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Abstract

Background: Leptin and nitric oxide (NO) on their own participate in the control of non-shivering thermogenesis. However,
the functional interplay between both factors in this process has not been explored so far. Therefore, the aim of the present
study was to analyze the impact of the absence of the inducible NO synthase (iNOS) gene in the regulation of energy
balance in ob/ob mice.

Methods and Findings: Double knockout (DBKO) mice simultaneously lacking the ob and iNOS genes were generated, and
the expression of molecules involved in the control of brown fat cell function was analyzed by real-time PCR, western-blot
and immunohistochemistry. Twelve week-old DBKO mice exhibited reduced body weight (p<<0.05), decreased amounts of
total fat pads (p<<0.05), lower food efficiency rates (p<<0.05) and higher rectal temperature (p<<0.05) than ob/ob mice.
Ablation of iNOS also improved the carbohydrate and lipid metabolism of ob/ob mice. DBKO showed a marked reduction in
the size of brown adipocytes compared to ob/ob mutants. In this sense, in comparison to ob/ob mice, DBKO rodents showed
an increase in the expression of PR domain containing 16 (Prdm16), a transcriptional regulator of brown adipogenesis.
Moreover, iNOS deletion enhanced the expression of mitochondria-related proteins, such as peroxisome proliferator-
activated receptor y coactivator-1 o (Pgc-1a), sirtuin-1 (Sirt-1) and sirtuin-3 (Sirt-3). Accordingly, mitochondrial uncoupling
proteins 1 and 3 (Ucp-1 and Ucp-3) were upregulated in brown adipose tissue (BAT) of DBKO mice as compared to ob/ob
rodents.

Conclusion: Ablation of iNOS improved the energy balance of ob/ob mice by decreasing food efficiency through an increase
in thermogenesis. These effects may be mediated, in part, through the recovery of the BAT phenotype and brown fat cell
function improvement.
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Introduction

Energy homeostasis is a highly regulated process that requires a
tight balance between caloric intake and energy expenditure [1].
The latter is a key determinant of energy balance and includes
three components: basal metabolic rate, physical activity, and
adaptive thermogenesis [2,3]. In this sense, brown adipose tissue
(BAT) constitutes a highly active metabolic organ that plays a
crucial role in non-shivering thermogenesis, defined as the heat
production in response to cold or overfeeding [4]. Until recently,
BAT was thought to be important only in small mammals and
newborn humans. However, functional BAT was recently
identified in adults, suggesting a role in human metabolism
[5,6]. In brown adipocytes, thermogenesis is mainly mediated by
sympathetically innervated Bs-adrenergic receptors, leading to the
activation of the BAT-specific uncoupling protein-1 (Ucp-1). This
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protein is a proton transporter located in the inner mitochondrial
membrane that diverts the energy from the mitochondrial
respiratory chain from ATP synthesis to heat production [7].
The Ucgp-1 promoter is regulated by several transcriptional
coactivators, including the peroxisome proliferator-activated
receptor ¥ (PPARY) coactivator-1 o (Pgc-1ar), being also involved
in the regulation of crucial aspects of energy metabolism [8,9].
Pgc-1a is strongly induced in murine BAT during cold exposure
activating the thermogenic gene program of brown fat through the
control of the gene expression levels of Ugp-1 and Pge-Io itself. In
this regard, it has been recently described that during BAT
differentiation PR domain containing 16 (Prdm16) directly binds
to Pgc-1a, allowing the activation of Ucp-I and other brown fat-
specific genes [10,11]. Moreover, it has been demonstrated that
the NAD-dependent deacetylase sirtuin-1 (Sirt-1) deacetylates and
activates Pgc-la in the liver and BAT [12,13], allowing its union
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to target genes and increasing the rate of gene transcription. The
key role of the correpresor of nuclear receptor-interacting protein
1 (Mrp), also known as receptor-interacting protein 140 (Ryp140), in
energy homeostasis by suppressing the transcription of Ugp-1 and
other metabolic genes has been also reported [14,15].

Leptin, the product of the 0b gene, plays a key role in the control
of body weight by suppressing food intake through actions on
hypothalamic receptors and by increasing energy expenditure via
the activation of the sympathetic nerve activity and the turnover of
norepinephrine in BAT [16,17]. Leptin induces the gene
expression of Pgc-Ia and Ucp-1 through the stimulation of Ps-
adrenergic receptors, thereby leading to an increased thermogen-
esis [18-21]. In this sense, it has been shown that leptin-deficient
0b/0b mice are obese, hyperphagic and exhibit reduced non-
shivering thermogenesis as well as low UCP-1 levels in BAT [22].

Previous studies showed that norepinephrine increases the blood
flow in BAT by stimulating the production of nitric oxide (NO), a
potent vasodilator [23]. NO is produced by NO synthase (NOS),
and three isoforms have been identified: the endothelial (eNOS)
and neuronal (nNOS), which are constitutively expressed, together
with the inducible NOS (zNOS), which is primarily transcription-
ally regulated by immunologic as well as inflammatory stimuli
[24]. Both eNOS and NOS isoforms have been shown to be
expressed in brown adipocytes [25], providing evidence for the
involvement of NO in BAT function regulation.

The deletion of the 2NOS gene reportedly prevents high-fat diet-
induced insulin resistance [26]. Furthermore, leptin and ¢NVOS on
their own participate in multiple common physiological processes,
with a functional relationship between both factors having been
described earlier by our group [27-29] and others [30,31]. In
order to explore the functional interplay between both factors and
to better understand the regulatory pathways that govern energy
metabolism, we examined the effects of ¢NOS gene disruption in
genetically obese 0b/0b mice on the diverse elements of energy
balance focusing particularly on the expression of non-shivering
thermogenesis-related molecules. Our study shows that deletion of
the «NOS gene decreases food efficiency through an increase in
thermogenesis, thus improving the energy balance of 0b/0b mice.

Materials and Methods

Generation of double-knockout mice lacking the ob and
iNOS genes

A double knockout (DBKO) mouse simultaneously lacking the
0b and the tNOS genes was generated by intercrossing male 0b/0b
mice with female iVOS knockout mice (JNOS™/7) on a C57BL/6]
background (Jackson Laboratories, Bar Harbor, ME, USA).
Noteworthy, 0b/0b male mice were placed under caloric restriction
(2 g standard chow diet/day) and were daily injected with
recombinant leptin (2 g/kg body weight) (Bachem, Bubendorf,
Switzerland) in order to overcome the infertility problems of the
leptin-deficient rodents [32]. Genotyping for 0b and NOS was
performed as previously described [32,33]. Briefly, genomic DNA
was extracted from ear clips by using the DNeasy Mini kit
(Qiagen, Valencia, CA, USA) according to the manufacturer’s
instructions. The genotyping strategy utilized the Dde I restriction
site generated by the 06 mutation. To identify the presence of the
wild type or the disrupted «NOS allele, three different primers were
used. One primer complementary to both the genomic and
disrupted alleles that amplified a 108-bp fragment with the second
primer specific for the genomic sequence and a 275-bp fragment
with the third primer complementary to a region of the neomycin
resistance insert specific to the disrupted (NOS allele [34]. The
PCR was performed as described elsewhere [33] and the PCR
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products were separated on a 1.5% agarose gel and visualized with
ethidium bromide staining.

Male mice were weaned at 21 days of age, genotyped, and
maintained at a room temperature of 22+2°C on a 12:12 light-
dark cycle (lights on at 08:00 am) with a relative humidity of
50%10% and under pathogen-free conditions. Animals had free
access to tap water and were fed ad lbitum with a normal chow diet
(2014S Teklad Global 14% Protein Rodent Maintenance Diet,
Harlan, Barcelona, Spain). Body weight and food intake were
registered twice weekly. The food efficiency was determined as
body weight gained per week divided by total energy (kilocalories)
consumed over this period [35]. Body temperature was assessed by
measuring rectal temperature using a rectal thermoprobe (YSI
4600 Series Precision Thermometers, YSI Temperature, Dayton,
OH, USA). The diameter of adipocytes was determined by direct
microscopy, and the cell size was obtained using digital
photographs with the Axiovision 4.6 program (Zeiss). Mice were
injected in the tail vein with '*F-fluorodeoxyglucose (‘*F-FDG)
(200 pCi) after a short isoflurane (4%) anesthesia period. The
uptake of '"*F-FDG was analyzed by a Mosaic (Philips Electronics,
Amsterdam, The Netherland) small-animal dedicated imaging
tomograph as previously described [36].

Blood and tissue collection

Twelve-week-old mice were fasted for 6 hours and sacrificed by
COy inhalation. Blood samples were obtained by cardiac
puncture, and sera collected after cold centrifugation (4°C) at
700 g for 15 min and stored at —20°C. Epididymal, subcutaneous
and perirenal white adipose tissue together with brown fat from
the interscapular depots were carefully excised. Tissue samples
were immediately frozen at —80°C. Biopsies of BAT were also
formalin-fixed for immunohistochemical analyses. All experimen-
tal procedures conformed to the European Guidelines for the Care
and Use of Laboratory Animals (Directive 86/609) and the study
was approved by the Ethical Committee for Animal Experimen-
tation of the University of Navarra (042/03, 041/08).

Blood measurements

An intraperitoneal glucose tolerance test was performed after an
overnight fasting period (12 h). Mice were injected intraperitoneally
with glucose (2 g/kg of body weight). Glucose concentrations were
measured before and 15, 30, 60, 90 and 120 min after the glucose
challenge. Glucose was determined by an automatic glucose sensor
(Ascensia Elite, Bayer, Barcelona, Spain) from whole blood obtained
from the tail vein. Serum glucose was measured by a glucometer
(Ascensia Elite). Serum concentrations of triglycerides, total cholesterol
(Infinity, Thermo Electron Corporation, Melbourne, Australia), free
fatty acids (FFA) (Wako Chemicals, GmbH, Neuss, Germany) and
glycerol (Sigma, St. Louis, MO, USA) were measured by enzymatic
methods using commercially available kits. Insulin and adiponectin
were determined by ELISA (Crystal Chem, Inc., Chicago, IL, USA
and BioVendor Laboratory Medicine, Inc., Modrice, Czech
Republic, respectively). Intra- and inter-assay coefficients of variation
for measurements of insulin and adiponectin were 3.5% and 6.3%,
respectively, for the former, and 5.6% and 7.2%, for the latter.

Western blot studies

Tissues were homogenized and protein content was measured
as described earlier [37]. Equal amounts of protein (30 pg) were
run in 8% SDS-PAGE, subsequently transferred to nitrocellulose
membranes (Bio-Rad Laboratories, Inc., Hercules, CA, USA), and
blocked in Tris-buffered saline (IBS) with Tween 20 containing
5% non-fat dry milk for 1 h at room temperature (RT). Blots were
then incubated overnight at 4°C with primary antibodies against
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Ucp-1 and Ucp-3 (Abcam) at 1:10,000 and 1:8,000, respectively;
Pgc-1a (Cell Signalling Technology, Inc., Danvers, MA, USA) at
1:1,000; Sirt-1 (Abcam Ltd., Cambridge, UK) at 1:1,000; Sirt-3
(Cell Signalling Technology, Inc) at 1:1,000; or B-actin (Sigma) at
1:5,000. The antigen-antibody complexes were visualized using
peroxidase-conjugated anti-rabbit or anti-mouse IgG antibodies
(1:5,000) and the enhanced chemiluminescence ECL detection
system (Amersham Biosciences, Buckinghamshire, UK). The
intensity of the bands was determined by densitometric analysis
with the Gel Doc™ gel documentation system and the Quantity One
4.5.0 software (Bio-Rad) and normalized with B-actin densitomet-
ric values. All assays were performed in duplicate.

Immunohistochemistry of Ucp-1 and Ucp-3

The immunohistochemistry was carried out using the indirect
immunoperoxidase method. Sections (6 um) of formalin-fixed
paraffin-embedded BAT were dewaxed in xylene, rehydrated in
decreasing concentrations of ethanol and treated with 3% HyO,
(Sigma) in absolute methanol for 10 min at RT to quench
endogenous peroxidase activity. Then, sections were immersed in
10 mmol/I citrate buffer (pH 6.00) and heated using a microwave
oven at 800 W for 15 min to enhance antigen retrieval. After
cooling, slides were blocked during 1 h with 1% murine serum
(Sigma) diluted in Tris-buffer saline (TBS) (50 mmol/l1 Tris,
0.5 mol/l NaCl; pH 7.36) for preventing non-specific adsorption.
Sections were incubated overnight at 4°C with rabbit monoclonal
anti-Ucp-1 or Ucp-3 antibodies (Abcam) diluted 1:100 in TBS. After
three washes (5 min each) with TBS, sections were incubated with
horseradish peroxidase-conjugated anti-rabbit IgG antibody (Amer-
sham Biosciences) diluted 1:200 in TBS for 30 min at RT. After
washing in TBS, the peroxidase reaction was visualized with a 3,3'-
diaminobenzidine (DAB, Amersham Biosciences)/HyO, solution
(0.5 mg/ml DAB, 0.03% HyO, diluted in 50 mmol/]1 Tris-HCI,
pH 7.36) as chromogen, and Harris hematoxylin solution (Sigma) as
counterstaining. Sections were dehydrated, coverslipped and
observed under a Zeiss Axiovert 40 CFL optic microscope (Zeiss,
Gottingen, Germany). Negative control slides without primary
antibody were included for the assessment of non-specific staining.

RNA extraction and Real-Time PCR

Total RNA was extracted from BAT samples by homogeniza-
tion with an ULTRA-TURRAX® T 25 basic (IKA® Werke
GmbH, Staufen, Germany) using TRIzol® Reagent (Invitrogen,
Barcelona, Spain). Samples were purified with the RNeasy Mini
kit (Qiagen) according to the manufacturer’s instructions and
treated with DNase I (RNase-free DNase Set, Qiagen). For first
strand ¢cDNA synthesis constant amounts of 2 pug of total RNA
were reverse transcribed in a 40 pl final volume using random
hexamers (Roche Molecular Biochemicals, Mannheim, Germany)
as primers and 400 units of M-MLV reverse transcriptase
(Invitrogen) as described earlier [38].

The transcript levels for genes involved in brown fat cell
differentiation and function (Prdmli6, Rip140, Bmp7, Sit-1, Sirt-3,
Pgc-1a, Ucp-1 and Ucp-3) were quantified by Real-Time PCR (7300
Real Time PCR System, Applied Biosystems, Foster City, CA,
USA). Primers and probes were designed using the software Primer
Express 2.0 (Applied Biosystems) (Table 1) and purchased from
Genosys (Sigma). TagMan® probes encompassing fragments of
areas from the extremes of two exons were designed to ensure the
detection of the corresponding transcript avoiding genomic DNA
amplification. The cDNA was amplified at the following conditions:
95°C for 10 min, followed by 45 cycles of 15 s at 95°C and 1 min at
59°C, using the TaqgMan® Universal PCR Master Mix (Applied
Biosystems). The primer and probe concentrations for gene
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amplification were 300 nmol/l and 200 nmol/l, respectively. All
results were normalized to the levels of 78S rRNA (Applied
Biosystems) and relative quantification was calculated using the
AACt formula [38]. Relative mRNA expression was expressed as
fold expression over the calibrator sample (average of gene
expression corresponding to the wild type group) [39]. All samples
were run in triplicate and the average values were calculated.

Statistical analysis

Data are presented as the mean = SEM. Differences between
groups were assessed by two-way ANOVA. In case of interaction
between factors (lack of «NOS or ob genes), one-way ANOVA
followed by Tukey’s post hoc tests were applied. Statistics were
calculated by the SPSS/Windows version 15.0 software (SPSS,
Inc., Chicago, IL, USA). A P value less than 0.05 was considered
statistically significant.

Results

Ablation of /NOS reduces the positive energy balance of
ob/ob mice

As expected, leptin deficiency was associated with increased
(»p<<0.001) body weight, higher fat depots, hyperphagia and
hypothermia, whereas NOS deficiency resulted in reduced
(»p<<0.01) body weight and lower fat content as well as increased
(»p<<0.01) body temperature as compared to control mice (Fig. 1).
The 0b/0b mice lacking the WNOS gene (DBKO) exhibited a
decreased (p<0.01) body weight accompanied by significantly
(»p<<0.01) smaller epididymal, subcutaneous and total fat depots as
compared to 0b/0b mice. The weight gain of DBKO mice during
the study was significantly reduced ($<<0.0001) as compared to 0b/
0b mice (25.1+0.6 g vs 30.8%£0.7 g). Twelve week-old DBKO mice
showed a reduced (p<<0.01) food intake (Fig 1C) exhibiting a lower
food efficiency as compared to 0b/0b mice (Fig 1D). Basal rectal
temperature was analyzed showing that :NOS deficiency improved
the reduced rectal temperature of 0b/0b mice (p<<0.05) (Fig 1E). In
a subset of mice, a glucose tolerance test was performed. The
glucose areas under the curves (AUC) were measured using the
trapezoidal method. The glucose AUC in 0b/0b mice was
significantly higher (p<<0.001) than that of wild type mice.
Moreover, deletion of the :NOS gene significantly decreased the
glucose AUC (p<<0.05) in wild type and o0b/0b mice (wild type
54027, iNOS '~ 47429, ob/ob 706=71, DBKO 618+90). As
can be observed in Table 2, absence of leptin was associated with
msulin resistance as evidenced by the increased concentrations of
glucose, insulin, glucose AUC and HOMA index as well as by low
adiponectin levels (p<0.01). :NOS deletion significantly reduced
FFA and cholesterol concentrations in wild type and 0b/0b mice
(»p<<0.01). DBKO mice exhibited a tendency towards an improved
insulin sensitivity as compared to 0b/0b mice as evidenced by the
reductions in insulin, HOMA index (p=0.071 and p=0.069,
respectively) and glucose AUC.

Brown adipose tissue phenotype of ob/ob mice lacking
the iNOS gene

The weight of interscapular BAT was increased ($p<<0.001) in
leptin-deficient mice (wild type 0.31%£0.02, 0b6/0b 0.80%=0.04 g/
100 g body weight). Deletion of :NOS slightly decreased the weight
of BAT in wild type (wild type 0.310.02, iNOS™/~ 0.29%0.01 g/
100 g body weight) and 0b/0b mice (0b/0b 0.80£0.04, DBKO
0.75%0.04 g/100 g body weight) although the differences did not
reach statistical significance (Fig. 2B). However, the cross-sectional
area of brown adipocytes of experimental animals was determined
and as expected showed small and multilocular lipid droplets in
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Table 1. Sequences of the primers and TagMan® probes.

Gene (GenBank

accession number) Oligonucleotide sequence (5'-3')

Prdm16 (NM_027504)

GATGGGAGATGCTGACGGATAC
CTCGCTACCCAAGTCTTCAGAGAT
FAM- CATCCCAGGAGAGCTGATCAAAAAGC-TAMRA

Forward

Reverse

TagMan® Probe
Rip140 (NM_173440)
TCAGCTTCCTTTCCCACATAGC
TCATCTTTCGTTGCTCACCAAA
FAM-AGGCTCAGGCTGAGGCAGACGATACT-TAMRA

Forward

Reverse

TagMan® Probe
Bmp7 (NM_07557)
CAAGACGCCAAAGAACCAAGAG
GGTCTCGGAAGCTGACGTACAG
FAM-ATGGCCAGTGTGGCAGAAAACAGCA-TAMRA

Forward

Reverse

TagMan® Probe
Sirt-1 (NM_019812)
AGCAGGTTGCAGGAATCCAA
CACGAACAGCTTCACAATCAACTT
FAM-CCTTCAGTGTCATGGTTCCTTTG-TAMRA

Forward

Reverse

TagMan® Probe

Sirt-3 (NM_001127351)
CTGACTTCGCTTTGGCAGATCT
CCCCACCAAGTCTCGATTGAT
FAM-CTGGAGGTGGAGCCTTTTGCCAGCT-TAMRA

Forward

Reverse

TagMan® Probe
Pgc-1o. (NM_008904 )
TGAACGCACCTTAAGTGTGGAA
GGGTTATCTTGGTTGGCTTTATGA
FAM-ATCGCAGGCCTAACTCCACCCACCA -TAMRA

Forward

Reverse

TagMan® Probe
Ucp1 (NM_009463)
CGATGTCCATGTACACCAAGGA
ACCCGAGTCGCAGAAAAGAAG
FAM-ACCGACGGCCTTTTTCAAAGGGTTTG-TAMRA

Forward

Reverse

TagMan® Probe

Ucp3 (NM_001030877)
GACCTACGACATCATCAAGGAGAAGT
CTCCAAAGGCAGAGACAAAGTGA
FAM-6TCTCACCTGTTTACTGACAACTTCCC-TAMRA

Forward
Reverse

TagMan® Probe

Prdm16, PR domain containing 16; Rip140, receptor-interacting protein 140;
Bmp7, bone morphogenetic protein 7; Sirt-1, sirtuin-1, Sirt-3, sirtuin-3; Pgc-1o,
peroxisome proliferative activated receptor y coactivator 1 o; Ucp-1, uncoupling
protein 1, Ucp-3, uncoupling protein 3.

doi:10.1371/journal.pone.0010962.t001

control mice, whereas 0b/0b mutants exhibited large and
unilocular lipid droplets (Fig. 2A). The deletion of the tNOS gene
in 0b/0b mice dramatically reduced the size of brown adipocytes.
In this sense, DBKO mice displayed a higher proportion of small
multilocular adipocytes together with a lower proportion of larger
unilocular “white-like” adipocytes as corroborated by the cell
surface area (p<<0.001) (Fig. 2C). As seen in Fig. 2D, microPET
scans revealed a markedly enhanced '"F-FDG uptake in the
interscapular BAT of DBKO mice compared to 0b/0b animals.

Up-regulation of brown adipocyte function markers in
ob/ob mice lacking the iNOS gene

The mRNA and protein expression levels of molecules involved
in the regulation of thermogenesis and mitochondrial function
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were analyzed in BAT of the experimental animals. As shown in
Fig. 3, the gene and protein expression levels of Ucp-1 and Ucp-3
were down-regulated in 0b/0b mice and up-regulated in NOS-
deficient mice as compared to those of wild type mice.
Noteworthy, DBKO mice simultaneously lacking the 0 and iNOS
genes showed a statistically significant increase in Ucp-1 ($<<0.05)
and Ucp-3 (p<<0.05) transcripts and proteins compared to 0b/ob
mice. Immunohistological analyses showed a high expression of
Ucp-1 and Ucp-3 in BAT in all experimental groups. Nonetheless,
the immunostaining of both proteins was markedly increased in
tNOS knockout and DBKO mice, and decreased in 0b/0b animals
as compared to wild types.

ob/ob mice lacking iNOS display changes in gene
expression levels of molecules involved in brown fat cell
differentiation

To gain further insight into the mechanisms underlying the
improved energy expenditure of DBKO mice, the gene expression
levels of key molecules involved in brown fat cell differentiation
were examined (Fig. 4). The gene expression levels of Prdml16, a
zinc-finger protein that stimulates brown fat-selective gene
expression, was significantly down-regulated (p<<0.001) in 0b/0b
mice, while the deletion of ¢NVOS increased mRNA expression
levels although only a marginal statistical significance was found
(p =0.056). No changes in the mRINA expression levels of Bmp7, a
protein involved in the activation of the program of brown
adipogenesis, was observed. Nevertheless, protein expression levels
of Bmp7 were increased in mice lacking the :NOS gene. Moreover,
gene expression levels of Ripl40, a nuclear receptor involved in the
differentiation of white adipocytes, was significantly decreased
(»p<<0.01) in 2NOS-deficient mice.

The mRNA and protein expression levels of molecules involved
in the regulation of mitochondrial function and thermogenesis
were also analyzed. Leptin deficiency was associated with a
reduction of Pgc-Io transcript levels, together with a tendency
towards a decrease in Sirt-1 transcript levels, without changes in
the gene expression levels of Sirt-3 (Fig. 5). On the contrary, :NOS
knockout mice showed an increase in mRNA levels of Pge-1 o at
the same time as an increase in Sir¢-/ and Sirt-3 transcript levels,
although only a marginal statistical significance was found. The
DBKO mice showed an up-regulation of Pgc-/ o (p<<0.01) and a
marginal increase in Sit-/ and Sirt-3 as compared to the 0b/0b
group, although in the case of the sirtuins differences were not
statistically significant. The protein expression of Pgc-lo, Sirt-1
and Sirt-3 in BAT exhibited a similar pattern to that observed in
the gene expression analyses.

Discussion

The involvement of leptin and «VOS in the control of energy
balance through actions on food intake, body weight and energy
expenditure has been previously reported [16,33,40]. Leptin-
deficient mice exhibit marked obesity, hyperphagia, insulin
resistance, hypothermia and increased food efficiency [40], whereas
tNOS knockout mice are resistant to diet-induced obesity, showing
reduced epididymal fat pads and increased body temperature
[26,33]. Although the ¢NOS deficiency did not completely restore
the phenotype of the absence of leptin, our results show that deletion
of the iNVOS gene exerts a significant impact on energy homeostasis
via increasing energy expenditure and decreasing food intake. We
observed that the absence of leptin leads to obesity even in the
context of ZVOS deficiency. The DBKO mice showed a modest, but
consistent lower body weight than that of 0b/0b mice at the end of
the study. The data shows that from the eleventh week of the study
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Figure 1. Growth and metabolic variables of mice of the four experimental groups. Growth curves of 4-12 week-old-mice (A) together
with epididymal (EWAT), subcutaneous (SCWAT) and whole-body fat content (B) of the experimental animals. Cumulative food intake (C), food
efficiency (D) and rectal temperature (E) are also shown. Representative images illustrating the differences in size between 12-week-old ob/ob and
DBKO mice (F). Values are the mean = SEM (n=10 per group). Differences between groups were analyzed by two-way ANOVA. ***p<0.001, effect of
the absence of the ob gene. +p<<0.05, ++p<<0.01, effect of the absence of the iNOS gene. One-way ANOVA followed by Tukey's post hoc test was
applied for variables with interaction between factors. §99p<0.001 vs wild type, #p<0.05 vs ob/ob mice. EWAT, epididymal white adipose tissue;
SCWAT, subcutaneous white adipose tissue; WAT, white adipose tissue; bw, body weight.

doi:10.1371/journal.pone.0010962.g001
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Table 2. Metabolic characteristics of 12-week-old
experimental animals.

Wwild type iNOS™!~ ob/ob DBKO
Glucose 75+4 79+2 105+7 99+4
(mg/dl) ?
Glycerol 0.022+0.002 0.023+0.003 0.034+0.001 0.032+0.002
(mg/dl) ?
FFA 0.70+0.06  0.58+0.03  1.13=0.10  0.85*+0.04
(mmol/l) > ®
TG (mg/dl) 2 70+4 77+4 97+8 96+7
Cholesterol 83*7 714 177%15 158*11
(mg/dl) > ®
Insulin (ng/ml) * € 039%0.01  0.33+0.04° 11.20+1.54° 8.75+0.81%
HOMA 2 1.78+022 1.55+0.18  79.45+13.93 47.27+3.14
Adiponectin 23*3 26*3 14+2 20+4
(ug/ml) 2

Data are means = SEM of 8-10 animals. P values obtained by two-way ANOVA
are shown. One way ANOVA followed by Tukey’s post hoc tests were applied for
variables with interaction between factors.

“effect of the absence of the ob gene (p<0.01);

Peffect of the absence of the iNOS gene (p<0.01);

Sinteraction between factors (p<<0.05);

4p<0.05 vs wild type;

€p<<0.001 vs wild type;

0 =0.071 vs ob/ob. FFA: free fatty acids, HOMA: homeostasis model assessment,
TG: triglycerides. DBKO: double knockout mice simultaneously lacking the ob
and iNOS genes.

doi:10.1371/journal.pone.0010962.t002

onwards DBKO mice weigh significantly less than 0b/0b mutants.
Moreover, these differences were maintained and increased from
this time point throughout longer experimental periods (32 weeks,
data not shown). The possibility that DBKO mice weigh less at the
initial weeks of the study and therefore, the increase in body weight
may be similar to that of 0b6/0b mice at the end of the experimental
period is ruled out since from the beginning the DBKO exhibited a
slightly higher body weight than 0b/0b animals. Thereafter, the
growth curve of 0b/0b mice continues to increase steadily while that
of DBKO slows down. Body weights of both experimental groups
are superimposed from 8-10 weeks. During that period the growth
curves of both groups intercross with 06/0b mice becoming heavier
than DBKO mutants. This leads towards the end of the study to a
more evident reduction in body weight meaning that the lack of
tNOS is exerting an impact on body weight in 0b6/0b mice. The
differences in body weight were attributable in part to a reduction in
food intake. We describe, for the first time, that the disruption of the
tNOS gene reduces the elevated food intake and food efficiency,
partially ameliorating the obesity of 0b/0b mice. It has been
proposed that leptin-deficient mice show higher food efficiency rates
at least in part due to an impaired capacity of BAT to produce heat
[2,41]. In this sense, our data confirm this observation and further
show that tNOS-deficient and DBKO mice exhibit an increase in
rectal temperature. Taken together, ablation of ¢NOS improves the
energy balance of 06/0b mice by decreasing energy intake (reduced
food intake), and by increasing energy expenditure (increased rectal
temperature). It is well known that 0b/0b mice have an increased
respiratory quotient (RQ) due to a reduced fat oxidation with leptin
replacement normalizing the metabolic rate in these animals. INOS
knockout mice probably exhibit a reduced RQ due to their
increased B-oxidation in brown adipose tissue, as reflected by their
reduction in circulating free fatty acids. It seems reasonable that the
absence of «NOS may be associated to an increase in energy
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expenditure given that :NOS and DBKO mice exhibit a reduced
body weight and fat mass as compared to their respective controls.
This is supported by published studies [42,43] evidencing that nitric
oxide inhibits cytochrome ¢ oxidase, thus inhibiting the mitochon-
drial respiratory chain. The participation of NO in thermoregula-
tion is based on its vasodilator properties and its regulatory role in
non-shivering thermogenesis. Previous studies were focused on the
existence of two isoforms of NOS in BAT: eNOS and iNOS. A role
for iNOS in the regulation of sympathetically-mediated blood flow
in brown adipose tissue has been described, arguing against an
increased energy expenditure in this tissue in :NOS knockout mice
[23]. Furthermore, eNOS-deficient mice show a reduced energy
expenditure and an increased body weight [44]. On the other hand,
it has been reported that NO downregulates the expression of UCPs
in adipocytes [45] with UCPs being heavily involved in energy
expenditure regulation. The lack of iINOS may decrease NO
production in adipose tissue in an autocrine/paracrine way, thereby
increasing the expression of UCPs and hence energy expenditure.
The observed increase in the expression of Ucp-1 and Ucp-3 in
BAT of iNOS-deficient mice in the present study supports this
mechanism. However, NO involvement in the regulation of energy
expenditure is complex and may exhibit NOS-specific differences.
On the other hand, 06/0b mice exhibit a reduced locomotor activity,
which is normalized after leptin administration. The fact that the
proposed rise in energy expenditure in ¢NOS-deficient mice is due to
an increased locomotor activity may be excluded given the fact that
NO has been reported to induce locomotor activity in mice [46]
while ¢NOS-deficient mice show normal locomotor activity [44].
Regular observation of the DBKO and iNOS™~ mice during the
whole experimental period of our study did not identify qualitive or
semiquantitative changes in locomotor activity and behaviour
between the different rodents. In this sense, the preponderance of an
effect on body temperature in the absence of changes in locomotor
activity may be put forward. Undoubtedly, the detailed analysis of
the potential impact on both energy expenditure and locomotor
activity with sophisticated equipment to pick up slight differences
would merit a study on its own to clarify the exact contribution of
each component.

The activation of BAT has been evidenced to play an important
role in energy expenditure [47]. Previous studies have reported a
“white-like” appearance of BAT in 0b/0b mice, suggesting a
crucial role of leptin in the development of brown adipocytes [22].
In the histological analyses, large unilocular lipid droplets were
observed in BAT of leptin-deficient mice. We also showed that in
the DBKO mice the characteristic features of BAT tissue (both
macro and microscopically as well as molecularly) are partially
restored. To gain further insight into the mechanisms underlying
the change in the phenotype of BAT of the experimental models,
we focused on the transcriptional control of the metabolic
pathways, achieved by the coordinated actions of numerous
transcription factors and associated coregulators or corepressors.
In this sense, an increase in the gene expression levels of the
recently identified transcription factor PRDMI16, a positive
transcriptional regulator of the brown fat cell gene program [10]
was observed in wNOS-deficient mice. We also studied the
expression of a member of the family of the bone morphogenetic
proteins (BMPs), Bmp7, that reportedly regulates energy homeo-
stasis by activating a full program of brown adipogenesis [48].
tNOS' deficiency enhanced Bmp7 protein expression. Moreover,
the corepressor Rip140, that plays a key role in energy homeostasis
by repressing metabolic gene networks [49], was dramatically
reduced in «NOS knockout and 0b/0b mice. These data are in line
with previous studies in humans [50], supporting the notion that
downregulation of Rip/40 may be a compensatory mechanism in
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Figure 2. Phenotype of BAT of the experimental groups. (A) Representative histological sections of BAT stained with hematoxylin-eosin. Magnification
X100 (scale bar=50 um). BAT weight, general cell surface area (B), and mean values (C) of the cell surface area in relation to the percentage of brown
adipocytes contributing to the final cell size in each of the experimental groups. Values are the mean = SEM (n =6 per group). (D) MicroPET scans depicting
interscapular BAT uptake of experimental animals using '®F-FDG as a probe; signals are shown in %ID/g at the region of interest over the background.
Differences between groups were analyzed by one-way ANOVA followed by Tukey's post hoc test. 449p<<0.001 vs wild type, ###p<0.001 vs ob/ob mice.
doi:10.1371/journal.pone.0010962.g002
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Figure 3. Gene and protein expression levels of genes involved in thermogenesis. Expression levels of UCP-1 (A) and UCP-3 (B) in BAT.
mRNA and protein data were normalized for the expression of 185 rRNA and B-actin, respectively. The expression in wild type mice was assumed to
be 1. Representative blots are shown on top of the histograms. Immunohistochemistry of UCP-1 and UCP-3 in BAT corresponding to each
experimental groups is shown at the bottom of the histograms. Magnification X100 (scale bar=50 um). Values are the mean=SEM (n =6 per group).
Differences between groups were analyzed by two-way ANOVA. *p<<0.05, **p<0.01, effect of the absence of the ob gene. +p<0.05, ++p<<0.01, effect
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doi:10.1371/journal.pone.0010962.9g003
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Figure 4. Expression of genes involved in brown fat differentiation. Gene expression levels of Prdm16 (A), Bmp7 (B) and Rip140 (C). Data
were normalized for the expression of 785 rRNA and gene expression levels in wild type mice were assumed to be 1. Values are the mean * SEM
(n=6 per group). Protein levels of Bmp7 are also shown (B). Protein data were normalized for the expression of B-actin. Differences between groups
were analyzed by two-way ANOVA. *p<<0.05, effect of the absence of the ob gene. @ p =0.056, effect of the absence of the iNOS gene. One way
ANOVA followed by Tukey’s post hoc test was applied for variables with interaction between factors. 49p<0.01 vs wild type.

doi:10.1371/journal.pone.0010962.g004

order to favour energy expenditure and fat accumulation function and energy homeostasis, and controls several aspects of
reduction in already established obese states. mitochondrial biogenesis. It plays an essential role in brown fat

The expression of key markers of brown fat cell function was thermogenesis, trough activation of UCP-1 [51-53]. Sirt-1
also investigated. Pgc-lat is an important factor in mitochondrial positively acts on the activation of metabolic genes through a
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Figure 5. Effect of the lack of both genes on molecules involved in the regulation of thermogenesis. Bar graphs show the transcript and
protein levels of peroxisome proliferator-activated y coactivator-1 o (PGC-1a) (A), sirtuin-1 (SIRT1) (B), and sirtuin-3 (SIRT3) (C) in BAT of experimental
animals. mRNA and protein data were normalized for the expression of 78S rRNA and B-actin, respectively. The expression in wild type mice was
assumed to be 1. Representative blots are shown on the top of the histograms. Values are the mean=SEM (n=6 per group). Differences between
groups were analyzed by two-way ANOVA. *p<<0.05, effect of the absence of the ob gene. +p<<0.05, ++p<<0.01, effect of the absence of the iNOS
gene. @ p=0.089, effect of the absence of the iNOS gene; X p =0.084, effect of the absence of the iNOS gene.

doi:10.1371/journal.pone.0010962.g005

direct deacetylation of the transcriptional coactivator Pgc-lo.
Moreover, growing evidence supports a novel role of Sirt-3 in
enhancing the expression levels of mitochondria-related genes,
participating in adaptive thermogenesis [54]. An upregulation of
these factors that control brown fat cell function in BAT of DBKO
as compared to 0b/ob mice was detected. These results were

@ PLoS ONE | www.plosone.org
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concomitant with a significant increase in the expression of the
brown adipocyte-specific gene Ucp-1 in :NOS-deficient mice. It is
well known that Pgc-lo is intimately involved in adaptive
thermogenesis via the induction of the mitochondrial inner
membrane uncoupling protein Ucp-1 [55]. Ucp-3 is another
member of the uncoupling proteins family located in BAT [56]. It
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has been recently shown that, in addition to participating in lipid
metabolism and defense against reactive oxygen species, Ucp-3 is
also implicated in thermogenesis, and its absence is associated with
impaired cold tolerance and decreases expression of metabolic
genes [57]. In this sense, levels of UCP-3 were reduced in the
absence of leptin and were significantly upregulated by the
deficiency of the iNOS gene. Further i vitro studies would help to
confirm the effect of iNOS on brown adipocyte differentiation.

Our data reveals that :NOS ablation improves the brown-like
phenotype and the molecular function of brown fat in 06/0b mice,
thus improving the energy balance and increasing the thermogenic
activity of these animals. Interestingly, mitochondrial NOS
(mtNOS) has been shown to modulate bioenergetics regulating
oxygen uptake by reversible inhibition of cytochrome oxidase [58].
Thus, NO produced by mtNOS is involved in setting the oxygen
uptake level in the cell as a metabolic adaptation. In the setting of
NOS deficiency a potential compensatory upregulation of the
mtNOS isoform may take place. From a teleological point of view
the coupling of thermogenesis with the metabolic response during
infection via the different NOS isoforms is justified to warrant an
adequate immunologic response at the same time as avoiding an
exaggerated thermogenic effect in a catabolic setting. An INOS-
induced NO production after an infection has been shown to be
an important mediator of the febrile response. Previous studies
[59] have reported that :NVOS knockout mice respond with lower
fever after LPS administration. However, the febrile response and
non-shivering thermogenesis are mechanistically different. The
present study does not allow to conclude whether the observed
effects are due to an independent effect of leptin and NO via the
sympathetic nervous system or due to an interaction between the
signalling cascades of both molecules. Noteworthy, several
interactions in different physiological systems have been further
described. NO is involved in the effects of leptin and neuropeptide
Y on food intake, as well as in other biological actions, such as
glucose [26] and lipid [28] homeostasis, vascular tone regulation
[29,60,61], reproduction [62] or immune response [33,63].
Consistent with its pleiotropic role, leptin interacts with many
signalling pathways including those involving NO [64]. A
functional relation between leptin and NO in many cell types
and biological processes has been established. In this context, our
group was the first one to identify that NO represents the key
molecule for the depressor response induced by leptin in the
control of blood pressure [27] via iNOS-mediated signalling [29].
Interestingly, leptin was shown to play a dual role on blood
pressure, whereby it increased arterial pressure through its
sympathoexcitatory activity at the same time as exerting a
depressor response attributable to NO release. Therefore, it is
foreseeable that the inhibition of NOS leads to a predominant
effect on the sympathetic activation.
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Obesity 1s characterized by a low-grade chronic inflammatory
state; it causes the activation of an inflammatory process in
metabolically active sites such as adipose tissue, liver or immune
cells and the altered production of immunomodulators and pro-
inflammatory molecules that contribute to the induction of iNOS
[26,65]. This enzyme plays a crucial role against microbial
pathogens and tumor cells, immunopathologies and in immune
regulation, since NO contributes to local immune defence during
inflammatory processes. In this sense, it has been reported that
mice lacking sNVOS are more susceptible to viral infections [66].
Moreover, the obese state is associated with alterations in immune
function since obesity interferes with the ability of the immune
system to appropriately respond to infections [67]. Furthermore,
several studies suggest that iNOS induction is involved in cytokine-
induced insulin resistance, given that increased iNOS expression is
related to an impaired insulin-stimulated glucose uptake [68]
revealing a profound involvement of iNOS in both immunologic
and metabolic systems. In this line, the present study shows that
ablation of the ¢NOS gene in 0b/0b mice improves the impaired
carbohydrate metabolism, as previously described [69,70], de-
creasing glycemia and insulinemia as well as increasing adipo-
nectinemia, at the same time as it ameliorates lipid homeostasis
through a decrease in serum triglycerides and total cholesterol
levels.

Taken together, deletion of the <NVOS gene improves the brown-
like phenotype and the molecular function of brown fat in 0b/0b
mice. NOS deficiency results in decreased body weight and
reduced white fat pads, not only in wild type but also in leptin-
deficient obese mice. The anti-obesity effect of the absence of :NOS
is probably due to changes in pathways promoting the differen-
tiation of brown fat cells, and changes in genes involved in brown
fat function, such as Sirtl, Sirt-3 and Pgc-1a.. Moreover, ablation
of tNOS increases Ucp-1 and Ucp-3 expression, which, in turn,
may increase the rate of P-oxidation, leading to the increased
consumption of FFA in BAT as fuel for adaptive thermogenesis.
These data suggest that attenuated adiposity and improved energy
expenditure in NVOS-deficient wild type and 0b/0b mice are
functionally related to increased thermogenesis in BAT.
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