𝜔𝑛
𝜔𝑛

= −
𝑚

2𝑚𝑒𝑓𝑓
{Φ𝑛

2(𝑥̅, 𝑦̅)

+∑∑
1

(𝑝 − 𝑗)! 𝑗!

𝑝

𝑗=0

𝜕𝑝Φ𝑛
2

𝜕𝑥𝑝−𝑗𝜕𝑦𝑗
|
(𝑥,𝑦)=(𝑥̅,𝑦̅)

〈𝑥𝑝−𝑗𝑦𝑗〉

∞

𝑝=2

}. 

Eq. 4-13 
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In direct analogy with the 1D case, the higher mass moments for absorbing 

analyte can be determined by measuring the sudden frequency shifts occurring 

(simultaneously) in additional 2D normal modes. Because of the presence of cross 

terms involving the transverse and longitudinal directions, determination of each 

additional mass moment requires an increased number of 2D normal modes.  

Table 4-1 shows the number of normal modes required to calculate a 

particular mass moment in 1D and 2D inertial imaging. 

Mass Moment Relevance Number of 

Normal Modes 

Needed in the 

1D Case 

Number of 

Normal Modes 

Needed in the 

2D Case 

Mean analyte mass 2 3 

Variance 
adsorption position 

(center-of-mass) 
3 6 

Skewness 
1st analyte shape 

moment 
4 10 

Kurtosis 
2nd analyte shape 

moment 
5 15 

 

Table 4-1 Number of normal modes needed for each mass moment 

for 1D and 2D inertial imaging. 

4.3 Devices and Analyte for 2D Inertial Imaging 

In this section, we discuss the NEMS devices and the analyte for our 2D 

inertial imaging experiments. We begin with a discussion of the two different 

geometries of devices used in our experiments. Then we discuss the analytes 

employed and their preparation. Lastly, we discuss the tests performed on the analyte 

preparation process and analyze their results. 
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For the mass spectrometry and inertial imaging experiments discussed in 

this chapter, devices were fabricated from aluminum nitride (AlN) piezoelectric 

material similar to that employed for the AlN switches described in Chapter 2. 

However, the AlN piezoelectric stacks used in these experiments have slightly 

thinner device layers, with thicknesses, from top to bottom, of: 20 𝑛𝑚 𝑀𝑜, 

50 𝑛𝑚 𝐴𝑙𝑁, 50 𝑛𝑚 𝑀𝑜, and 20 𝑛𝑚 𝐴𝑙𝑁. The fabrication process for these 2D plate 

devices that are clamped on all sides is similar to the one shown in Figure 2-15.  

 

Figure 4-5 Scanning electron micrograph of a representative 

circular plate AlN device of ~4.7 𝜇𝑚 in diameter. There are cuts at 

various locations on the top Mo layer to electrically isolate the 

various top electrodes. The hole in the center of the plate is for BOE 

to reach the silicon dioxide under the device layer to suspend the 

device. The devices are similar to those made in Matheny, et al. 

[23]. 
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There are two major differences between these plate-like (membrane) 

devices and cantilever and doubly-clamped beam devices: 1) For the plates, parts of 

the top molybdenum layer are etched away to electrically isolate multiple areas from 

one another. 2) The plate devices we employ are clamped on all sides; no silicon 

dioxide is exposed to the etchant for suspending the device. Accordingly, an extra 

step is performed in the fabrication process: holes of ~300 𝑛𝑚 were etched through 

the entire device layer to the silicon dioxide so that BOE could be used to suspend 

the device. (Figure 4-5) 

The first device geometry we have employed is a circular plate, with a 

thickness of 140 𝑛𝑚 and diameter of approximately 4.7 𝜇𝑚. While the precise 

diameter is not known because it was not possible to determine where the etching of 

the silicon dioxide (the undercut) terminated, we estimated the diameter using the 

etch rate and duration, and then compared the modal frequencies obtained with finite 

element methods (FEM). Fitting a multiplicity of modes permits direct extraction of 

the residual stress in these devices. The geometric mass of the circular plate was 

determined to be ~4.74 × 10−14 𝑘𝑔, or 2.86 × 1013 𝐷𝑎.  

The second geometry of devices employed was 140 𝑛𝑚 thick plates with an 

approximately square geometry. The deduced length of each side is 26 𝜇𝑚, again 

comparing the resonator’s measured modal frequencies to FEM simulations. To etch 

these devices, an array of holes separated by ~2 𝜇𝑚 were etched through the 

structural layer of the device (that is, through the plate). Subsequently a circular area 
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of silicon dioxide was etched under each hole using a BOE. While this fabrication 

method results in the edges of the square plate being multiple connected arcs, with 

precise geometries that depend on the etching rates and duration, the sides of the 

square are approximately straight to within 300 𝑛𝑚. FEM simulations show that it 

is sufficient to treat this as a square plate for our analyses. The deduced geometric 

mass of the square plates employed is ~6.38 × 10−13 𝑘𝑔, or 3.84 × 1014 𝐷𝑎. 

(Figure 4-7) 

 

Figure 4-6 Scanning electron micrograph of a representative square 

AlN plate device with ~26 𝜇𝑚 sides. The purple line on the device 

is the cut in the top Mo layer (light gray) so that there are two 

electrically isolated electrodes. An array of holes were etched 

through the device layer so that the BOE can etch the silicon dioxide 

in order to suspend the device. While this means that the clamping 

edge of the device was not perfectly straight, given the etch rate and 

the dimensions of the entire plate, we believe it is sufficient to 

approximate this as a square plate. 
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Figure 4-7 Diagram of a representative square AlN plate device 

with ~26 𝜇𝑚 sides. Outline of a representative square plate. The 

intersection of the green lines represents the hole etched for the 

suspension of the device. The outer extent of the red area is where 

we think the etch stopped based on the etch rate and the etch 

duration. The maximum deviation in the sides’ width is 300 𝑛𝑚. 

For these experiments we employed gold nanoparticles (GNP) as analytes. 

These were purchased from Sigma Aldrich, Inc. with various diameters, ranging from 

5 𝑛𝑚 − 80 𝑛𝑚. Table 4-2 shows the concentration and mass of the GNPs as a 

function of their diameters specified by the manufacturer. All GNP solutions were 

centrifuged to increase the as-purchased concentration by about 20 times. This did 

not result in observable aggregation of the nanoparticles. 
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GNP Diameter  GNP Mass Concentration 

𝟓 nm 1.264 × 10−21 𝑘𝑔 0.7615 𝑀𝐷𝑎 5.47 × 1013 𝑚𝐿−1 

𝟏𝟎 𝒏𝒎  1.012 × 10−20 𝑘𝑔 6.092 𝑀𝐷𝑎 5.98 × 1012 𝑚𝐿−1 

𝟐𝟎 𝒏𝒎 8.093 × 10−20 𝑘𝑔 48.74 𝑀𝐷𝑎 6.54 × 1011 𝑚𝐿−1 

𝟑𝟎 𝒏𝒎 2.731 × 10−19 𝑘𝑔 164.5 𝑀𝐷𝑎 1.79 × 1011 𝑚𝐿−1 

𝟒𝟎 𝒏𝒎 6.474 × 10−19 𝑘𝑔 389.9 𝑀𝐷𝑎 7.15 × 1010 𝑚𝐿−1 

𝟓𝟎 𝒏𝒎 1.264 × 10−18 𝑘𝑔 761.5 𝑀𝐷𝑎 3.51 × 1010 𝑚𝐿−1 

𝟖𝟎 𝒏𝒎 5.179 × 10−18 𝑘𝑔 3.119 𝐺𝐷𝑎 7.82 × 109 𝑚𝐿−1 
 

Table 4-2 Mass and concentration of gold nanoparticles of various 

diameters as purchased from Sigma Aldrich, Inc. 

The GNP solutions are suspended in a proprietary salt listed as “citrate 

buffer”, as purchased from Sigma Aldrich, Inc. The purpose of the buffer is to prevent 

the GNPs from aggregating. For our mass spectrometry and inertial imaging 

experiments, we performed buffer exchange where we added de-ionized water to the 

GNP solution to dilute the buffer solution, then centrifuged it to remove the 

supernatant. The filter used in the centrifugation process has holes that are large 

enough to allow salt particles in the buffer to pass through, but small enough to keep 

the GNPs in the solution. The buffer exchange allows us to measure the GNP without 

confounding effects of the salt. In our experiments, we performed this buffer 

exchange process multiple times, until the salt concentration was diluted by about 

1000 times.  
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Figure 4-8 Scanning electron micrograph of the effect of citrate 

buffer on the GNP solution. (a) After buffer exchange, GNP does 

not aggregate and there are very few salt particles. (b) Without 

buffer exchange, GNP does not aggregate, but there are many salt 

particles. 
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To confirm that the GNPs did not aggregate after the buffer exchange 

procedure, a GNP solution after buffer exchange and concentration was pipetted onto 

a silicon wafer and imaged under the SEM. A control GNP solution, with the 

concentration step but without buffer exchange, was pipetted onto another silicon 

wafer. Figure 4-8 shows the comparison of the two samples of GNP with and without 

buffer exchange. In the sample where buffer exchange was performed, no signs of 

aggregating of the GNP were seen even after the solution was concentrated by 20 

times. There are a few small particles that we believe is salt residue from the citrate 

buffer. In the sample where buffer exchange was not performed, while there was also 

no obvious aggregation of the GNPs, there appeared to be a much larger amount of 

small particles. These were similar to those seen in the sample with buffer exchange. 

In our experiments, after the GNP solution had been concentrated and buffer 

was exchanged out, the resulting solution was pipetted onto either a glass slide or a 

titanium foil – depending on the type of analyte delivery method in NEMS-MS/II 

analysis. In both cases, the substrate was cleaned with acetone then isopropyl alcohol 

and dried using dry nitrogen. The substrate was placed on a hot plate of 80℃ for the 

pipetting of the GNP solution. Drops with 2.5 𝜇𝐿 of the solution were pipetted onto 

the substrate, one drop at a time. After drying, the outer edges of the drop appear to 

have a darker coloration and contain higher concentrations of GNPs due to the 

“coffee ring effect” [24]. To ensure there was sufficient number of GNPs near the 

center of the substrate, we waited for each drop to dry on the hot plate, prior to 
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pipetting the following drop. Typically, a total of 250 𝜇𝐿 of GNP solution was 

pipetted onto an area of ~2 𝑐𝑚 × 2 𝑐𝑚 on the substrate. 

4.4 Experimental Setup for 2D Inertial Imaging 

In this section, we discuss the two different analyte delivery methods and the 

two setups used for our inertial imaging experiments. While our two analyte delivery 

methods are interchangeable between the two setups, we have used each setup with 

only one delivery method in our experiments. We will discuss the various methods 

of actuation and detections compatible with each setup and conclude with the 

advantages and disadvantages of each of these setups. 

The two analyte delivery methods used in our experiments are matrix-assisted 

laser desorption/ionization (MALDI) [25] and laser-induced acoustic desorption 

(LIAD). For both of these delivery methods, the analyte – concentrated GNP in these 

experiment – was deposited onto a substrate and placed into the vacuum chamber 

along with the device. 

For MALDI, the analyte is typically embedded in a matrix on a substrate, 

such as a glass slide in our experiment (Figure 4-9a). While there are a wide variety 

of methods of sample preparation and materials used for the matrix, the purpose of 

the matrix is for the absorption of radiation from an ultraviolet (UV) laser pulse. This 

laser pulse triggers ablation and desorption of the matrix with the analyte, in an 

emitted plume. During this ablation, the analyte and matrix both become ionized. 
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While GNPs have been themselves shown to be an effective matrix [26], we 

employed GNPs alone as both the matrix and the analyte in our experiment. A 

2.5 𝜇𝑚, 377 𝑛𝑚 UV pulsed laser (SRS model NL100) was used to desorb the GNPs. 

Traditional MALDI uses a metal or glass plate as the substrate and the laser pulse is 

incident from the matrix side of the substrate. In our experiment, we used a glass 

slide as our substrate and the laser pulse traversed through the glass slide and was 

subsequently absorbed by the GNP. While the analyte does not change shape or 

fragment from the ionization, given that we used robust GNPs as our analytes, 

ionization of analyte in typical MALDI could compromise the integrity of more 

sensitive analytes such as biological molecules. 

Our second method of analyte delivery, LIAD, however, is highly compatible 

with biological molecules because it does not require ionizing the analyte (Figure 

4-9b), at least for subsequent NEMS analysis. (The low ionization yield for LIAD 

compromises its utility for conventional mass-to-charge detection.) Instead of having 

a matrix absorb the laser pulse energy, LIAD operates with a metal foil substrate, and 

the laser is incident from the backside (that is, the opposite side from the location of 

the analytes). When the laser pulse arrives at the metal foil, the energy is quickly 

absorbed by the foil and results in an acoustic wave that propagates through the 

thickness of the foil. When this pulse of acoustic energy reaches the other side of the 

foil, the resulting shock wave desorbs analytes from the foil. This results in a plume 

of analytes ejected from the front (analyte) surface of the foil. Since this method is 

purely acoustic, the analytes are largely unionized in this process. In our experiments, 
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we used a 12.7 𝜇𝑚 thick titanium (Ti) foil with 500 𝑛𝑚 aluminum (Al) sputtered 

on as the LIAD substrate. The Al side of the substrate is adhered to the glass slide 

using Emerson and Cuming Stycast 1266 A/B epoxy. A 355 𝑛𝑚 Minilite II 

Continuum Class 4, Q-switched neodymium-doped yttrium aluminum garnet (Nd-

YAG) laser was used to desorb the GNP. 
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Figure 4-9 Diagram showing desorption using MALDI and LIAD. 

(a) In MALDI, the laser pulse ablates and desorbs the matrix and 

the analyte. The ablation causes some analyte and matrix to be 

ionized. (inset) Actual image of the GNP deposited onto the glass 

slide. The darker area is the result of the deposition of the GNP. (b) 

In LIAD, the laser pulse creates an acoustic pulse in the metal foil. 

When the acoustic wave reaches the other side of the foil, analytes 

are desorbed from the foil. (inset) Actual image of the Ti/Al foil 

glued onto the glass slide. The deposition on the GNP is not visible 

after the liquid has dried. 
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In our experiment, we used two different vacuum chamber setups. While 

both MALDI and LIAD can be used in either set up as long as the corresponding UV 

laser was used, we used each of the two set ups exclusively for each of the delivery 

methods. Thus, we will refer to the two setups as the MALDI setup and the LIAD 

setup. 

For the MALDI setup, we designed and machined a vacuum chamber similar 

to that used in the nonlinear beam measurement in Chapter 3. Figure 4-10 shows an 

overview of the MALDI set up. Similar to the setup in Figure 3-11, a quartz window 

provides a direct line-of-sight optical path to the device that is used for NEMS 

displacement detection by laser interferometry. In addition, the apparatus includes a 

bracket for mounting the MALDI sample slide at a 30° angle to the device (Figure 

4-11). The quartz window in the front of the sample chamber was also larger 

compared to that employed in the setup for the nonlinear experiment (Figure 3-11). 

This accommodated an additional optical path for the UV laser, permitting GNP 

desorption from the MALDI substrate. The UV laser spot on the MALDI substrate 

was moved by a focusing lens mounted on a three-dimensional motorized kinematic 

mount. While this allowed the UV laser to raster the entire MALDI substrate, only 

the irradiation of small area on the MALDI substrate by the UV laser (i.e., the 

locations of the deposited spots) results in GNP to desorb. 

The MALDI setup permits both electrical actuation and both electrical and 

optical detection of the NEMS sensor. Through its eight electrical ports, the AlN 
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device in the MALDI setup was either driven using piezoelectric actuation of the 

AlN device or mechanical actuation by mounting the NEMS device on a piezoelectric 

shaker. NEMS device motion was detected either by optical interferometry or by 

piezoelectric detection of the AlN device. 

 

Figure 4-10 Actuation, detection, and deposition scheme in the 

MALDI setup. A 633 𝑛𝑚 helium-neon (HeNe) laser is aligned with 

the device and the reflected signal is sent to the photodetector 

through a beam splitter. A 355 𝑛𝑚 SRS NL100 UV pulsed laser is 

mounted at 30° to the HeNe laser to desorb the GNP from the 

MALDI slide. The MALDI slide is mounted also at 30° angle to 

the device. The focusing lenses for both the HeNe laser and the 

pulsed UV laser are mounted on three-dimensional kinematic 

mounts for steering the laser beams onto the device and MALDI 

substrate, respectively. (inset) Actual image of the MALDI setup. 
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Figure 4-11 Close up of the MALDI deposition system. (a) A 

diagram of the front of the sample chamber (gray) with the quartz 

window (light blue). The quartz window allows a direct 

line-of-sight from the HeNe laser (red) to the device and the UV 

laser (purple) to the MALDI sample. The UV laser causes a plume 

of GNP to be desorbed from the MALDI sample and onto the 

device. (b) A MALDI sample with GNP mounted onto the angle 

bracket. The two brown rectangles are pieces of copper tape to 

adhere the MALDI glass slide onto the angle bracket. The dark 

circular spots are the deposited GNPs. 

Compared to our MALDI setup, our LIAD set up was simpler but bigger. It 

was simpler because it did not have to accommodate a direct line-of-sight optical 

path for a detection laser (Figure 4-12). The only laser utilized in this setup was the 

UV pulsed laser. Unlike the MALDI setup where a lens was mounted on a motorized 

kinematic mount to steer the laser beam, our LIAD setup had a three-dimensional 

motorized stage inside the chamber to position the LIAD slide with respect to the 
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incoming laser and the device. This allows us to raster the entire LIAD slide. 

Similar to the MALDI setup, our LIAD setup also has eight electrical ports both for 

piezoelectric actuation and detection of the AlN device and for piezoshaker actuation. 

 

Figure 4-12 Photograph of our LIAD setup. A 355 𝑛𝑚 Minilite II 

Continuum Class 4, Q-switched Nd-YAG laser was used to deposit 

GNP from the LIAD substrate. Purple line is drawn into the 

photograph to represent the UV laser path. 

In both of the MALDI and LIAD setups, the resonant frequency of the device 

is tracked using a phase-locked-loop (PLL). From Section 3.5 Experimental 

Determination of Resonant Frequency, we approximated the resonant frequency as 

the frequency with the maximum amplitude. With PLL detection, once the initial 
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resonant frequency, 𝜔0, and the quality factor of the device are measured, the 

post-deposition resonant frequency is approximated to first order by measuring the 

change in phase, Δ𝜙, of the resonator driven at 𝜔0: 

 𝜔 = 𝜔0 (1 +
1

2𝑄
Δ𝜙). Eq. 4-14 

The system was then driven at the new resonant frequency.  

In our experiment using the MALDI setup, each normal mode was driven by 

a signal generator (HP model 8648B). The optical interferometry signal from the 

photodetector was then sent to an RF lock-in amplifier (SRS model 844) with the 

reference signal coming from the signal generator. The measured change in phase 

from the lock-in amplifier was then employed to numerically calculate the new 

resonant frequency, which then was updated in the signal generator. When three 

modes were tracked, two-way power splitters/combiners (Mini-Circuits model 

ZFSC-2-1+) were used to combine the signal from the signal generator and to split 

the signal from the photodetector. When six modes were driven, six-way power 

splitters/combiners (Mini-Circuits model ZFSC-6-1+) were used. A low noise 

amplifier (Miteq model AU-1442) was connected to the output of the device. All 

communications between equipment and computer were through general purpose 

interface bus (GPIB) connections. Figure 4-13 shows a schematic of the PLL for 

three normal modes. 
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Figure 4-13 Schematic of the phase-locked-loop (PLL) employed 

to track three normal modes of the NEMS sensor (device under 

test). Three HP 8648B signal generators sent signals to the device 

through Mini-Circuits® ZFSC-2-1+ power combiners. The 

photodetector signal from the laser interferometer was split through 

Mini-Circuits® ZFSC-2-1+ power splitters to the SR844 RF lock-

in amplifiers with the reference signal coming from the signal 

generators. The measured phase was then used to calculate the new 

resonant frequency for the signal generators. 

Using independent microprocessor-controlled signal generators, lock-in 

amplifiers, and other instrumentation involves latency in communicate with the 

controlling computer. In order to minimize such delays, measurements performed 

with the LIAD setup were carried out with a custom data acquisition unit previously 

engineered by our group (ASYGN d-Box). The ASYGN d-Box is an integrated 

system with signal generator, lock-in amplifier, and PLL hard-wired using field-
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programmable gate array (FPGA). Comparing the PLL loop time constant of ~5 

seconds using our separate signal generators, lock-in amplifiers, and computer, the 

d-Box provides a small loop time constant of ~100 𝑚𝑠. 

4.5 Preliminary 2D NEMS-MS and NEMS-II Data 

In this section, we present our preliminary 2D NEMS-MS and NEMS-II data 

from the circular and square plates, using both the MALDI and LIAD setups. We 

start with the results obtained with circular NEMS resonators using the MALDI 

system, then discuss the inertial imaging results from the square NEMS resonators 

using the LIAD system. We also discuss the challenges associated with each of these 

experiments. 

We begin with the preliminary results from our mass spectrometry 

experiment with circular plate, ~4.7 𝜇𝑚 in diameter, using the MALDI setup. We 

actuated the device using a piezoshaker mounted under the NEMS device and 

detected the signal optically. The lowest three resonant frequencies measured for this 

device were 94.2 𝑀𝐻𝑧, 191.6 𝑀𝐻𝑧, and 191.9 𝑀𝐻𝑧. Based on FEM, the next 

lowest normal mode frequency expected would be ~312.9 𝑀𝐻𝑧. Since much of our 

equipment in this experiment was rated for up to ~200 𝑀𝐻𝑧, we used only the first 

three normal modes, which are sufficient to perform 2D NEMS-MS to solve for 

analyte mass and the two-dimensional coordinates of the position of adsorption. 

While the 191.6 𝑀𝐻𝑧 and 191.9 𝑀𝐻𝑧 resonant modes should have the same 

frequencies because they are degenerate, nonidealities in the fabrication process (e.g., 
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one direction not etched as much as the other) broke the device symmetry and the 

mode degeneracy (Figure 4-14). These minor imperfections in the fabrication 

process, however, turned out to be advantageous in our experiments. While the two 

resonant frequencies are slightly different, their resonant peaks proved to be within a 

linewidth of each other. Accordingly, frequency tracking using PLL proved 

challenging because the tracked frequency would periodically jump to the nearby 

frequency because of random fluctuations in the system. 

 

Figure 4-14 Amplitude and phase responses of the first degenerate 

mode for the circular plate NEMS resonator. The two resonant 

frequencies are within a linewidth of one another, making PLL 

challenging. 

  



 

 

123 

Due to the challenges in tracking the degenerate modes, in our MALDI 

experiment with circular NEMS resonators, we tracked only the fundamental mode 

and one of the degenerate modes. We recorded two simultaneous frequency jump 

events, one of which is more obvious than the other (Figure 4-15). For the first event, 

we recorded a frequency jump of 3.6 𝑘𝐻𝑧 and 11.8 𝑘𝐻𝑧 for the fundamental and 

higher mode, respectively. With this approach we cannot determine the exact location 

and mass of the particle because we solely track the frequency shift in two normal 

modes. With this information, we determine that the GNP was at least 18 𝑛𝑚 in 

diameter. The GNPs used in this experiment were ~20 𝑛𝑚 and the diameters 

deduced from the data are consistent with this value. 

For the second event observed in this device, the frequency shift in the 

fundamental mode was not as obvious. While it was possible that the frequency 

downshift in the higher mode came from the PLL losing lock with the higher mode 

and locking onto the other degenerate mode, it was not likely the case because upon 

zooming into the data, we saw a frequency downshift in the fundamental mode at the 

same time that the frequency jump takes place in the higher mode (Figure 4-15b). 

One of the reasons the second event was less obvious in the fundamental mode was 

because the frequency downshift was smaller (e.g., due to the particle landing close 

to a nodal feature). Another reason was the fundamental frequency happened to be 

drifting downward at the time of the second event. 
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Figure 4-15 Mass spectrometry data showing two mass loading 

events using a circular AlN plate with MALDI. (a) We track two 

modes: fundamental mode at 94.2 𝑀𝐻𝑧 and one of the degenerate 

modes at 191.9 𝑀𝐻𝑧 and the two events took place at 7192 second 

and 8207 second. (b) Zoomed in plot of the frequency jumps. 
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To verify analyte desorption from the substrate and their subsequent 

deposition onto the device, we performed the following tests. First we observed the 

MALDI sample under the microscope (Figure 4-16). In dark areas we confirmed the 

presence of GNPs, which only appeared after depositing of drops of concentrated 

GNP solution and not after depositing drops of de-ionized water. After the 

experiment, the slide showed lines of lighter coloration. These lines arose where the 

UV laser desorbed GNPs from the substrate. 

 

Figure 4-16 Optical image of the GNP on the MALDI slide before 

and after the mass deposition. The dark areas correspond to areas 

with GNP. A darker coloration means a higher concentration of 

GNP. After the deposition, lines of lighter coloration (within the red 

boxes) appear. These are areas where the UV laser desorbed the 

GNP. 
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In addition to imaging the MALDI substrate, we also imaged the device 

with a scanning electron microscope (SEM) to verify the GNP deposition. 

Comparing the SEM images before and after deposition (Figure 4-17a, b), there were 

additional bright spherical objects, consistent with our expectations for metallic 

objects. High resolution scans over these bright spots confirmed particle diameters 

of ~22 𝑛𝑚, as expected (Figure 4-17c). 

 

Figure 4-17 Verification of GNP deposition using scanning electron 

microscopy and energy dispersive x-ray spectroscopy (EDX). (a-b) 

Scanning electron micrographs (SEM) of the AlN circular device 

before (a) and after (b) GNP deposition. (c) SEM of the actual GNP 

to verify their sizes. (d) EDX of the device and on the GNP 

particles. The Au peak is only observed at the location of the 

adsorbed nanoparticles. 
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Utilizing energy dispersive x-ray spectroscopy (EDX) in the scanning 

electron microscope, two areas on the AlN device were analyzed: one with and one 

without these bright spherical particles. Figure 4-17d compares the results of the 

EDX analysis from these two areas. In both spectrograms, the energy peaks 

corresponding to oxygen, aluminum, silicon, and molybdenum were present. The 

sole difference between the two spectrograms was the additional energy peak at 

2.2 𝑘𝑒𝑉 for the area with the spherical particles, which corresponds to emission from 

gold. The EDX analysis of the device, along with SEM of the device and optical 

imaging of the MALDI slide, provided conclusive evidence that GNPs were desorbed 

from the MALDI substrate onto the device. 

While our circular resonator NEMS-MS measurements using MALDI 

showed promising results with GNPs deposited on the device, we only detected two 

events and were able to measure mass loading in only two modes. For NEMS-II, it 

is necessary to measure additional modes, preferably with many more events to allow 

statistical analysis. Because of this, we switched to the larger 26 𝜇𝑚 × 26 𝜇𝑚 

square plate NEMS resonators that permitted measurements of additional modes. 

With these larger devices, the fabrication process itself seemed to break the expected 

mode degeneracy, and non-degenerate resonances more than a linewidth apart were 

obtained. With these devices, we also employed the LIAD setup, which permitted 

more analyte desorption. In these experiments we employed the ASYGN d-Box 

readout that enabled tracking of additional modes at a reasonable speed with a smaller 

set of electronic instrumentation. Piezoelectric actuation and detection were 
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employed in these measurements. Piezoelectric actuation efficiencies for several 

of the modes we investigated were extremely small; we chose six resonant modes 

providing the largest signals and small backgrounds. Specifically, normal modes with 

the following resonant frequencies were employed: 6.95 𝑀𝐻𝑧, 17.3 𝑀𝐻𝑧, 

17.4 𝑀𝐻𝑧, 25.4 𝑀𝐻𝑧, 32.6 𝑀𝐻𝑧, and 53.2 𝑀𝐻𝑧. 

 

Figure 4-18 Amplitude responses of the normal modes for the 

square NEMS resonator using piezoelectric actuation and detection. 
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Two different sizes of GNPs, 40 𝑛𝑚 and 80 𝑛𝑚 in diameter, were 

deposited using LIAD. The base system pressure was 10−9 𝑡𝑜𝑟𝑟 before the start of 

experimentation. Using the ASYGN d-Box to measure and track each of the modes, 

we followed six normal modes simultaneously using a PLL loop time constant of 

100 𝑚𝑠. After deposition of both types of particles, the device was imaged using an 

SEM and the presence of GNPs of ~40 𝑛𝑚 and ~80 𝑛𝑚 in diameter was confirmed 

(Fig. 4-18). 

 

Figure 4-19 Scanning electron micrograph of the AlN square plate 

after deposition with GNP. 

In the first experiment, we used the 40 𝑛𝑚 diameter GNPs and sent five laser 

pulses, one second apart, to the LIAD sample. This corresponded to the three clear 
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frequency downshifts in Figure 4-20. The frequency downshifts in each of the six 

modes occurred simultaneously, signifying that this resulted from the mass loading 

of the device. The frequency shifts from the lower 17 𝑀𝐻𝑧 modes were not as 

obvious due to high frequency fluctuations. The discreteness of the jumps shows that 

the frequency changes arose from adsorption induced by the laser pulses.  

Similarly, in the second experiment, we used 80 𝑛𝑚 diameter GNPs and 

delivered five laser pulses to the GNP-laden LIAD substrate, again one second apart. 

Figure 4-21 presents the frequency downshifts observed in this experiment. Similar 

results from three frequency downshifts were observed, corresponding to mass 

deposition from the three laser pulses. Table 4-3 and Table 4-4 summarize the results 

from the two experiments. Using the method in Section 4.2 Operating Principal of 

NEMS-MS and NEMS-II, the calculated diameters of the GNP were ~40 − 50 𝑛𝑚 

and ~80 − 120 𝑛𝑚 and are in good agreement with our expected sizes. 
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Figure 4-20 Plots of the frequency downshifts of six simultaneous 

modes from five deposition events of 40 𝑛𝑚 GNP. 

Starting Freq. Event 1 Event 2 Event 3 Event 4 Event 5 

𝟔. 𝟗𝟓 𝑴𝑯𝒛 20.6 𝐻𝑧 20.9 𝐻𝑧 26.2 𝐻𝑧 30.5 𝐻𝑧 30.0 𝐻𝑧 
𝟏𝟕. 𝟐𝟔 𝑴𝑯𝒛 31.0 𝐻𝑧 32.9 𝐻𝑧 44.0 𝐻𝑧 43.7 𝐻𝑧 50.4 𝐻𝑧 
𝟏𝟕. 𝟒𝟏 𝑴𝑯𝒛 38.8 𝐻𝑧 42.6 𝐻𝑧 48.8 𝐻𝑧 57.7 𝐻𝑧 60.5 𝐻𝑧 
𝟐𝟓. 𝟒𝟐 𝑴𝑯𝒛 54.5 𝐻𝑧 57.7 𝐻𝑧 65.2 𝐻𝑧 73.4 𝐻𝑧 72.5 𝐻𝑧 
𝟑𝟐. 𝟖𝟑 𝑴𝑯𝒛 57.7 𝐻𝑧 59.2 𝐻𝑧 83.8 𝐻𝑧 81.1 𝐻𝑧 71.3 𝐻𝑧 
𝟓𝟑. 𝟒𝟏 𝑴𝑯𝒛 75.0 𝐻𝑧 83.0 𝐻𝑧 92.9 𝐻𝑧 108.6 𝐻𝑧 94.6 𝐻𝑧 

Table 4-3 Summary of the frequency downshifts from the five 

40 𝑛𝑚 diameter GNP deposition events. 
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Figure 4-21 Plots of the frequency downshifts of six simultaneous 

modes from three deposition events of 80 𝑛𝑚 GNP. 

Starting Freq. Event 1 Event 2 Event 3 

𝟔. 𝟖𝟕 𝑴𝑯𝒛 45.6 𝐻𝑧 49.8 𝐻𝑧 54.5 𝐻𝑧 
𝟏𝟕. 𝟏𝟐 𝑴𝑯𝒛 65.9 𝐻𝑧 142.5 𝐻𝑧 102.1 𝐻𝑧 
𝟏𝟕. 𝟐𝟔 𝑴𝑯𝒛 86.5 𝐻𝑧 97.5 𝐻𝑧 109.7 𝐻𝑧 
𝟐𝟓. 𝟐𝟔 𝑴𝑯𝒛 110.8 𝐻𝑧 121.2 𝐻𝑧 136.2 𝐻𝑧 
𝟑𝟐. 𝟔𝟐 𝑴𝑯𝒛 121.2 𝐻𝑧 119.7 𝐻𝑧 133.9 𝐻𝑧 
𝟓𝟑. 𝟐𝟐 𝑴𝑯𝒛 145.5 𝐻𝑧 165.7 𝐻𝑧 167.3 𝐻𝑧 

Table 4-4 Summary of the frequency downshifts from the three 

80 𝑛𝑚 diameter GNP deposition events. 
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While there were discrete frequency downshifts in the mass loading trials, 

these results are not consistent with the case where one assumes that only one particle 

landed on the device during each event. If one assumes that, it would require the 

particle or 40 𝑛𝑚 or 80 𝑛𝑚 diameter to land at the same location each time on the 

26 𝜇𝑚 by 26 𝜇𝑚 square plate device, which is statistically impossible. In this, as in 

our previous work with electrospray injection, we expect the adsorption positions of 

the GNPs to be stochastic and the adsorption yield per UV laser pulse to follow a 

Poisson distribution.  

Instead, if one assumes the mass loading to be due to the desorption of a large 

number of very small particles from the LIAD substrate that, subsequently, deposit 

uniformly over the NEMS device surface, it would explain the observed frequency 

downshift in these experiments. In our controlled experiment, we periodically 

observed discrete frequency downshifts corresponding to the time that the laser 

pulsed. Later experiments showed the epoxy used for adhering the LIAD substrate to 

the glass slide may have be ablated by the laser pulse and resulted in uniform 

deposition of spurious materials onto the device. Analysis indicates that a uniform 

distribution of minute particles adsorbed to the device will appear equivalent to a 

single point mass located at the position corresponding to the peak of the convolution 

of the mode shapes employed. Next steps in this effort will insure that spurious small 

particle deposition after laser pulses is suppressed. This leads to the requirement that 

the integrated spurious adsorption across the active area of the NEMS sensor should 

induce a negligible frequency shift compared to that expected from the (localized) 
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mass of the analyte. This imposes stringent constraints; for example, assuming an 

effective (circular) contact area for a 40 𝑛𝑚 Au nanoparticle corresponding to a 

region ~10 𝑛𝑚 in diameter (an area of ~7.5 × 10−5 𝜇𝑚2), the ratio of contact to 

device areas is ~10-7. Given the mass of a Au nanoparticle is ~390 𝑀𝐷𝑎 (~6.5 ×

 10−16 𝑔), uniform accumulation of spurious materials on the device surface must be 

suppressed below ~4 𝑀𝐷𝑎 to attain 1% error in determining analyte mass. This 

corresponds to only ~0.4 𝐷𝑎 over the GNP contact area. Further work is required to 

suppress spurious adsorption to these levels in the LIAD setup. 

Our analysis of the NEMS-II data elucidated another aspect of the analysis 

that was unanticipated. We observed that the mode shape of each of the normal 

modes deviates from the expected mode shape, and this can become especially 

pronounced for the higher modes. As discussed in Section 4.2 Operating Principal of 

NEMS-MS and NEMS-II, the mode shape for each normal mode is critical to the 

calculation in NEMS-MS and NEMS-II, especially when analyzing the higher spatial 

moments of the analyte mass distribution. In the case of the circular NEMS resonators 

it is possible to arrive at an analytic solution of the mode shape for clamped boundary 

conditions. For square NEMS resonators, while there is an analytic solution to the 

square and rectangular membrane boundary condition problem, with the bending 

moment of the plate included, the second order differential equation becomes a fourth 

order differential equation which is not possible to solve analytically. In our 

experiments, we typically calculated the mode shape obtained via FEM simulations, 

and employed the interpolated numerical results to carry out NEMS-II analysis. This 
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can provide erroneous results, especially for the higher moments if the actual 

mode shapes deviate from those obtained numerically. In the next section, we explore 

the experimentally obtained mode shapes of square and circular plates and compare 

these to what is expected ideally. 

4.6 Ideal Mode Shape in 2D NEMS via Simulations and Calculations 

As discussed in the previous sections, using the actual mode shapes of the 

normal modes is critical to analyzing data in NEMS-MS and NEMS-II. In this 

section, we show the mode shapes from FEM and a numerical solution to the mode 

shape using Raleigh-Ritz energy minimization. The FEM mode shapes presented in 

this section used the dimensions and material properties of those from our 

measurement. 

Figure 4-22 and Figure 4-23 show the mode shape results from FEM. 

Calculations are based on a circular plate that is 4.7 𝜇𝑚 in diameter and 140 𝑛𝑚 

thick, whereas calculations for the square plate assume 26 𝜇𝑚 sides and thickness 

similar to the circular plate. In both cases, any holes, cuts, etc. induced by the 

fabrication process were included to ensure correspondence with the measured 

system. 
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Figure 4-22 Mode shapes for a circular plate from FEM. A diameter 

of 4.7 𝜇𝑚 and a thickness of 140 𝑛𝑚 were used for the simulation. 
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Figure 4-23 Mode shapes for a circular plate from FEM. Sides of 

26 𝜇𝑚 long and a thickness of 140 𝑛𝑚 were used. 

In the calculations for NEMS-MS and NEMS-II, the mode shape must be 

converted into a numerical form. While it was possible to import the mode shape 

generated from FEM and to interpolate, the results we obtained were sometimes far 

from ideal, especially when the second or higher derivatives were needed as for the 

case of NEMS-II. We found that it is much preferable to have an analytic solution of 

the mode shape. In the case of the circular plate, by solving the equation of motion 
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with clamped boundary conditions, the mode shapes for the first three modes are 

given by: 

 Φ01 ∝ (𝐽0(𝑘01𝑟) + 𝜇01𝐼0(𝑘01𝑟)), Eq. 4-15 

 Φ11 ∝ (𝐽1(𝑘11𝑟) + 𝜇11𝐼1(𝑘11𝑟)) sin(𝜃), Eq. 4-16 

 Φ11 ∝ (𝐽1(𝑘11𝑟) + 𝜇11𝐼1(𝑘11𝑟)) cos(𝜃), Eq. 4-17 

where 𝐽𝑛 is the Bessel function of the first kind, 𝐼𝑛 is the modified Bessel function of 

the first kind, 𝑘𝑛𝑚 are the solutions to the boundary value problem with clamped 

edges, and 𝜇𝑛𝑚 are the ratios between the two Bessel functions to satisfy the 

remaining boundary conditions [27]. 

In the case of the square plate, analytic solutions to the boundary value 

problem are not possible. There are, however, analytic solutions for a square 

membrane without a bending moment. In the case where the plate is thin, the 

solutions for the square plate and those of the square membrane are extremely similar. 

We used the set of square membrane mode shapes as a set of basis to approximate 

the square plate mode shapes. We approximated the solution using Raleigh-Ritz 

energy minimization method, which assumed the general mode shape to be a linear 

combination of the square membrane mode shapes and solved for the coefficients in 

the linear combination to minimize the resonant frequency [28]. 
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4.7 Measured Mode Shape  

In the previous section, we discussed several methods for arriving at a 

numerical expression for the mode shapes: via interpolation of FEM results, by 

solving the boundary value problem, and by approximating the solution using 

Raleigh-Ritz variation. In our experiment, in order to compare the accuracy of each 

of the above methods, we measured the mode shapes experimentally using the optical 

setup depicted in Figure 3-11. It was during this experimental verification process 

that we first discovered the degree to which measured mode shapes can deviate from 

the ideal mode shapes. For the remainder of this chapter, we will elucidate the 

observed deviation of these mode shapes from ideality, and describe our experiments 

to isolate the cause of these deviations. We first discuss careful measurements of 

mode shapes. 
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Figure 4-24 Comparison of the lowest three measured (left column) 

and simulated (right column) mode shapes for a square plate 

resonator clamped at its edges. (top) Mode corresponding to the 

lowest frequency measured or simulated fundamental mode. 

(middle and bottom) Degenerate modes corresponding to the next 

modes measured and simulated. 

In Figure 4-24 we present a comparison of the first two simulated and 

measured mode shapes. For the simulation results, the second mode corresponds to 

out-of-plane antiphase motion occurring simultaneously between the two halves of 

the plate. Note that the lowest measured mode shape resembles the second mode 
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shape obtained from the simulations. Careful analysis of our experimental results 

seem to indicate that the lowest measured mode is actually the fundamental mode. 

Evidence for this is as follows: Multiple square plate devices were actuated with 

piezoelectric actuation as well as piezoshaker actuation; yet no lower-lying modes 

were observed experimentally. If the lowest mode observed experimentally was 

indeed the second mode, another near-degenerate resonance peak would be expected; 

this was not observed. By contrast, the second set of measured modes does exhibit 

such degeneracies. Further, the spacing of the measured resonant frequencies for the 

first thirteen modes all match expectations from simulations within 0.5% of the ideal 

resonant frequency spacing, as shown in Figure 4-25. Finally, we have carefully 

verified that the spatial variation in the lowest measured mode is not caused by the 

intrinsic nonlinearity in optical interferometry. (This intrinsic nonlinearity arises 

because between adjacent constructive interference maxima, the interferometer’s 

signal intensity response is sinusoidal.) Accessing the regime of nonlinear response 

would require the device motional amplitudes to be comparable to the wavelength of 

the detection laser. This is not the case in our experiments; we verified that the 

induced response is linear with the actuation drive Figure 4-26. This evidence leads 

us to believe that the lowest measured resonance is actually the fundamental mode. 
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Figure 4-25 Comparison of the ideal and measured normal mode 

frequencies for the first thirteen modes of a square plate with sides 

of 26 𝜇𝑚 long. For each data point in this plot, the x-coordinate is 

the frequency from FEM while the y-coordinate is the frequency 

measured. No modes were omitted in order to match frequencies 

from FEM. 
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Figure 4-26 Frequency sweep of the device driven from the linear 

response regime to the nonlinear response regime. This was 

performed using piezoelectric actuation and the actuation power 

was doubled each time. The displacement doubled with the 

doubling of the actuation power with no signs of compression; this 

provides evidence the regime of optical nonlinearity for the 

interferometry system is not accessed. 
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Figure 4-27 Comparison of three lowest mode shapes obtained from 

measurements (left column) and simulations for ideal (right 

column) circular plates. 

 Upon careful examination, we observed that while circular plates did not 

have obvious deviations from the ideal mode shape such as those seen in the square 

plates, there are still deviations as seen in Figure 4-27. While not explicitly discussed 

in a recent publication [29], such deviations have been observed in the measured 

mode shapes of microscale circular plate resonators (in this case patterned from 

graphene). As shown in Figure 4-27, this is especially evident for the higher modes. 
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Figure 4-28 Comparison of the lowest eight measured and ideal 

circular membrane mode shapes using a graphene device. Image is 

reproduced from Davidovikj, D., et al. [29]. 

Because the exact mode shapes are critical in NEMS-MS and NEMS-II, in 

the next section, we test various non-ideal conditions to explain the non-matching 

mode shapes. 
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4.8 Effect of Non-idealities on Mode Shape 

It is critical to employ accurate experimental mode shapes in NEMS-MS, and 

particularly, higher moment NEMS-II analysis. Accordingly, in this section we 

explore potential sources for the mode shape non-idealities we have observed. For 

most of these explorations, we base our measurements and calculations on square 

plate resonators with 26 𝜇𝑚 sides. Multiple square plates from different fabrication 

batches were tested to ensure that the observed deviations from ideality were not due 

to specific defects in individual devices. We tested for mode shape dependence upon 

different actuation methods, on actuation power, on detection laser power, on the 

presence of static anisotropic stress in the membranes, and on methods for stress 

reduction. 

We first explore the dependence of mode shape on different actuation 

methods and actuation amplitude. Since the square plates were typically driven using 

piezoelectric actuation, we first explored whether nonuniformity in the plate and 

actuation electrode geometries could be inducing the observed mode shape 

deviations. To pursue this question, we actuated devices using a piezoshaker mounted 

to the back of the device. This served to induce uniform A.C. acceleration across the 

device at the resonance frequency. Figure 4-29 compares results from piezoshaker-

induced inertial actuation against those obtained with piezoelectric actuation of the 

AlN membrane. For both actuation methods, the device was driven within the linear 

regime, to the onset of nonlinearity, and beyond – i.e. in the regime of nonlinear 
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mechanical response. For a well-controlled comparison, the actuation forces 

applied were matched for these two methods, so that the induced device response 

amplitudes were identical. The results show that the lower the actuation power, the 

weaker the response. However, regardless of the driving power or the actuation 

methods, the mode shape of the lowest mode remains unchanged, with two opposing 

lobes, resembling what is expected from the second mode of an ideal square plate. 
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Figure 4-29 Effect of actuation method and actuation power on the 

putative fundamental mode shape. The black square denotes the 

approximate boundary of the square plate. The left column was 

driven using piezoelectric actuation of the AlN material. The right 

column was driven using a piezoshaker mounted on the chip. The 

top row was driven to the linear response regime of the device. The 

middle row was driven to the onset of nonlinearity of the device. 

The bottom row was driven to the nonlinear regime of the device. 

In all cases, the mode shape resulted in two lobes with opposite 

motions. 
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Since the actuation power did not appear to affect the response, we 

explored the effect of detection laser power, used for optical interferometry in 

displacement transduction, on the mode shape. The detection laser for all of the 

experiments in this thesis has a maximum of 2.5 𝑚𝑊 power. We attenuated the laser 

power from full power (100%) to 0.1% of the laser power. As the laser power 

decreased, the signal decreased as well, but the deviation from the expected mode 

shape remained constant. 
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Figure 4-30 Effect of detection laser power on the mode shape of 

the lowest measured square plate mode. (a-g) Mode shape 

displacement as a function of laser power. The laser powers were 

(a) 100% (b) 50% (c) 10% (d) 5% (e) 1% (f) 0.5% and (g) 0.1% 

of ~1.25 𝑚𝑊. As the laser power is attenuated, the signal is 

weaker, but the deviation from the expected mode shape is still the 

same. (h) Resonant frequency as a function of percent laser power. 

By ~0.5% of the laser power, the effect of laser power on resonant 

frequency is negligible.  
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Since it appears that the actuation method, actuation power, and laser 

detection power do not induce the observed deviations from ideal mode shape, we 

explored the effect of stress on the mode shape. In Chapter 3, we demonstrated that 

the stress can indeed change the mode shape. Specifically, we hypothesized that 

anisotropic stress could qualitatively alter mode shapes. 

Through FEM, the square plate with anisotropic stress was simulated. For 

this simulation, a stress of 300 𝑀𝑃𝑎 was applied in the 𝑥 direction while the stress 

in the 𝑦 direction was varied: 300 𝑀𝑃𝑎, 30 𝑀𝑃𝑎, 3 𝑀𝑃𝑎, 0 𝑀𝑃𝑎, −3 𝑀𝑃𝑎, and 

−30 𝑀𝑃𝑎. Figure 4-31 shows the result from the simulation; it is evident that no 

noticeable difference emerges from anisotropic stress. The only effect that emerges 

is the breaking of the 𝑥-𝑦 symmetry for the degenerate modes. This is, of course, to 

be expected when stress in the 𝑥 and 𝑦 directions are not the same. However, 

regardless of magnitude of the imposed stress anisotropy, the measured fundamental 

mode shapes – one displaying two opposite lobes – were not recovered from these 

simulations. 
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Figure 4-31 FEM on the effect of anisotropic stress on mode shape. 

All six simulations have 300 𝑀𝑃𝑎 of stress in the 𝑥 direction. The 

stress in the 𝑦 direction varies as follows: (a) 300 𝑀𝑃𝑎, (b) 

30 𝑀𝑃𝑎, (c) 3 𝑀𝑃𝑎, (d) 0 𝑀𝑃𝑎, (e) −3 𝑀𝑃𝑎, (f) −30 𝑀𝑃𝑎. 

We tested the effect of stress reduction on the mode shape. When we compare 

the frequencies obtained from our FEM simulations with the experimentally 

measured modal frequencies, we are able to obtain a match if we assume the 

membranes are under an isotropic stress with 300 𝑀𝑃𝑎 tensile stress. Square plate 
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devices similar to those measured previously were fabricated. The difference in 

these devices is that material from part of the device was removed to help reduce the 

stress within the device. Symmetry was preserved in the removal of the material. 

Compared to our FEM simulations with the experimentally measured modal 

frequencies for these devices, we are able to obtain match by assuming the 

membranes are under an isotropic stress with 1 𝑀𝑃𝑎 tensile stress, 2.5 orders of 

magnitude lower than the previously measured devices. Figure 4-32 shows that the 

mode shape for such a device still exhibits two halves moving in opposite directions, 

which appears to indicate that stress reduction does not suppress the deviation from 

the ideal mode shapes. 

 

Figure 4-32 Effect of reduction of stress on mode shape. A square 

plate similar to those measured before but with material within the 

purple rectangles removed is driven. The response is the lowest 

resonant mode shape, which still exhibits two lobes moving in 

opposite directions. 
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Finally, we tested the effect of uncontrolled spatial variations in the 

optical interferometer. To achieve displacement detection for a mechanical resonator, 

it is sufficient to measure at one locale of a spatially extended device. Here, however, 

we are interested in measuring the spatial mode shapes for the devices. Since we are 

using an optical interferometry detection scheme, non-parallel reflection surfaces in 

the interference cavity would result in a background phase difference that is static, 

spatially dependent, and independent of the actual mode shape being measured. To 

explore whether this explains the anomalous mode shape data, we assume this 

mechanism alters our data and determine the phase correction by calculating the 

phase difference between the first measured mechanical mode (Figure 4-33a) and the 

first calculated mode (Figure 4-33b). If this explains the anomalies present, we should 

be able to apply this phase correction to the higher modes and recover the true 

(calculated) mode shape. To deduce the phase correction,𝜃(𝑥, 𝑦), we created a spatial 

map, cos[𝜃(𝑥, 𝑦)], relating the first measured and calculated mode (Figure 4-33c): 

 𝜑𝑛
′ (𝑥, 𝑦) = 𝜑(𝑥, 𝑦) cos[𝜃(𝑥, 𝑦)]. Eq. 4-18 

Here, 𝜑(𝑥, 𝑦) is the calculated (normalized) mode shape for mode n. 𝜑𝑛
′ (𝑥, 𝑦) is the 

measured (normalized) mode shape for mode n, assuming it is altered by a static, 

position-dependent phase shift due to a non-ideal interferometer. The deduced 

position-dependent phase shift arising from non-ideal cavity (in radians) is 

 𝜃(𝑥, 𝑦) = cos−1 [
𝜑𝑛
′ (𝑥, 𝑦)
𝜑𝑛(𝑥, 𝑦)

]. Eq. 4-19 
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Figure 4-33 Effect of variation in optical cavity in the first 

mechanical mode. (a) First measured mechanical mode. (b) First 

calculated mechanical mode. (c) Quotient of the first measured 

mode to first calculated mode. (d) Phase difference between 

measured and calculated mode. (e) Result of applying the phase 

correction to the first measured mode to recover the first calculated 

mode. 

We verify the phase correction 𝑔 by applying it back to the first mechanical mode 

measured and recovering the calculated first mechanical mode shape. 
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Figure 4-34 Phase correction applied to two degenerate second 

mechanical mode. (a) Measured degenerate second modes. (b) 

Phase corrected degenerate second mode. (c) Calculated 

degenerated second modes.  

We apply the phase correction obtained above to the measured second 

mechanical mode (Figure 4-34a). However, the phase corrected second modes 

(Figure 4-34b) do not resemble the calculated second modes (Figure 4-34c). Thus, it 

does not seem that the phase correction is sufficient to correct for the anomalous 

mode shape data. 
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While the various tests did not find the cause for the deviation of the mode 

shape, we showed that the deviation was not caused by actuation method, actuation 

power, laser interrogation power, anisotropic stress, the amount of stress, or the 

variation in the optical cavity. It is possible that thickness variations in the device, 

due to unknown and potentially uncontrolled etching processes, could induce the 

observed nonidealities. Further tests are in progress to establish the mechanisms 

underlying these mode shape deviations. We are also beginning to explore other 

membrane geometries that may be less susceptible to these effects. 

4.9 Summary 

In this chapter, we have discussed well-established methods of mass 

spectrometry and describe how NEMS can overcome their intrinsic limitations. We 

have described the operating principles of NEMS mass spectrometry (NEMS-MS) 

and NEMS inertial imaging (NEMS-II), and report our experiments to measure gold 

nanoparticles with these new methods. While our preliminary data is promising, we 

discussed reasons why we believe the data may not be representative of gold 

nanoparticle inertial imaging. We also showed that the data could be consistent with 

deposition of spurious fine particles desorbed by laser-induced acoustic desorption 

(LIAD) pulses. We have also carried out a detailed investigation of the mode shapes 

of NEMS plates. Knowledge of the precise experimental mode shapes for the NEMS 

sensors employed is crucial in performing NEMS-MS and NEMS-II. We have 

demonstrated that the experimentally-measured mode shapes of both square and 
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circular plates can significantly deviate from idealized mode shapes obtained 

from simulations and calculations. We tested various potential reasons for the 

deviations, including actuation methods, actuation power, laser detection power, 

anisotropic stress, and the reduction of stress, and have shown that these do not 

appear to explain the mode shape deviations we have observed. While we have made 

much progress toward pulsatory (MALDI and LIAD-based) NEMS-MS and NEMS-

II, additional effort is still required to obtain careful analyte deposition in this case. 

(It is noteworthy that, since electrospray ionization is a continuous and non-pulsatory 

method, such background effects can clearly be separated from the sudden shifts 

arising from discrete analyte absorption events.)  
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C h a p t e r  5  

CONCLUSIONS AND PERSPECTIVES 

 

This chapter concludes the thesis by summarizing the findings from each of the three 

applications of nanoelectromechanical systems (NEMS): NEMS switches, in-situ 

measurement of material properties in a nano-device, and NEMS mass spectrometry 

(NEMS-MS) and NEMS inertial imaging (NEMS-II). A futuristic outlook of these 

technologies developed is described.  

5.1 Summary 

In this thesis, we discussed three novel applications of NEMS. We started with a 

discussion of what NEMS and MEMS are and many applications emerging with relevance 

to our everyday lives. We also described the history and challenges in miniaturizing 

transistors and introduced mass spectrometry and its applications to various fields of science 

and engineering. 

For our first application of NEMS, we discussed NEMS switches and their 

advantages. We described two different geometries – doubly-clamped beams and cantilevers 

– for NEMS switches as well as different performance metrics for an ideal switch. We 

discussed various common materials used for NEMS switches and showed that graphene is 

an interesting material for this application. We described fabrication processes for our 

graphene NEMS switches and demonstrated unprecedented switching results. We continued 
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with the optimization of the transfer of chemical vapor deposition (CVD) graphene, 

which allows for their large-scale production, and showed the improvement to the device 

from the optimizing. Lastly we discussed using aluminum nitride (AlN) as another material 

for NEMS switches because of its unique ability for piezoelectric actuation. 

In our second application, we described a new method of using the anharmonic 

nonlinearity of NEMS resonators to determine in-situ the stress and speed of sound in a 

material. Compared to previous methods, this new method considers the effects of stress on 

the mode shape, which affects the measured speed of sound and stress. It also allows for an 

accurate measurement to be performed even if the device is not in the tension-dominating 

regime or unstressed regime. We tested the method by fabricating silicon doubly-clamped 

beams along different crystallographic orientations, which resulted in different speeds of 

sound for the family of devices. We verified this method by experimentally measuring the 

speeds of sound of the various silicon beams. 

In our third application of NEMS, we discussed the use of NEMS for 2D mass 

spectrometry and inertial imaging, which permits determination of higher mass moments 

such as variance and skewness in the spatial mass distribution. We used AlN circular and 

square plate resonators and deposited gold nanoparticles (GNP) using two different 

deposition techniques, matrix-assisted laser desorption/ionization (MALDI) and laser-

induced acoustic desorption (LIAD). We presented our preliminary data, but showed that the 

results were not clearly due to the deposition of the GNP. We also investigated the deviations 

of measured mode shape from the theoretical mode shape, a critical piece of information that 
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is needed for NEMS-MS and NEMS-II analyses. We hypothesized potential causes for 

these deviations, but so far our tests showed that the deviations do not appear to originate 

from actuation method, actuation power, laser detection power, or anisotropic stress, nor do 

they appear to be controllable by methods of intrinsic-stress reduction. 

5.2 Perspectives and Future Topics 

In the final section of this thesis, we propose the following interesting research topics 

based on the experiments we performed. 

While graphene has unique properties, making it an interesting candidate for NEMS 

switches, its single atomic layer characteristic makes them prone to damage, as shown in our 

prototype devices failing after fewer than 20 cycles. AlN and other materials may be better 

suited for the actual switch, and draping graphene over much more robust switches may 

create more optimal contacts and reduce friction. These factors could ultimately greatly 

increase the life expectancy of the mechanical switch. 

From our experimental work with MALDI- and LIAD-based NEMS-MS and 

NEMS-II, more work is still needed before this approach can be used reliably. In particular, 

with both LIAD and MALDI, each laser pulse appeared to induce adsorption of both the 

analyte as well as a uniform coating of spurious fine particles to the device. This must be 

stringently controlled, given the huge area differences involved between the analyte contact 

area and the total active area of the NEMS sensor. Unlike a constant background which can 

be subtracted away, in this pulsatory approach to NEMS-MS and NEMS-II this spurious 
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background showed up along with the analyte signal with each pulse, and it is not 

impossible to distinguish between them – as is the case for continuous method involving use 

of electrospray ionization. Additional tests are needed to reduce the effects of background 

particles and to determine the maximum acceptable level of spurious adsorption per pulse. 

Finally, we have demonstrated the deviations from idealized mode shapes that can 

occur in actual NEMS devices. Additional effort is required to understand and control the 

cause(s) of the deviations. These deviations appear to be rather generic – they are evident not 

just in AlN plates we have investigated, but also graphene membranes studied (but not 

commented upon) by others. Having accurate mode shapes is critical to accurate NEMS-MS 

and NEMS-II signal analyses. Once MALDI- and LIAD-based NEMS-MS and NEMS-II 

techniques have been perfected, they can be used to improve the capabilities of current mass 

spectrometry systems. 


